19 research outputs found

    Sensitivity Enhancement of a Concave Shaped Optical Fiber Refractive Index Sensor Covered with Multiple Au Nanowires

    Get PDF
    In the present paper, a new kind of concave shaped refractive index sensor (CSRIS) exploiting localized surface plasmon resonance (LSPR) is proposed and numerically optimized. The LSPR effect between polaritons and the core guided mode of designed CSRIS is used to enhance the sensing performance. The sensor is characterized for two types of sensing structures coated with gold (Au) film and Au nanowires (AuNWs), respectively. The influence of structural parameters such as the distance (D) of the concave shaped channel (CSC) from the core, the diameter of the nanowire (dn) and the size (s) of the CSC are investigated here. In comparison to Au film, the AuNWs are shown to significantly enhance the sensitivity and the performance of the designed sensor. An enhanced sensitivity of 4471 nm/RIU (refractive index unit) is obtained with AuNWs, for a wide range of analytes refractive index (na) varying between 1.33 to 1.38. However, for conventional Au film; the sensitivity of 808.57 nm/RIU is obtained for the same range of analytes

    A numerical approach into new designs for SPR sensors in D-type optical fibers

    Get PDF
    This thesis investigates how to improve the performance of current designs of optical fiber sensors based on Surface Plasmon Resonance, and how to use a better understanding of the physical and sensing principles behind them to propose new sensing concepts and ideas. We adopt a methodology based on numerical simulations because they provide a better insight onto the operation of these sensors and because they allow an easy and quick way of testing new designs and concepts without the need to fabricate the sensors. We also show that these simulations have a good agreement with experimental results. We adopt a systematic approach to investigate the various parameters that influence the sensor performance, and present different sensors designs, where we study the localization, optical properties, shape and size of the metal components, combined with different type of fibers, resulting in the coupling between the plasmon and optical modes. Furthermore, we verify that choosing the optical modes used in sensing in multimode fibers can also have advantages. We investigate the use of modern artificial materials, such as metamaterials, as well as the inclusion of multiple wires in the fiber to enhance the performance of the SPR sensor. At a more fundamental level, we show that the control of the coupling between multiple plasmon modes in metal components and the optical modes in the fiber constitutes a new way to improve the performance of the sensor and can be inclusively used to develop a new type of SPR sensors capable of measuring simultaneously two variables, such as the external refractive index and temperatureEsta tese investiga como é possível melhorar o desempenho das estruturas atuais dos sensores de fibra ótica baseados em Ressonância Plasmónica de Superfície (SPR), bem como compreender melhor os princípios físicos e de sensorização na base do seu funcionamento, permitindo propor novos conceitos de sensores. Foi utilizada uma metodologia baseada em simulações numéricas, pois proporcionam um melhor entendimento do funcionamento desses sensores, constituindo uma maneira simples e rápida de testar novas estruturas e conceitos, sem a necessidade de fabricar os sensores. Mostra-se também que essas simulações têm uma boa concordância com os resultados experimentais. Foi adotada uma abordagem em que se investiga sistematicamente os diversos parâmetros que influenciam o desempenho do sensor e se apresentam diferentes estruturas de sensores onde foram estudadas a localização, propriedades óticas, forma e tamanho dos componentes metálicos, combinados com diferentes tipos de fibras, resultando no acoplamento entre os modos plasmónicos e os modos óticos. Também foi verificado que a escolha dos modos óticos utilizados na deteção em fibras multimodo pode apresentar vantagens. Foi investigado ainda o uso de materiais artificiais recentemente desenvolvidos, de que são exemplo os metamateriais, bem como, a inclusão de múltiplos fios metálicos na fibra, de forma a melhorar o desempenho dos sensores SPR. A um nível mais fundamental, foi demonstrado que o controlo do acoplamento entre os múltiplos modos plasmónicos gerados nos componentes metálicos e os modos óticos propagados na fibra constitui uma nova forma de melhorar o desempenho do sensor. Tal pode ser inclusivamente utilizado para desenvolver um novo tipo de sensores SPR capazes de medir simultaneamente duas variáveis, como por exemplo o índice de refração externo e a temperatura

    Surface plasmon resonance sensing: an optical fibre based SPR platform with scattered light interrogation

    Get PDF
    This thesis describes the development, fabrication and optimisation of a Surface Plasmon Resonance (SPR) sensing architecture based on optical fibres. Motivated by biosensing applications, SPR was chosen as a simple and sensitive label-free technique that allows real time quantitative measurements of biomolecular interactions. Unlike conventional fibre SPR probes, this platform utilises a novel interrogation mechanism based on the analysis of scattered radiation facilitated by a rough plasmonic coating. A theoretical study is performed in order to determine the optimal parameters of the sensing configuration, i. e. the metal coating and fibre material. This analysis revealed a trade-off between the sensitivity of these devices, and their resolution. Optical fibres with cores made of lower refractive index materials were found to increase the sensitivity of the sensor, but broaden the SPR spectral signature. This broadening of the linewidth results in an unwanted increase in the sensor resolution, which leads to an undesirable increase in the detection limit. Therefore, experiments were performed to investigate the trade off between the sensitivity and resolution of the sensor to optimise both performance characteristics. The experimental demonstration and characterisation of a scattering SPR platform based on lead silicate fibres is described. The plasmonic coating with required surface roughness was fabricated using chemical electroless plating. In order to increase the refractive index sensitivity, a fibre SPR sensor with a lower refractive index core made of fused silica was produced. Due to the different surface properties of the silica glass and the lead silicate glass, surface modification with stannous chloride was required to fabricate suitable plasmonic coatings on the fused silica fibres. Characterisation of the new fused silica SPR sensors showed that the sensitivity of the sensing probe was improved, however, the spectral linewidth of the SPR signature was broadened, in agreement with the theoretical modelling. Nevertheless, analysis of the capability of the silica fibre based SPR sensors demonstrated potential for this platform in biological studies. To improve the resolution without affecting the sensitivity of a sensor, smaller core fibres can be used. However, using conventional small core fibres or fibre tapers is challenging due to their fragility and the requirement for fibre post processing to access the core. To overcome these difficulties, an SPR sensor based on a silica microstructured optical fibre with a core exposed along the entire fibre length was fabricated. Exposed Core Fibres (ECFs) have small cores that are supported by thin struts inside of a larger support structure, providing mechanical robustness to the fibre. The ECF SPR sensing platform doubled the improvement in the spectral linewidth when compared to the large core fused silica fibre sensor, without compromising sensitivity. Finally, the demonstration of Metal Enhanced Fluorescence (MEF) phenomena is presented. The effect of rough metallic coatings on the enhancement of fluorescence emission is investigated in planar glass substrates, showing significant improvement in emission when compared to smooth metal films. An optical fibre based MEF platform was demonstrated to illustrate the potential of rough metal coatings on a fibre for surface enhanced optical phenomena. This work is the first systematic study of a scattering based SPR sensing platform. This architecture addresses existing practical limitations associated with current SPR technologies, including but not limited to bulk design and affordability. Additionally, performance enhancement of the sensing probes is achieved through the use of alternative fibre material and geometry. The demonstrated performance improvements are not class-leading compared to commercial biosensing devices, however, the performance is in agreement with the theoretical analysis which provides a pathway for further improvement. This demonstrated that the scattering based SPR fibre platform is a practical new approach that offers the advantages of high sensitivity and signal to noise ratio, and low resolution, with the capability to improve the detection limit of SPR devices. Most importantly, this novel SPR interrogation approach allows the incorporation of two different sensing techniques, SPR and fluorescence, in the same fibre device, which opens pathways for novel biosensing applications combining the two phenomena.Thesis (Ph.D.)--University of Adelaide, School of Physical Sciences, 2017

    Novel Specialty Optical Fibers and Applications

    Get PDF
    Novel Specialty Optical Fibers and Applications focuses on the latest developments in specialty fiber technology and its applications. The aim of this reprint is to provide an overview of specialty optical fibers in terms of their technological developments and applications. Contributions include:1. Specialty fibers composed of special materials for new functionalities and applications in new spectral windows.2. Hollow-core fiber-based applications.3. Functionalized fibers.4. Structurally engineered fibers.5. Specialty fibers for distributed fiber sensors.6. Specialty fibers for communications

    Femtosecond Laser Micromachining of Advanced Fiber Optic Sensors and Devices

    Get PDF
    Research and development in photonic micro/nano structures functioned as sensors and devices have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical and biological quantities. Compared with conventional sensors with bulky assemblies, recent process in femtosecond (fs) laser three-dimensional (3D) micro- and even nano-scale micromachining technique has been proven an effective and flexible way for one-step fabrication of assembly-free micro devices and structures in various transparent materials, such as fused silica and single crystal sapphire materials. When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected-zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers. The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance. Recently, fiber optic sensors have been widely used for energy, defense, environmental, biomedical and industry sensing applications. In addition to the well-known advantages of miniaturized in size, high sensitivity, simple to fabricate, immunity to electromagnetic interference (EMI) and resistance to corrosion, all-optical fiber sensors are becoming more and more desirable when designed with characteristics of assembly free and operation in the reflection configuration. In particular, all-optical fiber sensor is a good candidate to address the monitoring needs within extreme environment conditions, such as high temperature, high pressure, toxic/corrosive/erosive atmosphere, and large strain/stress. In addition, assembly-free, advanced fiber optic sensors and devices are also needed in optofluidic systems for chemical/biomedical sensing applications and polarization manipulation in optical systems. Different fs laser micromachining techniques were investigated for different purposes, such as fs laser direct ablating, fs laser irradiation with chemical etching (FLICE) and laser induced stresses. A series of high performance assembly-free, all-optical fiber sensor probes operated in a reflection configuration were proposed and fabricated. Meanwhile, several significant sensing measurements (e.g., high temperature, high pressure, refractive index variation, and molecule identification) of the proposed sensors were demonstrated in this dissertation as well. In addition to the probe based fiber optic sensors, stress induced birefringence was also created in the commercial optical fibers using fs laser induced stresses technique, resulting in several advanced polarization dependent devices, including a fiber inline quarter waveplate and a fiber inline polarizer based on the long period fiber grating (LPFG) structure

    Proceedings of the 29th International Symposium on Analytical and Environmental Problems

    Get PDF

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence

    Synthesis, Chracterization and Applications of Coated Composite Materials for Energy Applications

    Get PDF
    The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles

    Microscopy Conference 2021 (MC 2021) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2021"
    corecore