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Abstract: This work intended to enhance the unique and outstanding properties of lanthanum by
synthesizing its nanocomposite. A lanthanum-based nanocomposite was prepared by a simple
and cost-effective “co-precipitation” method. Lanthanum nitrate (La (NO3)3) and zinc nitrate (Zn
(NO3)2) were used as precursors. The lanthanum/zinc oxide nano composite formed was then
calcined at 450 ◦C for 4 h in order to obtain a fine powder with size in the nano range of 1–100 nm.
Characterization of the prepared catalyst was done by ultraviolet/visible spectroscopy, Fourier
transform infrared spectroscopy, and photoluminescence. Crystallinity and morphology were found
by X-ray diffraction and scanning electron microscopy. The synthesized nanocomposite material
was also tested for heterogeneous catalytic applications of 4-nitrophenol (4-NP) reduction into 4-
aminophenol (4-AP). It was found to be successful in complete reduction of 4-NP with enhanced
catalytic performance.

Keywords: nanocomposite structure; XRD; photoluminescence; rare earth element REE; heteroge-
neous catalysis

1. Introduction

4-aminophenol (p-aminophenol), an imperative intermediate in the manufacturing of
multiple pharmaceutical products, mainly including phenacetin, acetanilide, and paracetamol,
also has numerous applications in anticorrosion, photography, and lubrication as a dyeing
agent [1,2]. Due to its increased demand by pharmacists, the direct catalytic conversion of
easily available 4-nitrophenol is the center of huge research [3,4]. Several reduction methods
have been reported to date for conversion of 4-nitrophenol into 4-aminophenol [5–7]. The use
of precious metals for this catalytic reduction is frequently seen, e.g., Pt, Au, etc. [8,9], involving
hydrazine as a reducing agent. However, the discovery and development of more compatible,
ecofriendly, and efficient reduction catalysts for this specific reaction is still under research.

Coatings 2021, 11, 537. https://doi.org/10.3390/coatings11050537 https://www.mdpi.com/journal/coatings
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Consequently, rare earth metal compounds are being considered by scientists across the globe
for investigation of their catalytic performance.

Over the last decade, rare earth metals with nanostructures of size 1–100 nm have
been studied by researchers around the world. Owing to the presence of 4f orbital elec-
trons, they have unique properties and offer promising applications in many fields. Their
nanostructures are defenseless against compositional or structural effects [10–12]. The
electrons in 4f shell orbitals of rare earth metals are continuously shielded by the electrons
of 5p and 4 d; this feature plays an important role in the catalytic applications of these
oxides [13]. The particle size and electronic configuration of metal oxides are interlinked,
and the band gaps and energy excitation levels change when the particle size of the metal
oxide is reduced [14].

Among nanostructured rare earth metal compounds, Lanthanum metal is an im-
portant p-type semiconductor metal, used in numerous fields, such as solar cells [15,16],
photocatalysis [17,18], photo detectors [19,20], sensors, light-emitting diodes [21,22], and
laser communications [23,24]. Lanthanum oxides with metals is a perovskite type oxide
i.e., its ABO3 type structure makes it special for catalytic applications [25,26]. In addition,
Lanthanum metal oxide in powder form, with particle size in nano range of 1–100 nm,
exhibits a lot of industrial properties as well. Lanthanum oxides are used in the synthesis of
organic catalysts in the field of electrochemistry; it is used as an electrode, and the burning
rate of propellants can also be enhanced by lanthanum oxide [27,28].

Moreover, zinc is an important transition metal, due to its feasibility and low cost, and
researchers have extensively studied its oxides. Zinc oxide is a non-toxic, highly stable n-
type semiconductor having a wide band gap (3.37 eV), which is an attractive feature because
it can absorb sufficient amounts of UV light at room temperature [29–31]. Zinc oxides are
used in several fields: in solar cells [32,33], super capacitors [34], field effect transistors [35],
light-emitting materials [36,37], gas sensors [38], drug delivery [39]; as anticancer [40,41],
antibacterial [42], diabetes treatment [43], bio- imaging [44], photocatalysts [45,46], base
material for magnetic semiconductors [47], food additive [48], transparent UV- protection
films [49,50], luminescence [51,52], solar energy conversion [53], etc. Zinc oxides are
also used in care products like sunscreen and cosmetics, as they can strongly absorb UV
light [54,55].

Additionally, the properties of metals can be enhanced in combination with another
metal i.e., transition metal. The combination of metal oxides as nanocomposite, hence,
increase interactions and effectiveness [56]. Various methods have been reported for the
synthesis of nanocomposites, such as the sol-gel method [57,58], chemical vapor deposition
(CVD) [59], hydrothermal methods [60], and the solid state method [61]. Among all
preparation methods, co-precipitation is the easiest and most cost-effective method, and no
special or complicated material and equipment is required [62].

In this work, the reduction of 4-nitrophenol using aqueous NaOH as a reducing agent
in the presence of an La2ZnO4 catalyst could be a substitute for conservative reduction
processes. Up till now, no work has done on the direct combination of Lanthanum and
Zinc metals in the form of a combined oxide. Thus, in the present work, we report
the synthesis of Lanthanum Zinc oxide nanocomposite La2ZnO4 through a simple co-
precipitation method, keeping in mind the properties of Lanthanum and Zinc. The prepared
nanocomposite was characterized by many useful techniques, i.e., FTIR Fourier transform
infrared spectroscopy, ultraviolet spectroscopy, XRD X-ray diffraction, SEM scanning
electron microscopy, and PL photoluminescence. Herein, 4-nitrophenol was reduced
to 4-aminophenol in the presence of the La2ZnO4 composite applying aq. NaOH as a
reducing agent. This scheme did not involve a specific solvent and was established at
room temperature. Hence, the current method offers an eco-friendly route for the catalytic
hydrogenation of 4-nitrophenol to 4-aminophenol.
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2. Materials and Methods
2.1. Materials

Lanthanum nitrate hexahydrate (La(NO3)3·6H2O) (99.99% pure), zinc nitrate hexahy-
drate (Zn(NO3)2·6H2O) (99% pure), sodium hydroxide anhydrous pellets (NaOH) (98%
pure), and methanol (CH3OH) (99.8%) were purchased from Sigma Aldrich and used as
received without any further purification treatment. All chemicals, including deionized
water (DI) used during the experiment, were of analytical reagent grade.

2.2. Synthesis of La2ZnO4

The process of synthesizing the La2ZnO4 nanocomposite, was followed according to
the work reported by Tinwala et al. [63]. The La2ZnO4 nanocomposite was synthesized
via the co-precipitation method, using the precursors lanthanum nitrate La (NO3)3, zinc
nitrate Zn (NO3)2, deionized water, and methanol as starting materials. Sodium hydroxide
NaOH was used as a precipitating agent. The solutions of La(NO3)3 and Zn(NO3)2 150
mL each were prepared separately by dissolving them in the solvent. The concentration of
mixtures prepared was 0.1 M for the Lanthanum nitrate solution and 0.003 M for the Zinc
nitrate solution. 0.2 M concentrated solution of the precipitating agent was also prepared.

Co-precipitation was done by combining both the mixtures and titrating by adding the
precipitating agent i.e., NaOH dropwise, while stirring at 200 rpm with a magnetic stirrer
and heating at 70 ◦C temperature for 6 hrs. Initially the pH was ~4, and the precipitating
agent was added until the pH reached ~11. On completion of the precipitation, the solution
was filtered using Whattman filter paper and washed with acetone several times in order
to remove all the byproducts. The as-prepared material was dried in an ordinary oven at
80 ◦C for 24 h, and then ground using a mortar and pestle. The dried powder was calcined
at 400–450 ◦C for 4 h.

2.3. Characterization

The Lanthanum-based Zinc oxide nanocomposite was characterized with different
analytical techniques. Crystalline size and structure were determined by X-ray diffraction
on (JDX-3532, JEOL, Tokyo, Japan), X-Ray Diffractometer, using Cu-Kα (λ = 1.5046 Å)
radiation at a tube voltage of 40 KV and 20 mA current. The morphology was found by
using scanning electron microscopy SEM (JSM-5910, JEOL, Tokyo, Japan); a band gap
was found via ultraviolet spectroscopy UV. Photoluminescence spectroscopy PL was also
used to check the optical properties of the prepared sample as a semiconductor. Fourier
transform infrared spectroscopy FTIR (IR Prestige 21, Shimadzu, Kyoto, Japan) was used
to identify the presence of any unwanted substance in the sample after calcination.

2.4. Catalysis for P-Nitrophenol Conversion

In a typical test, to 20 mL of a 0.1 mmol·L−1 aqueous solution of p-nitrophenol taken
in a beaker, a freshly prepared aqueous solution of NaOH in distilled water was introduced.
To the mixture, 0.1 g of the La2ZnO4 oxide was added and stirred at room temperature. The
disappearance of the yellow color of p-nitrophenol was monitored by UV-VIS spectroscopy
(Tensor II BRUKER, Billerica, MA, USA).

3. Results and Discussion
3.1. X-ray Diffraction

The morphological and structural analysis of the as-developed catalyst material was
carried out by various physicochemical characterizations. The crystallographic and struc-
tural confirmation of the La2ZnO4 nanocomposite was done by means of powder X-ray
diffraction analysis. The XRD pattern of the La2ZnO4 nanocomposite treated at 400–450 ◦C
is shown in Figure 1with 2θ range from 20◦ to 60◦ at room temperature. A mixed phase of
La2O3 and ZnO is formed, which is evident from the graph. All the diffraction peaks refer
to hexagonal phase La2ZnO4 and are in good agreement with the standards (ICCD card
No. 00-002-0688) for lanthanum oxide phase and (ICCD card No. 00-001-1136) for zinc

3



Coatings 2021, 11, 537

oxide phase, respectively. In Figure 1, the peaks at 22◦ (100), 26◦ (002), 44◦ (101), and 46◦

(103) correspond to La and peaks at 36◦ (002) and 57◦ (110) match up with the multiple
similar reported XRD patterns. Besides, the peaks at 31◦ (101) and 36◦ (100) appeared due
to the synergistic impact of La/Zn oxides, as both of these oxides give peaks around such 2
theta positions, singly. Moreover, few additional peaks are observed in the XRD pattern
i.e., 40◦ (101), 42.3◦ (100), 51◦ (101), and 55◦ (111), which is indication of the successful
formation of the mixed metal oxide composite [64–66].
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Figure 1. X-ray diffraction spectrum of La2ZnO4. 
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Figure 1. X-ray diffraction spectrum of La2ZnO4.

The crystallite size of the sample calcined at 400 ◦C was calculated by using Debye-
Scherer’s equation [67], which is given below:

Dhkl =
kλ

β cos θ
(1)

where Dhkl is the average crystalline size perpendicular to the crystal phase (hkl) K is con-
stant, λ is 1.5406 Å, and β is full width half maxima of the peak at (100) plane (Figure 1) [67].
The average crystallite size of the nanocomposite calculated using the above equation is
8.62 nm for the sample calcined at 400–450 ◦C.

3.2. Scanning Electron Microscopy

The morphological analysis was done with scanning electron microscopy (SEM, Hi-
tachi High-Tech, Seoul, Korea). Figure 2 represents the hexagonal morphology of the
nanocomposite prepared La2ZnO4 via scanning electron microscopy (SEM). At some
places, aggregates of the nanocomposite were observed due to the presence of binary
oxides of lanthanum and zinc. It is clearly seen that the composite is in crystalline form
and four pictures shows the presence of Zn particles on the surface of Lanthanum crystals,
forming a unique nanocomposite.
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3.3. Energy Dispersive Spectroscopy

Elemental composition and purity of the as-synthesized La2ZnO4 composite was
determined by EDS analysis (MIRA3 TESCAN, Brno, Czech Republic), as presented in
Figure 3. Uniform distribution of Zn, La, and O throughout the whole matrix is evident
from the EDS spectrum and mapping. No other peak corresponding to any impurity was
observed. It is witnessed that the composite contained a smooth surface, which could be
associated with the homogenous mixing of Zn and La oxides in the composite, resulting in
a single phase surface morphology.
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3.4. FTIR Analysis

Figure 4 shows the FTIR spectrum of the La2ZnO4 nanocomposite. The characteristic
peaks at 529.37 and 831 cm−1 clearly indicate the presence of Zn–O stretching vibration and
peaks at 717.98–591.70 cm−1 confirms the presence of ZnO and La [68]. Slight shifting of
peaks is noticed due to the formation of the nanocomposite. The peak at 3434.85 cm−1 rep-
resents the La2O3 stretching vibration. A peak with very weak intensity at 854.24 cm−1 can
be assigned to the residual nitrate ion. Other characteristic absorption bands from 2359.95
to 1458.21 cm−1 may be due to the presence of water molecule, C=C, stretching of C–H and
C–C, respectively. The difference in peak positions of the starting lanthanum nitrate and
the as-synthesized composite can be witnessed in the reported FTIR spectrum [69]. The
appearance of new peaks at 649, 1393, and 2361 cm−1 and the disappearance of specific
nitrate peaks indicate the formation of the La oxide composite [70].
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3.5. UV-Visible Spectroscopy

Optical properties of nanocomposite La2ZnO4 were investigated by UV-Vis absorption
spectra using a UV-Visible spectrophotometer (PharmaSpec UV-1700, Shimadzu, Kyoto,
Japan), as shown in Figure 5a. It was noted that band-edge absorption of the synthesized
La2ZnO4 is located in the near UV region. The optical band gap was calculated by using
the following equation [71], as shown in Figure 5b:

α = A(hν− Eg)
n/hν (2)

where A and n is a constant, equal to 1
2 for the direct band gap semiconductor. The spectra

identify UV active optical properties of the nanocomposite. It was noted that due to
very low concentrations of Zinc, as compared to Lanthanum, the band gap had minute
changes, although both metals are good semiconductors; however, for better efficiency, the
concentration of Zn metal could be increased. The prepared composite could be applied as
a UV light photocatalyst.
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nanocomposite.

3.6. Photoluminescence Observation

The PL spectra of the La2ZnO4 nanocomposite is shown in Figure 6. Small variations
in the absorption peaks, due to the formation of nanocomposites, were noticed. The
position of emission bands becoming less intense may be due to the strain in crystal lattice
to accommodate larger Lanthanum atoms with Zinc metal as oxide. If the UV spectrum
of the as-proposed composite is compared with pure lanthanum nitrate, a blue shift is
observed, a result of the addition of zinc, attributed to wider band gap of ZnO [72]. The
results suggest that the as-synthesized nanoparticles can absorb radiation in UV and in
the visible region, as well from solar light, indicating that the La2ZnO4 composite could be
useful as a visible light photocatalyst.
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3.7. Catalysis Process

The catalytic performance for hydrogenation reaction was examined by the catalytic
reduction of 4-nitrophenol into 4-aminophenol, shown in Figure 7. Before the explanation
of results of 4-NP reduction, the common mechanism and logical reasons for the enhanced

7



Coatings 2021, 11, 537

hydrogenation reactions performance can be ascribed due to the presence of mixed-phase
binary oxides nanoparticles in nanocomposite form. The reduction capability of the catalyst
material depends on the mutual electron transfer process within the composite system.
In the case of the present catalyst, La2ZnO4 exhibits a higher catalytic performance, re-
sulting from both the constituent elements. The brief mechanism could be explained
as follows; in La2ZnO4, the La2O3 and ZnO sites exhibited selectivity in initiating the
reduction reactions at the mixed-phase binary oxide of the La2ZnO4 interfaces; further,
this composite improved the electron transfer phenomenon as well boosted the reaction
synergistically. These collective factors enhanced the overall catalytic performance of the
nanocomposite material.
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It was observed that the conversion of 4-nitrophenol to 4-aminophenol with NaOH
as a reducing agent in the presence of La2ZnO4 reducing catalysts took 60 min (when the
color of the mixture changed from yellow to colorless). Comparatively, this decolarization
requires 5.5 h with NaOH, in the absence of a catalyst. The appearance of a new peak at 300
nm−1 corresponds to the absorbance by 4-aminophenol and is an indication of successful
conversion [73,74]. The observed UV-visible absorbance peaks of the reactants and the
product are significantly isolated at ~400 nm and ~300 nm, respectively. Furthermore, the
concentrations of 4-nitrophenol were estimated from absorbance at ~400 nm using the
respective calibration curve. Therefore, it can be deduced that the mild reducing ability of
NaOH could be efficiently enhanced with the addition of the La2ZnO4 composite.

3.8. Kinetics of the Reduction Catalysis

The kinetic mechanism of 4-nitrophenol reduction with NaOH was studied with
the La2ZnO4 catalyst. It typically follows the pseudo-first-order reaction owing to the
concentration of 4-nitrophenol. The equation for the pseudo-first-order reaction is given in
Equation (3) [75]:

ln(Ct/C0) = ln(At/A0) = −kt (3)

Here Ct and C0 represent the concentrations of 4-nitrophenol at time t and t = 0,
respectively. At and A0 corresponds to the absorbance of 4-nitrophenol at time t and t = 0
respectively, at peak position of 400 nm−1. k is the rate constant of the reaction.

Moreover, when natural log of concentration/absorbance was plotted as a function of
time, a significant decrease can be witnessed (Figure 8). The slope of the graph gave the
rate constant of the reaction, which is found out to be k = 0.012 min−1.
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4. Conclusions

Lanthanum-based Zinc oxide nanocomposites were synthesized by co-precipitation
method using water as a solvent. The reaction between both the precursors in the presence
of water produces hydroxyl ions for precipitation. The hexagonal crystalline structure
with crystallite size of 8.62 nm was observed after calcination at 450 ◦C, detected by XRD.
The morphology was confirmed by SEM; all the images show the presence of Zinc on
the surface of Lanthanum, hence forming the La2ZnO4 nanocomposite. No evidence of
the presence of separate La and Zn was found. The Pl spectra indicated that the band
gap of La metal can be reduced by the addition of Zn metal, if an efficient amount is
used. The nanocomposite prepared was found to have strong photocatalytic efficiency.
Co-precipitation, the method that was adopted for synthesis, was cost-effective and simple,
as compared to other reported methods. In addition, the as-developed nanocomposite
material showed enhanced catalytic performance for complete reduction of 4-nitophenol
into 4-aminophenol within 60 min. The enhanced 4-NP reduction may be ascribed to the
synergistic effects of binary oxides sites of the La2ZnO4 nanocomposite. The findings herein
could pave the way for the fruitful study and development of heterogeneous catalysts for
eco-friendly environmental applications.
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Abstract: Ammonia electro-oxidation (AEO) is a zero carbon-emitting sustainable means for the
generation of hydrogen fuel, but its commercialization is deterred due to sluggish reaction kinetics
and the poisoning of expensive metal electrocatalysts. With this perspective, CuO impregnated
γ-Al2O3 (CuO/γ-Al2O3) hybrid materials were synthesized as effective and affordable electrocat-
alysts and investigated for AEO in alkaline media. Structural investigations were performed via
different characterization techniques, i.e., X-ray diffraction (XRD), Fourier transformed infrared
spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
and electrochemical impedance spectroscopy (EIS). The morphology of γ-Al2O3 support as inter-
connected porous structures rendered the CuO/γ-Al2O3 nanocatalysts with robust activity. The
additional CuO impregnation resulted in the enhanced electrochemical active surface area (ECSAs)
and diffusion coefficient and spiked the electrocatalytic performance for NH3 electrolysis. Owing to
good values of diffusion coefficient for AEO, low bandgap, and availability of ample ECSA at higher
CuO to γ-Al2O3 ratio, these proposed electrocatalysts were proved to be effective in AEO. Due to
good reproducibility, electrochemical stability, and higher activity for ammonia electro-oxidation,
CuO/γ-Al2O3 nanomaterials are proposed as efficient promoters, electrode materials, or catalysts in
ammonia electrocatalysis.

Keywords: CuO/γ-Al2O3; ammonia electro-oxidation (AEO); electrochemical surface area (ECSA);
electrocatalysts

1. Introduction

Ammonia (NH3) is a corrosive, pungent and carcinogenic inorganic gaseous pollutant
and is being produced from both biogenic and anthropogenic sources, i.e., livestock waste,
animal agriculture, refrigeration, nitrogen fertilizer and petroleum refining industries [1,2].
Many efforts have been devoted to removing NH3 from gaseous and waste streams through
chemical, biological, and physical methods, but all have their limitations [2–4]. Recently,
electrocatalytic oxidation of ammonia (AEO) has attracted much attention of researchers
and scientists because, as a hydrogen-rich carrier, it possesses 70% higher volumetric hydro-
gen content than pure liquid hydrogen [5,6]. Theoretical and experimental investigations
reveal that hydrogen generation via ammonia electro-oxidation (AEO) is a cost-effective
approach compared to water electrolysis because it requires much lower oxidation potential
(0.06 V) than water (−1.23 V), as described in Equations (1–3) [7,8]. Theoretical ammonia
electrolysis consumes energy of about ~1.55 Wh·g−1 H2 at standard conditions, which is
95% less than water electrolysis [9]. Due to fast reaction kinetics and modest operating
conditions, ammonia electro-oxidation is considered a promising future technology to
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produce hydrogen from ammonia polluted wastewaters [10,11]. At 25 ◦C, the ammonia
electrooxidation potential is −0.77 V vs. Standard Hydrogen Electrode (SHE), merely
0.06 V less negative than the oxidation potential of−0.83 V vs. SHE for hydrogen evolution
in alkaline solution [12].

Anode reaction: NH3(aq) + 3OH−→ 1/2N2 + 3H2O + 3e−→ Eanode = −0.77 V vs. SHE (1)

Cathode reaction: 3H2O + 3e− → 3/2H2 + 3OH− → Ecathode = −0.83 V vs. SHE (2)

Overall reaction: NH3(aq)→ 1/2N2 + 3/2H2 → ∆E = 0.06 V (3)

Electro-oxidation of ammonia prompts the inhibition of the oxygen evolution reaction
(OER) because of adsorption of the products in result of ammonia oxidation on the electrode
surface. The OER inhibition boosts the AEO reaction, which is the main reaction. The amino
radicals as intermediates, formed in the course of ammonia oxidation, trigger a reaction
chain where dissolved molecular oxygen is involved in the AEO [13]. Nitrogen present as
ammonia or ionized ammonium or both forms deplete dissolved oxygen through oxidation
in aqueous solutions, which boost the AEO reaction [14].

Moreover, innovation in the design and fabrication of reasonable and proficient
electrocatalysts for AEO are essential for its successful implementation. To commercialize
this direct ammonia fuel cell (DAFC) technology, an efficient, stable, and economical
electrocatalyst is required. Thus far, expensive noble metal-based (Pt, Ru, Ir, Rh, Pd)
alloys are considered as the best performing AEO catalysts [5–8,15,16]. Sluggish reaction
kinetics of AEO, high cost and low resistance to poisoning by reaction intermediates of
these catalysts hinder this technology in commercialization. Recently, some effort has
been devoted to developing non-noble metal electrocatalysts including NiO-TiO2 [17] and
CuO-TiO2 [1] for AEO, but they require higher overpotential. Similarly, Ni oxides and
hydroxides-based catalysts have displayed better performance towards AEO; however,
they get easily corroded and deactivated in ammonia solution [9,17,18]. Although it is
proved theoretically that copper displays comparable activity to Pt, it forms too weak a
bond with Ni than Pt, leading to a very high overpotential [19]. Therefore, it displays
poor catalytic performance toward AOR experimentally [20]. Cupric oxide (CuO) is a
promising p-type semiconductor and has been investigated in various applications such
as photocatalytic hydrogen production [21], dye degradation [22], electro-oxidation of
hydrazine [23–25], methanol oxidation [26], and so on. Recently, the oxidation behavior
of CuO-modified TiO2 was investigated for ammonia (0.5 M H2SO4 + 0.1 M NH3) by
using linear sweep voltammetry [1]. However, extensive research is required to explore the
cost-effective and efficient electrocatalysts to replace the incumbent Pt-based alloys [27].
Porous materials behave as potential electrodes owing to their high conductivity [28].

Furthermore, catalyst support materials exhibit great influence on the cost, perfor-
mance, and durability of polymer electrolyte membrane (PEM) fuel cells. Due to high
chemical/electrochemical stability, surface area and versatility, the high surface area metal
oxides including alumina (γ-Al2O3), silica (SiO2), titania (TiO2) and zirconia (ZrO2) are
considered as better catalyst supports than conventional carbon materials [29–32]. Besides,
multiple types of transition alumina are recurrently used as supports for developing het-
erogeneous catalysts which consist of an active phase dispersed on a carrier or support.
Alpha (α), beta (β) and gamma (γ) are three different types of alumina. The α-Al2O3,
also known as nano-alumina, is a white puffy powder. It has lower specific surface area,
limited high temperature resistance and it is inert, therefore it does not belong to activated
alumina, and hence displays almost no catalytic activity. β-Al2O3 is hexagonal, with lamel-
lar structure and the unit cell contains two alumina spinel-based block. It also exhibits
low catalytic and strengthening properties. Among the different known alumina types,
γ-Al2O3 is perhaps the most important with direct application as a catalyst support in
the several industries. γ-Al2O3 possesses high purity and provides excellent dispersion
and high specific surface area, offering commendable resistance to high temperature and
high activity. It is porous; hence, it is said to be activated alumina and used as catalyst
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support as well as adsorbent [33]. The efficacy of γ-Al2O3 can be regarded to an auspi-
cious combination of its textural possessions, e.g., surface area, pore volume, pore-size
distribution and acid/base characteristics, which are mainly related to local microstructure,
surface chemical composition and phase composition [34]. The highly porous γ-Al2O3 can
be synthesized at moderate temperatures; therefore, it is widely used as support in many
applications [22,26,35,36].

Herein, cost-effective and easily synthesized electrocatalysts (CuO/γ-Al2O3) were
investigated for efficient ammonia electro-oxidation reaction in alkaline media. The CuO
impregnated γ-Al2O3 nanomaterials were prepared by a simple impregnation-annealing
process [26]. In such systems, impregnation of γ-Al2O3 with an aqueous active metal
salt, preceded by drying and calcination, typically results in diffusion of active metal
ions into the support surface, forming interaction species. Depending on the calcination
temperature and time, only a finite amount of metal ions can be accommodated in the
vacant lattice sites of the support. Once all of the available lattice sites are saturated,
further addition of metal ions can be accommodated only by segregation of a separate
metal oxide phase. The morphology of γ-Al2O3 support was modulated from plate-type
to network-like by altering the CuO contents in compositions [37]. The electrocatalytic
performance of as-synthesized CuO/γ-Al2O3 was observed by using cyclic voltammetry as
the investigation tool. The prepared nanomaterials displayed high electrochemical active
surface areas (ECSA), diffusion coefficients, and electrocatalytic activity for NH3 electro-
oxidation. Also, the conductive and stable catalytic performance towards ammonia electro-
oxidation is indebted to their low bandgaps. Increasing the CuO contents in CuO/γ-Al2O3
nanomaterials enhanced the catalytic performance because of the suppressed formation of
active reaction intermediates as observed via CV profiles. The electrochemical stability and
higher performance towards the ammonia electro-oxidation rendered the CuO/γ-Al2O3
nanomaterials as efficient electrocatalysts.

2. Experimental
2.1. Preparation of CuO/γ-Al2O3 Electrocatalysts

All chemicals were purchased from Sigma Aldrich, St. Louis, MO, USA. and were
used without further purification. Firstly, the catalyst’s support alumina (γ-Al2O3) was
prepared by calcination of pre-precipitated aluminum hydroxide (Al(OH)3). Typically,
36.2 g of aluminum nitrate nonahydrate (Al2(NO3)3·9H2O) was dissolved in distilled water
(50 mL) and aqueous ammonia (35%) was added dropwise to obtain the white precipitates
of aluminum hydroxide. Finally, as-prepared vacuum dried (80 ◦C) powder was calcined
in NEY 2-525 furnace at 800 ◦C in the air for two hours to obtain γ-Al2O3. The copper
oxide coated alumina (CuO/γ-Al2O3) nanomaterials were synthesized in two-steps; in the
first step, as-synthesized γ-Al2O3 was impregnated in the required amount of aqueous
solution of copper nitrate trihydrate (Cu(NO3)2·3H2O) for 48 h. and dried in an oven at
200 ◦C. The X-CuO/Al2O3 (X = 4, 8, 12, 16 and 20 wt.% of CuO) impregnated catalysts
were obtained by calcination at 500 ◦C in the air for two hours as shown in Figure 1. The
gradual variation in color of synthesized catalysts from bluish-white to bluish green was
observed with incremental CuO content.

2.2. Electrochemical Investigations

Electrochemical analysis of all prepared electrocatalysts was carried out by using
Gamry potentiostat interface 1000 and three-electrode system in which silver/silver chlo-
ride (Ag/AgCl), silver wire and modified glass carbon electrode are used as a reference,
counter and the working electrode, respectively [38–40]. Ag/AgCl does not interfere with
the system under investigation as it has been used as a reference electrode in ammonia
and other basic media [41–43]. Silver wire is also used as a conductive counter electrode
without affecting the system performance [44]. The glassy carbon electrode was polished
with alumina slurry and cleaned with ethanol before dropping the catalyst ink that was
prepared in ethanol while 5% Nafion (2.0 µL) solution was poured on the powder catalyst
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as a binder. The electrochemical active surface areas (ECSAs) of all electrocatalysts were
determined in a standard redox solution (5.0 mM K4[Fe(CN)6] + 3.0 M KCl) at a scan rate
of 100 mVs−1. Ammonia electro-oxidation was conducted by cyclic voltammetry (CV) in
1.0 M solution of NH3 prepared in 0.1 M KOH solution.
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3. Results and Discussion
3.1. Structural Characterization

The phase purity and crystal structure of all prepared samples was determined by
powder X-ray diffraction (PXRD) with a scan rate 0.4◦ per minute in 2θ window of 10◦–70◦

via continuous scan type using PANalytical X’PERT High Score’s diffractometer, Malvern,
UK. As shown in Figure 2a, the diffraction peaks at 32.4◦ and 36.7◦ are assigned to CuO
which become more prominent as the loading of CuO is increased from 4% to 20%, while
37◦, 61.5◦ and 68.1◦ corresponds to Al2O3. All these peaks have been indexed for pure cubic
system and corresponded to JCPDS card No. 45-0937 [26]. There is no visible diffraction
peak shift due to addition of Cu contents which indicates CuO species on the alumina
surface exist as highly dispersed species [45]. Moreover, if 20%-CuO/Al2O3 is compared
with pure alumina and 4%-CuO/Al2O3, an increase in peak intensity can be analyzed.
Particle size increased from 2.5 in γ-Al2O3 to 16.2 nm in 20%-CuO/γ-Al2O3. However, this
increment in particle size is not too much to affect the crystalline integrity of γ-Al2O3 matrix.
The additional broadness of diffraction peaks at lower copper percentages is dedicated to
more amorphous phase of composites [46].
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Debye-Scherrer formula was used to estimate the average crystallite size, Equation (4):

Dav = K·λ/(β·cos θ) (4)

Here, Dav is the average crystallite size in nm, λ is the wavelength of X-ray (1.5418 nm)
while using Cu as an anode, θ is Bragg’s angle and β is the full width of the diffraction
peak at half of the maximum. The calculated crystallite size for CuO is 14.6 nm which
lies in the range between 10 to 30 nm as already reported [47–50]. The crystallite sizes
of alumina increase from 2.5 nm (for pure γ-Al2O3) to 16.2 nm (20%-CuO/γ-Al2O3) as
shown in Table 1. This increment in crystallite size was already observed in CuO/Al2O3
materials, which might be due to the insertion of CuO items into the crystal lattice of
γ-Al2O3 [44]. In all samples, the CuO impregnation and calcination steps resulted in the
increased crystallite size.

Table 1. Average crystallite size calculated from Scherrer formula.

Electrocatalyst Dav (nm)

CuO 14.6
γ-Al2O3 2.5

4%-CuO/γ-Al2O3 7.1
8%-CuO/γ-Al2O3 9.1
12%-CuO/γ-Al2O3 11.5
16%-CuO/γ-Al2O3 15.1
20%-CuO/γ-Al2O3 16.2

Fourier-transform infrared (FTIR) spectra of all materials were obtained by using
Nicolet 5PC, Nicolet Analytical Instrument Protea, Cambridgeshire, UK and compared with
that of the bare CuO in Figure 2b. The absorption signals at ~500, ~1300 and ~1670 cm−1

indicate the stretching vibration of the Cu–O bond [51]. This analysis further confirms
the successful impregnation of CuO into γ-Al2O3 support. Our results indicate that, at
low copper loadings (below 10%), Cu2+ ions form a well-dispersed interaction species
with the support. At high copper loadings (after saturation of the support, i.e., >16% Cu),
segregation of bulk-like CuO occurred. The crystallite size of this CuO phase increases
with metal loading [52].

3.2. Surface Characterization

The surface morphology, porosity and effect of CuO impregnation on the textu-
ral nature of Al2O3 in all synthesized materials were investigated by scanning electron
microscopy (SEM) using TESCAN (Brno, Czech Republic) MAIA3, i.e., an ultra-high-
resolution SEM. As displayed in Figure 3, γ-Al2O3 showed plate-like morphology with
large pores (Figure 3a–c at different magnifications) and significant dendrites distributed
over the surface similar to the earlier reports [53,54]. Interestingly, these plates were con-
verted to a porous network-like structure when the contents of CuO were increased in
materials as shown in Figure 3d–h). The CuO nanoparticles are heterogeneously distributed
on the surface of Al2O3 nanostructures. The energy dispersive spectrum corresponds to
the presence and elemental purity of Al, Cu and O, as displayed in Figure 3h.
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Low-magnification TEM nanostructures shown in Figure 4a–f are taken using TEM,
JEOL 2100F (Tokyo, Japan), 200 kV to assess the surface picture of as-synthesized γ-Al2O3
and 16%-CuO/γ-Al2O3 matrices and if any agglomeration observed in the nanoparticles.
TEM images for γ-Al2O3 shown in Figure 4 a and b displayed the globular structure of par-
ticles and the images corresponds with the already reported TEM nanostructures [55,56].
Figure 4c–f represents the TEM images for 16%-CuO/γ-Al2O3 and it is evident that incor-
poration of CuO into γ-Al2O3 matrix alters the surface structure. The modification in the
γ-Al2O3 structure and a reconstructed composite surface is associated with dispersion of
fine metal particles in catalysts [56]. Also, it can be perceived that the composite oxide is
assembled from nearly uniform particles exhibiting similar shape, and significant porosity,
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and no big blocks are observed [57]. In such catalysts, CuO dispersed on the surface of the
flake-like γ-Al2O3 generate synergy and coupling effects for ammonia adsorption [58].
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3.3. Electrochemical Impedance Spectroscopy EIS

The electron transfer properties of all as-prepared nano-electrodes were studied via EIS
in 1 M NH3 and 0.1 M KOH. The Nyquist plots witnessed for CuO/γ-Al2O3 modified glassy
carbon electrodes are displayed in Figure 5, and associated EIS parameters are tabulated in
Table 2. Systematically, the electron transfer resistance decreased with increase in copper
content while again undergoing a decrease after an optimum composition. It endorsed that
16% CuO/γ-Al2O3 is optimal for electrochemical catalysis. A significantly lower value
of Rct referred to the superior conductivity and much efficient electrocatalytic activity
of 16%-CuO/γ-Al2O3, comparative to other composites of the series. The differences in
electrochemical behavior of the as-synthesized electrocatalysts depend upon the relative
feasibility of electron transferal [26].

The nature of electrodes exhibits no influence on solution resistance (Rs) and Warburg
resistance (Rw) because these are features of electrolyte and diffusion of electroactive specie
that are common in all observations. However, the charge-transfer resistance (Rct) and
constant phase element (CPE) are influenced by modification of electrodes, as they are
associated with conductive properties of the active material. α represents capacitance
and surface roughness, respectively and its value varies from 0 to 1. Herein, currently
modified electrode systems have α value ranging from 0.56 to 0.87, revealing that catalysts
depicted enough surface roughness, which also correlates with the SEM and TEM observa-
tions. The electron-transfer rate constant kapp for as-proposed catalysts was calculated by
Equation (5) [59].

kapp = RT/F2·Rct·C (5)

Here, F represents the Faraday’s constant, C corresponds to concentration of analyte
and R is universal constant in SI units. It is obvious from Table 2 that the value of kapp for
16%-CuO/γ-Al2O3 is greatest among the series of nanomaterials, referring to its highest
capacity to assist the AEO reaction.
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Figure 5. Electrochemical impedance spectroscopy (EIS) spectra for 4%–20%-CuO/γ-Al2O3 elec-
trodes recorded in 1 M NH3 + 0.1 M KOH aqueous solutions. Inset represents the model fit for
calculating parameters.

Table 2. Parameters estimated from EIS analysis of electrocatalysts.

Electrocatalysts Rs
(Ω)

Rct
(kΩ)

CPE
(µF) α

Wo
(Ω)

kapp/10−9

(cms−1)

4%-CuO/γ-Al2O3 816.0 23.92 2.57 0.80 17.0 10.4
8%-CuO/γ-Al2O3 770.6 22.7 2.12 0.87 16.7 8.81

12%-CuO/γ-Al2O3 968.0 22.2 2.26 0.82 16.0 10.8
16%-CuO/γ-Al2O3 736.0 3.92 55.4 0.56 13.9 61.2
20%-CuO/γ-Al2O3 934.2 27.9 4.77 0.84 23.6 8.73

3.4. Active Surface Area of the CuO/γ-Al2O3 Modified Electrodes

The electrochemical active surface area (ECSA) of a catalyst is an important perfor-
mance indicator of any electrochemical reaction; therefore, cyclic voltammograms of all
prepared electrocatalysts were recorded in a standard redox solution (5.0 mM K4[Fe(CN)6]
+ 3 M KCl) at 100 mVs−1 for ECSA estimation. Peak current (ip) increment with CuO
contents in the observed CV profile corresponded to a reversible one-electron transfer
process using the synthesized nanomaterials as electron mediators in modified electrodes
in K4[Fe(CN)6] electrolyte (Figure 6a). This observation of a reversible CV profile points to
the facile electro kinetics in the model redox couple, which correlates the electrocatalytic
behavior of the used materials. The peak currents corresponding to [Fe(CN)6]4− oxidation
and peak current of [Fe(CN)6]3− reduction increase with the increase in the concentration
of active CuO thus overall a diffusion-controlled process [60]. The ECSA of electrodes was
calculated by applying the Randles-Sevcik Equation (6) [26].

ip = 2.69 × 105·n3/2·A·D1/2·υ
1
2 ·C (6)
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Figure 6. Cyclic voltammetric profiles on 4%–20%-CuO/γ-Al2O3 modified electrodes materials in (5.0 mM K4[Fe(CN)6] +
3.0 M KCl) solution at scan ate of 100 mV·s−1 (a) and comparison of ECSA (b), Comparison of AEO in 0.1 M KOH + 1.0 M
NH3 at 100 mV·s−1 (c) and 16%-CuO/γ-Al2O3 with bare CuO and γ-Al2O3 (d).

Here, ip is the peak current, n is the number of electrons transferred, A is the electrochem-
ical active surface area (cm2), D is the diffusion coefficient (0.76× 10−5 cm2·s−1 at 25 ◦C), [61]
υ is the scan rate (V·s−1) and C is the concentration of the analyte. ECSA of catalysts are
compared in Figure 6b that increases in the following order: 4%-CuO/γ-Al2O3 < 8%-CuO/γ-
Al2O3 < 12%-CuO/γ-Al2O3 < 20%-CuO/γ-Al2O3 < 16%-CuO/γ-Al2O3. This little drop in
ECSA of 20%-CuO/γ-Al2O3 may affect from the agglomeration and consequent phase-out of
CuO nanoparticles at its higher loading.

3.5. Electrochemical Studies

Electrocatalytic responses of all CuO/γ-Al2O3 materials towards ammonia electro-
oxidation (AEO) was investigated by cyclic voltammetry in 1.0 M NH3 and 0.1 M KOH
as displayed in Figure 6c,d. The peaks observed in both the forward (anodic) and reverse
(cathodic) scans correspond to oxidative and reductive removal of chemisorbed species of
ammonia, respectively [62]. The height of the anodic peak represents the electro-oxidation
of ammonia on the surface of the electrodes. The anodic peak current increases with CuO
contents in CuO/γ-Al2O3 nanomaterials; however, 16%-CuO/γ-Al2O3 shows the best
performance towards AEO compared to other serial materials (Figure 6c), bare CuO and
γ-Al2O3 (Figure 6d). The onset potential for AEO is found to be about−0.35 V vs. Ag/AgCl
(i.e., −0.2 V vs. NHE) which is comparable to the Pt electrode [5,63–65].

To examine the electrode kinetics and the I–V responses towards AEO, voltammo-
grams were also recorded for each catalyst at various scan rates from 10 to 100 mVs−1. As
shown in Figure 7a–e, a linear increase in peak current of AEO at ~0.2 V is observed with a
scan rate that indicates a facilitated electron transfer process of ammonia electro-oxidation.
Therefore, the proposed nanocatalysts behave like the adsorptive species on the electrode
surface [9]. The electrochemical response of each material towards AEO was enhanced with
varying contents of active component, i.e., CuO in CuO/γ-Al2O3. This further confirms
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that CuO species present at the surface of catalysts play important role in AEO, more
active sites available at the surface will maximize the ammonia adsorption thus leading
to AEO high performance. The AEO strongly depends on the adsorption/desorption of
NH3 species and the number of available active sites of active components at the surface
of the electrode [66]. Similarly, two peaks in the cathodic curve are attributed to desorp-
tion of ammonia and proton at the surface of the catalysts, Figures 7 and 8 [67]. The first
cathodic peak is attributed to the reduction of reaction intermediates. Besides, the anodic
and cathodic peak currents are also increased with the number of available active sites due
to CuO. An anodic shoulder peak at −0.4 V can be attributed to the structural sensitivity of
catalysts towards oxidation of pre-adsorbed hydrogen or nitrogen-containing intermedi-
ates at the surface of the electrode [68]. However, the anodic shoulder peak is suppressed
by the ammonia oxidation peak when the contents of CuO are increased from 4% to 20%
while the cathodic shoulder peaks increase because of the conversion/reduction of reaction
intermediates. In this way, it can be said that irreversibility character increases with an
increase in copper content up to an optimum level. As observed in Randles-Sevcik plots
(Figure 7f), the peak current (ip) exhibits a linear relationship with the square root of scan
rate (υ1/2), which is an indication of a diffusion-controlled process for AEO [67,68].
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ECSA can be affected by the change of electrode layer structure; thus, 16%-CuO/γ-
Al2O3 shows a higher peak current output than 20%-CuO/γ-Al2O3. After a certain limit, a
further increase in CuO percentage leads towards agglomeration. Also, more ammonia
molecules lead to an increase in diffusion-layer thickness, which results in a lower catalytic
response in 20%-CuO/γ-Al2O3 [69]. The 16%-CuO/γ-Al2O3 is inferred to be the optimal
loading of CuO for AEO under the optimal conditions. Subsequently, compositions above
20%-CuO/γ-Al2O3 were not studied to avoid the agglomerated material, as depicted by
ECSA. Also, the same composition has been proved as the promising optimal loading of
CuO onto γ-Al2O3 support for glucose sensing and methanol electro-oxidation [26].

To further assess the electrochemical activity of catalysts towards AEO, the electro-
chemical response of 16%CuO/γ-Al2O3 electrode was profiled by recording the cyclic
voltammograms in pure 0.1 M KOH and 1.0 M NH3 solution. As displayed in Figure 8,
no significant oxidation peak current is observed in 0.1 M KOH compared to 1.0 M NH3
as an analyte. This endorses the theory that the major peak corresponds to ammonia
electro-oxidation rather than the electrolyte at the electrode surface [70]. The optimal onset
potential for AEO is −0.35 V and the maximum oxidation peak current is observed at
~0.1 V. The electrochemical stability is a vital element in the commercialization of an elec-
trocatalyst; therefore, it was determined by repeating CV cycles in 1.0 M NH3 + 0.1 M KOH
at 100 mV·s−1. No significant current loss was observed after 10 CV cycles in Figure 8b,
which indicates that the used catalysts give the stable performance towards AEO and
can be commercialized for industrial applications. Concerning low CuO percentages, it
is observed from Figure 8c that it also oxidizes ammonia to an extent, although current
response is lower than that for high copper contents. Figure 8d gives a validation that a
bare glassy carbon electrode when modified with 12%-CuO/γ-Al2O3, gave an oxidation
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output. Hence, it can be inferred that even a small amount of CuO can electro-catalyze
ammonia oxidation.

3.6. Diffusion Coefficients for AEO on CuO/γ-Al2O3 Modified Electrodes

Diffusion coefficient (D) is an important parameter to study mass transfer kinetics, and
it depends on various factors including analyte size and the concentration of electrolyte.
Thus, the diffusion coefficients for ammonia (DNH3) in 0.1 M KOH were determined by
applying the Randles-Sevcik formula (Equation (5)), which shows a linear relationship
between the peak current and square root of the scan rate (υ1/2). The adsorption of am-
monia occurs until the surface achieves saturation. Adsorbed nitrogen species cover and
hence block the surface, whereas NH2(ads) and NH(ads) seem to be the active species,
which recombine to form N2Hx (x = 2–4) species as reaction intermediates. These finally
dehydrogenate to form N2. The recombination of NHx species is proposed to be the
rate-determining step [71]. Generalized from overall ammonia electro-oxidation reaction
(Equation (3)), three electrons (i.e., n = 3) are required for AEO. Moreover, quite similar
ammonia oxidation voltammograms are reported earlier, describing it as a three-electron
process [72]. The DNH3 using all the catalysts can be estimated from the slope of the
Randles-Sevcik (ip vs. υ1/2) plot at a constant scan rate (100 mV·s−1) at 25 ◦C [73]. Resul-
tantly, 16%-CuO/γ-Al2O3 gives the highest value of the diffusion coefficient as compared
to the other materials Ni/Pt [65] and Ni/Ni(OH)2 [18], as enlisted in Table 3. Usually, the
diffusion coefficient for AEO in KOH electrolyte (10−9) is much lower than that of water
(2.4 × 10−5) [66] due to the presence of hydroxyl (OH−) ions in the electrolyte [20].

Table 3. Diffusion coefficients values for AEO using CuO/γ-Al2O3 modified electrodes in 0.1 M
KOH at 25 ◦C.

Electrocatalyst DNH3 10−9 (cm2s−1)

4%-CuO/γ-Al2O3 1.0
8%-CuO/γ-Al2O3 2.6
12%-CuO/γ-Al2O3 2.7
16%-CuO/γ-Al2O3 4.1
20%-CuO/γ-Al2O3 3.8

Ni/Pt [55] 1.2
Ni/Ni(OH)2 [16] 2.8
Ionic liquids [16] 0.1

3.7. Estimation of Bandgap Values of CuO/γ-Al2O3 for Ammonia Electro-Oxidation

The electrochemical bandgap (Eg) and frontier orbitals energy levels (EHOMO and
ELUMO) are important factors to understand the electrical and electrochemical properties of
any material [74]. Although it is difficult to quantify the exact values for bandgaps, it can be
estimated from onset potentials, as is widely done in the literature [75–77]. As described in
mathematical expressions (Equations (7) and (8)), the onset potentials of oxidation (anodic)
curve, i.e., (Eonset)ox and reduction (cathodic) curve, i.e., (Eonset)red linearly correlate with
energies of frontier orbitals, HOMO (EHOMO) and LUMO (ELUMO), respectively [78].

EHOMO = −[(Eonset)ox + 4.4] eV (7)

ELUMO = −[(Eonset)red + 4.4] eV (8)

Here, the onset potentials are calibrated regarding the saturated calomel electrode [79].
As presented in Table 4, the estimated bandgap narrows by increasing the copper contents
in materials from 0.98 eV (4%-CuO/γ-Al2O3) to 0.22 eV (16%-CuO/γ-Al2O3), which results
in maximizing the conducting properties. Also, the bandgap decreases with the increase
of crystallite size due to the quantum confinement effect [80,81]. Furthermore, the con-
ductive electrocatalysts let ample electrons speed up the electrochemical reactions [82,83].
Therefore, in general, the materials containing higher CuO contents give better AEO per-
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formance due to the rapid transfer of electrons from the conduction band. Accordingly,
the most conductive response is provided by the catalyst of optimal composition, i.e.,
16%-CuO/γ-Al2O3.

Table 4. Electrochemical bandgap values derived from onset potentials vs. sat’d calomel electrode
for AEO on the CuO/γ-Al2O3 materials.

Catalyst E(ons)oxi (V) E(ons)red (V) EHOMO (eV) ELUMO (eV) Eg (eV)

4%-CuO/γ-Al2O3 −0.64 −0.25 −3.16 −4.14 0.98
8%-CuO/γ-Al2O3 −0.43 −0.13 −3.56 −4.31 0.75

12%-CuO/γ-Al2O3 −0.53 −0.21 −3.98 −4.69 0.71
16%-CuO/γ-Al2O3 −0.41 −0.18 −3.90 −4.20 0.22
20%-CuO/γ-Al2O3 −0.32 −0.06 −3.89 −4.30 0.41

4. Conclusions

The copper oxide modified γ-Al2O3 electrocatalysts (CuO/γ-Al2O3) were synthe-
sized by the facile co-impregnation and calcination process. The CuO nanocrystals were
successfully grown on γ-Al2O3 supports, as depicted by X-ray diffraction and FTIR. The
shape of γ-Al2O3 support was changed from irregular to network-like by increasing the
CuO contents, as observed in SEM images. The network-like structures coincided with the
electrochemical active surface areas (ECSAs), which also varied with the CuO contents.
The surface coarseness and homogeneity were seen in TEM images. Electrochemical char-
acterization involved cyclic voltammetry and EIS that conferred to the absolute catalytic
behavior of as-proposed electrocatalysts. The maximum ECSA and minimum charge-
transfer resistance have been displayed by 16%-CuO/γ-Al2O3, which makes it the optimal
composition. The effect of CuO contents was investigated in the catalytic performance
of ammonia electro-oxidation (AEO) in alkaline media. It was observed that the AEO is
an irreversible and diffusion-controlled process under alkaline conditions on the surface
of CuO/γ-Al2O3 electrodes. Additionally, the suppressing of catalysts by nitrogenous
species can be significantly reduced by increasing the CuO contents, as displayed by the
continuous disappearance of anodic shoulder peak from lower to higher CuO loading. The
successive increment in diffusion coefficients for NH3 with increasing CuO to γ-Al2O3 ratio
showed that these materials can effectively electro-oxidize the NH3 due to facile electron
transfer. Correspondingly, the prepared electrocatalysts demonstrated good electrocatalytic
activity, reproducibility, and stability towards the ammonia electro-oxidation. Recent inves-
tigation of CuO/γ-Al2O3 electrocatalysts has revealed a large synergistic effect towards
AEO at ambient temperatures. Therefore, these nanomaterials could be used as efficient
electrocatalysts or promoters in AEO due to the higher diffusion coefficient for NH3, low
bandgap, and chemical/electrochemical characteristics.
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Abstract: This study focusses on the synthesis of silver nanoparticles (Ag-nPs) by citrus fruit
(Citrus paradisi) peel extract as reductant while using AgNO3 salt as source of silver ions.
Successful preparation of biogenic CAg-nPs catalyst was confirmed by turning the colorless reaction
mixture to light brown. The appearance of surface Plasmon resonance (SPR) band in UV-Vis spectra
further assured the successful fabrication of nPs. Different techniques such as FTIR, TGA and DLS
were adopted to characterize the CAg-nPs. CAg-nPs particles were found to excellent catalysts for
reduction of Congo red (CR), methylene blue (MB), malachite green (MG), Rhodamine B (RhB) and
4-nitrophenol (4-NP). Reduction of CR was also performed by varying the contents of NaBH4, CR and
catalyst to optimize the catalyst activity. The pseudo first order kinetic model was used to explore
the value of rate constants for reduction reactions. Results also interpret that the catalytic reduction
of dyes followed the Langmuir–Hinshelwood (LH) mechanism. According to the LH mechanism, the
CAg-nPs role in catalysis was explained by way of electrons transfer from donor (NaBH4) to acceptor
(dyes). Due to reusability and green synthesis of the CAg-nPs catalyst, it can be a promising candidate
for the treatment of water sources contaminated with toxic dyes.

Keywords: nanoparticles; dyes; catalysis; reduction

1. Introduction

Recently, different environmental pollutants such as toxic dyes have been identified as threats
because these dyes are harmful for humans and aquatic life [1,2]. Discharge of these dyes containing
effluents in the environment causes the natural ecosystem to become unbalanced [3]. Therefore,
the effective removal of toxic dyes from wastewater or their conversation in usable sources before its
discharge in the water system is a primary global issue [4]. Different methods like biodegradation,
electrochemical, physicochemical and photochemical treatment including the advanced oxidation
process via photo-catalysis or chemical reduction, adsorption and ultra-filtration have been adopted to
address this problem [5,6]. Most of these methods are not useful for the treatment of dyes’ polluted
wastewater. Methods such as the physicochemical method are inefficient for degradation of dyes due
to their high stability. The biodegradation method, however, is cost effective, yet it is a very slow
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method, and dyes are also harmful for microorganisms. Adsorption transfers the toxic dyes from one
medium to another rather than eliminating them. However, catalytic degradation of dyes has emerged
as the best method for their treatment [1]. Harmful substances can be distrusted into less toxic or
non-toxic substances via photo-catalysis [7,8] or chemical catalysis [9]. Various metal nanoparticles
like Au, Pt, Pd, Fe and Ag-nPs are reported as catalysts for degradation of various toxic dyes [10–13].
One of the most commonly used metal nPs for direct reduction reactions of pollutants is iron nPs.
These nPs are less toxic and cost effective. However, Ag-nPs are more stable and highly active catalysts
for reduction reactions.

Among these nPs, silver nanoparticles (Ag-nPs) have been considered as interesting candidates
over the last decade due to exceptional properties such as high catalytic activity with controlled surface
area and low cost [14–18].

Several synthetic methods such as chemical, photochemical and electrochemical methods have
been adopted to prepare Ag-nPs by treatment of silver salt [17,19]. However, these methods involve
the use of toxic chemicals along with drastic reaction conditions and induce severe environmental
pollutions. Due to negative impacts of these reported methods, a new method for preparation of
Ag-nPs by plant extracts has been introduced [20]. Plant extract mediated synthesis of nPs tunes their
size, shape and size distribution. The biological method for preparation of nPs exhibits several merits
over other reported physiochemical methods such as use of non-toxic solvent (water), no utilization of
toxic or harmful chemicals, mild reaction conditions and cost effectiveness. Mostly, plant extracts pose
different organic compounds with different functional groups such as amino acid and carboxylic acid
that act as stabilizing and reducing agents. Plant extracts also act as reducing and stabilizing agents
due to the presence of polyphenols [21]. Size and shape of nPs can also be tuned by changing the
contents of plant extract utilized during their preparation. Thus, alternatively, catalytic properties of
nPs can also be tuned according to the requirement as catalysis is the surface phenomenon [22]. Due to
these reasons, many researchers turned toward the utilization of biological units such as plant extract
for preparation and stabilization of metal nPs [21,23]. Gardea-Torresdey at al. successfully fabricated
Ag-nPs by growing live alfalafa plants in AuCl4 rich media and concluded that bio items can be used
efficiently for preparation of inorganic nanoparticles [24]. Kasthuri et al. prepared Au-nPs by using the
chloroauric acid as source of gold ions in the presence of phyllanthin extract at room temperature [22].

Citrus is one of the major fruit crops that is widely consumed as fresh fruit or juice by removing
the peel. Peel of fruits is discarded as waste material. Citrus fruit peel has polyphenolic compounds,
flavonoids, ascorbic acid etc. These phytochemical components have bioactive properties like
antiproliferation, antibacterial, antifungal, antioxidant and antiviral activities [25]. Due to these
functional groups, citrus peel extract also acts as a capping agent. Thus, Citrus paradisi peel extract
induced nPs remain stable for a prolonged amount of time due to the formation of interaction between
these functional groups and nPs [21]. Values of apparent rate constant and reaction completion time for
reduction of dyes and aromatic compounds in the presence of different metal nanoparticles stabilized
by a variety of plant extract for comparative purpose are given in Table 1. Activity of reported catalysts
was high for reduction of different dyes as compared to previously used biogenic metal nanoparticles
stabilized by plant extracts.

Many research papers used the Citrus paradisi peel extract for preparation of different metal nPs
like Fe3O4 [26,27], ZnO [28] and Ag-nPs [21,25,28–30]. It acts as a reducing as well as a capping agent
during preparation of Ag-nPs. Fabricated CAg-nPs find applications in synthesis of durable cotton
and silk fabric due to their antibacterial and antimicrobial activity and essential oil effect due to the use
of citrus plant extracts [31]. These nanoparticles also find use as potential bio-pesticides to control
different types of pathogens in aqueous medium [25,32].
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Table 1. Comparative analysis kinetic parameters for catalytic reduction of different dyes using different
plant extract induced metal nanoparticles.

Dye Catalyst Plant Extract kapp
(min−1)

Reaction Completion
Time (min) References

CR

Au-nPs Salmalia malabarica gum 0.236 10 [10]
Ag-nPs Gum tragacanth 0.148 15 [33]
Ag-nPs Thunbergia grandiflora 0.099 18 [34]
Ag-nPs Citrus paradise 0.591 5 This work

MB

Au-nPs Salmalia malabarica gum 0.241 9 [10]
Ag-nPs Gum tragacanth 0.182 12 [33]
Ag-nPs Gmelina arborea - 10 [35]
Ag-nPs Citrus paradise 0.613 4 This work

4-NP

Ag-nPs Coleus forskohlii root extract 0.101 24 [36]
Au-nPs Prunus domestica (plum) fruit extract 0.114 9 [37]
Ag-nPs Dolichos lablab - 40 [38]
Ag-nPs Citrus paradise 0.247 9 This work

However, no one used these metal nanoparticles as catalysts for degradation of toxic dyes. Thus,
we reported here for the first time the preparation of citrus peel induced biogenic CAg-nPs particles
and their use as catalysts for degradation of different toxic dyes like CR, MB, MG, RhB and 4-NP.
Recyclability and reusability of catalysts were also performed for reduction of CR. Prepared biogenic
CAg-nPs particles were analyzed by UV-Vis, FTIR, DLS and TGA.

2. Materials and Methods

2.1. Materials

Congo red (CR) (98%), methylene blue (MB) (98%), malachite green (MG) (98%), Rhodamine
B (RhB) (98%), 4-nitrophenol (4-NP) (98%), sodium borohydride (NaBH4) (98%) and silver nitrate
(AgNO3) (98%) were purchased from Scharlau (Barcelona, Spain) and used as such without further
treatment. Deionized water was used throughout the experimentation. Filtration of plant extract was
done by Whatmann No. 1 filter paper (Merck Darmstadt, Germany).

2.2. Synthesis of CAg-nPs

Citrus paradisi peels were washed and completely dried in shade. The dried peels were grinded
into fine powder using mortar. Afterward, 0.5 g of fine peel powder was stirred with 80 mL deionized
water for 3 h in a flask at 60 ◦C on hotplate and filtered for further use. After that, a 30 mL peel
extract was treated with 30 mL of 1.0 mM AgNO3 solution at 70 ◦C for 50 min on a hotplate in a round
bottom flask under constant stirring and nitrogen supply. Reaction mixture turned light brown on
treatment with plant extract. Afterward, a light brown emulsion type mixture was filtered and saved
in a sample bottle covered with aluminum foil for analysis. It was also used as a catalyst for catalytic
reduction of toxic dyes. Prepared CAg-nPs were also dried in powdered form for pursuing other
analyses. Diagrammatic representation of preparation of biogenic CAg-nPs and their use as catalysts
for reduction of CR are shown in Figure 1.
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Figure 1. Scheme for preparation of Ag-nPs by the Citrus paradisi peel extract and its use as catalyst for
reduction of CR.

2.3. Characterization of CAg-nPs

Functional groups of plant extract and biosynthesized CAg-nPs particles were evaluated by
scanning FTIR spectra. For this aim, FTIR spectra of powdered samples were scanned on RXI FTIR
spectrometer (Perkin ELMER, Waltham, MA, USA). UV-Vis analysis of plant extract, aqueous solution
of AgNO3 and biogenic CAg-nPs particles was also performed on a UV VIS Spectrophotometer
(Stalwart, Germany) in the wavelength range from 250 to 750 nm at 25 ◦C. DLS analysis was done to
check the particle size distribution of CAg-nPs particles. For this purpose, analysis was performed on
B1-200SM (Brookhaven Instrument Corp, Holtsville, NY, USA at 90◦ (angle of scattering)) while the
He–Ne laser was used as a light source with a wavelength of 637 nm. TGA analysis of plant extract
and biogenic CAg-nPs particles was also done on Thermal analyzer (Model: SDT, Q-600, TA Shanghai,
China) in the presence of N2.

2.4. Catalytic Reduction of Toxic Dyes

In addition, 0.060 mM CR and 7.88 mM NaBH4 were taken in a cuvette along with 1.8 mg/mL of
CAg-nPs catalyst and spectra were recorded in the range of 380 to 680 nm with a one minute interval
on a UV-Vis spectrophotometer (Stalwart, Dehli India) to check the reaction progress. CR reduction
was also performed by varying the contents of reaction mixture such as NaBH4 (4.50 to 12.38 mM),
CR (0.057 to 0.078 mM) and catalyst dose (1.2 to 2.7 mg/mL). Various other toxic dyes like MB, MG,
RhB and 4-NP were also reduced successfully in the presence of biogenic CAg-nPs catalysts and
NaBH4 reductants.

3. Results and Discussion

3.1. Analysis of Biosynthesized CAg-nPs

FTIR analysis of plant extract and CAg-nPs particles was done to show the interaction between
different constituents of plant extract and silver nanoparticles as shown in Figure 2. Peaks of different
functional groups appeared at almost the same position in the case of both plant extract and CAg-nPs
particles. Peak appeared in the range of 2900 to 3400 cm−1 was due to stretching vibrations of O-H
and NH2 groups present in plant extracts in the form of alcohols, amides, amines, esters, ethers and
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carboxylic acids [25]. Broadened peaks that appeared in the case of CAg-nPs particles as compared to
plant extracts, relevant to stretching vibrations of these groups, are an indication of the involvement
of these groups in the stabilization of fabricated silver nPs. A slight change in the peak positions of
these groups in the case of CAg-nPs particles also illustrates their function as ligation agents. Bands
appearing at 694.23 cm−1 in both plant extracts and CAg-nPs particles are an indication of the presence
of aromatic hydrocarbons [39]. A peak seen at 1517.71 cm−1 is a characteristic signal of aromatic C=C
bonds [25]. Peaks appearing at 1199.27 cm−1 are an indication of C–O stretching vibrations [17,40].
A peak appearing at 1638.85 cm−1 unveiled the vibrations of carbonyl group (C=O). Kasthuri et al.
prepared biosynthesized gold and silver nanoparticle by using phyllanthin extract at room temperature
and concluded that there is a formation of some sort of interaction between moieties of plant extract
and metal nanoparticles by FTIR analysis [22].

Figure 2. FTIR spectra of plant extract and biosynthesized CAg-nPs.

UV-Vis spectra of CAg-nPs particles were also obtained at different time intervals during their
preparation as shown in Figure 3. At the beginning, a mixture of plant extract and silver salt showed
no peak. However, a small peak with low absorbance intensity appeared 16 min after the start of
reaction. This peak became sharp, distinct and less broad with progress of reaction. An absorbance
intensity of the peak also increased along with its shifting toward a high wavelength (red shifting).
Actually, an increase in reaction time induces nucleation of metal nanoparticles to a large amount. Free
electrons present on large sized Ag-nPs oscillate with electromagnetic radiations of low energy or high
wavelength. As a result, the SPR band was red shifted. The change of appearance of suspension from
light yellow to light brown also illustrates the successful fabrication of CAg-nPs particles.

UV-Vis spectra of plant extracts, aqueous AgNO3 salt and CAg-nPs particles were also recorded
for comparison purposes as shown in Figure 4. No peak was seen in the case of plant extracts of
aqueous solution of AgNO3. This shows the transparent nature of moieties of plant extract and silver
nitrate salt to UV-Vis radiations. However, a sharp peak appeared at 405 nm in the case of CAg-nPs
particles, which illustrates their successful fabrication. A single, sharp and prominent peak unveils
the spherical shaped and narrow size distributed nPs [39]. This peak appears in the visible region
due to the surface plasmon resonance (SPR) phenomenon of Ag-nPs. Actually, electrons present on
the surface of nanoparticles exhibit oscillation. Oscillating electrons resonate with electromagnetic
radiations of specific frequency and result in the appearance of SPR band in the visible region [41].
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Figure 3. Time based UV-Vis spectra during preparation of biogenic CAg-nPs.

Figure 4. UV-Vis spectra of plant extract, AgNO3 solution and CAg-nPs at room temperature.

Time based stability of biogenic CAg-nPs particles was also checked. For this purpose, spectra of
freshly prepared and 15-day-old CAg-nPs particles were obtained (Figure 5a). The SPR band appeared
at the same position (405 nm) with a slight decrease in the absorbance value in both cases. These
results show the stability of biosynthesized CAg-nPs particles. Actually, biomolecules present in plant
extracts play a role as capping/stabilizing agents and enhance the life span of silver nanoparticles [1].
Particle size distribution of CAg-nPs was evaluated by DLS analysis and spectra are shown in Figure 5b.

The average diameter of CAg-nPs particles was found as 28 nm. TGA analysis of plant extract
and biosynthesized CAg-nPs was done by changing temperature from 0 to 480 ◦C as shown in Figure 6.
TGA curves for CAg-nPs and plant extract can be divided into three stages. The first stage in TGA
curve of plant extract illustrates the weight loss with temperature increase up to 100 ◦C because of
evaporation of water contents present in plant extracts [42]. In the second stage, due to an increase of
temperature up to 250 ◦C, there was almost no change in weight loss. During this stage, most of the
heat is absorbed by the biomacromolecules to decrease the strength of intermolecular forces. In the
third stage, there was a sharp decrease in weight loss due to the decomposition of plant extract contents.
However, in the case of biogenic CAg-nPs catalyst, there was a steady and sharp weight loss as
temperature was increased from 0 to 350 ◦C with respect to plant extract thermal behavior. This sharp
weight loss of biogenic CAg-nPs particles may be associated with assembling Ag-nPs that promote the
decomposition of plant extract contents [22]. However, weight loss was not approached to zero due to
the presence of silver nanoparticles in CAg-nPs particles. Thus, less weight loss was seen in the case
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of CAg-nPs particles as compared to pure plant extract at high temperature. Percentage content of
Ag-nPs was also calculated by TGA analysis. It was seen that 15% silver nanoparticles were present
in biosynthesized CAg-nPs as calculated from the difference of weight loss curves of CAg-nPs and
of plant extract at 450 ◦C. Mata et al. also performed TGA analysis to study the thermal behavior of
Plumeria alba extract treated gold nanoparticles and observed the same temperature induced weight
loss trend [42]. Ayinde and coworkers investigated the size of Citrus paradisi peel extract induced
Ag-nPs by SEM analysis [25]. The size of spherical shaped and bio-synthesized Ag-nPs was found as
14.84 nm. Kalia et al. also illuminated the shape of peel extract induced prepared Ag-nPs vis SEM
analysis and observed the rod shape metal nanoparticles [43].

Figure 5. (a) Time dependent stability of biosynthesized CAg-nPs and (b) particle size distribution of
biosynthesized CAg-nPs particles.

Figure 6. TGA analysis of plant extract and CAg-nPs nanoparticles.

3.2. Catalytic Reduction of Toxic Dyes

Various toxic dyes are released into water sources due to massive industrialization [44]. These dyes
are stable and highly dangerous for the environment. About 10–20% of dyes are lost in wastewater
streams and make their removal a major concern [45]. The best way to reduce toxic effects of these
dyes is to convert them into less toxic products by using NaBH4 as reductant. Thus, these products are
alternatively reduced to further non-toxic products [46]. However, the reduction of dyes by BH4

−1

ions is a thermodynamically favorable process. However, the conversion of dyes by BH4
−1 ions in the

absence of catalyst is kinetically unfavorable and such reactions proceed at a slow speed. This may be
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due to the energy barrier present between BH4
−1 ions and substrate dyes [42]. Thus, non-catalytic

reduction of dyes requires more time. However, the presence of metal nanoparticles (mNPs) in reaction
mixture speed up the rate of reduction of dyes which result in increased reaction efficiency. mNPs
exhibit a large surface area for reactant adsorption and result in high catalytic activity for dye reduction.
Actually, mNPs provide a new path for the reactants with a low level energy barrier and convert them
into products easily. Thus, mNPs catalysts act as conveyor belts for electron transfer from reductant to
substrate and facilitate the reduction of toxic dyes.

CR is azo dye with carcinogenic and mutagenic nature [1]. It is red in color and shows maximum
absorbance at 495 nm in UV-Vis spectra. In addition, 0.060 mM CR and 7.88 mM NaBH4 were added
in quartz cells along with 1.8 mg/mL CAg-nPs catalyst and spectra were recorded (380 to 680 nm) with
a time interval of one min at room temperature (Figure 7). The addition of CAg-nPs in mixture of CR
and NaBH4 leads to a decrease in absorbance intensity of the peak. Thus, the decrease in absorption
intensity shows the decrease in CR concentration with the passage of time according to Beer–Lambert
law [45]. Actually, the catalyst acts as a carrier to transfer hydride and electrons from borohydride
to dye.

Figure 7. CR reduction in the presence of biosynthesized CAg-nPs catalyst ([CR] = 0.060 mM, [NaBH4]
= 7.88 mM, catalyst = 1.8 mg/mL) at ambient temperature.

The catalytic bleaching of red color of CR to white color was obtained in 9 min. The presence
of CAg-nPs particles did not interfere in the monitoring of CR reduction by the spectrophotometer
because the surface plasmon resonance (SPR) band of CAg-nPs particles appeared at 405 nm (Figure 4).
The same reaction was also carried out as control reaction with NaBH4 (absence of catalyst) (Figure 8a),
with plant extract (in the absence of NaBH4) (Figure 8b) and with catalyst (absence of NaBH4)
(Figure 8) to confirm whether the fading of the red color of CR was due to its degradation induced by
biosynthesized CAg-nPs catalyst or adsorption by plant extract or catalyst.

Absorbance intensity of peak was slightly decreased in the presence of NaBH4 and absence of
CAg-nPs catalyst (Figure 8a). It explains the thermodynamic feasibility of reaction but the presence of
large kinetic barrier between the reactants. No change in absorbance intensity of reaction mixture was
observed in the presence of plant extract or Ag-nPs. These results explain that a decrease in absorbance
intensity of CR or fading of its color was due to inclusion of a biogenic CAg-nPs catalyst in a reaction
mixture that speeds up the rate of CR reduction in the presence of NaBH4. Results also explain that CR
was reduced sharply in less time in the presence of catalyst rather than being adsorbed by the plant
extract or Ag-nPs. Actually, reduction of CR was completed in a short time rather than being adsorbed
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by the surface. Thus, this result illustrates that the decrease in absorbance intensity of dye was due to
catalytic reduction rather than adsorption phenomenon.

Figure 8. (a) Plot of ln(At/Ao) vs. time and (b) plot of catalyst dose vs. kapp for reduction of CR
[conditions: CR = 0.045 mM, NaBH4 = 7.88 mM] at room temperature.

3.3. Kinetic Study

Monitoring of reaction was continued until the change in absorbance of reaction mixture became
constant. Due to excessive use of NaBH4 as compared to CR (NaBH4/CR ≥ 100), the kinetic aspect
of reduction reactions was explained by pseudo first order [ln(At/Ao) against time] [46]. CR was not
reduced immediately after the addition of catalyst in the reaction mixture in the presence of NaBH4

reductant. This delay in reduction of CR was due to the presence of oxygen in reaction mixtures that
prevents the immediate reduction of CR. Time between adding of catalyst in reaction mixture and
start of reaction is called delay time. After delay time, CR was rapidly reduced to the product in the
presence of CAg-nPs catalyst and reducing agent. As the Beer–Lambert law states, the At (absorbance
at any time) and Ao (absorbance at zero time) are directly proportional to Ct (concentration at any
time) and Co (concentration at zero time), respectively. Thus, the change in absorbance at λmax of CR
actually explains its concentration at that specific time. Pseudo first order plots for CR degradation
with and without CAg-nPs biogenic catalyst are shown in Figure 8a. Values of apparent rate constant
(kapp) for CR reduction were calculated from linear regions of plots shown in Figure 8a. kapp for CR
degradation was found as 0.468 and 0.003 min−1 with and without biogenic catalyst, respectively.

Percentage conversion of CR in product was also calculated for catalytic and un-catalyzed
reaction [44]. Value of percentage conversion of CR with and without CAg-nPs biogenic catalyst was
found to be 87.28% and 2.62%, respectively.

Varadayenkatesan et al. prepared Ag-nPs by using the flower extract of Thunbergia grandiflora
and employ these particles as a catalyst for reduction of CR [34]. The value of apparent rate constant
(kapp) for reduction of CR was found as 0.0999 min−1. Indana and co-workers utilized gum tragacanth
fabricated Ag-nPs as a catalyst for reduction of CR using NaBH4 as reductant [33]. The value of
kapp was found as 0.148 min−1 and reaction was completed in 15 min. Thus, results showed that our
reported biogenic Ag-nPs catalyst showed high activity with less reaction time and high value of kapp

as compared to previously reported work.

3.4. Effect of Reaction Conditions

Reduction of CR was also performed by changing the concentrations of CR (0.057 to 0.078 mM)
while keeping NaBH4 and catalyst as 7.88 mM and 2.1 mg/mL, respectively. Values kapp, half life and
reaction completion time for reduction of CR under its different concentrations are given in Table 2.
It can be seen from Table 2 that the value of kapp was initially increased, attained the maxima and
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then was decreased as CR concentration was increased. At low contents of CR, both CR molecules
and BH4

−1 ions were adsorbed on the surface of catalyst simultaneously and results in a high value
of kapp. However, at high concentrations of CR, most of the active sites of the catalyst are occupied
by CR molecules as compared to BH4

−1 ions. Due to insufficient adsorbed BH4
−1 ions compared to

CR molecules, the rate of catalytic reduction of CR was decreased. This leads to a low value of kapp.
The plot of kapp vs. CR concentration for its reduction in the presence of reducing agent is shown in
Figure 9a. The curve obtained for CR dependent kapp value shows that CR reduction followed the
LH mechanism. According to this mechanism, reacting species like CR and BH4

−1 ions were first
adsorbed on a fixed number of active sites of biogenic CAg-nPs catalyst. Then, adsorbed CR molecules
and BH4

−1 ions reacted with each other on the surface of the catalyst, and CR was converted into
environmental benign products. In the next step, adsorbed product was desorbed and diffused to
bulk, making the availability of active sites for adsorption of more reacting species. Actually, biogenic
CAg-nPs catalyst acts as a conveyer belt for speedy electrons transfer from BH4

−1 ions to CR molecules
due to the large surface area of nanoparticles. Thus, a high activity of CAg-nPs catalyst lies in their
efficiency during electrons transfer process [42].

Table 2. Effect of CR, NaBH4 and catalyst contents for reduction of CR using biogenic CAg-nPs catalyst
at ambient temperature.

Contents CR
(mM)

NaBH4
(mM)

Catalyst
(mg/mL)

kapp
(min−1)

Half Life
(min) R2 Induction

Time (min)

Reaction
Completion
Time (min)

CR

0.057 7.88 2.1 0.229 3.026 0.988 2 13
0.060 7.88 2.1 0.294 2.357 0.992 1 9
0.063 7.88 2.1 0.544 1.274 0.951 0 4
0.066 7.88 2.1 0.591 1.173 0.963 0 5
0.069 7.88 2.1 0.469 1.478 0.982 1 7
0.072 7.88 2.1 0.432 1.604 0.967 2 8
0.075 7.88 2.1 0.404 1.715 0.995 2 9
0.078 7.88 2.1 0.321 2.159 0.935 2 9

NaBH4

0.072 4.50 2.1 0.156 4.442 0.972 3 27
0.072 5.63 2.1 0.204 3.397 0.955 3 21
0.072 6.75 2.1 0.255 2.718 0.933 1 12
0.072 7.88 2.1 0.448 1.547 0.945 1 09
0.072 8.33 2.1 0.390 1.777 0.9664 0 09
0.072 9.00 2.1 0.281 2.466 0.9655 2 14
0.072 10.13 2.1 0.249 2.783 0.9372 2 16
0.072 11.25 2.1 0.194 3.572 0.978 2 20
0.072 12.38 2.1 0.160 4.331 0.965 3 22

Catalyst

0.072 7.88 1.2 0.157 4.414 0.997 3 26
0.072 7.88 1.5 0.173 4.006 0.994 2 23
0.072 7.88 1.8 0.218 3.179 0.982 1 19
0.072 7.88 2.1 0.281 2.466 0.978 1 15
0.072 7.88 2.4 0.292 2.373 0.995 0 14
0.072 7.88 2.7 0.293 2.365 0.999 0 12

CR reduction was also done by varying the concentration of NaBH4 (4.50 to 12.38 mM) while
CR and catalysts were taken as 0.072 mM and 2.1 mg/mL, respectively. Values of kapp, reaction
completion time and half life for CR reduction by using different concentrations of CR are given in
Table 2. Reaction completion time for CR reduction was first decreased and then was increased as
the contents of NaBH4 in reaction mixture were increased. A trend observed for NaBH4 dependent
values of kapp for CR reduction was similar to that of CR concentration depending on kapp value.
A plot of kapp against the concentration of NaBH4 for CR reduction is shown in Figure 9b. kapp was
first increased, approaching the highest values and then was increased as NaBH4 content in reaction
mixture was increased.
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Figure 9. (a) CR concentration, (b) Sodium borohydride concentration dependent kapp relation for
degradation of CR at ambient temperature (Reaction conditions: [NaBH4] = 7.88 mM, [CR] = 0.072 mM
and catalyst = 2.1 mg/mL).

The amount of catalyst was changed from 1.2 to 2.7 mg/mL in reaction mixture while the amount
of NaBH4 and CR was kept as 7.88 and 0.072 mM, respectively, for reduction of CR. Values of kapp,
induction time, reaction completion time and half life for CR degradation at different amounts of
catalyst are given in Table 2. The value of kapp was increased with the increase of catalyst amount up
to a limit, and then it became constant. Actually, a high catalyst dose offers a large number of active
sites for the adsorption of reacting species. A high catalyst dose induced a high kapp value for CR
reduction. At a very large amount of catalyst, all reacting species are adsorbed on the surface of the
catalyst and lead to the saturation of catalyst surface. Thus, a further increase of the catalyst amount
has no effect on the rate of reaction or on the value of kapp. As a result, the catalyst dependent value of
kapp becomes constant at a high amount of catalyst as shown in Figure 8b. Previous studies show that
catalytic reduction of dyes depends on the available active site on the surface of catalyst for adsorption
of reactants as well as the number of nPs per volume. Thus, our results were found to be in agreement
with the previous literature.

3.5. Reduction of Other Dyes and Nitroarenes

Various other toxic organic compounds like MG, MB, RhB and 4-NP having concentrations of
0.072 mM were also reduced individually in the presence of NaBH4 reducing agent and CAg-nPs
catalyst as shown in Figure 10. Reactions were completed in feasible time intervals and monitoring of
reaction was easy while using 0.072 mM solution of all dyes individually.

Various parameters for catalytic reduction of MG, MB, RhB and p-NP are given in Table 3. It was
concluded that RhB was not reduced completely in the presence of catalyst as compared to MB and
RhB. The decreasing order of reduction of dyes in terms of kapp was MB > MG > 4-NP > RhB. A high
reduction efficiency of biocatalysts for MB was due to its nature. Mb was degraded easily while the
lowest reduction efficiency for RhB was due to its complex structure.

Table 3. Reduction of various dyes in the presence of CAg-nPs using NaBH4 as reducing agent.

Dyes kapp (min−1)
Intrinsic Rate

Constant
(mL·mg−1·min−1)

Reaction Completion
Time (min)

Reduction
Efficiency (%)

MB 0.613 0.292 4 93.29
MG 0.451 0.215 7 83.73

4-NP 0.247 0.118 9 88.90
RhB 0.085 0.041 18 60.53
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Figure 10. Catalytic reduction of various dyes (0.072 mM) such as (a) Mb, (b) MG, (c) RhB and
(d) 4-Np in the presence of biogenic CAg-nPs catalyst (2.1 mg/mL) and NaBH4 (7.88 mM) at an
ambient temperature.

Catalyst was recycled from the reaction mixture by performing centrifugation at a high speed
and reused for CR reduction. There was not a remarkable decrease in the reduction efficiency of the
catalyst for up to three consecutive cycles (reduction efficiency ≈ 87% to 82% from the 1st to 3rd cycle).
Recoverability and reusability of catalyst were also investigated after three cycles. A sharp reduction
in the value of percentage removal was observed. This may be due to coagulation of Ag-nPs due to
repeated usage. Reduction efficiency of the biogenic CAg-nPs catalyst for different reusability cycles
for CR reduction is shown in Figure 11.

Figure 11. Recyclability of biogenic CAg-nPs catalyst for reduction of CR (0.216 mM) in the presence of
NaBH4 (24.03 mM) and catalyst (8.42 mg/mL) at an ambient temperature.
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4. Conclusions

This study presents the ecofriendly biogenic synthesis of CAg-nPs by an aqueous peel extract of
Citrus paradise. FTIR and UV-Vis analysis demonstrates the involvement of different metabolites of
plant extract in the bio-reduction process and stabilization of silver nPs. UV-Vis analysis also confirms
the successful fabrication of silver nanoparticles along with their spherical shape and narrow size
distribution. TGA analysis shows that the prepared biogenic CAg-nPs catalyst is incorporated with 15%
silver nanoparticle contents. Catalytic activity of biogenic CAg-nPs was explored against the reduction
of various toxic dyes such as CR, MB, MG, RhB and 4-NP using BH4

−1 ions as hydrogen/electrons
source. Results prove the remarkable catalytic efficiency of biogenic CAg-nPs nano-catalysts for
reduction of reported dyes. The CAg-nPs catalyst was conveniently recovered from a reaction mixture
by high speed centrifugation and applied for subsequent reaction without a remarkable decrease in
its activity.

The CAg-nPs catalyst was applied to speed up the rate of reduction of selective dyes. However,
textile industry wastewater contains a lot of other toxic chemicals. The effect of those chemicals on the
activity of catalysts can also be addressed to make it effective for treatment of industrial wastewater.
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Abstract: (1 − x)(Na0.5Bi0.5)TiO3–xBi(Mg2/3Nb1/3)O3 ceramics with x = 0.00 mol.% (0BMN), 0.01 mol.%
(1BMN), 0.03 mol.% (3BMN), and 0.05 mol.% (5BMN) were synthesized using a solid-state processing
technique. The thermogravimetric analysis (TGA) of uncalcined samples up to 730 ◦C showed that
the maximum weight loss was observed for 3BMN, whereas the minimum weight loss was attributed
to the 0BMN sample. After that, calcination was performed at 800 ◦C for 4 h. The XRD of calcined
samples showed the successful formation of the perovskite phase with no impurity phases. 1BMN
and 3BMN samples showed some of the lattice strain; however, a morphotropic phase boundary
(MPB) existed around x = 0.03 between the rhombohedral and tetragonal structure. The TGA of the
green pellets showed weight loss up to the sintering temperature (1100 ◦C) and during the 3 h holding
period. 5BMN showed the maximum weight loss up to sintering temperature, as well as during the
holding period, whereas 0BMN displayed the minimum weight loss up to sintering temperature, as
well as some weight gain during the holding period. The relative permittivity (εr) was maximum at
low frequencies, but the addition of BMN improved the εr. The frequency dependence of dielectric
loss (tanδ) showed that the maximum loss was observed for 3BMN at lower frequencies, and 5BMN
showed the maximum loss at higher frequency among all samples.

Keywords: lead-free; NBT–BMN; weight loss; dielectric; piezoelectric ceramics

1. Introduction

Piezoelectric ceramics primarily based on lead oxide (PbO) are commonly used as
piezoelectric actuators, sensors, and transducers for their exceptional piezoelectric prop-
erties [1]. Nonetheless, evaporation related to the hazardous nature of PbO during high-
temperature sintering not only leads to ecological pollution, but also triggers variability of
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the composition and electrical characteristics of material [2,3]. Consequently, researchers
around the world are focused on the synthesis of green lead-free piezoelectric ceramics to
eliminate the hazardous lead oxide-based ceramics [4]. The research on lead-free piezo-
ceramics has already started a new journey to replace lead zirconium titanate (PZT) with
nonharmful choices [5]. Moreover, the European Union (EU) passed legislation on Restric-
tion of Hazardous Substances (RoHS), Waste from Electrical and Electronic Equipment
(WEEE), and End of Life Vehicles (ELV), propelling scientists to take out poisonous sub-
stances from electrical and electronic devices to lessen their effect on the surroundings and
wellbeing of people [6]. Sodium bismuth titanate (Na0.5Bi0.5TiO3 denoted as NBT) is one
of the emerging lead-free ceramics, and it was discovered in 1960 [7,8]. It has a distorted
perovskite structure (ABO3) with rhombohedral R3c symmetry at room temperature (RT). It
exhibits superior dielectric, piezoelectric (d33 = 73 pC/N), and electromechanical properties
and could potentially replace PZT; however, it has some major drawbacks, such as the va-
porization of Na1+ and Bi3+ at high temperatures, the low piezoelectric constant (d33), high
coercive field (Ec), low depolarization temperature (Td), and high conductivity [9,10]. It
has been established that Bi vaporizes at high sintering temperatures (>1150 ◦C). Moreover,
Hiruma et al. revealed that Bi vaporizes when sintered at 1100 ◦C due to the high dielectric
loss of undoped BNT ceramics at T > Td, which makes poling treatment difficult due to high
conductivity and pinning of domains. The difficulties related to bismuth (Bi) volatilization
can be reduced by doping stable oxide-containing compounds in NBT [11]. Kimura et al.
observed that the excess Bi2O3 increased the sintered density because of a decrease in grain
growth. It was reported that excess Bi2O3 enhances texture development and improves
piezoelectric properties [12]. In another study, stoichiometric and nonstoichiometric BNT
ceramics were prepared to clarify the effects of Bi and Na vaporizations on phase transitions
and electrical properties. It was concluded that the dielectric losses were decreased and
d33 increased when the Bi/Na ratio increased. Furthermore, the resistivity was increased
with excess Bi and the leakage current was very small above Td for BNT-Bi(0.01) because of
low conductivity [11]. The CeO2-doped NBT also showed a superior piezoelectric constant
(d33) and other electronic properties [13]. Recently, a new NBT-based relaxor ferroelec-
tric was prepared by combining NBT with Bi1/2(Mg2/3Nb1/3) O3 (BMN), which gave
d33 = 94 pC/N at x = 0.07. Furthermore, the values of dielectric constant and electrome-
chanical coupling factor also increased when BMN was added to NBT [14]. Another study
showed the effects of excess Bi on 0.99Bix (Na0.8K0.2)0.5–0.01SrTiO3 (x = 0.5–0.535). The ex-
cess Bi increased RT strain properties and gave a d33* value of 440 pm/V [15]. Furthermore,
a study on (1 − x) (0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–xBiMg2/3Nb1/3O3 (100xBMN)
(BNT–BKT–BMN) ceramics revealed that the introduction of BMN gave rise to strain prop-
erties and aided the transformation from ferroelectric to relaxor phase. The maximum
value of d33* was also found to be 784 pm/V [16]. Another study showed the improve-
ment in ferroelectric and piezoelectric properties of 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3
(BNT–BKT, BNKT) by doping Bix/3Mgy/3Nbz/3O3 (BMN) [17]. Another study revealed
that the (1−x)[0.85BaTiO3–0.15Bi(Mg2/3Nb1/3)O3]–xNa0.5Bi0.5TiO3 (BT–BMN–NBT) sys-
tem gives an improved dielectric constant and dielectric loss [18]. Therefore, in this study,
we prepared a binary solid solution of (1 − x)Na0.5Bi0.5TiO3-xBi(Mg2/3Nb1/3) ceramics
to observe the effect of BMN on Na and Bi volatility during the calcination and sintering
process. Another goal of this study was to study the effect of different concentrations of
BMN on the dielectric properties of NBT–BMN piezoelectric ceramics.

2. Experimental Procedure

The (1 − x)Na0.5Bi0.5TiO3–xBi(Mg2/3Nb1/3)O3 (NBT–BMN) ceramics with x = 0.00 mol.%
(0BMN), 0.01 mol.% (1BMN), 0.03 mol.% (3BMN), and 0.05 mol.% (5BMN) were prepared
using a conventional solid-state sintering technique. Na2CO3, Bi2O3, TiO2, MgO, and
Nb2O5 were used as raw materials with 99.9% purity (Daejung Chemicals & Metals Co.,
Ltd, Shiheung-city, Korea) and were stoichiometrically weighed in hot conditions to avoid
any moisture pickup. The powders were subjected to planetary ball milling at 300 rpm
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in ethanol solution for 2 h. Zirconia jars and zirconia balls of diameter ranging from 5 to
20 mm were used as grinding media. After the ball milling process, the slurry was dried in
a drying oven at 80 ◦C to let the ethanol evaporate. Then, the mixed powders were crushed
in a mortar and pestle to break the agglomerates. Finally, the powder was passed through
a sieve of mesh size 149 µm. Thermogravimetric analysis (TGA)/differential scanning
calorimetry (DSC) was performed on the sample using an SDT Q600 Thermal Analyzer
(TA instruments, New Castle, DE, USA) to determine the weight losses and perovskite
phase formation temperature. The temperature was raised from 30 ◦C to 950 ◦C at a rate
of 10 ◦C/min. According to the results, the calcination temperature was determined and
finalized. All the compositions were calcined at 800 ◦C for 4 h in an alumina crucible
by a chamber furnace (PLF 130/18, Protherm Furnaces, Ankara, Turkey). Calcination is
an important step to remove the carbonates from the powders and for perovskite phase
formation. The heating rate and cooling rate were set to be 5 ◦C/min. A small sample from
the calcined batch was crushed using a mortar and pestle, and then the X-ray Diffraction
(XRD) of these samples was performed on an X’Pert PRO (PANalytical, Almelo, The
Netherland), to verify the perovskite phase formation. The diffraction patterns were
recorded over the angular range (2θ) from 15◦ to 80◦ at room temperature. The whole batch
of the calcined sample was again ball-milled in ethanol for 1 h, dried, crushed using mortar
and pestle, and sieved over the mesh size 149 µm. The powders were then die-pressed into
discs of 12.8 mm diameter in a pressing machine. Polyvinyl alcohol (PVA) was used as
the binder, and a pressure of 2000 psi (140 bar) was uniaxially applied on the powder for
45–60 s to get the compacted green pellet. The TGA/DSC of green pellets was performed
on an SDT Q600 Thermal Analyzer (TA instruments) to understand the weight loss under
the sintering conditions. The heating rate was set to be 5 ◦C/min and, after reaching
1100 ◦C, the samples were held for 3 h in air at this temperature to complete the sintering
cycle. The green pellets were sintered in an energy-saving box furnace at 1100 ◦C for 3 h.
The pellets were first heated at 600 ◦C at a rate of 5 ◦C/min for 2 h to remove the binder
and other organic materials. Then, the temperature was raised to 1100 ◦C at a heating rate
of 5 ◦C/min. After sintering at 1100 ◦C, the samples were allowed to cool down at a rate
of 5 ◦C/min until 400 ◦C. Below 400 ◦C, the furnace was turned off and the samples were
allowed to furnace cool until room temperature. The dielectric measurements were carried
out using an LCR meter TH2826 by Tonghui (Changzhou Tonghui Electronic Co., Ltd.,
Changzhou, China). The silver coating was applied on the sintered samples to measure
the frequency dependence of relative permittivity (εr). The current was kept constant at
100 mV, and the frequency was increased from 1 kHz to 1 MHz.

3. Results and Discussion
3.1. TGA/DSC of Uncalcined Samples

Figure 1 shows the TGA/DSC results of the uncalcined samples. There were three
distinct/major weight loss steps, as shown in Figure 1b; therefore, the weight loss during
TGA was divided into three stages. Furthermore, the weight losses for all the batches are
summarized in Table 1.

Table 1. Weight loss during TGA of uncalcined samples.

Batch Weight Loss due to
Moisture

Weight Loss during
Crystallization

Weight Loss during
Calcination Total Weight Loss (%)

0BMN 2.03 5.35 7.62 10.57
1BMN 2.52 5 7.76 12.42
3BMN 3.57 7.16 10.68 16.52
5BMN 3.78 3.71 6.83 12.51
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Figure 1. (a) DSC and (b) TGA of uncalcined samples.

Weight loss during stage-1 was associated with the evaporation of moisture [19].
This was confirmed by the first endothermic peaks in the DSC curve, which appeared
around 100 ◦C and are represented inside the dashed square in Figure 1a. Furthermore, the
maximum weight loss due to moisture was observed for the 5BMN sample. In addition, as
the amount of BMN increased, the moisture loss also increased.

Weight loss during stage-2 was due to the decomposition of carbonates and the escape
of CO2 gas [20]. The start of stage-2 was attributed to the first exothermic peak in the DSC
curve, represented by dashed arrows in Figure 1a. However, the starting temperature of
stage-2 was different for all the batches ranging from 287 ◦C for 3BMN to 360 ◦C for 0BMN.
The last weight loss step, i.e., Stage-3, was attributed to the weight loss during perovskite
phase formation and crystallization of (1 − x) NBT–xBMN. In the DSC curve (Figure 1a),
there were two peaks in the temperature range of 500 ◦C and 750 ◦C. The second exothermic
peak marks the start of stage-3 (crystallization) and the second endothermic peak marks its
end. A maximum weight loss of 7.16% was observed for 3BMN during stage-3. No further
significant weight loss was observed beyond 730 ◦C, showing the complete crystallization
of perovskite structure [21].

To evaluate the weight loss during calcination due to the removal of CO and CO2,
the weight loss from the start of stage-2 to the end of stage-3 was considered, as shown in
Figure 1b. The maximum weight loss of 10.68% was observed for the 3BMN sample. 5BMN
displayed the minimum weight loss during calcination (6.83%). The total weight loss was
the total weight reduced from the material from the beginning of stage-1 to the end of
stage-3 (~730 ◦C). The maximum total weight loss was observed for the 3BMN sample,
which was around 16.52%. The reason for this could be the presence of rhombohedral–
tetragonal MPB that exists around x = 0.03, as discussed in the XRD results in the next
section. The distortion in the crystal structure may have been the reason for the high
volatility of the sample as shown in Table 1. The minimum total weight loss of 10.57%
was shown by 0BMN. This shows that the addition of BMN promoted the weight loss in
NBT as compared to pure NBT during calcination. The TGA curve even showed a slight
weight loss beyond stage-3, indicating the volatility of Na and Bi at higher temperatures.
Therefore, to minimize further weight loss, the calcination temperature was set to 800 ◦C.
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3.2. XRD of Calcined Samples

The XRD of calcined samples was performed to assess the perovskite phase formation
and the effect of BMN on the crystal structure of NBT. Figure 2a shows the XRD spectra
in the 2θ range from 15◦ to 75◦ of all the samples calcined at 800 ◦C. A perovskite struc-
ture without any impurity peaks was confirmed for all the samples, showing that BMN
completely diffused into the structure of NBT [16,22].

Figure 2. (a) XRD patterns of calcined (1 − x)NBT–xBMN samples; (b–d) show enlarged XRD
patterns of (111), (200), and (110) diffraction peaks, respectively.

The (111), (200), and (110) peaks are magnified in Figure 2b–d, respectively. In
Figure 2c, the (200) peak started to split, and a new peak started to emerge from the
left in the 3BMN sample. This new (002) peak can be seen in the 5BMN sample. This means
that the structures for 0BMN and 1BMN were rhombohedral with R3c symmetry [15,16];
however, with the increasing amount of BMN, the structure became tetragonal with P4bm
symmetry [23,24]. Consequently, it could be said that there is a rhombohedral–tetragonal
MPB that exists around x = 0.03 for the NBT–BMN system.

As shown in Figure 2d, the height of the (110) peak was low for 0BMN; however,
the height increased for 1BMN and 3BMN samples. This increase in peak intensity indi-
cated a more ordered and highly crystallized structure [25]. Nevertheless, the intensity
sharply decreased in the case of 5BMN, suggesting strain relaxation in the structure as it
transformed from rhombohedral to tetragonal. Since the effective radii of (Mg2/3Nb1/3)3+

and Ti4+ are 0.069 and 0.061 nm respectively, the broadening of the (111) peak in Figure 2b
also indicated the lattice strains in the crystal induced by the addition of BMN due to the
substitution of (Mg2/3Nb1/3)3+ for Ti4+ [26].

3.3. TGA during the Sintering Process

The TGA/DSC of green pellets for all four samples was done to evaluate the weight
loss up to and at the sintering temperature. Figure 3 shows the TGA curves of all the
samples during sintering. The weight loss observations are summarized in Table 2. It
has been established by previous researchers that Na1+ and Bi3+ cations start evaporating
at high sintering temperatures (>1130 ◦C) [24]. This causes vacancies at the A-site in the
crystal lattice, which affects the structural homogeneity, stoichiometry, and properties of
NBT [13].

Figure 3 shows that 5BMN displayed the maximum weight loss of 5.3% and 0BMN
showed the minimum weight loss of 2.88% up until sintering temperature. The major
portion of this weight loss could be attributed to the moisture and binder loss, which
was added during the compaction of green pellets. Moreover, upon holding the samples
at 1100 ◦C for 3 h, there was a notable increase in the weight of 0BMN, whereas 5BMN
displayed further weight loss of 1.18% during the same holding period. Moreover, 1BMN
and 3BMN showed very slight weight loss. 0BMN displayed a weight gain of (+)0.4% until
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the end of the sintering period. It is interesting to note that, at such a high temperature, the
weight increased instead of decreasing.

Figure 3. TGA curves for 0BMN, 1BMN, 3BMN, and 5BMN during sintering at 1100 ◦C for 3 h in the air.

Table 2. Weight loss/gain (+) during sintering.

Batch Weight Loss up until
Sintering Temperature (%)

Weight Loss/Gain (+) during
Sintering (%)

0BMN 2.88 (+)0.4
1BMN 3.61 0.18
3BMN 3.57 0.06
5BMN 5.3 1.18

In order to study the phenomenon behind the weight gain, it is important to determine
the crystal structure changes and/or new compound formation during sintering. For this
purpose, the TGA/DSC curve during sintering was also plotted for 0BMN, as shown in
Figure 4.

Figure 4. TGA/DSC curves of 0BMN sample during sintering at 1100 ◦C for 3 h in the air.
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Nevertheless, there were no visible exothermic and endothermic peaks during the 3 h
holding at 1100 ◦C. This represents no major crystal structure changes. However, sintering
in the air reduced the number of oxygen vacancies and led to the decomposition of the
material to keep charge neutrality. Further research could be done for 0BMN to establish
the reason for weight gain during sintering.

3.4. Frequency Dependence of Relative Permittivity (εr)

Figure 5 shows the frequency dependence of relative permittivity (εr) of 0BMN, 1BMN,
3BMN, and 5BMN samples at room temperature. The εr was maximum at low frequencies
for all four samples. The εr of the 5BMN sample (750) was the maximum among all the
samples, whereas the εr of the undoped sample i.e., 0BMN was the minimum among
all at all frequencies. This showed the increase in εr as BMN increased in NBT [17,18].
Moreover, the εr decreased when measuring frequency increased due to a decrease in
polarization [27]. At low frequencies, all the polarization mechanisms were activated,
whereas, at higher frequencies, polarization mechanisms ceased to function. Therefore,
the net polarization of the material decreased, which led to the decrease in εr. It is proven
that relative permittivity (εr) was a function of frequency and was very prominent in
the above results. The lattice distortions caused by the A or B site disorder caused the
abovementioned behaviors. The Bi3+ ions substituted the A site and (Mg2/3Nb1/3)3+ ions
substituted the B site of the perovskite crystal structure and caused lattice distortions
in the material [10]. The polarization switching required a high dielectric constant as
BMN increased in NBT [16]. Furthermore, the higher εr of 5BMN could be due to better
densification during sintering [22]. The difference in the decrease in relative permittivity
(εr) as the frequency increased was maximum in the 5BMN sample and minimum in the
0BMN sample. This trend shows the difference in the decrease in the rate of relative
permittivity (εr) increase as BMN doping increased.

Figure 5. Frequency dependence of relative permittivity (εr).

3.5. Frequency Dependence of Dielectric Loss (tanδ)

The frequency dependence of dielectric loss (tanδ) for sintered 0BMN, 1BMN, 3BMN,
and 5BMN samples at room temperature was determined, as shown in Figure 6. For 3BMN,
the steep decrease in tanδ in the frequency range of 1 kHz and 100 kHz indicated leakage
current [28]. During polarization (below 10 kHz), 3BMN showed the maximum loss. As the
frequency started to increase, the dielectric loss slightly decreased for 0BMN. For 1BMN, it
started to increase with the increase in frequency, whereas, for 5BMN, it stayed within a
certain range. At lower frequencies, the friction due to dipole rotation increased dielectric
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losses. There was a slight hump in the losses of all samples in the range of 100 kHz to
1000 kHz, showing relaxor behavior [29]. This could be attributed to the change in the
polarization mechanism due to the increase in frequency [9,30]. At higher frequencies (i.e.,
1000 kHz), 5BMN displayed the highest tanδ, whereas 0BMN displayed the lowest tanδ
among all samples.

Figure 6. Frequency dependence of dielectric loss (tanδ).

4. Conclusions

In this study, (1 − x)Na0.5Bi0.5TiO3–xBi(Mg2/3Nb1/3)O3 ceramics (x = 0 mol.%, 1 mol.%,
3 mol.%, and 5 mol.%) were synthesized by conventional solid-state processing route to
evaluate their thermal behavior during calcination and sintering. The calcination was
performed at 800 ◦C for 4 h, and sintering was performed at 1100 ◦C for 3 h. TGA/DSC
of the as-milled powder was performed to understand the weight loss during calcination.
3BMN displayed the maximum and 5BMN displayed the minimum weight loss during
the calcination process; however, the minimum total weight loss of 10.57% was shown by
0BMN. The XRD spectra showed that all samples had a single-phase perovskite structure,
but there was a structural change from rhombohedral to tetragonal symmetry around
x = 0.03. Moreover, 1BMN and 3BMN samples also showed lattice strain due to the addi-
tion of BMN. TGA of the green pellets was also done to evaluate the weight loss during
sintering. 5BMN showed the maximum weight loss up until sintering temperature, as
well as during the holding period; however, 0BMN displayed the minimum weight loss
up until sintering temperature, along with some weight gain during the holding period.
The DSC curve for 0BMN showed no major peaks that could indicate structural changes
during the holding period. Further research could be done to evaluate the reason behind
this weight gain. The frequency dependence of relative permittivity (εr) showed that the
εr was maximum at low frequencies for all the samples; however, the increase in BMN
content increased εr. Furthermore, increasing the frequency resulted in a decrease in εr due
to the lattice distortions of dopant ions. The frequency dependence of dielectric loss (tanδ)
showed that the maximum loss was observed for 3BMN at lower frequencies (<10 kHz).
However, 5BMN showed the maximum loss at higher frequency among all samples.

Author Contributions: Conceptualization, S.A.A. and F.H.; methodology, M.I.; software, S.H.S.;
validation, M.S., formal analysis, M.A.A.; investigation, A.A.A.B.; resources, A.A.G.; data curation,
M.M.A.-A.; writing—original draft preparation, M.S.J.; writing—review and editing, S.A.; visualiza-
tion, S.A.-T.; supervision, F.H.; project administration, S.A.; funding acquisition, M.O. All authors
have read and agreed to the published version of the manuscript.

54



Coatings 2021, 11, 676

Funding: The authors are grateful to the Deanship of Scientific Research, King Saud University
for funding through Vice Deanship of Scientific Research Chairs and this research was funded by
the Dean-ship of Scientific Research at Princess Nourah bint Abdulrahman University through the
Fast-track Research Funding Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shibata, K.; Wang, R.; Tou, T.; Koruza, J. Applications of lead-free piezoelectric materials. MRS Bull. 2018, 43, 612–616. [CrossRef]
2. Xie, K.; Hu, H.; Xu, S.; Chen, T.; Huang, Y.; Yang, Y.; Yang, F.; Yao, H. Fate of heavy metals during molten salts thermal treatment

of municipal solid waste incineration fly ashes. Waste Manag. 2020, 103, 334–341. [CrossRef] [PubMed]
3. Tiwari, S.; Tripathi, I.; Tiwari, H. Effects of lead on Environment. Int. J. Emerg. Res. Manag. Technol. 2013, 2, 204–212.
4. Akça, E.; Yılmaz, H. Lead-free potassium sodium niobate piezoceramics for high-power ultrasonic cutting application: Modelling

and prototyping. Process. Appl. Ceram. 2019, 13, 65–78. [CrossRef]
5. Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature

2004, 432, 84. [CrossRef]
6. Shams, S. Circular Economy Policy Barriers: An Analysis of Legislative Challenges in White Goods and Automotive Industry

within the EU. Master’s Thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden, June 2020.
7. Lima, A.C.; Pereira, N.; Martins, P.L.A.; Lanceros-Mendez, S. Magnetic materials for magnetoelectric coupling: An unexpected

journey. Handb. Magn. Mater. 2020, 29, 57–110.
8. Smolenskii, G.; Isupov, V. New ferroeleetries of com-plex composition. Soy. Phys. Solid State 1961, 2, 2.
9. Singha, A.; Praharaj, S.; Rout, D. Effect of sintering time on microstructure and electrical properties of lead-free sodium bismuth

titanate perovskite. Mater. Today Proc. 2020. [CrossRef]
10. Singh, P.; Pandey, R.; Singh, P. Tailoring the electrical and structural properties of sodium bismuth titanate with sintering

temperature. Mater. Today Proc. 2020, 44, 166–169. [CrossRef]
11. Hiruma, Y.; Nagata, H.; Takenaka, T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics.

J. Appl. Phys. 2009, 105, 084112. [CrossRef]
12. Kimura, T.; Fukuchi, E.; Tani, T. Fabrication of textured bismuth sodium titanate using excess bismuth oxide. Jpn. J. Appl. Phys.

2005, 44, 8055. [CrossRef]
13. Halim, N.; Majid, W.A.; Velayutham, T. Ferroelectric, pyroelectric and piezoelectric properties of CeO2-doped Na0.5Bi0.5TiO3

ceramics. SN Appl. Sci. 2019, 1, 582. [CrossRef]
14. Zhou, C.; Liu, X. Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of

Bi1/2Na1/2TiO3− Bi(Mg2/3 Nb1/3)O3. J. Mater. Sci. 2008, 43, 1016–1019. [CrossRef]
15. Liu, X.; Li, F.; Li, P.; Zhai, J.; Shen, B.; Liu, B. Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free

ceramics by Bi nonstoichiometry. J. Eur. Ceram. Soc. 2017, 37, 4585–4595. [CrossRef]
16. Dong, G.; Fan, H.; Shi, J.; Li, Q. Large strain response with low driving field in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–Bi(Mg2/3Nb1/3)O3

ceramics. J. Am. Ceram. Soc. 2018, 101, 3947–3955. [CrossRef]
17. Dong, G.; Fan, H.; Jia, Y. Effect of the element ratio in the doping component on the properties of 0.975 (0.8 Bi1/2Na1/2TiO3–0.2

Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics. J. Mater. Res. 2020. [CrossRef]
18. Wang, T.; Liu, J.; Kong, L.; Yang, H.; Wang, F.; Li, C. Evolution of the structure, dielectric and ferroelectric properties of

Na0.5Bi0.5TiO3-added BaTiO3–Bi (Mg2/3Nb1/3) O3 ceramics. Ceram. Int. 2020, 46, 25392–25398. [CrossRef]
19. Mishra, P.; Kumar, P. Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50

ceramics. J. Alloys Compd. 2012, 545, 210–215. [CrossRef]
20. Yoon, M.-S.; Khansur, N.H.; Ur, S.-C. The effect of pre-milling/pre-synthesis process and excess Ba on the microstructure and

dielectric/piezoelectric properties of nano-sized 0.94 [(Bi0.5Na0.5)TiO3]–0.06 [Ba(1 + x)TiO3]. Ceram. Int. 2010, 36, 1265–1275.
[CrossRef]

21. Chaouchi, A.; Kennour, S.; d’Astorg, S.; Rguiti, M.; Courtois, C.; Marinel, S.; Aliouat, M. Characterization of sol–gel synthesised
lead-free (1− x) Na0.5Bi0.5TiO3–xBaTiO3-based ceramics. J. Alloys Compd. 2011, 509, 9138–9143. [CrossRef]

22. Badapanda, T.; Venkatesan, S.; Panigrahi, S.; Kumar, P. Structure and dielectric properties of bismuth sodium titanate ceramic
prepared by auto-combustion technique. Process. Appl. Ceram 2013, 7, 135–141. [CrossRef]

23. Pan, Z.; Wang, Q.; Chen, J.; Liu, C.; Fan, L.; Liu, L.; Fang, L.; Xing, X. Enhanced piezoelectric properties of tetragonal
(Bi1/2K1/2)TiO3 lead-free ceramics by substitution of pure Bi-based Bi (Mg2/3Nb1/3) O3. J. Am. Ceram. Soc. 2015, 98, 104–
108. [CrossRef]

24. Bhandari, S.; Sinha, N.; Ray, G.; Kumar, B. Processing and properties of ferroelectric Bi0. 5 (Na0.65K0.35)0.5 TiO3 ceramics under the
effect of different sintering temperature. Scr. Mater. 2014, 89, 61–64. [CrossRef]

55



Coatings 2021, 11, 676

25. Yoshida, K.; Fujimori, H. Morphotropic Phase Boundary on K-substituted Na0.5Bi0.5TiO3 synthesized with suppressing evapora-
tion of bismuth and sodium. Trans. Mater. Res. Soc. Jpn. 2020, 45, 207–210. [CrossRef]

26. Amini, R.; Ghazanfari, M.R.; Alizadeh, M.; Ardakani, H.A.; Ghaffari, M. Structural, microstructural and thermal properties of
lead-free bismuth–sodium–barium–titanate piezoceramics synthesized by mechanical alloying. Mater. Res. Bull. 2013, 48, 482–486.
[CrossRef]

27. Naceur, H.; Megriche, A.; Maaoui, M.E. Frequency-dependant dielectric characteristics and conductivity behavior of Sr1−x
(Na0. 5Bi0.5)xBi2Nb2O9 (x = 0.0, 0.2, 0.5, 0.8 and 1.0) ceramics. Orient. J. Chem. 2013, 29, 937–944. [CrossRef]

28. Singh, P.; Pandey, R.; Singh, P. Polyol-mediated synthesis of Bi-deficient Mg2+-doped sodium bismuth titanate and study of oxide
ion migration behaviour with functional properties. J. Alloys Compd. 2020, 860, 158492.

29. Tsurumi, T.; Harigai, T. Dielectric and Optical Properties of Perovskite Artificial Superlattices, Handbook of Advanced Dielectric,
Piezoelectric and Ferroelectric Materials; Elsevier: Amsterdam, The Netherlands, 2008; pp. 971–1005.

30. Bacha, E.; Renoud, R.; Terrisse, H.; Borderon, C.; Richard-Plouet, M.; Gundel, H.; Brohan, L. Electrophoretic deposition of BaTiO3
thin films from stable colloidal aqueous solutions. J. Eur. Ceram. Soc. 2014, 34, 2239–2247. [CrossRef]

56



coatings

Article

Effects of Polysilane Addition to Chlorobenzene and High
Temperature Annealing on CH3NH3PbI3 Perovskite
Photovoltaic Devices

Takeo Oku 1,*, Masaya Taguchi 1, Atsushi Suzuki 1, Kaede Kitagawa 1, Yugo Asakawa 1, Satoshi Yoshida 1,
Masanobu Okita 2, Satoshi Minami 2, Sakiko Fukunishi 2 and Tomoharu Tachikawa 2

����������
�������

Citation: Oku, T.; Taguchi, M.;

Suzuki, A.; Kitagawa, K.; Asakawa,

Y.; Yoshida, S.; Okita, M.; Minami, S.;

Fukunishi, S.; Tachikawa, T. Effects of

Polysilane Addition to

Chlorobenzene and High

Temperature Annealing on

CH3NH3PbI3 Perovskite Photovoltaic

Devices. Coatings 2021, 11, 665.

https://doi.org/10.3390/

coatings11060665

Academic Editors: Tongtong Xuan

and Alessandro Latini

Received: 13 April 2021

Accepted: 26 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone,
Shiga 522-8533, Japan; of21mtaguchi@ec.usp.ac.jp (M.T.); suzuki@mat.usp.ac.jp (A.S.);
ov21kkitagawa@ec.usp.ac.jp (K.K.); ov21yasakawa@ec.usp.ac.jp (Y.A.); satoshi.glass.jp@gmail.com (S.Y.)

2 Osaka Gas Chemicals Co., Ltd., 5-11-61 Torishima, Konohana-ku, Osaka 554-0051, Japan;
okita@ogc.co.jp (M.O.); s-minami@ogc.co.jp (S.M.); fukunishi@ogc.co.jp (S.F.); t-tachikawa@ogc.co.jp (T.T.)

* Correspondence: oku@mat.usp.ac.jp; Tel.: +81-749-28-8368

Abstract: CH3NH3PbI3 perovskite photovoltaic devices treated with a polysilane layer were fab-
ricated and characterized. Decaphenylcyclopentasilane (DPPS) in chlorobenzene solution was
deposited at the surface of the perovskite layer, and the resulting device was annealed at 140–260 ◦C.
The photoconversion efficiencies of the DPPS-treated device remained high even after 255 days in
ambient air. Raman scattering spectroscopy and ab initio molecular orbital calculations of DPPS
suggested that it increased hole transport efficiency in the treated devices, which was confirmed from
the high shunt resistances of the DPPS-treated devices.

Keywords: perovskite; CH3NH3PbI3; solar cells; polysilane; decaphenylcyclopentasilane; stability;
chlorobenzene; calculation; Raman scattering

1. Introduction

Si-based photovoltaic cells are a widely used energy technology. However, the man-
ufacture of Si-based devices is complex, and the band structure of silicon involves an
indirect transition type. Conversely, CH3NH3PbI3 (MAPbI3) has the advantages of a direct
bandgap, a high conversion efficiency, and an ability to be solution processed [1–5]. Hence,
perovskite compounds are regarded as candidates for new generation photovoltaic materi-
als. However, perovskites are normally unstable in air. The instability of MAPbI3 has been
attributed to migration and desorption of CH3NH3 (MA) and reactions with moisture in
air [6,7]. Therefore, the stability of perovskite solar cells must be improved to enable their
practical application in modules [8,9].

Various doped perovskite crystals have been widely studied with the aim of improv-
ing their stability and photovoltaic properties [10–13]. Although perovskite solar cells
doped with CH3(NH2)2 [14–16], CH3CH2NH3 [17,18], or C(NH2)3 [19,20] have been devel-
oped and studied, these organic molecules may still induce instabilities. Substitutions of
CH3NH3 by doping sodium [21], potassium [22–24], rubidium, or cesium are expected to be
effective for suppressing desorption of CH3NH3 sites in the MAPbI3. Doping Rb+ or Cs+ to
the MAPbI3 also reduced defect densities and increased grain sizes [25–28]. First-principles
calculation also indicated that co-doping of alkali metals and copper at the MA and Pb
sites, respectively, lowered the distortion and energies of the crystal structures [29,30]. In
fact, photovoltaic properties of the co-doped perovskite solar cells were improved and
stable, even after one year [31].

Another approach to improving the stability of perovskite solar cells is incorporating
polymeric materials into the perovskite devices [32–37]. Polymers have been shown to
promote device stability in perovskite cells [38]. For example, coating a thin layer of
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poly(methyl methacrylate) on top of the perovskite layer forms a cross-linked network
structure, which protects the cell from moisture and oxygen [38–40]. Poly(propylene
carbonate) is similarly effective for improving stability, owing to the formation of large
crystals of crosslinked perovskite particles with few defects [34].

The stability of the MAPbI3 compounds is affected by moisture and oxygen in the air
and is also influenced by the hole transport layer (HTL). A common HTL in perovskite
solar cells is 2,2′,7,7′-tetrakis-[N,N-di(p-methoxyphenyl)amine]-9,9′-spirobifluorene (spiro-
OMeTAD); however, this HTL is expensive and has poor stability. Alternative low cost
and more stable HTLs have been developed [36,37], and other HTL materials, such as
polysilanes, have also been utilized with organic photovoltaic devices [41,42].

In contrast to organic polymers, polysilanes have two important features. First,
polysilanes are p-type semiconductors, which promote hole transfer. Second, polysilanes
are more stable at elevated temperatures above 300 ◦C than ordinary organic materials.
Polysilanes may function as a protective layer when deposited on perovskite compounds.
Hence, polysilanes, such as decaphenylcyclopentasilane (DPPS), have been applied as
HTLs [43,44] and as additives in the photoactive layer [45] of MAPbI3 perovskite devices.
DPPS has been found to promote a uniform perovskite morphology, which increases device
power conversion efficiencies. However, chlorobenzene is typically used to dissolve and
deposit DPPS by solution processing. Chlorobenzene can also have effects on device
performance, which have not been investigated separately from its use as a solvent for
DPPS [46–48]. Thus, there is a need to separately investigate the effects of DPPS and
chlorobenzene in detail.

The purpose of the present work was to investigate the photovoltaic properties and
stabilities of perovskite photovoltaic devices treated with a DPPS layer. The cells were
treated by high temperature annealing in ambient air. The effects of treating devices
with DPPS in chlorobenzene on the photovoltaic properties and microstructures were
investigated. When only the DPPS is used as the HTL, the obtained conversion efficiencies
are not enough; consequently, the DPPS/spiro-OMeTAD bilayer was applied in the present
work. The chlorobenzene-treated devices were also compared to investigate the effect of the
chlorobenzene. To increase the conversion efficiency by raising the fabrication temperatures
of the devices, the device preparation time was shortened.

2. Experimental and Calculation Procedures

Figure 1a shows the fabrication process of the devices. Detailed conditions for the
fabrication process have been described in previous reports [10,48–51]. All fabrication
processes were performed under atmospheric conditions in ambient air, and the temper-
ature and humidity were ~20 ◦C and ~30%, respectively. A compact TiO2 layer and a
mesoporous TiO2 layers were formed on a fluorine-doped tin oxide (FTO) substrate by
annealing at 550 ◦C. To prepare the perovskite compounds, solutions of PbCl2 (Sigma
Aldrich, Tokyo, Japan, 111.2 mg) and CH3NH3I (Tokyo Chemical Industry, 190.7 mg) with
the desired molar ratio were mixed in N,N-dimethylformamide (Sigma Aldrich, 0.5 mL)
at 60 ◦C for 24 h. These perovskite precursor solutions were normally spin-coated during
the first coating. During the second and third spin-coating steps, an air-blowing method
was employed [50], as illustrated in Figure 1b. The cells were maintained at 90 ◦C during
the air-blowing. DPPS (Osaka Gas Chemicals, OGSOL SI-30-15, Osaka, Japan, 10 mg)
solutions were prepared in chlorobenzene (0.5 mL) and dropped onto the perovskite layer
during the last 15 s of the third spin-coating of the perovskite precursor solutions, as
shown in Figure 1b. A suitable temperature to initiate the reaction of the starting materials
(3CH3NH3I and PbCl2) for forming MAPbI3 and 2CH3NH3Cl (as a gas) is 140 ◦C [10,50].
The devices with DPPS layers were annealed at temperatures in the range of 140 to 260 ◦C
for 1 to 30 min. Then, a spiro-OMeTAD layer was formed as an HTL by spin-coating,
and the spiro-OMeTAD layer was formed below the gold electrodes for all the fabricated
devices in the present work. Finally, gold (Au) electrodes were formed by evaporation.
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All the fabricated cells in the present work were put into dark storage at a temperature of
22 ◦C and ~30% humidity in ambient air.
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Figure 1. (a) Schematic illustration of the fabrication process of the perovskite photovoltaic devices. (b) Detailed illustration
of DPPS insertion process.

Detailed conditions for the characterization of the devices have been described in pre-
vious reports [51–53]. Microstructural analysis was conducted by an X-ray diffractometer
(Bruker, Billerica, MA, USA, D2 PHASER). Raman scattering spectra were measured with
a Raman microspectrometer (JASCO, Tokyo, Japan, NRS-5100). The surface morphologies
of the perovskite layers were examined using an optical microscope (Nikon, Tokyo, Japan,
Eclipse E600). The current density voltage characteristics of the fabricated devices were
measured (Keysight, Santa Rosa, CA, USA, B2901A) under a solar simulator (San-ei Electric,
Osaka, Japan, XES-301S) with irradiation at 100 mW cm−2. Geometry optimization and
energy calculation of the DPPS molecule were performed by the ab initio calculation using
the restricted open-shell Hartree–Fock (RHF) method as the approximated wavefunctions
with STO-3G* basis set (Gaussian 09) [21,54,55]. The electron density distributions around
the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular
orbital (HOMO) were calculated from total self-consistent-field density. The isovalue for
the MO on the surface were adjusted to be 0.02 Hartree. The hybrid orbital was widely
mapped on the atoms, yielding delocalization. The detailed electron density and Mulliken
charge was described in the log file. The electrostatic potential was calculated from the
Mulliken population analysis. As the Mulliken population analysis, the charge distribution

59



Coatings 2021, 11, 665

of atoms was calculated while considering the atomic orbital overlapping and molecular
orbital coefficient. The electrostatic potential was displayed on the surface of the isoelectron
density and was mapped with electron density from total self-consistent-field density. The
density of electrostatic potential was adjusted to be 0.03. Maximum and minimum energy
values with the Hartree unit are shown by scale bars. The positive charge was distributed
as blue electrostatic potential around the atom. Raman scattering spectra and the vibration
modes were calculated by RHF with STO-3G* using frequency mode.

3. Results and Discussion

Figure 2a shows current density voltage (J-V) curves of the fabricated solar cells.
The performance of the cells is summarized in Table 1. The measured parameters were
as follows: VOC: open-circuit voltage, JSC: short-circuit current density, FF: fill factor, η:
conversion efficiency, ηave: averaged efficiency of four cells, RS: series resistance, and
RSh: shunt resistance. Devices prepared with only chlorobenzene had an η of 3.87% after
annealing at 140 ◦C. To enable a comparison of the chlorobenzene-treated devices with the
DPPS-treated devices, a pair of these devices were annealed at 190 ◦C. The device prepared
with DPPS in chlorobenzene had η of 9.40%. The same device fabricated at 220 ◦C had
an initially higher η value of 10.04%. All cell parameters were improved for the devices
treated with DPPS in chlorobenzene. The JSC and FF markedly increased compared with
those values of the chlorobenzene-treated devices.
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Figure 2. Current density voltage curves of the devices (a) as-prepared and (b) after 255 days in ambient air without
encapsulation.

Stabilities of the photovoltaic parameters after preparation in ambient air were mea-
sured for the cells over 255 days, and J-V characteristics are shown in Figure 2b. After
255 days, the highest photoconversion efficiency of 12.4% was obtained for the DPPS
device prepared at 190 ◦C (Table 1). The DPPS device prepared at 220 ◦C had good stability
over the extended time, as shown in Figure 3. Whereas the photoconversion efficiency
of the chlorobenzene-treated devices prepared at 190 ◦C decreased over time, η for the
devices prepared with DPPS in chlorobenzene at 190 ◦C increased; hence, DPPS effec-
tively increased the photovoltaic properties when subjected to high temperature annealing.
Although the FF values increased for all the devices, VOC decreased for the chlorobenzene-
treated device after 255 days. Conversely, VOC for the DPPS-treated devices increased. The
hysteresis index (HI) is also calculated and listed in Table 1. The HI values were estimated
from the next equation [56]: HI = (JRH − JFH)/JRH, where JRH is the current density at the
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half open-circuit voltage for the reverse scan, and JFH is the current density at the half
open-circuit voltage for the forward scan. When there is no hysteresis, the HI is equal to
0. Although the HI values of CB devices were lower than those of CB + DPPS devices for
the as-prepared cells, HI values of CB + DPPS and CB devices decreased and increased
after 255 days, respectively. The parameters of the DPPS devices either remained stable or
increased over time, which is attributed to the reduced influence of moisture, oxygen, and
spiro-OMeTAD in the DPPS protected perovskite layers. Shunt resistances were high for
the DPPS-added devices, which is likely because of the effects of DPPS on hole transport
and electron blocking [45,48].

Table 1. Photovoltaic parameters of perovskite photovoltaic devices. * Prepared from CH3NH3I:PbI2 = 1:1 and without air
blowing.

Solution Annealing
(◦C, min)

JSC
(mA cm−2)

VOC
(V) FF RS

(Ω cm2)
RSh

(Ω cm2)
η

(%)
ηave
(%) HI

* 100, 15 15.8 0.800 0.550 8.89 525 6.94 6.76 0.029
CB 140, 12 15.4 0.674 0.373 12.35 72 3.87 3.65 −0.082
CB 190, 6 12.6 0.708 0.298 18.87 71 2.66 2.30 −0.034

CB + DPPS 140, 60 12.6 0.903 0.660 8.13 916 7.51 6.06 0.076
CB + DPPS 190, 30 22.5 0.753 0.554 11.92 5670 9.40 8.99 0.334
CB + DPPS 220, 2 22.4 0.808 0.554 9.33 831 10.04 9.40 0.125
CB + DPPS 250, 1.5 20.5 0.875 0.524 9.90 268 9.40 8.71 0.043
CB + DPPS 260, 1 13.5 0.884 0.483 24.37 709 5.75 5.42 0.327

After 255 days - - - - - - - - -

CB 140, 12 13.3 0.643 0.543 8.35 330 4.64 4.54 0.102
CB 190, 6 10.6 0.620 0.311 23.71 86 2.05 1.70 −0.087

CB + DPPS 190, 30 22.2 0.884 0.634 7.35 5830 12.44 11.84 0.086
CB + DPPS 220, 2 19.3 0.849 0.618 8.03 2700 10.15 9.39 0.044
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Figure 3. Stabilities of the present devices.

Optical microscope images of the perovskites in the present devices measured after
255 days are shown in Figure 4. The perovskite grains were dispersed and divided by space
for the chlorobenzene-treated devices, as observed in Figure 4a,b. On the other hand, the
morphologies of the perovskite changed drastically by adding DPPS, and the perovskite
grains seems to form smoother surface. Hence, the DPPS-treated devices had fewer grain
boundaries and a greater surface coverage of grains. This morphology should suppress
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carrier recombination and reduce carrier losses. These effects were confirmed by the low
RS and high RSh values for the DPPS-treated devices.
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Figure 5a shows X-ray diffraction (XRD) results of the devices after 255 days. The
diffraction patterns were indexed to a cubic perovskite structure [10,49]. The (100) diffrac-
tion peaks were higher for both the devices treated with chlorobenzene and DPPS in
chlorobenzene prepared at 190 ◦C, as observed in the enlarged XRD patterns in Figure 5b.

The lattice constant of the perovskite compound decreased slightly at 220 ◦C (Table 2),
which indicated desorption of MA. The lattice constant was smallest for the chlorobenzene
device prepared at 190 ◦C, indicating that the MA desorption was associated with a decrease
in conversion efficiency. The device treated with DPPS in chlorobenzene at 190 ◦C had the
largest lattice constant, indicating that the MA desorption was suppressed, contributing to
the high efficiency.
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Table 2. Crystallographic data of perovskite films.

Solution Annealing
(◦C, min)

Lattice Constant
a (Å)

Orientation
I100/I210

CB 140, 12 6.270(0) 3.6
CB 190, 6 6.265(1) 7.5

CB + DPPS 190, 30 6.276(0) 4.4
CB + DPPS 220, 2 6.270(1) 2.7

The crystal orientation of the perovskite grains was estimated from the ratios of
the 100 intensity (I100) to the 210 intensity (I210) in the XRD patterns, as summarized in
Table 2. When the crystal planes in the perovskite crystallites were randomly aligned, the
intensity ratio of I100/I210 was 2.08 [10]. For the device prepared with chlorobenzene at
190 ◦C, I100/I210 was 7.5, which indicates that the (100) planes were comparatively well
aligned with the FTO substrate. For the devices treated with DPPS in chlorobenzene,
I100/I210 decreased to 4.4 after annealing at 190 ◦C to 2.7 for devices annealed at 220 ◦C.
Hence, the DPPS treatment of the perovskite promoted more randomly aligned structures.
Small PbI2 peaks were observed for both devices treated with chlorobenzene and DPPS in
chlorobenzene after annealing at 190 ◦C. Further formation of PbI2 was suppressed during
annealing at 220 ◦C, which indicates that the DPPS protected the MAPbI3 crystals against
decomposition to PbI2.

Raman spectroscopy measurements of DPPS and the present as-prepared photovoltaic
devices are shown in Figure 6, together with calculated data for the DPPS. The Raman
scattering peaks at ~600, ~1100, ~1540, and ~3040 cm−1 are respectively assigned to Si-Si,
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phenyl-Si, phenyl group, and phenyl C-H groups of the DPPS. Several peaks were assigned
to MA, CH3, and NH3 for the devices treated with chlorobenzene and DPPS in chloroben-
zene. These peaks derive from internal vibrations of MA relating to its local symmetry
in the crystal symmetry [57,58]. Because the amount of DPPS was quite small, no clear
differences were apparent in the Raman spectra of the devices treated with chlorobenzene
and DPPS in chlorobenzene.
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In this study, the DPPS was dissolved in chlorobenzene, which is often used as an
antisolvent to promote grain growth and form smooth surface structures on perovskite
films, resulting increased current densities [59–61]. Although temperatures around ~100 ◦C
are commonly used to fabricate perovskite devices, high temperatures above ~180 ◦C are
required to improve the efficiencies of DPPS-treated cells. Thus, DPPS affects the morphol-
ogy and photoelectronic properties by a different mechanism from that of chlorobenzene.
The DPPS layer suppresses MA desorption and DPPS is also a p-type semiconductor, which
has hole transporting properties that inhibit hole and electron recombination.

The J-V characteristics of the champion DPPS-treated device with the highest con-
version efficiency in the present work are also shown in Figure 7, and the measured
photovoltaic parameters are listed in Table 3. The device was annealed at 190 ◦C for 5 min.
Although the conversion efficiency of this as-prepared device was lower than that prepared
at 190 ◦C for 30 min, its efficiency increased to ~15% after 66 days. Changes of the (100)
XRD reflections for the champion device in the present work are shown in Figure 7b, and
the crystallographic data are summarized in Table 4. The perovskite crystallites were
randomly aligned after 10 days, and the intensity ratio of I100/I210 increased from 1.9 to 2.6
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after 66 days, which indicates that the (100) planes were comparatively well aligned. In
addition, the crystallite size increased from 486 to 617 Å after 66 days. This indicates that
the increase of the conversion efficiencies would be caused by the crystal growth of the
perovskite compounds during room temperature aging. This crystallization mechanism
even after the annealing at the high temperature of 190 ◦C would be explained by the DPPS
treatment, which might slow the diffusion of ions and crystal growth during annealing.
Then, the non-crystalized phase that remained might contribute to the crystal growth
during the aging.
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Table 3. Photovoltaic parameters of champion device, treated with DPPS in chlorobenzene and
annealed at 190 ◦C for 5 min.

Time
(Day)

JSC
(mA cm−2)

VOC
(V) FF RS

(Ω cm2)
RSh

(Ω cm2)
η

(%)
ηave
(%) HI

0 17.7 0.839 0.558 4.41 908 8.30 6.58 0.268
10 19.4 0.850 0.593 3.49 1440 9.80 8.81 0.034
24 21.6 0.918 0.699 3.96 1610 13.82 12.48 0.046
58 22.3 0.930 0.724 3.66 2120 15.03 13.31 0.073
66 22.4 0.923 0.727 3.72 3070 15.10 13.38 0.085

Table 4. Changes of crystallographic data of perovskite films.

Time
(Day)

Lattice Constant
a (Å)

Orientation
I100/I210

Crystallite Size
D100 (Å)

10 6.272(1) 1.9 486
66 6.268(1) 2.6 617

Schematic and optimized structural models of DPPS are shown in Figure 8a,b, respec-
tively. Pentagonal Si bonding is present in both models. Figure 8c,d shows an electrostatic
potential map of DPPS and its cutaway view, respectively, as calculated by ab initio methods
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based on the HF. The electrostatic potential was positive (blue) around the cyclopentasilane
and proton, as shown in Figure 8c,d. Calculated electronic structures of the DPPS at the
HOMO and the LUMO energy levels are shown in Figure 8e,f, respectively. The phases of
electron densities in the Si-3p and C-2p orbitals were inverted, as indicated by the green
and red coloration. The electronic charge of the HOMO was broadly distributed over the
phenyl rings and Si-Si chains, which contributed to the carrier transport and electronic
properties. The length of the main Si-Si chain also affects the localization of σ electrons,
which determines the LUMO level.
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Figure 8. (a) Schematic and (b) optimized models of DPPS. (c) Electrostatic potential, (d) cutaway view of (c), (e) HOMO,
and (f) LUMO.

An energy level diagram of the present DPPS-treated perovskite cells is shown in
Figure 9. The energy levels of the valence band maximum, conduction band minimum,
HOMO, and LUMO are indicated in the diagram [62,63]. When the device was irradiated
from the FTO glass side, carriers (holes and electrons) separate at the interfaces. Holes
separated in the perovskite layer are carried through the PbI2, DPPS, and spiro-OMeTAD
to the gold electrode. Conversely, electrons are transported through titanium dioxide to
the FTO. By inserting a DPPS layer between the photoactive layer and the HTL, holes
are effectively transported from the valence band maximum of the MAPbI3 to the Fermi
level of Au. High shunt resistances were obtained for the DPPS-treated devices, which
are attributed to the hole transporting and formation of smoother surface morphology by
DPPS. Efficient carrier transport is likely caused by the specific arrangement of the phenyl
group around the cyclopentasilane in the DPPS [41].
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A small PbI2 layer might be formed by MA desorption at the perovskite/DPPS
interface at high temperatures. If this thin PbI2 layer forms at the perovskite/DPPS interface
during or after annealing, PbI2 may act as a p-type semiconductor and an HTL [64,65].
Activation energies of ion migration of MA+, I− and Pb2+ in the MAPbI3 were reported to
be 0.84, 0.58, and 2.31 eV, respectively [66]. Since the activation energy of Pb2+ migration is
higher than those of other ions, the formed PbI2 layer may remain around the surface of
the perovskite. The increased efficiency of the DPPS-treated devices might also be related
to crystallization of amorphous grains. During the spin-coating of DPPS, a composite
layer of DPPS and amorphous pre-perovskite compounds forms, which provides a solid
interface for room temperature aging. Because DPPS can also function as a hole transport
material [41], holes are efficiently transported at the interface, to improve the Rsh and VOC.
Since all the processes in the present work were performed in the ambient air, further
improvement of photovoltaic properties is expected by controlling the environmental
conditions.

4. Conclusions

In summary, the effects of a DPPS treatment on perovskite solar cells were investigated.
The DPPS layer was inserted at the perovskite/spiro-OMeTAD interface. Conversion
efficiencies improved by inserting the DPPS layer during spin-coating of MAPbI3 and
annealing above 190 ◦C. A cell fabricated at 220 ◦C had the highest photoconversion
efficiency among the as-fabricated cells, and the conversion efficiencies of all devices
remained stable over more than 8 months in air. In addition, a device fabricated at 190 ◦C
had the highest efficiency following room temperature aging. The DPPS layer acts as both
a protective layer for the perovskite and as an HTL. Although a small amount of PbI2 was
detected by XRD, the PbI2 layer likely also functioned as an HTL. The perovskite grains
grew more densely, and their surface coverage increased compared with that resulting from
the ordinary chlorobenzene anti-solvent method. The DPPS treatment promoted fewer
lattice defects and grain boundaries, which suppressed the leakage current and increased
the JSC. The effectiveness of the DPPS on hole transport was also confirmed by ab initio
molecular orbital calculations. These findings indicate that high temperature annealing of
devices treated with DPPS in chlorobenzene is an effective and easy method for improving
the photoconversion efficiencies and stability of MAPbI3 solar cells.
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Abstract: Removal of hazardous organic dyes from polluted water bodies requires the introduction
of strong adsorbents and photocatalysts to industrial wastewaters. Herein, photocatalytic CeO2

nanoparticles and CeO2/CuO nanocomposite were synthesized following a co-precipitation method
for low cost elution of methylene blue (MB) from water. The crystallinity and surface structure of
the as-prepared materials have been analyzed using characterization techniques including X-ray
powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), energy-dispersive
spectroscopy (EDS), ultra-violet visible spectroscopy (UV–Vis), and Fourier-transform infrared
spectroscopy (FTIR). The average particle size of both the nano scaled samples were approximately
20–30 nm. The photocatalytic properties of CeO2/CuO were investigated under visible light against
methylene blue (MB). The results showed 91% photodegradation of MB organic pollutant in 3 h as
monitored by UV–Vis spectroscopy. Absorbance peaks appeared at around 670 nm corresponding to
degradation of MB. Such output displayed the effectiveness of Ce nanocomposites for environmental
benefits. Hence, CeO2/CuO nanocomposite could be useful for treatment of industrial wastewaters
by removing hazardous MB dye.

Keywords: nanocomposites; Ce–Cu oxide; Co- precipitation; photocatalyst; dye degradation

1. Introduction

Currently, water pollution is considered one of the important factors affecting the
environment [1]. Industrial effluents, especially from printing, dyeing and textile industries,
have synthetic dyestuff which is lethal to aquatic life and also results in water contamination
due to their frequent elusion into water bodies [2–6]. A considerable quantity of many
dyes is released in effluents from dyeing processes and dye production units. For better
living conditions, this issue must be solved [7,8]. Scientists have overcome numerous
struggles to introduce and establish a substantial process for elution of hazardous dyes
from the industrial effluents. However, adsorption has emerged as a preferred technique
for this purpose owing to its cost effectiveness, easy operations, design simplicity, and
environment friendliness [9]. Such adsorption phenomenon can be made more efficient by
means of involving some photocatalytic materials that enhance the photo-degradation of
hazardous dyes.

Additionally, researchers are now focusing on semiconducting material acting as
photocatalysts which utilize photoelectrons to oxidize pollutants and is considered a green
and cost-effective method to fix these issues [10–12]. These photocatalytic remediation
processes have also attracted huge attention owing to their goodness in degradation of
hazardous organic dyes [2,3,13]. In case of large and dense aggregates of particles, the
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inner particles become inactive in contrast to surface particles resulting in diminished
photocatalytic activity [14] so introduction of nanosized photocatalysts results in improved
photocatalytic activity, also the agglomeration of nanoparticles could be fixed by making
such nanocomposites [6].

Among the lanthanides, cerium is selected due to its unique Ce+3/Ce+4 redox couple,
which is capable of shifting between Ce2O3 and CeO2 in different redox conditions [6,15,16].
In lattice structure, the presence of Ce+3 is responsible for the oxygen defects in the nanopar-
ticles by producing the oxygen vacancy to fulfill the charge deficiency [17,18]. Further Ce+4

ions have been reported to behave as electron-trapping sites to diminish the charge-pair
recombination, and so enhance photocatalytic activity [19]. Ce+3 and Ce+4 have differ-
ent optical properties due to different electronic structures, thus are more active for the
oxidation process due to generation of more oxygen vacancies [20,21].

Moreover, the semiconductor’s photocatalytic activity could be enhanced by doping
oxygen vacancies in it in a certain amount [22,23]. Doping of different semiconductors
having similar band potentials could effectively construct heterojunctions which improve
their charge separation efficiency. These heterojunction interfaces could behave as a trans-
portation channel to enhance separation of electron hole pairs [24]. Only few studies
have focused on physically improved CeO2 nanostructures on doping for environmental
remediation [25]. Photocatalytic properties of CeO2 nanoparticles fabricated with diverse
transition metal moieties like Mn, Ti, Fe, and Co were compared and it was reported that
this doping affects the CeO2 nanoparticles morphology, enhances their surface area as
well as absorption properties, and also leads to a decrease in rate of recombination of
electron-hole pairs [26–28].

In addition, methylene blue is an aniline dye used in coloring of multiple manufac-
tured items, especially wool, silk, and cotton. It is greatly detected in textile wastewater
effluents. It is highly risky to human, animal, and even plant life. Therefore, removal of
MB remains a prime priority of industrial societies.

In the present work, we report the impact of composite formation on the structural,
photosensitive, and photocatalytic bearings of CeO2 nanostructures. The Ce–Cu nanocom-
posites are prepared by co-precipitation method. These as-prepared materials have been
analyzed employing multiple characterization technologies and the results are described
in detail. Moreover, their photocatalytic output was examined in visible light irradiation
purposely for degradation of methylene blue.

2. Materials and Method
2.1. Materials

The chemical reagents utilized in the current experimental scheme were purely of
analytical grade and were used without further processing. Cerium nitrate hexahydrate
used as cerium precursor and cobalt nitrate hexahydrate used as cobalt precursor were
purchased from Uni Chem. Chemical reagents Co., Ltd. MB was taken from Sigma
Aldrich (Berlin, Germany). Double distilled water was preferably used for preparation of
aqueous solutions.

2.2. Synthesis of CeO2 Nanoparticles

CeO2-NPs (nanoparticles) were synthesized following the co-precipitation technique.
Acting as precursor, 10.85 g of Ce (NO3)3·6H2O was dissolved in double distilled water
(250 mL). This mixture was heated along with stirring and the pH of solution was changed
to 11 by continuous pouring of 0.1 M NaOH drop-wise. Dispersion was thus obtained. This
growth solution was heated with stirring at 70 ◦C for 6–7 h. Subsequently, the precipitates
were collected, filtered, and washed with water and ethanol, dried in oven at 85 ◦C, and
then calcined at 600 ◦C for 7 h.
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2.3. Preparation of CeO2-CuO Nanocomposite

Cerium copper nanocomposite was synthesized using the same method. A 0.1 M
solution of Ce (NO3)3·6H2O and 5% of 0.1 M copper nitrate hexahydrate solution were
mixed, and the pH of the solution raised to 11 by adding 0.1 M NaOH drop-wise with
continuous stirring and heating at 70 ◦C. After 6–7 h of stirring, filtrating and washing
of precipitates with double distilled water and ethanol was performed. The oven-dried
residue at 85 ◦C was grinded and calcined at 600 ◦C for 7 h. Moreover, the physical picture
of synthesis of nanocomposite can be understood by Figure 1.
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2.4. Photocatalytic Activity

Aqueous solution of MB was used to estimate the catalytic activity of the photocat-
alysts. Extent of photodegradation by the photocatalysts under sunlight irradiation was
estimated using the UV/Vis spectrophotometer. Reaction solutions were made by adding
the required amount of the as-prepared nanocomposites into 500 mL of 0.03 mM MB
solution exhibiting initial pH 5. This suspended mixture was then followed by stirring in
the dark for approximately 30 min until an equilibrium was achieved.

The suspension was stirred in the dark for 30 min for adsorption–desorption equi-
librium. The MB-containing aqueous solution and the added photocatalyst were placed
in direct sunlight with constant stirring. The analytical samples from the suspension
were collected at regular intervals of time, i.e. 30 min, centrifuged and filtered to remove
the photocatalyst. Moreover, UV–visible spectrophotometer was used to analyze the MB
concentration in analytical samples. Figure 2 represents a proposed mechanism of MB
degradation using synthesized catalysts.

A conceivable mechanism involves the electron quenching/injection from photo-
excited molecules of methylene blue to CeO2/CuO. Molecular oxygen in the solution
mixture was then reduced followed by oxidative decomposition of MB, termed as pho-
tosensitization. The degradation mechanism fundamentally depends upon electron-hole
separation, i.e., e–h charge. Herein, visible light radiation energy corresponds to band gap
energy of catalytic material which excites the electrons to conduction band from valence
bond. In this way, the hole created in the valence band provides a platform to degradation
(oxidation/reduction) of methylene blue aided by the creation of free radicals. Excited
electrons strike the nearest oxygen and form superoxide anion radical (O2

−), which further
reacts with hydroxyl radicals and protons from water to form H2O2. In this system, this
electron-hole separation is generated by visible light by water splitting into radicals and
these radicals are means of dye degradation.
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Figure 2. Photocatalytic degradation of methylene blue at of CeO2/CuO nanoparticles.

Percentage degradation was estimated with help of Equation (1) [29].

Percentage of degradation = C0 −Ct / C0 × 100 (1)

Here, C0 corresponds to initial absorbance of the MB solution and Ct represents the
absorbance of the solution at the aforementioned time.

2.5. Characterization of Nanocomposites

The crystalline nature of the as-prepared photocatalysts was observed by using diffrac-
tometer with a scan rate 0.4◦ per minute in the 2θ range from 10◦ to 70◦. The average
crystallite size is calculated by applying the Scherrer equation [30].

D = 0. 89 λ/β·cosθ (2)

D represents the average crystallite size of the samples, λ stands for X-ray wavelength, β
refers to the full-width-half-maximum (FWHM) in radians, while θ denotes the Bragg’s an-
gle.

Fourier-transform infrared (FT-IR) spectral analysis is done on a FT-IR spectropho-
tometer (Perkin Elmer, Überlingen England) with the range between 500 and 4000 cm−1

for functional group determination. Surface morphology of the prepared samples was
determined using (cube compact model, Emcraft Seoul, South Korea) scanning electron
microscope (SEM). With this instrument, the elemental analysis and sample purity were
also analyzed by energy dispersive spectroscopy (EDS). The UV–vis absorbance spec-
tra were acquired for the nanocomposites using a UV–Vis spectrophotometer (Tensor II
BRUKER, Massachusetts, USA). The spectra were recorded at room temperature in air at
the wavelength in range of 200 to 800 nm. The dye concentration was analyzed by UV/Vis
professional double beam spectrophotometer (C-7200S, Peak Instruments, Buxton, UK).

3. Results and Discussion

The phase structure of the as-proposed catalytic materials and their respective average
crystallite size were determined using X-ray powder diffraction (XRPD) analysis. Figure 3
shows XRD spectra of both nanocomposites CeO2/ CuO. The diffraction peaks were
observed at 2θ = 33.2 (200), 28.2 (111), and 56.2 (311) showing the face centered cubic phase
of CeO2 in the synthesized catalysts. This pattern matches with JCPDS file no. 65-2975 [4].
The XRD peaks correlates closely with XRD patterns of a reported ceria [31]. The peak at
47.6 (220) corresponds to characteristic of CuO as reported earlier [32,33]. The sharp peaks
observed in the XRD patterns indicated that the prepared nanocomposites were highly
crystallized. The calculated average crystalline sizes of the cerium and cerium copper
nanocomposites comes to be 20.73 and 23.22 nm respectively.
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Figure 3. (a) X-ray power diffraction (XRPD) pattern and (b) FTIR spectrum of CeO2-CuO nanocomposite. 
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Figure 3. (a) X-ray power diffraction (XRPD) pattern and (b) FTIR spectrum of CeO2-CuO nanocomposite.

The FTIR patterns of catalysts is displayed in Figure 3b. In spectrum, three main FTIR
regions are observed, first between 3500 and 3000 cm−1, second in the range of 1300 and
1800 cm−1, and third in the range of 500 cm−1 [28]. The peaks at 3700 cm−1 are related to
the O–H stretching mode of OH− of the adsorbed water on the surface of the catalyst. The
wider absorption peak appearing at 3446 cm−1 is associated to O–H stretching vibrations
of the OH− group. The band at 1541 cm−1 is due to H–O–H bending vibration mode of
water. The third low wave number region absorption below 500 cm−1 could be assigned to
Ce–O and Cu–O stretching vibrational mode as oxides form bonds in this region [34].

Figure 4 reveals the surface morphologies of the cerium nanocomposites. SEM mi-
crographs of the Ce–Cu nanocomposite is shown in Figure 4a. In the micrograph, large
aggregates consisting of fine particles of CeO2 are seen. The average particle size cis
approximately 25–30 nm [2,8]. Although, the images revealed some agglomerations, it
is obvious that these nanocomposites form a heterogeneous surface structure that assist
in catalysis.
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Energy dispersive spectroscopy (EDS) was performed in addition to SEM at the same
instrument and it was assessed that the as-proposed photocatalytic materials are quite
pure, and almost appropriate and predictable percentage abundance appeared. The EDS
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spectrum is displayed in Figure 4d which confirms the sample purity of as-synthesized
composites. However, Figure 4e presents the % abundance of elements in composite
material and it validates the presence of the anticipated amount of every element put in
the catalysts’ synthesis.

The UV–vis spectrophotometer was used to estimate the absorption wavelength of
the prepared nanocomposites. This is indispensable to estimate the energy of incident
light radiation, which is either corresponding to or larger than the photocatalytic band-gap
energy, so that sufficient electrons can be excited the conduction band of the photocata-
lysts [35]. Consequently, the absorption wavelength of the created CeO2/CuO composites
is measured using a spectrophotometer. The output expressed in Figure 5a presents that the
pure semiconductor oxides have a very sharp band edge [36], whereas the nanocomposite
showed absorbance over a wider range, which led to a red shift in of the spectrum. This
wider band edge for amorphous Ce2O3 has been speculated to arise from the formation
of Ce3+ ions that have induced some localized mid-gap states in the band gap [37,38].
Furthermore, an increase in delocalization in organic dye molecules leads to small en-
ergy gap between ground and excited states, therefore a red shift was observed. The red
shifts experienced in absorbance reflect an increase in π-electrons delocalization in the
MB molecule [39]. As the UV–vis response proves, the nanocomposite can absorb the
visible light and produce a large number of photo-generated charge pairs under sunlight
irradiation. These results are also in accordance with the photocatalytic reactions results,
that the holes and electrons participate commendably in oxidation and reduction reactions
to degrade organic compounds [40].
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4. Measurement of Photocatalytic Activity  
There are many dye degradation studies using metal oxides as photocatalysts [35,41–

44]. These research articles revealed the usefulness of CeO2 in photocatalytic reactions. 
Chaudhary et al., 2020 [45] studied synthesis of ceria nanoparticles which give photocata-
lytical activity against methylene blue and dye degraded in 9 h. Rao et al., 2015 [46] syn-
thesized CuO nanoparticles and used them for photocatalytical activity of methylene blue 
and in 6 h. This study focuses on synthesis of the CeO/CuO nanocomposite which en-
hances photocatalytical activity and degrade it into 150 min (Table 1).  

The combination of metal oxides incorporated in a composite may result in enrich-
ment of surface oxygen defects. The increased concentration of surface oxygen defects can 
hold more photo generated electrons and holes individually and confirm their availability 
in decomposition organic pollutants. It accelerated the degradation of dyes and thus en-
hanced photo catalysis rate [35,45]. The photocatalytic response of the CeO2/CuO compo-
site were evaluated using degradation of methylene blue under direct sunlight exposure. 
Figure 2 shows the discoloration of MB by CeO2/CuO catalyst under visible light irradia-
tion which indicates the degradation of MB accompanied with CeO2/CuO composites.  

Table 1. Comparing catalysts performance of CeO, CuO, and CeO/CuO nanocomposite. 
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Dye 
Degraded 

Dose of 
Catalyst 

Dose of 
Dye 

Time of 
Degradation 

Condition Reference 

1 
CeO 

nanoparticles MB 20 mg/L 15 ml 9 h 
Visible 

light 
irradiation 

[45] 

2 CuO 
nanoparticles 

MB 20 mg 10 mg/L 6 h 
Visible 

light 
irradiation 

[46] 
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Figure 5. (a) UV/Vis spectrum of Cerium nanocomposites (CeO2-CuO) and (b) time-dependent optical absorbance spectra
of methylene blue (MB) showing the gradual decrease in concentration with time of CeO2-CuO used as catalyst.

4. Measurement of Photocatalytic Activity

There are many dye degradation studies using metal oxides as photocatalysts [35,41–44].
These research articles revealed the usefulness of CeO2 in photocatalytic reactions. Chaud-
hary et al., 2020 [45] studied synthesis of ceria nanoparticles which give photocatalytical
activity against methylene blue and dye degraded in 9 h. Rao et al., 2015 [46] synthesized
CuO nanoparticles and used them for photocatalytical activity of methylene blue and in
6 h. This study focuses on synthesis of the CeO/CuO nanocomposite which enhances
photocatalytical activity and degrade it into 150 min (Table 1).
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Table 1. Comparing catalysts performance of CeO, CuO, and CeO/CuO nanocomposite.

Sr# Composite
Name

Dye De-
graded

Dose of
Catalyst

Dose of
Dye

Time of
Degrada-

tion
Condition Reference

1
CeO

nanoparti-
cles

MB 20 mg/L 15 ml 9 h Visible light
irradiation [45]

2
CuO

nanoparti-
cles

MB 20 mg 10 mg/L 6 h Visible light
irradiation [46]

3
CeO/CuO
Nanocom-

posite
MB 1 g/L 0.03 mM 150 min Visible light

irradiation
This
work

The combination of metal oxides incorporated in a composite may result in enrichment
of surface oxygen defects. The increased concentration of surface oxygen defects can hold
more photo generated electrons and holes individually and confirm their availability in
decomposition organic pollutants. It accelerated the degradation of dyes and thus enhanced
photo catalysis rate [35,45]. The photocatalytic response of the CeO2/CuO composite were
evaluated using degradation of methylene blue under direct sunlight exposure. Figure 2
shows the discoloration of MB by CeO2/CuO catalyst under visible light irradiation which
indicates the degradation of MB accompanied with CeO2/CuO composites.

In this experiment, 0.03 mM solution of MB was degraded using 1 g/L of CeO2/CuO
nanocomposites. It is seen that without catalyst there was no degradation of the dye
solution observed in bright sunlight which exposed no decolorization. This shows that
light itself plays no part in the discoloration of MB. Initially, the reaction mixture was
retained in the dark for 30 min to discern the extent of adsorption. After that, the mixture
was shifted to visible light followed by constant stirring. With the procession of reaction,
4 mL of the aliquot solutions were separated through a pipette after 30 min sequel, and
measured the absorption in UV–Vis spectrophotometers. Moreover, the reaction mixture
was kept in the dark for 30 min, which experienced a little drop in the dye concentration.
Hence, it is obvious that the catalyst is not so efficient in dark. It is obvious from Figure 6a
that complete degradation of MB was achieved after 2.5 h, so CeO2/CuO are observed to
degrade the dye effectively. Moreover, Figure 6b shows that photocatalyzed degradation of
MB is administered by first order kinetics equation because the plot between –ln (A/Ao) vs.
time demonstrated linearity in the presence of as-proposed CeO2/CuO nanocatalysts [46].
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5. Conclusion 
Well crystallized CeO2/CuO nanoparticles were successfully prepared at low temper-

ature via simple co-precipitation routes. Multiple characterization technologies were 
adapted to investigate the physio chemical and optical nature of the as-synthesized pho-
tocatalysts. The XRD results show that well-crystallized nanocomposites have been ob-
tained and the average crystallite size estimated was 20–25 nm. With respect to catalytic 
significance, the as-synthesized CeO2/CuO nanoparticles demonstrated many selective 
and commendable photocatalytic possessions toward MB degradation. CeO2/CuO nano-
materials degraded the methylene blue up to approximately to 85.66% in 150 min, hence 
proving the strong catalytic performance of catalysts. Therefore, CeO2/CuO nanocompo-
sites could act as a promising candidate for MB degradation in a multitude of industrial 
wastewater treatment plants.  
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A few of the most efficient photocatalysts for dye degradation are compared with
as-proposed photocatalysts in Table 2. It can be observed that the catalysts with maximum
efficiency took prolonged time, however more fast catalysts revealed lower efficiency.
Hence, the as-synthesized photocatalyst could be more efficient as well as faster degrada-
tion catalysts towards MB degradation.

Table 2. Summary of some reported bimetallic oxides for photocatalytic dye degradation.

Photocatalyst % Efficiency Degradation Time (min) References

Y2O3/CeO2 95.5 240 [47]
La2O3/CeO2 70 120 [48]
Urea/CeO2 70 21 [49]

MnO2/CeO2 90.4 – [50]
Mn-TiO2 89 24 [51]

ZnO-TiO2 80 120 [52]
CeO2/CuO 85.66 150 –

5. Conclusions

Well crystallized CeO2/CuO nanoparticles were successfully prepared at low tem-
perature via simple co-precipitation routes. Multiple characterization technologies were
adapted to investigate the physio chemical and optical nature of the as-synthesized photo-
catalysts. The XRD results show that well-crystallized nanocomposites have been obtained
and the average crystallite size estimated was 20–25 nm. With respect to catalytic signif-
icance, the as-synthesized CeO2/CuO nanoparticles demonstrated many selective and
commendable photocatalytic possessions toward MB degradation. CeO2/CuO nanomateri-
als degraded the methylene blue up to approximately to 85.66% in 150 min, hence proving
the strong catalytic performance of catalysts. Therefore, CeO2/CuO nanocomposites could
act as a promising candidate for MB degradation in a multitude of industrial wastewater
treatment plants.
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Abstract: This paper presents a novel thermopile chip in which the resonant cavity structure was
fully utilized as an absorber by an optical design. The resonant cavity absorber structure was
designed using Al as anthe bottom reflective metal layer, air as the intermediate dielectric layer,
and SiO2/TiN/Si3N4 sandwich layers as the top absorption layer, while the bottom reflective metal
(Al) was deposited on the cold junctions of the thermopile. The simulation and calculation results
show that the thermopile chip with resonant cavity absorber structure not only has great infrared
absorption in the wide infrared absorption range but also can effectively prevent the cold junctions
from absorbing infrared radiation and inhibit the rise of temperature. As a result, the temperature
difference between the hot junctions and the cold junctions is increased, and the responsivity of
the thermopile chip is further improved. Moreover, the duty cycle of the thermopile chip is greatly
improved due to the double-layer suspension structure. Compared with the traditional thermopile
chip structure, the sizes of the thermopile chip with the resonant cavity absorber structure can be
further reduced while maintaining responsivity and specific detectivity.

Keywords: infrared detector; resonant cavity; energy applications; absorptance

1. Introduction

The thermopile IR detector is applied in many fields, because it has the advantages of
no need for cooling and chopping, broad spectral response, low cost and simple output
circuit [1–4]. The thermopile chip is the core component of thermopile IR detector and has
been greatly optimized and has opened the door to mass production, with the help of con-
ventional complementary metal oxide semiconductor (CMOS) and micro electromechanical
system (MEMS) technologies. The thermopile chip is generally a central suspended struc-
ture with a supporting layer, thermopile, absorber, and other layers deposited on a silicon
substrate. The hot junctions and the cold junctions of the thermopile are respectively
distributed on the edge and center of the silicon substrate hollowed out in the center, and
the hot junctions are covered by the absorber, as shown in Figure 1. The thermopile infrared
detector contains two energy conversion processes of light-heat and heat-electricity, and its
performance also depends on the superposition of the two conversions efficiency. Thus, the
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absorber can play a crucial role on the thermopile chip. The absorber is required for great
absorption at both 3–5 µm and 8–14 µm, while a thermopile chip is used as the sensing
element of an infrared thermometer [5,6], nondispersive infrared (NDIR) gas detector [7,8]
or infrared imager [9–11]. The porous materials with dendritic and soft structure, like
gold-black, can have great absorption at ultra-wide wavelength range and are typically
used as the absorber of thermopile chip [12–17]. However, these porous materials are
generally too fragile and not compatible with CMOS [18,19]. Owing to the interference of
light, the resonant cavity absorber structures can also have great absorption at a specific
band and are also often used as the absorber of thermopile chips. However, the resonant
absorption structure is a stack of multilayer films, so its absorption characteristics largely
depend on the matching relationship between the refractive index and thickness of the
multilayer film, and often only absorb specific wavelength bands. In addition, the resonant
cavity absorption structure is often sensitive to thickness errors, and the thickness of each
layer of the film needs to be accurately controlled during the preparation process. In fact,
an Si3N4 layer or SiO2/Si3N4/SiO2 sandwich structure is also usually used as the absorber
of thermopile chips. However, the Si3N4 layer or SiO2/Si3N4/SiO2 sandwich structure has
higher absorption only at 8.5–13.5 µm and lower absorption at 2.5–8 µm [20,21].
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Figure 1. Typical thermopile chip structures: (a) close membrane structure, (b) cantilever beam
structure (c) suspension bridge structure, and (d) the designed thermopile chip structure with
resonant cavity.

The structures of thermopile chips are mainly divided into three types: close membrane
structure, cantilever beam structure, and suspension bridge structure (Figure 1a–c) [22–25].
Compared to the cantilever beam and suspension bridge structures, the close membrane
structure is the current mainstream structure of thermopile chip, which is provided with
smaller thermal resistance, shorter response time, and a simpler manufacturing process.
However, the above chip structures all have the problem of mutual restriction between the
absorption zone and the thermocouple zone, and further reduction in thermopile chip size
cannot maintain relatively higher responsivity and detectivity.

In this paper, we designed a novel thermopile chip in which the resonant cavity
structure was fully utilized as an infrared absorber by an optical design (Figure 1d). In the
resonant cavity absorber structure, the Al, air, and SiO2/TiN/Si3N4 sandwich layers were
used as the bottom reflective metal layer, intermediate dielectric layer and top absorption
layer, respectively. The designed thermopile chip was proven to be provided with a high
duty cycle, great infrared absorption, and a wide infrared absorption range.

2. Design of Resonant Cavity Absorber Structure

As shown in Figure 2a, the resonant cavity absorber structure generally consists of
three parts: the top absorption metal layer, the middle dielectric layer, and the bottom
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reflective metal layer [26,27]. The absorption characteristics of the resonant cavity absorber
structure are based on the theory of optical interference absorption. The incident light
and reflected light will produce light interference effects at the top absorption metal layer
when the optical thickness of middle dielectric layer is of a quarter-wavelength thickness,
thereby achieving higher infrared absorption at specific band. Thus, it is difficult for the
resonant cavity absorber structure to achieve ultra-wide spectral absorption like the porous
materials and to realize a detector in various fields such as gas detection and non-contact
human temperature measurement. Moreover, the matching of each thin film, especially
the thickness, has a great influence on the absorption characteristics of the resonant cavity
absorber structure. Thus, the resonant cavity absorber structure generally requires a precise
design of the absorption structure and control of the manufacturing process.
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The Essential Macleod is a simulation software for the transmission, reflection and
absorption characteristics of optical multilayer films. In order to design a resonant cavity
absorber structure with broad spectrum absorption and low film thickness error sensitivity,
we first used the Essential Macleod to simulate and calculate the reflection and absorption
characteristics of different materials based on the theory of optical interference absorption
and then chose reasonable materials for each layer of the resonant cavity absorber structure,
as shown in Figure 3. The simulation results show that the average reflectance of the Al
layer could reach more than 97% at 2–14 µm. Thus, an Al layer was used as the bottom
reflective metal layer of the resonant cavity absorber structure. According to the theory of
optical interference absorption, It is easier to obtain a resonant cavity absorber structure
with broad spectrum absorption with an intermediate dielectric layer with low refractive
index [28]. The refractive index of air is 1, which is very suitable as the intermediate
dielectric layer of the resonant cavity absorber structure. As seen in Figure 3, the Si3N4,
SiO2, and TiN have higher absorption at 3–14 µm, 8–10 µm, and 10–14 µm, respectively,
which is why we chose the SiO2/TiN/Si3N4 sandwich layers as the top absorption layer of
the resonant cavity absorber structure. Moreover, the Si3N4 and SiO2 layers are designed
to be deposited on the upper and lower sides of TiN layer, respectively, where the Si3N4
layer can act as a passivation layer and have a certain protective effect on the TiN layer,
and the SiO2 layer can act as a supporting layer and play a positive role in supporting the
overall structure. The SiO2/TiN/Si3N4 sandwich layers as the top absorption layer can
well reduce the difficulty of preparation and the sensitivity of the resonant cavity absorber
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structure to the film thickness error and improve the mechanical strength, stability and
yield of the resonant cavity absorber structure.
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Figure 3. Calculated spectra of the TiN, Si3N4, SiO2, and Al layers.

Based on the theory of optical interference absorption, we used the Essential Macleod
to simulate and calculate the optical thicknesses of the intermediate dielectric layer and top
absorption metal layer, thereby adjusting the absorption wavelength range of the structure,
as shown in Figure 4. The simulation and calculation results show that the resonant cavity
absorber structure has great absorption at 3–5 µm and 8–14 µm when the thicknesses of
the air cavity, TiN layer and Si3N4 layer are 2700, 20, and 250 nm, respectively, as shown
in Figure 2b. As shown in the red spectral curve in Figure 4a, the average absorptances
of the designed resonant cavity absorber structure are ~89.56% and ~93.51% at 3–5 µm
and 8–14 µm, respectively, which is comparable to those of porous materials [12–17].
However, as shown in the black spectral curve in Figure 4a, the conventional standard
cavity absorption structure designed with Al as the bottom reflective metal layer, SiO2 as
the intermediate dielectric layer, and Ti as the top absorption layer only has an absorptance
close to 91% in 3–5 µm [18]. Therefore, the thermopile chip with the designed resonant
cavity absorber structure can not only be used as the detector elements of the non-contact
infrared thermometer and thermal imager, but also as the NDIR gas detector element for
detection of CO2, CO, NO2, and CH4 gases. Generally, the absorption of the resonant
cavity absorber structure is highly sensitive to the thickness error of each layer, and the
thickness of each layer needs to be accurately controlled during the preparation process to
achieve the ideal absorption effect. In fact, the deposition processes of MEMS and CMOS
both have a certain thickness error, so the Essential Macleod software was used to simulate
the absorption spectra of the designed resonant cavity absorber structure, under mean
thickness error of 5%. As shown in Figure 4b, the absorption spectra of the designed
resonant cavity absorber structure have no obvious deviation in absorptance compared
with that of the theoretical design (Figure 4b). Thus, under the mean thickness error (5%) of
the general MEMS and CMOS deposition processes, the designed resonant cavity absorber
structure still has high absorption and stability. The structure design using air as the
middle dielectric layer and SiO2/TiN/Si3N4 sandwich layers as the top absorption layer
can effectively broaden the absorption wavelength range and reduce the sensitivity to
thickness error.
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3. Design of Thermopile Chip

Based on the designed resonant cavity absorber structure, we propose a new type of
thermopile chip structure, as shown in Figure 5. In this paper, we adopted monocrystalline
silicon as the substrate and N-/P-Poly-Si as the thermocouple. The SiO2 layers were used
as the support, insulating and passivation layers of the thermopile. The hot junctions of the
thermopile were laid on the floating membrane, and the cold junctions were distributed on
the center of substrate. Moreover, the N-Poly-Si and P-Poly-Si were connected using Al as
interlayer at the hot junctions and the cold junctions of the thermopile, respectively.
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The responsivity (R), noise equivalent power (NEP), specific detectivity (D *), and time
constant (T) are the main three performance parameters for evaluating the thermopile chip,
and R is the most obvious and direct way to characterize the thermopile chip by the ratio of
∆U to incident infrared radiation power (P0) and can be calculated from Equation (1) [3]:

R =
∆U
P0

When infrared radiation is applied to the thermopile chip, there will be a temperature
difference (Tdiff) between the hot junctions and the cold junctions of the thermopile, and
Tdiff is converted into a measurable output voltage (∆U) based on the Seebeck effect. The
∆U for a thermopile is then calculated from Equation (2) [3]:

∆U = NTdi f f |αA − αB| = NTdi f f αAB

Therefore, increasing the Tdiff between the hot junctions and the cold junctions of
the thermopile is the most direct and effective way to improve the performance of the
thermopile chip.

In order to better understand and design the structure of the thermopile chip and make
the designed resonant cavity absorber structure be perfectly combined with the thermopile
chip, we used the finite element analysis software to simulate the thermopile chip’s thermal
field. As shown in Figure 6, compared with other double-layer suspension thermopile
chips, the thermopile chip we designed has a higher Tdiff between the hot junctions and
the cold junctions [29–31]. Since both the doped polysilicon and SiO2 layers have certain
absorption characteristic of infrared radiation, the cold junctions of the thermopile also
have infrared absorption characteristic [20,21]. When the infrared radiation is irradiated on
the surface of the thermopile chip, the cold junctions will also perform infrared absorption
and light-to-heat conversion except the hot junctions and the infrared absorber. As shown
in Figure 6a, the absorption of infrared radiation by the cold junctions will increase the
temperature of the cold junction and thus weaken the responsivity of the thermopile chip.
To solve this problem, we designed the cold junctions of the thermopile specifically, that
is, the bottom reflective metal layer (Al) of the resonant cavity absorber structure was
deposited on the cold junctions of the thermopile. Figure 3 shows that the Al layer has very
low absorptance and very high reflectance (~97%) at 2–14 µm so that the Al layer can well
reflect the infrared radiation irradiated on the cold junctions, prevent the cold junctions
from absorbing infrared radiation, and inhibit the rise of temperature, resulting in further
improvement of responsivity and specific detectivity (as shown in Figure 6b). Furthermore,
the Al layer can also serve as the reflective metal layer of the resonant cavity absorber
structure, forming the interference of light and strengthening the infrared absorption
characteristic of the top absorption metal layer. The top absorption layer of the resonant
cavity absorber structure can be connected to the hot junctions through the support column,
which facilitates the transfer of the heat of the top absorption layer to the hot junctions as
shown in Figure 6b. This can further increase the temperature difference between the hot
junctions and the cold junctions, and reduce the response time of the thermopile chip. In
particular, the intermediate dielectric layer (air) is located between the absorption layer
and the thermopile, and as a result, the heat loss is reduced, and furthermore, the mutual
restriction of area between the absorption zone and the thermocouple zone is also solved,
leading to a very high duty cycle. Thus, the sizes of the designed thermopile chip can be
further reduced while maintaining responsivity and specific detectivity compared with the
three types of traditional thermopile chips.
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4. Preparation Process of Thermopile Chip

On the basis of the designed structure of the thermopile chip, the preparation process
was proposed, combining CMOS and MEMS processes. Firstly, an SiO2 layer of ~200 nm
thick was deposited on the surface of the silicon substrate as a masking layer using a
thermal oxidation process, and then the photolithography and reactive ion etching (RIE)
processes ware used to pattern and etch the SiO2 layer (Figure 7a). Secondly, the isolation
trench with depth of 6000 nm was obtained by the RIE process for the bare silicon substrate
(Figure 7b). Thirdly, a thermal oxidation process was used again to generate an SiO2 layer
of ~200 nm thick on the etched silicon substrate as a release barrier (Figure 7c). Then, a
polysilicon layer of ~3000 nm thick was grown by low pressure chemical vapor deposition
(LPCVD) and then planarized, which served as a sacrificial release layer (Figure 7d). An
SiO2 layer of ~500 nm thick was deposited by LPCVD on the polysilicon layer, which
served as a thermopile support layer (Figure 7e). A polysilicon layer of ~500 nm thick was
deposited by LPCVD on the support layer as one layer of the thermocouple and doped with
boron (B) by ion implantation to form P-type polysilicon, and then the P-type polysilicon
was patterned by the RIE process (Figure 7f). Next, an SiO2 layer of ~100 nm thick was
deposited again by LPCVD as the insulating layer of the P-type polysilicon layer (Figure 7g).
A polysilicon layer of ~500 nm thick was deposited by LPCVD on the insulating layer as
another layer of the thermocouple and doped with phosphorus (P) by ion implantation to
form N-type polysilicon, and then the N-type polysilicon was patterned by the RIE process
(Figure 7h). An SiO2 layer of ~100 nm thick was deposited by LPCVD as the insulating
layer of the N-type polysilicon layer (Figure 7i). Subsequently, the two insulating layers
were etched to form the connection holes at the hot junctions and the cold junctions by the
RIE process (Figure 7j). Then, an Al layer of ~500 nm thick was deposited by magnetron
sputtering technology (MST) and patterned and etched by the photolithography and RIE
processes, which served as the electrical connection between the thermocouples and the
electrode (Figure 7k). The withstanding temperature of the substrate was greater than
700 ◦C while employing LPCVD to deposit the SiO2 or Si3N4 layer, which brought about
serious damage to the deposited Al layer. Finally, the SiO2 layer of ~100 nm thick, as the
passivation layer of the thermopile, was deposited by plasma enhanced chemical vapor
deposition (PECVD) (Figure 7l).

For the preparation of the resonant cavity absorber structure, an Al layer of ~100 nm
thick was first deposited by MST as the bottom reflective metal layer, and then the pho-
tolithography and RIE processes were used to pattern and etch the Al layer (Figure 8a).
The un-etched Al layer covered the cold junctions of the thermopile, which not only served
as the reflective metal layer but also could reflect the infrared radiation irradiated at the
cold junctions. Then, an amorphous silicon layer of ~2700 nm thick was deposited by
PECVD as the sacrificial layer (Figure 8b). Subsequently, an SiO2 layer of ~100 nm thick
was deposited by PECVD as the support layer of the top absorption metal layer; next, a
TiN layer of ~20 nm thick was deposited by MST as the top absorption metal layer, and
then an Si3N4 layer of ~250 nm thick was deposited by PECVD as the passivation layer
of the top absorption metal layer, thereby forming a complete SiO2/TiN/Si3N4 resonant
cavity absorber structure (Figure 8c). Finally, the sacrificial layer composed of amorphous
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silicon was dry-etched and released by the release hole etching and XeF2 gas phase re-
lease processes to form the thermopile chip with the resonant cavity absorber structure
(Figure 8d).
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Figure 7. Schematic of preparation process of the designed thermopile. (a) deposition of SiO2 layer
of 200 nm thickness, (b) isolation trench with depth of 6000 nm, (c) thermal oxidation, (d) developing
sacrificial release layer, (e) 500 nm thick thermopile support layer, (f) 500 nm thick polysilicon layer
RIE process, (g) insulating layer, (h) polysilicon layer, (i) 100 nm insulating layer, (j) formation of
connection holes, (k) 500 nm thick Al layer and (l) 100 nm thick SiO2 layer.
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5. Conclusions

A novel thermopile chip with resonant cavity absorber structure was designed by an
optical simulation in this work. In the resonant cavity absorber structure, the Al, air, and
SiO2/TiN/Si3N4 sandwich layers were innovatively used as the bottom reflective metal
layer, intermediate dielectric layer, and top absorption layer, respectively. The designed
resonant cavity absorber structure exhibited ~89.56% and ~93.51% average absorptances at
3–5 µm and 8–14 µm, respectively. In particular, the bottom reflective metal layer (Al) was
deposited on the cold junctions of the thermopile, which made the Al layer not only act as
the reflective metal layer to reflect the infrared radiation and to form the resonant cavity
absorber structure, but also prevented the cold junctions from absorbing infrared radiation
and inhibiting the rise of temperature. As a result, the temperature difference between the
hot junctions and the cold junctions was increased, and the responsivity of the thermopile
chip was improved. Moreover, the duty cycle of the thermopile chip was greatly improved
due to the double-layer suspension structure. Compared with the traditional thermopile
chips, the sizes of the designed thermopile chip can be further reduced while maintaining
responsivity and specific detectivity.
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Abstract: An Ag2O(x)−PrO2(y)/γ-Al2O3 electrocatalyst series (X:Y is for Ag:Pr from 0 to 10) was
synthesized, to use synthesized samples in electrochemical applications, a step in fuel cells advance-
ments. Ag2O(x)−PrO2(y)/γ-Al2O3/Glassy-Carbon was investigated for electrochemical oxidation of
ammonia in alkaline medium and proved to be highly effective, having high potential utility, as com-
pared to commonly used Pt-based electrocatalysts. In this study, gamma alumina as catalytic support
was synthesized via precipitation method, and stoichiometric wt/wt.% compositions of Ag2O−PrO2

were loaded on γ-Al2O3 by co-impregnation method. The desired phase of γ-Al2O3 and supported
nanocatalysts was obtained after heat treatment at 800 and 600 ◦C, respectively. The successful
loadings of Ag2O−PrO2 nanocatalysts on surface of γ-Al2O3 was determined by X-rays diffraction
(XRD), Fourier-transform Infrared Spectroscopy (FTIR), and energy dispersive analysis (EDX). The
nano-sized domain of the sample powders sustained with particle sizes was calculated via XRD and
scanning electron microscopy (SEM). The surface morphology and elemental compositions were
examined by SEM, transmission electron microscopy (TEM) and EDX. The conductive and electron-
transferring nature was investigated by cyclic voltammetry and electrochemical impedance (EIS).
Cyclic voltammetric profiles were observed, and respective kinetic and thermodynamic parameters
were calculated, which showed that these synthesized materials are potential catalysts for ammonia
electro-oxidation. Ag2O(6)−PrO2(4)/γ-Al2O3 proved to be the most proficient catalyst among all the
members of the series, having greater diffusion coefficient, heterogeneous rate constant and lesser
Gibbs free energy for this system. The catalytic activity of these electrocatalysts is revealed from
electrochemical studies which reflected their potentiality as electrode material in direct ammonia fuel
cell technology for energy production.

Keywords: ammonia electro-oxidation; cyclic voltammetry; electrochemical surface area (ECSA);
electrocatalysts; nanocomposites

1. Introduction

Energy generation from hydrogen in a sustainable and continuous manner is the
foremost concern of scientists and engineers across the globe [1,2]. Fuel cells are considered
to be a great contributor of energy production which changes the chemical energy to
electrical energy through an electrochemical reaction in the cell [3–5]. Among several fuel
cells, the ammonia fuel cell is a better substitute of carbon-based conventional energy
generating technologies [6,7]. Liquid ammonia is a promising hydrogen carrier, owing to
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its favorable properties, like high storage capacity, hydrogen density (17.8 wt.%, 10.7 kg
H2/100 L at 1 MPa and 298 K), carbon free fuel, high boiling point and odor; thus, the
challenges associated with storage of hydrogen can be overcome [8]. Volumetric hydrogen
density of ammonia is 1.5 times higher than pure hydrogen, because ammonia is effortlessly
liquefiable at room temperature and 1 MPa [9]. Moreover, ammonia-derived electricity is
under constant research for running gas turbines, steam turbines and alkaline fuel cells,
which are being commercialized at lower-scale off-grid power plants [10,11]. However, the
larger-scale implementation of ammonia fuel cells is currently hindered due to less efficient
and much expensive electrodes [12]. A variety of electrode materials are being investigated
for ammonia electro-oxidation in basic conditions [13–15]. Although Pt and Pt based
materials are being employed as electrodes in ammonia fuel cells, due to sufficient catalytic
significance, their industrial-scale applications still encounter critical challenges due to non-
affordability [16,17]. Hence, development of novel Pt free cheaper electrodes is required
as an alternative to accelerate ammonia fuel cells in energy generating technology [17].
Moreover, multiple factors affect the catalytic performance of electrodes towards ammonia
electro-oxidation, including the nature of the support material and modifiers/promotor, as
well as the synthesis conditions [18,19].

Gamma alumina (γ-Al2O3) is a highly used catalyst support, owing to its worthy
mechanical properties, high thermal stability and ability to disperse the active oxide
precursors [20,21]. Moreover, the introduction of metal oxides into γ-Al2O3 support is
found to promote the catalyst’s efficiency towards electro-oxidation processes [22–24].
With this intent, Ag2O is used as a catalyst promotor in several oxidation processes [25,26].
Furthermore, lanthanide and lanthanide oxides seemed to be efficient promotors, exhibiting
enhanced catalytic activity in many electro-oxidation processes [20]. Therefore, catalytic
materials based on praseodymium oxide and praseodymium containing mixed metal
oxides of high-surface area also provide efficient energy production [27]. Moreover, mixed
metal oxides, including sieves supported metal oxides and bulk mixed metal oxides, have
experienced an intense paradigm in electrocatalysis over the past few years [28–30].

Herein, a series of novel mixed metal oxides Ag2O−PrO2/γ-Al2O3 electrocatalysts
were prepared by an incipient wet impregnation method. The aim of present research was
to observe the effect of variation in percentage composition of PrO2 and Ag2O supported
on γ-Al2O3 towards ammonia electro-oxidation. Physical and electrochemical proper-
ties of as-synthesized catalysts were investigated for NH3 electro-oxidation via different
techniques, i.e., XRD, FTIR, SEM, EDS, EIS and cyclic voltammetry. Figure 1 shows the
schematic diagram for experimental procedure of electro-oxidation of ammonia over as
synthesized electrocatalysts.

Figure 1. Graphical abstract elucidating the experimental, mechanistic and electrochemical insight.
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2. Catalyst Preparation
2.1. Materials

Chemicals used for synthesis were bought from Sigma Aldrich (St. Louis, MO, USA).
The chemicals used for the present work are aluminum nitrate (Al(NO3)3·9H2O), ammo-
nia solution (NH3), praseodymium nitrate hexahydrate (Pr(NO3)3·6H2O), silver nitrate
(AgNO3), potassium hydroxide (KOH), sulfur acid (H2SO4), potassium hexacyanoferrate
(III) (K4[Fe(CN)6]), alumina powder and Nafion.

2.2. Synthesis of γ-Al2O3

In total, a 1 M solution of aluminum nitrate nonahydrate and a 3 M ammonia solution
were prepared in deionized water. The ammonia solution was added dropwise into
precursor solution, under constant stirring until formation of homogeneous precipitates
of aluminum hydroxide. The temperature of solution was maintained at 60 ◦C. White
gelatinous Al(OH)3 precipitates were formed and were kept on heating, until semi-solid
material was formed. The precipitates were dried at 200 ◦C overnight. The Al(OH)3
precipitates were calcined at 800 ◦C, to form γ-alumina, for 2 h. The calcined sample was
grinded with acetone, to form powdered γ-alumina.

2.3. Synthesis of Ag2O–PrO2/γ-Al2O3

The metal oxides composites catalysts were prepared via co-impregnation method.
In this method, the solution of active element precursors was mixed before impregnating
on support. We used an adapted method to synthesize the wt/wt.% alumina supported
composites of silver and praseodymium oxides. Stoichiometric amounts of γ-alumina were
taken and wetted with requisite volume of praseodymium nitrate hexahydrate 0.5 M and
silver nitrate 0.5 M to load wt/wt.% Ag-Pr oxides. The mixtures were soaked overnight,
evaporated and dried at 100 ◦C. The dried samples were calcined at 600 ◦C, for 2 h, and
finely ground to Ag2O−PrO2/γ-Al2O3 catalysts.

3. Physical Characterization
3.1. X-Ray Diffraction Analysis

The size and phase of all synthesized materials (Ag2O(X)–PrO2(Y)/γ-Al2O3) were
examined by X-ray diffraction using (PANalytical X’PERT High Score’s diffractometer,
Malvern, UK), exhibiting Cu Kα radiation, works in the range of (10◦–80◦) Figure 2a,b.
The peaks observed at 2θ of 37.0◦, 40.20◦, 45.78◦, 61.30◦ and 66.99◦ were assigned to 311,
222, 400, 511 and 440 crystal planes. These are according to JCPDS (Joint Committee on
Powder Diffraction Standards) card no. (29-0063) [31,32]. The gamma phase of synthesized
alumina calcined at 800 ◦C is suggested by these peak positions. The XRD corroborate the
characteristic peaks of Ag2O (26.78◦, 32.14◦, 38.04◦ and 67.48◦), PrO2 (28.1◦, 46.7◦, 55.6◦

and 78.2◦) and γ-Al2O3, which are related to JCPDS card no. (76-1393), (24-1006) and
(29-0063), respectively [33,34]. The diffraction peaks at 67.48◦ are indexed to (222) planes of
face-centered cubic silver oxide [35]. These peaks correspond to the successful loadings of
promoting metal oxides on surface of support. Crystallinity of the catalysts increases with
increasing the contents of silver oxide precursor on the γ-Al2O3 support as sharper peaks
are observed with higher loadings of Ag2O. No phase segregation is observed as obvious
from XRD patterns.
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Figure 2. X-ray diffraction peaks of (a) γ-Al2O3 with Joint Committee on Powder Diffraction Standards (JCPDS) card
numbers. (b) Overlay of XRD peaks of γ-Al2O3 and Ag2O(X)–PrO2(Y)/γ-Al2O3, along with JCPDS card numbers.

The average crystallite sizes (Davg), which are enlisted in Table 1, were calculated by
the Scherrer equation [36]:

Davg (nm) = 57.2kλ/βcosθ (1)

where Davg is the average crystallite size, constant k is shape factor (0.9), λ is the wavelength
(0.154 nm), β corresponds to the peak width at half maximum intensity and θ is the peak
position. Davg for support (γ-Al2O3) is 18.3 nm, while for nanomaterials, it lies is in the
range of 25–42 nm.

Table 1. Calculated values for average crystallite size and average particle size.

Electrocatalysts Davg(XRD) (nm) Davg(SEM) (nm)

PrO2(10)/γ-Al2O3 41.3 26.02

Ag2O(2)–PrO2(8)/γ-Al2O3 25.4 20.76

Ag2O(4)–PrO2(6)/γ-Al2O3 28.9 29.41

Ag2O(6)–PrO2(4)/γ-Al2O3 32.3 31.01

Ag2O(8)–PrO2(2)/γ-Al2O3 20.3 23.02

Ag2O(10)/γ-Al2O3 25.0 31.04

3.2. FTIR Analysis

The Fourier-transform infrared spectroscopy (FTIR) spectra for γ-Al2O3 and all syn-
thesized nanocomposites inserted in KBr powder system were investigated in wavelength
range (400–4000) cm−1 by using Nicolet 5PC, Nicolet Analytical Instrument (Protea, Cam-
bridgeshire, UK, Figure 3). The vibration bands observed in the range of (3500–4000) cm−1

correspond to O–H stretching vibrations. These bands appeared because of moisture
absorbed by the samples [37]. C–O vibration bands due to adsorbed CO2 also appeared in
the range of (1500–2500) cm−1 [38]. The metal oxides vibration bands are seen between 300
and 700 cm−1 [39]. The bands in Figure 3b represent the stretching and bending vibration
modes of Ag2O [40] and stretching vibration bands of PrO2 [41].
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Figure 3. (a) FTIR spectra of γ-Al2O3 and Ag2O(X)–PrO2(Y)/γ-Al2O3 nanomaterials. (b) FTIR spectrum representing
vibration modes of Ag-O and Pr-O bonds.

3.3. SEM, TEM and EDX Analysis

Surface structure investigation of the nanomaterials was evaluated via scanning
electron microscopy (SEM), armed with energy dispersive analysis (EDX), by using MIRA3
TESCAN (Brno, Czech Republic) microscope and transmission electron microscopy (TEM,
Thermofisher, Manchester, UK). The SEM images for synthesized nanocomposites are
given in figures on different scales. In Figure 4A, the first SEM micrograph corresponds to
pure γ-Al2O3, which appeared to be like a plate-like interconnected network, which, upon
impregnation, converted to globular structures. From Figure 4B, it is clear that there is no
segregation of phase, which substantiates that metal oxide precursors are homogeneously
dispersed on surface of support. The average particle size from these SEM micrographs
was estimated by using the ImageJ software (Version: 1.52v) and is tabulated in Table 1.
Figure 4D represents the distributions of diameters of nanoparticles (Ag2O(6)–PrO2(4)/γ-
Al2O3) via histograms presenting the Davg. The estimated average particle sizes from SEM
are also in dimensions and slightly in accordance with that calculated by XRD. Figure 4C,D
represents the EDX spectra of Ag2O(4)–PrO2(6)/γ-Al2O3 composition which confirms the
presence of desired components in synthesized nanomaterial. These EDX analyses are in
accordance with XRD, as we have not seen any extra peak in XRD diffraction pattern. The
wt/wt.% elemental composition of all supported nanocomposites is given in Table 2.

The Transmission Electron Microscopy (TEM) analysis in Figure 4F showed that
nanocomposites are in good contact with the surface of support and have nanosized
morphology also shown by SEM micrographs. The TEM images supported the agreement
that particles are closed spheres with a smooth surface and are uniform in size. There is
a low contrast shell around them that is attributed to the layer of silver oxides [42]. The
histogram in inset (b) of Figure 4F describes the distribution of nanoparticles presenting
the synthesized materials that are nanosized, and inset (a) describes the area of TEM
micrograph where distributions of particles are taken.
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Figure 4. SEM micrographs for (A) Al2O3 and (B) Ag2O(10)/γ-Al2O3 nanocatalysts. (C) Particle size distribution of 
Ag2O(6)–PrO2(4)/γ-Al2O3. (D,E) EDX spectrum of Ag2O(4)–PrO2(6)/γ-Al2O3 composition. (F) TEM analysis of sample 
Ag2O(2)–PrO2(8)/γ-Al2O3, the inset (a) describes the area where distribution of particles taken and inset (b) represents the 
distributions of particles. 
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bon (GC) electrode was first polished by using alumina slurry and then cleaned with 
ethanol, prior to pouring the catalyst ink prepared in ethanol, and a solution of 5% 

Figure 4. SEM micrographs for (A) Al2O3 and (B) Ag2O(10)/γ-Al2O3 nanocatalysts. (C) Particle size distribution of
Ag2O(6)–PrO2(4)/γ-Al2O3. (D,E) EDX spectrum of Ag2O(4)–PrO2(6)/γ-Al2O3 composition. (F) TEM analysis of sample
Ag2O(2)–PrO2(8)/γ-Al2O3, the inset (a) describes the area where distribution of particles taken and inset (b) represents the
distributions of particles.
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Table 2. Elemental compositions (wt.%) from EDX analysis of samples.

Samples wt.% Al wt.% O wt.% Pr wt.% Ag

PrO2(10)/γ-Al2O3 26.90 69.90 9.20 −
Ag2O(2)–PrO2(8)/γ-Al2O3 42.40 48.86 8.19 1.56

Ag2O(4)–PrO2(6)/γ-Al2O3 42.57 51.88 5.87 3.45

Ag2O(6)–PrO2(4)/γ-Al2O3 38.70 57.76 3.54 6.30

Ag2O(8)–PrO2(2)/γ-Al2O3 35.24 61.00 1.54 7.39

Ag2O(10)/γ-Al2O3 32.95 64.36 − 8.95

4. Electrochemical Characterization

An electrochemical study of the as-prepared electrocatalysts was performed, using
Gamry potentiostat interface 1000 (Gamry, Warminster, PA, USA). A three-electrode system
was established by modifying glassy carbon (GC) as working electrode, platinum wire as
counter electrode and Ag/AgCl (3 M KCl) as reference electrode. The glassy carbon (GC)
electrode was first polished by using alumina slurry and then cleaned with ethanol, prior
to pouring the catalyst ink prepared in ethanol, and a solution of 5% Nafion (2.0 µL) was
added to catalyst, to bind the powder catalyst at the GC surface. We used 5% Nafion as
binders, as it has greater stability over others polymer. It also helps in the passivation of
surface from by-products formed during reactions, to protect the catalyst from chemical
attack [43].

4.1. Estimation of Electrochemical Surface Area (ECSA) of As-Synthesized Electrocatalysts

Electrochemical active surface area (ECSA) of Ag2O–PrO2/γ-Al2O3 samples was
estimated by cyclic voltammetric profile, using a redox couple having 5 mM potassium
ferrocyanide in 3 M KCl, as shown in Figure 5a. The peak current responses at various scan
rates are plotted against ν1/2, applying the Randles–Ševčík equation [44]:

Ip = 2.69 × 105·n3/2·A· (Do)1/2·ν1/2·C (2)

where, A is ECSA (cm2); Ip is peak current (µA); n represents the number of electrons
transferred (1 in this case); Do is the diffusion co-efficient, which is 0.76 × 10−5 cm2·s−1

at standard temperature and pressure (S.T.P); and C is the concentration of K4[Fe(CN)6].
Corresponding ECSA values are calculated from slope, and the comparative ECSA for the
whole series is presented in Figure 5b. The Ag2O(6)–PrO2(4)/γ-Al2O3 modified electrode
has a greater ECSA value, as compared to other modified electrodes, which means this
composition provides greater surface area to catalyze the respective reaction on its surface
and facilitates the reaction more efficiently.

4.2. Electrochemical Impedance Spectroscopy EIS

The electron transfer capacities of all modified electrodes were inspected via EIS with
Fe2+/Fe3+ system in 0.1 M KOH. The Nyquist plots observed for Ag2O(X)–PrO2(Y)/γ-Al2O3
modified electrodes are presented in Figure 6, and respective EIS parameters are tabulated
in Table 3. The electron transfer resistance systematically reduced from composition (Ag:Pr
0:10) to (Ag:Pr 6:4), and then it increased with increase of Ag content, which endorses
that 6:4 wt.% ratio of Ag2O and PrO2 on alumina surface is optimum for electrochemical
applications. The low value of Rct reflects the greater conductivity and electrocatalytic
activity of Ag2O(6)–PrO2(4)/γ-Al2O3, as compared to other compositions. The variation
in electrochemical behavior of all modified electrodes is due to relative ease in electron
transferring, which reveals that nanocatalysts are well dispersed on the alumina surface, in
the case of Ag2O(6)–PrO2(4)/γ-Al2O3, as compared to the other compositions.
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Figure 5. (a) Cyclic voltammograms for Ag2O(X)–PrO2(Y)/γ-Al2O3 in K4[Fe(CN)6] + 3 M KCl redox solution. (b) Bar graph
presenting the variation of electrochemical surface area (ECSA) with composition of catalysts.

Figure 6. Nyquist plots of Ag2O(x)–PrO2(y)/γ-Al2O3 modified electrodes recorded in 5 mM
K4[Fe(CN)6] + 3 M KCl. Inset represents the equivalent circuit.

Table 3. Parameters corresponding to electrochemical impedance (EIS) response of electrocatalysts.

Electrocatalysts Rs
(Ω)

Rct
(kΩ)

CPE
(µF) A Rw

(Ω)
kapp/10−9

(cm·s−1)

PrO2(10)/γ-Al2O3 390.0 50.0 3.70 0.90 24.0 1.10

Ag2O(2)–
PrO2(8)/γ-Al2O3

389.0 40.4 3.00 0.89 29.0 1.30

Ag2O(4)–
PrO2(6)/γ-Al2O3

388.0 27.0 1.40 0.90 24.4 1.97

Ag2O(6)–
PrO2(4)/γ-Al2O3

243.0 24.7 43.0 0.90 21.9 2.20

Ag2O(8)–
PrO2(2)/γ-Al2O3

388.2 29.7 2.00 0.85 25.6 1.80

Ag2O(10)/γ-
Al2O3

388.3 36.5 2.20 0.92 29.7 1.50
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The modification of electrodes has no effect on solution resistance (Rs) and Warburg
resistance (Rw), as these are characteristics of electrolyte solution and diffusion of elec-
troactive specie (which are the same in all measurements), while charge transfer resistance
(Rct) and constant phase element (CPE) are affected by modification of electrodes, because
these are related to conductive properties of the active material. CPE constitutes two
elements, and Q and α represent capacitance and surface roughness, respectively. The
value of α varies from 0 to 1 [45]. The modified electrode systems have α value ranging
from 0.85 to 0.92, revealing that catalysts show fair surface roughness, which agrees with
the SEM results. The electron transfer rate constant for all modified system was calculated
by Equation (3) [46].

kapp = RT/F2·Rct·C (3)

Where kapp is electron transfer rate constant, F is Faraday’s constant and R is universal
constant in SI units.

It can be seen from Table 2 that the value of electron transfer rate constant for Ag2O(6)–
PrO2(4)/γ-Al2O3 is higher than the other series materials, showing its higher capacity to
facilitate the reaction.

5. Results and Discussion
5.1. Ammonia Electro-Oxidation at Ag2O(x)–PrO2(y)/γ-Al2O3 Modified GC Electrodes

As-synthesized nanocomposites Ag2O(x)–PrO2(y)/γ-Al2O3 were investigated to check
their activities towards the oxidation of NH3 in alkaline medium. The potential window for
ammonia oxidation was from −0.3 to 0.6 mV, in forward and reverse scan. When ammonia
oxidation was carried out on modified electrodes at room temperature, two anodic peaks
were observed which are related to adsorption/oxidation of ammonia in positive going
scan (I and II) Figure 7a. A strong cathodic peak (III) is observed at around 0.05 volts, in the
absence (pink curve) and presence (green curve) of ammonia, which is the reduction peak
of silver oxide converted into metallic silver [47,48]. An anodic shoulder peak (I) appearing
at 0.23–0.27 V is due to the oxidation of pre-adsorbed hydrogen/nitrogen-containing
intermediates species at the surface of modified electrode, which shows the structural
sensitivity of nanocatalysts for these adsorbed species [49,50]. There is appearance of
cathodic shoulder peak (IV) in ammonia oxidation catalyzed on the surface of higher
members of synthesized series (Figure 8c,d), which is due to desorption of hydrogen on the
surface [50]. With higher scan rates, the anodic and cathodic shoulder peaks diminished.
The onset potential for ammonia oxidation is 0.03 V vs. Ag/AgCl (i.e., 0.023 V vs. NHE
approximately) on the surface of modified electrodes and the oxidation peak appear in
the range of 0.32–0.51 volts, which is a low input potential range, as compared to reported
systems illustrated in Table 4, in the same medium.

The cyclic voltammetric response of bare glassy carbon and γ-Al2O3/GC with (red
curve) and without (black curve) Ag2O–PrO2 loadings was studied in a 5 mM NH3 + 0.1 M
KOH system, as shown in Figure 7b,c. The electrochemical oxidation of ammonia in KOH is
not observed on bare glassy carbon and γ-Al2O3/GC, while the peak appeared on Ag2O(x)–
PrO2(y)/γ-Al2O3/GC, confirming the electrocatalytic response of Ag2O–PrO2/γ-Al2O3
towards the electrochemical oxidation of ammonia, as elucidated by Figure 7b,c.
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Table 4. Comparison of oxidation potentials for different systems.

Sr. No. Modified Electrode
Systems

Oxidation Potential
Range (V) Reference

1 Carbon-supported
Pt/HOPG electrode 0.55–0.75 [51]

2 Pt film electrode/Si
prism 0.45–0.85 [52]

3 Pt disk electrode and
Pt/PBI/MWNT 0.45–0.90 [53]

4 Ag−Pr/Al/GC
electrode 0.32–0.51 This work

GC, glassy carbon.

Figure 7. (a) Electrochemical responses and peak position in 0.1 M KOH and 5 mM NH3. (b) Cyclic voltammograms
towards ammonia oxidation over the surface of bare glassy carbon, γ-Al2O3 and PrO2(10)/γ-Al2O3 modified electrodes
0.1 M KOH and 5 mM NH3. (c) Comparative peak current response for bare GC, γ-Al2O3, and lowest and optimal
composition, respectively.
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Figure 8. (a) Ten cycles in 5m mM NH3 + 0.1M KOH at Ag2O(2)–PrO2(8)/γ-Al2O3/GC. Scan rate variation for (b) PrO2(10)/γ-
Al2O3, (c) Ag2O(6)–PrO2(4)/γ-Al2O3 at low scan rates and (d) Ag2O(6)–PrO2(4)/γ-Al2O3, at high scan rates.

For commercialization of electrocatalysts, it is essential to check the electrochemical
stability of catalysts; for this purpose, multiple scans have been observed at the surface
of modified electrode in 5 m mM NH3 + 0.1 M KOH. The current became constant, and
no further decrease was observed, which shows the stability of modified electrode in
the system (Figure 8a). The ammonia oxidation was observed at different scan rates on
modified GC electrode and is given in Figure 8b–d. Figure 8b tells about the redox behavior
of PrO2(10)/γ-Al2O3 response towards ammonia electro-oxidation. It is revealed from
the scan rate effect for all the electrochemical systems that the current increases with the
increase of scan rate, and the peak potential is shifted towards more a positive potential
region. A linear increase in peak current of ammonia oxidation is observed with sweep
rate that specifies facilitation of electron transfer process of ammonia electro-oxidation;
therefore, as-synthesized nanocatalysts behave like the adsorptive species on the surface of
glassy carbon [54]. Figure 8c,d represents the voltammetric behavior of Ag2O(6)–PrO2(4)/γ-
Al2O3 at lower and higher scan rates, from which it is seen that separation in positive and
negative peak potentials is smaller at low scan rate values, i.e., 20 to 100 mV−1; hence, it
is assumed that the facilitation of ammonia oxidation on surface of all catalysts is more
manifested at the lower scan rates. Figure 8c,d shows the peak current dependence upon
scan rate, which elaborates that the process of ammonia electro-oxidation over as-proposed
catalysts is a diffusion-controlled reaction. Moreover, Figure 9a,b expresses the comparative
peak current output of all compositions at lower and higher scan rates, which shows that
Ag2O(6)–PrO2(4)/γ-Al2O3 has a maximum current for NH3 oxidation, as compared to the
other members of the series.
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Figure 9. Comparative Ipa values at modified electrodes surface on (a) low and (b) high scan.

The shift in peak potential with increasing scan rate is further confirmed by linear
relationship of Epa and scan rate as shown in Figure 10b, which is one of the criteria to
judge irreversibility of system [55,56]. The diffusion character of ammonia oxidation is
substantiated by linear dependence of anodic peak current on scan rate, which is depicted
by plots of ln Ipa vs. ln ν [55,57], as shown in Figure 10c The slope values close to
0.5 represent diffusion-controlled electrode processes, whereas close to 1.0 will be for
adsorption-controlled processes [58–60]. The behavior of current function with scan rate
is also examined for oxidation of ammonia figures (Figure 10D). The current function
decreases exponentially with increasing sweep rate, which is suitable for electrode process.
The negative slopes from these exponential plots determine that electrochemical oxidation
of ammonia on the surface of all modified electrodes is expedited and the process is
electrocatalytic [61].

It is revealed from the scan rate effect for all the electrochemical systems that the
current increases with the increase of scan rate, and the peak potential is shifted towards a
more positive potential region.

5.2. Kinetics of Ammonia Electro-Oxidation

The diffusion character of ammonia oxidation is demonstrated by linear dependence
of anodic peak current on scan rate, which is depicted by plots of ln Ipa vs. ln v (Figure 10C).
For the determination of diffusion coefficient, the Randles–Ševčík equation is used [62]:

Ip = (2.99 × 105)·n·{(1−α)·nα}·A·D◦1/2·C·ν1/2 (4)

where Ip is the anodic peak current; n is the no. of electrons involved in reaction; α is the
transfer co-efficient whose value lies in the (0.3–0.7) range; nα is the number of electrons
in the rate-determining step, i.e., 3; A is area of the electrode, which is 0.07 cm2; D◦ is the
diffusion co-efficient in cm2·s−1; C is the bulk concentration in mol·cm−3; and ν is the scan
rate in mV·s−1 The parameter α is calculated by using the following:

Epa − Epa/2 = [0.048 /(αn)] (5)

where, Epa is anodic peak potential and Epa/2 is peak potential at Ipa/2.
It is deduced that the reaction is diffusion controlled at low sweep rates, while it is

kinetically controlled at higher scan rate (Figure 10C) [55,57].

104



Coatings 2021, 11, 257

The mass transport coefficient (mT) is given by Equation (5) [63]:

mT = [D◦/(RT/(F·ν))]1/2 (6)

Figure 10. (A) Dependence of Ipa on ν1/2; insets (a) and (b) show linear fitting for lower and higher scan rates for Ag2O(6)–
PrO2(4)/γ-Al2O3/GC. (B) Characteristic shift in peak potential with ν1/2 for Ag2O(4)–PrO2(6)/γ-Al2O3/GC, insets (a) and
(b) show linear fitting for lower and higher scan rates. (C) Dependence of Ipa on potential scan rate in double logarithm
coordinates for ammonia oxidation on Ag2O(2)–PrO2(8)/γ-Al2O3/GC. (D) Variation of current function (Ipa ν−1/2) with ν

for Ag2O(4)–PrO2(6)/γ-Al2O3/GC.

The values of the ammonia diffusion and mass transport coefficients for the entire
series of the synthesized samples are given in Table 4. The diffusion coefficient and mass
transport coefficient are higher for Ag2O(6)–PrO2(4)/γ-Al2O3, revealing that it is a better
electro-active material for NH3 oxidation among all the samples. The value of diffusion
coefficients for ammonia oxidation in alkaline medium (10−9) is smaller than that of H2O
(10−5), due to presence of hydroxyl groups of the supporting electrolyte present in bulk [64].
These hydroxyl groups from the KOH electrolyte hinder the diffusion process of ammonia;
that could be the reason for the low diffusion coefficient. The diffusion coefficient value
estimated for ammonia over Ag2O(6)-PrO2(4)/γ-Al2O3 nanocomposite seems similar to
ammonia diffusion over the Pt-Ni composite [65]. Moreover, these diffusion coefficient
values are obtained for the current of major peak, i.e., around 0.4 V, which increases linearly

105



Coatings 2021, 11, 257

with the scan rate, as seen from Figure 8. It suggests that oxidation of ammonia over
Ag2O(6)-PrO2(4)/γ-Al2O3 is governed by diffusion significantly.

The catalytic properties of synthesized materials can be determined by heteroge-
neous kinetics for ammonia oxidation. The value of heterogeneous rate constant was
determined by taking cyclic voltammograms and varying the concentration of ammonia
(Figure 11a). The Reinmuth equation is used to calculate heterogeneous rate constants, k◦,
for all supported mixed metal oxide electrocatalysts.

Ip = 0.227n·F·A·C·k◦ (7)

where ko is the heterogeneous rate constant, and F is Faraday’s constant. By plotting
the anodic peak current vs. concentration of NH3, the values of the rate constant, ko, for
oxidation are obtained from the slope, as illustrated in Table 5, which reveals the facilitated
electron transfer process, and it gives valuable information about the nature of system,
which is irreversible. The heterogeneous rate constant decreases in the following order:

k◦
(6Ag-4Pr/Al) > k◦

(4Ag-6Pr/Al) > k◦
(8Ag-2Pr/Al) > k◦

(10Ag/Al) > k◦
(2Ag-8Pr/Al) > k◦

(10Pr/Al)

Figure 11. (a) Cyclic voltammograms with Ag2O(8)–PrO2(2)/γ-Al2O3 electrode at different concentrations of NH3 and (b)
Reinmuth plots between Ipa and CNH3, showing variation of peak current with CNH3 for and for all modified electrodes.

Table 5. Kinetic parameters for NH3 electro-oxidation at the electrode surfaces.

Electrocatalysts α
(D◦)/10−9

cm2·s−1 (mT)/cm·s−1 k◦/10−3 cm·s−1

PrO2(10)/γ-Al2O3 0.5 0.063 0.0005 0.40

Ag2O(2)–PrO2(8)/γ-
Al2O3

0.5 0.140 0.0007 0.72

Ag2O(4)–PrO2(6)/γ-
Al2O3

0.7 11.00 0.0070 6.10

Ag2O(6)–PrO2(4)/γ-
Al2O3

0.6 36.50 0.0120 7.40

Ag2O(8)–PrO2(2)/γ-
Al2O3

0.4 4.040 0.0040 5.20

Ag2O(10)/γ-Al2O3 0.4 0.300 0.0011 1.60

106



Coatings 2021, 11, 257

5.3. Thermodynamic Studies for Ammonia Electro-Oxidation

Cyclic voltammograms were observed by varying the temperature of the system
from 10 to 50 ◦C with the Ag2O(6)–PrO2(4)/γ-Al2O3 catalyst, as shown in Figure 12a.
The observed thermodynamic parameters tabulated below show that electro-oxidation of
ammonia in alkaline solution is exothermic and non-spontaneous reaction. The entropy
of ammonia electro-oxidation is negative because it is an adsorption-controlled process.
Before adsorption, the molecules are free to move in three dimensions; when these get
adsorbed on the surface of catalyst, their motion is restricted. As a result, disorderliness
decreases, and entropy of the system decreases. The free energy of activation is less for
Ag2O(6)–PrO2(4)/γ-Al2O3 modified electrode, which reveals that this composition exhibits
superior catalytic properties among this series because it lowers the activation energy of
system to a greater extent.

Figure 12. (a) Peak current output varied with increase in temperature and (b) Marcus plots between temperature and rate
constants.

All the compositions in the series exhibit a similar response towards the increase
in temperature of the system. Different thermodynamic parameters enlisted in Table 6
are deduced for the NH3 electro-oxidation, with the help of the Marcus equation. It is a
straight-line equation and gives the value of enthalpy of reaction (∆H) from the slope of
the Marcus plot, i.e., Figure 12b between ln [k◦/Zhet] vs. −1/T, while change in entropy
(∆S) can be estimated from the intercept.

k◦ = Zhet· exp
[−∆G

RT

]
(8)

Equations (5) and (6) may be expressed in a simpler form:

ln
k◦

Z(het)
=

[−∆G
RT

]
(9)

Here, ∆G is free energy of activation, k◦ heterogeneous rate constant and Zhet is
collision number whose values Zhet at different temperatures (T) can be calculated by
Equation (9) [66].

Zhet =
√ RT

2πM
(10)
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Table 6. Thermodynamic parameters calculated from the Marcus equation.

Electrocatalysts (∆H)/kJ·mol−1 (∆S)/kJ·mol−1K−1 (∆G)/kJ·mol−1

PrO2(10)/γ-Al2O3 −1.24 −0.119 32.0

Ag2O(2)–PrO2(8)/γ-
Al2O3

−1.30 −0.100 29.0

Ag2O(4)–PrO2(6)/γ-
Al2O3

−1.23 −0.080 23.6

Ag2O(6)–PrO2(4)/γ-
Al2O3

−1.22 −0.082 23.0

Ag2O(8)–PrO2(2)/γ-
Al2O3

−1.23 −0.085 24.0

Ag2O(10)/γ-Al2O3 −1.24 −0.094 27.0

M is the molar concentration of NH3, according to thermodynamic equation.

∆G = ∆H − T∆S (11)

ln
k◦

Z(het)
= −∆H

RT
+

∆S
R

(12)

5.4. Mechanism of Ammonia Oxidation

The independent behavior of cathodic and anodic reactions was further confirmed
by comparing the linear-sweep voltammograms (LSV) with cyclic voltammogram (CV)
observed for 5 mM NH3 in 0.1 M KOH at 100 mV·s−1, as represented in Figure 13. It reveals
that the anodic peak (black curve) is purely for ammonia oxidation, and the cathodic peak
(blue curve) is for the reduction of silver oxide into metal silver. The comparison of
LSV with CV will help to propose a mechanism for ammonia oxidation on surface of
electrocatalysts.

Figure 13. Linear-sweep voltammograms (LSV) vs. cyclic voltammogram (CV) for oxidation of
ammonia in 0.1 M KOH at 100 mV·s−1 on the surface of optimum composition/GC.

These responses correspond to the mechanism of ammonia oxidation. NH3 is firstly
adsorbed on electrode surface from bulk solution. After adsorption, it undergoes the 3e−

oxidation process, forming water and N2 as by-products [67].
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Overall reaction
NH3 + 3OH− → 1

2
N2 + 3H2O + 3e− (13)

Mechanism
NH3(aq)→ NH3(ad) (14)

NH3(ad) + OH− → NH2
−(ad) + H2O + e− (15)

NH2
−(ad) + OH− → NH−(ad) + H2O + e− (16)

NH−(ad) + OH− → N(ad) + H2O + e− (17)

2N(ad)→ N2 (18)

6. Conclusions

The γ-Al2O3 supported Ag2O(x)-PrO2(y) nanocatalysts were synthesized via sim-
ple synthetic routes. Moreover, γ-Al2O3 was synthesized by precipitation method, and
metal oxide promotors were loaded on γ-Al2O3 by co-impregnation method. All the
as-synthesized materials were subjected to characterization techniques, including FTIR,
XRD, EDX, SEM, CV and EIS. The sizes of the proposed nanocatalysts were calculated
by XRD and SEM, which confirms that synthesized materials are in nano-range and are
well dispersed on the support. The successful loading of xAg2O-yPrO2 nanocomposites on
support was confirmed by XRD, FTIR and EDX. The surface morphology of samples was
examined by SEM, which shows that metal oxide precursors are homogeneously dispersed
on the surface of the support. The active surface area and electron transfer constant were
calculated by CV and EIS. All the compositions gave appreciable current output in ammo-
nia electro-oxidation reaction, owing to their estimated ECSA values and electron transfer
properties. Among all the catalysts in the series, Ag2O(6)–PrO2(4)/γ-Al2O3 gave the higher
values for both, making it an optimum composition for electrochemical applications.

The cyclic voltammetric investigations were employed for analyzing the electro-
chemical properties of materials. The catalytic activity of all synthesized samples was
investigated towards oxidation of ammonia, considering scan rate, concentration and
temperature effects in focus. All modified electrodes showed adequate catalytic behavior
towards ammonia oxidation, whereby modified electrodes behaved as anodic material.
The calculated kinetic parameters revealed that ammonia oxidation on these catalysts was
of diffusion control nature and irreversible. The thermodynamic parameters declared that
the overall process of ammonia on catalysts surface was exothermic (negative enthalpy)
and non-spontaneous (positive Gibbs free energy). The entropy of the system was negative,
as disorderliness decreases in the system due to adsorption of intermediate species on
the catalyst surface before oxidation, which reveals that ammonia electro-oxidation is an
adsorption-controlled process. Among all modified electrodes, the Ag2O(6)−/PrO2(4)/γ-
Al2O3 modified electrode exhibited better catalytic response, owing to its higher diffusion
coefficient, mass transport coefficient, heterogeneous rate constant and lowest free energy
of activation.
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Abstract: Al2O3-Cr2O3 refractories are completely substitution solid solutions and can effectively
resist slag erosion when used as an industrial furnace lining. In order to provide suitable chromium
corundum refractory with excellent slag resistance and mechanical properties for smelting reduction
ironmaking, Al2O3-Cr2O3 samples with different mass percentages (0, 10, 20, 30, 40 wt.%) of Cr2O3

were prepared by a normal pressure sintering process to study its sintering properties, mechanical
properties, thermal shock resistance, and microstructure. The results of densification behavior
showed that the introduction of Cr2O3 deteriorates the compactness, the relative density and volume
shrinkage rate of the composite material decrease with the increase of the Cr2O3 content, and the
apparent porosity increases accordingly. In terms of mechanical properties, the hardness, compressive
strength, and flexural strength of Al2O3-Cr2O3 material decrease gradually with the increase of Cr2O3.
After 10 and 20 thermal shock cycles, the flexural strengths of the samples all decreased. With the
increase of Cr2O3 in these samples, the loss rate of flexural strength gradually increased. Considering
the slag resistance and mechanical properties of the composite material, the Al2O3-Cr2O3 composite
refractory with Cr2O3 content of 20–30% can meet the requirements of smelting reduction iron
making kiln lining.

Keywords: Al2O3-Cr2O3 composite; consolidation behavior; microstructure; mechanical properties;
thermal shock resistance

1. Introduction

The smelting reduction ironmaking process has a wide adaptability for raw material
sources, which can avoid the use of coke. This process has little environmental pollution,
so it is easy to build green factories. In recent years, the smelting reduction ironmaking
process is regarded as the development direction of ironmaking in the future [1–3]. Nowa-
days, the COREX (smelting reduction) and HIsmelt processes, (direct smelting process)
as new smelting reduction technologies, have been industrialized [4]. At present, the
lining materials used in smelting reduction ironmaking reaction furnace mainly include
Al2O3-C, MgO-C, MgO-Cr2O3, and Al2O3-Cr2O3 refractories [5–8]. Carbon-containing
refractories have excellent slag resistance and thermal shock resistance, but they are easy
to be oxidized. MgO-Cr2O3 materials have good slag resistance and erosion resistance,
but the performance of MgO-Cr2O3 on thermal shock stability is poor, so they are easy to
peel off [9,10]. Al2O3-Cr2O3 bricks with excellent slag resistance and suitable for use in
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oxidation/reduction atmosphere are selected for the HIsmelt equipment in Kwinana Plant,
Australia. However, the lining needs to be replaced as a whole every two years for its short
service life. Meanwhile, the furnace lining was found with serious damage on its sidewall
bricks. Therefore, the short service life of the refractory material at the side wall slag line
becomes a bottleneck to improve the service life of the HIsmelt furnace body [9,11].

Al2O3 and Cr2O3 have the same hexagonal crystal structure; they can form a complete
substitutional solid solution (Al1-xCrx)2O3 (0 ≤ x ≤ 1) at high temperature in the whole
composition range without any sign of eutectic [12,13]. The solubility of Cr2O3 in coal
gasification slag (SiO2-CaO system) and various glass melts is much smaller than that
of other oxide materials, so Cr2O3 or refractories containing Cr2O3 have good corrosion
resistance to steel slag, non-ferrous smelting slag, coal gasification slag, oil–gas furnace
slag, solid incinerator, and various glass melts [14–20]. However, the environment in the
furnace of the smelting reduction ironmaking is very harsh with the high temperature, high
oxidation degree, high FeO content, large fluctuation, etc. The service status of chromium
corundum brick cannot reach the expectation, and the service life is still far from that of blast
furnace lining [21]. At present, some people suggest that the slag resistance of Al2O3-Cr2O3
bricks in the smelting reduction ironmaking furnace can be improved when the content of
Cr2O3 is increased on the basis of the original Al2O3-Cr2O3 bricks. Li et al. [22] reported
the slag resistance to smelting reduction of Al2O3-Cr2O3 refractories with different Cr2O3
contents. They found that the slag permeability resistance of the material with low Cr2O3
content is poor; the slag resistance characteristic of the Al2O3-Cr2O3 refractory material
will become better with the increase of Cr2O3 content. The slag resistance of the composites
has been effectively improved due to the addition of Cr2O3. However, so far, there are few
studies on the mechanical properties, thermal shock resistance, and microstructure of the
composites due to the addition of Cr2O3. Kafkaslıoğlu et al. [23] reported the mechanical
properties of an Al2O3-Cr2O3 ceramic system as armor material, but they only reported
the effect of low Cr2O3 (0.5, 1, 5 vol.%) content on the microstructure and mechanical
properties of Al2O3-Cr2O3 ceramic. Therefore, it is particularly important to study the
effect of high percentage of Cr2O3 on the mechanical properties and microstructure of
Al2O3-Cr2O3 composite refractory.

In this work, the Al2O3-Cr2O3 composite refractories with various Cr2O3 content
were prepared by a normal pressure sintering process at 1600 ◦C for 4 h. The effect of
Cr2O3 content on the microstructure and phase composition of Al2O3-Cr2O3 refractory
was investigated. In addition, the effects of Cr2O3 content on the porosity, hardness, linear
shrinkage, density, flexural strength, compressive strength, and thermal shock resistance of
composite refractories have been widely discussed. Finally, some reasonable suggestions
on the selection of lining refractories in smelting reduction ironmaking are presented.

2. Materials and Methods
2.1. Materials Preparation

Al2O3 and Cr2O3 powders were used as raw materials. These powders were selected
from highly-purity materials in the market. The physical properties and chemical com-
positions of these raw materials are shown in Table 1. Five kinds of cuboid composites
containing different content of Cr2O3 and Al2O3 particles were sintered, namely, monolithic
Al2O3 (A), Al2O3-10 wt.% Cr2O3 (A-10C), Al2O3-20 wt.% Cr2O3 (A-20C), Al2O3-30 wt.%
Cr2O3 (A-30C), and Al2O3-40 wt.% Cr2O3 (A-40C). Firstly, the mixture of Cr2O3 and Al2O3
was carefully weighed, mixed according to the ratio of Cr2O3 and Al2O3 above, fully mixed
and crushed by a high-energy ball milling analyzer (F-P4000) with a grinding time of
30 min, and put it in an oven (DHG-9030A) to dry for 24 h. Secondly, the dried materials
were forced to pass through a 200 mesh sieve to break the agglomerated materials; then,
they were mixed by deionized water with 5% methylcellulose binder for the preparation
of compacts. We weighed 20 g for each sample and poured them respectively into a
60 × 15 mm2 mold for pressing, obtaining the rectangular slab with an approximate size
of 60 × 15 × 7 mm3 by compression through hydraulic equipment under 20 MPa. Finally,
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the green blank was dried at 160 ◦C for 24 h in an oven, heated to 1600 ◦C at a heating rate
of 20 ◦C min−1 in a programmable resistance furnace, kept at 1600 ◦C for 4 h, and then
naturally cooled to room temperature.

Table 1. Powder composition, particle size, purity, and production place of the materials used in
this study.

Material Particle Diameter (µm) Purity (wt.%) Resource

Al2O3 1–8 >99.5% Henan, China/Ou shang
Cr2O3 0.1–1 >99.5% Hebei, China/Qing guang

2.2. Characterization

The phase evolution of the samples was investigated by X-ray diffractometer (D8ADV
ANCE, Bruker, Billerica, MA, USA) with Cu Kα (λ = 1.5406 Å) and a maximum current
and voltage of 45 kV and 40 mA, respectively, and the diffraction angle was from 10◦ to
90◦ with a scanning speed of 2◦·min−1. The surface morphology, structure, and grain size
of the samples were observed by scanning electron microscopy (SEM, JSM 6510LV, JEOL
Ltd., Akishima, Tokyo, Japan), and the surface composition of the samples was analyzed
by X-ray energy spectroscopy (EDS). The experimental density (ED) and apparent porosity
(AP) of sintered samples were measured by a conventional liquid displacement method
based on the Archimedes drainage principle, and the densification behavior of the sintered
samples was evaluated by measuring the experimental density, apparent porosity, and
firing shrinkage of sintered samples. In the mechanical test, Vickers microhardness (HV1.0)
was measured with a load of 9.81 N, and five indentations were pressed on the sample by
a Vickers hardness tester (HVS-1000Z, Zhenjiang, China) at room temperature to test the
hardness of the sample; the experimental facility of flexural strength is shown in Figure 1a,
and the schematic diagram of the span of the flexural strength test and the size of the
sample is presented in Figure 1c. The size of the sample is about 60 × 15 × 7 mm3, and
the span of the three-point bending test is 30 mm. The indenter at the upper end of the
sample applies stress to the sample at a loading speed of 50 N/s ± 10 N/s until the sample
breaks; then, it calculates the flexural strength of the sample. The implementation standard
of the test operation is the flexural strength test method for ceramic materials (GB/T
4741-1999). The equipment for testing the compressive strength of the sample (STS520K,
Zhenjiang China) is shown in Figure 1b, and the schematic diagram of the compressive
strength test process along with the size of the sample is shown in Figure 1d. A cylindrical
sample with a size of Φ 20 mm × 20 mm is placed on a lower plate of the testing machine.
The upper pressure plate on the testing machine applies stress to the sample at a rate
of 1 ± 0.1 MPa·s−1 until the sample is crushed, and the compressive strength at normal
temperature is calculated according to the maximum load and the average compressive
cross-sectional area when the sample is crushed. The implementation standard of the test
operation is the compressive strength test method for ceramic materials (GB/T 4740-1999).
In the thermal shock experiment, the samples were heated from room temperature to
1100 ◦C at a rate of 20 ◦C/min in a heating furnace; then, they were taken out after 15 min
and cooled from 1100 ◦C to room temperature in air. We repeated the process for two
groups 10 and 20 times, respectively. The flexural strength loss rate of the sample was
calculated by testing the residual strength of the sample to characterize its thermal shock
resistance. The calculation method of the flexural strength loss rate of the sample is as
follows [24]:

Sσ =
σ1 − σ2

σ1
× 100% (1)

where Sσ is the loss rate of flexural strength, σ1 (MPa) is the flexural strength before thermal
shock, and σ2 (MPa) is the flexural strength after thermal shock. The morphology, structure,
and grain size of the surface and cross-section of the samples after thermal shock were
observed by field emission scanning electron microscope.
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Figure 1. Real diagram (a,b) and schematic diagram (c,d) of the flexural strength and compressive strength experiment.

3. Results and Discussion
3.1. Phase Identification

Figure 2a shows XRD patterns of sintered Al2O3-Cr2O3 ceramic materials with differ-
ent Cr2O3 contents. Al2O3 and Cr2O3 have the same crystal structure, and all components
will transfer completely to substitutional solid solutions at 1600 ◦C without other com-
pounds forming. It is pointed out in reference [25] that the lattice parameters of corundum
structures “a” and “c” increase linearly with the increment of Cr2O3 content, which con-
forms to Vegard’s law. When the radius of Cr3+ ions (0.076 nm) is larger than that of Al3+

ions (0.068 nm), the dissolution of Cr2O3 increases the lattice size of Al2O3 and decreases
the diffraction peak angle, which conforms to Bragg’s law [26]. As shown in Figure 2a,
the diffraction peak intensity of Al2O3-Cr2O3 solid solution phase decreased significantly
with the increase of Cr2O3 content. The diffraction peak of the (104) crystal plane is the
sharpest with the highest in intensity, and the corresponding diffraction peaks are shown
in Figure 2b. It can be seen that the (104) peak moves to a lower angle from 36◦ to 34◦ with
the increase of Cr2O3 content [23].
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Macroscopic photos and SEM microstructure images of Al2O3-Cr2O3 composites with
different Cr2O3 ratios are shown in Figure 3. The macroscopic photos of the Al2O3-Cr2O3
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composite are shown in Figure 3a. With the increase of Cr2O3 content, the appearance of
the composite changes from white (sample A) to pink (sample A-20C). Finally, the sample
color changes from purplish gray (sample A-30C) to grayish green (sample A-40C). Under
the condition of low chromium content (10–20 wt.%), the sample shows a pink color caused
by Cr3+ ions separated or interacted in pairs. On the other side, when the chromium oxide
content grows higher, the color changes gray because the spin–spin interaction between
Cr3+ ions along the crystal axis increases. Finally, in the condition of high chromium oxide
content (40%), the color turns green due to the interaction of Cr3+–O2−–Cr3+ [27].

Coatings 2021, 11, 234 5 of 15 
 

 

purplish gray (sample A-30C) to grayish green (sample A-40C). Under the condition of low 

chromium content (10–20 wt.%), the sample shows a pink color caused by Cr3+ ions separated or 

interacted in pairs. On the other side, when the chromium oxide content grows higher, the color 

changes gray because the spin–spin interaction between Cr3+ ions along the crystal axis increases. 

Finally, in the condition of high chromium oxide content (40%), the color turns green due to the 

interaction of Cr3+–O2−–Cr3+ [27]. 

The backscatter images (BSE) of the samples with different Cr2O3 content are shown in Figure 

3 b–f. It can be seen that the Al2O3 ceramic is very compact with a fine grain size, as presented in 

Figure 3b. With the increase of Cr2O3 content, the grain size and porosity of the Al2O3-Cr2O3 

composites increased slightly. The composites are almost entirely composed of Al2O3-Cr2O3 solid 

solution, and the Cr2O3 grains cannot be distinguished from Al2O3 grains due to the formation of 

solid solution. Figure 3g–k shows the X-ray energy spectrum (EDS) images of the samples with 

different Cr2O3 content. The results show that sample A is only composed of the Al2O3 phase. A 

substitutional solid solution of Al2O3 and Cr2O3 with granular is observed, and the particle size of 

the Al2O3-Cr2O3 solid solution phase is about 2 to 10 μm, as shown in Figure 3h–k. The atomic 

percentage and weight percentage of Cr gradually increase with the increasing of Cr2O3 content, 

which is consistent with the XRD analysis results. 

 

Figure 3. Macroscopic photo, backscatter (BSE) images (a–f) and X-ray energy spectrum (EDS) 

spectrums of Al2O3-Cr2O3 composites(g–k). 

3.2. Consolidation Behaviour 

The sintering properties of Al2O3-Cr2O3 composites are shown in Figure 4. The relative density 

(RD) of sample A without adding Cr2O3 powder is 95.71%. As shown in Figure 4a, the RD of the 

Al2O3-Cr2O3 composites decreases gradually with the increase of Cr2O3 content. When the content 

of Cr2O3 is 10 wt.%, the relative density of the Al2O3-Cr2O3 composite decreased sharply, and the 

relative density of sample A-10C is 90.43%. When the addition amount of Cr2O3 increases to 30 

wt.%, the relative density of the Al2O3-Cr2O3 composite decreases slightly, and the relative density 

of sample A-30C is 88.18%. The lowest relative density is observed when the Cr2O3 content is 40 

wt.%, and the relative density of the sample A-40C is 87.23%. Firing shrinkage is the combined 

effect of sintering and thermal transformation/reaction [13]. A certain amount of volume shrinkage 

Figure 3. Macroscopic photo, backscatter (BSE) images (a–f) and X-ray energy spectrum (EDS) spectrums of Al2O3-Cr2O3

composites (g–k).

The backscatter images (BSE) of the samples with different Cr2O3 content are shown
in Figure 3 b–f. It can be seen that the Al2O3 ceramic is very compact with a fine grain size,
as presented in Figure 3b. With the increase of Cr2O3 content, the grain size and porosity
of the Al2O3-Cr2O3 composites increased slightly. The composites are almost entirely
composed of Al2O3-Cr2O3 solid solution, and the Cr2O3 grains cannot be distinguished
from Al2O3 grains due to the formation of solid solution. Figure 3g–k shows the X-ray
energy spectrum (EDS) images of the samples with different Cr2O3 content. The results
show that sample A is only composed of the Al2O3 phase. A substitutional solid solution of
Al2O3 and Cr2O3 with granular is observed, and the particle size of the Al2O3-Cr2O3 solid
solution phase is about 2 to 10 µm, as shown in Figure 3h–k. The atomic percentage and
weight percentage of Cr gradually increase with the increasing of Cr2O3 content, which is
consistent with the XRD analysis results.
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3.2. Consolidation Behaviour

The sintering properties of Al2O3-Cr2O3 composites are shown in Figure 4. The
relative density (RD) of sample A without adding Cr2O3 powder is 95.71%. As shown in
Figure 4a, the RD of the Al2O3-Cr2O3 composites decreases gradually with the increase of
Cr2O3 content. When the content of Cr2O3 is 10 wt.%, the relative density of the Al2O3-
Cr2O3 composite decreased sharply, and the relative density of sample A-10C is 90.43%.
When the addition amount of Cr2O3 increases to 30 wt.%, the relative density of the
Al2O3-Cr2O3 composite decreases slightly, and the relative density of sample A-30C is
88.18%. The lowest relative density is observed when the Cr2O3 content is 40 wt.%, and the
relative density of the sample A-40C is 87.23%. Firing shrinkage is the combined effect of
sintering and thermal transformation/reaction [13]. A certain amount of volume shrinkage
occurs after sintering during the preparation of the composite material. The change law
of the length shrinkage ratio and volume shrinkage ratio is similar to that of relative
density, as shown in Figure 4b. The length shrinkage ratio and volume shrinkage ratio
of the Al2O3-Cr2O3 composites gradually decreases with the increase of Cr2O3 content.
Sample A has the highest length shrinkage ratio and volume shrinkage ratio, and the length
shrinkage ratio and volume shrinkage ratio are 8.1% and 22.2%, respectively. The lowest
length shrinkage ratio and volume shrinkage ratio are observed when the Cr2O3 content is
40 wt.%, and the length shrinkage ratio and volume shrinkage ratio of the sample A-40C
are 1.4% and 3.4%, respectively.
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The change of bulk density of the ceramic system is related to the formation of a
new phase, interactions between phases, or particle migration by thermal forces [28]. The
apparent porosity (AP) ratio of Al2O3-Cr2O3 composites increases gradually with the
increase of Cr2O3 content, as shown in Figure 4c. When the addition of Cr2O3 is 10 wt.%,
the AP ratio of Al2O3-Cr2O3 composite increased sharply, and the AP ratio of sample
A-10C is 6.90%. When the Cr2O3 content ranging from 20 to 40 wt.%, the AP ratio of the
Al2O3-Cr2O3 composite increases slightly, and the AP ratios of samples A-20C, A-30C, and
A-40C are 7.25%, 7.69%, and 8.22%, respectively. As shown in Figure 3, the Al2O3-Cr2O3
solid solution phase presents an obvious granular structure with the increase of Cr2O3
content, and the grain size and porosity also gradually increase, which is the main reason
for the decrease of the relative density and firing shrinkage of Al2O3-Cr2O3 composites.
The experimental density also presented a gradual increase law with the increase of Cr2O3
content. Theoretically, since the specific gravity of Cr2O3 (5.15) is higher than that of Al2O3
(3.95), the density of the sample should increase when the Cr2O3 content goes up. However,
it can be seen from the figure that the ED of sample A-10 decreases obviously with the
increase of Cr2O3 content and then increases steadily with the further increase of Cr2O3
content. The trend of AP can be observed from the figure that increased from 3.8% of the
original sample A to 8.2% of the sample A-40C, which indicates that the addition of Cr2O3
will gradually increase AP. This is because Cr2O3 is easy to vaporize even at a very low
partial pressure of oxygen. In addition, the formation of the solid solution absorbs heat
energy additionally, so that the ceramic density is reduced [23].

3.3. Effect of Cr2O3 on Mechanical Properties and Thermal Shock Properties of
Al2O3-Cr2O3 Composites
3.3.1. Hardness

Figure 5 shows the hardness curve of Al2O3-Cr2O3 composites with different Cr2O3
content measured by a Vickers hardness tester. It can be seen that the hardness of Al2O3-
Cr2O3 composites is lower than that of monolithic alumina (18.31 ± 0.5 GPa). With the
increase of Cr2O3 content, the hardness of Al2O3-Cr2O3 composites gradually decreases.
When the proportion of Cr2O3 is between 0 and 30 wt.%, the hardness decreases slowly.
When the content of Cr2O3 reaches 40 wt.%, the hardness value decreases sharply, and the
minimum hardness value of the sample A-40C composite is only 8.2 GPa. Kafkaslıoğlu
et al. [23] reported the mechanical properties of Al2O3-Cr2O3 ceramics as armor materials.
However, they only studied the effect of low addition of Cr2O3 (0.5, 1 and 5 vol.%) on the
microstructure and mechanical properties of Al2O3-Cr2O3 ceramics. In their experiment,
the hardness of Al2O3-Cr2O3 ceramic is 20.2 ± 1.1 GPa when the content of Cr2O3 is
0 vol.%. When the content of Cr2O3 is 5 vol.%, the hardness of the Al2O3-Cr2O3 ceramic
is 19.0 ± 2.0 GPa. The hardness value presented a gradually decreasing trend with the
increase of Cr2O3 content, which is similar to the hardness change rule in this study. The
typical diamond indentation images of samples A-10C, A-30C, and A-40C are shown
in Figure 6a–c, respectively. It can be seen that the indentation area gradually increases
with the increase of Cr2O3 addition, which is consistent with the calculation results of the
hardness tester. Since the hardness of Cr2O3 itself is lower than that of Al2O3, adding
excessive Cr2O3 will reduce the hardness of the material. In addition, the decrease of
hardness is closely related to the consolidation behavior of the Al2O3-Cr2O3 composites.
With the increase of the solid solution content of Cr2O3, the grain size gradually increases,
the material becomes loose and porous, and the hardness gradually decreases.
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Figure 6. Typical diamond indentation images: (a) A-10C; (b) A-30C; (c) A-40C.

3.3.2. Compressive Strength

Figure 7 shows the compressive strength of Al2O3-Cr2O3 composites with different
Cr2O3 content measured by the universal mechanical testing machine. The result shows
that the compressive strength of Al2O3-Cr2O3 composites is lower than that of monolithic
alumina (406 MPa). With the increase of Cr2O3 content, the hardness of Al2O3-Cr2O3
composites decreases gradually. The lowest compressive strength is observed when the
Cr2O3 content is 40 wt.%, and the compressive strength of the sample A-40C is 181 MPa.
Although the increase of Cr2O3 content has a negative impact on the compressive strength
of Al2O3-Cr2O3 composites, the material prepared in this experiment still has great advan-
tages over the refractories used in general metallurgical kilns. Shu et al. [29] reported that
Al2O3-SiC composites were prepared by sintering kaolin as the main raw material, and its
compressive strength is only 54.3 MPa. Xiao et al. [30] reported that the normal temperature
compressive strength of the Al2O3-C refractory used in the blast furnace they prepared
was about 40 MPa. Yi et al. [31] reported that the compressive strength of the MgO-C
refractories prepared by them at room temperature is about 70 MPa, which is also much
lower than the compressive strength of the refractory material prepared in this experiment.
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Figure 7. Effect of Cr2O3 content on compressive strength of composites.

3.3.3. Thermal Shock Resistance and Flexural Strength

Chromium corundum multiphase ceramics are mainly used at high-temperature
environments, and the ceramics may be subjected to thermal shock while working. Thermal
shock will generate thermal stress, and ceramics will be destroyed when the thermal stress
exceeds the fracture energy [32]. Therefore, thermal shock resistance is one of the most
important properties of high-temperature structural materials. The thermal shock resistance
of ceramic materials is a combination of mechanical properties and thermal properties,
which can be expressed by the loss rate of bending strength. On the other hand, the
thermal shock resistance of materials is determined by their thermal expansion coefficient,
fracture energy, elastic modulus, and thermal conductivity coefficient. The main factors
affecting physical quantities are the phase composition and microstructure of materials.
The comprehensive properties of crystal phase determine the thermal shock resistance of
the composite materials. Based on the thermal shock theory:

∆TC ∝
(

λ2G/αE0

)1/2
(2)

where λ, α, G, and E0 are the thermal conductivity coefficient, thermal expansion coefficient,
fracture energy, and elastic modulus of ceramic materials, respectively. G is determined by
the flexural strength of the material, and a higher flexural strength is required in order to
achieve a higher ∆TC.

As shown in Figure 8a, with the increase of Cr2O3 content, the flexural strength of the
composite decreases gradually. The flexural strength of the monolithic alumina material
is 108 MPa, and the flexural strength of the sample A-40C decreases to 78 MPa. With
the increase of Cr2O3 addition amount and thermal shock times, the flexural strength
of the samples decreased to varying degrees, being the flexural strength of sample A-40
is the lowest (50 MPa) after 20 thermal shocks. As shown in Figure 8b, after 10 and 20
thermal shock cycles, the flexural strength loss rates of sample A are 11.11% and 26.85%,
respectively. The flexural strength loss rate is the smallest, which indicates that sample
A obtains the best thermal shock resistance. With the increase of Cr2O3 addition in the
sample, the bending strength loss rate of the sample gradually increases, and the flexural
strength loss rate of the sample also gradually increases with the increase of thermal shock
times. This shows that the addition of Cr2O3 has a negative effect on the thermal shock
resistance of the sample. Kafkaslolu et al. [23] showed that adding 0.5 vol.% Cr2O3 to Al2O3
significantly increased the flexural strength of the composites from 199 to 286 MPa. They
believed that the grain boundary modification caused by the larger size of the Cr3+ ions
replacing Al3+ ions results in localized compressive stresses and hinders the propagation
of cracks through grain boundaries, thus improving the fracture strength. However, with
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the increase of Cr2O3 content, localized compressive stresses caused by ion size misfit
begin to overlap with increasing Cr2O3 content and its effect decreases, and the fracture
strength of Al2O3-Cr2O3 composites with 1 vol.% Cr2O3 and 5 vol.% Cr2O3 content begins
to decrease. In this experiment, the effect of the increase of more Cr2O3 content (10–40 wt.%)
on the composites was investigated. With the increase of Cr2O3, the existence of Cr3+ ions
causes the growth rate of Al2O3 to increase and promotes the grain size growth of Al2O3.
Moreover, the ion radius of Cr3+ is larger than that of Al3+, and the grain size gradually
increases, so the grain boundary gradually decreases, and the smaller the area, the smaller
the grain boundary contact area, the more favorable the crack propagation, so the fracture
strength of the composite material gradually decreases.
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In order to study the influence of phase composition, microstructure, and physi-
cal properties on thermal shock resistance, SEM analysis was carried out to study the
microstructure evolution of the samples before and after thermal shock. Figure 9 is a
schematic diagram of a broken sample after three-point bending, and the area marked in
the figure is the position of the SEM tests.
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The surface SEM images of the sintered samples before and after thermal shock are
shown in Figure 10. The surface secondary-electron (SE) images of the sintered sample
are shown in Figure 10a–e. It can be seen that the proportion of solid solution increases
gradually with the increase of Cr2O3 addition. Meanwhile, the grain size and the porosity
of the material also increase gradually, which causes the composites to become more
and more loose and porous. It perfectly verified the results of the sintering behavior
mentioned above. The surface SEI images of the sintered sample after 20 thermal shocks
are shown in Figure 10f–j. It can be seen that the surfaces of the samples after thermal shock
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have different degrees of pulverization, which is due to the growth of crystal particles
in the material under high-temperature atmosphere. The stress concentration is formed
locally and eventually leads to the surface pulverization of the material. As shown in
Figure 10f–j, the proportion of the surface pulverization area of the composite material
gradually increases with the increase of Cr2O3 addition.

The fracture SEM images of samples with different Cr2O3 content after a three-point
bending strength test are shown in Figure 11. The fracture morphologies at low magnifica-
tion are presented in Figure 11a–e. It can be seen that the fracture surface of the samples
presents a state of discontinuous lamellar, and the material has different degrees of cleavage
fracture. This fracture morphology is formed by the propagation of cracks along a family
of dissociation planes parallel to each other but with different heights. The liquid phase
bonding between Al2O3 particles has a certain intensity, and the fracture morphology
becomes flat with the gradual increase of Cr2O3 addition. The SE images of the fracture
under high magnification are shown in Figure 11f–j. The “cleavage step” in the sample
diagram can be clearly observed; intergranular and transgranular mixed fracture is the
fracture mode of the sample, and transgranular fracture dominates. With the increase of
Cr2O3 addition, the fracture mode changed from intergranular and transgranular mixed
fracture mode to intergranular fracture mode. The energy required for crack propagation
through grains is higher than that required for crack propagation through grain boundaries.
Therefore, with the gradual increase of Cr2O3 addition, the fracture mode changes and the
material structure gradually becomes loose, resulting in the gradual deterioration of the
bending strength of the samples.

Figure 12 shows the fracture morphologies of samples with different Cr2O3 contents
after 20 thermal shocks. Figure 12a–e shows the SE images of the fracture at low magnifica-
tion. With the gradual increase of Cr2O3 addition, the morphology of the fracture becomes
flat. The fracture morphologies under high magnification are presented in Figure 12f–j. It
can be seen that the Al2O3-Cr2O3 composites present a crystalline fracture section, and the
intergranular fracture is a dominant mode of failure in Al2O3-Cr2O3 composites. After 20
thermal shocks, the samples have different degrees of pulverization, and the grain size
is smaller than that before thermal shock, but the fracture mode of the material is mainly
intergranular fracture. With the increase of Cr2O3 addition, the pulverization of the sample
becomes more and more serious, and the transgranular fracture is hardly found, so the
flexural strength of the Al2O3-Cr2O3 composites gradually decreases.
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4. Conclusions

Al2O3-Cr2O3 composites were prepared by reaction sintering with Al2O3 and Cr2O3
powder at 1600 ◦C. The effects of Cr2O3 on microstructure, consolidation behavior, hard-
ness, bending strength, and thermal shock resistance of Al2O3-Cr2O3 composites were
investigated, and the conclusions are as follows:
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1. The grain size and porosity increase gradually due to the formation of Al2O3-Cr2O3
solid solution phases; thus, the densification behavior of materials Al2O3-Cr2O3
gradually get worse along with the increase of content of Cr2O3. When the Cr2O3
content is 40 wt.%, the relative density and volume shrinkage rate of the Al2O3-Cr2O3
system achieve the minimum combined with the maximum porosity.

2. Due to the reduction of densification degree, the material becomes progressively
porous, and the fracture mode of the material changes from transgranular and inter-
granular mixed fracture to intergranular fracture mode. Meanwhile, the hardness,
compressive strength, and flexural strength of Al2O3-Cr2O3 composites all decreased.
When the content of Cr2O3 in the system exceeds 30 wt.%, the mechanical properties
of the Al2O3-Cr2O3 material decrease significantly.

3. After 10 and 20 cyclic thermal shocks, the flexural strength of the sample is reduced to
varying degrees, and the fracture mode of composites is dominated by intercrystalline
fracture. The flexural strength loss rate of samples gradually increases with the
increase of Cr2O3 content. The maximum bending strength loss rate was observed
when the Cr2O3 content is 40 wt.% after 10 and 20 thermal shock cycles; the flexural
strength loss rates of sample A-40C were 17.72% and 36.71%, respectively. In addition,
with the increase of Cr2O3 addition, the surface pulverization after thermal shock
gradually becomes serious.

4. Although the increase of Cr2O3 content deteriorates the mechanical properties of
Al2O3-Cr2O3 composites, the composites still have better mechanical properties when
the Cr2O3 content is 20–30% and can meet the service requirements of molten reduc-
tion ironmaking.
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Abstract: Hybrid composites have great potential for specific strength and specific stiffness, effective
in aerospace industries, submarines, and light-weight automotives. The mechanical strength and
adhesiveness of hybrid laminates can be enhanced by effective use of matrix materials in different
ratios of epoxy resin and epoxy hardener. Gentle use of resin and hardener in the fabrication of hybrid
composites can alter tensile modulus, the bonding strength between matrix and fabric. Spectacular
progress has been achieved by the selection of appropriate amounts of resin and hardener in the
hybridization of composite laminate. Hybridization was made by Kevlar inorganic/organic fabrics
and glass fabrics stacked with epoxy matrix material. To achieve the combination of mechanical
properties and bonding strength, transparent epoxy resin and hardener of commercial grades mixed
in various ratios are incorporated as matrix material to fabricate laminate. Three different sheets,
named A (3:2), B (4:1), and C (2:3), were embedded by the hand layup method to prepare a hybrid
composite. Experimental tests, according to ASTM 3039, were performed to determine the tensile
mechanical properties. Peel tests, according to ASTM 6862-11, were performed to investigate the
interlaminar strength between Kevlar and glass layers. Shore A and Shore C hardness durometers
were used to find out the hardness of the specimens at different spots using the ASTM D-2240
standard. Finally, physical testing, such as density and then water absorption, was carried out using
the ASTM D-570 standard to check the swelling ratio of the different specimens. The results obtained
highlight that the specimen of the glass/Kevlar hybrid embedded in the ratio 3:2 in lamination has
the best mechanical properties (tensile strength and hardness) and the lowest swelling ratio, while the
material system in the ratio 4:1 shows the best interlaminar properties and adhesion capabilities.

Keywords: glass/Kevlar; hybrid composites; hand layup; epoxy; hardener; tensile; hardness shore D;
water absorption; density; peel; ratio

1. Introduction

Composites have distinct phases, made by dissimilar fibers and matrix materials. Rein-
forcement fibers or stacking sheets are employed in matrix materials for making composite
structures at the macroscopic level. Matrix materials have a continuous phase and are used as
adhesives, and fibers have a discontinuous phase in metal matrix composites (MMCs), ceramic
matrix composites (CMCs), and polymer matrix composites (PMCs) [1]. Reinforcing synthetic
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fibers, such as Kevlar fibers, carbon fibers, and glass fibers, and natural fibers, such as jute,
sisal, hemp, etc., serve as a dispersed phase in composite materials [2]. In aeronautical applica-
tions, light-weight, high-strength organic/inorganic stacked laminated hybrid composites are
ideal candidates [3]. The organic fiber Kevlar is five times better than steel due to its specific
weight ratio. Kevlar has improved interfacial fracture toughness and degree of symmetry in
its internal structure [4]. High-strength aramid fiber is employed as core material in hybrid
laminate to prepare light-weight, high-strength bulletproof vests and helmets [5]. In the last
few decades, researchers have focused on enhancing the performance of composite materials
by mixing synthetic and natural fibers to prepare hybridized structures [6]. E-glass fibers have
better ultimate tensile strength and are placed in the outside layer in lamination to produce
a flaw-free structure [7]. There is no significant difference in the density if layup placement
changes in hybridization [8]. Aramid (Kevlar), a synthetic fiber, was developed in 1965 by
two research scientists, Stephanie Kwolek and Herbert Blades. Kevlar belongs to the aromatic
polyamide family and consists of extended chains of synthetic polyamide [9]. Aramid fibers
have incredible ultimate tensile strength, achieved by intermolecular hydrogen bonds and the
aromatic stacking interface of aromatic groups in the neighboring strands [10]. The interatomic
bonding is considerably stronger than the van der Waals intermolecular connection in other
manmade polymers [11]. Kevlar (aramid) is based on comparatively stiff molecules, which for-
mulate the planar sheet-like arrangement, comparable to silk protein. The intermolecular
relation among the molecular strands of Kevlar significantly enhances mechanical strength
characteristics and provides superior heat and flame resistivity [12]. Kevlar, which is by now
renowned as an elevated-performance fiber, has a remarkable strength-to-weight ratio and
improved toughness [13]. As far as cost competitiveness is concerned, glass fiber is cheap and
easily available in the market, whereas Kevlar fiber is considerably expensive [14]. To achieve a
balance between the cost competitiveness and the strength-to-weight ratio of laminate, hybrid
composites are fabricated by stacking E-glass/Kevlar fibers [15]. The amount of water absorp-
tion in laminate reduces the mechanical strength of the hybrid composite by weakening the
fibers’ strength [16,17]. Glass fibers are placed at the interface and Kevlar fibers are used in
the core to make a sandwich structure [18]. Glass-fiber-reinforced polymers are used to make
printed wire boards for electronic appliances [19]. The mechanical behavior of fiber-reinforced
polymers was investigated by understanding ultimate tensile strength, stiffness, and fiber-
matrix bond strength [20]. Kevlar fibers are used as core in the lamination sequence to suppress
the fracture toughness of the hybrid composite [21]. The ratios of epoxy resin to hardener and
the volume fraction are effective tools in the fabrication of composite materials [22]. Kevlar
fibers reinforced with glass fibers have incredible capacity to produce less dense materials with
superior strength, which attain high break and bear resistance characteristics [23]. Epoxy resin
and epoxy hardener have good bonding strength and are positioned within layers of fibers to
produce rigid and environment-resistant materials [24]. However, the mechanical properties
of composite materials strongly depend on the adhesive material as well as the different ratios
in which resin and hardener are mixed together to form a matrix phase [25]. The proper use
of adhesive materials can supplement the mechanical properties, reduce component weight,
increase durability, provide better design latitude, handle high levels of stress, and increase
the strength of composites [26]. The performance of the continuous phase is related with the
ratio of resin to hardener in the discontinuous phase in hybridization [27]. The interfacial bond
strength of the glass/Kevlar hybrid composite is investigated by conducting a peeling test of
the hybrid composite laminate [28]. In advanced technologies, materials are required with a
combination of properties, such as strength, stiffness, impact, water absorption, and strength-
to-weight ratio. Glass/Kevlar hybrid composites have an unusual combination of properties,
which cannot be met by other conventional materials [29]. The strength of a composite depends
not only on the assets of the matrix but also on how well it sticks to the particles and fibers of
the dispersed phase [30]. It is vital that adhesive bonding forces between fiber and matrix be
high to minimize fiber pull-out [31]. Sufficient bonding is essential to take advantage of the
stress transfer from the weak matrix to the durable fibers.
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2. Experimental Work
2.1. Preparation of Specimens

In E-glass fabrics with Kevlar 49, each layer has a thickness of 0.5 mm stacked with
epoxy resin and a hardener of commercial grade as adhesive medium for the fabrication
of hybrid composites. E-glass fabrics were placed at the top and the bottom, whereas the
central layer was of Kevlar 49. In this study, laminates of hybrid composites (A, B, and C)
were fabricated (Figure 1) with dissimilar amounts of epoxy resin and hardener using the
hand layup method given in Table 1. Materials properties of E-glass, Kevlar, and epoxy
given in Table 2.
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Figure 1. Specimens fabricated using different resin ratios (A = 3:2, B = 4:1, C = 2:3) respectively.

Table 1. Layup placement of glass fibers and Kevlar 49 by applying different ratios of resin and hardener.

Layer
Formation Layers Glass Fibers Kevlar 49 Ratio of Epoxy Resin Ratio of Hardener

A 03 02 01 3 2
B 03 02 01 4 1
C 03 02 01 2 3

Table 2. Materials properties of E-glass, Kevlar, and epoxy.

Material Fiber
Strength

Laminate
Strength

Density of
Laminate (g/cc)

Strength-to-
Weight Ratio

E-glass 3450 1500 2.66 564

Kevlar 2757 1430 1.44 993

Epoxy N/A 12–40 1–1.15 28

2.2. Tensile Test

During a tension test, standard specimens are placed on the grip of a tensile testing
machine (Cometech, Taichung, Taiwan) (Figure 2) so that the specimens undergo tension
before fracture. In usual practice, the gauge length of the standard sample increases and the
cross-section area reduces during operation. The stress-strain diagram results and the data
are analyzed. The standard specimen of ASTM D-3039 was used to conduct the test for a
hybrid laminate [32]. Three specimens (24 mm wide and 150 mm long) were subjected to
the grip of a 5 kN universal tensile testing machine. The strain rate (s−1) was set to conduct
the tensile test for each laminate. The laminate with the same dimensions as those of the
glass/Kevlar hybrid with different ratios of epoxy resin and hardener—A (3:2), B (4:1),
and C (2:3)—was examined at room temperature. The results and statistical analysis of
specimens A, B, and C were tabulated, and the peak stress and peak load of each specimen
were investigated considering the stress (N/mm2) and the strain (%).
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2.3. Peel Test

The peel adhesion test is used to determine the force required to debond two compo-
nents joined by a strong adhesive. The test result, also known as bond strength, is generally
represented as N (force to debond)/24 mm depending on specimen width. There are
various types of peel tests. Examples include the 90◦ peel test, 180◦ peel test, single lap joint
shear test, and T peel test. In this work, 90◦ peel tests were performed with two different
test setups named type I and type II.

2.3.1. Sample Preparation

Three specimens, each being 24 mm wide and 150 mm long, was used to perform 90◦

peel tests, according to the ASTM D-6862-11 standard [33]. The samples were directly cut
from the prepared sheets (27 cm × 9 cm), in which one of the two glued components was
flexible enough to be bent 90◦ without breaking.

2.3.2. Type I: When Glass Fiber Is Clamped on Both Upper and Lower Jaws of the UTM
for Debonding

One layer of glass fiber is clamped on the upper, movable jaw and another layer of
glass fiber is fixed on the lower, fixed jaw of the universal tensile testing machine. The force
is set at zero and then, on pushing the start button, the specimen from one end starts
debonding, either mechanically or chemically, until the movable layer of glass fiber is
completely peeled apart or destroyed.

2.3.3. Type II: When Glass Fiber Is Clamped on the Upper Jaw and Kevlar Is Clamped on
the Lower Jaw of the UTM for Debonding

An attempt is made to prevent the glass fiber from breaking during peeling. Kevlar
fiber is clamped on the lower, fixed jaw and glass fiber is clamped on the upper, movable
jaw to peel apart to check the adhesion between glass fiber and Kevlar by peeling them
apart completely.

3. Hardness Test

Hardness is resistance to indentation or penetration. Shore A and Shore C durometers
are used as portable hardness testers to find the hardness of three specimens. The shore
durometer is a device for measuring the hardness of polymers, polymer matrix composites,
and elastomers. Higher numbers on the scale indicate a greater resistance to indentation
and, thus, harder materials.

The hardness test is carried out as per the ASTM D2240 standard [34] using Shore A
and Shore C durometers shown in Figure 3. An indentation is formed by a given force
on a standardized indentation head. This test method is widely used for composite and
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polymer testing. As per ASTM standards, three samples are prepared with different resin
and hardener ratios with the dimensions 24 mm × 24 mm.
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Figure 3. Shore A (a) and Shore C hardness (b) tester, respectively.

The hardness test was carried out using two types of durometers, Shore A and Shore C.
A load was applied, and the readings on the dial were noted down. The indentation was
measured from different spots, and mean average values were calculated.

4. Density Test

A physical balance was used to evaluate the density of the hybrid composites. As per
ASTM standards, three specimens were made. The specimens were placed onto the physical
balance and the readings were obtained from the screen. The density was measured by
putting the values in the formula Density = Mass

Volume . The dimensions of the specimen used
for the density test were 24 mm × 24 mm × 0.2 mm.

5. Water Absorption Test

Water absorption is the amount of water uptake by a material under specific conditions.
A physical balance was used to measure the amount of water absorbed by the specimens.
As per the ASTM D-570 standard [35], three specimens were fabricated for water absorption,
as shown in Figure 4. The samples were first weighed in dry condition and then put into
distilled water at 31 ◦C for 24 h. The samples were then weighed again.
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Measurements

Water absorption is calculated as an increase in the weight percentage of specimens.
Swelling ratio % =

Wet laminate area − Dry laminate area
Dry laminate area × 100 [36] Standard specimens are the

same as in the density test (24 mm × 24 mm × 0.2 mm).
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6. Results and Discussion
6.1. Tensile Test

A tensile test was carried out using the ASTM standard D-3039 [37] to analyze the
mechanical behavior and strength of specimens under tension. The results are shown in
the graphs below (Figure 5).
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Figure 5. Tensile test results of each configuration: (A–C).

According to the graphs of the tensile test, specimen A, with 60% resin and 40%
hardener, has the maximum value of stress, 1880 MPa, as shown in the graphs in Figure 5.
There is a little fluctuation at stress 635 MPa in the graph of specimen B due to the prior
breaking of glass fiber than Kevlar. As far as specimen C is concerned, it has the lowest
value of tensile stress due to very poor adhesion between glass fiber and Kevlar with 40%
epoxy resin and 60% hardener.

6.2. Peel Test

As the peel test is performed in two ways, in both conditions, the laminate of same
dimensions as those of glass/Kevlar with different ratios of epoxy resin and epoxy hardener
(A (3:2), B (4:1), and C (2:3)) was examined at room temperature.

Type I: When Glass Fiber is Clamped on Both Upper and Lower Jaws for Debonding.
Both the upper and lower layers of glass fabric are peeled off from Kevlar fabric, and a

graph is plotted against the force required to debond/24 mm and the strain to examine the
adhesiveness between glassy fiber (GF) and Kevlar.

The results of the peel test are shown in Figure 6 in the form of the force required to
debond different specimens.

According to this figure, it is clear that specimen B (with 80% resin and 20% hardener)
uses maximum force in debonding the laminate layers compared to other specimens with
codes A and C. This force is expressed as 16.5 N/24 mm. Comparison values of the peel
test shown in Figure 7.

Type II: When Glass Fabric is Clamped on the Upper Jaw and Kevlar is Clamped on
the Lower Jaw for Debonding.

Kevlar fabric is clamped on the lower, fixed jaw and glass fabric is clamped on the
upper, movable jaw to check the adhesion between the glass fabric and Kevlar by peeling
them apart completely. Peel test examination of type II shown in Figure 8.

This is a special segment of the peel test, when glass fiber is clamped on the upper jaw
and Kevlar is clamped on the lower jaw for debonding, in which an attempt is made to
enhance the debonding force. The specimen with code B shows the maximum debonding
force (38 N/24 mm) in this case also, as shown in the comparison graph in Figure 9.
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Figure 6. Peel test analysis of type I specimens (A–C).

Coatings 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 6. Peel test analysis of type I specimens A, B, and C. 

According to this figure, it is clear that specimen B (with 80% resin and 20% hardener) 
uses maximum force in debonding the laminate layers compared to other specimens with 
codes A and C. This force is expressed as 16.5 N/24 mm. Comparison values of the peel 
test shown in Figure 7. 

 
Figure 7. Comparison values of the peel test of type I specimens A, B, and C. 

Type II: When Glass Fabric is Clamped on the Upper Jaw and Kevlar is Clamped on 
the Lower Jaw for Debonding 

Kevlar fabric is clamped on the lower, fixed jaw and glass fabric is clamped on the 
upper, movable jaw to check the adhesion between the glass fabric and Kevlar by peeling 
them apart completely. Peel test examination of type II shown in Figure 8. 

0

5

10

15

20

1 2 3
Series1 14.1 16.5 4

A, 14.1
N/24mm

B, 16.5
N/24mm

C, 4
N/24mm

Comparison of Peel Test type I

1 2 3

Figure 7. Comparison values of the peel test of type I specimens (A–C).Coatings 2021, 11, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 8. Peel test examination of type II specimens A, B, and C. 

This is a special segment of the peel test, when glass fiber is clamped on the upper 
jaw and Kevlar is clamped on the lower jaw for debonding, in which an attempt is made 
to enhance the debonding force. The specimen with code B shows the maximum debond-
ing force (38 N/24 mm) in this case also, as shown in the comparison graph in Figure 9. 

 
Figure 9. Difference between the peel test results of type II specimens A, B, and C. 

6.3. Hardness Test 
A portable hardness tester was used to perform the hardness test according to the 

ASTM A 1038-17 standard [38]. Three samples with size 24 mm × 24 mm were prepared 
with different epoxy resin and epoxy hardener ratios (A = 3:2, B = 4:1, and C = 2:3). A load 
was applied, and the readings on the dial were noted down. 

Shore A Hardness Test (Table 3): 

0

10

20

30

40

A B C
Series1 30.5 38 2.9

A, 30.5 
N/24mm B, 38 N/24mm

C, 2.9 N/24mm

Comparison of Peel Test Type II

Figure 8. Peel test examination of type II specimens (A–C).
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6.3. Hardness Test

A portable hardness tester was used to perform the hardness test according to the
ASTM A 1038-17 standard [38]. Three samples with size 24 mm × 24 mm were prepared
with different epoxy resin and epoxy hardener ratios (A = 3:2, B = 4:1, and C = 2:3). A load
was applied, and the readings on the dial were noted down.

Shore A Hardness Test (Table 3):

Table 3. Shore A hardness of three different specimens.

Readings A B C

A1 A2 A3 B1 B2 B3 C1 C2 C3

1. 95 93 96 91 94 94 80 85 80
2. 96 95 97 93 92 85 85 86 84
3. 95 91 96 91 95 88 86 84 81

Mean of indentation 95.33 93 96.33 91.66 93.67 89 83.67 85 81.67
Mean hardness 94.887 91.443 83.44

Shore C Hardness Test (Table 4):

Table 4. Data analysis of Shore C hardness of three distinct configurations.

Readings A B C

A1 A2 A3 B1 B2 B3 C1 C2 C3

1. 82 78 85 72 76 75 68 74 65
2. 83 81 86 75 70 78 78 75 68
3. 78 79 86 70 84 77 75 78 66

Mean of indentation 81 79.33 85.67 72.33 76.67 76.67 73.67 75.67 66.33
Mean hardness 82 75.23 71.89

Tables 3 and 4 report that there is a small variation in harness by applying dissimilar
ratios in lamination. It is evident that hardness does not rely on the ratio of matrix material
in hybridization [1].

6.4. Density Test

According to the results of the density test, specimen A has the best value of density
compared to specimens B and C, as described in Table 5.
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Table 5. Measured density of specimens A, B, and C at difference resin ratios.

Specimen Weight (g) Density (g/cm3) Mean (g/cm3)

A 0.98 1.0 0.96

B 0.91 0.88 0.86

C 0.85 0.72 0.82

6.5. Water Absorption Test

Results of water absorption for specimens A, B, and C by applying different ratios of
matrix in lamination given in Table 6.

Table 6. Results of water absorption for specimens A, B, and C by applying different ratios of matrix
in lamination.

Specimen W1 (g) W2 (g) Mean
W1

Mean
W2 Swelling Ratio %

A 0.98 1.0 0.96 1.18 1.23

B 0.91 0.95 0.86 1.20 1.08

C 0.85 0.78 0.82 1.32 1.46

The water absorption ratio is calculated as an increase in the weight percentage of spec-
imens A, B, and C by using the formula Swelling ratio % =

Wet laminate − Dry laminate
Dry laminate × 100.

By analyzing Table 5, it is observed that specimen A absorbs the minimal amount of wa-
ter and, thus, has the minimum swelling ratio compared to specimens B and C. From the
research findings, it is evident that specimen A has superior strength performance than sam-
ples B and C. The minimal swelling ratio is best suited for mechanical properties of hybrid
composite materials.

7. Conclusions

Efforts were made to enhance the interlaminar adhesion of glass/Kevlar hybrid
composites by using dissimilar proportions of epoxy resin and hardener. In this regard,
mechanical and physical testing of hybrid composites was performed. Experimental
verification shows that the resin and hardener ratio has a profound influence on both the
mechanical and physical properties of hybrid composites. The laminate with 60% resin
and 40% hardener has superior mechanical properties, such as tensile strength hardness
and minimum swelling ratio, compared with 40% resin and 60% hardener in a matrix,
whereas specimens made of 80% epoxy resin and 20% hardener have better bonding
strength among the layers compared to other specimens. The specimens in which the ratio
of hardener is suppressed rather than that of resin have mechanical properties such as
adhesion and deduce.
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Abstract: The wettability of the metal/SiC system is not always excellent, resulting in the limitation
of the widespread use of SiC ceramic. In this paper, three implantation doses of Si ions (5 × 1015,
1 × 1016, 5 × 1016 ions/cm2) were implanted into the 6H-SiC substrate. The wetting of Cu-(2.5, 5,
7.5, 10) Sn alloys on the pristine and Si-SiC were studied by the sessile drop technique, and the
interfacial chemical reaction of Cu-Sn/SiC wetting couples was investigated and discussed. The Si ion
can markedly enhance the wetting of Cu-Sn on 6H-SiC substrate, and those of the corresponding
contact angles (θ) are raised partly, with the Si ion dose increasing due to the weakening interfacial
chemical reactions among four Cu-Sn alloys and 6H-SiC ceramics. Moreover, the θ of Cu-Sn on
(Si-)SiC substrate is first decreased and then increased from ~62◦ to ~39◦, and ~70◦ and ~140◦, with the
Sn concentration increasing from 2.5%, 5% and 7.5% to 10%, which is linked to the reactivity of
Cu-Sn alloys and SiC ceramic and the variation of liquid-vapor surface energy. Particularly, only a
continuous graphite layer is formed at the interface of the Cu-10Sn/Si-SiC system, resulting in a higher
contact angle (>40◦).

Keywords: 6H-SiC; Cu-Sn alloy; ion implantation; wettability; interface

1. Introduction

Silicon carbide (SiC) has been widely applied in the field of electronics industries and metal-ceramic
composites, due to its sublime properties such as high strength, high modulus, high melting point and
erosion resistance [1–3]. In fact, good wettability between liquid metals and SiC ceramic plays a vital
role in these areas. Up to now, two critical challenges for the SiC applications are the low wettability
and the undesired interfacial reaction of metals and SiC ceramic [4]. Commonly, the equilibrium value
of θ, used to explore the wetting behavior of liquid on a flat and chemically homogeneous solid surface,
observes the traditional Young’s equation [5] cosθ = σSV − σSL/σLV (where σSV and σLV describe the
surface tension of the solid and liquid, respectively, and the σSL defines the solid/liquid interfacial
energy). Based on this equation, two leading technologies can be performed to reduce the θ of metal
on the SiC substrate.

One is increasing the σSV by changing the SiC surface (i.e., the ion implantation, Ref. [6] sintering
metallization [7,8] and plasma pulses [9]. Compared with other surface modification technologies,
ion implantation is a non-thermal and non-equilibrium process, where no new interface is introduced
and the surface crystal structure can be altered in this process [10]. Recently, our group has proved
that Mo, Ref. [11] Pd [12] and Si [13] ion implantation can increase the σSV of 6H-SiC monocrystal
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substrate by producing lattice imperfections and point defects, and thus the ion implantation is regarded
as one of the key factors affecting the wettability of Al, Ref. [13] Al-Cu and [13] Al-Si-(Cu, Mg or Zn) [6,12]
on SiC monocrystal substrate. For instance, Zhu et al. [13] studied the wetting of Al-Cu/Si-implanted
SiC wetting couples, indicating that the contact angles of Al-Cu alloys on Si-SiC substrates were raised
partly with an increase of the Si ion dose, and the Si ion can evidently improve the wetting of Cu-Al/SiC
when the content of Al is no more than 42.9% in Cu.

Another is adding elements such as (Ti, Ref. [14,15] Cr, Ref. [16] Ni [17]) into the metal to reduce
the σSL by enhancing the interfacial interactions of metal/SiC systems and/or to simultaneously reduce
the σLV. For the pure Cu/SiC system, a high contact angle was detected due to the formation of the
graphite layer at the wetting interface [18]. Various elements such as Al [13], Si [18], and Zr [19]
were added into Cu to adjust the wettability of the Cu/SiC system. As reported by Zhou et al. [19],
excellent wettability (θ ≈ 5◦) was observed in the Cu-Zr/SiC system at 1200 ◦C, and the interfacial
reaction layer was transformed from a graphite layer to metallic ZrC and Zr2Si compounds after adding
Zr into Cu. Furthermore, the other elements added into the pure metal can also bring about the changes
of heat transfer performance compared with the pure metal [20–22], which can significantly affect the
thermodynamic and kinetics of the chemical reaction between molten metal and ceramic during the
wetting process. Therefore, the wettability of metal/ceramic system is further influenced accordingly.

As discussed above, both the surface modification of SiC and other metal element additions are
the most promising methods to improve the wetting of metal/SiC systems. However, the influence of
Sn addition on the wettability of the Cu/6H-SiC system was rarely reported, especially for the 6H-SiC
ceramic after Si ion implantation. Herein, Si ion was implanted into the 6H-SiC monocrystal substrate,
and the wettability of Cu-(2.5, 5, 7.5, 10) Sn (all in at.% in this text) alloys on 6H-SiC monocrystal
substrate were investigated. We found that the Si ion can markedly enhance the wetting of Cu-Sn on
6H-SiC substrate, and the θ of Cu-Sn on (Si-)SiC substrate basically decreases first, and then increases
alongside the Sn concentration.

2. Experimental Details

The double polished C-terminated 6H-SiC monocrystal (CAS: 409-21-2), with sizes of
10 mm × 10 mm × 0.33 mm, was employed as the wetting substrate. The Cu-(2.5, 5, 7.5, 10)Sn alloys
used for the wetting experiments were fabricated by arc melting with non-consumable tungsten electrode
under a purified Ar (99.99%, CAS: 7440-37-1) atmosphere, and being remelted five times to ensure a
uniform composition, combining appropriate amounts of the Cu sheet (99.9 wt.% purity, CAS: 7440-50-8)
and Sn granular (99.8 wt.% purity, CAS: 7440-31-5). In order to prevent the oxygen contamination,
a Ti getter (CAS: 7440-32-6) was melted first, before the Cu-Sn alloy. The microstructure and phase
composition of a typical Cu-7.5Sn alloy were analyzed and identified by scanning electron microscopy
(SEM, FEI NovaNano450, back-scattered electron (BSE) mode) and X-ray diffraction (XRD). The scanning
range of XRD examination was 20◦–90◦, with a speed of 5◦/min. The Cu-Sn alloys featured a wire electrode
cutting into the block, with sizes of 3 mm × 3 mm × 3 mm, which were carefully cleaned in acetone and
ethanol successively before wetting experiments. The ion implantation was carried out in an ion implanter
(MEVVA-36), and three doses of Si ions (5 × 1015, 1 × 1016, 5 × 1016 ions/cm2) were implanted into the
6H-SiC substrate at 20 keV at an ambient temperature under the vacuum of ~5 × 10−3 Pa.

The sessile drop tests of Cu-Sn alloys on a Si-implanted SiC substrate were performed at a
contact angle computing instrument (OCA15LHT-SV, Dataphysics, Filderstadt, Germany). The wetting
samples were performed at 1373 K for 240 min in a vacuum of ~6 × 10−4 Pa, with a heating rate of
5 K/min. After wetting experiments, the cross-sectioned wetting systems were polished using diamond
polishing fluid, and the interfacial microstructure was observed by SEM (BSE mode), coupled with
energy dispersive spectroscopy (EDS). It was noted that the images obtained from BSE mode can
be used to evidently present the composition contrast for the polished samples, while the images
obtained from the secondary electron (SE) model mainly reflect the contrasting information of the
surface geometry.
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3. Results and Discussion

Figure 1 shows the typical microstructure of Cu-7.5Sn alloy combined with its XRD pattern.
The Cu-7.5Sn alloy presents a typical dendritic microstructure, and is composed of two phases (dark and
grey phase). Based on the EDS analysis, both phases are mainly Cu-rich solid solutions, where the Sn
concentration in the grey phase is higher than that in the dark phase. According to the Cu-Sn binary
phase diagram [23], the dark and grey phases can be confirmed as a Cu-rich solid solution (Cu) and
(Cu) plus Cu-Sn compounds. However, only the (Cu) phase emerges in the XRD pattern due to the
low content of the Cu-Sn compound (Figure 1b).
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Figure 1. (a) Back-scattered electron (BSE) image; and (b) X-ray diffraction (XRD) pattern of
Cu-7.5Sn alloy.

Figure 2 shows the wetting curves of molten Cu-(2.5, 5, 7.5, 10) Sn alloys on the (Si-)SiC substrates
at 1373 K. In Figure 2, two Y-axes are drawn to present the information of the contact angle (the Y-axis
on the left). The temperature (the Y-axis on the right) in Figure 2a–d and the line corresponding to the
wetting temperature is 1373 K, showing a straight line in the figure. For the Cu-Sn/pristine SiC systems,
the contact angle (θ) is first decreased, and then increased from ~62◦ to ~39◦ and ~70◦, with the Sn
concentration rising from 2.5% to 5% and 7.5%. In particular, a non-wetting phenomenon with a
high contact angle of ~140◦ is observed in the Cu-10Sn/SiC system. On the other hand, the Si ion
implantation has a pleasurable influence on the wetting of Cu-Sn/SiC couples. The θ of Cu-Sn on the
Si-SiC substrate decreases markedly after Si ion implantation, especially for the Cu-10Sn/Si-SiC systems
transforming from non-wetting to wetting. However, the θ of Cu-Sn/Si-SiC systems is increased partly
with the Si ion dose increase, rising up to 5 × 1016 ions/cm2. Those experimental results illustrate that
the Si ion can blatantly improve the wettability of Cu-Sn/SiC systems. In contrast, a higher Si ion
dose can weaken this phenomenon, showing an increased contact angle. In these cases, the σSV keeps
invariant (before ion implantation), or is increased due to the presence of the lattice imperfection and
point defects after ion implantation [13], while the σLV is decreased with the Sn concentration increasing,
according to Amore’s results [24]. Theoretically speaking, the increased σSV or/and decreased σLV can
reduce the wettability of Cu-Sn/(Si-)SiC systems based on Young’s equation. Thus, the abnormally
increased contact angle with the rise of the Si ion dose can be ascribed to the increased σLV derived
from the decreasing interfacial interactions between Cu-Sn alloys and Si-SiC ceramic.
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Figure 3 shows the interfacial BSE images of Cu-2.5Sn/SiC couples before and after Si ion
implantation. From Figure 3a, a prominent graphite layer and numerous CuxSiy compounds are
formed at the surface of Cu-2.5Sn solidified drop due to the serious chemical reaction between Cu
and SiC, which is also observed in the pure Cu and SiC systems [13]. After Si ion implantation,
a visible graphite film can be observed at the triple line region, and its width decreases with the Si
ion dose increasing (Figure 3b–d). Moreover, a laminated graphite layer is located on the upper part
of the Cu-2.5Sn drop after Si ion implantation, as shown in Figure 3f–h. The laminated graphite
layer gradually becomes thin, with the Si ion implantation dose rising, indicating that the interfacial
interactions are weakened, resulting in an increase of σSL and a contact angle, either more or less
(as shown in Figures 2 and 3i–l). Meanwhile, the 6H-SiC substrate is more or less consumed with the
formation of uneven scallops (Figure 3e–h). Similarly, the solidified Cu-2.5Sn drop consists of a dark
phase marked A and a small amount of grey phase marked B, as shown in the insert image in Figure 3f.
Based on the EDS results, the chemical compositions of the two phases are 92.09Cu + 5.90Si + 2.01Sn
and 66.48Cu + 33.52Sn, respectively. According to the Cu-Si and Cu-Sn binary phase diagrams [23,25],
the dark and grey phases can be confirmed as Cu-rich solid solutions, containing few Cu-Si and Cu-Sn
compounds, respectively.

144



Coatings 2020, 10, >906
Coatings 2020, 10, x FOR PEER REVIEW 5 of 9 

 

 
Figure 3. BSE images of Cu-2.5Sn/(Si-)SiC systems (a, e and i) before and (b‒d, f‒h and j‒l) after Si 
ion implantation: (a‒d) at the triple line region, cross-section (e‒h) at the central interfaces and (j‒l) at 
the triple line region. 

Figures 4 and 5 exhibit the top-view and interfacial BSE images of Cu-(5, 7.5)Sn/Si-SiC systems 
with different Si ion implantation doses, respectively. From Figure 4a,c, a thin graphite film emerges 
at the triple line region of Cu-(5, 7.5)Sn/Si-SiC systems after the Si ion implantation dose of 5 × 1015 
ions/cm2. However, a higher Si ion implantation dose (5 × 1016 ions/cm2) cannot induce the formation 
of the graphite layer in Cu-(5, 7.5)Sn/Si-SiC systems (Figure 4b,d). 

 
Figure 4. BSE images of (a,b) Cu-5Sn/Si-SiC and (c,d) Cu-7.5Sn/Si-SiC systems at the triple line region 
after Si ion implantation of (a,c) 5 × 1015 and (b,d) 5 × 1016 ions/cm2. 
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Figure 3. BSE images of Cu-2.5Sn/(Si-)SiC systems (a,e,i) before and (b–d,f–h,j–l) after Si ion
implantation: (a–d) at the triple line region, cross-section (e–h) at the central interfaces and (j–l)
at the triple line region.

Figures 4 and 5 exhibit the top-view and interfacial BSE images of Cu-(5, 7.5)Sn/Si-SiC systems with
different Si ion implantation doses, respectively. From Figure 4a,c, a thin graphite film emerges at the
triple line region of Cu-(5, 7.5)Sn/Si-SiC systems after the Si ion implantation dose of 5 × 1015 ions/cm2.
However, a higher Si ion implantation dose (5 × 1016 ions/cm2) cannot induce the formation of the
graphite layer in Cu-(5, 7.5)Sn/Si-SiC systems (Figure 4b,d).
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Figure 5. Interfacial BSE images of (a,b) Cu-5Sn/Si-SiC and (c,d) Cu-7.5Sn/Si-SiC systems at the central
interfaces after Si ion implantation of (a,c) 5 × 1015 and (b,d) 5 × 1016 ions/cm2.

Compared to the Cu-2.5Sn/Si-SiC system, the Cu-(5, 7.5) Sn/Si-SiC presents relatively weak
interfacial reactions, and the formed graphite layer moves closer to the SiC substrate (Figure 5).
This phenomenon is mainly attributed to the low activity of Cu, due to the relatively high concentration
of the Sn element. As we know, the wettability of Cu-Sn/Si-SiC couple can be comprehensively
determined by the σSL originating from interfacial interactions, and the σLV on the condition of the
same substrate. In these cases, the increase in σSL and the decrease of σLV correspondingly dominates
the Cu-5Sn/Si-SiC and Cu-7.5Sn/Si-SiC systems, so the θ of Cu-Sn/Si-SiC decreases firstly, and then
increases, with the Sn concentration rising from 2.5% to 7.5%. Similarly, two kinds of phases (Figure 5)
are also observed in the solidified Cu-(5, 7.5) Sn alloy drops, and the content of grey phase increases
gradually (Figures 3–5). Accordingly, the Sn concentration in the grey phase is also raised.

Figure 6 exhibits the interfacial microstructure of Cu-10Sn/Si-SiC systems after Si ion implantation.
Compared with Cu-(2.5, 5, 7.5) Sn/Si-SiC systems, the Cu-10Sn/Si-SiC presents relatively high contact
angles (Figure 2). However, it is puzzling that the molten Cu-10Sn alloy has the lowest surface
energy among the four Cu-Sn alloys, and thus theoretically the Cu-10Sn/Si-SiC systems should present
excellent wettability, according to Young’s equation. From Figure 6, only a continued graphite layer
is closely attached to the SiC substrate, which is due to the fact that the high Sn concentration in Cu
alloys can reduce the activity of Cu element, and thus the chemical reaction is limited at the interface.
According to the reactive production control (RPC) model [26,27], wetting in the reactive system is
predominated by the final interfacial production at the interface and triple region. Because the molten
drop has a poor wettability on the graphite layer, there is relatively poor wettability of Cu-10Sn on Si-SiC
substrates. Moreover, the interfacial chemical reaction between Cu-10Sn and Si-SiC becomes weaker
and weaker as the Si ion dose rises, resulting in a thinner graphite layer and higher contact angle.
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4. Conclusions

The wetting of molten Cu-(2.5, 5, 7.5, 10) Sn on Si-implanted SiC substrates was studied, and the
effects of Si ion doses and Sn concentration in Cu alloys on the wettability were analyzed. The Si ion
can markedly enhance the wetting of Cu-Sn/SiC systems; however, the contact angle of Cu-Sn on Si-SiC
substrate partly increases, with the Si implantation dose increasing from 5 × 1015 to 5 × 1016 ions/cm2.
The wetting of Cu-Sn/(Si-)SiC systems is closely related to the increasing solid-liquid interfacial energy
originated from the decreasing interfacial chemical reaction and the decreasing liquid-vapor surface
energy, with the Sn concentration increasing from 2.5%, 5% and 7.5% to 10%. In particular, a higher
Sn concentration of ≥7.5% can obviously reduce the activity of Cu, resulting in a relatively weak
interfacial reaction and a higher contact angle (>40◦). The above work and conclusions provide a novel
way to change the surface properties of ceramic and improve the wettability of the metal/SiC ceramic
system, which can further expand the prospective application area of SiC ceramic. However, changes of
the surface state of SiC after ion implantation in an atomic scale, i.e., the ion site in SiC lattice and
the lattice distortion of SiC, were less straightforward. In the future, the first-principle calculations
based on density functional theory (DFT) and Ab-initio molecular dynamics (AIMD) simulation can be
performed to study the changes in atomic scale after the ion implantation.
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Abstract: Iron–copper bimetallic nanoparticles (Fe-Cu BNPs) were prepared via a green synthesis
route. Ixora finlaysoniana has been used in this study as a capping and stabilizing agent in the
modification of Fe-Cu BNPs. As-synthesized BNPs were characterized using different techniques
including UV/Vis spectrophotometry, FTIR, XRD and SEM. A particle size analyzer and SEM studies
indicated the particle size to be in the range of 50–200 nm. In addition, degradation of MB dye in an
aqueous system and radical-scavenging potential in a DPPH assay were also examined using BNPs.
Methylene blue dye degradation in 17 min was monitored with UV/Vis spectrophotometry, which
exhibited the efficiency of Fe-Cu BNPs. Bimetallic nanoparticles were also found to be efficient in
neutralizing DPPH free radicals. Furthermore, kinetic studies of both dye degradation and radical
scavenging potential are reported in this article. Subsequently, Fe-Cu BNPs synthesized via a green
and sustainable method can be employed for dye degradation and free radical-scavenging activities.

Keywords: bimetallic nanoparticles; kinetics; antioxidant studies; catalytic activity

1. Introduction

Water pollution has always been a great concern over the years due to a decrease in
water levels and an increase in pollution over time [1,2]. Among the many pollutants, dyes
are one of the major contributors to water pollution [3,4]. Both cationic and anionic dyes as
pollutants are a real threat to human life. Textile dyes can cause different diseases, such
as cancer [5], cardiac problems [6] and lethal paraphernalia on cells [7]. These dyes stop
sunlight reaching marine life, which results in a decrease in photosynthesis processes under
water [8]. Therefore, the removal of such hazardous contaminants from water is of major
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interest [9]. For this purpose, a multitude of techniques have been employed for dye degra-
dation, among which nanoparticles of various kinds have gained a lot of attention [10,11].
Many methods have been reported for the modification of nanoparticles, such as thermal
and photochemical decomposition, chemical reduction, electrochemical reduction, the
sol–gel method, sputtering, the micro-emulsion method, the hydrothermal method, the
chemical precipitation method, the green method and the biological method, are frequently
used routes for their synthesis [12,13]. Initially, the synthesis of monometallic nanoparticles
was focused on by scientists and researchers. Recently, bimetallic nanocomposites have
attracted attention due to their synergistic effects in many applications, especially dye
degradation [14,15]. Osama Eljamal and coworkers reported the synthesis and characteri-
zation of iron–copper bimetallic nanoparticles (Fe-Cu BNPs) for an increase in the yield of
methane and to enhance biogas production [16]. Recently, Jianlong Wang and Juntao Tang
(2020) introduced novel Fe-Cu BNPs by the solvo-thermal method and used these BNPs in
the reduction of sulfamethoxazole (a pharmaceutical pollutant) [17]. In addition, Fe-Cu
BNPs have been used for the removal of chromium from waste water [18].

Moreover, copper and iron nanoparticles are both commercially important as their
annual production amounts to millions of tons and, due to their uses in various industries,
their production is likely to increase every year [19,20]. Unfortunately, other methods pro-
duce various pollutants as precursors that are highly damaging to the environment [21,22].
Therefore, it is necessary to find alternative ways under the umbrella of green chemistry to
meet the demand for these nanoparticles in a better and safer way [18]. In green chemistry,
there are various ways by which their production can be achieved, including biological
waste [22] and plant extracts [23]. Looking at the vast and easy availability of plants, the
plant-mediated method was considered for the production of these Fe-Cu BNPs [23].

Herein, Ixora finlaysoniana, also known as jungle flame, was used as a plant source in
order to achieve our aim of synthesizing Fe-Cu BNPs in a natural and sustainable way. It is
a shrub of the Rubiaceae family normally found in South East Asia, China, India and the
Philippines [24].

This family is quite abundant, comprising more than 13,000 species found globally.
Due to its medicinal impact, it has been used medically in various parts of the world. Vari-
ations in conditions and concentrations were made in order to optimize the most suitable
method. This method is both economical and environmentally friendly with the most suit-
able condition [25]. 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) is a nitrogen-centered
radical with a maximum absorbance at 517 nm, which is converted to 1,1, diphenyl-2-picryl
hydrazine when reacting with electron-accepting species. This hydrogen donation ability
leads to the formation of a stable complex of free radicals, resulting in termination of free
radical-based reactions [26]. The objectives of the present study were to synthesize Fe-Cu
BNPs using a green method followed by characterization using UV/Vis spectrophotometry,
XRD, FTIR and SEM. In addition, antioxidant and catalytic activities of the synthesized
Fe-Cu BNPs were determined.

2. Materials and Methods
2.1. Chemicals and Reagents

Methylene blue (99.9%) was purchased from Fisher Scientific, Altrincham, UK and
sodium borohydride (99%), DPPH (99.5%), FeSO4 (99%) and CuSO4 (99%) were acquired
from Sigma-Aldrich, Taufkirchen, Germany and methanol (98%) was used as a solvent and
was purchased from Unichem, Wuxi, China. All the chemicals and metal precursors were
used as received without any further heating or purification treatment.

2.2. Preparation of Plant Extract

Ixora plants were collected from WAPDA Town, Model Town and Kalma Chowk
nurseries of Lahore, Pakistan. After washing, plants were dried in the shade. In order
to attain a constant weight, plants were placed in hot air oven for 3 h at 60 ◦C, followed
by cutting and grinding. The powdered plant samples were then mixed with methanol
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and the extraction of bioactives was achieved using an orbital shaker for 3 h at 150 rpm.
The filtrate obtained was dried using a rotary evaporator and stored at −4 ◦C prior to
further use.

2.3. Nanoparticle Synthesis

Salt solution was prepared by mixing FeSO4 and CuSO4 in 25 mL of solvent. The
solvent used was a mixture of methanol and water in a 1:3 molar ratio. Similarly, extract
solution was prepared by mixing the extract in methanol. Both solutions were mixed at
different concentrations to make various ppm solutions, ranging from 50 to 250 ppm. The
purpose of making solutions at various concentrations was to find out the best concentration
which gives satisfactory results. The best concentration was found to be 200 ppm after
obtaining its UV/Vis spectra. The selected concentration was then centrifuged and filtered.
The filtered sample containing Fe-Cu BNPs was dried at 65 ◦C in a vacuum oven for 2 h
before further application. Figure 1 shows the Schematic diagram of Fe-Cu BNPs.
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Figure 1. Schematic diagram of Fe-Cu BNPs.

2.4. Characterization of Nanoparticles

Synthesis of Fe-Cu BNPs was immediately confirmed using a UV/Vis spectropho-
tometer and lambda max was recorded on a CECIL-7400ce UV/Vis spectrophotometer
(Cecil Instruments Ltd., Cambridge, UK). Particle size analyzer Lite-sizer 500 software
version 1.8.1, Anton Paar, Graz, Austria) with a measurement time of 10 s at 30 ◦C with a
maximum no of runs (60) was used. FTIR spectra of the Fe-Cu BNPs and aqueous plant
extracts were recorded on an FTIR spectrophotometer (IR Prestige 21, Shimadzu, Kyoto,
Japan). Additionally, the X-ray diffraction (XRD) studies were carried out at a scanning rate
of 0.05 min−1 using a Bruker D8 Advanced (Bruker, Billerica, MA, USA), equipped with a
scintillation counter using Cu Kα radiation (k = 1.5405 Å, nickel filter) at an acceleration
voltage of 30 KV NOVA SEM 450 (FEI, Hillsboro, OR, USA) was utilized to obtain SEM
images of synthesized BNPs and micrographs were obtained at 3 different magnifications.

2.5. DPPH Radical-Scavenging Potential

The antioxidant capacity of the BNPs was studied through the evaluation of the
free radical-scavenging effect on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The
determination was carried out by following an already reported method [27]. Ten milliliters
of BNPs (200, 400 and 600 ppm) was added to three separate flasks and 90 mL of distilled
water was added followed by the addition of 3.9 mL, 25 mM DPPH methanol solution.
The mixture was thoroughly vortexed and kept in the dark for 30 min. The absorbance
was measured later, at 515 nm, against a blank of methanol without DPPH. Results were
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expressed as the percentage of inhibition of the DPPH radical. The percentage of inhibition
of the DPPH radical was calculated according to Equation (1).

DPPH scavenging effect % = [(AD − AS)/AD] × 100 (1)

where AD control is the absorbance of DPPH solution without extracts and AS is the
absorbance value for the sample.

2.6. Catalytic Activity

The catalytic activity for Fe-Cu BNPs was observed following an already published
method [28]. Methylene blue 0.086 mM, NaBH4 26 mM and Fe-Cu BNPs with a 100 ppm
concentration were prepared. In a cuvette of the UV/Vis spectrophotometer, 3 mL methy-
lene blue, which acted as substrate, and 0.4 mL of 26 mM sodium borohydride acting
as a reducing agent were mixed. In this solution containing the substrate and reducing
agent, 0.5 mL Fe-Cu BNP solution was added, which behaved as a catalyst, and all the
observations were recorded at 665 nm, the maximum absorbance (λmax) for methylene blue.

3. Result and Discussion
3.1. UV/Visible Analysis

UV/visible spectrophotometric analysis can be an instant preliminary test for the
confirmation of nanoparticle formation, as metallic nanoparticles show absorbance in the
UV/Vis region. According to the literature, the absorbance range for iron nanoparticles
is 280–350 nm [29], while copper nanoparticles show absorbance from 550–600 nm [30].
During the formation of Fe-Cu BNPs, the shift in absorbance values for iron is 292 nm
and for copper it is 594 nm as compared to their monometallic counterparts that show
absorbance at 325 and 589 nm, respectively, as shown in Figure 2a [31].
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Figure 2. Absorbance peak of Fe-Cu BNPs (a) and particle size distribution of sample (b).

3.2. Particle Size Analysis

This technique is employed to find out about the size and distribution range of
nanoparticles. It also confirms the presence of nanoparticles by describing the range of the
particles. The sample used was in the form of solution and Figure 2b shows the particle size
distribution that was obtained. It contains two parameters, particle diameter (horizontally)
and distribution frequency (vertically). It clearly shows that nanoparticle ranges below and
above 100 nm were present in the sample [32,33].

3.3. FTIR Analysis

The data obtained after FTIR analysis, as shown in Figure 3a, were then compared
with an IR chart for the identification and confirmation of relevant components in the
provided sample. The dip around 3169 cm−1 is due to C–H and hydroxyl and carboxylic
group stretching in phenolic acid, gallic acid and protocatechuic acid present in the plant
extract. The extract could possibly contain some other secondary metabolites or interfering
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compounds but successful extraction depends upon careful handling and preparation of
plant samples. It would also minimize the incorporation of interfering components. FTIR
did not indicate the presence of undesired species in the nanoparticles’ final form. The dip
around 1644 cm−1 is due to C=C stretching which is a basic component of most organic
biomolecules [23]. All this evidence for the presence of phenolic compound peaks confirms
the potential of the extract to reduce Fe/Cu, which is a strong indicator for the synthesis of
target BNPs [26]. In addition, carboxylic acid present at the boundaries of Fe-NPs shows
peaks at almost 800 to 850 cm−1, whereas the peak at 1050 to 1111 cm−1 may represent
C–O–C attached to Cu present in BNPs [34].
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Figure 3. FTIR spectrum (a) and XRD patterns (b) of Fe-Cu BNPs.

3.4. XRD Analysis

X-ray diffraction is a very effective technique in determining the morphology and
structure of nanoparticles. The peak in Figure 3b at 30.0◦ relates to γ-Fe2O3 and 57.39◦

relates to α-Fe2O3 (JCPDS 39-1346) while 50.24◦ and 74.21◦ correspond to Cu nanoparticles
(JCPDS No: 04.0836) [35,36]. The presence of some minor peaks indicates impurity in
the form of biomoieties. The sharp and intense peaks confirmed the presence of Fe/Cu
nanoparticles and their crystalline nature [35]. Sharp peaks indicated the crystalline nature
of nanoparticles. In conclusion, for as-synthesized Fe-Cu bimetallic nanoparticles, the
existence of both the Fe and Cu peaks was recognized by a diffractogram.

3.5. Scanning Electron Microscopy (SEM)

SEM images of Fe-Cu BNPs were obtained through a NOVA Nano SEM 450. The
sample in powder form was used for taking SEM images. The micrographs in Figure 4a–c
were obtained at different magnifications (30, 50 and 100 nm, respectively). They provide
the data regarding morphology of the nanoparticles and they appear to have a hetero-
geneous surface. The recorded micrographs display a mixed morphology of cubic and
rectangular nanoparticles. The particle and sizes varied depending upon the clumping
of nanoparticles. The surface of the particles did not remain smooth, which may be due
to their interaction with extract biomolecules, however, these nanographs match those of
synthesized Cu NPs [37–39]. However, keeping the SEM results in mind, the predicted size
of the nanoparticles ranged from 50 to 100 nm.
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3.6. DPPH Radical-Scavenging Activity

UV–visible spectra for various plant extract concentrations with Fe-Cu BNPs taken
after adding the BNP solution, at different time intervals, clearly show the potential of
Fe-Cu BNPs, as presented in Figure 5. With the passage of time, absorbance of DPPH
solution decreases and after 30 min, the DPPH solution becomes colorless [40,41]. By
increasing the concentration of BNPs, a sharp decrease in the absorbance of DPPH solution
was observed.
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3.7. Kinetics of DPPH Radical-Scavenging Activity

Kinetics of the radical scavenging activity of BNPs were examined using a UV/Vis
spectrophotometer and an increase in the percentage of scavenging was witnessed. An
efficient response has been observed in the kinetics of antioxidant potential by using
various catalysts [42,43]. Spectra were recorded for reactions between DPPH solution and
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different concentrations of BNPs (200, 400 and 600 ppm) and then percentage of scavenging
was plotted against time, as shown in Figure 6a. The graph in Figure 6b shows the effective
antioxidant nature of DPPH where Fe-Cu BNPs behaved as acceptors. It is evident that at
each concentration of BNPs, the percentage of scavenging increased with time as DPPH
captured the radicals. Additionally, Figure 6b shows that the relative inhibition of DPPH
decreases by increasing plant extract concentration because the DPPH acts as a radical
scavenger, i.e., antioxidant. Additionally, as the plant extract concentration increases, more
DPPH is consumed.
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The kinetics of DPPH as an antioxidant were examined following a pseudo-first order
reaction using the concentration of [DPPH] using the following equation [44].

−d[DPPH]/dt = kapp · [DPPH] (2)

Kinetic parameters, including apparent rate constant “kapp (s−1)” and half life “(t1/2)
(s)”, were determined, as shown in Table 1. It indicates that by increasing the concentration
of BNPs, the rate constant increases, which refers to the increase in antioxidant activity.

Table 1. Different kinetic parameters at various concnetrations of DPPH.

Concentration
(ppm) Slope Apparent Rate Constant

kapp (s−1)
Half Life
(t1/2) (s)

200 −0.0089 0.0089 77.86516
400 −0.0129 0.0129 53.72093
600 −0.0167 0.0167 41.49700

3.8. Catalytic Activity/Dye Degradation
3.8.1. In the Absence of Fe-Cu BNP Catalysts

Different industries are continuously releasing organic dyes into water streams. Being
toxic, carcinogenic and hazardous in nature, these dyes are the biggest threat to living
things. The major source of methylene blue in water is the paper and cloth industry, which
releases approximately 60 g/L annually. The reduction of such pollutants from waste
water is a current topic of research [45,46]. Researchers have reported catalytic degradation
of dyes as one of the best tools for the removal of dyes from a water medium. In the
current study, an attempt was made to remove dye from a water medium using a catalytic
degradation process. In an initial experimental setup, degradation of MB dye was observed
in the presence of NaBH4, as seen in Figure 7a. It is clear that there is no obvious decrease
in the absorbance curves at 665 nm λmax, showing that NaBH4 were unable to reduce the
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cationic dye, although the reaction took place at the surface of the catalyst, which carried
out electron transfer from BH4

− to MB.
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3.8.2. In the Presence of Fe-Cu BNP Catalysts

Degradation of MB dye in the presence of Fe-Cu BNPs was also carried out to evaluate
the catalytic potential of synthesized bimetallic nanoparticles. For this purpose, optimized
conditions were recorded for this reaction, i.e., 26 mM NaBH4, 0.5 mL of 100 ppm Fe-Cu
BNPs and 6.8 pH at 22 ◦C. The results in Figure 7b reveal that the reduction was effective
and occurred within just 17 min, and reduction of MB was monitored every min. The
reduction catalysis of MB occurred by the Langmuir–Hinshelwood (LH) mechanism that
is generally followed by a reduction of organic pollutants [47,48]. According to the LH
mechanism, the role of Fe-Cu BNPs in catalysis could be elucidated by electron transfer
from a donor (NaBH4) to an acceptor (dyes). Additionally, more active sites were available
on the surface of the catalyst for the incoming substrate to adsorb, leading to the reduction
reaction. The heterogeneous Fenton type reaction catalyzed by Fe-Cu BNPs occurs by
surface reactions incorporating both Fe and Cu active sites [47].

The mechanism shows the –N=N– (present in MB) breakage due to an electron pair
from BH4

− on the surface of the Fe-Cu BNP, which acts as an e− transferee. Previously, Yan
Hu and coworkers reported research on the reduction of MB dye by using Fe-Cu BNPs [48],
but they did not focus on the catalytic reduction of MB.

3.8.3. Kinetics of Catalytic Activity

By using the degradation spectra monitored with a UV/Vis spectrophotometer, kinetic
studies were also performed. The reaction between MB and NaBH4 on the surface of Fe-Cu
BNPs was pseudo-first order, in which NaBH4 was taken in large excess as compared to MB
([NaBH4] >>> [MB]). It was found that the catalysis followed the Langmuir–Hinshelwood
mechanism in which NaBH4 and MB react in succession on the surface of the catalyst. The
slope of the graph (ln At/Ao vs. time t) in Figure 8 shows the apparent rate constant from
which we can calculate the rate of reaction. This kapp value determined from the graph is
0.2982 min−1 and shows the effectiveness of Fe-Cu BNPs. It is clear from the results that
there is no decrease in the ln At/Ao value from 1 to 10 min, which is due to the fact that at
the start of the reaction, the substrate and reducing agent diffuse towards the surface of
the Fe-Cu BNP catalyst and this time is known as the induction time. After 10 min, a dip
in the straight line gives the slope value, presented in the inset of Figure 8. This was the
reaction time in which NaBH4 and MB interacted with each other on the Fe-Cu BNPs and
the reaction started. This reaction finally ended at 15 and 16 min when a colorless solution
was obtained, which meant no reactive species were left in the reaction container.
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Ixora finlaysoniana extract, when isolated from the n-hexane mixture, displayed a chem-
ical composition comprising a hydrocarbon alcohol, nonacosanol, amyrin, 3-hydroxyhexan-
5-olide, gallic acid, protocatechuic acid, β-sitostreol glucoside and sitosterol [48]. The
most likely mechanism is based upon both hydrogen bond interactions and electrostatic
interactions between the plant metabolites and bi-metals.

4. Conclusions

The purpose of this research work was to synthesize Fe-Cu bimetallic nanoparticles
(BNPs) by a green method. Ixora finlaysoniana, an East Asian medicinal plant, was used
as a source of biomolecules to synthesize BNPs. The confirmation for the synthesis of
nanoparticles was carried out with a UV spectrophotometer. Their size range was checked
by a size distribution analyzer which confirmed the presence of metal nanoparticles in the
nanosized range. In addition, FTIR analysis, XRD and SEM studies confirmed the formation
and structure of BNPs. The antioxidant potential in terms of radical-scavenging potential
was determined by employing a DPPH assay and synthesized metal nanoparticles exhibited
good antioxidant properties. The catalytic activity was determined using methylene blue
dye as a substrate and sodium borohydride as a reducing agent. Results revealed that BNPs
can effectively degrade the dye present in a water medium. Kinetic studies confirmed
pseudo-first order reactions for both the radical-scavenging and catalytic activity. All the
results of characterization and different studies proved that Fe-Cu BNPs can be successfully
fabricated using Ixora finlaysoniana extract. Furthermore, these BNPs can be employed
for radical scavenging and catalytic activities. Therefore, these Fe-Cu BNPs could attain
much importance because they can meet the increasing demand for efficient and active
nanoparticles in a sustainable, economical and ecofriendly way.

Author Contributions: U.Y. and S.I. designed the research scheme and performed the experimental
part. S.T.H., F.A., F.H. and Z.S. analyzed the data and measurements. M.P., S.K. and S.B. wrote the
manuscript. Validation, F.T.J., A.S., Z.A. and A.A.G. did the proofreading. M.O. and M.M.A.-A.
performed the characterization analysis. Data Curation, S.A. All authors have read and agreed to the
published version of the manuscript.
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