268 research outputs found

    Developing Efficient and Effective Intrusion Detection System using Evolutionary Computation

    Get PDF
    The internet and computer networks have become an essential tool in distributed computing organisations especially because they enable the collaboration between components of heterogeneous systems. The efficiency and flexibility of online services have attracted many applications, but as they have grown in popularity so have the numbers of attacks on them. Thus, security teams must deal with numerous threats where the threat landscape is continuously evolving. The traditional security solutions are by no means enough to create a secure environment, intrusion detection systems (IDSs), which observe system works and detect intrusions, are usually utilised to complement other defence techniques. However, threats are becoming more sophisticated, with attackers using new attack methods or modifying existing ones. Furthermore, building an effective and efficient IDS is a challenging research problem due to the environment resource restrictions and its constant evolution. To mitigate these problems, we propose to use machine learning techniques to assist with the IDS building effort. In this thesis, Evolutionary Computation (EC) algorithms are empirically investigated for synthesising intrusion detection programs. EC can construct programs for raising intrusion alerts automatically. One novel proposed approach, i.e. Cartesian Genetic Programming, has proved particularly effective. We also used an ensemble-learning paradigm, in which EC algorithms were used as a meta-learning method to produce detectors. The latter is more fully worked out than the former and has proved a significant success. An efficient IDS should always take into account the resource restrictions of the deployed systems. Memory usage and processing speed are critical requirements. We apply a multi-objective approach to find trade-offs among intrusion detection capability and resource consumption of programs and optimise these objectives simultaneously. High complexity and the large size of detectors are identified as general issues with the current approaches. The multi-objective approach is used to evolve Pareto fronts for detectors that aim to maintain the simplicity of the generated patterns. We also investigate the potential application of these algorithms to detect unknown attacks

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Policy Search Based Relational Reinforcement Learning using the Cross-Entropy Method

    Get PDF
    Relational Reinforcement Learning (RRL) is a subfield of machine learning in which a learning agent seeks to maximise a numerical reward within an environment, represented as collections of objects and relations, by performing actions that interact with the environment. The relational representation allows more dynamic environment states than an attribute-based representation of reinforcement learning, but this flexibility also creates new problems such as a potentially infinite number of states. This thesis describes an RRL algorithm named Cerrla that creates policies directly from a set of learned relational “condition-action” rules using the Cross-Entropy Method (CEM) to control policy creation. The CEM assigns each rule a sampling probability and gradually modifies these probabilities such that the randomly sampled policies consist of ‘better’ rules, resulting in larger rewards received. Rule creation is guided by an inferred partial model of the environment that defines: the minimal conditions needed to take an action, the possible specialisation conditions per rule, and a set of simplification rules to remove redundant and illegal rule conditions, resulting in compact, efficient, and comprehensible policies. Cerrla is evaluated on four separate environments, where each environment has several different goals. Results show that compared to existing RRL algorithms, Cerrla is able to learn equal or better behaviour in less time on the standard RRL environment. On other larger, more complex environments, it can learn behaviour that is competitive to specialised approaches. The simplified rules and CEM’s bias towards compact policies result in comprehensive and effective relational policies created in a relatively short amount of time

    Evolving Graphs by Graph Programming

    Get PDF
    Graphs are a ubiquitous data structure in computer science and can be used to represent solutions to difficult problems in many distinct domains. This motivates the use of Evolutionary Algorithms to search over graphs and efficiently find approximate solutions. However, existing techniques often represent and manipulate graphs in an ad-hoc manner. In contrast, rule-based graph programming offers a formal mechanism for describing relations over graphs. This thesis proposes the use of rule-based graph programming for representing and implementing genetic operators over graphs. We present the Evolutionary Algorithm Evolving Graphs by Graph Programming and a number of its extensions which are capable of learning stateful and stateless digital circuits, symbolic expressions and Artificial Neural Networks. We demonstrate that rule-based graph programming may be used to implement new and effective constraint-respecting mutation operators and show that these operators may strictly generalise others found in the literature. Through our proposal of Semantic Neutral Drift, we accelerate the search process by building plateaus into the fitness landscape using domain knowledge of equivalence. We also present Horizontal Gene Transfer, a mechanism whereby graphs may be passively recombined without disrupting their fitness. Through rigorous evaluation and analysis of over 20,000 independent executions of Evolutionary Algorithms, we establish numerous benefits of our approach. We find that on many problems, Evolving Graphs by Graph Programming and its variants may significantly outperform other approaches from the literature. Additionally, our empirical results provide further evidence that neutral drift aids the efficiency of evolutionary search

    Dagstuhl News January - December 2008

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Logic-based machine learning using a bounded hypothesis space: the lattice structure, refinement operators and a genetic algorithm approach

    Get PDF
    Rich representation inherited from computational logic makes logic-based machine learning a competent method for application domains involving relational background knowledge and structured data. There is however a trade-off between the expressive power of the representation and the computational costs. Inductive Logic Programming (ILP) systems employ different kind of biases and heuristics to cope with the complexity of the search, which otherwise is intractable. Searching the hypothesis space bounded below by a bottom clause is the basis of several state-of-the-art ILP systems (e.g. Progol and Aleph). However, the structure of the search space and the properties of the refinement operators for theses systems have not been previously characterised. The contributions of this thesis can be summarised as follows: (i) characterising the properties, structure and morphisms of bounded subsumption lattice (ii) analysis of bounded refinement operators and stochastic refinement and (iii) implementation and empirical evaluation of stochastic search algorithms and in particular a Genetic Algorithm (GA) approach for bounded subsumption. In this thesis we introduce the concept of bounded subsumption and study the lattice and cover structure of bounded subsumption. We show the morphisms between the lattice of bounded subsumption, an atomic lattice and the lattice of partitions. We also show that ideal refinement operators exist for bounded subsumption and that, by contrast with general subsumption, efficient least and minimal generalisation operators can be designed for bounded subsumption. In this thesis we also show how refinement operators can be adapted for a stochastic search and give an analysis of refinement operators within the framework of stochastic refinement search. We also discuss genetic search for learning first-order clauses and describe a framework for genetic and stochastic refinement search for bounded subsumption. on. Finally, ILP algorithms and implementations which are based on this framework are described and evaluated.Open Acces

    Offline Learning for Sequence-based Selection Hyper-heuristics

    Get PDF
    This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a wide range of real-world applications, such as bin packing, industrial flow shop problems, determining Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, personnel scheduling, and the optimisation of water distribution networks. They are typically represented as optimisation problems where the goal is to find a ``best'' solution from a given space of feasible solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems, they are usually solved by applying heuristic methods. Selection hyper-heuristics are algorithms that organise and combine a number of individual low level heuristics into a higher level framework with the objective of improving optimisation performance. Many selection hyper-heuristics employ learning algorithms in order to enhance optimisation performance by improving the selection of single heuristics, and this learning may be classified as either online or offline. This thesis presents a novel statistical framework for the offline learning of subsequences of low level heuristics in order to improve the optimisation performance of sequenced-based selection hyper-heuristics. A selection hyper-heuristic is used to optimise the HyFlex set of discrete benchmark problems. The resulting sequences of low level heuristic selections and objective function values are used to generate an offline learning database of heuristic selections. The sequences in the database are broken down into subsequences and the mathematical concept of a logarithmic return is used to discriminate between ``effective'' subsequences, that tend to lead to improvements in optimisation performance, and ``disruptive'' subsequences that tend to lead to worsening performance. Effective subsequences are used to improve hyper-heuristics performance directly, by embedding them in a simple hyper-heuristic design, and indirectly as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore, by comparing effective subsequences across different problem domains it is possible to investigate the potential for cross-domain learning. The results presented here demonstrates that the use of well chosen subsequences of heuristics can lead to small, but statistically significant, improvements in optimisation performance
    • 

    corecore