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Abstract

Rich representation inherited from computational logic makes logic-based machine

learning a competent method for application domains involving relational background

knowledge and structured data. There is however a trade-off between the expressive

power of the representation and the computational costs. Inductive Logic Program-

ming (ILP) systems employ different kind of biases and heuristics to cope with the

complexity of the search, which otherwise is intractable. Searching the hypothesis

space bounded below by a bottom clause is the basis of several state-of-the-art ILP

systems (e.g. Progol and Aleph). However, the structure of the search space and

the properties of the refinement operators for theses systems have not been previously

characterised. The contributions of this thesis can be summarised as follows: (i) char-

acterising the properties, structure and morphisms of bounded subsumption lattice (ii)

analysis of bounded refinement operators and stochastic refinement and (iii) imple-

mentation and empirical evaluation of stochastic search algorithms and in particular a

Genetic Algorithm (GA) approach for bounded subsumption. In this thesis we intro-

duce the concept of bounded subsumption and study the lattice and cover structure

of bounded subsumption. We show the morphisms between the lattice of bounded

subsumption, an atomic lattice and the lattice of partitions. We also show that ideal

refinement operators exist for bounded subsumption and that, by contrast with general

subsumption, efficient least and minimal generalisation operators can be designed for

bounded subsumption. In this thesis we also show how refinement operators can be

adapted for a stochastic search and give an analysis of refinement operators within the

framework of stochastic refinement search. We also discuss genetic search for learn-

ing first-order clauses and describe a framework for genetic and stochastic refinement

search for bounded subsumption. Finally, ILP algorithms and implementations which

are based on this framework are described and evaluated.
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Chapter 1

Introduction

Rich representation inherited from computational logic makes logic-based machine

learning a competent method for knowledge-intensive problems, especially in appli-

cation domains which involve relational background knowledge and structured data.

Moreover, hypotheses represented in logic are directly comprehensible and the results

of learning have the potential to be understandable by human experts. For example,

this potential has been met in some applications of Inductive Logic Programming in

computational and systems biology where the results have been meaningful to biol-

ogists and were sufficiently novel to be published in relevant scientific journals (see

below).

Inductive Logic Programming (ILP) has been defined [Mug91] as the intersection of

Machine Learning and Logic Programming. ILP is an inductive learning method which

uses a logic-based representation and inference [MD94]. In other words, an ILP sys-

tem develops first-order hypotheses from training examples and background knowledge

which can all be represented as logic programs. ILP systems have been used suc-

cessfully in a wide range of real-world applications (e.g. [DM92], [Moo97], [KDK97],

[Moy02], [AD08] and [ARUK12]). In particular ILP has demonstrated remarkable suc-

cess in challenging domains in computational and systems biology (e.g. [KMSS96] and

[KWJ+04]).

There is however a trade-off between the expressive power of the representation and

the computational cost of reasoning within the representation [RN10]. In the case of

learning in first-order logic, the computational cost is usually higher than other learning
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methods which use a less complex representation. Existing ILP systems mostly employ

different kinds of biases and heuristics to cope with the complexity of the search,

which otherwise is intractable. For example, using a syntactic bias restricts the set of

hypotheses which are permitted.

Searching the hypothesis space bounded below by a bottom clause is the basis of several

state-of-the-art ILP systems. In particular ILP systems such as Progol [Mug95] and

Aleph [Sri07] are based on clause refinement through the hypothesis space bounded

by a most specific clause which is constructed from background knowledge and a seed

example using Inverse Entailment (IE) [Mug95]. These ILP systems use refinement

operators together with a search method to explore a bounded hypothesis space in

which each clause is guaranteed to cover at least one positive example (i.e. the seed

example). It is known that the search space of these systems is limited to a sub-graph

of the general subsumption lattice. However, the structure and properties of this search

space have not been previously characterised.

In the first part of this thesis we characterise the hypothesis space considered by the ILP

systems which use a bottom clause to constrain the search. We study the lattice, cover

structure and morphisms of this bounded hypothesis space and give a new analysis of

refinement operators for bounded subsumption.

Most ILP systems are traditionally based on clause refinement through a lattice defined

by a generality order (e.g. subsumption). There is also a long-standing and increasing

interest in stochastic search methods in ILP for searching the space of candidate clauses

(e.g. [PKK93, Sri00, TNM02, RK03, ZSP06, PŽZ+07, MTN07, DPZ08]). However,

to date there is very little theory to support the developments of these systems. In

the second part of this thesis we try to answer the following question. How can the

generality order of clauses and the relevant concepts such as refinement be adapted

to be used in a stochastic search? To address this question we introduce the concept

of stochastic refinement operators and adapt a framework, called stochastic refine-

ment search. We also study a special case of stochastic refinement search where a

genetic search algorithm and stochastic refinement operators are defined with respect

to subsumption order relative to a bottom clause. Finally, we describe algorithms and

implementations which are based on this framework and evaluate these on artificial

2



and real-world problems.

This chapter briefly reviews the motivations, objectives and main contributions of

this thesis. In the next section the background and motivations for this research,

its significance and the rationale behind it are explained. Next the originality and

contributions are reviewed and finally the organisation of the thesis is set out.

1.1 Background and motivations

1.1.1 Bounded hypothesis space

Machine learning can be characterised as a search problem [Mit97]. The complexity of

the search is closely related to the complexity of the representation. In a typical ILP

system the computational cost of the search depends on (i) the cost of evaluating clauses

using subsumption testing which is known to be NP-complete [GJ79] and (ii) the size

of the search space which can grow exponentially, e.g. with the maximum length of

clauses. In order to make the search tractable, ILP systems use different kinds of

biases. For example, a language bias restricts the set of acceptable hypotheses and a

search bias specifies the way the system searches through the acceptable hypotheses.

In ILP systems both language bias and search bias can be enforced by refinement

operators. The concept of refinement and refinement operators are at the heart of

many ILP systems and the refinement graph theory has been viewed as the main

theoretical foundation of ILP [NCdW97]. Different properties of refinement operators

such as properness, completeness and idealness have been studied in the literature and

the structure and the completeness of the search can be determined based on these

properties.

ILP systems such as Progol [Mug95] and Aleph [Sri07] are based on clause refinement

through the hypothesis space bounded by a bottom clause which is constructed from

background knowledge and a seed example using Inverse Entailment (IE) [Mug95]. In

this setting, refinement operators are used together with a search method to explore

a bounded hypothesis space in which each clause is guaranteed to cover at least one

positive example (i.e. the seed example). These systems have been successfully applied

to a wide range of real-world application, however, the structure of the search space and

3



the properties of the refinement operators for these systems have not been previously

characterised. In this thesis we introduce bounded subsumption in order to characterise

the hypothesis space considered by these ILP systems. We also study the lattice

structure and refinement operators for the bounded subsumption.

1.1.2 Stochastic search

Despite a bounded refinement and single target clause assumption, the size of the

search space in a Progol-like ILP system can still grow exponentially with the size of the

target clause [Mug95, Sri00]. However, the complexity of the search is less evident when

dealing with small clauses. It is therefore not surprising to note that most successful

applications of ILP systems described in the current literature involve clauses with

only a small number of literals and variables 1. For example most ILP systems which

have been applied to the mutagenesis and carcinogenesis problems [KMSS96, SMS97]

have used a syntax bias to restrict the search to clauses involving only few literals

(i.e. up to 4 literals). In some other applications of ILP which involve clauses with

a larger number of literals, domain specific information has been used to prune the

search. For example an acceptable description of a pharmacophore can be specified

explicitly by the user and can be used by the ILP system as a declarative bias to avoid

searching for pharmacophores which are not acceptable [FMPS98]. However, for many

real-world applications this kind of domain specific knowledge about the acceptable

forms of the target concept is not known beforehand. On the other hand, ILP systems

will need to scale up to deal with more complex target concepts and larger datasets.

Moreover, studies [GS00, RKD02, ZSP03] suggest that some phenomena such as phase

transition [HHW96] and heavy-tailed distribution [GSCK00] which have been observed

for satisfiability problems also exist in some relational learning problems including real-

world applications such as mutagenesis. Some of these studies [BGSS03] also suggest

that existing techniques used in most relational learning systems cannot easily scale

up for learning concepts more complex than those described in the current literature.

Existing ILP systems mostly employ downward or upward refinement operators and

1 Exceptions include Golem [MF90] (e.g [MKS92]) and ProGolem [MSTN10a] (e.g [SNCDP12]). Both
systems use lgg-like operators. Golem is limited to determinate clauses while ProGolem does not
have this limitation as discussed in Chapter 7.
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deterministic search methods to explore a lattice of clauses ordered by subsump-

tion [NCdW97]. Depending on the direction of the search, ILP systems are classified

as either top-down (general to specific) or bottom-up (specific to general). For similar

complex problems in other branches of Artificial Intelligence (AI), there has been an

increasing interest in using stochastic instead of deterministic search methods. For

example, for the Satisfiability Problems (SAT) and the Travelling Salesperson Prob-

lem (TSP), which are well known computationally complex problems, stochastic algo-

rithms have outperformed other search methods which are known for these problems.

Examples of stochastic search methods which have been successfully applied in these

problems are Simulated Annealing [Sam99, Ghe94], Iterated Local Search (e.g. GSAT

and WalkSAT) [SKC94, SLM92], Genetic Algorithms [JS89, BP00, FPS01, PW02],

and Ant Colony Optimisation [GMS01, BGD02, SN00].

Stochastic and probabilistic search methods have also been used in ILP both for the

clause evaluation task [SR00, Sri99] and for searching the space of candidate clauses

[Sri00, PS03, ZSP03]. Nevertheless, designing novel search methods has been identified

as a pressing issue for ILP and relational learning [PS03, Sri05, SGC11].

1.1.3 Stochastic refinement and genetic search

In this thesis we also try to answer the following question. How can the generality

order of clauses and the relevant concepts such as refinement be adapted to be used in

a stochastic search? To address this question we introduce the concept of stochastic

refinement operators and adapt a framework, called stochastic refinement search.

We also study a special case of stochastic refinement search where unary and binary

stochastic refinement operators and a Genetic Algorithm (GA) search are defined with

respect to bounded subsumption. GAs are stochastic yet highly directed search meth-

ods which are based on a mechanism inspired by natural evolution [Hol75, Gol89]. The

idea of using genetic and evolutionary algorithms in machine learning can be traced

back to the early days of computer science and artificial intelligence:

‘It is probably wise to include a random element in a learning machine . . .

Since there is probably a very large number of satisfactory solutions the ran-
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dom method seems to be better than the systematic. It should be noticed that

it is used in the analogous process of evolution’ —

Alan M. Turing [Tur50]

One important feature of GAs which makes them different from other search methods

is that they tend to rely on recombination (also known as crossover) as the principal

search mechanism. GAs combine survival of the fittest among the problem solutions

with a structured information exchange to form a search algorithm which has some of

the innovative flair of human search [Gol02]. The recombination operator is especially

useful in many problems where the solutions feature recombinable building blocks (i.e.

partial solutions). This also gives more exploration power to the search in order to

work as a global strategy compared to other stochastic search methods which use local

strategies that step only to neighboring states.

The recombination operator in GAs is relevant to binary refinement in ILP. It has been

shown [MM99] that the minimum depth of any clause within the binary refinement

graph is logarithmically related to the depth in the refinement graph of corresponding

unary operator whenever a certain lattice divisibility assumption is met.

1.2 Originality and contributions

It is known that the search space of a Progol-like ILP system is limited to a sub-graph

of the general subsumption lattice. Progol’s refinement operator and its incompleteness

with respect to the general subsumption order were initially discussed in [Mug95] and

[BS99]. A new subsumption order was also suggested [BS99] for characterising Progol’s

refinement, which as we show in this thesis, cannot capture all aspects of Progol’s

refinement. In this thesis we characterise the hypothesis space considered by the ILP

systems which use a bottom clause to constrain the search. In particular we discuss

and characterise refinement in Progol as a representative of these ILP systems. We

study the lattice and cover structure of this bounded hypothesis space and give a new

analysis of refinement operators, least generalisation and greatest specialisation in the

subsumption order relative to a bottom clause. We also show the morphisms between

the lattice of bounded subsumption, an atomic lattice and the lattice of partitions.
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This analysis is important for better understanding the constrained refinement space

of ILP systems such as Progol and Aleph which proved to be successful for solving

real-world problems (despite being incomplete with respect to general subsumption

order). Moreover, characterising this refinement sub-lattice can lead to more efficient

ILP algorithms and operators. For example, we show that, by contrast with the general

subsumption order, efficient least and minimal generalisation operators can be designed

for the subsumption order relative to a bottom clause. These efficient operators are

the basis of the ILP systems GA-Progol [TNM02, MTN07] and ProGolem [MSTN10a].

The theoretical results about the bounded refinement and refinement operators relative

to a bottom clause are applicable to ILP systems such as Progol and Aleph which use

some form of Inverse Entailment (IE). Moreover, these results are also applicable to

other ILP systems which use a bottom clause to restrict the search space. These include

ILP systems which use stochastic algorithms to explore the hypothesis space bounded

by a bottom clause (e.g. [Sri00, ZSP03, PŽZ+07, DPZ08]). The search space of these

systems can be characterised by bounded subsumption described in this thesis.

The refinement graph theory has been viewed as the main theoretical foundation of

ILP [NCdW97]. Since the publication of this theory, there have been attempts to build

ILP systems based on stochastic and randomised methods. However, to date there is

very little theory to support the developments of these systems. In this thesis we

discuss how the refinement theory and relevant concepts such as refinement operators

can be adapted for a stochastic ILP search. Stochastic refinement is introduced as

a probability distribution over a set of clauses and can be viewed as a prior in a

stochastic ILP search. We study the properties of a stochastic refinement search as

two well known Markovian approaches: 1) Gibbs sampling algorithm [Mit97] and 2)

Random heuristic search [Vos99]. We also discuss genetic search for learning first-

order clauses and describe a framework for genetic and stochastic refinement search

for bounded subsumption. ILP algorithms implemented based on this framework are

evaluated and discussed in this thesis.

The main contributions of this thesis can be summarised as follows:

1. We characterise clause refinement and the search space of the ILP systems which

use a bounded hypothesis space. For this purpose, we introduce the concept of
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bounded subsumption, i.e. subsumption relative to a bottom clause (Chapter 3).

2. We study the lattice and cover structure of bounded subsumption. We also

show the morphisms between the lattice of bounded subsumption, an atomic

lattice and the lattice of partitions. We show that ideal refinement operators

exist for bounded subsumption. We also show that, by contrast with the general

subsumption order, efficient least generalisation operators can be designed for

the bounded subsumption (Chapters 4 and 5).

3. Stochastic refinement is introduced to show how refinement operators can be

adapted for a stochastic ILP search. We give an analysis of stochastic refine-

ment operators within the framework of stochastic refinement search. This can

be used to characterise stochastic search methods in some ILP systems. We

discuss genetic search for learning first-order clauses and describe a special case

of stochastic refinement search where stochastic refinement operators and a GA

search are defined with respect to bounded subsumption (Chapters 6).

4. Implementation and evaluation of novel stochastic refinement operators and a

genetic search algorithm for the bounded subsumption are discussed in this thesis.

ILP algorithms implemented based on the framework of stochastic refinement

relative to bounded subsumption are discussed and evaluated on artificial and

real-world problems. In particular we describe a genetic algorithm approach

which uses the encodings and operators for the bounded subsumption and can

also be characterised as a stochastic refinement search. (Chapters 7 and 8).

1.3 Organisation of the thesis

In the following we briefly review the contents of each chapter.

• Chapter 1, Introduction.

This chapter presents an overview of the thesis and reviews the motivations, objectives

and main contributions of this project.

• Chapter 2, Machine learning and Inductive Logic Programming (ILP).

The purpose of this chapter is to provide the background information and key concepts
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which are needed in the next chapters. We give an introduction to ILP in the context

of Machine Learning and describe the ILP problem setting and important elements

such as subsumption and refinement operators.

• Chapter 3, Hypothesis space and bounded subsumption.

In this chapter we review and discuss clause refinement in Progol as a representative

of ILP systems which are based on clause refinement through the hypothesis space

bounded by a most specific clause. We introduce a subsumption order relative to a

bottom clause and demonstrate how Progol’s refinement can be characterised with

respect to this order.

• Chapter 4, The lattice structure and morphism of bounded subsumption.

In this chapter we study the lattice and cover structure of the bounded subsump-

tion and show the morphism between this lattice, an atomic lattice and the lattice of

partitions.

• Chapter 5, Encodings and refinement operators for bounded subsumption.

Encodings and refinement operators for the bounded subsumption are discussed in this

chapter. We study the properties of refinement operators in the subsumption order

relative to a bottom clause and show that ideal refinement operators exist for the

bounded subsumption.

• Chapter 6, Stochastic refinement and genetic search.

In this chapter we study how refinement operators can be adapted for a stochastic

ILP search. Stochastic refinement is introduced and we give an analysis of stochastic

refinement operators within the framework of stochastic refinement search. We also

study a special case of stochastic refinement search where genetic refinement operators

are defined with respect to subsumption order relative to a bottom clause.

• Chapter 7, Algorithms and implementation.

In this chapter we describe algorithms and implementation which are based on the

framework of stochastic refinement relative to bottom clause. In particular we discuss

stochastic refinement searches implemented in systems GA-Progol and ProGolem.

• Chapter 8, Empirical evaluation.

The algorithms and implementations described in the previous chapter are evaluated
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on artificial and real-world problems and we study and compare their performances.

• Chapter 9, Conclusions.

This chapter summarises the main contributions and concludes the thesis.

1.4 Publications

Parts of this thesis have already appeared in print elsewhere:

• Parts of Chapters 3, 4 and 5 have appeared in Proceedings of the 18th International

Conference on Inductive Logic Programming [TNM08] and the Machine Learning Jour-

nal [TNM09].

• Parts of Chapter 6 have appeared in the Proceedings of the 20th International Con-

ference on Inductive Logic Programming [TNM11].

• Parts of Chapters 7 and 8 have appeared in the Proceedings of the 10th, 12th and 19th

International Conference on Inductive Logic Programming [TNM00], [TNM02] and

[MSTN10a] 2, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO) [TNM01] and the Machine Learning Journal [MTN07] 3.

• Parts of Chapter 9 have appeared in the Proceedings of the 21th and 23rd Inter-

national Conference on Inductive Logic Programming [TNBRM12], [MLCTN13], the

PLoS ONE Journal [BCLM+11], Advances in Ecological Research Journal [TNMR+13]

and the Machine Learning Journal [MLPTN14].

The author of this thesis has other publications which are mainly on real-world ap-

plications of the ILP systems described in this thesis (e.g. [MTNW03], [TNKMP04],

[TNCKM06], [TNCK+07] and [STNL+13]) or development of relevant ILP systems

(e.g. [MSTN10b] and [MLTN12]) and therefore are indirectly related to the scope of

this thesis.

2 The author contributed to the theoretical framework and the design of ARMGs operators.
3 The author’s contribution to this paper was the design and implementation of QG/GA and perform-

ing the experiments. The idea and initial implementation of QG was due to Stephen Muggleton.
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Chapter 2

Machine learning and Inductive
Logic Programming (ILP)

Machine learning is a branch of Artificial Intelligence (AI) concerned with the design

and development of computer programs which can improve their performance in a given

task with the input information (e.g. examples, descriptions, sensory data) [Mit97]. A

major application of machine learning has been to automatically find useful patterns

from empirical data. As in human learning, in a machine learning problem we may

already have some prior or background knowledge, relevant to the learning task, which

can facilitate the learning. Kodratoff and Michalski [KM90] provided a multi-criterion

classification of machine learning methods which is still applicable to most machine

learning approaches today. According to this classification, machine learning methods

can be characterised based on different criteria such as the primary purpose of the

learning (e.g. synthetic, analytic), type of input (e.g. examples, observation), type of

primary inference (e.g. inductive, deductive) and the role of prior knowledge (e.g. em-

pirical, axiomatic). Synthetic learning, which uses induction as the primary inference,

aims primarily at creating new or better knowledge, and analytic learning, which uses

deduction as the primary inference, aims primarily at reformulating given knowledge

into a better form.

Induction can be viewed as reversing the process of deduction. While deduction is a

derivation of consequents from given premises, induction is a process of hypothesising

premises that entail given consequents. Inductive learning involves finding a hypothesis

which entails positive examples and does not entail any of the negative examples.
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This can be achieved by empirical generalisation of positive examples with or without

using background knowledge. In deductive learning methods, such as explanation-

based learning [MKKC86], the background knowledge already entails all the positive

examples, however, it requires reformulating, e.g. to make sure it is in a tractable form.

Induction is the fundamental process used by human beings for formulating general

laws from specific observations. Induction as a form of reasoning was first described

in Aristotle’s Posterior Analytics [Bar75] and the importance of inductive inference

as a source of scientific knowledge has been studied by other philosophers such as F.

Bacon [Bac20] and C. Peirce [Pei32].

As in other branches of AI, knowledge representation is an important aspect in machine

learning. Logic was recognised as a key representation method since the early days of

artificial intelligence [Tur50, McC59]. The development of computational logic in the

form of logic programming [Kow80] has played an important role in advancing different

areas of AI, including machine learning. Hence, logic-based machine learning has been

mainly concerned with Horn clauses (standard representation in logic programming)

despite the fact that some theoretical foundations (e.g. [Plo71]) are not limited to

Horn clauses. This trend has continued to date, where logic-based machine learning is

regarded 1 by the majority to be synonymous with machine learning of logic programs,

also known as Inductive Logic Programming. Inductive Logic Programming (ILP),

defined [Mug91] as the intersection of Machine Learning and Logic Programming, is

an inductive learning method which uses a logic-based representation (in the form of

logic programs) and inference [MD94]. ILP has its roots in the theoretical foundations

developed by Plotkin [Plo71], Reynolds [Rey69] and Vere [Ver75] and the development

of the systems MIS [Sha83], MARVIN [SB86] and CIGOL [MB88]. However, the term

Inductive Logic Programming was first used by Muggleton in his seminal paper [Mug91]

and the same year he organised the first of international workshops on ILP which have

been held annually since then.

In addition to the ILP workshop and conference proceedings, several books have

been published on the theoretical foundations and methodologies of ILP, e.g. [Mug92],

[LD93], [De 96], [NCdW97] and [De 08]. There are also several papers which survey the

1 This is also the view which we consider in this thesis, even though some of the results could be
extended to non-Horn clause representation.
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field, e.g. [PS03], [Sri05] and [MRP+11]. Many ILP systems, implementing different

ILP methodologies, have been developed. These include FOIL [Qui90], Golem [MF90],

CLINT [DB91], LINUS [LDG91], Progol [Mug95], CLAUDIEN [DD97], TILDE [BD97],

WARMR [DT99], TopLog [MSTN10b] and ProGolem [MSTN10a].

ILP systems have been used successfully in a wide range of real-world applications in-

cluding natural language processing [ZM93, Moo97, Cus97, DCM00, SSJ+09], mechan-

ical engineering [DM92, Kar95, ŽŽGS+07], ecology [DDRW94, KDK97, TNMR+13],

robot navigation [Kli94, Moy02, CKP+06], software engineering [BG95, CD97, BV09,

ARUK12], music [Dov95, VBD97, AD08] and many more. In particular ILP has

demonstrated remarkable success in challenging domains in computational biology in-

cluding predictive toxicology [KMSS96, SMKS96, SMS97, ASHMS07], pharmacophore

design [FMPS98, SM03, SPCK06], protein structure prediction [KS90, MKS92, TMS98,

CMS03, LMS10] and systems biology [KWJ+04, TNCKM06, SDI09, LM10].

There are also several multi-disciplinary developments in ILP including Probabilis-

tic ILP (e.g. SLPs [Mug96], BLPs [KD01], PRISM [Sat05], MLN [DKP+06] and

ProbLog [DKT07]) and Abductive ILP (e.g. [MB00], [TNCKM06] and [IFN10]).

This chapter provides the background information and key concepts from ILP which are

needed in the next chapters. As preliminaries we review definitions from clausal logic

as well as some basic definitions from ordered sets and lattice theory. In this chapter

we describe the ILP problem setting and important elements such as subsumption

and refinement operators. Then we briefly discuss the ILP systems Golem and Progol

which are important in the context of this thesis.

2.1 Preliminaries

For the sake of completeness and clarity of notation, in this section we present defini-

tions from clausal logic as well as some basic definitions from ordered sets and lattice

theory.
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2.1.1 Definitions from clausal logic

This section is intended as a brief reminder of the concepts from clausal logic which are

used in this thesis. The definitions in this section are mostly adapted from [NCdW97]

and [Mug95].

Syntactical structures in clausal logic are constructed from a set of symbols known as

clausal alphabet.

Definition 1 (Clausal alphabet) A clausal alphabet consists of the following sym-

bols:

• variables represented by an upper case letter followed by a string of lower case

letters and digits.

• function symbols represented by a lower case letter followed by a string of lower

case letters and digits.

• predicate symbols represented by a lower case letter followed by a string of lower

case letters and digits.

• connectives including ∨, ∧, ¬ and ←

• quantifiers ∀ and ∃

• punctuation symbols including “(”, “)” and “,”

Definition 2 (Term) A term is defined recursively as follows:

• a variable is a term.

• if f is an n−ary function symbol (n ≥ 0) and t1, t2, . . . , tn are terms then

f(t1, t2, . . . , tn) is a term.

A term a() where a is a 0−ary function symbol is called a constant and is normally

denoted by a. ‘[]’ and ‘.’ are function symbols and if t1, t2, . . . are terms then ‘.’(t1, t2)

can equivalently be denoted [t1|t2] and ‘.’(t1,‘.’(t2, ..‘.’(tn, [])..)) can equivalently be

denoted [t1, t2, .., tn].
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Using terms, formulas can be constructed and the smallest possible formula is called

atom.

Definition 3 (Atom) If p is an n−ary predicate symbol and t1, t2, . . . , tn are terms

then p(t1, t2, . . . , tn) is called an atomic formula, or atom.

An atom p() where p is a 0−ary predicate symbol is normally denoted by p.

Definition 4 (Well-formed formula (wff)) Every atom is a well-formed formula

(wff). If W and W ′ are wffs then ¬W (not W ), W ∧W ′ (W and W ′), W ∨W ′ (W or

W ′) and W ←W ′ (W implied by W ′) are wffs. W ∧W ′ is a conjunction and W ∨W ′

is a disjunction. If v is a variable and W is a wff then ∀v.W (for all v W ) and ∃v.W

(there exists a v such that W ) are wffs. v is said to be universally quantified in ∀v.W

and existentially quantified in ∃v.W .

The wff W is said to be function-free if and only if W contains no function symbols.

vars(W ) denotes the set of variables in W . W is said to be ground if and only if

vars(W ) = ∅.

The basic building blocks in clausal normal form are literals, which in turn make up

clauses.

Definition 5 (Literal) A literal is an atom A or the negation ¬A of an atom A. A

is called a positive literal and ¬A is called a negative literal.

Definition 6 (Clause) A clause is a finite set of literals. The empty clause, denoted

by !, is the clause containing no literals. A clause represents the disjunction of its

literals. Thus the clause {a1, a2, ..¬ai,¬ai+1, ..,¬an} can be equivalently represented as

(a1 ∨ a2 ∨ ..¬ai ∨ ¬ai+1 ∨ .. ∨ ¬an) or a1; a2; .. ← ai, ai+1, .., an. All the variables in a

clause are implicitly universally quantified. A Horn clause is a clause which contains

at most one positive literal. A definite clause is a clause which contains exactly one

positive literal. A positive literal in either a Horn clause or definite clause is called

the head of the clause while the negative literals are collectively called the body of the

clause.

Definition 7 (Logic program) A logic program is a set of definite clauses.
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Definition 8 (Clausal theory) A set of clauses in which no pair of clauses share a

common variable is called a clausal theory. A clausal theory represents the conjunction

of its clauses. Thus the clausal theory {C1, C2, .., Cn} can be equivalently represented

as (C1 ∧ C2 ∧ .. ∧ Cn).

Every clausal theory is said to be in clausal normal form. Every wff can be transformed

to a wff in clausal normal form. If C = ∀l1 ∨ ..ln is a clause then ¬C = ∃¬l1 ∧ ..∧¬ln.

In this case ¬C is not in clausal normal form since the variables are existentially

quantified. ¬C can be put in clausal normal form by substituting each occurrence of

every variable in ¬C by a unique constant not found in C. This is a special case of a

process known as Skolemisation and the unique constants are called Skolem constants.

Note that the Skolemised form of a wff is not equivalent to the original wff but the

original wff is unsatisfiable if and only if Skolemised form is unsatisfiable.

A substitution replaces variables in a formula by terms.

Definition 9 (Substitution) A substitution θ is a set {v1/t1, .., vn/tn} where each

vi is a distinct variable and each ti is a term. We say ti is substituted for vi and vi/ti

is called a binding for vi. The set {v1, .., vn} is called the domain of θ, or dom(θ), and

{t1, .., tn} the range of θ, or rng(θ). A substitution θ = {v1/t1, .., vn/tn} is called a vari-

able substitution if every ti is a variable. A variable substitution θ = {u1/v1, .., un/vn}

is said to be a variable renaming if and only if dom(θ) is disjoint from rng(θ) and each

vi is distinct.

A substitution can be applied to a formula by replacing variables in the formula by

terms according to the substitution. This is called instantiation.

Definition 10 (Instantiation) Let E be a wff or a term and θ = {v1/t1, .., vn/tn} be

a substitution. The instantiation of E by θ, written Eθ, is formed by replacing every

occurrence of vi in E by ti.

Sometimes we need to rename the variables in a formula. In this case, the new formula

which is equivalent to the old one is called a variant of the old formula. Such a variant

can be obtained by applying a renaming substitution.
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Definition 11 (Alphabetic variants) Let W and W ′ be two wffs, W and W ′ are

said to be alphabetic variants of each other if there exists a variable renaming θ such

that W θ = W ′. Wffs W,W ′ are said to be standardised apart if and only if there exists

a variable renaming θ = {u1/v1, ..un/vn} , vars(W ) ⊆ vars(θ) and W θ = W ′.

A set of formulas is unifiable if there exists a substitution which if applied to them will

make them identical. This substitution is called a unifier.

Definition 12 (Unifier and most general unifier (mgu)) The substitution θ is said

to be the unifier of the atoms a and a′ whenever aθ = a′θ. µ is the most general unifier

(mgu) of a and a′ if and only if for all unifiers γ of a and a′ there exists a substitution

δ such that (aµ)δ = aγ.

The semantics of a formula in a language is concerned with the meaning attached to the

formula. Herbrand interpretations, named after the French logician Jacques Herbrand,

are important in clausal logic. First we define the Herbrand universe (the set of all

ground terms in the language) and the Herbrand base (the set of all ground atoms in

the language).

Definition 13 (Herbrand universe) The Herbrand universe of the wff W is the set

of all ground terms composed of constants and function symbols found in W . If W does

not contain any constant then we add an arbitrary constant to the alphabet to be able

to compose ground terms.

Definition 14 (Herbrand base) The Herbrand base of the wff W is the set of all

ground atoms composed of predicate symbols found in W and the terms in the Herbrand

universe of W .

Definition 15 (Herbrand interpretation) A Herbrand interpretation I of wff W

is a total function from ground atoms in the Herbrand base of W to {!, }, where

symbols ! and represent 2 the logical truth values False and True respectively.

A Herbrand interpretation I of wff W can also be represented as the subset of the atoms

2 Note that the symbols ! and also represent the empty clause and the empty theory respectively.
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a in the Herbrand base of W for which I(a) = . In the following, all interpretations

I are assumed to be Herbrand.

• The atom a is true in I if I(a) = and false otherwise.

• The wff ¬W is true in I if W is false in I and is false otherwise.

• The wff W ∧W ′ is true in I if both W and W ′ are true in I and false otherwise.

• The wff W ∨W ′ is true in I if either W or W ′ is true in I and false otherwise.

• The wff W ←W ′ is true in I if W ∨ ¬W ′ is true in I and false otherwise.

• If v is a variable and W is a wff then ∀v.W is true in I if for every term t in the

Herbrand universe of W the wff W{v/t} is true in I. Otherwise ∀v.W is false in

I.

• If v is a variable and W is a wff then ∃v.W is true in I if ¬∀v.¬W is true in I

and false otherwise.

An interpretation which makes a formula true is called a model for that formula.

Definition 16 (Model) Interpretation M is a model of wff W if and only if W is

true in M .

Definition 17 (Semantic entailment) Let W and W ′ be two wffs. We say that W

semantically entails W ′, or W |= W ′ if and only if every model of W is a model of W ′.

Definition 18 (Satisfiable) A wff W is satisfiable if there exists a model of W and

unsatisfiable otherwise. Consequently W is unsatisfiable if and only if W |= !.

It is shown that a formula is satisfiable if and only if it has a Herbrand model. This

means that in testing unsatisfiability of a formula we can restrict attention to Herbrand

models.

Proposition 1 The wff W is satisfiable if and only if W has a Herbrand model.
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Proposition 2 Every logic program P has a unique least Herbrand model M such that

M is a model of P and every atom a is true in M only if it is true in all Herbrand

models of P .

Proposition 3 Let X, Y and Z be wffs. Then X∧Y |= Z if and only if X |= ¬Y ∨Z.

In clausal logic, an inference rule can be viewed as a function which takes premises,

analyses their syntax, and draws a conclusion from the premises.

Definition 19 (Inference rule) An inference rule, denoted by X
Y , is a rule whereby

one may draw a conclusion Y from one or more premises X.

Definition 20 (Sound inference) Let X
Y be an inference rule. Then X

Y is said to be

sound if and only if X |= Y .

Syntactic entailment can be defined based on inference rules.

Definition 21 (Syntactic entailment) Suppose I is a set of inference rules contain-

ing X
Y and W,W ′ are wffs. Then W -I W ′ if W ′ is formed by replacing an occurrence

of X in W by Y . Otherwise W -I W ′ if W -I W ′′ and W ′′ -I W ′. We say that

W syntactically entails W ′ using inference rules I, if and only if W-IW ′. The set of

inference rules I is said to be deductively sound and complete if and only if each rule

in I is sound and W-IW ′ whenever W |= W ′.

Definition 22 (Entailment generality order) Let W and W ′ be two wffs. We say

that W is more general than W ′ (conversely W ′ is more specific than W ) if and only

if W |= W ′.

Apart from the entailment generality order, there are other generality orders between

logical clauses. One important generality order which is widely used in ILP is the sub-

sumption order [Plo71]. The subsumption order and lattice are defined in Section 2.3.

In the following section we first review some definitions from orders and lattices.
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2.1.2 Orders and lattices

In this section we present some basic definitions from ordered sets and lattice theory.

These definitions are adapted from the literature (e.g. [DP02]) to suit the needs of this

thesis.

Definition 23 (Relations) Let P be a set and R be a binary relation on P . The

relation R is said to be:

• a reflexive relation if for all a in P we have aRa.

• a transitive relation if for all a, b and c in P , if aRb and bRc then aRc .

• a symmetric relation if for all a and b in P , if aRb then bRa .

• an antisymmetric relation if for all a and b in P , if aRb and bRa then a = b.

• a total relation if for all a and b in P , aRb or bRa.

• an equivalence relation if R is reflexive, transitive and symmetric.

Definition 24 (Functions) Let P and Q be sets and f ⊆ P ×Q be a binary relation.

The relation f is said to be:

• a function or mapping from P to Q, denoted by f : P → Q, if ∀x ∈ P the set

{y ∈ Q|(x, y) ∈ f} has exactly one element. In this case domain and range of f

are defined as follows. D(f) = P and R(f) = {y|x ∈ D(f), (x, y) ∈ f}.

• a surjective or onto function if f is a function where ∀y ∈ Q there exists x ∈ P

such that f(x) = y.

• a injective or one-to-one function if f is a function where ∀x1, x2 ∈ P , f(x1) =

f(x2) implies x1 = x2.

• a bijective function if f is a function which is both surjective and injective.

• a monotonically increasing function if f is a function where ∀x1, x2 ∈ P , x1 < x2

implies f(x1) ≤ f(x2).

20



• a strictly increasing function if f is a function where ∀x1, x2 ∈ P , x1 < x2 implies

f(x1) < f(x2).

Definition 25 (Ordered sets) Let P be a set and R be a binary relation on P . The

pair 〈P,R〉 is said to be:

• a quasi-ordered set if R is reflexive and transitive.

• a partially ordered set if R is reflexive, transitive and antisymmetric.

• a totally ordered set if R is total, transitive and antisymmetric.

Definition 26 (Mappings between ordered sets) Let 〈P,≤〉 and 〈Q,⊆〉 be quasi-

ordered sets. A mapping f : P → Q is said to be:

• order-preserving (or monotone) if for all x and y in P , x ≤ y implies f(x) ⊆

f(y).

• order-embedding if for all x and y in P , x ≤ y if and only if f(x) ⊆ f(y).

• order-isomorphism if it is an order-embedding which maps P onto Q. In this

case we say P and Q are (order) isomorphic and write P ∼= Q.

Proposition 4 Let 〈P,≤〉 and 〈Q,⊆〉 be partially ordered sets and f : P → Q be an

order-isomorphism. Then we have x = y if and only if f(x) = f(y)

Proposition 5 Let 〈P,≤〉 and 〈Q,⊆〉 be partially ordered sets and f : P → Q be an

order-isomorphism. Then the inverse of f , f−1 : Q→ P , is also an order-isomorphism.

Definition 27 (lub and glb) Let 〈P,≤〉 be a quasi-ordered set and S ⊆ P . An ele-

ment x ∈ P is an upper bound of S if s ≤ x for all s ∈ S. An upper bound x of S is a

least upper bound (lub) of S if x ≤ z for all upper bounds z of S. Dually, an element

x ∈ P is a lower bound of S if x ≤ s for all s ∈ S. A lower bound x of S is a greatest

lower bound (glb) of S if z ≤ x for all lower bounds z of S.

Definition 28 (Lattice) A quasi-ordered set 〈L,≤〉 is called a lattice if for every x

and y in L a lub of {x, y}, also denoted by x ∨ y (read ‘x join y’) and a glb of {x, y},
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also denoted by x∧ y (read ‘x meet y’) exist. A lattice 〈L,≤〉 is also denoted using the

meet and join operators: 〈L,∧,∨〉.

Upward and downward covers for a quasi-ordered set can be viewed as the smallest

possible non-trivial upward or downward steps in the quasi-order.

Definition 29 (Upward/downward covers) Let 〈L,≤〉 be a quasi-ordered set and

x, y ∈ L. If x < y and there is no z ∈ L such that x < z < y, then x is an upward

cover of y, and y is a downward cover of x.

Definition 30 (Ascending/descending chain) Let 〈L,≤〉 be a quasi-ordered set

and x0, . . . , xn ∈ L. The sequence x0, . . . , xn is called a chain of length n from x

to y if and only if x = x0 > x1 > · · · > xn 5 y. An infinite sequence x0, x1 . . . is called

an infinite ascending (or descending) chain from x0 if and only if x0 < x1 < . . . (or

x0 > x1 > . . . ).

Definition 31 (Lattice homomorphism) Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices. A

mapping f : L → K is a lattice homomorphism if f is join-preserving and meet-

preserving, that is, for all x and y in L:

1. f(x ∨ y) = f(x) ∪ f(y) and

2. f(x ∧ y) = f(x) ∩ f(y)

Definition 32 (Lattice isomorphism) Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices. A

mapping f : L→ K is a lattice isomorphism if f is a bijective lattice homomorphism.

Proposition 6 If f : L → K is a one-to-one homomorphism, then the sub-lattice

f(L) of K is isomorphic to L and we refer to f as an embedding of L into K.

Proposition 7 Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices.

• a mapping f : L→ K is order-preserving if it is a lattice homomorphism.

• a mapping f : L→ K is order-isomorphism if and only if it is a lattice isomor-

phism.
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Note that if two lattices are isomorphic then for all practical purposes they are identical

and differ only in the notation of their elements. In other words, an isomorphism

faithfully mirrors the order structure.

2.2 ILP problem setting

The following definition, adapted from [NCdW97], defines the learning problem setting

for ILP.

Definition 33 (ILP problem setting) Given 〈B,E〉, where B is a set of clauses

representing the background knowledge and E is the set of positive (E+) and negative

(E−) examples such that B $|= E+, find a theory H such that H is complete and

(weakly) consistent with respect to B and E. H is complete with respect to B and E+

if B ∧H |= E+. H is consistent with respect to B and E− if B ∧H ∧ E− $|= !. H is

weakly consistent with respect to B if B ∧H $|= !.

Note that in practice, due to the noise in the training examples, the completeness and

consistency conditions are usually relaxed. For example, weak consistency is usually

used and a noise threshold is considered which allows H to be inconsistent with respect

to a certain proportion (or number) of negative examples. The following example is

adapted from [LD93].

Example 1 In Definition 33, let E+, E− and B be defined as follows:

E+ = {daughter(mary, ann), daughter(eve, tom)}

E− = {daughter(tom, ann), daughter(eve, ann)}

B = {mother(ann,mary),mother(ann, tom), father(tom, eve),

father(tom, ian), female(ann), female(mary),

female(eve),male(pat),male(tom),

parent(X,Y )← mother(X,Y ),

parent(X,Y )← father(X,Y )}
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Then both theories H1 and H2 defined as follows:

H1 = {daughter(X,Y )← female(X), parent(Y,X)}

H2 = {daughter(X,Y )← female(X),mother(Y,X),

daughter(X,Y )← female(X), father(Y,X)}

are complete and consistent with respect to B and E. "

2.3 Subsumption order

Plotkin [Plo71] introduced the subsumption order between clauses. This has been the

theoretical basis for generalisation and specialisation in ILP. The general subsumption

order on clauses, also known as θ-subsumption, is defined as follows.

Definition 34 (Subsumption on clauses) Let C and D be clauses. We say C sub-

sumes D, denoted by C " D, if there exists a substitution θ such that Cθ is a subset

of D. C properly subsumes D, denoted by C 8 D, if C " D and D $" C. C and D

are subsume-equivalent, denoted by C ∼ D, if C " D and D " C.

The subsumption order on atoms, which is a special case of Definition 34, is defined

as follows.

Definition 35 (Subsumption on atoms) Let A and B be atoms. We say A sub-

sumes B, denoted by A " B, if there exists a substitution θ such that Aθ = B. A

properly subsumes B, denoted by A 8 B, if A " B and B $" A. A and B are subsume-

equivalent, denoted by A ∼ B, if A " B and B " A.

Proposition 8 (Subsumption lattice for atoms) Let A be the set of atoms in a

language and " be the subsumption order as defined in Definition 35. Every finite

subset of A has a most general specialisation (mgs), obtained from the unification

algorithm, and a least general generalisation (lgg), obtained from the anti-unification

algorithm. Thus 〈A,"〉 is a lattice.

Proposition 9 (Subsumption lattice for clauses) Let C be a clausal language and

" be the subsumption order as defined in Definition 34. Then the equivalence classes
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of clauses in C and the " order define a lattice. Every pair of clauses C and D in the

subsumption lattice have a least upper bound called least general generalisation (lgg),

denoted by lgg(C,D) and a greatest lower bound called most general specialisation

(mgs), denoted by mgs(C,D). Thus 〈C,"〉 is a lattice.

2.4 Refinement operators

Shapiro [Sha83] introduced the framework of model inference and the concept of re-

finement operator as a function which computes a set of specialisations of a clause. He

incorporated refinement operators in his model inference system MIS which was used

for debugging definite logic programs. The concept of refinement operator has been

the basis of many ILP systems. The following definition is a reminder of the concept

of refinement operator and several properties of these operators.

Definition 36 (Refinement operator) Let C be a clausal language and " be the

subsumption order as defined in Definition 34. A (downward) refinement operator for

〈C,"〉 is a function ρ, such that ρ(C) ⊆ {D|C " D}, for every C ∈ C.

• The sets of one-step refinements, n-step refinements and refinements of some

C ∈ C are respectively: ρ1(C) = ρ(C), ρn(C) = {D| there is an E ∈ ρn−1(C)

such that D ∈ ρ(E)}, n ≥ 2 and ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ ..

• A ρ-chain from C to D is a sequence C = C0, C1, . . . , Cn = D, such that Ci ∈

ρ(Ci−1) for every 1 ≤ i ≤ n.

• ρ is locally finite if for every C ∈ C, ρ(C) is finite and computable.

• ρ is proper if for every C ∈ C, ρ(C) ⊆ {D|C 8 D}.

• ρ is complete if for every C,D ∈ C such that C 8 D, there is an E ∈ ρ∗(C) such

that D ∼ E (i.e. D and E are equivalent in the "-order).

• ρ is weakly complete for 〈C,"〉 if ρ∗(!) = C, where ! is the top element of C.

• ρ is non-redundant if for every C,D,E ∈ C, E ∈ ρ∗(C) and E ∈ ρ∗(D) implies

C ∈ ρ∗(D) or D ∈ ρ∗(C).
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C : p(x, y)

ρ(C) : p(x, x) p(x, y)← q(x, z) p(x, y)← r(w, y)

ρ2(C) : p(x, x)← q(x, z) p(x, y)← q(x, z), p(x, y)← q(x, x) p(x, y)← r(y, y)
q(z,w)

ρ3(C) : p(x, x)← q(x, y) p(x, y)← q(x, z), p(x, y)← q(x, x), p(x, y)← r(y, y),
q(z, x) r(w, y) q(x, z)

ρn(C) : . . . . . . . . . . . .
ρ∗(C) = ρ0(C) ∪ ρ1(C) ∪ ρ2(C) . . .

Figure 2.1: Part of a refinement graph representing (downward) refinements of a clause.

• ρ is ideal if it is locally finite, proper and complete.

• ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward refinement operator.

Example 2 Figure 2.1 shows part of a (downward) refinement graph for the sub-

sumption order. In this graph clause p(x, y) is refined either by unifying variables or

by adding literals. The refinement operator presented by this graph is not complete as

it does not include all possible refinements. It is proper as the graph does not contain

cycles. It is redundant because it does not have a tree structure and there is more than

one path from p(x, y) to p(x, x)← q(x, z). "

The following definition for binary refinement is adapted 3 from [MM99].

Definition 37 (Binary refinement operator) Let 〈G,"〉 be a quasi-ordered set. A

(downward) binary refinement operator for 〈G,"〉 is a function ρ : G2 → 2G, such that

ρ(C,D) ⊆ {E|C " E,D " E}, for every C ∈ G.

3 Note that in [MM99], ρn(C, D) is defined as the binary refinement of a pair of clauses F and H
which can be from any previous steps of binary refinement of C and D. However, in our definition F
and H can only be from the previous step, i.e. ρn−1(C, D). As discussed in Chapter 6, this is used
to define a Markov chain of refinements where the next state depends only on the current state.
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• The sets of one-step refinements, n-step refinements and refinements of some

C,D ∈ G are respectively: ρ1(C,D) = ρ(C,D), ρn(C,D) = {E| there is an

F ∈ ρn−1(C,D) and an H ∈ ρn−1(C,D) such that E ∈ ρ(F,H)}, n ≥ 2 and

ρ∗(C,D) = ρ1(C,D) ∪ ρ2(C,D) ∪ ..

• A ρ-chain (C,D) to E is a sequence (C,D) = (C0,D0), (C1,D1), . . . , (Cm,Dm),

such that E = Cm or E = Dm and Ci,Di ∈ ρ(Ci−1,Di−1) for every 1 ≤ i ≤ m.

• ρ is locally finite if for every C,D ∈ G, ρ(C,D) is finite and computable.

• ρ is proper if for every C,D ∈ G, ρ(C,D) ⊆ {E|C 8 E,D 8 E}.

• ρ is complete if for every B,C,D ∈ G such that C 8 B, D 8 B there is an

E ∈ ρ∗(C,D) such that B ∼ E (i.e. B and E are equivalent in the "-order).

• ρ is weakly complete for 〈G,"〉 if ρ∗(!,!) = G, where ! is the top element of

G.

• ρ is non-redundant if for every B,C,D,E, F ∈ G, F ∈ ρ∗(B,C) and F ∈

ρ∗(D,E) implies B,C ∈ ρ∗(D,E) or D,E ∈ ρ∗(B,C).

• ρ is ideal if it is locally finite, proper and complete.

• ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward binary refinement

operator.

2.5 Golem and RLGG

Plotkin [Plo71] investigated the problem of finding the least general generalisation (lgg)

for clauses ordered by subsumption. The notion of lgg is important for ILP since it

forms the basis of generalisation algorithms which perform a bottom-up search of the

subsumption lattice. Plotkin also defined the notion of relative least general generali-

sation of clauses (rlgg) which is the lgg of the clauses relative to clausal background

knowledge B.
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Definition 38 (Relative subsumption [NCdW97]) Let C and D be clauses and

B be a set of clauses. We say C subsumes D relative to B, denoted by C "B D, if

there exists a substitution θ such that B |= ∀(Cθ → D). The "B order is called relative

subsumption and B is the background knowledge of this order. Least general generali-

sation with respect to relative subsumption is called relative least general generalisation

(rlgg).

Note that in Definition 38,→ is used to denote the implication connective and ∀(Cθ →

D) will usually not be a clause.

Proposition 10 (Existence of rlgg in C [NCdW97]) Let C be a clausal language

and B ⊆ C be a finite set of ground literals. Then every non-empty set S ⊆ C of clauses

has an rlgg in C.

The cardinality of the lgg of two clauses is bounded by the product of the cardinalities

of the two clauses. However, the rlgg is potentially infinite for arbitrary B. When

B consists of ground unit clauses only the rlgg of two clauses is finite. However the

cardinality of the rlgg of m clauses relative to n ground unit clauses has worst-case

cardinality of order O(nm), making the construction of such rlgg’s intractable.

The ILP system Golem [MF90] is based on Plotkin’s notion of relative least general

generalisation of clauses (rlgg). Golem uses extensional background knowledge to

avoid the problem of non-finite rlggs. Extensional background knowledge B is gener-

ated from intensional background knowledge B′ by generating all ground unit clauses

derivable from B′ in at most h resolution steps. The parameter h is provided by the

user. The rlggs constructed by Golem were forced to have only a tractable number of

literals by requiring ij-determinacy.

The ij-determinacy is equivalent to requiring that predicates in the background knowl-

edge must represent functions. j-determinate clauses are constrained to having at most

j variables in any literal. ij-determinate clauses are further restricted that each vari-

able has depth at most depth i. For variable v the depth d(v) is defined recursively as

follows.

Definition 39 (Depth of variables [Mug95]) Let C be a definite clause and v be

28



a variable in C. Depth of v is defined as follows:

d(v) =

{

0 if v is in the head of C
(maxu∈Uvd(u)) + 1 otherwise

where Uv are the variables in atoms in the body of C containing v.

Even with the determinacy constraint, rlgg’s can be very long clauses containing irrel-

evant literals. Golem employs a negative-based reduction algorithm in which negative

examples are used to reduce the size of the hypothesised clauses. The negative-based

reduction algorithm can be summarised as follows. Given a clause a← b1, . . . , bn, find

the first literal, bi such that the clause a ← b1, . . . , bi covers no negative examples.

Prune all literals after bi and move bi and all its supporting literals to the front, yield-

ing a clause a← Si, bi, Ti, where Si is a set of supporting literals needed to introduce

the input variables of bi and Ti is b1, . . . , bi−1 with Si removed. Then reduce this new

clause in the same manner and iterate until the clause length remains the same within

a cycle.

The following example shows how rlgg’s are used in Golem. This example is adapted

from [LD93].

Example 3 Let E+, E− and B be defined as in Example 1 and e1, e2 be two positive

examples and K be the conjunction of ground facts from B defined as follows:

e1 = daughter(mary, ann)

e2 = daughter(eve, tom)

K = parent(ann,mary), parent(ann, tom), parent(tom, eve),

parent(tom, ian), female(ann), female(mary), female(eve)

Then we have

rlgg(e1, e2) = lgg((e1 ← K), (e2 ← K))
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which generates the following clause:

daughter(Vm,e, Va,t) ← parent(ann,mary), parent(ann, tom), parent(tom, eve),

parent(tom, ian), female(ann), female(mary), female(eve),

parent(ann, Vm,t), parent(Va,t, Vm,e), parent(Va,t, Vm,i),

parent(Va,t, Vt,e), parent(Va,t, Vt,i), parent(tom, Ve,i),

female(Va,m), female(Va,e), female(Vm,e)

After reducing this clause we have the following clause:

daughter(X,Y ) ← female(X), parent(Y,X)

Golem was the first ILP system which was successfully applied to real-world problems

and led to scientific discoveries [MKS92]. However, the determinacy condition in Golem

is not met in many real-world applications, including the learning of chemical properties

from atom and bond descriptions.

2.6 Progol and Mode-Directed Inverse Entailment (MDIE)

One of the motivations of the ILP system Progol [Mug95] was to overcome the determi-

nacy limitation of Golem. Progol extends the idea of inverting resolution proofs used

in the systems Duce [Mug87] and Cigol [MB88] and uses the general case of Inverse

Entailment which is based on the model-theory which underlies proof. Mode-Directed

Inverse Entailment (MDIE) is the basis of the ILP system Progol. The MDIE setting

can be summarised as follows. The input to an MDIE system is 〈M,B,E〉 where M is

a set of mode statements, B is a logic program representing the background knowledge

and E is set of examples. M can be viewed as a set of metalogical statements used to

define the hypothesis language LM . The aim of the system is to find a set of consistent

hypothesised clauses H such that for each clause H ∈ H there is at least one positive

example e ∈ E such that the following holds.

B,H |= e

For any B,H, e this is equivalent to the following.

B,¬e |= ¬H
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This form allows hypotheses to be derived from B and e using standard Prolog theorem

proving techniques. Since ¬H takes the form of a ground conjunction of literals, for

any finitely bound hypothesis language LM there is a maximal ground conjunction ⊥e

for which the following holds.

B,¬e |= ¬⊥e |= ¬H

Having selected an example e and constructed ⊥e Progol conducts a refinement graph

search which considers hypotheses H in the interval

! 8 H " ⊥e

where “"” denotes θ-subsumption and ! is the empty clause.

Progol uses MDIE to develop a most specific clause ⊥ for each positive example, within

the user-defined mode language, and uses this to guide an A∗-like search through clauses

which subsume ⊥.

It was known (Example 30 in [Mug95]) that Progol’s refinement operator is not com-

plete due to the choice of ordering of ⊥e. A second type of incompleteness, which is

due to the fact that each literal from ⊥ is selected only once, was shown by [BS99].

The authors of [BS99] also defined a subsumption order, called weak subsumption, for

characterising Progol’s refinement space. However, weak subsumption cannot capture

the ordering aspect of Progol’s refinement. In this thesis, we characterise the structure

of the search space and clause refinement in Progol. For this purpose, we introduce the

concept of bounded subsumption, i.e. subsumption relative to a bottom clause and we

show that this can fully capture Progol’s refinement. Progol’s refinement is discussed

with more details and examples in the next chapter.

2.7 Summary

The purpose of this chapter was to provide the key concepts from logic-based machine

learning and Inductive Logic Programming (ILP) which are are needed in different

parts of this thesis. We gave an introduction to ILP in the context of Machine Learning

and described the ILP problem setting and important elements such as subsumption
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and refinement operators. We also briefly discussed the ILP systems Golem and Progol

which are important in the context of this thesis.
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Chapter 3

Hypothesis space and bounded
subsumption

In this chapter we first give an overview of bounded subsumption and related results.

In Section 3.2 we review clause refinement in Progol as a representative of ILP systems

which use a bottom clause to constrain the search. We give examples of Progol’s

incompleteness with respect to the general subsumption order. Ordered clauses and

sequential subsumption are discussed in Section 3.3. In order to characterise refinement

in a Progol-like ILP system, Section 3.4 defines subsumption order relative to a bottom

clause and describes the properties of this subsumption order. Related work is discussed

in Section 3.5. Section 3.6 summarises the chapter.

3.1 Bounded subsumption, an overview

The purpose of this section is to give an overview of bounded subsumption and related

results in order to motivate the theoretical developments in this thesis. As shown

in Section 2.2, an ILP problem can be characterised as a search for a complete and

(weakly) consistent theory through the space of clauses. This search space is ordered by

the generality order between clauses (or set of clauses) and the most natural generality

order to consider for this purpose is entailment. However, in practice we need to

consider alternative generality orders as entailment is known to be undecidable. For

this reason, instead of entailment, θ-subsumption has been used in the early theoretical

developments (e.g. [Plo71]) as well as system developments (e.g. MIS [Sha83]).
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Unlike entailment, θ-subsumption is decidable although it is shown to be NP-complete

[GJ79]. Table 3.1 compares Entailment, θ-subsumption and several other generality

orders across a number of dimensions. As shown in this table, another advantage of

θ-subsumption over entailment is the existence of lgg and a lattice structure which

can facilitate the search. The subsumption graph theory has been viewed as the main

theoretical foundation of ILP and searching the subsumption lattice, either by using lgg

(e.g. Golem [MF90]) or refinement operators (e.g. MIS [Sha83] and Progol [Mug95])

has been the basis of many ILP systems.

The advantages of θ-subsumption mentioned above are at the cost of incompleteness

with respect to entailment. This incompleteness is demonstrated in the following ex-

ample.

Example 4 (Incompleteness type 0) Let C, D and E be clauses as defined below.

C = nat(s(X1))← nat(X1).

D = nat(s(s(X2)))← nat(s(X2)).

E = nat(s(s(X3)))← nat(X3).

Every model for C is also a model for D and E and therefore we have C |= D and

C |= E. We also have C " D, however, there exist no substitution θ such that Cθ ⊆ E

and therefore C $" E. "

Example 4 shows the incompleteness of θ-subsumption with respect to entailment

(incompleteness type 0). Nevertheless, θ-subsumption has been widely used in ILP

systems despite this incompleteness which only occurs when learning recursive clauses

similar to the example above. In other words, this incompleteness was not a limitation

in most applications and θ-subsumption has been regarded as the main generality

order in ILP. However, θ-subsumption is NP-complete and one could argue that by

further restricting θ-subsumption it might be possible to obtain a generality order

which is more efficient and still have an acceptable degree of completeness for real-

world applications. This is similar to the trade-off between efficiency and completeness

which already exists for θ-subsumption with respect to entailment. We show that
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Generality order Condition Existence Existence Time Incompleteness
of lgg & of ideal complexity (with respect
lattice refinement to entailment)
structure operators

Entailment (|=) C |= D if No No Undecidable No
on Horn clauses every model of
([NCdW97]) C is a model

of D
θ-subsumption C &θ D if Yes, but the No NP-Complete Type 0
(&θ) Cθ ⊆ D for some length grows
on Horn clauses substitution θ very rapidly
([NCdW97])
Weak Subsumption C &w D if No Yes NP-Complete Type 0,
(&w) Cθ ⊆ D for Type 2
on Horn clauses some substitution
([BS99]) θ that does not

unify literals and
θ⊥(D)θ = θ⊥(C)

Subsumption under C &OI D if No Yes NP-Complete Type 0,
Object Identity Cθ ⊆ D for Type 2,
(&OI) some injective Type 3
on Horn clauses substitution θ
([ELMS96, AR99])

Ordered Subsumption
−→
C &o

−→
D if No No NP-Complete Type 0,

(&o)
−→
C θ is a Type 1

on ordered monotonic
Horn clauses subsequence of

([KOHH06])
−→
D for some
substitution θ

s-subsumption p )s q if No Optimal Polynomial Type 0,
()s) pθ is a simple refinement Type 1,
on simple subsequence of operators Type 2
sequences q for some are defined
([LD04, Lee06]) substitution θ

Sequential Subsumption
−→
C &s

−→
D if No Yes Polynomial Type 0,

(&s)
−→
C θ is a Type 1,

on ordered subsequence of
−→
D Type 2

Horn clauses for some
(Section 3.3) substitution θ

Bounded Subsumption
−→
C &⊥

−→
D if Yes and the Yes Linear Type 0,

(&⊥)
−→
C θ is a length is Type 1,

on ordered subsequence of
−→
D bounded by Type 2

Horn clauses for some |⊥|
(Section 3.4) substitution θ

relative to ⊥

Injective Subsumption
−→
C &i −→

D if No Yes Polynomial Type 0,

(&i)
−→
C θ is an Type 2

on ordered injective subset of

Horn clauses
−→
D for some

(Section 5.4) substitution θ

Injective Bounded
−→
C &i

⊥

−→
D if Yes and the Yes Linear Type 0,

Subsumption (&i
⊥

)
−→
C θ is an length is Type 2

on ordered injective subset of bounded by

Horn clauses
−→
D for some |⊥|

(Section 5.4) substitution θ
relative to ⊥

Table 3.1: A comparison of several generality orders for clauses.
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the subsumption orders relative to a bottom clause, or simply bounded subsumption

orders, introduced in this thesis have a linear time complexity and at the same time

have an acceptable degree of completeness such that they have been successfully used in

many real-world applications. Bounded subsumption orders also have other interesting

properties, e.g. efficient lgg operators and the existence of ideal refinement operators

which we briefly discuss in this section. But first we look back at another limitation

of θ-subsumption and show how this has been addressed by alternative subsumption

orders.

Apart from time complexity, another problem of θ-subsumption is that a long clause

can θ-subsume a short clause while it is usually expected that a long clause is more

specific. This is shown in the following example.

Example 5 Let clause C be C = p(X) ← q(X,X), then the following clauses all

subsume C but they are longer than C.

C ′
1 = p(X ′)← q(X ′, Y ′), q(Y ′,X ′)

C ′
2 = p(X ′)← q(X ′, Y ′), q(Y ′, Z ′), q(Z ′,X ′)

C ′
3 = p(X ′)← q(X ′, Y ′), q(Y ′, Z ′), q(Z ′,W ′), q(W ′,X ′)

This example is also related to infinite ascending chains and shows that clause C has

no finite complete set of downward covers under θ-subsumption and therefore ideal

refinement operators do not exist for θ-subsumption. As shown in this example, a long

clause can θ-subsume a short clause because there exist a substitution θ which can

unify several literals from the long clause into the same literal from the short clause.

However, there are alternatives to θ-subsumption which have solved this problem by

putting some constraints on the substitution. Weak subsumption [BS99] does not allow

substitutions that unify literals. For example, the clause p(X ′)← q(X ′, Y ′), q(Y ′,X ′)

θ-subsumes C = p(X)← q(X,X), but it does not weakly subsume it because substitu-

tion {X ′/X, Y ′/X} which unifies literals q(X ′, Y ′) and q(Y ′,X ′) is not allowed in weak

subsumption. Weak subsumption, therefore, introduces an injective mapping between

the literals. Similarly, subsumption under object identity (e.g. [ELMS96, AR99]) re-
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quires the injective mapping between all variables (objects). The subsumption under

object identity, therefore, implies weak subsumption, as the injection at object level

entails the injection at literal level. Injective mapping between literals resolves the

problem of infinite covers and it has been shown that ideal refinement operators ex-

ist for weak subsumption ([BS99]) as well as for subsumption under object identity

([ELMS96]). Because variables cannot be unified, the subsumption under object iden-

tity introduces a new type of incompleteness. We refer to this as incompleteness type

3 which is demonstrated in the following example 1.

Example 6 (Incompleteness type 3) Let C, D and E be clauses as defined below.

C = p(X,X)← q(X,T ), r(T,X).

D = p(X,X)← q(X,X), r(X,X), s(Y, a).

E = p(X,X)← q(X,X), r(X,X), s(Y, a), t(V ).

Clause D subsumes clause E with regards to both θ-subsumption and OI-subsumption,

i.e. D "θ E and D "OI E. We also have C "θ D, however, C $"OI D because this

requires unification of variables X and T which is not allowed under OI-subsumption.

"

The main theoretical part of this thesis is concerned with the bounded subsumption

order introduced in this thesis. The initial motivation for the introduction of bounded

subsumption order was to characterise the refinement space of ILP systems such as

Progol and Aleph which use a bottom clause to restrict the search space. However, this

analysis is not limited to these systems and the framework of bounded subsumption is

interesting in its own right and can be adapted by new systems. For example, efficient

operators and algorithms exist for bounded subsumption which have been used in

GA-Progol and ProGolem (see Chapter 7).

Bounded subsumption is a restricted form of θ-subsumption where the choice and order

of literal mappings are decided with respect to a bottom clause. In order to define sub-

sumption relative to a bottom clause we need to adapt concepts such as ordered clauses

1 This example is adapted from Example 5.24 in [De 08].
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and subsequences. An ordered clause denoted by
−→
C is a sequence of literals where the

order and duplication of literals matter. In bounded subsumption all clauses are re-

garded as ordered clauses and are (sequential) generalisations of the bottom clause,

i.e. all clauses are in language
−→
L⊥ (see Definition 53). Moreover, when mapping

literals between two clauses, only those pairs of literals can be considered which cor-

respond to the same literal of the bottom clause. For example, let the bottom clause

be
−→
⊥ = p(X) ← q(X), r(X), s(X,Y ), s(Y,X) and

−→
C = p(V1) ← r(V2), s(V6, V7),

−→
D =

p(V1)← r(V1), s(V6, V1) and
−→
E = p(V1)← r(V1), s(V4, V5) be ordered clauses as shown

in Figure 3.1. This figure shows mapping of literals with respect to a bottom clause.

Literals from
−→
C can be mapped to the literals from

−→
D respectively as they correspond

to the same literals from
−→
⊥ . The third literal from

−→
C and the third literal from

−→
E can-

not be mapped together as they correspond to different literals from
−→
⊥ . This mapping

is decided using substitution relative to ⊥ (see Definition 54), which in this example

is θ⊥ = {V2/V1, V3/V1, V4/V1, V7/V1, V3/V2, V4/V2, V7/V2, V7/V3, V7/V4, V6/V5}.
−→
C sub-

sumes
−→
D relative to ⊥ (

−→
C "⊥

−→
D) since there is a substitution θ = {V2/V1, V7/V1} ⊆ θ⊥

such that
−→
C θ is a subsequence of

−→
D . However,

−→
C does not subsume

−→
E relative to ⊥

since there is no substitution θ ⊆ θ⊥ such that
−→
C θ is a subsequence of

−→
E . Note that

−→
C subsumes

−→
E with respect to θ-subsumption, i.e. C "θ E, however,

−→
C $"⊥

−→
E .

This example shows that the set of bounded subsumption relations is a subset of θ-

subsumption relations and therefore bounded subsumption is incomplete with respect

to θ-subsumption. On the other hand, the bounded subsumption framework is compu-

tationally more efficient that θ-subsumption. For example, in this thesis we show that

the lattice of bounded subsumption is isomorphic to an atomic lattice and therefore

bounded subsumption testing can be reduced to atomic subsumption which is decidable

in linear time whereas θ-subsumption testing is known to be NP-complete [GJ79].

The morphism between the lattice of bounded subsumption and an atomic lattice is

discussed in Section 4.2. Figure 3.2 shows how bounded subsumption can be mapped

to atomic subsumption. Moreover, we show that this atomic lattice is isomorphic to

the lattice of partitions and the atoms can be encoded as partitions (Section 4.3). This

encoding is the basis of several refinement operator and algorithms (Chapters 5 and

7). We also show (Section 5.2) that ideal refinement operators exist for bounded sub-
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−→
C = p(V1)← r(V2), s(V6, V7).

−→
D = p(V1)← r(V1), s(V6, V1).

−→
⊥ = p(X)← q(X), r(X), s(X,Y ), s(Y,X).

(a)

−→
C = p(V1)← r(V2), s(V6, V7).

−→
E = p(V1)← r(V1), s(V4, V5).

−→
⊥ = p(X)← q(X), r(X), s(X,Y ), s(Y,X).

(b)

Figure 3.1: Subsumption relative to ⊥ (a) "C subsumes "D relative to ⊥ ( "C "⊥
"D) since

there is a substitution θ = {V2/V1, V7/V1} ⊆ θ⊥ such that "Cθ is a subsequence of "D
(b) "C does not subsume "E relative to ⊥ since there is no substitution θ ⊆ θ⊥ such that
"Cθ is a subsequence of "E. Note that "C "θ "E but "C $"⊥

"E.

sumption and that, by contrast with general subsumption, efficient least and minimal

generalisation operators can be designed for bounded subsumption.

Hence, the main advantages of bounded subsumption over θ-subsumption can be sum-

marised as follows:

1. morphism with the atomic lattice and that bounded subsumption testing is de-

cidable in linear time (Sections 4.2),

2. existence of ideal refinement operators (Section 5.2) and

3. efficient least and minimal generalisation operators (Sections 5.3 and 7.3.1).

However, the practical disadvantages of bounded subsumption over θ-subsumption

are less obvious. There are only two known cases of the incompleteness of bounded

subsumption with respect to θ-subsumption:

Incompleteness type 1 due to the choice of ordering in the bottom clause and the

variable dependencies in the literals and

Incompleteness type 2 due to the fact that each literal from ⊥ can be selected only

once.
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A1 = ∨(p(V1), , ¬r(V3), , ¬s(V6, V7))

A2 = ∨(p(V1), , ¬r(V1), , ¬s(V6, V1))

a(
−→
⊥) = ∨(p(X), ¬q(X), ¬r(X), ¬s(X,Y ), ¬s(Y,X))

(a)

A1 = ∨(p(V1), , ¬r(V3), , ¬s(V6, V7))

A3 = ∨(p(V1), , ¬r(V1), ¬s(V4, V5), )

a(
−→
⊥) = ∨(p(X), ¬q(X), ¬r(X), ¬s(X,Y ), ¬s(Y,X))

(b)

Figure 3.2: Subsumption relative to a bottom clause can be mapped to atomic sub-
sumption. Atoms A1, A2 and A3 correspond to ordered clauses "C, "D and "E in Figure
3.1. (a) "C "⊥

"D and A1 " A2 (b) "C $"⊥
"E and A1 $" A3.

Incompleteness type 1 is demonstrated in the following example 2.

Example 7 (Incompleteness type 1) Let B contain definitions for decrementation

(dec), addition (plus) and the clause mult(0,X, 0) ← with appropriate mode declara-

tions M and let the example e be the clause mult(1, 1, 1) ←. Then ⊥ is the clause

mult(A,A,A) ← dec(A,B), plus(B,A,A), plus(B,B,B),

mult(B,A,B),mult(B,B,B).

Now consider clause
−→
C :

−→
C = mult(U, V,W )← dec(U,X),mult(X,V, Y ), plus(Y, V,W ).

Clause C θ-subsumes ⊥, but given the ordering over ⊥ there will be no substitution

θ such that
−→
C θ is a subsequence of

−→
⊥ . Hence,

−→
C is not in the bounded subsumption

lattice, e.g. given this bottom clause there will be no element of Progol’s refinement

space containing this clause or a subsume-equivalent of this clause. "

Note that in Example 7, clause
−→
C will appear in the lattices bounded by the bottom

clauses generated from other examples (e.g. e = mult(3, 5, 15) ←) and therefore the

search can eventually find clause
−→
C .

2 This example is a revised version of Example 30 in [Mug95].
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In this thesis we also introduce (Section 5.4) injective subsumption relative to ⊥ (or

simply injective bounded subsumption) which is based on injective subset rather than

subsequence. We show that the incompleteness type 1 can be addressed by a refinement

operator which is based on injective bounded subsumption (see Example 34).

Example 8 (Incompleteness type 2) Let B contain definitions for append and par-

tition (part) with appropriate mode declarations M for learning quick sort (qs) and let

the example e be the clause qs([1], [1]) ←. Then ⊥ is the clause

qs([U |V ],W )← par(V,X,X), qs(X,Y ), append(Y, [U |Y ],W ).

Now consider target clause
−→
C :

−→
C = qs([A|B], G) ← par(B,A,C,D), qs(C,E), qs(D,F ),

append(E, [A|F ], G).

Clause C θ-subsumes ⊥, but given that each literal of ⊥ can be selected only once,
−→
C

is not in the bounded subsumption lattice, e.g. given this bottom clause, there will be

no element of Progol’s refinement space containing this clause or a subsume-equivalent

of this clause. "

To our knowledge Example 8 represent the only known case where the incomplete-

ness of bounded subsumption with respect to θ-subsumption could have any practical

implication. Note that in Example 8, the target clause
−→
C will appear in the lattices

bounded by the bottom clauses generated from examples with lists of length of more

than one (e.g. e = qs([2, 1], [1, 2]) ←) and therefore the search can eventually find

clause
−→
C . Moreover, this incompleteness can be compared to the incompleteness of

θ-subsumption with respect to entailment (Example 4) which has been widely accepted

due to the computability. It has also been argued [BS99] that incompleteness type 2

is not a drawback as it can be justified by the examples and the Minimum Description

Length (MDL) heuristic.

The bounded subsumption order described above works on ordered clauses. Similarly,

ordered subsumption [KOHH06] is defined for ordered clauses and is based on the

concept of subsequence. However, the subsequence relation considered in [KOHH06],

assumes a mapping function which is monotonically increasing (rather than strictly
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increasing mapping function considered in our definition of subsequence). This means

that in ordered subsumption, several literals from the first clause can be mapped to

the same literal from the second clause. However, as already discussed in this section,

in the bounded subsumption distinct literals from the first clause can not be mapped

to the same literal from the second clause. Hence, ordered subsumption does not have

the incompleteness type 2 described above. However, as shown in [KOHH06], there

exist no least generalisation under ordered subsumption and also the time complexity

is NP-complete.

Another subsumption order which is closely related to bounded subsumption is s-

subsumption defined for simple sequences in SeqLog [LD04, Lee06]. SeqLog is a logical

language for representing and mining sequential patterns in databases. A simple se-

quence is defined as a sequence of atoms whereas a complex sequence is a sequence of

atoms separated by (direct or indirect ) ‘successor’ operators (see Section 3.5). It is

shown [Lee06] that time complexity of s-subsumption is polynomial but the general Se-

qLog subsumption among complex sequences is NP-complete. It is also shown that lgg

does not exist for any pair of simple sequences or complex sequences and subsumption

for simple or complex sequences do not form lattices. However, optimal refinement

operators are defined for simple and complex sequences. The sequential subsumption

on ordered clauses defined in this thesis (Section 3.3) is similar to s-subsumption on

simple sequences.

According to Table 3.1, lgg only exist for θ-subsumption and bounded subsumption and

therefore in this table only these generality orders form a lattice. The cardinality of the

lgg of two clauses under θ-subsumption is bounded by the product of the cardinalities

of the two clauses. For bounded subsumption, the length of lgg is bounded by the

cardinality of bottom clause.

In this table weak subsumption and bounded subsumption are defined with respect to

a bottom clause. Like bounded subsumption, weak subsumption was initially intro-

duced to characterise clause refinement in Progol. However, weak subsumption only

characterises incompleteness type 2 and it does not capture the incompleteness due

to the ordering of the literals. In weak subsumption, clauses are assumed to be pairs

of 〈C, θ⊥(C)〉 such that Cθ⊥(C) ⊆ ⊥. Note that for a given clause C there might be
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several distinct substitutions θi such that Cθi ⊆ ⊥ and therefore distinct hypothesis

should be considered as pairs of 〈C, θi〉. Similarly, the selection function and substi-

tution θ which make
−→
C θ a subsequence of another clause are not unique. Hence, the

mappings for sequential subsumption and ordered subsumption are not unique, lgg

does not exist and these generality orders do not form a lattice. On the other hand, in

bounded subsumption, clauses in
−→
L⊥ are uniquely defined using a substitution relative

to ⊥ (θ ⊆ θ⊥) and variables in each clause
−→
C ∈

−→
L⊥ implicitly define a unique mapping

(see Definition 53). As shown in Chapter 4, each pair of ordered clauses have a most

general specialisation and a least general generalisation under bounded subsumption

and the bounded subsumption forms a lattice.

As shown in Table 3.1, only bounded subsumption and injective bounded subsump-

tion have linear time complexities and among these, injective bounded subsumption

is more complete. However, injective bounded subsumption is also more redundant

than bounded subsumption (Section 5.4). In Chapter 7 we describe implementation

of refinement operators based on both bounded subsumption and injective bounded

subsumption. More details about sequential and bounded subsumption orders and

relevant refinement operators are discussed throughout this thesis.

3.2 Clause refinement in Progol

In this section we study clause refinement in ILP systems in which the hypothesis

space is bounded by a bottom clause. In particular we discuss refinement in Progol as

a representative of these ILP systems.

The learning algorithm in Progol [Mug95] works by successive construction of definite

clause hypotheses H from a language L. H must explain the examples E in terms

of background knowledge B. Each clause H in H is generated as follows. First an

uncovered positive example e is selected and a most-specific clause or bottom clause

⊥ associated with e is constructed. Then a search is performed through the graph

defined by the refinement ordering " bounded below by the bottom clause ⊥. Progol

uses mode declarations to constrain the search for clauses which subsume ⊥. The

following are definitions for mode declaration (M), definite mode language (L(M))
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and depth-bounded mode language (Li(M)) as described in [Mug95].

Definition 40 (Mode declaration M) A mode declaration has either the form modeh

(n,atom) or modeb(n,atom) where n, the recall, is either an integer, n > 1, or ‘*’ and

atom is a ground atom. Terms in the atom are either normal or place-marker. A

normal term is either a constant or a function symbol followed by a bracketed tuple of

terms. A place-marker is either +type, -type or #type, where type is a constant. If m

is a mode declaration then a(m) denotes the atom of m with place-markers replaced by

distinct variables. The sign of m is positive if m is a modeh and negative if m is a

modeb.

In Definition 40, the recall is used to bound the number of alternative solutions for

instantiating the atom. A recall of ‘*’ indicates all solutions 3.

Example 9 The following are examples of mode declarations.

modeh(*,reverse(+list,-list)) modeb(*,+any= #any)
modeb(*,append(-list,+list,+list) modeb(1,append(+list,[+any],-list))
modeh(1,plus(+int,+int,-int)) modeb(4,(+int > #int))

The following defines Progol’s definite mode language L(M).

Definition 41 (Definite mode language L(M)) Let C be a definite clause with a

defined total ordering over the literals and M be a set of mode declarations. C = h←

b1, .., bn is in the definite mode language L(M) if and only if 1) h is the atom of a

modeh declaration in M with every place-marker +type and -type replaced by variables

and every place-marker #type replaced by a ground term and 2) every atom bi in the

body of C is the atom of a modeb declaration in M with every place-marker +type and

-type replaced by variables and every place-marker #type replaced by a ground term

and 3) every variable of +type in any atom bi is either of +type in h or of -type in

some atom bj , 1 ≤ j < i.

Like Golem, Progol constructs clauses of bounded depth (see Definition 39).

3 In practice this means a large number, e.g. Progol considers a maximum of 100 alternative solutions
for the recall.
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Definition 42 (Depth-bounded mode language Li(M)) Let C be a definite clause

with a defined total ordering over the literals and M be a set of mode declarations. C

is in Li(M) if and only if C is in L(M) and all variables in C have depth at most i

according to Definition 39.

Progol searches a bounded sub-lattice for each example e relative to background knowl-

edge B and mode declarations M . The sub-lattice has a most general element which is

the empty clause, !, and a least general element ⊥i which is the most specific element

in Li(M) such that

B ∧⊥i ∧ ¬e -h !

where -h ! denotes derivation of the empty clause in at most h resolutions. The

following definition describes a bottom clause ⊥i for a depth-bounded mode language

Li(M).

Definition 43 (Most-specific clause or bottom clause) Let h and i be natural

numbers, B be a set of Horn clauses, e = a ← b1, .., bn be a definite clause, M be a

set of mode declarations containing exactly one modeh m such that a(m) " a and ⊥̂

be the most-specific definite clause such that B ∧ ⊥̂ ∧ ¬e -h !. ⊥i is the most-specific

clause in Li(M) such that ⊥i " ⊥̂. C is the most-specific clause in L if for all C ′ in

L we have C ′ " C.
−→
⊥ is ⊥i with a defined ordering over the literals.

In this thesis, we refer to ⊥i as
−→
⊥ or ⊥ depending on whether we use the ordering of

the literals or not. Progol’s algorithm for constructing the bottom clause (⊥i) is given

in Appendix A.

Example 10 Let M be the following mode declarations.

modeh(*,reverse(+list,-list)) modeb(*,+list=[-int|-list]
modeb(*,+any= #any) modeb(*,reverse(+list,-list))
modeb(*,append(+list,[+int],-list))
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Let background knowledge B be defined as follows.

B =







































any(Term)←
list([])←
list([H|T ])← list(T )
Term = Term←
reverse([], [])←
append([],X,X) ←
append([H|T ], L1, [H|L2]) ← append(T,L1, L2)

Let h = 30 and i = 3 and let the example e be as below.

e = reverse([1], [1]) ←

In this case ⊥i is as follows.

⊥i = reverse(A,A) ← A = [1], A = [B|C], B = 1, C = [],

reverse(C,C), append(C, [B], A)

Progol uses a refinement operator to search a hypothesis space bounded by the bottom

clause. As described in [Mug95], the refinement operator in Progol is designed to

maintain the relationship ! " H " ⊥ for each clause H and also to avoid or reduce

redundancy. Since H " ⊥, it is the case that there exists a substitution θ such that

Hθ ⊆ ⊥. Thus for each literal l in H there exists a literal l′ in ⊥ such that lθ = l′.

Hence, there is a uniquely defined subset ⊥(H) consisting of all l′ in ⊥ for which there

exists l in H and lθ = l′. In order to choose an arbitrary subset S′ of a set S an

index k is maintained. For each value of k between 1 and n, the cardinality of S, it is

decided whether to include the kth element of S in S′. The set of all series of n choices

corresponds to the set of all subsets of S and for each subset of S there is exactly one

series of n choices. Hence, Progol’s refinement operator maintains both k and θ to

avoid redundancy and maintain the relationship ! " H " ⊥

Definition 44 (Refinement operator ρ as defined in [Mug95]) Let h, i,B, e,M

and ⊥i be defined as in Definition 43 and let n be the cardinality of ⊥i. Let k be a

natural number, 1 ≤ k ≤ n. Let C be a clause in Li(M) and θ be a substitution such

that Cθ ⊆ ⊥i. Below, a literal l corresponding to a mode ml in M is denoted simply

as p(v1, .., vm) despite the sign of ml and function symbols in a(ml). A variable is

splittable if it corresponds to a +type or -type in a modeh or if it corresponds to a -type

in a modeb. 〈C ′, θ′, k′〉 is in ρ(〈C, θ, k〉) if and only if either
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1. C ′ = C ∪ {l}, k′ = k, 〈l, θ′〉 is in δ(θ, k) and C ′ ∈ Li(M) or

2. C ′ = C, k′ = k + 1, θ′ = θ and k < n.

where δ(θ, k) is defined as follows. 〈p(v1, .., vm), θ′〉 is in δ(θ, k) if and only if θ′ is

initialised to θ, lk = p(u1, .., um) is the kth literal of ⊥i and for each j, 1 ≤ j ≤ m,

1. if uj is splittable then vj/uj ∈ θ′ else vj/uj ∈ θ or

2. if uj is splittable then vj is a new variable not in dom(θ) and θ′ = θ ∪ {vj/uj}.

The refinement operator ρ defined in Definition 44 allows more than one literal in

H to be mapped to the same literal l′ in ⊥ (i.e. k′ = k). However, this is not

allowed in Progol’s implementation 4 for the sake of efficiency and index k is always

incremented after each step. This means each literal of ⊥ can be considered only once.

In the following, we give a revised definition which describes the refinement operator as

implemented in Progol. This also includes a corrected definition for function δ which

uses the iterative construction of θ′.

Definition 45 (Refinement operator ρ as implemented in Progol1) Let h, i,B, e,M

and ⊥i be defined as in Definition 43 and let n be the cardinality of ⊥i. Let k be a

natural number, 1 ≤ k ≤ n. Let C be a clause in Li(M) and θ be a substitution such

that Cθ ⊆ ⊥i. Below, a literal l corresponding to a mode ml in M is denoted simply

as p(v1, .., vm) despite the sign of ml and function symbols in a(ml). A variable is

splittable if it corresponds to a +type or -type in a modeh or if it corresponds to a -type

in a modeb. 〈C ′, θ′, k′〉 is in ρ(〈C, θ, k〉) if and only if either

1. C ′ = C ∨ l, k′ = k + 1, k < n and 〈l, θ′〉 is in δ(θ, k) and C ′ ∈ Li(M) or

2. C ′ = C, k′ = k + 1, θ′ = θ and k < n.

where δ(θ, k) is defined as follows. 〈p(v1, .., vm), θ′m〉 is in δ(θ, k) if and only if lk =

p(u1, .., um) is the kth literal of ⊥i, θ′0 = θ and θ′j for each j, 1 ≤ j ≤ m is defined as

follows:

4 E.g. Progol4.1 available from: http://www.doc.ic.ac.uk/e shm/Software/progol4.1/
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1. if vj/uj ∈ θ′j−1 then θ′j = θ′j−1 or

2. if uj is splittable then θ′j = θ′j−1 ∪ {vj/uj} where vj is a new variable not in

dom(θ′j−1).

As noted in [Mug95], the variables in ⊥i form a set of equivalence classes over the

variables in any clause C which θ-subsumes ⊥i. Thus the equivalence class of u in θ

could be written as [v]u representing the set of all variables in C such that v/u is in

θ. The second choice in the definition of δ adds a new variable to an equivalence class

[vj ]uj . This will be referred to as splitting the variable uj. Note that in Definition 45

a variable is not splittable if it corresponds to a +type in a modeb since the resulting

clause would violate the mode declaration language L(M) (see Definition 41). In

some problems, given enough training examples, the target hypothesis can be learned

without variable splitting (using only the variable bindings from the bottom clause).

For this reason, the default refinement operators in some Progol-like ILP systems,

including Aleph [Sri07], do not split variables and only consider adding literals from

the bottom clause (i.e. the second choice of δ in Definition 45 is not implemented).

However, it can be shown that there are problems where the target hypothesis cannot

be found by a Progol-like ILP system without variable splitting. The following is an

example where variable splitting is needed.

Example 11 (variable splitting) Consider learning a half adder logical circuit that

performs an addition operation on two binary digits and produces a sum and a carry

value which are both binary digits. Suppose M consists of the following mode declara-

tions:

modeh(1, add(+bin, +bin, -bin, -bin))
modeb(1, xor(+bin, +bin, -bin))
modeb(1, and(+bin, +bin, -bin))

The type and other background knowledge are defined as follows:

B =















bin(0)←, bin(1)←, and(0, 0, 0) ←,
and(0, 1, 0) ←, and(1, 0, 0) ←, and(1, 1, 1) ←,
xor(0, 0, 0) ←, xor(0, 1, 1) ←, xor(1, 0, 1) ←,
xor(1, 1, 0) ←
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The positive and negative examples are as follows:

E =







add(1, 0, 1, 0) ←, add(0, 0, 0, 0) ←, add(0, 1, 1, 0) ←,
add(1, 1, 0, 1) ←, ← add(0, 1, 0, 1), ← add(1, 0, 0, 1),
← add(1, 1, 1, 0), ← add(1, 1, 1, 1), ← add(0, 1, 1, 1)

Let h = 30 and i = 3 and let the first positive example be e = add(1, 0, 1, 0) ←. In this

case ⊥i is as follows:

⊥i = add(A,B,A,B)← xor(A,A,B), xor(A,B,A), xor(B,A,A),

xor(B,B,B), and(A,A,A), and(A,B,B), and(B,A,B),

and(B,B,B)

Using the refinement operator in Definition 45, Progol can learn the following target

hypothesis:

add(A,B,C,D)← xor(A,B,C), and(A,B,D)

However, this clause cannot be generated from ⊥i without variable splitting, because the

bottom clause contains only two distinct variables and yet the target clause contains

four variables. "

This example represents a group of problems which cannot be learned by a Progol-

like ILP system without variable splitting. In general, if the target clause includes a

predicate with more than two variables which are defined over a binary domain, then

in the bottom clause at least two arguments of this predicate always represent the same

variable. This then requires variable splitting in order to generate the target clause

from the bottom clause. Progol’s refinement operator uses variable splitting by default,

however it can be turned off by the user. Aleph’s default refinement operator does not

implement variable splitting and only considers adding literals from the bottom clause.

Variable splitting in Aleph is implemented in an optional setting where equality literals

between variables are inserted into the bottom clause to maintain equivalence classes

over the variables. However, introducing equality literals in the bottom clause increases

the search space considerably and can make the search explore redundant clauses.

According to Aleph’s manual [Sri07], if variable splitting is turned on (splitvars is set

to true) the bottom clause can be extremely large and probably not practical for large

numbers of variable co-references. For the problem mentioned in Example 11, Aleph
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can find the correct target hypothesis if splitvars is set to true. However, in this case

Aleph considers a bottom clause with 101 literals compared with the bottom clause

with 9 literals considered by Progol.

In this section we show that Progol’s refinement cannot be described by the general

subsumption order and that we need the notion of “sequential subsumption” in order

to characterise Progol’s refinement space. It can be shown that a refinement opera-

tor cannot be both complete and non-redundant [NCdW97]. However, a refinement

operator can be weakly complete and non-redundant (optimal). As mentioned in the

previous section, Progol’s ρ is designed to be non-redundant and therefore it cannot

be complete. However, it is known [Mug95] that Progol’s refinement operator is also

not weakly complete with respect to the general subsumption order as demonstrated

in Example 7. In this example, clause C is in L, but given the ordering over ⊥ there

will be no element of Progol’s ρ∗(!) containing this clause or a subsume-equivalent of

this clause.

The authors of [BS99] describe two types of Progol’s incompleteness. Example 7 is

related to the first type of incompleteness which is due to the choice of ordering in

the bottom clause and the variable dependencies in the literals. As mentioned in

the previous section, Progol’s refinement uses an indexing over the literals and the

literals in ⊥ can only be considered from left to right. Moreover, each literal from

⊥ can be selected only once. This leads to the second type of incompleteness. The

example below shows that Progol’s refinement space is not a lattice with respect to

the general subsumption, as the least general generalisation of clauses is not always in

the refinement space.

Example 12 Let C, D and ⊥ be clauses as defined below.

C = p(X,Y )← q(X,X), q(Y,W ).

D = p(X,Y )← q(Z,X), q(Y, Y ).

⊥ = p(X,Y )← q(X,X), q(Y, Y ).

C and D can be generated by Progol’s refinement (i.e. C,D ∈ ρ∗(!)), however, clause

E below which is the least general generalisation (lgg) of C and D cannot be generated
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(i.e. E $∈ ρ∗(!)).

E = p(X,Y )← q(Z,X), q(U,U), q(Y,W ).

"

Example 12 is related to the second type of incompleteness which is due to the fact

that each literal from ⊥ can be selected only once. Clause E, therefore, cannot be in

ρ∗(!) as this will require more than one literal of E to be mapped to the same literal

of ⊥. As another example of the second type of incompleteness, consider the following

example adapted from [BS99].

Example 13 Let ⊥ = p(X) ← q(X,X), then Progol’s refinement only considers the

following hypotheses.

C = p(X)

D = p(X)← q(X,Y )

E = p(X)← q(X,X)

However, the following clauses which subsume ⊥ are not considered by Progol’s refine-

ment:

C ′
1 = p(X)← q(X,Y ), q(Y,X)

C ′
2 = p(X)← q(X,Y ), q(Y,Z), q(Z,X)

C ′
3 = p(X)← q(X,Y ), q(Y,Z), q(Z,W ), q(W,X)

. . .

"

In this example clause C ′
n can be constructed only if more than one literal (i.e. n + 1

literals) from C ′
n could be mapped to the same literal q(X,X) from ⊥ (which is not

allowed in Progol’s refinement). This example demonstrates an incompleteness with

respect to θ-subsumption. However, as shown in Section 3.1 the missing subsumption

relations are also related to infinite ascending chains which is an undesirable property

of θ-subsumption
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C : p(x, y)

ρ(C) : p(x, x) p(x, y)← q(x, z) p(x, y)← r(w, y)

ρ2(C) : p(x, x)← q(x, z) p(x, y)← q(x, z), p(x, y)← q(x, x) p(x, y)← r(y, y)
q(z,w)

ρ3(C) : p(x, x)← q(x, y) p(x, y)← q(x, z), p(x, y)← q(x, x), p(x, y)← r(y, y),
q(z, x) r(w, y) q(x, z)

ρn(C) : . . . . . .

⊥ : p(x, y)← q(x, x),
r(y, y)

Figure 3.3: Part of a refinement graph bounded by a bottom clause as in Progol.
Dashed lines represent refinement steps which are not considered by Progol’s refine-
ment. Red dashed lines represent missing refinement steps which lead to incompleteness
with respect to general subsumption

Figure 3.3 summarises the two types of incompleteness discussed in this section. This

figure shows part of a refinement graph bounded by a bottom clause as in Progol.

Suppose that the bottom clause ⊥ is given by p(x, y) ← q(x, x), r(y, y). Dashed lines

represent refinement steps which are not considered by Progol’s refinement. For ex-

ample, no refinement step from p(x, y) to p(x, x) is considered because according to

Progol’s refinement operator, a literal is not allowed to be more specific than the cor-

responding literal from the bottom clause (i.e. p(x, y) in this case). Red (grey in

black and white) dashed lines represent missing refinement steps which lead to incom-

pleteness with respect to general subsumption. For example, no refinement step from

p(x, y)← r(w, y) to p(x, y)← r(w, y), q(x, z) is considered by Progol’s refinement due

to the choice of ordering in the bottom clause. As shown in example 7, the choice of

ordering in the bottom clause and the variable dependencies in the literals could lead

to incompleteness (first type of incompleteness). Moreover, the refinement step from

p(x, y) ← q(x, z) to p(x, y) ← q(x, z), q(z, x) is missing because each literal from the

bottom clause can be selected only once (second type of incompleteness).
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As mentioned before, Progol’s refinement operator scans ⊥ from left to right and for

each literal l′ of ⊥ decides whether to include a generalisation of it (i.e. l, where lθ = l′)

in H or not. Hθ can be, therefore, characterised as a “subsequence” of ⊥ rather than

a “subset” of ⊥. In the following sections we first define a special case of subsumption

based on the idea of subsequences, and then we show how Progol’s refinement can be

characterised using sequential subsumption.

3.3 Ordered clauses and sequential subsumption

In this section we define the concepts of ordered clauses and sequential subsumption

which will be used for characterising clause refinement in a Progol-like ILP system.

According to Definition 41, clauses which are considered by Progol’s refinement (i.e.

clauses in L(M)) are defined with a total ordering over the literals. In order to charac-

terise Progol’s refinement we adapt an explicit representation for ordered clauses. The

concept of ordered clauses has been used before in ILP. For example, when defining

upward refinement operators it is sometime necessary to duplicate literals in order to

correctly invert an elementary substitution. Duplication of literals is not allowed in

the standard representation of clauses (which use a set notation) and therefore ordered

clauses are used instead [NCdW97]. A subsumption relation for ordered clauses is

studied in [KOHH06]. The difference between this subsumption order and the sub-

sumption order considered in this thesis is discussed in Section 3.5. There are also

other applications of ordered clauses and sequential subsumption, for example in the

context of data mining from sequential data (e.g. [LD04]). In this thesis we use the

same notion used in [NCdW97] and an ordered clause is represented as a disjunction

of literals (i.e. L1 ∨ L2 ∨ · · · ∨ Ln). The set notation (i.e. {L1, L2, . . . , Ln}) is used to

represent conventional clauses.

Definition 46 (Ordered clause) An ordered clause
−→
C is a sequence of literals L1, L2,

. . . , Ln and denoted by
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln. The set of literals in

−→
C is denoted by

C.

Unlike conventional clauses, the order and duplication of literals matter for ordered

clauses. For example,
−→
C = p(X)∨¬q(X),

−→
D = ¬q(X)∨p(X) and

−→
E = p(X)∨¬q(X)∨
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p(X) are different ordered clauses while they all correspond to the same conventional

clause, i.e. C = D = E = {p(X),¬q(X)}.

Selection of two clauses is defined as a pair of compatible literals and this concept

was used by Plotkin to define least generalisation for clauses [Plo71]. However, in this

thesis we use selections to define mappings of literals between two ordered clauses.

Definition 47 (Compatible literals) Literals L and M are compatible if they have

the same sign and predicate symbol.

Definition 48 (Selection of clauses) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D = M1 ∨

M2 ∨ · · · ∨Mm be ordered clauses. A selection of
−→
C and

−→
D is a pair (i, j) where Li

and Mj are compatible literals.

Definition 49 (Selection function) Let
−→
C = L1∨L2∨ · · ·∨Ln and

−→
D = M1∨M2∨

· · · ∨Mm be ordered clauses. A set s of selections of
−→
C and

−→
D is called a selection

function if it is a total function of {1, 2, . . . , n} into {1, 2, . . . ,m}.

Example 14 Let
−→
C = L1 ∨ L2 ∨ L3 and

−→
D = M1 ∨M2 ∨M3 ∨M4 be two ordered

clauses and the set of all selections of
−→
C and

−→
D be S = {(1,1), (1,2), (2,1), (2,2),

(3,4)}. Then, s1 = {(1,1), (2,2), (3,4)}, s2 = {(1,1), (2,1), (3,4)} and s3 = {(1,2),

(2,1), (3,4)} are examples of selection functions of
−→
C and

−→
D . "

Definition 50 (Subsequence) Let
−→
C = L1∨L2∨· · ·∨Ll and

−→
D = M1∨M2∨· · ·∨Mm

be ordered clauses.
−→
C is a subsequence of

−→
D , denoted by

−→
C 9

−→
D , if there exists a

strictly increasing selection function s ⊆ {1, . . . , l} × {1, . . . ,m} such that for each

(i, j) ∈ s, Li = Mj .

Example 15 In Figure 3.4,
−→
C is a subsequence of

−→
B because there exists an increasing

selection function s1 = {(1, 1), (2, 3), (3, 4)} which maps literals from
−→
C to equivalent

literals from
−→
B . However,

−→
D is not a subsequence of

−→
B because an increasing selection

function does not exist for
−→
D and

−→
B . "

Definition 51 (Ordered substitution) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ll be an ordered

clause and θ be a substitution.
−→
C θ is defined as follows,

−→
C θ = L1θ ∨ L2θ ∨ · · · ∨ Llθ.
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−→
C = p(x, y) ∨ r(x, y) ∨ r(y, x)

−→
B = p(x, y) ∨ q(x, y) ∨ r(x, y) ∨ r(y, x)

(a)

−→
D = p(x, y) ∨ r(y, x) ∨ r(x, y)

−→
B = p(x, y) ∨ q(x, y) ∨ r(x, y) ∨ r(y, x)

(b)

Figure 3.4: (a) "C is a subsequence of "B because there exists a strictly increasing
selection function s1 = {(1, 1), (2, 3), (3, 4)} which maps each literal from "C to an
equivalent literal from "B (b) "D is not a subsequence of "B.

Definition 52 (Sequential subsumption) Let
−→
C and

−→
D be ordered clauses. We

say
−→
C is a sequential generalisation of

−→
D , denoted by

−→
C "s

−→
D , if there exists a substi-

tution θ such that
−→
C θ is a subsequence of

−→
D .
−→
C is a proper sequential generalisation

of
−→
D , denoted by

−→
C 8s

−→
D , if

−→
C "s

−→
D and

−→
D $"s

−→
C .
−→
C and

−→
D are equivalent with

respect to sequential subsumption, denoted by
−→
C ∼s

−→
D , if

−→
C "s

−→
D and

−→
D "s

−→
C .

Example 16 Let
−→
B = p(X1, Y1) ∨ q(X1, Y1) ∨ r(X1, Y1) ∨ r(Y1,X1),

−→
C = p(X2, Y2) ∨

r(U2, Y2) ∨ r(Y2, V2) and
−→
D = p(X3, Y3) ∨ r(Y3, V3) ∨ r(U3, Y3) be ordered clauses. Let

θ1 = {X2/X1, Y2/Y1, U2/X1, V2/X1}, then
−→
C θ1 is a subsequence of

−→
B and therefore

−→
C "s

−→
B . However, there is no substitution θ2 such that

−→
Dθ2 is a subsequence of

−→
B and therefore

−→
D $"s

−→
B . Note that for conventional clauses B, C and D we have

Cθ1 ⊆ B and similarly for θ2 = {X3/X1, Y3/Y1, V3/X1, U3/X1} we have Dθ2 ⊆ B and

therefore C " B and D " B. "

The following theorem shows the relationship between sequential subsumption and the

general subsumption order.

Theorem 1 Let
−→
C and

−→
D be ordered clauses. If

−→
C "s

−→
D , then C " D.

Proof. Suppose
−→
C "s

−→
D , then according to Definition 52 there exists a substitu-

tion θ such that
−→
C θ is a subsequence of

−→
D . Let

−→
C θ = L1θ ∨ L2θ ∨ · · · ∨ Llθ and

−→
D = M1 ∨M2 ∨ · · · ∨Mm. Then for every literal Liθ in

−→
C θ there exists a literal Mj

in
−→
D such that Liθ = Mj, and therefore Cθ ⊆ D. Hence, C " D. !
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Ordered clauses Conventional clauses
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln C = {L1, L2, . . . , Ln}
Mapping of literals (s) Undefined
Subsequence (9) Subset (⊆)
Sequential subsumption ("s) Subsumption (")

Table 3.2: A comparison between ordered clauses and conventional clauses.

Note that as shown in Example 16, the converse of Theorem 1 does not hold in general.

Table 3.3 shows a comparison between corresponding concepts for ordered clauses and

conventional clauses.

3.4 Subsumption relative to a bottom clause

As shown in Section 3.2, clause refinement in Progol-like ILP systems is incomplete

with respect to the general subsumption order and it cannot be properly described by

the general subsumption order. In this section we define a subsumption order relative

to ⊥ (i.e. "⊥) which can capture clause refinement in these systems. First we define
−→
L⊥ as the set of definite ordered clauses which are sequential generalisation of

−→
⊥ .

Definition 53 (
−→
L⊥) Let

−→
⊥ be a bottom clause as defined in Definition 43 and

−→
C a

definite ordered clause.
−→
⊥v is

−→
⊥ with all variable positions populated with new and

distinct variables. Let θv be a variable substitution such that
−→
⊥vθv =

−→
⊥ .
−→
C is in

−→
L⊥

if
−→
C θv is a subsequence of

−→
⊥ .

Example 17 Let
−→
⊥ = p(X) ← q(X), r(X), s(X,Y ), s(Y,X) and according to Defini-

tion 53, we have
−→
⊥v = p(V1)← q(V2), r(V3), s(V4, V5), s(V6, V7) and θv = {V1/X, V2/X,

V3/X, V4/X, V5/Y, V6/Y, V7/X}. Then
−→
C = p(V1) ← r(V2), s(V6, V7),

−→
D = p(V1) ←

r(V1), s(V6, V1) and
−→
E = p(V1) ← r(V1), s(V4, V5) are in

−→
L⊥ as

−→
C θv,

−→
Dθv and

−→
E θv

are subsequences of
−→
⊥ . "

In this section we show that the refinement space of a Progol-like ILP system can be

characterised using
−→
L⊥. We also define a subsumption order relative to a bottom

clause which can be used to study Progol’s refinement. According to the definition of
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Progol’s refinement operator (Definition 45), refinements of a clause are constructed

by adding literals which are generalisations of a literal from
−→
⊥ . These literals are

generated by δ (Definition 45) and they correspond to literal lk from
−→
⊥ . A literal Li

from
−→
C is comparable (with respect to Progol’s refinement) to a literal Mj from

−→
D if

Li and Mj are both mapped to the same literal of
−→
⊥ . This has been demonstrated in

the following example.

Example 18 Let
−→
⊥ ,
−→
C ,
−→
D and

−→
E be as in Example 17 and as shown in Figure 3.1.

The literals of
−→
C are mapped to the first, the third and the fifth literals of

−→
⊥ respectively,

and similarly the literals of
−→
D are mapped to the first, the second, the third and the fifth

literals of
−→
⊥ as in Figure 3.1.a. In this case, literals from

−→
C are comparable with the

first, the third and the fourth literals from
−→
D respectively. However, in Figure 3.1.b, the

third literal from
−→
C and the third literal from

−→
E are mapped to different literals from

−→
⊥ and therefore they are not comparable with respect to Progol’s refinement (though

they are comparable with respect to general subsumption or sequential subsumption).

"

In the following we define a subsumption order relative to ⊥ (i.e. "⊥) in which the

mapping between literals with respect to the bottom clause is considered. First we

define variable substitutions relative to ⊥.

Definition 54 (Substitution relative to ⊥) Let
−→
⊥ be the bottom clause as defined

in Definition 43 and θv be as defined in Definition 53. Let θ⊥ = {vj/vi|{vi/u, vj/u} ⊆

θv and i < j}, then θ⊥ is a substitution relative to ⊥.

Definition 55 (Subsumption relative to ⊥) Let
−→
⊥ be a bottom clause as defined

in Definition 43,
−→
L⊥ be as defined in Definition 53 and θ⊥ be as defined in Defini-

tion 54. Let
−→
C and

−→
D be ordered clauses in

−→
L⊥. We say

−→
C subsumes

−→
D relative to

⊥, denoted by
−→
C "⊥

−→
D , if there exists a substitution θ ⊆ θ⊥ such that

−→
C θ is a subse-

quence of
−→
D .
−→
C is a proper generalisation of

−→
D relative to ⊥, denoted by

−→
C 8⊥

−→
D , if

−→
C "⊥

−→
D and

−→
D $"⊥

−→
C .
−→
C and

−→
D are equivalent with respect to subsumption relative

to ⊥, denoted by
−→
C ∼⊥

−→
D , if

−→
C "⊥

−→
D and

−→
D "⊥

−→
C .

Example 19 Let
−→
⊥ , θv,

−→
C ,
−→
D and

−→
E be as in Example 17. Then, according to Defini-

tion 54, θ⊥ = {V2/V1, V3/V1, V4/V1, V7/V1, V3/V2, V4/V2, V7/V2, V7/V3, V7/V4, V6/V5}.
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Then,
−→
C subsumes

−→
D relative to ⊥ since there is a substitution θ = {V2/V1, V7/V1} ⊆

θ⊥ such that
−→
C θ is a subsequence of

−→
D . However,

−→
C does not subsume

−→
E relative to

⊥ since there is no substitution θ ⊆ θ⊥ such that
−→
C θ is a subsequence of

−→
E . Note that

−→
C subsumes

−→
E with respect to θ-subsumption (see Figure 3.1). "

In the following we first define
−→
L⊥(M) by analogy to Progol’s Li(M) and then we

re-define Progol’s refinement operator for ordered clauses in
−→
L⊥(M).

Definition 56 (
−→
L⊥(M)) Let

−→
L⊥ and Li(M) be as defined in Definition 53 and Def-

inition 42 respectively.
−→
C is in

−→
L⊥(M) if and only if

−→
C is in

−→
L⊥ and C is in Li(M).

Note that according to Definitions 41 and 42 a total ordering has been assumed over

the literals of the clauses in L(M) and Li(M). This ordering is explicitly defined for

the ordered clauses in
−→
L⊥(M). In Definition 45, the refinement operator ρ is defined

for clauses in Li(M). However, ρ can also be defined for clauses in
−→
L⊥(M) if we let C

and C ′ be ordered clauses in
−→
L⊥(M) and

−→
C θ be a subsequence (rather than a subset)

of the bottom clause.

Definition 57 (Refinement operator ρ for ordered clauses) Let h, i,B, e,M and
−→
⊥ be defined as in Definition 43 and let n be the cardinality of

−→
⊥ . Let k be a natural

number, 1 ≤ k ≤ n. Let
−→
C be a clause in

−→
L⊥(M) and θ be a substitution such that

−→
C θ 9

−→
⊥ . Below, a literal l corresponding to a mode ml in M is denoted simply as

p(v1, .., vm) despite the sign of ml and function symbols in a(ml). A variable is split-

table if it corresponds to a +type or -type in a modeh or if it corresponds to a -type in

a modeb. 〈
−→
C ′, θ′, k′〉 is in ρ(〈

−→
C , θ, k〉) if and only if either

1.
−→
C ′ =

−→
C ∨ l, k′ = k + 1, k < n and 〈l, θ′〉 is in δ(θ, k) and

−→
C ′ ∈

−→
L⊥(M) or

2.
−→
C ′ =

−→
C , k′ = k + 1, θ′ = θ and k < n.

where δ(θ, k) is defined as follows. 〈p(v1, .., vm), θ′m〉 is in δ(θ, k) if and only if lk =

p(u1, .., um) is the kth literal of
−→
⊥ , θ′0 = θ and θ′j for each j, 1 ≤ j ≤ m is defined as

follows:

1. if vj/uj ∈ θ′j−1 then θ′j = θ′j−1 or
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2. if uj is splittable then θ′j = θ′j−1 ∪ {vj/uj} where vj is a new variable not in

dom(θ′j−1).

Note that in Definition 57,
−→
C and

−→
C ′ are in

−→
L⊥(M),

−→
C θ 9

−→
⊥ and θ and θ′ are subsets

of θv such that for each vj/uj ∈ θ (or vj/uj ∈ θ′), if vj is a new and distinct variable

then uj must be a splittable variable.

As shown by the examples from Section 3.2, in particular Example 7, Progol’s re-

finement cannot be complete or even weakly complete for general subsumption or-

der. In the following we show that Progol’s refinement can be weakly complete for

〈
−→
L⊥(M),"⊥〉.

Lemma 1 Let δ(θ, k) be as defined in Definition 57 and
−→
C and

−→
C ′ =

−→
C ∨ l be ordered

clauses in
−→
L⊥(M) such that

−→
C θ and

−→
C ′θ′ are subsequences of

−→
⊥ and lθ′ = lk where

lk is the kth literal of
−→
⊥ . Then, there exists 〈l′, θ′′〉 in δ(θ, k) such that l and l′ are

variants.

Proof. Let literals lk, l and l′ be denoted simply by p(u1, .., um), p(v1, .., vm) and

p(v′1, .., v
′
m) respectively, despite the sign and function symbols (as in Definition 57)

i.e. lk = p(u1, .., um), l = p(v1, .., vm) and l′ = p(v′1, .., v
′
m). We have p(v1, .., vm)θ′ =

p(u1, .., um). We show that 〈l′, θ′′〉 can be constructed using δ(θ, k) and there exist

variables v′1, .., v
′
m and substitution θ′′ such that p(v′1, .., v

′
m)θ′′ = p(u1, .., um) and l

and l′ are variants. Let θ′′0 = θ and for each vj/uj ∈ θ′ where 1 ≤ j ≤ m if vj is a

new variable with respect to {v1, . . . , vj−1} and uj is splittable then, using choice 2 in

the definition of δ, θ′′j = θ′′j−1 ∪ {v′j/uj} where v′j is a new variable not in dom(θ′′j−1).

Otherwise, by using choice 1 in the definition of δ, θ′′j = θ′′j−1. By construction, 〈l′, θ′′m〉

is in δ(θ, k) and there is a one-to-one mapping between variables v′j and vj for 1 ≤ j ≤

m. Variable substitutions σ1 = {v1/v′1, . . . , vm/v′m} and σ2 = {v′1/v1, . . . , v′m/vm} are

therefore variable renamings. Hence, lσ1 = l′ and l′σ2 = l and therefore l and l′ are

variants. !

Theorem 2 Let ρ be as defined in Definition 57. Then ρ is weakly complete for

〈
−→
L⊥(M),"⊥〉.
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Proof. We need to show that ρ∗(〈!, ∅, 1〉) =
−→
L⊥(M). We show that for each

−→
C ∈

−→
L⊥(M), there exists a ρ-chain from ! to

−→
C ′ where

−→
C ′ and

−→
C are alphabetical variants.

The proof is by induction on i, the number of literals in
−→
C . If i = 0 then

−→
C = !,

and the empty chain satisfies the theorem. Assume for some j, 0 ≤ j < i, that the

theorem is true, we will show that it is also true for j + 1. Suppose the theorem is

true for j, this implies that there is a ρ-chain from ! to an alphabetical variant of
−→
C j

such that
−→
C j is an ordered clause in

−→
L⊥(M) with j literals added from

−→
C . Therefore,

there is a substitution θ such that
−→
C jθ is a subsequence of

−→
⊥ and we assume that the

j-th literal of
−→
C j is mapped to the k-th literal of

−→
⊥ . Let

−→
C j+1 =

−→
C j ∨ l, where l

is the leftmost literal of
−→
C which is not in

−→
C j and l is mapped to the k′-th literal of

−→
⊥ , where k < k′ (because

−→
C j and

−→
C j+1 are sequential generalisations of

−→
⊥). Then

there exists a ρ-chain from 〈
−→
C j , θ, k〉 to 〈

−→
C j, θ, k′〉 by repeatedly selecting choice 2

in the definition of ρ in order to skip k′ − k literals of
−→
⊥ . According to Lemma 1,

there exists 〈l′, θ′〉 in δ(θ, k′) such that l and l′ are variants. Therefore, by selecting

choice 1 in the definition of ρ,
−→
C ′

j+1 =
−→
C j ∨ l′ is a variant of

−→
C j+1 =

−→
C j ∨ l, where

〈
−→
C ′

j+1, θ′, k′ +1〉 ∈ ρ(〈
−→
C j , θ, k′〉). Thus, there is a ρ-chain from ! to a variant of

−→
C j+1

and this completes the proof. !

3.5 Related work and discussion

Progol’s refinement operator and its incompleteness with respect to the general sub-

sumption order were initially discussed in [Mug95]. The purpose of the present chapter

was to characterise Progol’s refinement space and to give an analysis of refinement op-

erators for this space. In a previous attempt, the authors of [BS99] suggested weak

subsumption for characterising Progol’s refinement space. However, as we have shown

in this chapter, weak subsumption cannot capture all aspects of Progol’s refinement.

Note that sequential subsumption implies weak subsumption. This is because if a

selection function is strictly increasing then the injectivity property holds which, in

turns, entails weak subsumption.

The sequential subsumption described in this chapter is similar to ‘ordered subsump-

tion’ [KOHH06] and is defined based on the concept of subsequence. However, the
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subsequence relation considered in [KOHH06], assumes a mapping function which is

monotonically increasing (rather than strictly increasing mapping function considered

in our definition of subsequence). This means that in ordered subsumption, several

literals from the first clause can be mapped to the same literal from the second clause.

However, as already discussed in this chapter, in sequential subsumption (and sub-

sumption relative to a bottom clause) distinct literals from the first clause can not

be mapped to the same literal from the second clause. Hence, the results from this

chapter are not applicable in the case of ordered subsumption.

As shown in this chapter, in order to characterise Progol’s refinement, the sequential

subsumption is not enough and we also need to consider the mapping between literals

with respect to the bottom clause. For this reason we have defined a subsumption order

relative to ⊥ (i.e. "⊥) and we have shown that it can capture Progol’s refinement. The

framework used in [KOHH06] can be viewed as a general case for ordered and sequential

subsumption. Whereas in this thesis we introduce subsumption order relative to a

bottom clause.

In the context of data mining from sequential data, SeqLog [LD04, Lee06] is defined as

a logical language for representing and mining sequential patterns in databases. Sub-

sumption relations are also defined for simple and complex sequences and an optimal

refinement operators is used in SeqLog’s data-mining algorithms. A simple sequence

is defined as a sequence of atoms whereas a complex sequence of atoms separated by

operators which can be either ‘direct successor’ represented by ( (which is omitted

in writing) or ‘<’ which is the transitive closure of (. A simple sequence is there-

fore a degenerated form of a complex sequence in which all operators are (. For

example ‘latex(FileName,tex) xdvi(FileName,tex) dvips(FileName,dvi)’ is a simple se-

quence whereas ‘latex(FileName,tex) < dvips(FileName,dvi)’ is a complex sequence

which means atom dvips(FileName,dvi) occurs somewhere after latex(FileName,tex).

Based on simple and complex sequences, different forms of subsequences and subsump-

tion relations are defined. Simple subsumption (s-subsumption) defines how a simple

sequence subsumes a complex sequence. This is based on simple subsequences and very

similar to the definition of sequential subsumption described in this chapter. However,

general subsumption for SeqLog (SeqLog-subsumption) is more complicated and de-
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fines how a complex sequence subsumes a sequence. It is shown [Lee06] that time

complexity of s-subsumption is polynomial but SeqLog-subsumption among complex

sequences is NP-complete. It is also shown that lgg does not exist for any pair of

simple sequences or complex sequences and s-subsumption and SeqLog-subsumption

do not form lattices. However, optimal refinement operators are defined for simple and

complex sequences. These optimal refinement operators are based on non-redundant

operations which avoid duplicates by imposing an ordering over elementary (downward)

refinement operations.

The ordered clause used in this thesis is similar to simple sequence in SeqLog and

our sequential subsumption is comparable with s-subsumption. However, there is not

any concept similar to complex sequences or SeqLog-subsumption in our approach and

these could be regarded as the general forms of those used in our approach. On the

other hand, no concept similar to bounded subsumption is defined for SeqLog. The

SeqLog framework uses a constraint based mining together with the optimal refinement

operators described above. SeqLog is also an attractive framework for ILP, e.g. because

of optimal refinement operators. However, the SeqLog framework can be extended to

a machine learning approach based on inverse entailment and in this case the results

from bounded subsumption presented in this thesis can be used. These include efficient

lgg-like operators which currently do not exist for SeqLog.

The subsumption order relative to a bottom clause can also be compared with the

approaches which use some form of subsumption under object identity (e.g. [ELMS96,

AR99]). The sequential subsumption defined in this chapter, introduces an injective

mapping between the literals while the subsumption under object identity requires

the injective mapping between the variables (objects). The subsumption under object

identity, therefore, implies sequential subsumption. This is because the injection at

object level entails the injection at literal level.

The subsumption under object identity is also related to the discussions in this chap-

ter on implementation of variable splitting in bounded refinement operators. In the

subsumption under object identity, it is assumed that each clause also includes a set

of constraints in the body, e.g. in the form of inequalities between variables. This

is similar to Aleph’s approach for Variable splitting where equality literals between
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variables are inserted into the bottom clause to maintain equivalence. A (sequential)

subsumption under object identity can be easily implemented by turning off the vari-

able splitting in the bounded refinement operators described in this chapter, i.e. only

selecting the first choice in the definition of ρ which adds literals from the bottom

clause. With regards to Table 3.1, sequential subsumption under object identity will

have the same advantages of bounded subsumption in terms of the existence of lgg and

ideal refinement operators and linear time complexity. However, it will also have all

four types of incompleteness described in Section 3.1, i.e. incompleteness types 0 to 3.

3.6 Summary

ILP systems which use some form of Inverse Entailment (IE) are based on clause re-

finement through a hypothesis space bounded by a most specific (bottom) clause. In

this chapter we gave a new analysis of refinement in this setting. In particular, clause

refinement in Progol’s was revisited and discussed. We demonstrated that Progol’s re-

finement is incomplete with respect to the general subsumption order and we discussed

two different aspects of this incompleteness. Based on this analysis we introduced a

subsumption order relative to a bottom clause and demonstrated how Progol’s refine-

ment can be characterised with respect to this order. This new subsumption order is

based on the concepts of ordered clauses and sequential subsumption which we define in

this thesis. This subsumption order, unlike previously suggested orders, characterises

all aspects of Progol’s refinement. We studied the properties of this subsumption order

and showed that Progol’s refinement is weakly complete for the subsumption order

relative to a bottom clause.
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Chapter 4

The lattice structure and
morphisms of bounded
subsumption

In this chapter we study the lattice structure and morphisms of the subsumption order

relative to ⊥. In Section 4.1 we show that 〈
−→
L⊥,"⊥〉 is a quasi-order and each pair of

ordered clauses in
−→
L⊥ have a most general specialisation (mgs⊥) and a least general

generalisation (lgg⊥) in
−→
L⊥ and therefore 〈

−→
L⊥,"⊥〉 is a lattice. In this section we also

describe two different type of downward covers for the lattice 〈
−→
L⊥,"⊥〉 and we show

that for any given ordered clauses
−→
C and

−→
D in

−→
L⊥ such that

−→
C 8⊥

−→
D , there is a

finite chain of downward covers from
−→
C to a variant of

−→
D . In Section 4.2, we discuss a

morphism between the lattice of bounded subsumption and an atomic lattice. We show

that the lattice 〈
−→
L⊥,"⊥〉 isomorphic to an atomic lattice (i.e. 〈A⊥,"〉). In Section

4.3 we show that the lattice 〈
−→
L⊥,"⊥〉 can also be mapped to a lattice of partitions.

This mapping will be used in the next chapter for encoding the bounded subsumption

lattice. Related work is discussed in Section 4.4. Section 4.5 summarises the chapter.

4.1 The lattice and cover structure of bounded subsump-
tion

In the following we show that 〈
−→
L⊥,"⊥〉 is a lattice. First we show that "⊥ is a quasi-

order and then we prove that each pair of ordered clauses in
−→
L⊥ have a most general

specialisation (mgs⊥) and a least general generalisation (lgg⊥) in
−→
L⊥.
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Lemma 2 Subsequence relation (9) is transitive.

Proof. Let
−→
C ,
−→
D and

−→
E be ordered clauses such that

−→
C 9

−→
D and

−→
D 9

−→
E . Then

according to Definition 50 there exist strictly increasing selection functions s4 and s5

such that s4 maps literals from
−→
C to equivalent literals from

−→
D and s5 maps literals

from
−→
D to equivalent literals from

−→
E . Then s = s4◦s5 is also a strictly increasing func-

tion which maps literals from
−→
C to equivalent literals from

−→
E and therefore

−→
C 9

−→
E . !

Theorem 3 Subsumption order relative to ⊥ ("⊥) is a quasi-order.

Proof. Let
−→
⊥ and

−→
L⊥ be as defined in Definition 53 and θ⊥ be as defined in Defini-

tion 54. For every ordered clause
−→
C in

−→
L⊥, we have

−→
C "⊥

−→
C . The relation "⊥ is

therefore reflexive. Let
−→
C ,
−→
D and

−→
E be ordered clauses in

−→
L⊥ such that

−→
C "⊥

−→
D

and
−→
D "⊥

−→
E . Then there exist θ, θ′ ⊆ θ⊥ such that

−→
C θ 9

−→
D and

−→
Dθ′ 9

−→
E . Thus, we

have
−→
C θθ′ 9

−→
Dθ′ and according to Lemma 2,

−→
C θθ′ 9

−→
E . But θθ′ ⊆ θ⊥ and therefore

according to Definition 55
−→
C "⊥

−→
E . The relation "⊥ is reflexive and transitive and

therefore it is a quasi-order. !

In the following we prove that each pair of ordered clauses in
−→
L⊥ have mgs and lgg.

As in [NCdW97] we use a sequence of pairs of compatible literals (i.e. selections) to

bridge between the definitions of mgs and lgg for atoms and the definitions of mgs

and lgg for clauses. The following definition is similar to Definition 14.23 in [NCdW97]

adapted for subsumption relative to a bottom clause.

Definition 58 Let
−→
⊥ , θv and

−→
L⊥ be as defined in Definition 53, θ⊥ be as defined in

Definition 54 and
−→
C and

−→
D be ordered clauses in

−→
L⊥.S = (L1,M1), . . . , (Ln,Mn)

is a sequence of pairs of compatible literals from
−→
C and

−→
D relative to

−→
⊥ if

−→
CS =

L1∨L2∨ · · ·∨Ln is a subsequence of
−→
C and

−→
DS = M1∨M2∨ · · ·∨Mn is a subsequence

of
−→
D and

−→
CSθv =

−→
DSθv.

Lemma 3 Let
−→
C ,
−→
D , S,

−→
CS and

−→
DS be as defined in Definition 58. Then,

−→
CS and

−→
DS are in

−→
L⊥.
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Proof.
−→
C and

−→
D are ordered clauses in

−→
L⊥ and therefore

−→
C θv and

−→
Dθv are subse-

quences of
−→
⊥ . But according to Definition 58,

−→
CS is a subsequence of

−→
C and

−→
DS is

a subsequence of
−→
D and therefore

−→
CSθv 9

−→
C θv and

−→
DSθv 9

−→
Dθv. Then according to

Lemma 2,
−→
CSθv and

−→
DSθv are subsequences of

−→
⊥ . Thus,

−→
CS and

−→
DS are in

−→
L⊥. !

Lemma 4 Let
−→
D be an ordered clause in

−→
L⊥ and

−→
C is derived from

−→
D by removing

some literals without changing the order of the remaining literals. Then,
−→
C subsumes

−→
D relative to ⊥.

Proof.
−→
C is derived from

−→
D by removing some literals and therefore

−→
C is a subse-

quence of
−→
D . Let ε be the empty substitution, then we have

−→
C ε is a subsequence of

−→
D and ε ⊆ θ⊥ and according to Definition 55,

−→
C "⊥

−→
D . !

Theorem 4 (Existence of mgs⊥ in
−→
L⊥) For every ordered clauses

−→
C and

−→
D in

−→
L⊥, there exists an mgs⊥ of

−→
C and

−→
D in

−→
L⊥.

Proof. Let
−→
⊥ , θv and

−→
L⊥ be as defined in Definition 53, θ⊥ be as defined in Defini-

tion 54 and
−→
C and

−→
D be ordered clauses in

−→
L⊥. Then

−→
C θv and

−→
Dθv are subsequences

of
−→
⊥ . Let S,

−→
CS and

−→
DS be as defined in Definition 58 such that S is a sequence of all

pairs of compatible literals from
−→
C and

−→
D relative to ⊥. According to Definition 53,

−→
CSθv =

−→
DSθv and therefore

−→
CS and

−→
DS are unifiable and θv is a unifier for them. Let

σ ⊆ θ⊥ be an mgu for {
−→
CS ,
−→
DS}, n be the number of literals in

−→
⊥ and

−→
E be defined

as follows:

−→
E = (

n
∨

i=1

li where li is in
−→
C or in

−→
D and liθv is the i-th literal of

−→
⊥)σ

We assume that the above disjunction notion with indexes from i = 1 to n means that

the literals li of
−→
E follow the same order as literals in

−→
⊥ . We show that

−→
E is in

−→
L⊥

and it is a mgs⊥ for
−→
C and

−→
D . Let h1 and h2 be the heads of

−→
C and

−→
D respectively.

h1 and h2 are among compatible pair of literals in S and they are unified by σ and
−→
E

has one literal in the head and therefore it is a definite ordered clause. Moreover, by

definition
−→
E θv is derived from

−→
⊥ by removing some literals without changing the order
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of the remaining literals. Then
−→
E θv is a subsequence of

−→
⊥ and therefore

−→
E is in

−→
L⊥.

Now we show that
−→
E is a mgs⊥ for

−→
C and

−→
D . We have

−→
C "⊥

−→
E and

−→
D "⊥

−→
E , since

by definition
−→
C σ 9

−→
E and

−→
Dσ 9

−→
E and σ ⊆ θ⊥. Suppose

−→
F is a clause in

−→
L⊥ such

that
−→
C "⊥

−→
F and

−→
D "⊥

−→
F . In order to establish that

−→
E is an mgs⊥ of

−→
C and

−→
D , we

need to prove
−→
E "⊥

−→
F . Let θ′1, θ

′
2 ⊆ θ⊥ be variable substitutions such that

−→
C θ′1 9

−→
F

and
−→
Dθ′2 9

−→
F , h′ be the head of

−→
F and θ′ = {θ′1 ∪ θ′2}. Then, h1θ′ = h1θ′1 = h′ and

h2θ′ = h2θ′2 = h′, so θ′ is a unifier for h1 and h2. But σ is an mgu for h1 and h2 and

so there is a substitution γ ⊆ θ⊥ such that θ′ = σγ. According to the definition of
−→
E ,

for every literal liσ in
−→
E , li is either in

−→
C or in

−→
D . But

−→
C θ′ 9

−→
F and

−→
Dθ′ 9

−→
F and

therefore each literal (liσ)γ in
−→
Eγ is mapped to an equivalent literal liθ′ in

−→
F . Then

−→
E γ is a subsequence of

−→
F and γ ⊆ θ⊥ and we have

−→
E "⊥

−→
F .
−→
E is therefore an mgs⊥

for
−→
C and

−→
D in

−→
L⊥. !

Example 20 Let
−→
C ,
−→
D ,
−→
⊥ and

−→
⊥v be ordered clauses as defined below:

−→
C = p(V1, V2)← q(V1, V1), q(V2, V6)

−→
D = p(V1, V2)← q(V3, V1), q(V2, V2), r(V1, V2)

−→
⊥ = p(X,Y )← q(X,X), q(Y, Y ), r(X,Y ), s(X,Y )

−→
⊥v = p(V1, V2)← q(V3, V4), q(V5, V6), r(V7, V8), s(V9, V10)

According to Definition 53,
−→
C and

−→
D are in

−→
L⊥ as

−→
C θv 9

−→
⊥ and

−→
Dθv 9

−→
⊥ where

θv = {V1/X, V2/Y, V3/X, V4/X, V5/X, V6/Y, V7/X, V8/Y, V9/X, V10/Y }. Then accord-

ing to Definition 58, S,
−→
CS and

−→
DS are defined as follows:

S = (p(V1, V2), p(V1, V2)), (¬q(V1, V1),¬q(V3, V1)),

(¬q(V2, V6),¬q(V1, V2))

−→
CS = p(V1, V2)← q(V1, V1), q(V2, V6)

−→
DS = p(V1, V2)← q(V3, V1), q(V2, V2)

Let σ = {X3/V1, V6/V2} be an mgu for {
−→
CS ,
−→
DS}, then σ ⊆ θ⊥ where
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θ⊥ = {V3/V1, V4/V1, V5/V1, V7/V1, V9/V1, V4/V3, V5/V3, V7/V3, V9/V3, V5/V4, V7/V4,

V9/V4, V7/V5, V9/V5, V9/V7, V6/V2, V8/V2, V10/V2, V8/V6, V10/V6, V10/V8}

and according to Theorem 4, mgs⊥ for
−→
C and

−→
D is defined as follows:

mgs⊥(
−→
C ,
−→
D) = (

5
∨

i=1

li where li is in
−→
C or in

−→
D and liθv is the i-th literal of

−→
⊥)σ

= (p(V1, V2)← q(V1, V1), q(V2, V6), r(V1, V2))σ

= p(V1, V2)← q(V1, V1), q(V2, V2), r(V1, V2)

"

In the following we prove the existence of lgg⊥ in
−→
L⊥. We use the lgg for atoms as a

bridge to define lgg⊥ for clauses in
−→
L⊥. This is similar to the proof for the existence of

lgg for conventional clauses [NCdW97] adapted for ordered clauses and subsumption

relative to a bottom clause. In the following we also use the same notion used in

[NCdW97] for atomic generalisation and atomic representation of ordered clauses.

Definition 59 (Compatible clauses) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D = M1 ∨

M2∨ · · ·∨Mm be ordered clauses. If n = m and for every i = 1, . . . , n, Li and Mi have

the same sign and predicate symbol, we say C and D are compatible clauses.

Definition 60 (Atomic representation) Let
−→
C = L1 ∨L2 ∨ · · · ∨Ln be an ordered

clause. The atomic representation of clause
−→
C is denoted by a(

−→
C ) = ∨(L1, L2, . . . , Ln)

where ∨ acts as a n-ary predicate symbol and L1, L2, . . . , Ln as terms.

In this definition we assume an appropriate mapping between predicate symbols in
−→
C

and function symbols in a(
−→
C ).

Definition 61 (algg⊥) Let
−→
C and

−→
D be two compatible ordered clauses in

−→
L⊥ and

−→
E be an ordered clause in

−→
L⊥.

−→
E is called an atomic lgg relative to ⊥, denoted by
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−→
E = algg⊥(

−→
C ,
−→
D) if a(

−→
E ) = algg(a(

−→
C ), a(

−→
D)) where algg is lgg for atoms and a(

−→
E ),

a(
−→
C ) and a(

−→
D) are atomic representations of

−→
C ,
−→
D and

−→
E as defined in Definition

60.

The following theorem proves the existence of lgg⊥ in
−→
L⊥. The proof is similar to

the proof for the existence of lgg for conventional clauses (e.g. Theorem 14.27 in

[NCdW97]) adapted for subsumption relative to a bottom clause.

Theorem 5 (Existence of lgg⊥ in
−→
L⊥) For every ordered clauses

−→
C and

−→
D in

−→
L⊥,

there exists an lgg⊥ of
−→
C and

−→
D in

−→
L⊥.

Proof. Let S,
−→
CS and

−→
DS be as defined in Definition 58 such that S is a sequence of

all pairs of compatible literals from
−→
C and

−→
D relative to ⊥.

−→
CS and

−→
DS are compat-

ible clauses in
−→
L⊥. Let

−→
E = algg⊥(

−→
CS ,
−→
DS) where algg⊥ is defined as in Definition

61.
−→
E is in

−→
L⊥ and we show that it is a lgg⊥ for

−→
C and

−→
D . According to defi-

nition of algg⊥ we have
−→
E "⊥

−→
CS and

−→
E "⊥

−→
DS and according to Definition 58,

−→
CS "⊥

−→
C and

−→
DS "⊥

−→
D . By transitivity of "⊥ we have

−→
E "⊥

−→
C and

−→
E "⊥

−→
D . Let

−→
F = N1∨N2∨ · · ·∨Nm be a clause in

−→
L⊥ such that

−→
F "⊥

−→
C and

−→
F "⊥

−→
D . In order

to establish that
−→
E is an lgg⊥ of

−→
C and

−→
D , we need to prove

−→
F "⊥

−→
E . Since

−→
F "⊥

−→
C

and
−→
F "⊥

−→
D , there are variable substitutions θ′1, θ

′
2 ⊆ θ⊥ and literals L1∨· · ·∨Lm 9

−→
C

and M1∨· · ·∨Mm 9
−→
D , such that Niθ′1 = Li and Niθ′2 = Mi, for every 1 ≤ i ≤ m. Then

S′ = (L1,M1), . . . , (Lm,Mm) is a sequence of pairs of compatible literals from
−→
C and

−→
D relative to ⊥ and

−→
CS′ = L1∨L2∨· · ·∨Lm and

−−→
DS′ = M1∨M2∨· · ·∨Mm as defined in

Definition 58. Let
−→
G = K1∨K2∨· · ·∨Km be an algg⊥(

−→
CS′ ,
−−→
DS′), where algg⊥ is defined

as in Definition 61 and there are substitutions σ1,σ2 ⊆ θ⊥ be such that
−→
Gσ1 = CS′

and
−→
Gσ2 = DS′ . Since (N1∨N2∨ · · ·∨Nm)θ′1 = CS′ and (N1∨N2∨ · · ·∨Nm)θ′2 = DS′ ,

we have
−→
F "⊥

−→
CS′ and

−→
F "⊥

−−→
DS′ . But

−→
G = algg⊥(

−→
CS′ ,
−−→
DS′) and therefore

−→
F "⊥

−→
G .

Moreover, S′ is a subsequence of S and therefore algg⊥(
−→
CS′ ,
−−→
DS′) is a subsequence of

algg⊥(
−→
CS ,
−→
DS) and according to Lemma 4 we have

−→
G "⊥

−→
E . Hence,

−→
F "⊥

−→
E by

transitivity of "⊥. !

According to Theorem 5, the lgg⊥ of any pair of ordered clauses
−→
C and

−→
D in

−→
L⊥

exists and can be computed by the following equation
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lgg⊥(
−→
C ,
−→
D) = algg⊥(

−→
CS ,
−→
DS)

where algg⊥ is defined as in Definition 61 and S,
−→
CS and

−→
DS be as defined in Definition

58 such that S is a sequence of all pairs of compatible literals from
−→
C and

−→
D relative

to ⊥. Note that
−→
C and

−→
D are definite ordered clauses in

−→
L⊥ with the same predicate

symbol in the head and there is at least one pair of compatible literals from
−→
C and

−→
D

relative to ⊥ which is the pair of heads of
−→
C and

−→
D . Hence, lgg⊥ for

−→
C and

−→
D has

at least one literal. Moreover, each literal from
−→
C and

−→
D can only be mapped to one

literal from
−→
⊥ and therefore each literal in

−→
C can be mapped to at most one literal

from
−→
D . Thus,

−→
C and

−→
D can have at most min(|

−→
C |, |
−→
D |) pairs of compatible literals

with respect to ⊥ and accordingly lgg⊥(
−→
C ,
−→
D) has at most min(|

−→
C |, |
−→
D |) literals. Note

that the lgg of
−→
C and

−→
D with respect to the general subsumption order has at most

|
−→
C |× |

−→
D | literals as

−→
C and

−→
D can have at most |

−→
C |× |

−→
D | pairs of compatible literals.

Example 21 Let
−→
C ,
−→
D ,
−→
⊥ , S,

−→
CS and

−→
DS be as defined in Example 20:

−→
C = p(V1, V2)← q(V1, V1), q(V2, V6)

−→
D = p(V1, V2)← q(V3, V1), q(V2, V2), r(V1, V2)

−→
⊥ = p(X,Y )← q(X,X), q(Y, Y ), r(X,Y ), s(X,Y )

S = (p(V1, V2), p(V1, V2)), (¬q(V1, V1),¬q(V3, V1)),

(¬q(V2, V6),¬q(V1, V2))

−→
CS = p(V1, V2)← q(V1, V1), q(V2, V6)

−→
DS = p(V1, V2)← q(V3, V1), q(V2, V2)

Then according to Theorem 5, lgg⊥ for
−→
C and

−→
D is defined as follows:

lgg⊥(
−→
C ,
−→
D) =

−→
E = algg⊥(

−→
CS ,
−→
DS)

According to Definition 61 we have
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a(
−→
E ) = algg(a(

−→
CS), a(

−→
DS))

= algg(∨(p(V1, V2),¬q(V1, V1),¬q(V2, V6)),

∨(p(V1, V2),¬q(V3, V1),¬q(V2, V2)))

= ∨(p(V1, V2),¬q(V3, V1),¬q(V2, V6)))

Then we have

lgg⊥(
−→
C ,
−→
D) =

−→
E = p(V1, V2)← q(V3, V1), q(V2, V6)

"

Since we have proved the existence of mgs⊥ and lgg⊥ of any pair of ordered clauses

in
−→
L⊥, it follows that

−→
L⊥ ordered by subsumption relative to a bottom clause has a

lattice structure.

Theorem 6 〈
−→
L⊥,"⊥〉 is a lattice.

Proof. According to Theorem 3 〈
−→
L⊥,"⊥〉 is a quasi-order. According to Theorems 4

and 5 each pair of ordered clauses in
−→
L⊥ have a most general specialisation (mgs⊥)

and a least general generalisation (lgg⊥) in
−→
L⊥. Hence, 〈

−→
L⊥,"⊥〉 is a lattice. !

In the following we describe two different type of downward covers for the lattice

〈
−→
L⊥,"⊥〉 and then we show that given ordered clauses

−→
C and

−→
D in

−→
L⊥ such that

−→
C 8⊥

−→
D , there is a finite chain of downward covers from

−→
C to a variant of

−→
D .

Lemma 5 (Downward cover Type 1) Let
−→
C and

−→
D be ordered clauses in

−→
L⊥ such

that
−→
D =

−→
C {y/x} where x and y are distinct variables in

−→
C . Then

−→
D is a downward

cover of
−→
C .

Proof. Let
−→
D =

−→
C {y/x} then

−→
C "⊥

−→
D and

−→
C and

−→
D are not variant, hence

−→
C 8⊥

−→
D .

Suppose there is a
−→
E in

−→
L⊥ such that

−→
C 8⊥

−→
E 8⊥

−→
D . Then there are variable substi-

tutions θ,σ ⊆ θ⊥ such that
−→
C θ 9

−→
E and

−→
Eσ 9

−→
D . We have

−→
D =

−→
C {y/x}, therefore
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−→
C and

−→
D only differ in variables y and x and have the same predicate symbols at the

same positions and hence
−→
E has the same predicate symbols at the same positions as

−→
C and

−→
D . If θ does not unify any variables in

−→
C then

−→
C and

−→
E would be variants,

contradicting
−→
C 8⊥

−→
E . If θ unifies any other variable than x and y, then this contra-

dicts
−→
C θσ 9

−→
D . Hence, θ must unify x and y and cannot unify any other variables.

But then
−→
C θ and

−→
D would be variants, contradicting

−→
C θ 9

−→
E 8⊥

−→
D . Therefore such

a
−→
E does not exist and

−→
D is a downward cover of

−→
C . !

Lemma 6 (Downward cover Type 2) Let
−→
C and

−→
D be ordered clauses in

−→
L⊥ such

that
−→
C and

−→
D differ only in literal l in

−→
D and all variables in l are distinct new

variables. Then
−→
D is a downward cover of

−→
C .

Proof. Let
−→
C and

−→
D differ only in literal l in

−→
D such that l = p(x1, x2, . . . , xn) and all

x1, x2, . . . , xn are distinct new variables. Then
−→
C "⊥

−→
D and

−→
C and

−→
D are not variant,

hence
−→
C 8⊥

−→
D . Suppose there is a

−→
E in

−→
L⊥ such that

−→
C 8⊥

−→
E 8⊥

−→
D . Then there

are variable substitutions θ,σ ⊆ θ⊥ such that
−→
C θ 9

−→
E and

−→
Eσ 9

−→
D .
−→
C and

−→
D differ

only in literal l then there is a literal l′ in
−→
E and

−→
C and

−→
E differ in l′ because otherwise

−→
C and

−→
E are variants, contradicting

−→
C 8⊥

−→
E . Let l′ = p(x′

1, x
′
2, . . . , x

′
n) then we have

p(x′
1, x

′
2, . . . , x

′
n)σ = p(x1, x2, . . . , xn). However, if σ does not unify any of variables

x′
1, x

′
2, . . . , x

′
n then

−→
E θ and

−→
D would be variants, contradicting

−→
Eσ 9

−→
D . If σ unifies

any of variables x′
1, x

′
2, . . . , x

′
n then this contradicts the assumption that x1, x2, . . . , xn

are distinct variables. Therefore such a
−→
E does not exist and

−→
D is a downward cover

of
−→
C . !

Theorem 7 Let
−→
C and

−→
D be ordered clauses in

−→
L⊥ such that

−→
C 8⊥

−→
D . Then there

is a finite chain of downward covers from
−→
C to a variant of

−→
D .

Proof. Let
−→
C 8⊥

−→
D then there is a variable substitution θ ⊆ θ⊥ such that

−→
C θ

is a subsequence of
−→
D . Let

−→
C and

−→
D differ in literals l1, l2, . . . , lj in

−→
D , j ≥ 0.

For every li there is a most general literal l′i of which li is an instance. Assume

that for every 1 ≤ i ≤ j − 1, the variables in l′i+1 do not appear in
−→
C or in literals

l1, . . . , li. Then we have a finite chain of downward Type 2 covers (Lemma 6) of length
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j,
−→
C =

−→
C 0 8⊥

−→
C 1 8⊥ · · · 8⊥

−→
C j where

−→
C i and

−→
C i+1 differ only in literal l′i+1.

Moreover, there is a substitution θ′ such that
−→
C jθ′ =

−→
D where θ ⊆ θ′ ⊆ θ⊥. Sup-

pose that the cardinality of θ′ is k, i.e. θ′ = {y1/x1, y2/x2, . . . , yk/xk}. Then we have

θ′ = θ′1θ
′
2 . . . θ′k = {y1/x1}{y2/x2} . . . {yk/xk}. Hence, there is a finite chain of down-

ward Type 1 covers (Lemma 5) of length k from
−→
C j to a variant of

−→
D and therefore

there exists a finite chain of downward covers of length j+k from
−→
C to a variant of

−→
D !

4.2 Morphism between the lattice of bounded subsump-
tion and an atomic lattice

In the following, we discuss a morphism between the lattice 〈
−→
L⊥,"⊥〉 and an atomic

lattice. First we define the set of atoms which are generalisations of the atomic repre-

sentation of
−→
⊥ .

Definition 62 (A⊥) Let
−→
⊥ and θv be as defined in Definition 53, a(

−→
⊥) = ∨(t1, t2, . . . , tn)

be the atomic representation of
−→
⊥ as defined in Definition 60, Av = ∨(w1, w2, . . . , wn)

be a(
−→
⊥) with all term positions tj populated with new and distinct variables wj . Let

σv be a substitution such that Avσv = a(
−→
⊥). Atom A is in A⊥ if Aθvσv = a(

−→
⊥).

Example 22 Let a(
−→
⊥), Av and atoms A1, A2, A3, A4 be defined as follows:

A1 = ∨(p(V1), W2, ¬r(V3), W4, ¬s(V6, V7))
A2 = ∨(p(V1), W2, ¬r(V1), W4, ¬s(V6, V1))
A3 = ∨(p(V1), W2, ¬r(V1), ¬s(V4, V5), W5)
A4 = ∨(p(V1), ¬q(V1), ¬r(V1), W4, ¬s(V6, V1))
Av = ∨(W1, W2, W3, W4, W5)

a(
−→
⊥) = ∨(p(X), ¬q(X), ¬r(X), ¬s(X,Y ), ¬s(Y,X))

Then according to Definition 62, A1, A2, A3, A4 are in A⊥ as A1θvσv = A2θvσv =

A3θvσv = A4θvσv = a(
−→
⊥), where θv = {V1/X, V2/X, V3/X, V4/X, V5/Y, V6/Y, V7/X}

and σv = {W1/p(X),W2/¬q(X),W3/¬r(X),W4/¬s(X,Y ),W5/¬s(Y,X)}.

"

Definition 63 (Mapping function cl) Let
−→
L⊥ and A⊥ be as defined in Defini-

tion 53 and Definition 62 and A be an atom in A⊥. The mapping function cl : A⊥ →
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−→
L⊥ is defined as follows:

cl(A) = (
n
∨

i=1

li where li is the i-th term from A which is not a variable)

As in Definition 60 we assume an appropriate mapping between predicate symbols in

cl(A) and function symbols in A. Note that in Definition 63, non-variable terms in A

represent literals in cl(A) and variables in A represent the absence of literals from
−→
⊥

in cl(A). These variables, which correspond to variables wi in σv, are always distinct

variables because, according to Definition 62, they can only be substituted by distinct

non-variable terms from a(
−→
⊥). Hence, in Definition 63, if li is a variable then it is

always distinct and cannot be unified with other variables in A. In order to simplify

the representation we replace all such variables (i.e. wi) by the symbol ‘ ’.

Example 23 Let
−→
⊥ ,
−→
C ,
−→
D ,
−→
E and

−→
F be defined as follows:

−→
C = p(V1)← r(V3), s(V6, V7)

−→
D = p(V1)← r(V1), s(V6, V1)

−→
E = p(V1)← r(V1), s(V4, V5)

−→
F = p(V1)← q(V1), r(V1), s(V6, V1)

−→
⊥ = p(X)← q(X), r(X), s(X,Y ), s(Y,X)

and a(
−→
⊥) and atoms A1, A2, A3 and A4 in A⊥ be defined as follows:

A1 = ∨(p(V1), , ¬r(V3), , ¬s(V6, V7))
A2 = ∨(p(V1), , ¬r(V1), , ¬s(V6, V1))
A3 = ∨(p(V1), , ¬r(V1), ¬s(V4, V5), )
A4 = ∨(p(V1), ¬q(V1), ¬r(V1), , ¬s(V6, V1))

a(
−→
⊥) = ∨(p(X), ¬q(X), ¬r(X), ¬s(X,Y ), ¬s(Y,X))

Then atoms A1, A2, A3 and A4 correspond to ordered clauses
−→
⊥ ,
−→
C ,
−→
D ,
−→
E and we

have
−→
C = cl(A1),

−→
D = cl(A2),

−→
E = cl(A3),

−→
F = cl(A4). "

Theorem 8 Let A⊥ be as defined in Definition 62 and the mapping function cl as

defined in Definition 63. Let A and B be atoms in A⊥, then we have cl(A) "⊥ cl(B)

if and only if A " B.
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Proof. Let A = ∨(L1, . . . , Ln), B = ∨(M1, . . . ,Mn) and a(
−→
⊥) = ∨(N1, . . . , Nn). Let

−→
C and

−→
D be ordered clauses such that

−→
C = cl(A) and

−→
D = cl(B).

⇒ : Suppose
−→
C "⊥

−→
D , then there exists a substitution θ ⊆ θ⊥ such that

−→
C θ is a

subsequence of
−→
D and therefore for each literal in

−→
C θ there is an equivalent literal

in
−→
D . Hence, for each term Li in A if Li is non-variable term then it corresponds

to a literal in
−→
C and therefore there exist a non-variable term Mi in B such that

Liθ = Mi. If Li is a variable then there exist a substitution θ′ such that Liθ′ = Mi

where Li/Mi ∈ θ′ and Mi is a variable or non-variable term in B. Hence, for each term

Li in A there is a substitution σ = θ ∪ θ′ such that Liσ = Mi. This implies Aσ = B

and therefore A " B.

⇐ : Suppose A " B, then there exists a substitution σ such that Aσ = B. Then for

each term Li in A we have term Mi in B such that Liσ = Mi. Moreover, A and B are

in A⊥ and according to Definition 62 both terms Li and Mi correspond to the same

term Ni from a(
−→
⊥ ) and we have Liθv = Miθv = Ni. If Li is a non-variable term then

according to Definition 62 Mi is also a non-variable term. Then according to Definition

54, there is a substitution θ ⊆ θ⊥ such that for non-variable terms Li and Mi we have

Liθ = Mi. Hence, for each literal in
−→
C θ there is an equivalent literal in

−→
D . Then

−→
C θ

is a subsequence of
−→
D and θ ⊆ θ⊥ and therefore we have

−→
C "⊥

−→
D . !

Example 24 Let
−→
⊥ be the bottom clause and

−→
C ,
−→
D and

−→
E be the ordered clauses as

in Figure 3.1. Atoms A1, A2 and A3 in Figure 3.2 correspond to ordered clauses
−→
C ,

−→
D and

−→
E and we have

−→
C = cl(A1),

−→
D = cl(A2) and

−→
E = cl(A3). We have

−→
C "⊥

−→
D

and A1 " A2 as shown in Figure 3.2.a and
−→
C $"⊥

−→
E and A1 $" A3 as shown in Figure

3.2.b. "

Theorem 9 The mapping function cl : A⊥ →
−→
L⊥ as defined in Definition 63 is an

order-isomorphism.

Proof. First we show that the mapping function cl is onto, i.e. for each ordered clause
−→
C in

−→
L⊥, there is A ∈ A⊥ such that

−→
C = cl(A). Let

−→
⊥ = N1 ∨ N2 ∨ · · · ∨ Nn and

−→
C = L1 ∨ L2 ∨ · · · ∨ Ln be an ordered clause in

−→
L⊥, then we have

−→
C θv 9

−→
⊥ . Let

A = ∨(M1,M2, . . . ,Mn) be an atom in A⊥ such that the i-th term Mi is Lj if Ljθv is
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the i-th literal Ni in
−→
⊥ ; otherwise Mi is a variable wi such that wi/ti ∈ σv. Then by

construction
−→
C = cl(A) and Aθvσv = a(

−→
⊥). Hence, the mapping function cl is onto.

Moreover, according to Theorem 8, the mapping function cl is an order-embedding.

Then according to Definition 26, cl is an order-isomorphism. !

We have shown that 〈
−→
L⊥,"⊥〉 is a lattice. It is also known that the atomic subsump-

tion defines a lattice [Rey69]. The proposition below follows directly from Theorem 9

and Proposition 7.

Proposition 11 The mapping function cl : A⊥ →
−→
L⊥ as defined in Definition 63 is

a lattice isomorphism and lattices 〈
−→
L⊥,"⊥〉 and 〈A⊥,"〉 are two isomorphic lattices.

The proposition below follows from cl being a lattice isomorphism.

Proposition 12 Let A⊥ and mapping function cl be defined as in Definition 63 and

A and B be atoms in A⊥. The mapping function cl : A⊥ →
−→
L⊥ is join-preserving and

meet-preserving that is:

1. mgs⊥(cl(A), cl(B)) = cl(mgs(A,B))

2. lgg⊥(cl(A), cl(B)) = cl(lgg(A,B))

Example 25 Let a(
−→
⊥) and atoms A and B in A⊥ be as defined below:

A = ∨(p(V1, V2),¬q(V1, V1),¬q(V2, V6), , )

B = ∨(p(V1, V2),¬q(V3, V1),¬q(V2, V2),¬r(V1, V2), )

a(
−→
⊥) = ∨(p(X,Y ),¬q(X,X),¬q(Y, Y ),¬r(X,Y ),¬s(X,Y ))

According to Definition 63, cl(A) and cl(B) are defined as follows:

−→
C = cl(A) = p(V1, V2)← q(V1, V1), q(V2, V6)

−→
D = cl(B) = p(V2, V2)← q(V3, V1), q(V2, V2), r(V1, V2)
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mgs(A,B) and lgg(A,B) are defined as follows:

mgs(A,B) = ∨(p(V1, V2),¬q(V1, V1),¬q(V2, V2),¬r(V1, V2), )

lgg(A,B) = ∨(p(V1, V2),¬q(V3, V1),¬q(V2, V6), , )

Then according to Proposition 11, mgs⊥ and lgg⊥ for
−→
C and

−→
D are defined as follows:

mgs⊥(
−→
C ,
−→
D) = p(V1, V2)← q(V1, V1), q(V2, V2), r(V1, V2)

lgg⊥(
−→
C ,
−→
D) = p(V1, V2)← q(V3, V1), q(V2, V6)

"

As previously discussed in this chapter, for ordered clauses
−→
C and

−→
D in

−→
L⊥ we

have at most min(|
−→
C |, |
−→
D |) pairs of compatible literals relative to ⊥ and accordingly

lgg⊥(
−→
C ,
−→
D) has at most min(|

−→
C |, |
−→
D |) literals. Similarly, Proposition 11 suggests that

lgg⊥(
−→
C ,
−→
D) has at most |

−→
⊥ | literals as |

−→
C | and |

−→
D | are bounded by |

−→
⊥ |.

It is known that general subsumption testing is NP-complete [GJ79]. However, as

shown in this section, subsumption testing relative to a bottom clause can be mapped

to atomic subsumption testing. Atomic subsumption testing can be reduced to a

unification problem which can be decided in linear time [GL85].

4.3 Morphism between the atomic lattice and the lattice
of partitions

In this chapter, we have shown that the subsumption order relative to a bottom clause

defines a lattice (i.e. 〈
−→
L⊥,"⊥〉) and this lattice is isomorphic to an atomic lattice (i.e.

〈A⊥,"〉). In this section we show that the lattice 〈
−→
L⊥,"⊥〉 can also be mapped to a

lattice of partitions. This mapping will be used in the next chapter for encoding the

bounded subsumption lattice. In the following, we first show the morphism between

the function free atomic lattice and the lattice of variable partitions.

Definition 64 Let Πm be the set of all partitions on {1, 2, . . . ,m} and π1 and π2 be

partitions in Πm. We say π1 is finer than π2, denoted by π1 ≤ π2 if and only if for
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each block B1 in π1 there is a block B2 in π2 such that B1 ⊆ B2. π1 is properly finer

than π2, denoted by π1 < π2, if π1 ≤ π2 and π2 $≤ π1.

It is known [DP02] that Πm is partially ordered by ≤ and that 〈Πm,≤〉 is a lattice.

Proposition 13 Let Πm and ≤ be as defined in Definition 64. Then 〈Πm,≤〉 is a

lattice.

Definition 65 (Mapping function π) Let Am be the set of all atoms in a language

with only one m-ary predicate symbol and with no constant and function symbols. The

mapping function π : Am → Πm is defined to map any atom A = p(v1, v2, . . . , vm) in

Am to a partition π in Πm such that for each block B in π, {i, j} ⊆ B if and only if

variables vi and vj are the same.

Example 26 Let A = p(X,Y,X,Z, Y,X) be an atom in A6. Then π(A) = {{1, 3, 6}, {2,

5}, {4}}. "

Lemma 7 Let Am be as defined in Definition 65 and A1 = p(u1, .., um) and A2 =

p(v1, .., vm) be atoms in Am. There exists a variable substitution θ such that A1θ = A2

if and only if for any pair of variables ui and uj in A1 if ui and uj are the same then

variables vi and vj in A2 are the same.

Proof. ⇒ : Suppose that there exists a variable substitution θ such that p(u1, .., um)θ =

p(v1, .., vm). Let {ui/vi, uj/vj} ⊆ θ. Then according to Definition 9, ui and uj must

be distinct variables. Hence, if variables ui and uj are the same then variables vi and

vj are the same.

⇐ : Suppose that for any pair of variables ui and uj in A1 if ui and uj are the same

then variables vi and vj in A2 are the same. Then a function can be defined which

maps each variable ui from A1 to a variable vi from A2. Then according to Definition

9, there is a variable substitution θ such that A1θ = A2. !

Example 27 Let A1 and A2 be atoms in A6 as defined below

A1 = p(X1, Y1,X1, Z1, Y1,X1)

A2 = p(X2, Y2,X2,X2, Y2,X2)
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We have A1θ = A2 where θ = {X1/X2, Y1/Y2, Z1/X2}. For any pair of variables ui

and uj in A1 if ui and uj are the same then variables vi and vj in A2 are the same.

For example, u1 and u3 in A1 represent the same variable (i.e. X1) and v1 and v3 in

A2 represent the same variable (i.e. X2). "

Theorem 10 Let Am and mapping function π be as defined in Definition 65 and A1

and A2 be atoms in Am. A1 " A2 if and only if π(A1) ≤ π(A2).

Proof. ⇒ : Let A1 = p(u1, .., um) and A2 = p(v1, .., vm) such that A1 " A2. Then

according to Definition 35, there exists a substitution θ such that p(u1, .., um)θ =

p(v1, .., vm). According to Lemma 7, for any pair of variables ui and uj representing

the same variable in A1, variables vi and vj represent the same variable in A2. Then

according to Definition 65, if {i, j} ⊆ B1 where B1 ∈ π(A1) then there is {i, j} ⊆ B2

where B2 ∈ π(A2). Then according to Definition 64, π(A1) ≤ π(A2) .

⇐ : Let A1 = p(u1, .., um) and A2 = p(v1, .., vm) such that π(A1) ≤ π(A2). Then

according to Definition 64, for each block B1 in π(A1) there is a block B2 in π(A2)

such that B1 ⊆ B2. Hence, for each {i, j} ⊆ B1 where B1 ∈ π(A1), there is {i, j} ⊆ B2

where B2 ∈ π(A2). Then according to Definition 65, for any pair of variables ui

and uj representing the same variable in A1, variables vi and vj represent the same

variable in A2. According to Lemma 7, there exists a variable substitution θ such that

p(u1, .., um)θ = p(v1, .., vm) and therefore A1 " A2. !

Theorem 11 The mapping function π : Am → Πm as defined in Definition 65 is an

order-isomorphism.

Proof. First we show that the mapping function π is onto. Let π be a partition in Πm.

We show that there is an atom A in Am such that π(A) = π. Let A = p(v1, v2, . . . , vm)

be an atom in Am such that for each block B in π and for each {i, j} ⊆ B, variables vi

and vj are the same. Then according to Definition 65 we have π(A) = π and therefore

π is onto. Moreover, according to Theorem 10 and Definition 26, the mapping function

π is order-embedding. Then according to Definition 26, π is an order-isomorphism. !
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According to Proposition 13, 〈Πm,≤〉 is a lattice. The proposition below follows di-

rectly from Theorem 11 and Proposition 7.

Proposition 14 The mapping function π : Am → Πm as defined in Definition 65 is

a lattice isomorphism and lattices 〈Πm,≤〉 and 〈Am,"〉 are two isomorphic lattices.

Proposition 14 shows the morphism between a function free atomic lattice and the

lattice of variable partitions. In the following we study the mapping of A⊥ to variable

partitions relative to a bottom clause. In the following we first define the set of valid

variable positions and variable partitions relative to a bottom clause. The set of valid

variable positions relative to a bottom clause is a set of variable positions in a(
−→
⊥ )

which are valid with respect to a subset of terms in a(
−→
⊥), i.e. if a variable position

from a term is included then all variable positions from that term should be included.

Definition 66 (Variable positions and partitions relative to
−→
⊥) Let

−→
⊥ and a(

−→
⊥)

be as defined in Definition 62 and Am and mapping function π be as defined in Def-

inition 65. Let A⊥ = p(v1, v2, . . . , vm) be an atom in Am such that v1, v2, . . . , vm are

variables in a(
−→
⊥) despite function symbols. The set of valid variable positions relative

to a bottom clause, denoted by V⊥, is defined as follows:

V⊥ = {V ⊆ {1, . . . ,m}|i ∈ V ⇒ j ∈ V, whenever vi, vj are in the same term in a(
−→
⊥)}

The set of valid variable partitions relative to a bottom clause, denoted by Π⊥, is de-

fined as follows:

Π⊥ = {π|π is a partition on V for some V in V⊥ and π ≤ π(A⊥)}

Example 28 Let a(
−→
⊥) be defined as follows:

a(
−→
⊥) = ∨(p( X ),¬q( X ),¬r( X ),¬s( X , Y ),¬s( Y , X ))

v1 v2 v3 v4 v5 v6 v7
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Then according to Definition 66, we have {1, 3, 6, 7} ∈ V⊥ and {1, 3, 5, 7} $∈ V⊥. We

also have A⊥ = p(X,X,X,X, Y, Y,X) and π(A⊥) = {{1, 2, 3, 4, 7}, {5, 6}} and there-

fore {{1, 2, 3, 7}, {6}} ∈ Π⊥ and {{1, 2, 3, 7, 6}} $∈ Π⊥.

The following definition is similar to Definition 65 but defined for A⊥ and Π⊥ instead

of Am and Πm.

Definition 67 (Mapping function π⊥) Let A⊥ and a(
−→
⊥) be as defined in Defini-

tion 62 and Π⊥ be as defined in Definition 66. The mapping function π⊥ : A⊥ → Π⊥

is defined to map any atom A in A⊥ to a partition π in Π⊥ such that for each block

B in π, {i, j} ⊆ B if and only if variables vi and vj in A are the same where i and j

correspond to the ith and jth variable positions in a(
−→
⊥).

Example 29 Let a(
−→
⊥) and atoms A1 , A2, A3 and A4 in A⊥ be defined as follows:

A1 = ∨(p(V1), , ¬r(V3), , ¬s(V6, V7))
A2 = ∨(p(V1), , ¬r(V1), , ¬s(V6, V1))
A3 = ∨(p(V1), , ¬r(V1), ¬s(V4, V5), )
A4 = ∨(p(V1), ¬q(V1), ¬r(V1), , ¬s(V6, V1))

a(
−→
⊥) = ∨(p(X), ¬q(X), ¬r(X), ¬s(X,Y ), ¬s(Y,X))

According to Definition 67, π⊥(A1), π⊥(A2), π⊥(A3) , π⊥(A4) and π⊥(a(
−→
⊥ )) are as

follows:

π1 = π⊥(A1) = {{1}, {3}, {6}, {7}}

π2 = π⊥(A2) = {{1, 3, 7}, {6}}

π3 = π⊥(A3) = {{1, 3}, {4}, {5}}

π4 = π⊥(A3) = {{1, 2, 3, 7}, {6}}

π⊥ = π⊥(a(
−→
⊥)) = {{1, 2, 3, 4, 7}, {5, 6}}

Note that π⊥ = π⊥(a(
−→
⊥)) = π(A⊥) and π1, π2, π3 and π4 are partitions in Π⊥ and

we have π1 ≤ π2 ≤ π4 ≤ π⊥ and π3 ≤ π⊥.

The following lemma and theorem are similar to Lemma 7 and Theorem 10 for 〈Πm,≤〉

and 〈Am,"〉 adapted for 〈Π⊥,≤〉 and 〈A⊥,"〉.
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Lemma 8 Let A⊥ be as defined in Definition 62 and A1 = p(s1, .., sn) and A2 =

p(t1, .., tn) be atoms in A⊥. There exists a substitution θ such that A1θ = A2 if and

only if the following two conditions hold: (1) for each sk if sk is a non-variable term

then tk is a non-variable term and (2) for any pair of variables ui and uj in A1, where

i and j correspond to the ith and jth variable positions in a(
−→
⊥ ), if ui and uj are the

same then variables vi and vj in A2 are the same.

Proof. ⇒ : Suppose that there exists a variable substitution θ such that p(s1, .., sn)θ =

p(t1, .., tn). Then for each sk/tk ∈ θ, if sk is a non-variable terms in A1 then tk is a

non-variable term in A2. For each sk in A1 if sk is a variable then it correspond to

variable wk in Definition 62 and therefore it is a distinct new variable and cannot be

the same as any other variable in A1. Let ui and uj be variables in some non-variable

terms in A1 and vi and vj be variables in some non-variable terms in A2 where i and

j correspond to the ith and jth variable positions in a(
−→
⊥). Then {ui/vi, uj/vj} ⊆ θ

and therefore according to Definition 9, ui and uj must be distinct variables. Hence,

if variables ui and uj are the same then variables vi and vj are the same.

⇐ : Suppose that for each sk in A1 if sk is a non-variable term then tk is a non-variable

term in A2 and that for any pair of variables ui and uj in A1, where i and j correspond

to the ith and jth variable positions in a(
−→
⊥), if ui and uj are the same then variables vi

and vj in A2 are the same. Then a function can be defined which maps every variable

ui to a variable vi. Hence, for each sk, if sk is a variable then it is mapped to a (variable

or non-variable) term tk and if sk is a non-variable term then each variable in sk is

mapped to a variable in the non-variable term tk. Hence, a function can be defined

which maps each variable from A1 to a corresponding variable or term from A2. Then

according to Definition 9, there is a substitution θ such that A1θ = A2. !

Theorem 12 Let A⊥ and mapping function π⊥ be as defined in Definition 67 and A1

and A2 be atoms in A⊥. A1 " A2 if and only if π⊥(A1) ≤ π⊥(A2).

Proof. ⇒ : Let A1 = p(s1, .., sn) and A2 = p(t1, .., tn) such that A1 " A2. Then accord-

ing to Definition 35, there exists a substitution θ such that p(s1, .., sn)θ = p(t1, .., tn).

According to Lemma 8, for any pair of variables ui and uj in A1, where i and j cor-

respond to the ith and jth variable positions in a(
−→
⊥), if ui and uj are the same then
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variables vi and vj in A2 are the same. Then according to Definition 67, if {i, j} ⊆ B1

where B1 ∈ π⊥(A1) then there is {i, j} ⊆ B2 where B2 ∈ π⊥(A2). Then according to

Definition 64, π⊥(A1) ≤ π⊥(A2) .

⇐ : Let A1 = p(s1, .., sn) and A2 = p(t1, .., tn) such that π⊥(A1) ≤ π⊥(A2). Then

according to Definition 64 for each block B1 in π⊥(A1) there is a block B2 in π⊥(A2)

such that B1 ⊆ B2. Hence, for each {i, j} ⊆ B1 where B1 ∈ π(A1), there is {i, j} ⊆ B2

where B2 ∈ π(A2). Then according to Definition 67, for any pair of variables ui and uj

in A1, if ui and uj are the same then variables vi and vj in A2 are the same. Moreover,

π⊥(A1) ≤ π⊥(A2) and according to Definition 64, if i is in some block B1 in π⊥(A1)

then it is in some block B2 in π⊥(A2). Hence, if ui is in a non-variable term sk in A1

then vi is in a non-variable term tk in A2 and therefore if sk is a non-variable term then

tk is a corresponding non-variable term. Then according to Lemma 8, there exists a

substitution θ such that p(s1, .., sn)θ = p(t1, .., tn) and therefore A1 " A2. !

Theorem 13 The mapping function π⊥ : A⊥ → Π⊥ as defined in Definition 67 is an

order-isomorphism.

Proof. First we show that the mapping function π⊥ is onto. Let π be a partition in Π⊥.

We show that there is an atom A in A⊥ such that π⊥(A) = π. Let A⊥ and a(
−→
⊥) be as

defined in Definition 62 and A = p(t1, t2, . . . , tn) be an atom in A⊥ such that for each

block B in π and for each {i, j} ⊆ B, variables vi and vj in some non-variable term(s)

in A are the same, where i and j correspond to the ith and jth variable positions in

a(
−→
⊥), and other terms in A are distinct variables. Then according to Definition 67

we have π⊥(A) = π and therefore π⊥ is onto. Moreover, according to Theorem 12

and Definition 26, the mapping function π⊥ is order-embedding. Then according to

Definition 26, π⊥ is an order-isomorphism. !

The proposition below follows directly from Theorem 13 and Proposition 7.

Proposition 15 The mapping function π⊥ : A⊥ → Π⊥ as defined in Definition 67 is

a lattice isomorphism and lattices 〈Π⊥,≤〉 and 〈A⊥,"〉 are two isomorphic lattices.

The proposition below follows directly from Proposition 15 and Proposition 11.
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Proposition 16 Lattices 〈Π⊥,≤〉 and 〈
−→
L⊥,"⊥〉 are two isomorphic lattices.

4.4 Related work and discussion

The lattice structure of atomic formulas has been studied by Reynolds [Rey69]. He

showed that the set of all equivalence classes of atoms (under alphabetic variation),

augmented by adding a ‘universal formula’ and a ‘null formula’, form a lattice. He also

showed that every atom has a finite decending (or ascending) chain, i.e. a finite set of

downward (or upward) covers. He also described an efficient algorithm for computing

the least general generalisation (lgg) of two atoms. Plotkin [Plo69] described a similar

lgg algorithm for atoms. He also extended the investigation to clauses ordered by θ-

subsumption and studied the lattice properties of clauses. However, Plotkin has shown

that, unlike for atoms, infinite decending chains exist for clauses [Plo71]. In this chapter

we have shown that the lattice of bounded subsumption shares several properties with

the lattice of atoms. This includes the existence of a finite set of covers. We eventually

show that the lattice of bounded subsumption can be mapped to an atomic lattice and

therefore the properties of the atomic lattice, e.g. those described by Reynolds [Rey69],

are applicable here. Note that unlike the lattice considered by Reynolds, the lattice

of bounded subsumption (and its equivalent atomic lattice) do not require a special

formula (i.e. null formula) to represent the least element of the lattice and the bottom

clause (or its atomic representation) is the least element of the lattice.

A subsumption relation for ordered clauses (i.e. ordered subsumption) is studied

in [KOHH06]. Some of differences between ordered subsumption and the subsump-

tion orders considered in this thesis (i.e. sequential subsumption and subsumption

relative to a bottom clause) were discussed in Section 3.5. It is shown [KOHH06]

that (i) the least generalisation of two ordered clauses does not exist under ordered

subsumption (and therefore ordered subsumption does not form a lattice) and (ii) the

ordered subsumption testing is NP-complete. Another related subsumption order is

s-subsumption which was defined for simple sequences in SeqLog [LD04, Lee06]. It is

shown [Lee06] that time complexity of s-subsumption is polynomial but the general Se-

qLog subsumption among complex sequences is NP-complete. It is also shown that lgg

does not exist for any pair of simple sequences or complex sequences and subsumption
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for simple or complex sequences do not form lattices.

The sequential subsumption on ordered clauses defined in this thesis (Section 3.3) is

similar to s-subsumption on simple sequences and by similar proofs, the results for

s-subsumption (shown in [Lee06]) can also be shown for sequential subsumption, i.e.

time complexity of sequential subsumption is polynomial and lgg does not exist for

sequential subsumption. However, we have shown that each pair of ordered clauses

have a most general specialisation and a least general generalisation under subsumption

relative to a bottom clause (i.e. lgg⊥ and mgs⊥) and that the bounded subsumption

forms a lattice. We have also shown that subsumption testing relative to a bottom

clause can be mapped to atomic subsumption testing. An atomic subsumption testing

can be reduced to a unification problem which can be decided in linear time [GL85].

4.5 Summary

In this chapter we have defined the most general specialisation and the least general

generalisation for the subsumption order relative to the bottom clause (i.e. mgs⊥ and

lgg⊥) and we have shown that the bounded subsumption forms a lattice. We have also

defined downward covers for the bounded subsumption and have shown that, unlike

for θ-subsumption, a finite set of downward covers exists. In this chapter we have also

defined a mapping between the lattice of bounded subsumption and an atomic lattice

and we have shown that these two lattices are isomorphic. We also showed that the

atomic lattice is isomorphic to a lattice of partitions. Hence, the lattice of bounded

subsumption can be encoded as a lattice of partitions and therefore clause refinement

can be mapped to partition refinement. This encoding will be discussed further in the

next chapter.
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Chapter 5

Encoding and refinement
operators for bounded
subsumption

In this chapter we study encoding and refinement operators for the subsumption order

relative to ⊥. We show that, unlike for the general subsumption order, ideal refinement

operators exist for the lattice of bounded subsumption, i.e. 〈
−→
L⊥,"⊥〉. In this chapter

we also study an encoding of the elements of this lattice which reflects the structure

of the lattice and can be exploited by the refinement operators and algorithms. This

encoding and a refinement operator ρ1 for bounded subsumption are introduced in

Section 5.1. In Section 5.2, we show that ρ1 is ideal for the lattice 〈
−→
L⊥,"⊥〉. Each

clause
−→
C in this lattice is encoded by a tuple 〈K, θ〉, where K is a set of indexes from the

bottom clause and θ is a variable subsumption which maps variables between
−→
C and

−→
⊥v. In Section 5.3 we study the mapping and the morphism between 〈

−→
L⊥,"⊥〉 and

the lattice of the encoding tuples 〈K, θ〉. In Section 5.4, we study alternative encoding

and refinement operators for bounded subsumption. Related work is discussed in

Section 5.5. Section 5.6 summarises the chapter.

5.1 Mapping function c and refinement operator ρ1

It is known that when a full Horn clause language and the general subsumption order

are considered, there exist no ideal refinement operators [vdLNC94]. However, if 〈L,≥〉

is a quasi-order, L is finite and ≥ is decidable, then there exists an ideal refinement
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operator for 〈L,≥〉 [NCdW97]. Given the finiteness of
−→
L⊥, one could expect the

existence of ideal refinement operators for 〈
−→
L⊥,"⊥〉. As shown in Chapter 3, Progol’s

refinement ρ is weakly complete but not complete and therefore ρ cannot be an ideal

refinement operator. In this section we define a refinement operator ρ1 and show that

ρ1 is ideal for 〈
−→
L⊥,"⊥〉. The main difference between ρ and ρ1 is that, unlike ρ which

can only add a new literal at the end of the clause, ρ1 can add a new literal anywhere

in the clause (e.g. in the middle). In both cases the new literal is a generalisation of

a literal from the bottom clause. In ρ an incremental index k is maintained and for

each value of k it is decided whether to include a generalisation of the k-th literal of

the bottom clause. In the case of ρ1, instead of the index k, a set K is maintained

which contains the indexes of the literals from the bottom clause. In ρ1, at each step of

the refinement a new index can be added to K representing a literal from any position

in the bottom clause. However, the order of literals of a clause in
−→
L⊥ should follow

the same order as literals in the bottom clause. In Progol’s refinement operator ρ, in

addition to the indexes k a substitution θ is maintained for each clause in order to

decode the clause from
−→
⊥ . In this setting, substitution θ maps variables from

−→
C to

the variables of
−→
⊥ . The decoding, therefore, involves inverse substitution θ−1. This

can be achieved by maintaining the position of variables when the substitution θ is

constructed [NCdW97]. However, in the encoding used for the refinement operator

ρ1, a substitution θ maps variables from
−→
⊥v (see Definition 53) to the variables of

−→
C . Distinct variables in

−→
⊥v also represent the variable positions and therefore no

extra information about variable positions is needed. Then, variable binding is done

by partitions over distinct variables. In the encoding described for the refinement

operator ρ1 in this section, variable partitions are represented by variable substitution

θ and the presence of literals is explicitly represented by a set of corresponding indexes

K. This representation can also be explained by the morphism between the lattice of

the subsumption order relative to a bottom clause and the partition lattice. This is

discussed further in Section 5.3. The following mapping function c maps a tuple 〈K, θ〉

into an ordered clause in
−→
L⊥.

Definition 68 (Mapping function c) Let
−→
L⊥ and

−→
⊥v be as defined in Definition 53,

θ⊥ be as defined in Definition 54, n be the number of literals in
−→
⊥v, K be the power set

of {1, . . . , n} and K ∈ K. Let θ be a variable substitution in Θ, where Θ = {θ|θ ⊆ θ⊥
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and if {vj/u, u/vi} ⊆ θ then vj/vi ∈ θ}. The mapping function c : K × Θ →
−→
L⊥ is

defined as follows:

c(〈K, θ〉) = (
n
∨

i=1

li where i ∈ K and li is the ith literal of
−→
⊥v)θ.

In this definition θ⊥ is a substitution relative to ⊥ and Θ is the set of all subsets of θ⊥

containing transitive bindings.

Note that (as in Theorem 4) the above disjunction notion with indexes from i = 1 to

n means that the literals li of c(〈K, θ〉) follow the same order as literals in
−→
⊥v.

Example 30 Let
−→
⊥ be the bottom clause in Example 7.

−→
⊥v is obtained from

−→
⊥ by

populating all variable positions with new and distinct variables:

−→
⊥v = mult(V1, V2, V3) ← dec(V4, V5), plus(V6, V7, V8), plus(V9, V10, V11),

mult(V12, V13, V14),mult(V15, V16, V17).

Let K = {1, 2, 5}, θ = {V4/V1, V12/V5} then c(〈K, θ〉) can be defined as follows:

−→
C = c(〈K, θ〉) = mult(V1, V2, V3) ← dec(V1, V5),mult(V5, V13, V14).

"

The mapping function c maps a tuple 〈K, θ〉 into an ordered clause
−→
C in

−→
L⊥. This

mapping function is also defined such that the literals in
−→
C follow the same order

as literals in
−→
⊥ . This condition is important for the refinement operator ρ1 which is

intended to be complete for 〈
−→
L⊥,"⊥〉.

The refinement operator ρ1 is similar to Progol’s ρ in the sense that it works by adding

a new literal which is a generalisation of a literal from the bottom clause. However,

ρ can only add a new literal at the end of the clause, while ρ1 can add a new literal

anywhere in the clause. Moreover, ρ generalises a literal from ⊥ by variable splitting

(see Section 3.2), while ρ1 specialises a literal from
−→
⊥v by a valid variable binding with

respect to ⊥ (defined by substitutions relative to ⊥, i.e. θ⊥).
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Definition 69 (ρ1) Let
−→
⊥ and

−→
L⊥ be as defined in Definition 53,

−→
C be an ordered

clause in
−→
L⊥, n be the number of literals in

−→
⊥ , k be a natural number, 1 ≤ k ≤ n,

−→
⊥v,

Θ, K and the mapping function c be defined as in Definition 68. Let K ∈ K, θ ∈ Θ,
−→
C = c(〈K, θ〉) then 〈

−→
C ′,K ′, θ′〉 is in ρ1(〈

−→
C ,K, θ〉) if and only if

−→
C ′ = c(〈K ′, θ′〉) and

either

1. K ′ = K ∪ {k}, k $∈ K and θ′ = θ or

2. K ′ = K, θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct variables in

the k1th and k2th literals of
−→
⊥v respectively and k1th and k2th are in K ′.

In Definition 69, ρ1 adds a most general literal from
−→
⊥v which has not been added

before (choice 1) or it applies an elementary variable substitution such that the clause

subsumes
−→
⊥ (choice 2). The variable substitution θ in an encoding tuple 〈K, θ〉 defines

a set of equivalences classes over the distinct variables in
−→
⊥v. The second choice in the

definition of ρ1 merges two equivalence classes by applying the variable binding {y′/x′}

on θ.

Example 31 Let
−→
⊥v, K, θ and

−→
C be as defined in Example 30. Then 〈

−→
C ′,K ′, θ′〉 is

in ρ1(〈
−→
C ,K, θ〉) and (a) K ′ = {1, 2, 5, 6}, θ′ = {V4/V1, V12/V5} and

−→
C ′ = c(〈K ′, θ′〉) = mult(V1, V2, V3) ← dec(V1, V5),mult(V5, V13, V14),

mult(V15, V16, V17)

is a possible clause if choice 1 in ρ1 is selected and (b) K ′ = {1, 2, 5}, θ′ = {V4/V1, V12/V5, V13/V2}

and

−→
C ′ = c(〈K ′, θ′〉) = mult(V1, V2, V3) ← dec(V1, V5),mult(V5, V2, V14)

is another possible clause if choice 2 in ρ1 is selected. These two example applications

of refinement operator ρ1 are shown in Figures 5.1a and 5.1b. "
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C′ θ′ K ′

! ∅ ∅
mult(V1, V2, V3) ← ∅ {1}
mult(V1, V2, V3) ← dec(V4, V5) ∅ {1, 2}
mult(V1, V2, V3) ← dec(V1, V5) {V4/V1} {1, 2}
mult(V1, V2, V3) ← dec(V1, V5), mult(V12, V13, V14) {V4/V1} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V13, V14) {V4/V1, V12/V5} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14) {V4/V1, V12/V5} {1, 2, 5, 6}
mult(V15, V16, V17)

(a)

C′ θ′ K ′

! ∅ ∅
mult(V1, V2, V3) ← ∅ {1}
mult(V1, V2, V3) ← dec(V4, V5) ∅ {1, 2}
mult(V1, V2, V3) ← dec(V1, V5) {V4/V1} {1, 2}
mult(V1, V2, V3) ← dec(V1, V5), mult(V12, V13, V14) {V4/V1} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V13, V14) {V4/V1, V12/V5} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V13, V14) {V4/V1, V12/V5, V13/V2} {1, 2, 5}

(b)

Figure 5.1: Two example applications of refinement operator ρ1.

5.2 Idealness of refinement operator ρ1

In the following we show that ρ1 is ideal for 〈
−→
L⊥,"⊥〉. The completeness proof below

is similar to the completeness proof for Laird’s refinement operator [vdL95] adapted

for subsumption order relative to ⊥.

Lemma 9 Let
−→
C ,
−→
D be two ordered clauses in

−→
L⊥ such that

−→
C θ =

−→
D for some

substitution θ ⊆ θ⊥. Then, there exists a ρ1-chain from
−→
C to

−→
D .

Proof. Suppose
−→
C ,
−→
D are ordered clauses and

−→
C θ =

−→
D . This lemma is then a special

case of Theorem 7 and there is a finite chain of downward covers of Type 1 (Lemma

5) from
−→
C to

−→
D involving substitution θ. Thus, there exists a ρ1-chain from

−→
C to

−→
D

by repeatedly selecting choice 2 in Definition 69. !

Lemma 10 Let
−→
C ,
−→
D be two ordered clauses in

−→
L⊥ such that

−→
C is a subsequence of

−→
D . Then, there exists a ρ1-chain from

−→
C to

−→
D .

Proof. The proof is by induction on i the number of literals in
−→
D but not in

−→
C . If

i = 0 then
−→
C =

−→
D , and the empty chain satisfies the lemma. Assume for some j,

0 ≤ j < i, the lemma is true. This implies that there is a ρ1-chain from
−→
C to

−→
C j

such that
−→
C j is

−→
C with j literals inserted such that

−→
C j is a subsequence of

−→
D . We
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show that there is a ρ1-chain from
−→
C to

−→
C j+1. Let l be the leftmost literal in

−→
D

which is not in
−→
C j . Given that

−→
D ∈

−→
L⊥ we can assume that l is mapped to the k-th

literal of
−→
⊥ . We consider the following two cases: (a) if l is a most general literal with

respect to
−→
C j , then l is the k-th literal of

−→
⊥v and using choice 1 in the definition of

ρ1, 〈
−→
C j+1,K ′, θ〉 ∈ ρ1(〈

−→
C j ,K, θ〉), where K ′ = K ∪ {k}, (b) otherwise there is a most

general literal l′ such that l′θ′ = l. In this case, first using choice 1 in the definition of

ρ1, 〈
−→
C ′

j+1,K ′, θ〉 ∈ ρ1(〈
−→
C j,K, θ〉) and then according to Lemma 9 (and using choice

2 in the definition of ρ1), 〈
−→
C j+1,K ′, θ′′〉 ∈ ρ∗1(〈

−→
C ′

j+1,K ′, θ〉), where K ′ = K ∪ {k} and

θ′′ = θθ′. Thus, in both cases (a) and (b), there exists a ρ1-chain from
−→
C to

−→
C j+1 and

this completes the proof. !

Theorem 14 ρ1 is complete for 〈
−→
L⊥,"⊥〉.

Proof. Let
−→
C ,
−→
D be two ordered clauses in

−→
L⊥ such that, for some θ ⊆ θ⊥,

−→
C θ is a

subsequence of
−→
D . We need to show that there is ρ1-chain from

−→
C to

−→
D . If we define

−→
E =

−→
C θ then

−→
E and

−→
C satisfy Lemma 9, hence there is a ρ1-chain from

−→
C to

−→
E .
−→
E

is a subsequence of
−→
D relative to ⊥ and according to Lemma 10, there is a ρ1-chain

from
−→
E to

−→
D . Thus, there is a ρ1-chain from

−→
C to

−→
D via

−→
E . !

In the following we show the properness and the idealness of ρ1 for 〈
−→
L⊥,"⊥〉.

Lemma 11 Let
−→
C and

−→
D be ordered clauses in

−→
L⊥. If

−→
C ∼⊥

−→
D , then

−→
C and

−→
D are

alphabetical variants.

Proof. Suppose
−→
C ∼⊥

−→
D , then we have

−→
C "⊥

−→
D and

−→
D "⊥

−→
C . Thus, there are

substitutions θ1 and θ2 in θ⊥ such that
−→
C θ1 is a subsequence of

−→
D and

−→
Dθ2 is a

subsequence of
−→
C . Let

−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D = M1 ∨M2 ∨ · · · ∨Mm. Hence,

there are strictly increasing selection functions s1 and s2 such that for each (i, j) ∈ s1,

Liθ1 = Mj and for each (i, j) ∈ s2, Miθ2 = Lj . Given that s1 and s2 are strictly

increasing functions, there is a one-to-one mapping between literals of
−→
C and

−→
D such

that m = n, Liθ1 = Mi and Miθ2 = Li. Therefore it holds that
−→
C θ1 =

−→
D and

−→
Dθ2 =

−→
C . Hence,

−→
C and

−→
D are alphabetical variants. !
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Lemma 12 Let K and Θ and mapping function c be defined as in Definition 68 and

K, {k} ∈ K such that k $∈ K and θ ∈ Θ. Then, c(〈K ∪ {k}, θ〉) 8⊥ c(K, θ).

Proof. Suppose c(〈K ∪ {k}, θ〉) $8⊥ c(K, θ). We know from Theorem 17 that c(〈K ∪

{k}, θ〉) "⊥ c(K, θ), and therefore c(〈K∪{k}, θ〉) ∼⊥ c(K, θ). According to Lemma 11,

c(〈K ∪ {k}, θ〉) and c(K, θ) must be alphabetical variants, contradicting k $∈ K. Thus,

c(〈K ∪ {k}, θ〉) 8⊥ c(K, θ). !

Lemma 13 Let K and Θ, ⊥v and mapping function c be defined as in Definition 68

and K ∈ K, {y/x}, θ ∈ Θ where x and y are distinct variables in the k1th and k2th

literals of
−→
⊥v respectively and k1th and k2th are in K. Then, c(〈K, θ{y/x}〉) 8⊥

c(K, θ).

Proof. Suppose c(〈K, θ{y/x}〉) $8⊥ c(K, θ). We know from Theorem 17 that c(〈K, θ{y/x}〉) "⊥

c(K, θ), and therefore c(〈K, θ{y/x}〉) ∼⊥ c(K, θ). According to Lemma 11, c(〈K, θ{y/x}〉)

and c(K, θ) must be alphabetical variants. Thus, {y/x} must be a renaming subsump-

tion, i.e. x is either equal to y or it does not occur in c(K, θ), contradicting the

assumption. Thus, c(〈K, θ{y/x}〉) 8⊥ c(K, θ). !

Theorem 15 ρ1 is proper for 〈
−→
L⊥,"⊥〉.

Proof. If 〈C ′, θ′,K ′〉 ∈ ρ1(〈C, θ,K〉) is generated by choice 1 in the definition of ρ1,

then
−→
C 8⊥

−→
D follows from Lemma 12. If it is generated by choice 2 in the definition

of ρ1, then
−→
C 8⊥

−→
D follows from Lemma 13. !

Theorem 16 ρ1 is ideal for 〈
−→
L⊥,"⊥〉.

Proof. Locally finiteness follows from the definition of ρ1 and the fact that there are

finite number of literals and variables in ⊥. Completeness and properness were proved

in Theorem 14 and Theorem 15 respectively. !
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5.3 Lattice isomorphism of mapping function c

In this section we study the morphism between 〈
−→
L⊥,"⊥〉 and a lattice of the encoding

tuples 〈K, θ〉, used in the mapping function c (i.e. 〈K×Θ,⊆〉). As mentioned in Section

5.1, the variable substitution θ in an encoding tuple 〈K, θ〉 defines a set of equivalence

classes over the distinct variables in
−→
⊥v. The presence of literals from

−→
⊥v is explicitly

represented by a set of corresponding indexes K. However, as shown in Section 4.3,

the presence of literals can also be implicitly represented by the presence of variables in

θ. The morphism between 〈
−→
L⊥,"⊥〉 and the partitions lattice was shown in Chapter

4. It is known (e.g. see Theorem 4.11 in [SB81]) that any partition on a set induces an

equivalence relation on it and conversely, any equivalence relation induces a partition.

Proposition 17 ([SB81]) Let 〈Πn,≤〉 be as defined in Definition 64 and En be the

set of all equivalence relations on {1, 2, . . . , n}. The mapping function ε : Πn → En

defined as ε(π) = {〈i, j〉|{i, j} ⊆ B for some B in π} is a lattice isomorphism and

lattices 〈Πn,≤〉 and 〈En,⊆〉 are two isomorphic lattices.

The morphism between 〈
−→
L⊥,"⊥〉 and 〈K×Θ,⊆〉 can be explained by Proposition 17

and the morphism between 〈
−→
L⊥,"⊥〉 and the partitions lattice (see Proposition 16).

However, in this chapter we give a direct proof for the morphism between 〈
−→
L⊥,"⊥〉

and 〈K ×Θ,⊆〉.

In the following we first define the order relation for the encoding tuples 〈K, θ〉, used

in the mapping function c. Then, we show that the mapping function c is order-

embedding.

Definition 70 Let Θ be defined as in Definition 68 and θ1, θ2 ∈ Θ. θ1 ≤ θ2 if there

exists a substitution θ ∈ Θ such that θ1θ = θ2.

Definition 71 Let K and Θ be defined as in Definition 68 and K1,K2 ∈ K and θ1, θ2 ∈

Θ. 〈K1, θ1〉 ⊆ 〈K2, θ2〉 if and only if K1 ⊆ K2 and θ1 ≤ θ2. 〈K1, θ1〉 ∼ 〈K2, θ2〉 if and

only if 〈K1, θ1〉 ⊆ 〈K2, θ2〉 and 〈K2, θ2〉 ⊆ 〈K1, θ1〉.

Theorem 17 Let K and Θ and function c be defined as in Definition 68 and K1,K2 ∈

K and θ1, θ2 ∈ Θ. c(〈K1, θ1〉) "⊥ c(〈K2, θ2〉) if and only if 〈K1, θ1〉 ⊆ 〈K2, θ2〉.
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Proof. ⇒ : Let
−→
C ,
−→
D be ordered clauses such that

−→
C = c(〈K1, θ1〉) and

−→
D =

c(〈K2, θ2〉). Assume
−→
C "⊥

−→
D , then according to Theorem 14 there is a ρ1-chain

from
−→
C to

−→
D . Let this chain be

−→
C =

−→
C ′

0 "⊥
−→
C ′

1 "⊥ · · · "⊥
−→
C ′

m =
−→
D where

〈
−→
C ′

i+1,K ′
i+1, θ

′
i+1〉 ∈ ρ1(〈

−→
C ′

i,K ′
i, θ

′
i〉), 0 ≤ i < m. According to the definition of

ρ1, in each refinement step either 1) K ′
i ⊆ K ′

i+1 and θ′i+1 = θ′i or 2) K ′
i+1 = K ′

i

and θ′i ≤ θ′i+1. Then it is always the case that K ′
i ⊆ K ′

i+1 and θ′i ≤ θ′i+1, where

K ′
0 = K1,K ′

m = K2, θ′0 = θ1, θ′m = θ2. Thus, K1 ⊆ K2 and θ1 ≤ θ2 and therefore

〈K1, θ1〉 ⊆ 〈K2, θ2〉.

⇐ : Let
−→
C = c(K1, θ1) = (

∨

li|i ∈ K1)θ1 and
−→
D = c(K2, θ2) = (

∨

lj |j ∈ K2)θ2 such

that K1 ⊆ K2 and θ1 ≤ θ2. According to Definition 71, θ1θ = θ2 for some substitu-

tion θ ∈ Θ. Then, given K1 ⊆ K2, for every literal liθ1θ from
−→
C θ, we have a literal

ljθ2 = liθ1θ from
−→
D and these literals are both mapped to the i-th literal from

−→
⊥v

(Definition 68). Thus,
−→
C θ is a subsequence of

−→
D . Moreover, θ ∈ Θ and therefore

θ ⊆ θ⊥. Hence,
−→
C "⊥

−→
D . !

According to Theorem 17, the mapping function c is an order-embedding. The follow-

ing theorem shows that c is also an order-isomorphism.

Theorem 18 The mapping function c : K × Θ →
−→
L⊥ as defined in Definition 68 is

an order-isomorphism.

Proof. First we show that the mapping function c is onto. Let
−→
C be an ordered clause

in
−→
L⊥, then there exist substitution θ and selection function s which maps literals

of
−→
C θ to equivalent literals from

−→
⊥ . From Definition 68 we have

−→
⊥vθv =

−→
⊥ and

therefore
−→
C θ 9

−→
⊥vθv and this implies

−→
C 9

−→
⊥vθvθ−1. Thus,

−→
C can be defined as

−→
C = c(K, θ′) = (

∨

li|i ∈ K)θ′, where θ′ = θvθ−1 and K is the range of the selection

function s. Hence, the mapping function c is onto. Moreover, according to Theorem 17,

the mapping function c is an order-embedding. Then according to Definition 26, c is

an order-isomorphism. !

The proposition below follows directly from Theorem 18.
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Proposition 18 Let K and Θ and mapping function c be defined as in Definition 68

and K1,K2 ∈ K and θ1, θ2 ∈ Θ. c(K, θ) ∼⊥ c(K ′, θ′) if and only if 〈K, θ〉 ∼ 〈K ′, θ′〉.

According to Theorem 6 〈
−→
L⊥,"⊥〉 is a lattice. The proposition below follows directly

from Theorem 18 and Remark 7.

Proposition 19 The mapping function c : K × Θ →
−→
L⊥ as defined in Definition 68

is a lattice isomorphism and lattices 〈
−→
L⊥,"⊥〉 and 〈K × Θ,⊆〉 are two isomorphic

lattices.

The proposition below follows from c being a lattice isomorphism.

Proposition 20 Let K and Θ and mapping function c be defined as in Definition 68

and K1,K2 ∈ K and θ1, θ2 ∈ Θ. Mapping c is join-preserving and meet-preserving,

that is:

1. lgg⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1, θ1〉 ∩ 〈K2, θ2〉)

2. mgs⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1, θ1〉 ∪ 〈K2, θ2〉)

According to Proposition 20, the least general generalisation (lgg⊥) and the most gen-

eral specialisation (mgs⊥) for 〈
−→
L⊥,"⊥〉 can be defined based on the join and the meet

operations for 〈K×Θ,⊆〉. The morphism between 〈
−→
L⊥, lgg⊥,mgs⊥〉 and 〈K×Θ,∩,∪〉

is important from a practical point of view. The construction of the least general

generalisation (lgg) of clauses in the general subsumption order is inefficient as the

cardinality of the lgg of two clauses can grow very rapidly (see Section 4.2). On the

other hand, efficient operators can be implemented for least generalisation and greatest

specialisation in the subsumption order relative to a bottom clause. For example, with

Plotkin’s Relative Least General Generalisation (RLGG), clause length grows expo-

nentially in the number of examples [Plo71]. Hence, an ILP system like Golem [MF90]

which uses RLGG is constrained to ij-determinacy to guarantee polynomial-time con-

struction. However, the determinacy restrictions make an ILP system inapplicable in

many key application areas, including the learning of chemical properties from atom

and bond descriptions. On the other hand, a variant of Plotkin’s Relative RLGG

which does not need the determinacy restrictions can be designed based on subsump-
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tion with respect to a bottom clause. This idea is the basis of Asymmetric Relative

Minimal Generalisations (or ARMGs) relative to a bottom clause where the clause

length is bounded by the length of the initial bottom clause. ARMGs, therefore do not

need the determinacy restrictions used in Golem. ARMGs have been implemented in

an ILP system called ProGolem [MSTN10a] which combines bottom-clause construc-

tion in Progol with a Golem control strategy which uses ARMG in place of determinate

RLGG. ARMGs are discussed further in Chapter 7.

5.4 Alternative forms of bounded subsumption, encoding
and refinement operators

The purpose of Chapters 3 and 4 was to characterise Progol’s refinement and the

subsumption lattice which is searched by a Progol-like ILP system, i.e. the bounded

subsumption lattice. We defined (sequential) subsumption order relative to ⊥ and

studied the properties of this special case of subsumption. In this section we show how

other forms of subsumption relative to ⊥ can be defined by using different conditions

on the selection functions which define subsequences. For example we show how the

first type of incompleteness in Progol’s refinement operator (see Chapter 3) can be

addressed by relaxing conditions of subsumption order relative to a bottom clause. As

demonstrated in section 3.2, the first type of Progol’s refinement incompleteness is due

to the choice of ordering of literals in ⊥ and the fact that clauses are considered as

subsequences of ⊥. This condition was embedded in the definitions of the subsumption

order relative to a bottom clause in Chapter 3 and also the refinement operator ρ1 in

this chapter. However, more relaxed conditions can be defined for subsumption and

refinement operators relative to ⊥. Note that in the definitions and theorems for

bounded subsumption, in particular the encoding described in this chapter, we only

needed to assume that the selection functions are injective so that we can encode every

literal of a clause by a k index from ⊥. A less restricted ordering can therefore be

defined by using a selection function which is injective rather than strictly increasing.

Hence, instead of using subsequence we use injective subset which is defined as follows.

Definition 72 (Injective subset) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D = M1 ∨M2 ∨

· · · ∨Mm be ordered clauses.
−→
C is an injective subset of

−→
D , denoted by

−→
C 9i −→D , if
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−→
C = p(x, y) ∨ r(x, y) ∨ r(y, x)

−→
B = p(x, y) ∨ q(x, y) ∨ r(x, y) ∨ r(y, x)

(a)

−→
D = p(x, y) ∨ r(y, x) ∨ r(x, y)

−→
B = p(x, y) ∨ q(x, y) ∨ r(x, y) ∨ r(y, x)

(b)

Figure 5.2: Comparison between subsequence and injective subset (a) "C is a subse-
quence and also an injective subset of "B (b) "D is not a subsequence of "B, however, it
is an injective subset of "B.

there exists an injective selection function s ⊆ {1, . . . , l} × {1, . . . ,m} such that for

each (i, j) ∈ s, Li = Mj .

Example 32 In Figure 5.2,
−→
C is a subsequence of

−→
B because there exists increasing

selection function s1 = {(1, 1), (2, 3), (3, 4)} which maps literals from
−→
C to equivalent

literals from
−→
B . s1 is also an injective selection function and

−→
C is therefore an injective

subset of
−→
B .
−→
D is not a subsequence of

−→
B because an increasing selection function

does not exist for
−→
D and

−→
B . However,

−→
D is an injective subset of

−→
B because there

exists an injective selection function s2 = {(1, 1), (2, 4), (3, 3)} which maps literals from
−→
D to equivalent literals from

−→
B . "

Definition 73 (Injective subsumption) Let
−→
C and

−→
D be ordered clauses. We say

−→
C is an injective generalisation of

−→
D , denoted by

−→
C "i −→D , if there exists a substitution

θ such that
−→
C θ is an injective subset of

−→
D .
−→
C is a proper injective generalisation of

−→
D , denoted by

−→
C 8i −→D , if

−→
C "i −→D and

−→
D $"i −→C .

−→
C and

−→
D are equivalent with

respect to injective subsumption, denoted by
−→
C ∼i −→D , if

−→
C "i −→D and

−→
D "i −→C .

Example 33 Let
−→
B = p(X1,X1)∨ q(X1, Y1)∨ r(X1, Y1)∨ r(Y1,X1),

−→
C = p(X2,X2)∨

r(Y2, V2) ∨ r(U2, Y2) and
−→
D = p(X3, Z3) ∨ p(Z3,X3) ∨ r(U3, Y3) ∨ r(Y3, V3) be ordered

clauses and let θ1 = {X2/X1, Y2/Y1, U2/X1, V2/X1}. Then
−→
C θ1 is an injective subset

of
−→
B and therefore

−→
C "i −→B . However, there is no substitution θ2 such that

−→
Dθ2 is an

injective subset of
−→
B and therefore

−→
D $"i −→B . Note that for conventional clauses B, C
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and D we have Cθ1 ⊆ B and similarly for θ2 = {X3/X1, Z3/X1, Y3/Y1, V3/X1, U3/X1}

we have Dθ2 ⊆ B and therefore C " B and D " B. "

By analogy to Definitions 53 and 55 we can define
−→
L i

⊥ and injective subsumption

relative to a bottom clause.

Definition 74 (
−→
L i

⊥) Let
−→
⊥ and θv be as defined in Definition 53 and

−→
C a definite

ordered clause.
−→
C is in

−→
L i

⊥ if
−→
C θv is an injective subset of

−→
⊥ .

Definition 75 (Injective subsumption relative to ⊥) Let
−→
⊥ and

−→
L i

⊥ be as de-

fined in Definition 74, θ⊥ be as defined in Definition 54 and
−→
C and

−→
D be ordered

clauses in
−→
L i

⊥. We say
−→
C is an injective generalisation of

−→
D relative to ⊥, denoted by

−→
C "i

⊥
−→
D , if there exists a substitution θ ⊆ θ⊥ such that

−→
C θ is an injective subset of

−→
D .
−→
C is a proper injective generalisation of

−→
D relative to ⊥, denoted by

−→
C 8i

⊥
−→
D , if

−→
C "i

⊥
−→
D and

−→
D $"i

⊥
−→
C .
−→
C and

−→
D are equivalent with respect to injective subsumption

relative to ⊥, denoted by
−→
C ∼i

⊥
−→
D , if

−→
C "i

⊥
−→
D and

−→
D "i

⊥
−→
C .

Mapping function c′ can be defined by analogy to Definition 68. This mapping function

maps a tuple 〈K, θ〉 into an ordered clause in
−→
L i

⊥.

Definition 76 (Mapping function c′) Let
−→
⊥ ,
−→
⊥v, K, K, θ and Θ be as defined

in Definition 68 and
−→
L i

⊥ be as defined in Definition 74. The mapping function c′ :

K ×Θ→
−→
L i

⊥ is defined as follows:

c′(〈K, θ〉) = (
∨

i∈K

li where li is the ith literal of
−→
⊥v)θ.

Note that in the definition of c′, unlike in c, literals li do not need to follow the same

order as literals in
−→
⊥v and the above disjunction notion with indexes i ∈ K means that

the literals li of c′(〈K, θ〉) can have an order different from the order of literals in
−→
⊥v.

In the following we define a refinement operator, ρ2, which is similar to ρ1 but uses the

mapping function c′ instead of c.

Definition 77 (ρ2) Let
−→
⊥ ,
−→
⊥v, K, K, θ, Θ and k be as defined in Definition 69 and

−→
L i

⊥ be as defined in Definition 74. Let K ∈ K, θ ∈ Θ,
−→
C = c′(〈K, θ〉) and the mapping

98



C′ θ′ K ′

! ∅ ∅
mult(V1, V2, V3) ← ∅ {1}
mult(V1, V2, V3) ← dec(V4, V5) ∅ {1, 2}
mult(V1, V2, V3) ← dec(V1, V5) {V4/V1} {1, 2}
mult(V1, V2, V3) ← dec(V1, V5), mult(V12, V13, V14) {V4/V1} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V13, V14) {V4/V1, V12/V5} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14) {V4/V1, V12/V5, V13/V2} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2} {1, 2, 5, 3}
plus(V6, V7, V8)

mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2, {1, 2, 5, 3}
plus(V14, V7, V8) V6/V14}

mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2, {1, 2, 5, 3}
plus(V14, V2, V8) V6/V14, V7/V2}

Figure 5.3: Example application of refinement operator ρ2.

function c′ be defined as in Definition 76. 〈
−→
C ′,K ′, θ′〉 is in ρ2(〈

−→
C ,K, θ〉) if and only if

−→
C ′ = c′(〈K ′, θ′〉) and either

1. K ′ = K ∪ {k}, k $∈ K and θ′ = θ or

2. K ′ = K, θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct variables in

the k1th and k2th literals of
−→
⊥v respectively and k1th and k2th are in K ′.

The following example demonstrates how the first type of incompleteness (in Example

7) is addressed in ρ2.

Example 34 Let
−→
C and

−→
⊥ be as defined in Example 7. Progol’s refinement cannot

generate C (i.e. C $∈ ρ∗(!))) and also 〈
−→
C ,K, θ〉 $∈ ρ∗1(〈!, ∅, ∅〉). However, Figure 5.3

shows that 〈
−→
C ,K, θ〉 ∈ ρ∗2(〈!, ∅, ∅〉), where K = {1, 2, 5, 3} and θ = {V4/V1, V12/V5,

V13/V2, V6/V14, V7/V2} and
−→
⊥v is the clause:

mult(V1, V2, V3) ← dec(V4, V5), plus(V6, V7, V8), plus(V9, V10, V11),

mult(V12, V13, V14),mult(V15, V16, V17).

"

This example shows that ρ2 can address the first type of Progol’s incompleteness

demonstrated in Example 7. However, ρ2 is also more redundant than other refinement

operators considered so far (e.g. ρ and ρ1) as different permutations of the same clause

could be generated in ρ2. On the other hand, as mentioned before in this chapter, a

refinement operator cannot be both complete and non-redundant.
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Mode declarations can be used to consider only those permutations which are useful.

For example, in Figure 5.3 the fifth literal from
−→
⊥v is considered before the third literal

because the output variables from mult predicate can be used as input variables for

plus. This idea has been implemented in GA-Progol (see Chapter 7) when language
−→
L i

⊥ (defined in this section) is selected. We demonstrate in Section 8.1.5 that GA-

Progol can find the correct solution for special cases, such as Example 7, where the

solution is beyond the exploration power of Progol’s refinement operator due to its

incompleteness.

Note that in the new definitions the selection functions are injective, we can therefore

encode every literal of a clause by a k index from ⊥. Hence, the properties mentioned

for the mapping function c also hold for c′.

The refinement operator ρ2 defined in this section is similar to the refinement operator

ρ(1)
⊥ introduced in [BS99]. However, the subsumption order used in [BS99] (i.e. weak

subsumption) is a special case of the subsumption order introduced in this section. Us-

ing different conditions on the selection functions in Definition 72, we can get different

kind of subsumption orders. For example, if the selection function is monotonically

increasing then we will have a subsumption order which allows each literal of ⊥ to

be selected more than once. In this case, Definition 72 will be similar to the defini-

tion of subsequences considered in [KOHH06]. This will address the second type of

Progol’s incompleteness mentioned before. However, the selection functions are not

injective and therefore the encoding and the morphism we described in this paper are

not applicable.

In this chapter we only studied downward refinement operators for bounded subsump-

tion. In a downward refinement operator relative to ⊥ (e.g. ρ1 and ρ2), a clause is

specialised by adding a literal or by unifying variables. Similarly, an upward refinement

operator relative to ⊥ can be defined by removing a literal or splitting variables. In

fact, every refinement operator relative to ⊥ can be defined based on basic refinement

operators relative to ⊥ as defined in the following.

Definition 78 (Basic refinement operators ρa
⊥, ρd

⊥, ρu
⊥ and ρs

⊥) Let
−→
⊥ and

−→
L⊥

be as defined in Definition 53,
−→
C be an ordered clause in

−→
L⊥, n be the number of
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literals in ⊥, k be a natural number, 1 ≤ k ≤ n,
−→
⊥v, Θ and K be defined as in

Definition 68. Let K ∈ K, θ ∈ Θ,
−→
C = c(〈K, θ〉) and the mapping function c be

defined as in Definition 68.

Add literal (ρa
⊥): 〈

−→
C ′,K ′, θ′〉 is in ρa

⊥(〈
−→
C ,K, θ〉) if and only if

−→
C ′ = c(〈K ′, θ′〉) and

K ′ = K ∪ {k}, k $∈ K and θ′ = θ.

Delete literal (ρd
⊥): 〈

−→
C ′,K ′, θ′〉 is in ρd

⊥(〈
−→
C ,K, θ〉) if and only if

−→
C ′ = c(〈K ′, θ′〉)

and K = K ′ ∪ {k}, k $∈ K and θ′ = θ.

Unify variables (ρu
⊥): 〈

−→
C ′,K ′, θ′〉 is in ρu

⊥(〈
−→
C ,K, θ〉) if and only if

−→
C ′ = c(〈K ′, θ′〉)

and K ′ = K and θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct

variables in the k1th and k2th literals of
−→
⊥v respectively and k1th and k2th are in

K ′.

Split variables (ρs
⊥): 〈

−→
C ′,K ′, θ′〉 is in ρs

⊥(〈
−→
C ,K, θ〉) if and only if

−→
C ′ = c(〈K ′, θ′〉)

and K ′ = K and θ = θ′{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct

variables in the k1th and k2th literals of
−→
⊥v respectively and k1th and k2th are in

K ′.

An ILP system can be based on one or more of the basic refinement operators de-

scribed in Definition 78. For example the Asymmetric Relative Minimal Generalisation

(ARMG) operator implemented in ProGolem (i.e armg⊥) is based on removing literals

from ⊥. GA-Progol implements all of the basic refinement operators described in this

definition. ARMGs, ProGolem and GA-Progol are discussed in Chapter 7.

5.5 Related work and discussion

In this chapter we used an encoding of clauses with respect to a bottom clause. In

this encoding each clause is represented by a tuple 〈K, θ〉 and it can be constructed

from
−→
⊥v as described in Definition 68. This idea was first used in [TNM00] where the

substitution θ is encoded as a binding matrix which maps the variables of
−→
⊥v to the

variables of a clause with respect to the bottom clause. The morphism between the

lattice of variable bindings and the subsumption lattice was also studied in [TNM00].

The encoding and refinement operators for the bounded subsumption are also related

to stochastic searches in ILP. For example, the refinement operator ρ1 which is ideal
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is the basis of some stochastic refinement operators which are discussed in Chapter 7.

In a systematic and structured search, such as the A∗-like search in Progol, the search

always starts from the empty clause (!) and a weakly complete refinement operator is

sufficient to generate any clauses in the language. However, in a stochastic search which

starts from random points in the search space, we need a complete refinement operator

rather than a weakly complete operator. This is because for each clause C and D in L

if we have C " D and the search is started from C then D should be accessible from

C. In other words, if C " D then there should always be a ρ-chain from C to D and

therefore ρ should be a complete (downward) refinement operator. Hence, from the two

favourable sets of properties for refinement operators, i.e. idealness and optimality, the

first one is more appropriate for a stochastic strategy. On the other hand, it is known

that a refinement operator can not be both complete and non-redundant. A complete

refinement operator is therefore redundant. The refinement operator ρ1 described in

this chapter works on an encoding of a clause, i.e. the encoding tuples 〈K, θ〉, rather

than the clause itself. This property is also used in the stochastic refinement operators

discussed in Chapter 7.

The lgg⊥ (and armg⊥) operators discussed in this chapter can be compared with

other approaches which use lgg-like operators but instead of considering all pairs of

compatible literals they only consider one pair. For example, LOGAN-H [AK04] is

a bottom-up system which is based on inner products of examples which are closely

related to the lgg operator. This system constructs lgg-like clauses by considering only

those pairs of literals which guarantee an injective mapping between variables. In other

words, it assumes one-to-one object mappings. Other similar approaches use the same

idea of simplifying the lgg-like operations by considering only one pair of compatible

literals but they select this pair arbitrarily (e.g. [BZB01]).

As in [BS99], the refinement operator ρ1 defined in this chapter is based on Laird’s

operator [Lai87] adapted for subsumption relative to ⊥. However, as discussed in

Chapter 3 the approach in [BS99] is based on weak subsumption which is different

from the subsumption relative to ⊥ (e.g. it cannot capture the ordering of the literals

in Progol’s refinement). The refinement operator ρ2 is also similar to the refinement

operator ρ(1)
⊥ introduced in [BS99]. But again the subsumption order used in [BS99]
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(i.e. weak subsumption) is different and also no completeness proof was given in [BS99].

In this chapter we have studied alternative forms of subsumption relative to ⊥. Using

different conditions on the selection function in Definition 72, we can get different

kind of subsumption orders relative to ⊥. For example, if the selection function is

monotonically increasing then we will have a subsumption order which allows each

literal of ⊥ to be selected more than once. In this case, Definition 72 will be similar to

the definition of subsequences considered in [KOHH06]. This will address the second

type of Progol’s incompleteness discussed in Chapter 3, i.e. incompleteness due to

the fact that each literal from the bottom clause can be only selected once. However,

the selection functions are not injective and therefore the encoding and the morphism

described in this chapter are not applicable.

In this chapter we have shown that ρ1 is ideal for subsumption relative to ⊥ and as dis-

cussed above the idealness property is more appropriate than optimality for stochastic

searches which we are interested in this thesis. However, in other contexts especially

when using a systematic search, an optimal operator could be more appropriate. It

is shown (e.g. [BS99]) that for each ideal refinement operator ρ we can construct

an optimal refinement operator ρ(o). Hence, we can construct a refinement operator

ρ(o)
1 which is optimal for subsumption relative to ⊥ from the ideal refinement oper-

ator ρ1. The procedure for this is as follows. ρ(o)
1 is obtained from ρ1 such that for

D ∈ ρ1(C1) ∩ · · · ∩ ρ1(Cn) we have ∃i.D ∈ ρ(o)
1 (Ci) and ∀j $= i.D $∈ ρ(o)

1 (Cj).

5.6 Summary

In this chapter we have defined a refinement operator ρ1 for the lattice of bounded

subsumption, i.e. 〈
−→
L⊥,"⊥〉. We have shown that ρ1 is ideal and therefore, unlike

for the general subsumption order, ideal refinement operators exist for the lattice of

bounded subsumption. Each clause
−→
C in this lattice is encoded by a tuple 〈K, θ〉,

where K is a set of indexes from the bottom clause and θ is a variable subsumption

which maps variables between
−→
C and

−→
⊥v. The refinement operator ρ1 works on the

encoding tuples and the mapping function c, maps a tuple 〈K, θ〉 into an ordered clause
−→
C in

−→
L⊥. This refinement operator is the basis of the genetic operators which work
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on the encoding of the clauses in a GA-ILP search (see Chapter 7). In this chapter

we also studied the mapping and the morphism between 〈
−→
L⊥,"⊥〉 and a lattice of

the encoding tuples 〈K, θ〉. We have shown that the mapping function c is a lattice

isomorphism and lattices 〈
−→
L⊥,"⊥〉 and 〈K×Θ,⊆〉 are two isomorphic lattices. In this

chapter we have also studied alternative forms of subsumption relative to ⊥. We have

shown that using different conditions on the selection function which maps the literals

from a clause to the literals of ⊥, we can get different forms of subsumption orders

relative to ⊥. We have defined the refinement operator ρ2 based on an alternative form

of bounded subsumption and we demonstrated how ρ2 can address the first type of

Progol’s incompleteness (i.e. incompleteness due to the ordering of the literals).
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Chapter 6

Stochastic refinement and
genetic search

Most ILP systems are traditionally based on clause refinement through a lattice de-

fined by a generality order (e.g. subsumption) as discussed in Chapter 2. However,

there is a long-standing and increasing interest in stochastic search methods in ILP for

searching the space of candidate clauses (e.g. [PKK93, Sri00, TNM02, RK03, ZSP06,

PŽZ+07, MTN07, DPZ08]). The idea of stochastic refinement presented in this chapter

is motivated by the following question. How can the generality order of clauses and

the relevant concepts such as refinement be adapted to be used in a stochastic search?

To address this question we introduce the concept of stochastic refinement operators

and adapt a framework, called stochastic refinement search. As shown in Chapter

2, refinement of a clause is defined as a set of clauses. In this chapter we introduce

stochastic refinement of a clause as a probability distribution over a set of clauses.

This probability distribution can be viewed as a Bayesian prior over the hypotheses in

a stochastic ILP search. We also define the concept of stochastic refinement search. In

general a stochastic refinement search can be viewed as a Markov chain in which the

next state of the search only depends on the current state. We study the properties of a

stochastic refinement search as two well known Markovian approaches: 1) Gibbs sam-

pling algorithm [Mit97] and 2) random heuristic search [Vos99]. As a Gibbs sampling

algorithm, a stochastic refinement search iteratively generates random samples from

the hypothesis space according to a posterior distribution. We define a special case of

random heuristic search called monotonic random heuristic search and we show that

105



due to the generality order defined by the refinement operators, a stochastic refinement

search can be viewed as a monotonic random heuristic search.

In the second part of this chapter we discuss Genetic Algorithms (GAs) as search

methods for learning first-order clauses. We discuss several learning systems which

use genetic and evolutionary approaches for learning first-order clauses. We show that

these systems use a limited form of background knowledge (e.g. to seed the popu-

lation) and they cannot benefit from intentional background knowledge in the same

way as in an ILP system. In this chapter we discuss a hybrid GA-ILP framework in

which background knowledge can be used in the same way as in the ILP systems such

as Progol and Aleph. This GA-ILP framework not only uses a standard ILP repre-

sentation but we also show that the proposed encoding is isomorphic to the bounded

subsumption lattice. This property can be used to design task-specific genetic oper-

ators as in GA-Progol. The framework of stochastic refinement relative to a bottom

clause described in this chapter is the basis of the algorithms (e.g. GA-Progol, QG,

QG/GA and ProGolem) which are discussed in Chapter 7. The concept of stochastic

refinement operators is also used in the ILP system MetaBayes [MLCTN13] which is

based on higher-order stochastic refinement.

This chapter is organised as follows. In Section 6.1 stochastic refinement operators are

introduced and their properties are discussed. The framework of stochastic refinement

search is discussed in Section 6.2 and this framework is used to characterise stochastic

search methods in some ILP systems. In Section 6.3 we discuss genetic search for

learning first-order clauses. In Section 6.4 we describe a framework for genetic and

stochastic refinement search for bounded subsumption. Related work is discussed in

Section 6.5 and Section 6.6 summarises the chapter.

6.1 Stochastic refinement operators

In this section we introduce the concept of stochastic refinement operators. According

to Definition 36 (and Definition 37), refinement of a clause (or a pair of clauses) is a set

of clauses. In the following we define stochastic refinement as a probability distribution

over a set of clauses. In this setting each clause in the refinement space is associated
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with a probability.

Definition 79 (Stochastic unary refinement operator) Let ρ be a (downward)

unary refinement operator for the quasi-ordered set 〈G,"〉 and C ∈ G. A (downward)

stochastic unary refinement operator is a function σ : G→ 2G×[0,1] defined as follows:

σ(C) = {〈Di, pi〉|Di ∈ ρ(C), pi ∈ [0, 1] and
∑

pi = 1 for 1 ≤ i ≤ |ρ(C)|}.

• A σ-chain from C to D, denoted by C
σ
−→ D, is a sequence C = C0, C1, . . . , Cm =

D, such that 〈Ci, pi〉 ∈ σ(Ci−1) for every 1 ≤ i ≤ m and the probability of this

σ-chain is p(C
σ
−→ D) =

∏m
i=1 pi.

• n-step stochastic refinements of C is defined as: σn(C) = {〈D, p〉|D ∈ ρn(C)

and p =
∑

x∈X p(x) where X is the set of σ-chains from C to D}.

• stochastic refinements of C is defined as: σ∗(C) = {〈Di, pi〉|Di ∈ ρ∗(C), pi ∈

[0, 1] and
∑

pi = 1 for 1 ≤ i ≤ |ρ∗(C)|}.

• σ inherits the standard properties (i.e. local finiteness, properness and complete-

ness) from ρ.

• σ is ε-complete if for every C,D ∈ G such that C 8 D, there is an 〈E, p〉 ∈ σ∗(C)

such that D ∼ E (i.e. D and E are equivalent in the "-order) and p > ε.

• σ is weakly ε-complete for 〈G,"〉 if for each C ∈ G there is a 〈C, p〉 ∈ σ∗(!),

where p > ε and ! is the top element of G.

Example 35 Figure 6.1.a shows refinement of a clause as a set of clauses. Stochastic

refinement of a clause is defined as a probability distribution over a set of clauses

(Figure 6.1.b).

Example 36 Figure 6.2 shows part of a stochastic refinement graph. This graph shows

the probabilities of clauses in σn(C) as defined in Definition 79. For example, there

are two σ-chains from C to D4. Hence, the probability of D4 in σ2(C) is 0.5 × 1.0 +

0.3× 0.4 = 0.62.

According to Definition 79, σ(C) and σ∗(C) represent probability distributions. In the

following we show that σn(C) is also a probability distribution.

Theorem 19 n-step stochastic refinements of a clause represent a probability distri-

bution.
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C : p(x, y)

ρ(C) : p(x, x) p(x, y)← q(x, z) p(x, y)← r(w, y)
(a)

C : p(x, y)

σ(C) : p(x, x) p(x, y)← q(x, z) p(x, y)← r(w, y)

0.5 0.3 0.2

(b)

Figure 6.1: (a) Refinement of a clause is defined as a set of clauses (b) Stochastic
refinement of a clause is defined as a probability distribution over a set of clauses.

C : C

σ(C) : 〈D1, 0.5〉 〈D2, 0.3〉 〈D3, 0.2〉

σ2(C) : 〈D4, 0.62〉 〈D5, 0.12〉 〈D6, 0.06〉 〈D7, 0.2〉

σn(C) : . . . . . . . . . . . .

0.5 0.3 0.2

1.0 0.4 0.4 0.2 1.0

Figure 6.2: Part of a stochastic refinement graph.

Proof. Let σn(C) be n-step stochastic refinements of clause C as defined in Definition

79 such that σn(C) = {〈D1, p1〉, 〈D2, p2〉, . . . 〈Dm, pm〉}. We will show that
∑m

i=1 pi = 1.

The proof is by induction on n. For n = 1 the theorem is true by definition of σ(C).

Assume that the theorem is true for k then the sum of probabilities p1, p2, . . . , ps for

s nodes at level k is 1:
∑s

i=1 pi = 1. Suppose that each node with probability pi at

level k is extended into ti nodes with probabilities qi1, qi2, . . . , qiti . Then the sum of

probabilities at level k + 1 will be:
∑s

i=1

∑ti
j=1 piqij =

∑s
i=1 pi(qi1 + qi2 + · · · + qiti).

But qi1 + qi2 + · · ·+ qiti = 1 and
∑s

i=1 pi = 1 and therefore the sum of probabilities at

level k + 1 will be 1 and this completes the proof. !

Example 37 In Figure 6.2, σ(C) represents a probability distribution and the sum of

probabilities for clauses in σ(C) is equal to 1. According to Theorem 19, σn(C) is also

a probability distribution and as shown in this figure the sum of probabilities for clauses

in σ2(C) is equal to 1.
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In the following we define analogous concepts for stochastic binary refinement opera-

tors.

Definition 80 (Stochastic binary refinement operator) Let ρ be a (downward)

binary refinement operator for the quasi-ordered set 〈G,"〉 and C,D ∈ G. A (down-

ward) stochastic binary refinement operator is a function σ : G2 → 2G×[0,1] defined as:

σ(C,D) = {〈Ei, pi〉|Ei ∈ ρ(C,D), pi ∈ [0, 1] and
∑

pi = 1 for 1 ≤ i ≤ |ρ(C,D)|}.

• A σ-chain from (C,D) to E, denoted by (C,D)
σ
−→ E, is a sequence (C,D) =

(C0,D0), (C1,D1), . . . , (Cm,Dm), such that E = Cm or E = Dm and 〈Ci, pi〉, 〈Di, qi〉 ∈

σ(Ci−1,Di−1) for every 1 ≤ i ≤ m and the probability of this σ-chain is p((C,D)
σ
−→

E) =
∏m

i=1 piqi.

• n-step stochastic binary refinements of some (C,D) ∈ G2 is defined as:

σn(C,D) = {〈E, p〉|E ∈ ρn(C,D) and p =
∑

x∈X p(x) where X is the set of

σ-chains from (C,D) to E}.

• stochastic binary refinements of some (C,D) ∈ G2 is defined as: σ∗(C,D) =

{〈Ei, pi〉|Ei ∈ ρ∗(C,D), pi ∈ [0, 1] and
∑

pi = 1 for 1 ≤ i ≤ |ρ∗(C,D)|}.

• σ inherits the standard properties (i.e. local finiteness, properness and complete-

ness) from ρ.

• σ is ε-complete if for every B,C,D ∈ G such that C 8 B, D 8 B, there is an

〈E, p〉 ∈ σ∗(C,D) such that B ∼ E (i.e. D and E are equivalent in the "-order)

and p > ε.

• σ is weakly ε-complete for 〈G,"〉 if for each C ∈ G there is a 〈C, p〉 ∈ σ∗(!,!),

where p > ε and ! is the top element of G.

Example 38 Figure 6.3 shows stochastic binary refinement of a pair of clauses as a

probability distribution over a set of clauses.

As for σn(C), it can be shown that σn(C,D) is a probability distribution.

Theorem 20 n-step stochastic binary refinements of a pair of clauses represent a

probability distribution.

Proof. Let σn(C,D) be n-step stochastic binary refinements of clause C and D as

defined in Definition 80 such that σn(C,D) = {〈E1, p1〉, 〈E2, p2〉, . . . 〈Em, pm〉}. We
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(C,D) : C D

σ(C,D) : 〈E1, 0.4〉 〈E2, 0.4〉 〈E3, 0.2〉

Figure 6.3: Stochastic binary refinement of a pair of clauses is defined as a probability
distribution over a set of clauses.

will show that
∑m

i=1 pi = 1. The proof is by induction on n and similar to the proof of

Theorem 19. For n = 1 the theorem is true by definition of σn(C,D). Assume that the

theorem is true for k then the sum of probabilities p1, p2, . . . , ps for s nodes at level k is

1:
∑s

i=1 pi = 1. Suppose that each pair of nodes with probabilities pi and pj at level k is

extended into tij nodes with probabilities rij1, rij2, . . . , rijtij . Then the sum of probabil-

ities at level k+1 will be:
∑s

i=1

∑s
j=1

∑tij
l=1 piqjrijl =

∑s
i=1

∑s
j=1 piqj(rij1+rij2+ · · ·+

rijtij ). But rij1 + rij2 + · · · + rijtij = 1 and
∑s

i=1

∑s
j=1 piqj =

∑s
i=1 pi(q1, q2, . . . , qs) =

∑s
i=1 pi = 1 and therefore the sum of probabilities at level k + 1 will be 1 and this

completes the proof. !

6.2 Stochastic refinement search

Different stochastic search methods have been used to explore the space of candidate

clauses in ILP. Examples of these search methods are simulated annealing (e.g.[PKK93,

SPR04a]), genetic algorithms (e.g. [TNM02]) and randomised restarted search (e.g.

[ZSP06]). In this section we define a general framework which can be used to charac-

terise some of the existing stochastic search methods in ILP and can also be used as a

basis to design new stochastic methods .

Definition 81 (Stochastic refinement search) Let G and σ be defined as in Def-

inition 79 and S0 be a sample from G with size s. A stochastic refinement search

involves a sequence S0
σ
−→ S1

σ
−→ S2

σ
−→ . . . where Si+1 is generated from Si such that

for each Ci+1 ∈ Si+1 there exists Ci ∈ Si such that 〈Ci+1, p〉 ∈ σ(Ci). Similarly a

stochastic refinement search can be defined for a stochastic binary refinement operator

σ (Definition 80) where for each Ci+1 ∈ Si+1 there exist Ci and Di ∈ Si such that

〈Ci+1, p〉 ∈ σ(Ci,Di).
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(a) (b)

Figure 6.4: A stochastic refinement search with (a) unary stochastic refinement oper-
ator (b) binary stochastic refinement operator.

Figure 6.4 shows stochastic refinement search with unary and binary stochastic refine-

ment operators. In Definition 81, the initial sample S0 corresponds to the starting

point of the search as in simulated annealing or an initial population as in genetic

algorithms. These are usually generated randomly. The sample size s is equal to one

in simulated annealing and it is the population size in a genetic algorithm. Stochastic

refinement operator σ corresponds to task-specific operators or search transition rules

in an stochastic ILP search algorithm. These operators generate new clauses from

the clauses in the previous search state or population. For example, in the simulated

annealing search used in ILP (e.g.[PKK93, SPR04a]), the transition operators can be

viewed as downward stochastic unary refinement operators which stochastically choose

the next literal to be added to the body of a given clause. Crossover operator lgg⊥ of

the genetic algorithm search used in ILP (e.g. [TNM02]) can be viewed as a stochas-

tic binary refinement operator. Note that some stochastic refinement searches (e.g.

genetic algorithms) use both stochastic unary and binary refinement operators.

According to Definition 81 a stochastic refinement search is a sequence of random

samples with the property that the current state depends only on the previous state.

Hence, in general a stochastic refinement search can be viewed as a Markov chain. In

the following sections we study the properties of a stochastic refinement search as two

well known Markovian approaches: 1) a Gibbs sampling algorithm and 2) a random

heuristic search.
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6.2.1 Stochastic refinement search as a Gibbs sampling algorithm

According to [Mit97], many machine learning algorithms, whether they explicitly ma-

nipulate probabilities or not, can be viewed as approximations to the following general

Bayesian inference approaches: i) methods which find a Maximum A Posterior (MAP)

hypothesis; ii) Bayes optimal classifier and iii) Gibbs classifier. In the following we

briefly describe these approaches and show that in general a stochastic refinement

search can be viewed as a Gibbs sampling algorithm.

According to Bayes’ theorem, the posterior probability of hypothesis H given examples

E can be defined as follows:

P (H|E) =
P (E|H)P (H)

P (E)

where P (H) and P (E) are prior probabilities of H and E respectively and the con-

ditional probability P (E|H), also known as the likelihood, is 1 when H explains E

and 0 otherwise. MAP-based algorithms return a hypothesis with maximum poste-

rior probability, i.e. HMAP = argmaxHP (H|E). Some algorithms (including many

ILP systems) are based on the Minimum Description Length (MDL) principle [Ris78]

which, under some assumptions, can approximate a MAP hypothesis [Mit97]. In ILP

systems such as Progol, this is approximated by finding the hypothesis which pro-

vides the highest (positive) compression over examples [Mug95]. Here, compression is

an information-theoretic criterion which can be defined as compression = p − n − h,

where p is the number of observations correctly explained by the hypothesis, n is the

number incorrectly explained and h is the length of the hypothesis. Instead of find-

ing a MAP hypothesis, a Bayes optimal classifier classifies unseen instances based on

weighted joint prediction of the entire hypothesis space. Bayes optimal classifier pro-

vides maximum overall predictive accuracy [Mit97], but it can be expensive as it may

involve many hypotheses. There is however a less expensive algorithm called Gibbs

classifier which can approximate Bayes optimal classifier. A Gibbs classifier chooses

one hypothesis at random according to the posterior probability P (H|E) and uses

this to classify a new instance. A Gibbs classifier can be used to randomly sample

hypotheses according to the posterior distribution. It has been shown [HKS94] that

the expected error for Gibbs algorithm is at most twice the expected error for Bayes
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optimal classifier.

All of the above algorithms assume a Bayes’ prior distribution over the hypothesis space

and in the case of Gibbs this is used for sampling. It has been shown (e.g. [GCSR03])

that the sequence of samples in a Gibbs sampling algorithm constitutes a Markov chain.

Stochastic refinement search introduced in this chapter assumes a prior distribution

over the hypothesis space which is defined by stochastic refinement operators. Hence, a

stochastic refinement search can be viewed as a Gibbs sampling algorithm in which each

new hypothesis is selected randomly according to a posterior probability. As noted in

[MTN07], some stochastic machine learning algorithms can be viewed as Gibbs-MAP

algorithms. A Gibbs-MAP algorithm is a Gibbs-like approximation to MAP based on

sampling. A stochastic refinement search can also be turned into Gibbs-Map which

aims at maximising the posterior probability by iteratively generating new samples

from the hypothesis space.

The Quick Generalisation (QG) algorithm described in [MTN07] is a Gibbs-MAP al-

gorithm, which by construction, generates consistent clauses by stochastically pruning

Progol bottom clauses. The QG sampling algorithm can also be viewed as a stochas-

tic refinement search with unary refinement operator which randomly samples from

“fringe” clauses (i.e. maximally general consistent clauses in the hypothesis space). A

sampling algorithm based on QG is described in Chapter 7. This sampling algorithm

returns the clause with highest positive compression from a sample of s calls to QG.

In Chapter 7, we also describe an algorithm based on Asymmetric Relative Minimal

Generalisation (ARMG) [MSTN10a] which can be viewed as a stochastic refinement

search. In this section we show how a proper sample size can be selected to guarantee

that with high probability a consistent and compressive hypothesis is generated by a

stochastic refinement search.

In the QG sampling algorithm mentioned above, the sample size s is set by the user and

the algorithm simply returns a consistent clause with the highest positive compression.

There is a trade-off between the efficiency and the achieved compression which can

be controlled by the sample size. The algorithm can be made arbitrarily efficient by

choice of sample size (down to 1). However, a good sample size should guarantee that

with a high probability a consistent and compressive hypothesis can be generated.
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The following Proposition shows that a minimum sample size can be estimated based

on the percentage of consistent clauses which are compressive (i.e. have positive com-

pression).

Proposition 21 Suppose that an algorithm randomly and independently samples from

consistent clauses and the probability that a clause does not have a positive compression

is p. Suppose that we randomly sample s clauses in each iteration. Then the probability

that there is at least one compressive clause in s samples is 1− ps.

Proof. The probability that there is no compressive clause in s samples is ps. Hence,

the probability that there is at least one compressive clause in s samples is 1− ps.

Example 39 The probability that a randomly generated consistent clause does not

have positive compression can be estimated by the proportion of consistent clauses

which are not compressive. Suppose that 1 out of 5 consistent clauses have positive

compression, then according to Proposition 21 the probability of finding a consistent

and compressive clause can be estimated by 1 − (4/5)s where s is the sample size.

Then, by choosing s = 10 this probability will be around 0.9.

As mentioned above, Progol can be viewed as a MAP-based algorithm, which uses

compression criterion to approximate a MAP hypothesis, and QG as a Gibbs-MAP al-

gorithm. Unlike QG, Progol cannot be viewed as stochastic refinement search, because

it uses a A∗-like search and maintains a growing search graph rather than a set of sam-

ples. However, Golem [MF90] can be viewed as as stochastic refinement search which

employs determinate least general generalisation under relative subsumption (RLGG).

Golem combines random sampling and a hill-climbing search to construct RLGGs with

randomly sampled positive examples at each iteration. The refinement in Golem can be

viewed as an upward lgg-like stochastic refinement. Golem maintains a set of RLGGs

which are further generalised with new sampled examples at each iteration until it

converges to a set of consistent clauses each covering a partition of positive examples.

Unlike QG, Golem’s stochastic refinement does not guarantee to generate consistent

clauses. However, the following theorem shows how the sample size and the probability

of generating a consistent clause are related. This can be used to set a minimum sample
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size such that with a high probability at least one consistent RLGG is generated.

Theorem 21 Let k be an upper bound on the number of clauses in a consistent target

theory, c be a natural number and E+ and E− be the set of positive and negative

examples respectively. Suppose that s = ck pairs of clauses are randomly sampled

from E+. Then the probability that there is a pair of clauses C1 and C2, such that

lgg(C1, C2) is consistent with E−, is at least 1− e−c.

Proof. First suppose that the k clauses in the target theory have disjoint coverage

and each covers the same number of clauses. In this case, there are k partitions each

covered by one clause in the target theory. The probability that a randomly selected

pair of clauses belong to the same partition is 1
k . If we randomly sample s = ck pairs of

clauses, the probability that there is no pair of clauses belonging to the same partition

is (1− 1
k )ck. If the coverages are of different sizes then the probability that there is not

a pair of clauses covered by the same clause in the target theory is less than (1− 1
k )ck.

This is because the product of the probabilities are maximum if the coverages have the

same size. Similarly, if the coverages are not disjoint then the probability that there is

not a pair of clauses covered by the same clause in the target theory is less than (1− 1
k )ck.

Also note that the maximum value for (1 − 1
k )ck is limk→∞(1− 1

k )ck = e−c. Then the

probability that a randomly selected pair of clauses C1 and C2 are both covered by

the same target clause is at least 1 − e−c. But if C1 and C2 are both covered by the

same target clause C then lgg(C1, C2) is consistent because by definition lgg(C1, C2)

is more specific than C which is consistent. Hence, the probability that there is a pair

of clauses C1 and C2 such that lgg(C1, C2) is consistent is at least 1− e−c. !

Example 40 Consider a stochastic refinement search algorithm such as Golem which

uses lgg-like operators. Suppose that the upper bound on the number of clauses in the

target theory is k. Then according to Theorem 21, by selecting a minimum sample size

s = 2k, the probability that a consistent lgg is generated is at least 1 − e−2 = 0.86.

With a sample size of s = 3k, the probability is increased to 1− e−3 = 0.95
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6.2.2 Stochastic refinement search as a random heuristic search

It has been shown [Vos99] that many stochastic search methods including simulated

annealing, stochastic beam search and genetic algorithms are instances of a general

framework called random heuristic search. The basic conditions are that the search

space (Ω) be finite and that the search transition rules (τ) be Markovian and expressible

as the result of s independent identically distributed random choices. The finiteness

condition is usually met in most cases, including ILP, since in practice it is common to

use a depth bound which leads to a finite search space. In this section we show that

a stochastic refinement search is a special case of random heuristic search. First we

describe a random heuristic search. The following definition is adapted from [Vos99].

Definition 82 (Random heuristic search) Let Ω = {x0, x1, . . . , xn−1} be a search

space and P0 be a sample from Ω with size s. A random heuristic search involves

a sequence P0 −→ P1 −→ P2 −→ . . . where each sample Pi+1 is generated from pre-

vious sample Pi. Each sample Pi can be represented by a probability vector pi =

〈t0, t1, . . . , tn−1〉 such that tj is the proportion of xj in Pi. Hence, a random heuris-

tic search P0 −→ P1 −→ P2 −→ . . . can also be denoted as a sequence of corresponding

probability distributions p0
τ
−→ p1

τ
−→ p2

τ
−→ . . . where pi is the probability vector for

Pi and this sequence is generated by iterating a transition rule τ : ∆n → ∆n where

∆n = {〈s0, s1, . . . , sn−1〉|
∑n−1

j=0 sj = 1, sj ≥ 0 for all sj}.

Example 41 Suppose in Definition 82 we have Ω = {0, 1, 2, 3, 4, 5} and P0 = {1, 0, 3, 1,

1, 3, 2, 2, 4, 0}. Then, P0 can be represented by the probability vector p0 = 〈0.2, 0.3, 0.2,

0.2, 0.1, 0.0〉. Here the proportional representation given by p0 determines the sample

P0 once the sample size is known.

Note that in Definition 82, ∆n serves as both the space of samples of Ω and the space

of probability distributions over Ω.

It follows from Definitions 81 and 82 that a stochastic refinement search is an instance

of random heuristic search. Figure 6.5 compares stochastic refinement search versus

random heuristic search. As shown in this figure, a stochastic refinement operator

σ operates on the elements of a sample Si while a transition rule τ works directly
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(a) (b)

Figure 6.5: (a) Stochastic refinement search (b) Random heuristic search. A stochastic
refinement operator σ, operates on the elements of a sample Si while a transition rule
τ works directly on the corresponding probability vector pi.

on the corresponding sample distribution pi. A main difference between a stochastic

refinement search and a random heuristic search is that in general, a random heuristic

search does not consider any ordering over Ω or for the transition rule τ . However,

a stochastic refinement search is a directed search due to the generality order defined

by the refinement operators. In the following we define a monotonic random heuristic

search and show that an upward (or downward) stochastic refinement search can be

viewed as a monotonic random heuristic search.

Definition 83 (Monotonic random heuristic search) Let the search space Ω and

the random heuristic search P0 −→ P1 −→ P2 −→ . . . , . . . be defined as in Definition 82

and ≤ be a binary relation on Ω such that 〈Ω,≤〉 is a quasi-ordered set. If for each i,

x ∈ Pi is replaced by x′ ∈ Pi+1 and we have x ≤ x′ then the random heuristic search

P0 −→ P1 −→ P2 −→ . . . is said to be monotonic with respect to ≤.

The following Proposition follows directly from Definitions 36, 81 and 83.

Proposition 22 A stochastic refinement search is a monotonic random heuristic search.

Proof. According to Definitions 36 and 81, for each i, Ci ∈ Si and Ci+1 ∈ Si+1 we have

Ci " Ci+1 and therefore according to Definition 83 a stochastic refinement search is a

monotonic random heuristic search with respect to ".
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The advantage of studying stochastic refinement search as a random heuristic search

is that we can use the theoretical results from random heuristic search in order to

analyse the behaviour and convergence of the search. In Definition 82, each state Pi+1

of the search only depends on the previous state Pi. Hence, it can be shown that a

random heuristic search can be described as a Markov chain. This property can be

used to estimate the probability that a particular population is generated in the next

iteration. Analyses of the convergence of different forms of random heuristic search

(i.e. simulated annealing, genetic algorithms, etc.), have been discussed in [Vos99].

These analyses can also be applied to corresponding stochastic refinement searches.

In the following we give an example for a stochastic search in the form of simulated

annealing.

Example 42 SFoil [PKK93] is a top-down stochastic ILP system which combines Foil

with a stochastic search in the form of simulated annealing. The stochastic search is

used to choose the next literal to be added to the body of the clause. Hence, the refine-

ment in SFoil can be viewed as downward unary stochastic refinement. The behaviour

of the search can be analysed using the framework of random heuristic search. The

following analysis is adapted from [Vos99]. The sample size for simulated annealing

is s = 1 and given a population (i.e. probability vector p) and an objective function

f , the next population (i.e. probability vector q) is obtained by the following stochastic

procedure: 1) sample q from a neighbourhood N(p) of p 2) if f(q) < f(p) then the

next generation is q, otherwise the next generation is q with probability e(f(p)−f(q))/Tt

where Tt is the temperature at generation t. Then the heuristic function h which de-

termines the stochastic transition between two distinct states i, j is defined as follows:

h(t, j)i = [i∈N(j)]
|N(j)| ([f(i) < f(j)] + [f(i) ≥ f(j)]e(f(j)−f(i))/Tt ) where [expr] returns 1 if

expr is true and 0 otherwise.

6.3 Genetic search for learning first-order clauses

In this section we discuss Genetic Algorithms (GAs) as search methods for learning

first-order clauses. GAs are among the most successful forms of stochastic meth-

ods which have been applied to many combinatorial and computationally hard prob-

lems [Ala08]. It has been shown [VL91] that GAs are instances of the framework of
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SGA - Simple Genetic Algorithm
Input: Fitness function f(x), chromosome length l,

crossover probability pc, mutation probability pm

Output: Best individual
1 Start with a (random) population of binary strings of lento l
2 Calculate the fitness f(x) of each string x in the population
3 Choose (with replacement) two parents from the current population with

probability proportional to each string’s relative fitness in the population
4 Cross over the two parents (at a single randomly chosen point) with

probability pc to form two offspring
5 Mutate each bit in the offspring with probability pm and

Place them in the new population
6 Go to step 2 until a new population is complete
7 Go to step 1

Figure 6.6: A variant of Simple Genetic Algorithms (SGA) adapted from [Mit98].

random heuristic search (Definition 82) and mathematical models of GAs based on this

framework have been discussed in [Vos95] and [Vos99]. In this section we first review

some properties of GAs and then discuss several learning systems which use genetic

and evolutionary approaches for learning first-order clauses.

GAs are search methods which can solve hard combinatorial problems using an ap-

proach based on the mechanics of natural selection and genetics [Hol75, Gol89]. The

main idea of GAs can be summarised as follows. Given a problem to solve, GAs gen-

erate a number of random (or informed) initial solutions, evaluate each solution at

solving the problem in hand, then combine and mutate the fittest solutions to produce

the next generation of solutions. The process continues until an acceptable solution

is found, or no further improvement is possible. Figure 6.6 shows a variant of Simple

Genetic Algorithms (SGA) adapted from [Mit98].

Even though each individual genetic operator (i.e. selection, recombination and mu-

tation) may not be particularly interesting as a search operator, it is the combination

of these operators which promote a useful search. For example, it has been suggested

that the combination of selection and mutation contributes to continual improvement

and the combination of selection and recombination contributes to cross-fertilising in-

novation [Gol02].

The representation and operators in GAs are closely related and must be designed as
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a whole [Bäc95]. Conventional GAs usually require formulating problem solutions in

such a way that they can be processed by genetic operators. It has been suggested

that the binary representation is a suitable coding for representing problem solutions

in GAs [Hol75, Gol89]. This is known as the principle of minimal alphabet and even

though this principle has been challenged (e.g. [Ant89]), a major part of the existing

literature on GA, in particular the theoretical analyses assume a binary representation.

The convergence of GAs is usually explained using Schema Theorem [Hol75]. A schema

is a similarity template describing a subset of strings. Schemata are processed by

a genetic algorithm and according to Schema Theorem, short, low-order and above

average schemata receive at least exponentially increasing number of trials in successive

generations. These highly fit, short, low order schemata (also known as building-

blocks) become the partial solutions to a problem within the search. It has been also

suggested [Hol75] that in each generation we perform computation proportional to n,

the size of population, but we get useful processing on the order of O(n3) schemata.

This is known as Implicit Parallelism. There are also extensions of Schema Theorem

which do not assume a binary representation (e.g. [Vos91] and [Rad91]).

One important feature of GAs which makes them different from other search methods

is that they tend to rely on recombination (also known as crossover) as the principal

search mechanism. This is especially useful in many problems, including ILP, where

the solutions feature recombinable building blocks (i.e. partial solutions). Note that

GAs are instances of random heuristic search and if the genetic operators assume

a generality order then GAs can also be viewed as stochastic refinement search as

described in Section 6.2. In this case, crossover and mutation can be viewed as binary

and unary stochastic refinement operators respectively as shown in Figure 6.7.

The recombination operator also gives more exploration power to GAs in order to

work as a global strategy compared to most stochastic search methods which use local

strategies that step only to neighboring states. Another important feature of GAs

is that they are less dependent on biases and heuristics which are needed by most

deterministic search methods. For example it has been shown [GS92] that a GA-based

learning system can easily solve some classes of learning problems in which the correct

solution cannot be located by similar non-GA systems which use information gain
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Figure 6.7: Simple Genetic Algorithm (SGA) as a stochastic refinement search with
binary (crossover) and unary (mutation) stochastic refinement operators

heuristics [Qui90]. GAs are population-based methods and search from a population

of points, not a single point and therefore they are less sensitive to local optima.

This however contributes to a higher computational cost of GAs compared to a non-

population-based method, especially when the problem does not involve a complex

search. This can be compensated by the fact that GAs are highly parallel. In addition

to the implicit parallelism described above, GAs are naturally suitable for parallel

implementation [Ste93, CP00]. This makes it easier to benefit from the computational

power of parallel and distributed hardware. GAs therefore have great potential to scale-

up for search intensive problems. On the other hand, GAs are syntactically restricted

and cannot represent a priori knowledge that already exists about the domain. By

contrast, first-order concept learning methods, such as ILP, benefit from the expressive

power inherited from logic and logic programming.

These complementary features of GAs and first-order learning motivated some authors

to investigate combinations of GAs and first-order learning. Some of these systems (e.g.

[GS92, GN96, Hek98, AGLS98]) follow conventional genetic algorithms and represent

problem solutions by fixed length bit-strings. Other systems (e.g. [Var93, LW95,

KGC99]) use a hierarchical representation and evolve a population of logic programs

in a Genetic Programming (GP) [Koz91] manner.

Table 6.1 compares some of logic-based learning systems which use some form of ge-

netic search (e.g. GA or GP). A summary of each system, in particular features which

are relevant to the implementation and evaluation of algorithms in this thesis (e.g. rep-

resentation, operators and fitness function) are discussed in Appendix B. As shown in
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System Representation Type of EC Use of BK

GA-SMART [GS92] Binary Encoding Distributed GA Manual language template
REGAL [GN96]
G-Net [AGLS98]
DOGMA [Hek98] Binary Encoding Distributed GA Manual template & speciation
SIAO1 [SAK95] Direct SGA-like Hierarchy of concepts
GLPS [LW95] Program Tree GP Seeding the population
LOGENPRO [WL97]
STEPS [KGC99] Program Tree STGP Seeding the population

Table 6.1: A comparison between some of logic-based learning systems which use a
genetic search. A summary of each system is discussed in Appendix B.

this table, REGAL, DOGMA and G-NET follow the same basic idea as in GA-SMART

and employ a language template for mapping first-order rules into bit strings. A lan-

guage template is a fixed length CNF formula which can be (manually) constructed

from the background knowledge. Mapping a formula into a bit-string is done by setting

the corresponding bits to represent the occurrences of predicates in the formula. These

systems need to adapt a non-standard first-order representation based on a template

which is a conjunction of internally disjunctive predicates. The main problem of this

approach is that the number of conjuncts grows combinatorially with the number of

predicates. The template, therefore, can be very large in some circumstances. Difficul-

ties related to providing the template by the user is also a major disadvantage of this

approach. Even though the template can include parts of background knowledge, this

needs to be done manually. DOGMA uses background knowledge to also divide chro-

mosomes into species. Similarly, SIAO1 uses a simple form of background knowledge

to establish a hierarchy between concepts. SIAO1 uses a direct mapping for repre-

senting first-order rules which means that no binary encoding is required. However,

the genetic operators are limited because of the direct representation and this could

lead to a low diversity population. GLPS, LOGENPRO and STEPS use hierarchical

representations (program trees) rather than fixed length bit-strings and background

knowledge is used for seeding the population. In general GP-based systems need to

deal with a larger and more complex search space compared to the GA-based systems.

In summary these systems use a limited form of background knowledge to seed the

population or classify the chromosomes and they cannot benefit from intentional back-

ground knowledge in the same way as in ILP systems. This is mainly because in these

systems genetic search has been used as the main and the only learning mechanism.
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In Section 6.4 we discuss a hybrid GA-ILP framework in which background knowledge

can be used in the same way as in the ILP systems such as Progol and Aleph. This

GA-ILP framework not only uses a standard ILP representation but we also show

that the proposed encoding is isomorphic to the bounded subsumption lattice. This

property can be used to design task-specific genetic operators.

6.4 Genetic and stochastic refinement search for bounded
subsumption

As discussed in Section 6.3, most of the existing logic-based learning systems that use

a genetic search for learning first-order clauses cannot benefit from intentional back-

ground knowledge in the same way as in an ILP system. In particular, GA-based

systems (e.g. G-Net) require a language template which is (manually) extracted from

background knowledge. In this thesis we describe a genetic and stochastic refinement

approach in which a template (i.e. a bottom clause) is automatically constructed using

ILP methods (e.g. Inverse Entailment). Moreover, unlike the GA-based systems dis-

cussed in Section 6.3, we use a standard logic-based representation. We also show that

the encoding and operators can be interpreted in terms of well-known ILP concepts, e.g.

subsumption. This hybrid GA-ILP framework is the basis of several implementations,

i.e. GA-Progol, QG, QG/GA and ProGolem. The details of these implementations

are described in Chapter 7. In this section we briefly review the main features of these

systems which can be summarised as the following two stages:

Stage 1: Construction of ⊥e using ILP In the first stage a bottom clause is con-

structed using an ILP method (e.g. Inverse Entailment). This bottom clause

defines a bounded subsumption lattice. The lattice structure and refinement oper-

ators for the bounded subsumption were studied in Chapters 4 and 5. It was also

shown (See Section 5.3) that, unlike for the general subsumption order, efficient

lgg-like operators can be implemented for the subsumption relative to a bottom

clause (e.g. lgg⊥ and armg⊥).

Stage 2: Stochastic search for bounded subsumption In the second stage a stochas-

tic search algorithm is used to find the best hypotheses from clauses in the bounded

subsumption lattice. This search algorithm could be either a standard random
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heuristic search (e.g. SGA-like search in GA-Progol) or a monotonic random

heuristic search (Definition 83) which can be viewed as a stochastic refinement

search as discussed in Section 6.2 (e.g. Golem and ProGolem). In this case,

stochastic refinement operators can be used as discussed in Section 6.1.

Note that in the second stage mentioned above, both unary refinement operators (e.g.

ρ1 and ρ2 described in Chapter 5) and binary refinement operators relative to bounded

subsumption (e.g. lgg⊥) can be used in the stochastic search. However, it has been

shown [MM99] that the minimum depth of any clause within the binary refinement

graph is logarithmically related to the depth in the refinement graph of corresponding

unary operator whenever a certain lattice divisibility assumption is met. This result

suggests that a stochastic refinement search which uses a binary refinement operator

relative to ⊥ (e.g. lgg⊥) requires logarithmically fewer refinement steps to find a target

clause compared to the case when a unary refinement operator is used. In other words,

when using refinement relative to a bottom clause, a binary stochastic refinement could

lead to logarithmic convergence relative to a unary stochastic refinement. The empirical

results reported for ILP systems such as GA-Progol which uses some forms of binary

stochastic refinement relative to a bottom clause are consistent with the logarithmic

convergence described above. These empirical results are discussed in Chapter 8.

GA-Progol [TNM02] is a stochastic ILP system in which the A∗-like search of Progol is

replaced by a genetic algorithm. GA-Progol can be described based on the two-staged

framework described in this section. The stochastic refinement in GA-Progol includes

both unary and binary stochastic refinement. GA-Progol also uses stochastic lgg and

mgs operators relative to a bottom clause (lgg⊥ and mgs⊥). The details of GA-Progol

are described and discussed in Chapter 7.

6.5 Related work and discussion

The refinement graph theory has been viewed as the main theoretical foundation of

ILP [NCdW97]. Since the publication of this theory, there have been attempts to

build ILP systems based on stochastic and randomised methods (e.g. [PKK93, Sri00,

TNM02, RK03, ZSP06, PŽZ+07, MTN07, DPZ08]). However, to date there is very
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little theory to support the developments of these systems. We believe the theoretical

part on stochastic refinement presented in this chapter is a step in this direction.

In the following we discuss examples of ILP systems which use some form of stochastic

refinement. Aleph [Sri07] implements several randomised search methods including

randomised local searches such as GSAT, WalkSAT, simulated annealing and also a

randomised rapid restart search [ZSP06]. Randomised local searches in Aleph can be

characterised as stochastic refinement search. Note that in some cases the stochas-

tic refinement operators in Aleph are bi-directional and therefore the corresponding

stochastic searches are non-monotonic. Golem [MF90] is a bottom-up ILP system

which employs determinate least general generalisation under relative subsumption

(RLGG). Golem combines random sampling and a hill-climbing search to construct

RLGGs with new randomly sampled positive examples at each iteration. The refine-

ment in Golem can be viewed as an upward stochastic refinement. As shown in Example

40, a proper sample size can be estimated so that one could guarantee that with a high

probability a consistent RLGG can be generated at each iteration. The RLGGs are

constructed with new sampled examples at each iteration until the search converges to

a set of consistent clauses each covering a partition of positive examples. SFoil [PKK93]

is a top-down stochastic ILP system which combines Foil with a stochastic search in

the form of simulated annealing. The stochastic search is used to choose the next

literal to be added to the body of the clause. Hence, the refinement in SFoil can be

viewed as downward unary stochastic refinement. Similarly, the simulated annealing

framework for ILP described in [SPR04b] can be characterised using stochastic refine-

ment search. The approach based on estimation distribution algorithms described in

[PZ12] is closely related to the concepts of stochastic refinement as well as random

heuristic search (i.e. using distributions rather than explicit individuals) described in

this chapter. This work is also related to stochastic refinement search for bounded

subsumption as it uses (reduced) bottom clauses.

GA-Progol [TNM02], Quick Generalisation (QG) algorithm and QG/GA [MTN07] and

ProGolem [MSTN10a] are also relevant to stochastic refinement search described in this

chapter. These algorithms are discussed in the next chapter.
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6.6 Summary

In this chapter we discussed how the refinement theory and relevant concepts such

as refinement operators can be adapted for a stochastic ILP search. To address this

question we introduced the concept of stochastic refinement operators and adapted a

framework, called stochastic refinement search. Stochastic refinement is introduced as

a probability distribution over a set of clauses which can be viewed as a prior in a

stochastic ILP search. We gave an analysis of stochastic refinement operators within

the framework of stochastic refinement search. We studied the properties of a stochas-

tic refinement search as two well known Markovian approaches: 1) a Gibbs sampling

algorithm and 2) a random heuristic search. As a Gibbs sampling algorithm, a stochas-

tic refinement search iteratively generates random samples from the hypothesis space

according to a posterior distribution. In an ILP setting, we need to make sure that

at least one consistent and compressive clause can be generated at each iteration. We

have shown that a minimum sample size can be set so that in each iteration a consis-

tent clause is generated with a high probability. We defined a special case of random

heuristic search [Vos99] called monotonic random heuristic search. A stochastic refine-

ment search can be viewed as a monotonic random heuristic search. The advantage of

studying stochastic refinement search as a random heuristic search is that we can use

the theoretical results from random heuristic search in order to analyse the behaviour

and convergence of the search.

In this chapter we also discussed genetic search for learning first-order clauses and

describe a GA-ILP framework for genetic and stochastic refinement search for bounded

subsumption. This framework is the basis of the algorithms which are described in the

next section.
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Chapter 7

Algorithms and implementations

In this chapter we describe stochastic algorithms for searching the hypothesis space

bounded by a bottom clause. These algorithms are based on the theoretical results and

properties of bounded subsumption from previous chapters. In particular we discuss a

genetic algorithm approach which uses the encodings and operators for the bounded

subsumption (from Chapter 5) and can also be characterised as a stochastic refinement

search (Chapter 6). This genetic algorithm is implemented in GA-Progol, an extension

of the ILP system Progol in which the standard refinement and the A∗-like algorithm for

searching the bounded subsumption lattice is replaced by a genetic search. In addition

to the genetic algorithm, in this chapter we also describe other stochastic refinement

searches including Quick Generalisation (QG) algorithm and QG/GA search which

are implemented in GA-Progol and algorithms based on Asymmetric Relative Minimal

Generalisation (ARMG) which are implemented in ProGolem.

This chapter is organised as follows. GA-Progol is discussed in Section 7.1. This in-

cludes a SGA-like algorithm, representation, encoding, genetic operators and stochastic

refinement in GA-Progol. QG and QG/GA algorithms are described in Section 7.2.

ProGolem and algorithms based on ARMG are described in 7.3. Related work is

discussed in Section 7.4 and Section 7.5 summarises the chapter.
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7.1 GA-Progol

GA-Progol 1 is an extension of the ILP system Progol in which the standard refinement

and the A∗-like algorithm for searching the bounded subsumption lattice is replaced by

stochastic refinement in the form of a genetic algorithm. Progol’s standard refinement

setting was described in Chapter 3 and can be summarised as follows.

Definition 84 (Progol refinement setting) Let S = 〈B, E,L,"⊥〉 be Progol’s ILP

setting where B is the background knowledge, E is the set of examples, L be Progol’s

definite language and "⊥ subsumption relative to a bottom clause as defined in Defini-

tion 55. Let E = 〈E+, E−〉 consist of a set of positive and negative examples (ground

unit clauses) respectively. The top clause, denoted by =, is the maximal&⊥,L element

in L. The bottom clause, denoted by ⊥e, is the least&⊥,L element such that B,⊥e |= e.

Refinement of clause C, denoted by ρ(C), is the set of maximal&⊥,L clauses D such

that C 8⊥ D "⊥ ⊥e as defined in Definition 45.

GA-Progol’s set-covering algorithm is shown in Figure 7.1. This is similar to Progol’s

set-covering algorithm, however, in GA-Progol a stochastic refinement setting can be

selected instead of Progol’s standard refinement setting. The set-covering algorithm

repeatedly constructs a bottom clause from the next positive example e in E+ and

then searches for the best clause C in the subsumption lattice bounded by ⊥e. C is

then added to hypothesis H and positive examples which are covered by B ∧ H are

removed from E+ for the next iterations. The algorithm terminates in at most |E+|

iterations.

The algorithm for constructing ⊥e is given in Appendix A. The time-complexity of

constructing ⊥e is proportional to the cardinality of ⊥e.

Theorem 22 (Cardinality of ⊥e [Mug95]) Let h, i, B, M and ⊥e be defined as

in Definition 43 and let |M | denote the cardinality of mode declaration M . Let the

number of +type and -type occurrences in each modeh in M be bounded by constants

j− and j+ respectively. Let the recall of each m in M be bounded by the constant r.

1 Available from http://ilp.doc.ic.ac.uk/GA-Progol/
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GA-Progol’s cover-set algorithm
Input: Examples E, mode declarations M , background knowledge B,

search mode (A∗, GA, QG or QG/GA)
Output: Hypotheses H
01 H := ∅
02 E+ := positive examples in E
03 while E+ $= ∅
04 e := first example in E+

05 Construct the bottom clause ⊥e from e, M and B (See Appendix A)
06 C := best clause(⊥e, E, search mode)
07 if compression(C) > 0
08 H := H ∪ C
09 E+

H := positive examples covered by B ∧H
10 E+ := E+ − E+

H
11 end if
12 end while
13 return H

Figure 7.1: GA-Progol’s cover-set algorithm.

Then the cardinality of ⊥e is bounded by (r|M |j+j−)ij
+

.

The proposition below follows from Theorem 22.

Proposition 23 Let h, i, B, M and ⊥e be defined as in Definition 43, Li(M) be a

depth-bounded mode language as defined in Definitions 42, i the maximum variable

depth in Li(M) and j be the maximum arity of any predicate in M . Then the length of

⊥e is polynomially bounded in the number of mode declarations in M for fixed values

of i and j.

As shown in Figure 7.1, user defined input parameter search mode determines which

search strategy to be used, i.e. A∗, GA, QG or QG/GA. If A∗ is selected then

best clause (step 6) simply calls Progol’s standard A∗-like search as described in Ap-

pendix A. If other search methods are selected then best clause uses the SGA-like or

QG/GA algorithms to find the most compressive clause in the lattice defined by ⊥e.

SGA-like algorithm is described in Section 7.1.1 and QG and QG/GA algorithms are

described in Section 7.2.
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7.1.1 SGA-like algorithm

GA-Progol adapts a variant of genetic algorithms known as Simple Genetic Algorithm

(SGA) as described in [Gol89]. Figure 7.2 shows the SGA-like search implemented in

GA-Progol. The SGA-like search uses a binary representation for encoding clauses in

the bounded subsumption lattice. Depending on the encoding mode, a binary string in

the population encodes the variable bindings or the occurrences of literals in a clause

with respect to a bottom clause. This binary encoding is based on the theoretical

results from Chapters 4 and 5 which indicate that clauses in the bounded subsumption

lattice can be represented by a set of variable partitions relative to ⊥ (e.g. see Propo-

sitions 16 and 19). In particular θ and K in the encoding tuples described in Chapter

5 are implemented using binary strings. This binary representation is discussed in

Section 7.1.2. As shown in Figure 7.2, in each run of the SGA-like search an initial

population of binary strings are generated and evolved using genetic operations, i.e.

selection, crossover and mutation. The fitness value of each individual is similar to the

evaluation criteria used in the A∗-like search implemented in Progol, i.e. compression

which can be defined as compression = p−n−h, where p is the number of observations

correctly explained by the hypothesis, n is the number incorrectly explained and h is

the length of the hypothesis. The initial population can be generated at random, i.e.

by generating random binary strings as in standard genetic algorithms, or by sampling

from consistent clauses using Quick Generalisation (QG) algorithm. QG algorithm

is described in Section 7.2. In this section we assume that the initial population is

generated at random. At each generation of the SGA-like search, new individuals

are generated by selecting a pair of parental individuals using select function which

stochastically select individuals, e.g. with a probability proportional to their fitness

values. This pair of parental strings are re-combined using the crossover operation, and

the resulting child strings are then mutated and added to the new population. At each

generation all new individuals are decoded into corresponding clauses and then clauses

are evaluated. The best individual with the highest fitness value is then compared with

the best individual from previous generation and after reaching a pre-defined number

of generations (maxgen) the clause corresponding to best fit individual is returned as

output. The representation and encoding are discussed in Section 7.1.2. The details
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SGA-like search
Input: Examples E, bottom clause ⊥e, population size popsize,

maximum generation maxgen, initpop mode (rand or QG)
Output: Clause C with highest fitness (i.e. compression)
01 gen := 0
02 currentpop := init pop(⊥e, E, initpop mode) % generate and evaluate initial pop.
03 current bestfit := max fitness(currentpop) % best individual in currentpop
04 while gen < maxgen
05 j := 0
06 while j < popsize− 1
07 mate1 := select(currentpop) % stochastically select a pair of individuals
08 mate2 := select(currentpop)
09 crossover(mate1, mate2, child1, child2) % crossover mate1 and mate2

10 mutation(child1) % mutate new individuals
11 mutation(child2)
12 clause1 := decode(child1) % decode new individuals
13 clause2 := decode(child2)
14 fitness1 := evaluate(clause1, E) % evaluate new individuals
15 fitness2 := evaluate(clause2, E)
16 newpop[j].chrom := child1, newpop[j + 1].chrom := child2

17 newpop[j].clause := clause1, newpop[j + 1].clause := clause2

18 newpop[j].f itness := fitness1, newpop[j + 1].f itness := fitness2

19 j := j + 2 % increment population index
20 end while
21 new bestfit := max fitness(newpop) % best individual in newpop
22 if (new bestfit.f itness > current bestfit.f itness) then
23 current bestfit := new bestfit
24 currentpop := newpop % advance the generation
25 gen := gen + 1
26 end while
27 C := current bestfit.clause
28 return C

Figure 7.2: SGA-like search in GA-Progol.
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a)

b)

eastbound(A):- has car(A,B) has car(A,C) closed(C) open(B) short(C) . . .

0 1 1 0 1 . . .
eastbound(A):- has car(A,C) closed(C) short(C) . . .

Figure 7.3: Binary encoding of the occurrences of literals in a clause with respect to
a bottom clause. a) a bottom clause b) binary encoding of clause eastbound(A) ←
has car(A,C), closed(C), short(C).

of genetic operations, i.e. selection, crossover and mutation are discussed in Section

7.1.3.

7.1.2 Representation and encoding

In this section we introduce a novel binary representation for clauses in the bounded

subsumption lattice. As shown in Chapter 5 (e.g. Definition 68), each clause
−→
C in the

bounded subsumption lattice can be represented by a tuple 〈K, θ〉, where K is a set of

indexes from the bottom clause and θ is a variable subsumption which maps variables

between
−→
C and

−→
⊥v. In this section we introduce a binary encoding for a tuple 〈K, θ〉.

The binary encoding of 〈K, θ〉, and therefore
−→
C , can be represented by a tuple 〈V,M〉,

where V = v(K) is an occurrence vector and M = m(θ) is a binding matrix as defined

in the following Definitions.

Definition 85 (Occurrence vector) Let
−→
⊥v be as defined in Definition 53, n be the

number of literals in
−→
⊥v, K be the power set of {1, . . . , n} and K ∈ K as defined in

Definition 68. The occurrence vector of K, denoted by v(K), is an n-bit binary vector

V in which Vi is 1 if i ∈ K and Vi is 0 otherwise. Vn is the set of all n-bit binary

vectors. We also represent Vi by V [i].

Example 43 Consider the problem of learning Michalski’s east-bound trains [Mic80].

Given the appropriate mode declaration, a bottom clause can be generated similar to

the following clause:

eastbound(A) ← has car(A,B), has car(A,C), closed(C), open(B), short(C),

wheels(B, 2), infront(B,C), wheels(C, 2), load(B, rectangle, 3),

load(C, triangle, 1), shape(C, rectangle), . . .
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1
2
3
4
5
6

1  0  1  0  0  0
0  1  0  0  0  1
1  0  1  0  0  0
0  0  0  1  1  0
0  0  0  1  1  0
0  1  0  0  0  1

1  2  3  4  5  6

M:

B:
V1 V2 V3 V4     V5 V6

p(X,Y): −q(X,Z),r(Z,Y)

Figure 7.4: Binding matrix for clause p(X,Y):-q(X,Z),r(Z,Y).

As shown in Figure 7.3, the occurrences of literals in a clause is encoded as a bit-string

such that a ’1’ bit shows that the corresponding atom from the bottom clause occurs in

the clause.

Definition 86 (Binding matrix) Let
−→
⊥v be as defined in Definition 53 and Θ be

defined as in Definition 68. Let
−→
⊥v have m variable occurrences representing variables

〈v1, v2, . . . , vm〉 and θ be a variable substitution in Θ. The binding matrix of θ, denoted

by m(θ), is an m ×m binary matrix M in which Mij is 1 if vj/vi ∈ θ and Mij is 0

otherwise. An m × m binary matrix M is in the set of normalised binding matrices

Mm if M is symmetric and for each 1 ≤ i ≤ m, 1 ≤ j ≤ m and 1 ≤ k ≤ m, Mij = 1

if Mik = 1 and Mkj = 1. We also represent Mij by M [i, j].

Example 44 Let
−→
⊥v be p(V1, V2)← q(V3, V4), r(V5, V6) and

−→
C be p(X,Y )← q(X,Z),

r(Z, Y ). Then
−→
C can be represented by 〈K, θ〉 = 〈{1, 2, 3}, {V3/V1, V5/V4, V6/V2}〉.

Variable bindings in
−→
C can be represented by a binary matrix as shown in Figure 7.4.

The following mapping function d maps a tuple 〈V,M〉 into an ordered clause in
−→
L⊥.

Definition 87 (Mapping function d) Let K and Θ and mapping function c be de-

fined as in Definition 68 and K ∈ K and θ ∈ Θ. Let Vn and v be defined as in Definition

85 and Mm and m be defined as in Definitions 86 and V ∈ Vn and M ∈ Mm such

that V = v(K) and M = m(θ). The mapping function d : Vn ×Mm →
−→
L⊥ is defined
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as follows: d(〈V,M〉) = c(〈K, θ〉)

In the following we first define the order relation for the binary encoding tuples 〈V,M〉

and show the relationship with the tuples 〈K, θ〉. Then, we show that the morphism

between 〈
−→
L⊥,"⊥〉 and the lattice of the encoding tuples 〈K, θ〉 described in Chapter

5 can also be extended to the binary encoding tuples 〈V,M〉.

Definition 88 Let Vn and Mm be defined as in Definitions 85 and 86 and V1, V2 ∈ Vn

and M1,M2 ∈Mm. 〈V1,M1〉 ⊆ 〈V2,M2〉 if and only if V1 ⊆ V2 and M1 ⊆M2. V1 ⊆ V2

if and only if for each 1 ≤ i ≤ n, V1[i] is 1 if V2[i] is 1. M1 ⊆ M2 if and only if for

each 1 ≤ i ≤ n and 1 ≤ j ≤ n, M1[i, j] is 1 if M2[i, j] is 1.

The proposition below follows from Definitions 85 and 86.

Proposition 24 Let K and Θ be defined as in Definition 68 and K1,K2 ∈ K and

θ1, θ2 ∈ Θ. Let Vn and v be defined as in Definition 85 and Mm and m be defined as in

Definitions 86 and V1, V2 ∈ Vn and M1,M2 ∈Mm such that V1 = v(K1), V2 = v(K2),

M1 = m(θ1) and M2 = m(θ2). 〈K1, θ1〉 ⊆ 〈K2, θ2〉 if and only if 〈V1,M1〉 ⊆ 〈V2,M2〉.

The following theorem shows the ordering relationship between binary encoding and

the bounded subsumption of clauses.

Theorem 23 Let Vn, Mm and mapping function d be defined as in Definition 87 and

V1, V2 ∈ Vn and M1,M2 ∈Mm. d(〈V1,M1〉) "⊥ d(〈V2,M2〉) if and only if 〈V1,M1〉 ⊆

〈V2,M2〉.

Proof. The proof follows directly from Theorem 17 and Proposition 24. !

According to Theorem 23, the ordering between clauses in the bounded subsump-

tion lattice can be realised by the subset ordering between the binary encoding of

the clauses. This property can be exploited by a genetic algorithm for searching the

bounded subsumption lattice. In particular, this encoding defines a structured search

space similar to refinement graph search used in ILP. This can also be used by genetic

operators which we will discuss in the next section. A binding matrix is a symmetric
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(Binary Encoding: 000)

(Binary Encoding: 010)

(Binary Encoding: 101)

(Binary Encoding: 111)

(Binary Encoding: 100) (Binary Encoding: 001)

(Binary Encoding: 011)(Binary Encoding: 110)

p(U,V) :- q(U,X) , r(Y,Z) p(U,V) :- q(W,X) , r(X,Z)

p(U,V) :- q(U,X) , r(Y,V) p(U,V) :- q(U,X) , r(X,Z) p(U,V) :- q(W,X) , r(X,V)

p(U,V) :- q(U,X) , r(X,V)

p(U,V) :- q(W,X) , r(Y,V)

1  2  3  4  5  6
1  0  1  0  0  0
0  1  0  0  0  1
1  0  1  0  0  0
0  0  0  1  1  0
0  0  0  1  1  0
0  1  0  0  0  16

5
4
3
2
1

p(U,V) :- q(W,X) , r(Y,Z)

{Y/X}{Y/X}

{Y/X}

{W/U} {W/U}

{Z/V}

{Z/V} {Z/V}

{Z/V} {W/U}

{Y/X}{W/U}

Figure 7.5: Encoding of variable bindings for clauses in a subsumption lattice bounded
below by clause p(U,V):-q(U,X),r(X,V).

matrix and we only need to maintain entries in top (or down) triangle of the matrix.

Furthermore, we are interested in a subsumption lattice bounded below by a particular

clause. Hence, the variable bindings for clauses in the bounded subsumption lattice

can be encoded by a bit-string in which each bit corresponds to a 1 entry of the binding

matrix for the bottom clause.

Example 45 Figure 7.5 shows encoding of variable bindings for clauses in a subsump-

tion lattice bounded below by clause p(U,V):-q(U,X),r(X,V). Each clause in this lattice

can be encoded by 3 bits.

Figure 7.6 shows the algorithms for generating and evaluating the initial population in

the SGA-like search and also the algorithm for decoding a binary string into a clause. In

init pop, a population of binary strings is generated. Depending on encoding mode, the

binary strings represent either the occurrence vectors or binding matrices, chromsize

is therefore either the length of the bottom clause or the number of variable positions
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init pop - generate and evaluate initial population
Input: Examples E, bottom clause ⊥e, initpop mode (rand or QG),

encoding mode (atoms only or var splitting), probability of active bits pa

Output: evaluated initial population pop
01 if encoding mode = atoms only then
02 chromsize := length(⊥e)
03 else
04 chromsize := number of variable positions in ⊥e sharing the same variable
05 let bin str be a binary string with length chromsize
06 pop := {}
07 while j < popsize do
08 set all bits of bin str to 0
09 if initpop mode = rand or encoding mode = var splitting then
10 for j = 1 to chromsize
11 if flip(p active) then % flip a biased coin
12 bin str[j]:= 1
13 clause := decode(bin str, ⊥e)
14 fitness := evaluate(clause, E)
15 else
16 qg best := qg(⊥e, E) % see Figure 7.9
17 bin str := qg best.chrom ; clause := qg best.clause ; fitness := qg best.f itness
18 end if
19 pop[j].chrom := bin str ; pop[j].f itness := fitness ; pop[j].clause := clause
20 j := j + 1
21 end while
22 return pop

decode - decodes binary string into clause
Input: binary string bin str, bottom clause ⊥e,

encoding mode (atoms only or var splitting), ga lmode
Output: clause C decoded from bin str
01 if encoding mode = atoms only then
02 let C be an empty clause
03 add the head of ⊥e to C
04 for k = 1 to chromsize
05 if bin str[k] = 1 then
06 add atom k from ⊥e to C
07 else
08 let C be ⊥e with all variable positions populated with new distinct variables (⊥v)
09 for k = 1 to chromsize
10 let i and j be variable positions in the binding matrix of ⊥e corresponding to k
11 if bin str[k] = 1 then
12 let variable positions i and j in C have the same variable
13 filter unconnected atoms(C, ga lmode)
14 return C

Figure 7.6: Algorithms for init pop and decode
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in the bottom clause sharing the same variable (as shown in Figure 7.5). Depending

on initpop mode the binary strings in the initial population are generated randomly

or by the QG algorithm (see Section 7.2). Note that the QG algorithm can be only

used for occurrence vectors (i.e. in atoms only mode). For randomly generated binary

strings, the probability that a bit is set to 1 is controlled by the user-defined parameter

p active. Each randomly generated binary string is first decoded into a clause. This

clause is then evaluated and the fitness value for each new individual in the population

is recorded. This process is repeated until a population with popsize individuals is

generated. Binary strings can be decoded into clause using decode. In atoms only

encoding mode, a clause is constructed by adding literals of ⊥e which correspond to

’1’ bits of the occurrence vector. For decoding binding matrices, ’1’ bits correspond

to variable positions of ⊥v which have the same variables. In both encoding modes,

literals which are not ’head-connected’ are filtered out from the decoded clause. Head-

connectness is the property of clauses in L(M) (see Definition 41) and can be defined

as follows:

Definition 89 (Head-connectness) A definite clause h ← b1, .., bn is said to be

head-connected if and only if every input variable in any body atom bi is either an

input variable in h or an output variable in some body atom bj, where 1 ≤ j < i.

This definition can be implemented by maintaining a set of all valid input variables

(i.e. input variables in the head and output variables in the previous atoms) and

checking if all input variables of the current atom are in this set. This approach can

be used for filtering invalid atoms (i.e. atoms with at least one invalid input variable)

by scanning the clause from left to right. For clauses in
−→
L⊥, which all follow the

same ordering of literals as in ⊥, the above mentioned scanning needs to be done only

once, i.e. one pass through the clause. However, for clauses in
−→
L i

⊥ (see Definition 74)

where literals do not need to follow the same ordering of literals as in ⊥, the above

mentioned procedure should be repeated as a closure until there is no addition to the

set of valid input variables. In the worst case this should be repeated n times where

n is the length of the clause. This closure is necessary to consider input variables

which could become valid in the next atoms. Both language modes are implemented in

filter unconnected atoms and depending on user-defined parameter ga lmode, either
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−→
L⊥ (ga lmode=1) or

−→
L i

⊥ (ga lmode=2) are selected.

7.1.3 Genetic operators and stochastic refinement

Genetic operators introduce new individuals into the population by randomly changing

or combining the genotype of best-fit individuals during the evolutionary process. In

conventional genetic algorithms these operators are domain-independent and usually

without any assumption about the problem on hand. However, more efficient genetic

operators can be designed by using simple facts about the domain. For example it

has been shown that introducing generalisation and specialisation crossover operators,

which are used together with standard crossover and mutation operators, can be useful

when using GAs in concept learning problems [GS92, Jan93]. In this section we show

that the binary representation, described in the previous section, has great potential for

designing task-specific genetic operators. For example, we show that lgg (least general

generalisation) and mgs (most general specialisation) for the bounded subsumption

lattice, i.e. lgg⊥ and mgs⊥, can be implemented by simple bitwise operations on the

binary encoding of clauses. In the following we first define bitwise operations ∧ and ∨

for the binary encoding tuples 〈V,M〉.

Definition 90 Let Vn and Mm be defined as in Definitions 86 and 85 and V, V1, V2 ∈

Vn and M,M1,M2 ∈ Mm. 〈V,M〉 = 〈V1,M1〉 ∧ 〈V2,M2〉 if and only if V = V1 ∧ V2

and M = M1 ∧M2. Similarly, 〈V,M〉 = 〈V1,M1〉 ∨ 〈V2,M2〉 if and only if V = V1 ∨V2

and M = M1 ∨M2. V = V1 ∧ V2 if and only if for each ai ∈ V , bi ∈ V1 and ci ∈ V2,

ai = 1 if bi = 1 and ci = 1 and ai = 0 otherwise. M = (M1 ∧M2) if and only if for

each aij ∈ M , bij ∈ M1 and cij ∈ M2, aij = 1 if bij = 1 and cij = 1 and aij = 0

otherwise. Similarly, V = V1 ∨ V2 if and only if for each ai ∈ V , bi ∈ V1 and ci ∈ V2,

ai = 1 if bi = 1 or ci = 1 and ai = 0 otherwise. M = (M1 ∨M2) if and only if for each

aij ∈M , bij ∈M1 and cij ∈M2, aij = 1 if bij = 1 or cij = 1 and aij = 0 otherwise.

The proposition below follows from Definitions 85 and 86.

Proposition 25 Let K and Θ and mapping function c be defined as in Definition 68

and K1,K2 ∈ K and θ1, θ2 ∈ Θ. Let Vn and v be defined as in Definition 85, Mm and

m be defined as in Definitions 86, mapping function d be defined as in Definition 87
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and V1, V2 ∈ Vn and M1,M2 ∈Mm such that V1 = v(K1), V2 = v(K2), M1 = m(θ1)

and M2 = m(θ2). Then, the following equalities hold:

1. c(〈K1, θ1〉 ∩ 〈K2, θ2〉) = d(〈V1,M1〉 ∧ 〈V2,M2〉)

2. c(〈K1, θ1〉 ∪ 〈K2, θ2〉) = d(〈V1,M1〉 ∨ 〈V2,M2〉)

The following theorem shows how lgg⊥ and mgs⊥ for clauses in the bounded subsump-

tion lattice, can be implemented by bitwise ∧ and ∨ operations on the binary encoding

of clauses.

Theorem 24 Let Vn, Mm and mapping function d be defined as in Definition 87 and

V1, V2 ∈ Vn and M1,M2 ∈Mm. Let ∧ and ∨ operations be defined as in Definition 90.

Then, the following equalities hold:

1. lgg⊥(d(〈V1,M1〉, d(〈V2,M2〉) = d(〈V1,M1〉 ∧ 〈V2,M2〉)

2. mgs⊥(d(〈V1,M1〉, d(〈V2,M2〉) = d(〈V1,M1〉 ∨ 〈V2,M2〉)

Proof. The proof follows directly from Proposition 20 and Proposition 25. !

Example 46 In Figure 7.5, lgg⊥ and mgi⊥ of any pair of clauses in the lattice can

be obtained by AND-ing (∧) and OR-ing (∨) of their binary strings.

According to Theorem 24, lgg⊥ and mgs⊥ for clauses in the bounded subsumption lat-

tice can be done by simple bitwise operations on the binary encoding of clauses. This

property can be used for implementing efficient task-specific genetic operators such as

generalisation and specialisation crossover operators. Generalisation and specialisation

are known as the main operations in concept learning methods [Win70, Mit82, Mit97].

In particular, common generalisation operators (e.g. lgg) are essential in logic-based

machine learning. However, these operations could be inefficient in the general sub-

sumption order. For example, with Plotkin’s Relative Least General Generalisation

(RLGG), clause length grows exponentially in the number of examples [Plo71]. Hence,

an ILP system like Golem [MF90] which uses RLGG is constrained to ij-determinacy

to guarantee polynomial-time construction. Golem [MF90] was successfully applied
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to several real-world applications (e.g. [BMV91, Fen92, MKS92]), however, the de-

terminacy restrictions make it inapplicable in many key application areas, including

the learning of chemical properties from atom and bond descriptions [Mug94]. On the

other hand, with the bounded subsumption operators like lgg⊥ and mgs⊥ the clause

length is bounded by the length of the initial bottom clause. Hence, these operators

do not need the determinacy restrictions and as shown in Theorem 24, they can be

implemented efficiently.

In a standard ILP setting, upward and downward refinement operators are used for

generalisation and specialisation of clauses [NCdW97]. However, task-specific genetic

operators can be defined as stochastic refinement operators as discussed in Chapter 6.

As mentioned in Section 7.2, at each generation of the SGA-like search, new individuals

are generated by applying genetic operators on a pair of parental individuals which are

stochastically selected from previous generation. Different selection mechanisms have

been used in GAs, but two most popular selection mechanisms are i) fitness propor-

tionate selection (also known as roulette-wheel selection) and ii) tournament selection.

These two selection mechanisms are implemented in GA-Progol and the algorithms are

shown in Figure 7.7. In fitness proportionate selection, normalised fitness values are

computed for each individual, i.e. f/F where f is the fitness value of the individual

and F is the sum of all fitness values for the population. Normalised fitness values

are accumulated in variable sum. A number r between 0 and 1 is randomly selected

and the first individual whose normalised fitness value makes sum greater than r is

selected. Tournament selection works by running tournaments among individuals of a

randomly chosen subset from the population as shown in Figure 7.7. The tournament

size is a user-defined parameter which controls selection pressure, e.g. by increasing

the tournament size individuals with low fitness value have a smaller chance to be

selected. A pair of individuals returned by the selection mechanism are passed to the

crossover and mutation operators.

Figure 7.8 shows algorithms for standard 1-point crossover and mutation operators.

In standard 1-point crossover, the crossover operation is applied with probability pc,

otherwise the parental chromosomes strings are copied into child strings without any

changes. If the crossover operation is applied, a crossover point jcross is randomly
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select rw - roulette-wheel selection
Input: population pop
Output: a stochastically selected individual from pop
01 let r be a random number in [0, 1)
02 let F be the sum of pop[j].f itness for all j
03 sum := 0
04 for i = 1 to popsize
05 f := pop[i].f itness
06 pi := f/F
07 sum := sum + pi

08 if r < sum then
09 return pop[i]
10 end if
11 end for

select t - tournament selection
Input: population pop, tournament size tourn size
Output: a stochastically selected individual from pop
01 let tourn list be a randomly selected subset of pop
02 winner := tourn list[1]
03 for i = 1 to tourn size-1
05 pick := tourn list[i + 1]
06 if pick.fitness > winner.fitness then
07 winner := pick
08 end if
09 end for
10 return winner

Figure 7.7: Algorithms for roulette-wheel selection and tournament selection. These
algorithms are used to stochastically select an individual from a population.
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crossover 1p - 1-point crossover
Input: parental strings mate1 and mate2, crossover probability pc

Output: child strings child1, child2

01 if flip(pc) then % do crossover with probability pc

02 jcross := rnd(2, chromsize)
03 for i = 1 to jcross− 1
04 child1[i] := mate1[i]
05 child2[i] := mate2[i]
06 for i = jcross to chromsize
07 child1[i] := mate2[i]
08 child2[i] := mate1[i]
09 else
10 for i = 1 to chromsize
11 child1[i] := mate1[i]
12 child2[i] := mate2[i]

mutation - mutate a binary string
Input: a binary string bin str, mutation probability pm

Output: mutated binary string bin str
01 for i= 1 to chromsize
02 if flip(pm) then % mutate a bit with probability pm

03 bin str[i] := bin str[i] xor 1

Figure 7.8: Algorithms for standard 1-point crossover and mutation operators.
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selected between 2 and chromsize. Given parental bit strings mate1 and mate2, bits

between 1 to jcross1 from mate1 and mate2 are copied to child1 and child2 respectively,

and from jcross to chromsize bits of mate1 and mate2 are copied to child2 and child1

respectively. Standard mutation operator works by visiting every bit of a given string

and changing it with probability pm, i.e. if the bit is 1, it is changed to 0 and vice

versa.

Note that when encoding mode is set to var splitting, a random crossover or muta-

tion operators could generate individuals which are not normalised with respect to

Definition 86. However, the decode algorithm described in Figure 7.6 still generates

a valid clause in which the bindings between connected variables are set according

to the last relevant bits in the binary encoding. However, the binary representation

for variable bindings is redundant, i.e. there is a many-to-one genotype-to-phenotype

mapping. A redundant representation is not regarded as a serious problem in GAs and

some authors (e.g. [Alt95] and [RG03]) suggest that under some conditions a redun-

dant representation can even improve the genetic search. The binary representation

used here is one possible implementation of the partition-based encoding described in

Chapter 5. The redundancy can be avoided using a different encoding (e.g. Grouping

Genetic Algorithms (GGA) [Fal98]) as discussed in Section 9.3.

7.2 Quick Generalisation (QG) and QG/GA algorithm

Quick Generalisation (QG) is a stochastic algorithm which constructs maximally gen-

eral consistent clauses by randomly pruning bottom clauses. The algorithm can be

made arbitrarily efficient by choice of sample size (down to 1). This algorithm can

be viewed as a stochastic refinement search algorithm as described in Chapter 6. A

sampling mechanism based on QG as well as a combination of QG with a GA are

explored in this section. These algorithms are implemented as part of GA-Progol 2.

Before describing the details of the QG algorithm, we introduce the notion of consis-

tency within the Progol refinement setting.

Definition 91 (S-consistency) Let S = 〈B, E,L,"⊥〉 and E = 〈E+, E−〉 be as de-

2 Available from http://ilp.doc.ic.ac.uk/GA-Progol/
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qg - Quick Generalisation (QG) algorithm
Input: bottom clause ⊥e, examples E
Output: a randomly generated clause which is reduced wrt E
01 let R be a random head-connected permutation of ⊥e

02 C := reduce(R, E)
03 return C

reduce - clause reduction algorithm
Input: clause C = h← b1, .., bn, examples E
Output: reduced clause Res from C
01 Res := C
02 while there is an unseen cutoff atom bi in the body of Res
03 for bi find minimal support set Si = {b′1, .., b

′
m} ⊆ {b1, .., bi+1}

such that h← Si, bi is head-connected
04 Res is h← Si, bi, Si−1 where Si−1 is b1, .., bi−1 with Si removed
05 end while
06 return Res

Figure 7.9: Quick Generalisation (QG) algorithm.

fined in Definition 84, e ∈ E+ and = "⊥ C "⊥ ⊥e, where = and ⊥e are the top and

bottom clauses, respectively, as defined in Definition 84. We say that C is S-consistent

iff B, E,C is satisfiable.

In the following we define a minimal support set as an irreducible set of body atoms

which ensure that a clause is head-connected (see Definition 89).

Definition 92 (Minimal support set) Let h ← B be a definite clause and B be a

set of atoms. S ⊆ B is a minimal support set for b ⊂ B iff h← S, b is head-connected

and there does not exist a set S′ ⊂ S for which h← S′, b is head-connected.

The notion of fringe is introduced as a set of maximally general clauses in the hypothesis

space, from which QG samples.

Definition 93 (Fringe) Let S = 〈B, E,L,"⊥〉, E = 〈E+, E−〉 and ρ be as defined in

Definition 84 and e ∈ E+. Clause C is in Fringe(e,S) iff it is head-connected and for

every D it is the case that C ∈ ρ(D) implies D is not S-consistent.

The QG algorithm (see Figure 7.9) works by finding successively smaller consistent
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subsets of a bottom clause. The notion of a cutoff atom is used within the algorithm

to define the minimal consistent prefix of a given clause body.

Definition 94 (Profile and cutoff atom) Let S = 〈B, E,L,"⊥〉 and E = 〈E+, E−〉

be as defined in Definition 84 and C = h ← b1, . . . , bn be a definite clause in L.

Ei ⊆ E− is the ith negative profile of C, where Ei = {e : ∃θ, e = hθ,B |= (b1, . . . , bi)θ}.

bi is the cutoff atom iff i is the least value such that Ei = ∅.

As shown in Figure 7.9, the QG algorithm randomly permutes the given clause body

and then applies to the result the reduce algorithm, a deterministic algorithm which

uses negative examples to reduce a clause. This algorithm works by keeping only the

literals which prevent negative examples from being proved 3. The output of the QG

is a randomly constructed fringe clause (see Definition 93).

Example 47 Figure 7.10 illustrates the QG algorithm in the east-bound train problem.

Given a random permutation of the bottom clause, in the first iteration of the reduce

algorithm, the atom load(B,hexagon,1) is identified as the cutoff atom. This atom is

placed immediately after the atom has car(A,B) in order to ensure that variable B has

been introduced before being used (i.e. the clause is head-connected). In the second

iteration load(B,hexagon,1) is once more identified as the cutoff atom. Since this atom

has already been seen, the algorithm terminates and returns the resulting clause in

step 3.

The correctness of the QG algorithm is shown in the following theorem.

Theorem 25 (Correctness of QG [MTN07]) Let ⊥e = h ← b1, .., bn be a bot-

tom clause of example e with associated setting S = 〈B, E,L,"⊥〉. The clause F =

qg(⊥e, E) is in Fringe(e,S).

The following theorem considers whether every element of the fringe associated with a

given example can be generated by the QG algorithm.

Theorem 26 (Completeness of QG [MTN07]) Let ⊥e = h ← b1, .., bn be a bot-

tom clause of example e with associated setting S = 〈B, E,L,"⊥〉. For each F ∈

3 The negative-based reduction was first introduced in Golem [MF90] .
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1. eastbound(A) :- has car(A,B), infront(A,B), has car(A,C), has car(A,D),
has car(A,E), load(D,circle,1), long(B), short(D), infront(C,E), shape(B,rectangle),
load(E,hexagon,1), closed(C), wheels(B,2), open(B), short(C), long(E),
infront(B,C), wheels(C,2), shape(D,rectangle), open(D), infront(E,D),
shape(E,rectangle), wheels(E,3), load(B, rectangle,3), wheels(D,2), open(E),
load(C,triangle,1), shape(C,rectangle).

2. eastbound(A) :- has car(A,B), load(B,hexagon,1), has car(A,C), infront(A,C),
has car(A,D), has car(A,E), load(E,circle,1), long(C), short(E), infront(D,B),
shape(C,rectangle).

3. eastbound(A) :- has car(A,B), load(B,hexagon,1).

Figure 7.10: An example of the iterative reduction of a clause by the QG algorithm.

Fringe(e,S) there exists a stochastic derivation such that F = qg(⊥e, E).

The following theorem considers the complexity of QG algorithm.

Theorem 27 (Complexity of QG) An upper-bound on the time complexity for QG

algorithm is O(|C|.|⊥e|.|E−|.cr), where |C| is the cardinality of the reduced clause C,

|⊥e| is the cardinality of the bottom clause, |E−| the cardinality of negative examples

and cr is a constant representing the maximum cost of theorem proving with a resolu-

tions bound of r.

Proof. By construction each atom bj in the body of C = h ← b1, .., bm was either

a cutoff atom or an element of one of the minimal support sets in one of the cycles

of the reduce algorithm. In the worst case all bj are cutoff atoms and since the last

atom is a cutoff atom twice the reduce algorithm returns C in at most m + 1 = |C|

cycles. The cost of finding a cutoff atom is proportional to length of the bottom clause,

number of negative examples and the cost of theorem proving. The upper-bound on

the cost of finding a cutoff atom can therefore be estimated by |⊥e|.|E−|.cr. Hence, an

upper-bound on the time complexity of QG algorithm is O(|C|.|⊥e|.|E−|.cr).

Figure 7.10 gives an illustration of the cycle-complexity result given in Theorem 27.

As shown in this figure the reduced clause has 2 atoms in the body and the algorithm

terminates after 2+1 cycles.

The QG algorithm described in this sections can be used for efficiently sampling from
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consistent clauses. Clauses generated by QG are consistent but not necessarily com-

pressive with respect to the positive examples and they may have small or even no

positive coverage. On the other hand, Progol-like cover-set algorithms generate hy-

potheses by adding clauses which provide a positive compression over training data

(see Figure 7.1). A simple integration of QG in Progol can be realised by replacing

Progol’s A∗ search by a QG sampling mechanism. This is implemented in GA-Progol

as shown in Figure 7.1, i.e. when user-defined parameter search mode is QG. This

involves a program which returns a clause with highest positive compression from a

sample of S calls to qg algorithm. In this setting, the program simply returns a con-

sistent clause with the highest positive compression. According to Proposition 21, a

sample size can be estimated based on the percentage of consistent clauses which have

positive compression, so that at least one of the clauses has positive compression.

Clauses generated by the simple QG setting described above lack diversity and opti-

mality. GA-Progol also implements a more advanced setting in which a GA search is

used to evolve and re-combine clauses generated by QG. In this setting QG is used to

seed a population of clauses processed by the GA. This setting can be selected when

search mode is set to QG/GA (see Figure 7.1). As described in Section 7.1.2, in a “GA

only” setting and when the encoding mode is set to atoms only, the initial population

of the GA consists of randomly generated bit-strings with length L, where L is the

number of literals in the bottom clause. In the QG/GA setting, the initial population

of the GA consists of clauses generated by the QG algorithm. As the QG algorithm

generates clauses from the permutations of the same bottom clause, encoding these

clauses into bit-strings is straightforward and follows the same scheme as shown in

Figure 7.3.

7.3 ProGolem

As shown in Section 7.1.1, an efficient operator can be implemented for least gener-

alisation in the subsumption order relative to a bottom clause (i.e. lgg⊥). Operator

lgg⊥ is defined for a lattice bounded by a bottom clause ⊥e which is constructed with

respect to a single positive example e. In this section we describe a variant of Plotkin’s

RLGG, called asymmetric relative minimal generalisation (ARMG) or armg⊥ which is
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based on subsumption order relative to a bottom clause ⊥e. Unlike lgg⊥, armg⊥ is de-

fined with respect to a pair of positive examples. An ARMG is constructed iteratively

from positive examples and as in Golem, by construction it is guaranteed to cover all

positive examples which are used to construct it. However, as for lgg⊥ the asymmetric

relative minimal generalisation described in this section does not need the determi-

nacy restrictions which was needed in Golem (see Section 7.1.3). Hence, ARMGs have

the same advantage as RLGGs in Golem but unlike RLGGs the length of ARMGs is

bounded by the length of ⊥e. In this section we describe the algorithm for construct-

ing ARMGs which has been implemented in ProGolem. ProGolem is an ILP system

which combines bottom-clause construction in Progol with a Golem control strategy

which uses ARMG in place of determinate RLGG. ProGolem was first described in

[MSTN10a] and has been implemented by Jose Santos as part of the General Inductive

Logic Programming System (GILPS) 4.

7.3.1 ARMG algorithm

The asymmetric relative minimal generalisation of examples e′ and e relative to ⊥e

is denoted by armg⊥(e′|e) and in general armg⊥(e′|e) $= armg⊥(e|e′). In the follow-

ing, first we define asymmetric relative minimal generalisation and study some of its

properties and then we give an algorithm for constructing ARMG.

Definition 95 (Asymmetric relative common generalisation) Let E, B and ⊥e

be as defined in Definition 43,
−→
L⊥ as defined in Definition 53, e and e′ be positive ex-

amples in E and
−→
C is a head-connected definite ordered clause in

−→
L⊥.

−→
C is an asym-

metric common generalisation of e′ and e relative to ⊥e, denoted by
−→
C ∈ arcg⊥(e′|e),

if
−→
C "⊥ ⊥e and B ∧ C - e′

Example 48 Let M = {p(+), q(+,−), r(+,−)} be mode definition, B = {q(a, a),

r(a, a), q(b, b), q(b, c), r(c, d)} be background knowledge and e = p(a) and e′ = p(b)

be positive examples. Then we have ⊥e = p(X) ← q(X,X), r(X,X) and clauses
−→
C = p(V1) ← q(V1, V1),

−→
D = p(V1) ← q(V1, V3), r(V3, V5) and

−→
E = p(V1) ← q(V1, V3)

are all in arcg⊥(e′|e). "

4 Available from http://ilp.doc.ic.ac.uk/GILPS/
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Definition 96 (Asymmetric relative minimal generalisation) Let E and ⊥e be

as defined in Definition 43, e and e′ be positive examples in E and arcg⊥(e′|e) be as

defined in Definition 95.
−→
C is an asymmetric minimal generalisation of e′ and e relative

to ⊥e, denoted by
−→
C ∈ armg⊥(e′|e), if

−→
C ∈ arcg⊥(e′|e) and

−→
C "⊥

−→
C ′ ∈ arcg⊥(e′|e)

implies
−→
C is subsumption-equivalent to

−→
C ′ relative to ⊥e.

Example 49 Let B, ⊥e, e and e′ be as in Example 48. Then clauses
−→
C = p(V1) ←

q(V1, V1) and
−→
D = p(V1)← q(V1, V3), r(V3, V5) are both in armg⊥(e′|e). "

The following proposition shows that ARMGs are not unique.

Proposition 26 The set armg⊥(e′|e) can contain more than one clause which are not

subsumption-equivalent relative to ⊥e.

Proof. In Example 48, clauses
−→
C = p(V1) ← q(V1, V1) and

−→
D = p(V1) ← q(V1, V3),

r(V3, V5) are both in armg⊥(e′|e) but not subsumption-equivalent relative to ⊥e. !

The following theorem shows that the length of ARMG is bounded by the length of

⊥e.

Theorem 28 For each
−→
C ∈ armg⊥(e′|e) the length of

−→
C is bounded by the length of

⊥e.

Proof. Let
−→
C ∈ armg⊥(e′|e). Then by definition there exist a substitution θ such that

−→
C θ is a subsequence of ⊥e. Hence, the length of

−→
C is bounded by the length of ⊥e. !

It follows from Theorem 28 that the number of literals in an ARMG is bounded by

the length of ⊥e, which according to Proposition 23 is polynomially bounded in the

number of mode declarations for fixed values of i and j, where i is the maximum

variable depth and j is the maximum arity of any predicate in M . Hence, unlike the

RLGGs used in Golem, ARMGs do not need the determinacy restrictions and can be

used in a wider range of problems including those which are non-determinate. In the

following we show that there is also an efficient algorithm for constructing ARMGs.

The following definitions are used to describe the ARMG algorithm.

149



armg - ARMG construction algorithm

Input: Clause
−→
B , Positive example e′

Output: ARMG clause
−→
C constructed from

−→
B and e′

01 Let
−→
C be

−→
B = h← b1, .., bn

02 while there is a blocking atom bi wrt e′ in the body of
−→
C

03 remove bi from
−→
C

04 remove atoms from
−→
C which are not head-connected

05 end while

06 return
−→
C

Figure 7.11: Asymmetric Relative Minimal Generalisation (ARMG) algorithm.

Definition 97 (Blocking atom) Let B be background knowledge, E+ the set of pos-

itive examples, e ∈ E+ and
−→
C = h ← b1, . . . , bn be a definite ordered clause. bi is

a blocking atom if and only if i is the least value such that for all θ, e = hθ, B !

(b1, . . . , bi)θ.

An algorithm for constructing ARMGs is given in Figure 7.11. Given the bottom clause

⊥e associated with a particular positive example e, this algorithm works by dropping

a minimal set of atoms from the body to allow coverage of a second example. Below

we prove the correctness of the ARMG algorithm.

Theorem 29 (Correctness of ARMG algorithm) Let E and ⊥e be as defined in

Definition 43, e and e′ be positive examples in E, armg⊥(e′|e) be as defined in Defini-

tion 96 and armg(⊥e, e′) be the algorithm given in Figure 7.11. Then
−→
C = armg(⊥e, e′)

is in armg⊥(e′|e).

Proof. Assume
−→
C $∈ armg⊥(e′|e). In this case, either

−→
C is not an asymmetric common

generalisation of e and e′ or it is not minimal. However, by construction
−→
C is a

subsequence of ⊥e in which all blocking literals with respect to e′ are removed and

therefore B ∧ C - e′. Hence,
−→
C is an asymmetric common generalisation of e and e′.

So,
−→
C must be non-minimal. If

−→
C is non-minimal then

−→
C "⊥

−→
C ′ for

−→
C ′ ∈ armg⊥(e′|e)

which must either have literals not found in
−→
C or there is a substitution θ such that

−→
C θ =

−→
C ′. But we have deleted the minimal set of literals. This is a minimal set since

leaving a blocking atom would mean B ∧ C ! e′ and leaving a non-head-connected

literal means
−→
C $∈ armg⊥(e′|e). So it must be the second case. However, in the second
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case θ must be a renaming since the literals in
−→
C are all from ⊥e. Hence,

−→
C and

−→
C ′

are variants and this contradicts the assumption and completes the proof. !

The following example shows that the ARMGs algorithm is not complete.

Example 50 Let B, ⊥e, e and e′ be as in Example 48. Then clauses
−→
C = p(V1) ←

q(V1, V1) and
−→
D = p(V1) ← q(V1, V3), r(V3, V5) are both in armg⊥(e′|e). However, the

ARMGs algorithm given in Figure 7.11 cannot generate clause
−→
D . "

Example 50 shows that the ARMGs algorithm does not consider hypotheses which

require ‘variable splitting’. As shown in Chapter 3 (Example 11), there is a group

of problems which cannot be learned by a Progol-like ILP system without variable

splitting. The concept of variable splitting and the ways it has been done in Progol

and Aleph were discussed in Chapter 3. A partition-based representation and an

implementation for variable splitting was also given in Section 7.1.1. Similar approaches

could be adapted for ProGolem, however, the current implementation does not support

variable splitting.

Figure 7.12 gives a comparison between Golem’s determinate RLGG and the ARMGs

generated by the ARMG algorithm in Michalski’s east-bound trains problem. Note that

Golem’s RLGG cannot handle the predicate has car because it is non-determinate (see

Section 2.5). The first ARMG (2) subsumes the target concept which is eastbound(A)

← has car(A,B), closed(B), short(B). Note that in this example RLGG (1) is shorter

than ARMGs (2,3) since it only contains determinate literals.

7.3.2 Search for best ARMG

ProGolem uses a cover set approach similar to the one used by Golem and Progol.

ProGolem’s cover set algorithm is shown in Figure 7.13. This algorithm repeatedly

constructs a clause from a set of best ARMGs. As in Golem and QG/GA, ProGolem

uses negative examples to reduce the final ARMGs before adding them to the current

clausal theory H. The clause reduction algorithm implemented in ProGolem is similar

to the reduce algorithm shown in Figure 7.9 but instead of a linear search used in

Golem and QG/GA, it uses an adapted binary search to find the first blocking literal.
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1. rlgg(e1, e2) = rlgg(e2, e1) = eastbound(A) ← infront(A,B), short(B), open(B),
shape(B,C), load(B,triangle,1), wheels(B,2), infront(B,D), shape(D, rectan-
gle), load(D,E,1), wheels(D,F), infront(D,G), closed(G), short(G), shape(G,H),
load(G,I,1), wheels(G,2).

2. armg(⊥e1
, e2) = eastbound(A) ← has car(A,B), has car(A,C), has car(A,D),

has car(A,E), infront(A,E), closed(C), short(B), short(C), short(D), short(E),
open(B), open(D), open(E), shape(B,F), shape(C,G), shape(D,F), shape(E,H),
load(D,I,J),2), wheels(E,2)

3. armg(⊥e2
, e1) = eastbound(A) ← has car(A,B), has car(A,C), has car(A,D),

infront(A,D), closed(C), short(B), short(D), open(D), shape(B,E), shape(D,E),
load(B,F,G), load(D,H,G), wheels(B,2), wheels(D,2)

armg(⊥e1
, e2) armg(⊥e2

, e1)

⊥e1
e2 ⊥e2

e1

"⊥ - "⊥ -

Figure 7.12: A comparison between Golem’s determinate RLGG (1) and the non-
determinate ARMGs (2,3). Note that Golem’s RLGG cannot handle the predicate
has car because it is non-determinate. The first ARMG (2) subsumes the target
concept which is eastbound(A) ← has car(A,B), closed(B), short(B).

ProGolem’s cover-set algorithm
Input: Examples E, mode declarations M , background knowledge B,

search mode (beam/stochastic)
Output: Hypotheses H
01 H := ∅
02 E+ := positive examples in E
03 while E+ $= ∅
04 e := first example in E+

05 Construct the bottom clause ⊥e from e, M and B (See Appendix A)
06 C ′ := best armg(⊥e, E, search mode) (See Fig. 7.14)
07 C := reduce(C ′, E) (See Fig. 7.9)
08 if compression(C) > 0
09 H := H ∪ C
10 E+

H := positive examples covered by B ∧H
11 E+ := E+ − E+

H
12 end if
13 end while
14 return H

Figure 7.13: ProGolem’s cover set algorithm.
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best armg - best ARMG algorithm
Input: ⊥e, Examples E, search mode (beam/stochastic)

sample size K, beam width N
Output: highest scoring clause from best armgs
01 let best armgs = {⊥e}
02 repeat
03 let best score = highest score from best armgs
04 let Ex = K random positive examples from E
05 let new armgs = {}

06 for each
−→
C ∈ best armgs do

07 for each e′ ∈ Ex do

08 let
−→
C ′ = armg(

−→
C , e′) (see Fig. 7.11)

09 if score(
−→
C ′) > best score then

10 new armgs = new armgs ∪
−→
C ′

11 end if
12 end for
13 end for
14 if (new armgs $= {}) then
15 best armgs = select n(new armgs, N , search mode)
16 end if
17 until new armgs = {}

select n - select N highest scoring clauses
Input: set of clauses S, number of clauses to select N , search mode (beam/stochastic)
Output: N clauses from S with highest scores
01 if search mode = stochastic then
02 S′= clauses selected from S by N calls to tournament selection (see Fig. 7.7)
03 else
04 S′= N highest scoring clauses from S
05 return S′

Figure 7.14: Best ARMG algorithm
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ProGolem also implements several efficient coverage testing algorithms. Note that

ProGolem is a bottom-up system and the coverage testing of long non-determinate

clauses could be expensive as it involves a large amount of backtrackings. The details

of ProGolem’s efficient coverage testing algorithms are described in [San10].

In the following we describe ProGolem’s search for best ARMG. ProGolem uses a

beam search to select the best ARMG with respect to ⊥e. This algorithm is shown

in Figure 7.14. The algorithm works by repeatedly constructing new ARMGs from

current ARMGs using positive examples and maintaining a ‘beam’ of best ARMGs at

each iteration to be used in the next iteration. Positive examples used to construct a

new ARMG are randomly selected from the set of positive examples which have not

been used before for that ARMG. This is repeated until the ARMGs’ score no longer

increases. ProGolem supports several evaluation functions (i.e. compression, accuracy,

precision and coverage) which can be selected by the user. The default evaluation is

compression as used in Progol and GA-Progol.

As shown in Figure 7.14, the initial set of ARMGs best armgs, at iteration 0 is set to

the bottom clause {⊥e}. For each ARMG
−→
C in the current best armgs, K (sample size)

examples which are not covered by
−→
C are randomly selected. These examples are used

to construct K new ARMGs using the algorithm shown in Figure 7.11, and from these

new ARMGs, those with a score higher than best score from the previous iteration

are added to new armgs. The best N (beam width) ARMGs from new armgs are

selected as best armgs using select n.

As shown in Figure 7.14, select n returns N highest scoring clauses from a set of clauses

S. However, if stochastic beam is set to true, clauses are selected from S by N calls to

the tournament selection (see Fig. 7.7). This is used to implement a GA-like algorithm

in which clauses for ARMGs are stochastically selected from previous generation using

a tournament selection. ProGolem also implements a stochastic search based on QG

(see Section 7.2) in which bottom clauses are only reduced using QG instead of being

passed to the ARMG algorithm.
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7.4 Related work and discussion

The genetic algorithm approach described in this chapter is related to relational learn-

ing systems which use genetic algorithms for learning first-order clauses from examples.

In particular, our GA approach can be compared with GA-based approaches which use

a (user defined) language template for mapping first-order clauses into bit strings, i.e.

GA-SMART [GS92], REGAL [GN96], DOGMA [Hek98] and G-NET [AGLS98]. As

discussed in Section 6.3, the main problem of using these templates is that the number

of conjuncts grows combinatorially with the number of predicates and also the tem-

plate should be defined by the user. We also showed that these systems cannot benefit

from intentional background knowledge in the same way as in an ILP system.

On the other hand, in our proposed framework, encoding of hypotheses is based on

a most specific (or bottom) clause which is constructed according to the background

knowledge. This bottom-clause can be automatically constructed using logic-based

methods such as Inverse Entailment. Moreover, it was shown that the binary repre-

sentation and operators described in this chapter encode the partition lattice which

is isomorphic with the bounded subsumption. In other words, the proposed encoding

and operators can be interpreted in well known ILP terms which means it follows the

principle of meaningful building blocks [Gol89].

As already mentioned in this chapter, ProGolem is closely related to Golem which is

based on generalisation relative to background knowledge B. ProGolem is based on

generalisation relative to a bottom clause ⊥e which is the result of compiling back-

ground knowledge B. Hence, subsumption relative to a bottom clause can be viewed

as subsumption relative to a compilation of B which makes it more efficient than sub-

sumption relative to B. Moreover, as already discussed in this thesis, generalisation

relative to a bottom clause allows ProGolem to be used for non-determinate problems

where Golem is inapplicable.

The least and minimal generalisations relative to a bottom clause (i.e. lgg⊥ and armg⊥)

can be compared with other approaches which use lgg-like operators but instead of

considering all pairs of compatible literals they only consider one pair. For example,

LOGAN-H [AK04] is a bottom-up system which is based on inner products of exam-
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ples which are closely related to lgg operator. This system constructs lgg-like clauses

by considering only those pairs of literals which guarantee an injective mapping be-

tween variables. In other words, it assumes one-one object mappings. Other similar

approaches use the same idea of simplifying the lgg-like operations by considering only

one pair of compatible literals but they select this pair arbitrarily (e.g. [BZB01]).

7.5 Summary

In this chapter we described several algorithms and implementations for searching

the hypothesis space bounded by a bottom clause. In the first part we described

GA-Progol, an extension to the ILP system Progol in which the standard refinement

and the A∗-like algorithm for searching the bounded subsumption lattice is replaced

by a genetic search. We described the SGA-like algorithm in GA-Progol which uses

a novel binary representation and encoding for clauses in the bounded subsumption

lattice. The binary representation encodes the partition lattice which is in turn iso-

morphic with the bounded subsumption as discussed in the previous chapters. We also

showed that lgg(least general generalisation) and mgs(most general specialisation) for

the bounded subsumption lattice, i.e. lgg⊥ and mgs⊥, can be implemented by simple

bitwise operations on the binary encoding of clauses.

In this chapter we also described Quick Generalisation (QG) algorithm and QG/GA

search which are implemented in GA-Progol. QG algorithm is a stochastic algorithm

which constructs maximally general consistent clauses by randomly pruning Progol

bottom clauses. The QG sampling algorithm can be viewed as a stochastic refinement

search with unary refinement operator which randomly samples from “fringe” clauses

(i.e. maximally general consistent clauses in the hypothesis space). We described

a sampling algorithm based on QG which returns the clause with highest positive

compression from a sample of s calls to QG. We also described a combination of QG

and GA (i.e. QG/GA algorithm) in which the initial population of the GA consists of

clauses generated by the QG algorithm.

We also described algorithms based on Asymmetric Relative Minimal Generalisation

(ARMG) which are implemented in ProGolem. ProGolem combines bottom-clause
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construction in Progol with a Golem control strategy which uses ARMG in place of

determinate RLGG. ARMG or armg⊥ is defined based on subsumption relative to

⊥ where the clause length is bounded by the length of the initial bottom clause.

ProGolem, therefore do not need the determinacy restrictions used in Golem. In this

section we discussed algorithms for constructing and searching ARMGs.
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Chapter 8

Empirical evaluation

In this chapter we empirically evaluate the algorithms which were described in the pre-

vious chapter. This chapter is organised as a series of experiments. In each experiment

we try to answer one or two questions about the performance of different algorithms.

These questions are written as negative statements which we refer to as null hypotheses

and each experiment is designed to refute or reject the null hypotheses. The reason

why we use negative statements (null hypotheses) is that we only need to find one case

which disproves a negative statement whereas proving a positive statement is usually

not possible by performing experiments, even if the statement is shown to be true in

many cases.

In the first experiment (Section 8.1.1), we study the convergence of the genetic search in

GA-Progol and test if it can converge to an optimal solution on a simple ILP problem.

We also test if using lgg⊥ crossover operator can improve the convergence of the genetic

search. In Section 8.1.2, we compare the performance of the GA search versus the

A∗-like search in learning randomly generated concepts with different complexities. In

Section 8.1.3, we compare the performance of GA and A∗ on a typical ILP dataset with

relatively short target clauses, i.e. mutagenesis problem. In Section 8.1.4, we evaluate

GA and A∗ on a set of problems involving long target clauses with different sizes, i.e.

a subset of Phase Transition (PT) dataset. In Section 8.1.5, we demonstrate that GA-

Progol can find the correct solution for some special cases where the solution cannot be

found by Progol’s refinement operator due to its incompleteness. In Sections 8.2.1 and

8.2.2, we examine QG/GA algorithm on mutagenesis and PT datasets respectively. In
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Section 8.3, we empirically evaluate stochastic refinement in ProGolem (i.e. armg⊥).

8.1 GA-Progol

8.1.1 Convergence of the genetic search

In this experiment we study the convergence of the genetic search in GA-Progol and

test if it can converge to an optimal solution on a simple ILP problem. We also test

if using lgg⊥ crossover operator can improve the convergence of the genetic search. In

this section we examine the following two null hypotheses:

Null hypothesis 1 On a simple ILP problem, the genetic search in GA-Progol does

not converge to an optimal solution.

Null hypothesis 2 Using lgg⊥ crossover operator does not improve the convergence

of the genetic search.

Material and methods

In this experiment we used the SGA-like setting in GA-Progol, as described in Section

7.1.1, to learn Michalski’s east-bound trains [Mic80]. The following parameter setting

was used for SGA: popsize = 30, pm = 0.0333 and pc = 0.6. In this experiment we

also compare the performance of SGA with SGA + lgg⊥ which uses the task-specific

operators lgg⊥ as described in Section 7.1.3. The following parameter setting was

used for SGA + lgg⊥: popsize = 30, pm = 0.0333, pc = 1 − α ∗ f and plgg = α ∗ f

where f is the mean value of the fitness of the parental strings (f = f(s1)+f(s2)
2 ) and

α = 0.8. The parameter setting for pc and plgg is adapted from the parameter setting

for generalisation crossover (pg) used in GA-SMART [GS92] as described in Appendix

B. The evaluation function used both SGA and SGA + lgg⊥ is a function based on

the compression value as used in the evaluation function of A∗-like search of Progol.

However, the compression value is normalised 1 to be a value between 0 and 1 as defined

below:

f(C) = α
e+(C)

(E+ + β ∗ e−(C))
+ (1− α)(1 −

c(C) + h(C)

cmax + hmax
) (8.1)

1 The normalisation is similar to the one used in GA-SMART (see Appendix B).
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Figure 8.1: Convergence of the genetic search in the trains problem.

where E+, E− are total numbers of positive and negative examples, e+(C), e−(C) are

numbers of positive and negative examples covered by clause C, c(C) is the length of

clause C, h(C) is the number of further literals to complete clause C as used in Progol

(see Appendix A). Constant values cmax and hmax are maximum values for c(C) and

h(C) when C = ⊥, α and β are user-defined parameters, where α controls the effect

of the clause coverage versus the effect of the clause length and β controls the effect of

negative coverage versus the effect of positive coverage in the fitness function. In all

experiments we used the following values for α and β: α = 0.8 and β = 0.5. In this

experiment encoding mode is set to var splitting (Figure 7.6) and selection method is

set to roulette-wheel algorithm (Figure 7.7).

Results and discussion

Figure 8.1 compares the convergence of SGA, SGA+ lgg⊥ and a random search. In the

random search each population is generated randomly as for GA’s initial population

and a hypothesis with the highest fitness value is selected at each generation. This

graph shows the average fitness value of the populations versus number of generations.

Standard deviations for the average fitness mean over 10 runs are shown as error bars.
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carriage(Shape,Length,Double,Roof,Wheels,Load) :-
shape(Length,Shape),
double(Length,Shape,Double),
roof(Length,Shape,Roof),
wheels(Length,Wheels),
load(Length,Load).

shape(long,rectangle). shape(short,rectangle). shape(short,ellipse). shape(short,hexagon).
shape(short,u_shaped). shape(short,bucket). double(short,rectangle,double).
double(long,rectangle,not_double). double(short,rectangle,not_double).
double(short,ellipse,not_double). double(short,hexagon,not_double).
double(short,u_shaped,not_double). double(short,bucket,not_double). roof(short,ellipse,arc).
roof(short,hexagon,flat). roof(long,rectangle,none). roof(long,rectangle,flat).
roof(long,rectangle,jagged). roof(short,rectangle,none). roof(short,rectangle,flat).
roof(short,rectangle,peaked). roof(short,u_shaped,none). roof(short,u_shaped,flat).
roof(short,u_shaped,peaked). roof(short,bucket,none). roof(short,bucket,flat).
roof(short,bucket,peaked). wheels(short,2). wheels(long,2). wheels(long,3).
load(short,l(circle,1)). load(short,l(diamond,1)). load(short,l(hexagon,1)).
load(short,l(rectangle,1)). load(short,l(triangle,1)). load(short,l(utriangle,1)).
load(short,l(circle,2)). load(short,l(diamond,2)). load(short,l(hexagon,2)).
load(short,l(rectangle,2)). load(short,l(triangle,2)). load(short,l(utriangle,2)).
load(long,l(circle,1)). load(long,l(diamond,1)). load(long,l(hexagon,1)).
load(long,l(rectangle,1)). load(long,l(triangle,1)). load(long,l(utriangle,1)).
load(long,l(circle,2)). load(long,l(diamond,2)). load(long,l(hexagon,2)).
load(long,l(rectangle,2)). load(long,l(triangle,2)). load(long,l(utriangle,2)).
load(long,l(circle,3)). load(long,l(diamond,3)). load(long,l(hexagon,3)).
load(long,l(rectangle,3)). load(long,l(triangle,3)). load(long,l(utriangle,3)).

Figure 8.2: Concept description language for generating random trains. A random
train is defined as a list of carriages sampled from this program using SLPs.

In all experiments (10 out of 10 runs) an optimal solution (i.e. shortest consistent clause

which covers all positive examples) was found by the SGA search before generation

20. Null hypothesis 1 is therefore refuted. As shown in the graph SGA + lgg⊥ has a

faster convergence to highly fit populations. In all experiments (10 out of 10 runs) an

optimal solutions was found by SGA + lgg⊥ before generation 10. This refutes Null

hypothesis 2.

The rapid convergence of the GA search in this experiment also appears to be consistent

with Schema Theorem [Hol75] which was discussed in Section 6.3. This theorem sug-

gests that short, low-order and above average schemata receive at least exponentially

increasing number of trials in successive generations.

8.1.2 Randomly generated concepts

In this section we compare the performance of the GA search versus the A∗-like search

in learning randomly generated concepts.The Michalski’s trains problem used in the

previous experiment requires relatively short target clause, i.e. three literals in the

body. In this experiment we use a program which generates random Michalski-style
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trains. This is used to generate positive and negative examples for target clauses with

varying sizes. In this section we examine the following two null hypotheses:

Null hypothesis 3 The GA search cannot provide increased efficiency over Progol’s

standard A∗ search in learning any randomly generated target concept.

Null hypothesis 4 The increased efficiency in Null hypothesis 3 cannot be achieved

without substantial decrease of accuracy.

Material and methods

In this experiment, we compare the performance of the A∗-like search and the genetic

search in learning concepts with different complexities. For this purpose, we use a

stochastic concept generator program in which the concept description language is

determined by a Stochastic Logic Program(SLP) [Mug96]. We use this to generate

random concepts with a given complexity as well as random training and test examples

for each concept. In the present experiment, we use a concept description language

similar to Michalski’s trains problem used in the previous experiment. Figure 8.2

shows the train description language used in this experiment. In this experiment,

the complexity of target concept is defined as the number of specific features which

describe the target concept. This is an estimation of the maximum number of literals

to describe the concept. For example, complexity of the target concept in a train

with a specific carriage with five distinct features (shape, load, etc.) is five. We can

use a SLP program to generate complex target concepts as well an arbitrary number

of training and test examples for each concept. The original non-SLP version of the

random train generator program was written by Stephen Muggleton 2. This program

randomly generates trains with a given length and then classifies them as positive or

negative examples. However, the non-SLP version is inefficient for generating examples

for arbitrary long concepts. Figure 8.3 shows the experimental method used in this

experiment. In this experiment we measure the average performance of the genetic

search and the A∗ search on 100 different runs. In each run, target concepts with

complexities (i.e. maximum target size) between 5 to 25 are generated. For each

2 Available from: http://www.doc.ic.ac.uk/e shm/Software/GenerateTrains/
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01 for i = 1 to 100 do
02 for j = 5, 10, 15, 20, 25 do
03 Generate a random target concept Tij with complexity j
04 Generate 2× 100 random training and test examples for concept Tij

05 Run GA-Progol on the training examples using the A∗ search
06 Nij =number of evaluations before finding hypothesis Cij

07 Aij =predictive accuracy of Cij on the test examples
08 Run GA-Progol on the training examples using the GA search
09 N ′

ij =number of evaluations before finding hypothesis C ′
ij

10 A′
ij =predictive accuracy of C ′

ij on the test examples
11 end
12 end
13 for j = 5, 10, 15, 20, 25 do
14 Plot average and standard error of Nij and N ′

ij versus j (i ∈ [1..100])
15 for j = 5, 10, 15, 20, 25 do
16 Plot average and standard error of Aij and A′

ij versus j (i ∈ [1..100])

Figure 8.3: Experimental method for comparing GA versus A∗ on randomly generated
concept with different complexities.

target concept, a fixed number (i.e. 100) of examples are generated for training and

testing. After generating random examples, we run GA-Progol on the training example

using the A∗ search and the genetic search. For each iteration of the loop the following

parameters are recorded: N , the number of evaluations before finding a single clause

C which is complete and consistent with respect to the training examples and A, the

predictive accuracy of C on the test examples. The average and standard error of these

parameters are then plotted against the complexity of the target concepts.

Predictive accuracy is defined as the proportion of correctly predicted unseen test ex-

amples. Each clause is learned from a set of 100 randomly generated training examples

and tested on a different set of 100 randomly generated test examples. We follow the

recommendation in Progol’s manual 3 about the choice of test strategy (for evaluating

predictive accuracy) according to the number of examples. Given 100 training exam-

ples and 100 test examples we use a hold-out test strategy implemented in Progol’s

built-in predicate test/1. The evaluation function and control parameters which are

used by the genetic search are the same as those used in Section 8.1.1.

3 Available from: http://www.doc.ic.ac.uk/e shm/Software/progol4.2/manual.ps
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Results and discussion

Figure 8.4.a compares the average number of clauses evaluated by the genetic search

and the A∗-like search in learning concepts with different complexities. The vertical

axis shows the average number of the explored nodes before finding a complete and

consistent hypothesis. The horizontal axis shows the complexity of target concept

which is estimated by the maximum size of the target clause. According to Figure 8.4,

in this experiment the A∗-like search exhibits a better performance than GA search in

learning concepts with small complexities, i.e. for complexities between 5 to 10 the GA

search requires a higher number of evaluations compared to A∗-like search. However,

the number of evaluations by the A∗-like search grows very sharply for complexities

more than 10 and it is significantly higher than the number of evaluations by the GA

search. The Null hypothesis 3 is therefore rejected.

Figure 8.4.b compares the predictive accuracy of the hypotheses by the genetic search

and the A∗-like search. This figure shows that the overall predictive accuracy of the

genetic search is lower than the overall predictive accuracy of the A∗-like search. How-

ever, the difference between the predictive accuracies in most cases is less than 1% and

in all cases less than 2%. This rejects Null hypothesis 4. Slightly lower predictive accu-

racy of the genetic search can be explained by the fact that, unlike the A∗-like search,

the genetic search does not guarantee to find an optimal clause, i.e. a clause with the

highest compression. Moreover, a comparison between the size of hypotheses suggest

that the clauses generated by the GA search are usually longer than the corresponding

clauses generated by the A∗-like search. These over-specific clauses could contribute to

the lower predictive accuracy of the GA search. In Sections 8.2 we examine a combi-

nation of the GA search with QG algorithm which can be used to prune over-specific

clauses.

In summary, the results of this experiment suggest that in the random trains problem,

the genetic search can lead to significantly increased efficiency for learning complex

target concepts and this can be achieved without substantial decrease of accuracy.

These graphs also suggest that the performance of the genetic search is less dependent

on the complexity of hypotheses, whereas A∗-like search shows a great dependency on
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Figure 8.4: Performance of GA search and A∗-like search in learning randomly gener-
ated concepts with different complexities. a) average number of clauses evaluated by
each search method and b) predictive accuracy of the induced hypotheses versus the
complexity of concepts.
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this factor. This can partly be explained by the fact that in the GA search we always

evaluate a fixed number of clauses (i.e. popsize) in each generation regardless of the

length of the target clause, whereas the number of nodes which A∗-like search requires

to explore and evaluate increases exponentially with the length of the target clause

(see Section 7.1).

The graphs in Figure 8.4 also suggest that in this experiment, the most difficult prob-

lems are not necessarily those with longer target concepts as both for the GA and

A∗-like search the peaks of computational costs are for target clauses with complexi-

ties somewhere between 10 to 15. This could be related to phase transition phenomena

in relational learning [BGSS03], however, this requires further investigation which is

beyond the scope of the current experiment. Nevertheless, in order to avoid this poten-

tial side effect, in Section 8.1.4 we evaluate GA-Progol on problems which are known

to be outside the phase transition region.

8.1.3 Learning short target clauses

The goal of this experiment is to compare the performance of GA and A∗ on a typical

ILP benchmark problem involving short target clauses, i.e. target clauses with a small

number of literals in the body. In this experiment we examine the following null

hypothesis:

Null hypothesis 5 The GA search cannot provide increased accuracy over Progol’s

standard A∗ search on a typical ILP problem involving short target clauses.

Material and methods

In this experiment we use the mutagenesis 42 dataset with atom-bond background

knowledge [KMSS96], referred to as mut42. Mutagenesis problem has been widely

used as a benchmark problem in the ILP community. Even though this problem is no

longer regarded as a challenging problem for ILP, it is a good example of successful

application of ILP involving short target clauses, i.e. up to 4 literals as discussed in

Section 1.1.2. We use a leave-one-out test strategy and compare the predictive accuracy

and total time (training and testing) for the following algorithms:
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A∗ - Progol’s standard refinement-graph search.

GA - A Genetic Algorithm (GA) described as “SGA-like algorithm” in Section 7.1.1.

In this experiment N , the maximum number of clauses evaluated for learning a single

clause, is varied for each algorithm. For A∗, N corresponds to Progol’s parameter

nodes. In GA, N is determined by popsize and maxgen, i.e. N = popsize×(maxgen+

1). Other GA parameters used in this experiment are as follows: pm = 0.01, pc = 0.6

and popsize = 30. For A∗, the maximum number of literals in each clause (parameter

c in Progol) is set to 4. The noise parameter was set to zero for all algorithms. In this

experiment encoding mode is set to atoms only (Figure 7.6) as the variable splitting

is not needed for this problem and selection method is set to tournament selection

algorithm (Figure 7.7) with a tournament size of 2. The evaluation function used for

the GA search is the same as the one used by A∗ search, i.e. compression value for

each clause.

Results and discussion

Table 8.1 summarises the results of the leave-one-out experiments. This table shows

predictive accuracies and average learning and testing times for each example. In these

experiments, the value for N starts from 30 (for GA this is equivalent to maxgen = 1)

and it is doubled each time up to 15360 (maxgen = 512). According to the table, pre-

dictive accuracies for both A∗ and GA increase with N . In general, GA seems to reach

higher levels of accuracy with fewer evaluated clauses. However, as the computational

costs for each search node is relatively low in this problem (e.g. clauses considered by

A∗ are maximum 4 literals long), the efficiency advantage of GA is not significant in this

problem. Given the relatively high accuracy errors in the leave-one-out experiments,

the accuracy advantage of GA is also not significant. Null hypothesis 5 is therefore

not rejected by this experiment. Nevertheless, the results from this experiment suggest

that the predictive accuracies and timings for A∗ and GA on mutagenesis problem (a

benchmark problem involving short clauses) are comparable. These results also sug-

gest that GA may reach higher accuracy with fewer evaluated clauses and therefore

in a learning setting where the total computational cost is dominated by the cost of
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N A∗ GA
A(%) T (s) A(%) T (s)

30 81 ± 6 0.11 83 ± 6 2.82
60 81 ± 6 0.18 83 ± 6 2.83
120 81 ± 6 0.41 81 ± 6 5.50
240 81 ± 6 1.09 81 ± 6 8.94
480 81 ± 6 1.84 83 ± 6 13.40
960 81 ± 6 4.27 83 ± 6 25.85
1920 81 ± 6 9.87 83 ± 6 43.46
3840 81 ± 6 25.10 83 ± 6 58.49
7680 83 ± 6 50.76 86 ± 5 99.98
15360 86 ± 5 141.06 86 ± 5 226.78

Table 8.1: Predictive accuracies and average learning times from leave-one-out experi-
ments on mut42 dataset for GA vs A∗. N is the maximum number of clauses evaluated
for learning a single clause.

evaluations (e.g. when learning long target clauses), then GA could lead to increased

efficiency over Progol’s standard A∗ search. This is consistent with the results from

random trains and is the basis of the experimental setting which will be used in the

next section.

8.1.4 Learning long target clauses

The results of the previous experiment (i.e. Table 8.1) suggest that GA needs fewer

clause evaluations in order to reach the same level of accuracy. For example, A∗

requires N = 7680 to reach accuracy of 83 ± 6 and N = 15360 to reach accuracy of

86±5 while GA reaches these levels of accuracy at N = 480 and N = 7680 respectively.

This observation suggest that GA could lead to a significant speed up over A∗ in cases

where the average computational costs for each search node is relatively high, e.g.

when the clauses which need to be considered during the search are relatively long. In

this experiment we evaluate GA and A∗ on a set of problems involving long clauses

with different target sizes. In particular we examine the following null hypothesis:

Null hypothesis 6 The GA search cannot provide increased accuracy over Progol’s

standard A∗ search on an ILP problem involving long target clauses.

Material and methods

In this experiment we use a set of benchmark problems with varying concept sizes from

6 to 16. These problems are selected from the Phase Transition study [BGSS03]. As
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m A∗ GA
A(%) T (s) A(%) T (s)

6 98 3.22 99.5 5.83
7 99.5 633.16 99.5 12.99
8 100 1416.55 100 13.92
10 97.5 25852.80 95.5 74.68
11 80 37593.20 99 30.37
14 50 128314.00 79.5 529.67
16 59 55687.44 74 297.93

Table 8.2: Predictive accuracies and learning times for GA vs A∗ on a set of learning
problems with varying concept sizes from 6 to 16.

discussed in Section 8.1.2, in order to avoid the potential side effect of phase transition,

we can evaluate GA-Progol on problems which are known to be outside the phase

transition region. In this experiment we selected problems m6.l12 to m16.l12 from the

first row of the (m,L) plane so that they only approach the phase transition region.

Each problem includes 100 training and 100 test examples. We use a hold-out test

strategy and compare the performance of A∗ and GA. The GA parameters used in

this experiment are the same as the ones used in the previous experiment except that

maxgen is not varied and it is set to 20 for all experiments. The A∗ parameter nodes

is also fixed and set to 10000. The maximum number of literals for each clause (c) is

also set to the concept size for the problem to be learned (i.e. 6 to 16).

Results and discussion

Table 8.2 shows predictive accuracies and average learning and testing times for A∗ and

GA. According to this table, for m = 6 the performances of A∗ and GA are similar.

However, for m = 7 to m = 16, GA has found a solution with a similar or better

accuracy than A∗ in significantly less time. Null hypothesis 6 is therefore rejected.

These results also suggest that A∗ could be more efficient than GA for small values

of m (i.e. less than 6). However, this cannot be tested on the present dataset as the

smallest values of m are either 5 or 6 depending on the value of l, and in the problem

used in this experiment 6 is the smallest value.
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8.1.5 Clauses which cannot be learned by Progol

In this section we demonstrate that GA-Progol can find the correct solution for some

special cases where the solution is beyond the exploration power of Progol’s refinement

operator due to its incompleteness. In particular, we re-visit cases where a concept

cannot be learned by Progol because of the choice of ordering in the bottom clause

and the variable dependencies in the literals (see Section 3.2). As shown in Section

5.4, refinement operator ρ2 which is based on injective subsumption relative to ⊥,

can address Progol’s incompleteness which is due to the ordering of the literals (see

Example 34). In this section we demonstrate that a refinement setting based on ρ2

which is implemented in GA-Progol can be used to learn concepts which could not be

learned by Progol. In particular we examine the following null hypothesis:

Null hypothesis 7 GA-Progol cannot find hypotheses which are missed by Progol be-

cause of its incompleteness due to the ordering of literals.

Material and methods

In this experiment we use a simple program similar to the one used in [BS99] to illus-

trate Progol’s incompleteness. This program is shown in Figure 8.5. In this experiment

Progol is used with default setting. For GA-Progol, ga lmode is set to 2, indicating

the language mode related to refinement operator ρ2, i.e.
−→
L i

⊥ as discussed in Section

7.1.2.

Results and discussion

For both Progol and GA-Progol, the following bottom clause is generated from the

first example p(1, a):

⊥ : p(A,B)← f(A,C), g(A,B),h(A,B)
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% Mode declarations
:-modeh(1,p(+any,+t))?
:-modeb(1,f(+any,-t))?
:-modeb(1,g(+any,+t))?
:-modeb(1,h(+any,-t))?
% Positive examples
p(1,a). p(2,a). p(3,a).
f(1,b). f(2,b). f(3,b). f(4,b).
g(1,a). g(2,c). g(3,c).
h(1,a). h(2,c). h(3,c). h(4,a).
% Negative examples
:-p(4,a).
% Types
t(a). t(b). t(c).

Figure 8.5: A simple problem to illustrate Progol’s incompleteness adapted from
[BS99].

The following clauses are considered by Progol from the first example:

p(A,B).

p(A,B) ← f(A,C).

p(A,B) ← h(A,C).

p(A,B) ← f(A,C),h(A,D).

None of the above clauses have positive compression and therefore Progol does not

generate any hypotheses from the first example. Progol misses the correct solution

p(A,B) ← g(A,C),h(A,C) because of the first form of incompleteness described in

Section 3.2. This incompleteness is due to the choice of ordering in the bottom clause,

the variable dependencies in the literals and the fact that Progol’s refinement considers

the literals in ⊥ only from left to right. An alternative is to consider clauses in
−→
L i

⊥

which are injective subset (rather than subsequence) of ⊥ as discussed in Section 5.4.

This can be activated in GA-Progol by setting ga lmode to 2. GA-Progol can then find

the correct solution from the first example. The null hypothesis 7 is therefore refuted.

Note that even though Progol cannot find any solution from the first example, it can

eventually find the correct solution from generalising the next training examples.
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8.2 QG and QG/GA

8.2.1 Learning short target clauses

In this section we examine QG and QG/GA algorithms as described in Section 7.2. In

particular we examine the following null hypothesis:

Null hypothesis 8 A combination of QG and GA cannot provide increased accuracy

over each individual approach on a typical ILP problem involving short target clauses.

Material and methods

In this experiment we use the mut42 dataset from Section 8.1.3.

We use a leave-one-out test strategy and compare the predictive accuracy and total

time (training and testing) for the following algorithms:

A∗ - Progol’s standard refinement-graph search.

QG - An implementation of the QG-sample algorithm as described in Section 7.2.

GA - A Genetic Algorithm (GA) described as “SGA-like algorithm” in Section 7.1.1.

QG/GA- A GA-based search in which QG has been used for seeding the GA popula-

tion as described in Section 7.2.

In this experiment N , the maximum number of clauses evaluated for learning a single

clause, is varied for each algorithm. For A∗, N corresponds to Progol’s parameter

nodes. In QG, N is the sample size. In GA and QG/GA, N is determined by popsize

and maxgen, i.e. N = popsize× (maxgen + 1). Other GA and A∗ parameters are the

same as in Section 8.1.3.

Results and discussion

Table 8.3 summarises the results of the leave-one-out experiments. This table shows

predictive accuracies and average learning and testing times for each example. Accord-

ing to the table, QG finds relatively good solutions right at the beginning when the
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N A∗ QG GA QG/GA
A(%) T (s) A(%) T (s) A(%) T (s) A(%) T (s)

2 69 ± 7 0.12 76 ± 7 2.36
5 69 ± 7 0.13 81 ± 6 4.90
10 69 ± 7 0.13 86 ± 5 9.30
20 76 ± 7 0.11 86 ± 5 20.79
30 81 ± 6 0.11 86 ± 5 27.60 83 ± 6 2.82 83 ± 6 27.68
60 81 ± 6 0.18 86 ± 5 54.70 83 ± 6 2.83 83 ± 6 27.68
120 81 ± 6 0.41 83 ± 6 116.51 81 ± 6 5.50 81 ± 6 31.12
240 81 ± 6 1.09 86 ± 5 228.78 81 ± 6 8.94 81 ± 6 35.89
480 81 ± 6 1.84 86 ± 5 469.08 83 ± 6 13.40 85 ± 5 39.61
960 81 ± 6 4.27 83 ± 6 930.82 83 ± 6 25.85 83 ± 6 47.54
1920 81 ± 6 9.87 83 ± 6 1861.35 83 ± 6 43.46 86 ± 5 64.07
3840 81 ± 6 25.10 83 ± 6 3773.29 83 ± 6 58.49 88 ± 5 85.95
7680 83 ± 6 50.76 83 ± 6 7686.96 86 ± 5 99.98 88 ± 5 106.79
15360 86 ± 5 141.06 83 ± 6 13916.10 86 ± 5 226.78 88 ± 5 165.00

Table 8.3: Predictive accuracies and average learning times from leave-one-out experi-
ments on mut42 dataset. N is the maximum number of clauses evaluated for learning
a single clause.

sample size is small. However, the predictive accuracies have not been improved with

increased sample size. The figures even suggest that the accuracies have been decreased

possibly due to overfitting the training data. Unlike for QG, predictive accuracies for

GA and QG/GA increase with N .

In general, it appears that QG/GA reaches the highest level of accuracy with fewer

evaluated clauses (88± 5 in 85.95 seconds). However, as in Section 8.1.3, the efficiency

and accuracy advantages of QG/GA are not significant in this problem due to rela-

tively low computational costs and relatively high accuracy errors in the leave-one-out

experiments. Null hypothesis 8 is therefore not rejected by this experiment. In the

next experiment we examine QG/GA on a set of problems with long target clauses.

8.2.2 Learning long target clauses

In this experiment we evaluate QG and QG/GA on a set of problems involving long

clauses with different target sizes as used in Section 8.1.4. In particular we examine

the following null hypothesis:

Null hypothesis 9 A combination of QG and GA cannot provide increased accuracy

over each individual approach on an ILP problem involving long target clauses.
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m A∗ QG GA QG/GA
Cs(%) A(%) T (s) A(%) T (s) A(%) T (s) A(%) T (s)

6 31.71 98 3.22 99.5 3.89 99.5 5.83 99.5 10.32
7 3.36 99.5 633.16 99.5 45.11 99.5 12.99 99.5 86.51
8 1.05 100 1416.55 100 175.03 100 13.92 100 169.55
10 0.0015 97.5 25852.80 99 242.22 95.5 74.68 99 1064.22
11 0.36 80 37593.20 91 774.02 99 30.37 99.5 110.15
14 0 50 128314.00 69 4583.25 79.5 529.67 88.5 1184.76
16 4 × 10−6 59 55687.44 77.5 4793.01 74 297.93 89.5 4945.20

Table 8.4: Predictive accuracies and learning times for different search algorithms on
a set of learning problems with varying concept sizes from 6 to 16.

Material and methods

In this experiment we use the set of problems used in Section 8.1.4. Each problem

includes 100 training and 100 test examples. We use a hold-out test strategy and

compare the performance of the same algorithms used in Section 8.2.1 (i.e. A∗, QG,

GA and QG/GA). The GA parameters used in this experiment are also the same as

the ones used in Section 8.2.1 except that maxgen is not varied and it is set to 20 for

all experiments. The A∗ parameter nodes is fixed and set to 10000. The maximum

number of literals for each clause (c) is also set to the concept size for the problem to

be learned (i.e. 6 to 16).

Results and discussion

Table 8.4 shows predictive accuracies and average learning and testing times for dif-

ferent algorithms. According to this table, in all cases QG has found a solution with a

similar or better accuracy than the A∗ search in significantly less time. These results

also suggest that we can get a better predictive accuracy by combining QG and GA, i.e.

unlike A∗ and QG, QG/GA passes the 80% accuracy criteria of [BGSS03] for m = 14

and m = 16. This rejects Null hypothesis 9. According to the table, the efficiency and

accuracy advantages of GA and QG/GA are more evident in problems with long target

clauses and when the density of consistent clauses (Cs%) is low. Density of consistent

clauses is taken as being the proportion of consistent clauses in the A∗ search.
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8.3 ARMGs and stochastic search in ProGolem

In this section we empirically evaluate Asymmetric Relative Minimal Generalisation

(ARMG) relative to ⊥ (armg⊥) and compare stochastic searches in ProGolem as de-

scribed in Section 7.3.1. In particular we examine the following null hypotheses:

Null hypothesis 10 On our benchmark problems, ARMG cannot provide increased

accuracy over QG.

Null hypothesis 11 On our benchmark problems, a GA-like search which uses a

stochastic selection of best ARMGs cannot provide increased accuracy over a beam

search.

As described in Section 7.3.1, armg⊥ in ProGolem can be viewed as a stochastic

refinement operator relative to ⊥. ProGolem also implements a stochastic search based

on QG (see Section 7.2). Both armg⊥ and QG are upward stochastic refinement

operators relative to ⊥ which work by pruning (i.e. reducing) bottom clauses. We

evaluate QG and ARMG in ProGolem on several ILP datasets and also compare the

results with a non-stochastic algorithm with unary refinement operator (i.e. Aleph).

We also compare the standard beam search in ProGolem with a GA-like search in

which clauses for ARMGs are stochastically selected from previous generation using a

tournament selection.

Materials and methods

The datasets used in this experiment are the same as those used in the experiments in

[MSTN10a], i.e. Alzheimers-Amine [KSS95], Carcinogenesis [SMS97], DSSTox [RW00],

Metabolism [CHH+02], Proteins [MKS92] and Pyrimidines [KMLS92]. In [MSTN10a],

the performances of Golem, Aleph and ProGolem were compared on these datasets. In

particular it was shown that while ProGolem has the advantages of Golem for learning

large target clauses in Proteins and Pyrimidines datasets, it does not suffer from the de-

terminacy limitation and can be used for other datasets where Golem is inapplicable. It

was also shown that like Golem, ProGolem significantly outperforms Aleph on Proteins

dataset while on other datasets shows a comparable performance with Aleph. In this
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dataset Aleph QG ARMG(beam search) ARMG(GA-like search)
A(%) T (s) A(%) T (s) A(%) T (s) A(%) T (s)

Alz-Amine 76.2±3.8 162 74.7±5.0 16 76.2±2.4 21 76.1±3.1 22
Carcino 59.7±6.3 58 52.0±6.9 8 63.9±6.3 23 65.9±7.3 23
DSSTox 72.6±6.9 239 64.1±10.0 74 64.7±9.0 74 64.7±9.0 74
Metabolism 62.1±6.2 32 59.7±11.2 2 67.6±13.6 13 66.7±13.5 18
Proteins 50.5 4502 49.3 243 64.9 8,648 62.5 1,834
Pyrimidines 73.7 23 75 107 74.1 174 84.4 180

Table 8.5: Predictive accuracies and learning times for stochastic searches in ProGolem.

section we compare the performance of QG and ARMG in ProGolem and we also eval-

uate a GA-like search in ProGolem which combines the beam search for best ARMGs

with a tournament selection (see Figure 7.7). In order to use QG, progolem mode

is set to reduce and for ARMG, progolem refinement operator is set armg and

progolem mode is set to single. For GA-like search, progolem stochastic beam is

set to true. This uses a tournament selection with tournament size equal to 2 as a

default. We use the original hold-out test strategy used for Proteins [MKS92] and

Pyrimidines [KMLS92], where respectively 4/5 and 2/3 of the data were used as train-

ing data and the remaining as the test data. For the Carcinogenesis, Metabolism and

Alzheimers-Amine datasets, we use a 10-fold cross-validation and for DSSTox a 5-fold

cross validation test strategy. In addition to average predictive accuracies, we also re-

port standard deviations whenever cross-validation is used. Both Aleph and ProGolem

were used with YAP Prolog (ver. 6) with the following parameter settings: i = 2,

maxneg = 30 for Carcinogenesis and Proteins and maxneg = 10 for all other datasets,

evalfn = coverage for DSSTox and evalfn = compression for all other datasets.

Aleph was used with the following parameters: nodes = 1000 and clauselength = 5

for all datasets except for Proteins where nodes = 10000 and clauselength = 40. Pro-

Golem was used with N = 2 (beam-width) and K = 10 (sample size at each iteration).

As shown in Theorem 21, the sample size can be estimated as follows: assuming that

the upper bound for the number of clauses in the target theory is 5 (for all problems),

choosing a sample size of 2 × 5 means that the probability of generating a consistent

ARMG is at least 1− e−2 = 0.86
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Results and discussion

Table 8.5 summarises the results of the experiments. According to the results, the

predictive accuracies of ARMG are significantly higher than QG in several cases (e.g.

Proteins dataset). Null hypothesis 10 is therefore rejected. The results also suggest

that the GA-like search can outperform the beam search. The accuracy of ARMG

with the GA-like search on Pyrimidines dataset (i.e. 84.4%) is significantly higher

than Aleph, QG and ARMG with beam search and to our knowledge is the highest

accuracy published to date for this dataset. This suggests a potential advantage of

the GA-like search in ProGolem for some problems. Null hypothesis 11 is therefore

rejected.

Both QG and ARMG are bottom-up algorithm and it is expected that they should

have relatively better performance than Aleph in problems which require learning long

target concepts. A better performance of ARMG (compared to QG) in this experiment

could be explained by the fact that by construction ARMGs cover more and more

positive examples while clauses generated by QG only guarantee to cover the positive

example used to build the bottom clause. The apparent advantage of GA-like search

over the beam search in Pyrimidines problem could be related to the advantage of the

GA-like search for escaping from local optima due to a stochastic selection.

8.4 Summary

In this chapter we evaluated the implementations described earlier in this thesis. In the

first experiment, we studied the convergence of the genetic search in GA-Progol and

showed the convergence of the search to an optimal solution on a simple ILP problem,

i.e. Michalski’s east-bound trains problem. We also showed that using lgg⊥ crossover

operator can improve the convergence of the genetic search, i.e. an optimal solution can

be found with fewer generations of the GA. In the second experiment we compared the

performance of the GA search versus the A∗-like search in learning randomly generated

concepts, i.e. random Michalski-style trains with different complexities. The results

of this experiment suggest that in the random trains problem, the genetic search can

lead to significantly increased efficiency for learning complex target concepts and this
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can be achieved without substantial decrease of accuracy. In the third experiment we

compared the performance of GA and A∗ on a typical ILP benchmark problem involv-

ing short target clauses, i.e. mutagenesis dataset. The results from this experiment

suggested that the predictive accuracies and timings for A∗ and GA on mutagenesis

problem (a benchmark problem involving short clauses) are comparable. These results

also suggested that GA may reach higher accuracy with fewer evaluated clauses. This

was therefore consistent with the results from random trains and was the basis of the

next experimental setting. In the fourth experiment we compared GA and A∗ on a

set of problems involving long target clauses with different sizes, i.e. a subset of Phase

Transition (PT) dataset. The results clearly suggested the advantage of GA for learn-

ing long clauses, i.e. GA found a solution with a similar or better accuracy than A∗ in

significantly less time. In the fifth experiment we demonstrated that GA-Progol can

find the correct solution for some special cases where the solution cannot be found by

Progol’s refinement operator due to its incompleteness. In the sixth and the seventh

experiments we examined QG and QG/GA algorithms and tested if a combination

of QG and GA can provide increased accuracy over each individual approach on i)

mutagenesis and ii) PT datasets. The results indicated the efficiency and accuracy

advantages of QG/GA in particular in problems with long target clauses and when

the density of consistent clauses (Cs%) is low. In the last experiment we evaluated

ARMG and compared stochastic searches in ProGolem. We compared the performance

of QG and ARMG in ProGolem on a set of problems. We also compared the stan-

dard beam search in ProGolem with a GA-like search in which clauses for ARMGs

are stochastically selected from previous generation using a tournament selection. The

results suggested a potential advantage of the GA-like search in some problems, i.e.

the accuracy of ARMG with the GA-like search on Pyrimidines dataset is significantly

higher than Aleph, QG and ARMG with beam search.

The overall conclusion from the experiments can be summarised as follows.

1. In ILP problems involving short target clauses (e.g. up to 6 literals), systematic

search algorithms such as A∗ can outperform stochastic searches such as GA and

QG.

2. In ILP problems involving long target clauses (e.g. more than 6 literals), stochastic
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searches such as GA and QG can outperform systematic search algorithms such as

A∗.

3. A combination of QG and GA can provide increased accuracy over each individual

approach

4. Using lgg⊥ crossover operator can improve the convergence of the genetic search.

5. Using injective subsumption relative to ⊥, GA-Progol can find hypotheses which are

missed by Progol because of its incompleteness due to the ordering of literals.

6. In problems involving local optima a GA-like search in ProGolem can provide in-

creased accuracy over a beam search.
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Chapter 9

Conclusions

9.1 Summary of contributions

In this section we review the main contributions of this thesis. The main research

questions and the overall contributions of the thesis were set out in Chapter 1. In

this section we examine each contribution in more detail with respect to the research

questions motivated in Chapter 1. We also describe whether and how each research

question has been addressed.

1. Characterising clause refinement within a bounded hypothesis space and

the concepts of sequential subsumption and subsumption relative to a

bottom clause

Several state of the art ILP systems (e.g. Progol and Aleph) are based on Inverse

Entailment (IE) and use a special form of refinement to search through a hypoth-

esis space bounded by a most specific (bottom) clause. In this thesis we gave a

new analysis of refinement in this setting. In particular, clause refinement in Pro-

gol was revisited and it was demonstrated that Progol’s refinement is incomplete

with respect to the general subsumption order (i.e. θ-subsumption). Based on this

analysis we introduced a subsumption order relative to a bottom clause and demon-

strated how Progol’s refinement can be characterised with respect to this order. This

new subsumption order (referred to as bounded subsumption) is based on sequen-

tial subsumption which was also introduced in this thesis. We demonstrated that

bounded subsumption order, unlike previously suggested orders, characterises all as-
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pects of Progol’s refinement. We have also shown that Progol’s refinement operator

is (weakly) complete with respect to the bounded subsumption order.

2. The lattice and cover structure of bounded subsumption

We have shown that the most general specialisation and least general generalisation

for the subsumption order relative to the bottom clause (i.e. mgs⊥ and lgg⊥) exist

and therefore bounded subsumption forms a lattice. We have also defined downward

covers for the bounded subsumption and have shown that, unlike for θ-subsumption,

a finite set of downward covers exist.

3. Morphisms of bounded subsumption

We have defined a mapping between the lattice of bounded subsumption and an

atomic lattice and have shown that these two lattices are isomorphic. We have

also shown that the atomic lattice is isomorphic to a lattice of partitions. Hence,

the lattice of bounded subsumption can be encoded as a lattice of partitions and

therefore clause refinement can be mapped to partition refinement.

4. Encoding and ideal refinement operator for bounded subsumption and

efficient lgg⊥ and armg⊥ operators

We have shown that, unlike for θ-subsumption, ideal refinement operators exist for

bounded subsumption. We have defined a refinement operator ρ1 for the lattice of

bounded subsumption, i.e. 〈
−→
L⊥,"⊥〉. Each clause

−→
C in this lattice is encoded by a

tuple 〈K, θ〉. This encoding is based on the morphism between the lattice of bounded

subsumption and the lattice of partitions mentioned above. The refinement opera-

tor ρ1 works directly on the encoding tuples and uses a mapping function (c) which

maps a tuple 〈K, θ〉 into an ordered clause
−→
C in

−→
L⊥. This refinement operator is

the basis of the genetic operators which work on the encoding of the clauses in a

GA-ILP search (see Chapter 7). We have proved that ρ1 is ideal (finite, complete

and proper). Note that, unlike in a systematic search which starts from a partic-

ular clause, in a stochastic search which could start from any point of the search

space, the condition of weak completeness is not enough. Hence, in a stochastic

search a complete refinement operator is usually preferred over a weakly complete

operator even if this can lead to redundancy (a refinement operator cannot be both

complete and non-redundant). We also studied the mapping and the morphism be-
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tween 〈
−→
L⊥,"⊥〉 and a lattice of the encoding tuples 〈K, θ〉. We have shown that the

mapping function c is a lattice isomorphism and lattices 〈
−→
L⊥,"⊥〉 and 〈K × Θ,⊆〉

are two isomorphic lattices. As shown in Chapter 5, this isomorphism is important

from a practical point of view and by contrast with the general subsumption or-

der, efficient least generalisation operators (lgg⊥ and armg⊥) can be implemented

for the bounded subsumption (see Chapter 7). We have shown that a variant of

Plotkin’s Relative RLGG which does not need the determinacy restrictions can be

designed based on subsumption with respect to a bottom clause. This is the basis

of Asymmetric Relative Minimal Generalisations (or ARMGs) relative to a bottom

clause where the clause length is bounded by the length of the initial bottom clause.

ARMGs, therefore do not need the determinacy restrictions used in Golem. AR-

MGs relative to a bottom clause (i.e. armg⊥) have been implemented in ProGolem

which combines bottom-clause construction in Progol with a Golem control strategy

which uses armg⊥ in place of determinate RLGG. Algorithms based on armg⊥ are

described and evaluated in Chapters 7 and 8.

5. Alternative forms of bounded subsumption to address Progol’s incom-

pleteness

We have also studied alternative forms of subsumption relative to ⊥ to address Pro-

gol’s incompleteness. We have shown that using different conditions on the selection

function which maps the literals from a clause to the literals of ⊥, we can get different

forms of subsumption orders relative to ⊥. We have defined the refinement operator

ρ2 based on an alternative form of bounded subsumption and demonstrated how ρ2

can address the first type of Progol’s incompleteness (i.e. incompleteness due to the

ordering of the literals). This has also been empirically evaluated in Chapter 8.

6. Stochastic refinement

We have studied how the refinement theory and relevant concepts such as refine-

ment operators can be adapted for a stochastic ILP search. To address this question

we introduced the concept of stochastic refinement operators and adapted a frame-

work, called stochastic refinement search. Stochastic refinement is introduced as a

probability distribution over a set of clauses and can also be viewed as a Bayesian

prior over the hypotheses in a stochastic ILP search. We also defined the concept
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of stochastic refinement search. In general a stochastic refinement search can be

viewed as a Markov chain in which the next state of the search only depends on

the current state. We discussed the properties of a stochastic refinement search as

two well known Markovian approaches: 1) Gibbs sampling algorithm and 2) random

heuristic search. As a Gibbs sampling algorithm, a stochastic refinement search iter-

atively generates random samples from the hypothesis space according to a posterior

distribution. We have shown how a proper sample size can be selected to guarantee

that with a high probability a consistent and compressive hypothesis is generated by

a stochastic refinement search (with unary or binary refinement operators). We have

defined a special case of random heuristic search [Vos99] called monotonic random

heuristic search and showed that a stochastic refinement search can be viewed as a

monotonic random heuristic search. The advantage of studying stochastic refinement

search as a random heuristic search is that we can use the theoretical results from

random heuristic search in order to analyse the behaviour and convergence of the

search. We also discussed genetic search for learning first-order clauses and describe

a framework for genetic and stochastic refinement search for bounded subsumption.

We study a special case of stochastic refinement search where stochastic refinement

operators and a Genetic Algorithm (GA) search are defined with respect to bounded

subsumption.

7. Algorithms and implementations of stochastic refinement and a genetic

algorithm approach for the bounded subsumption

We described algorithms and implementations of stochastic refinement and a genetic

algorithm approach for searching the hypothesis space bounded by a bottom clause

(bounded subsumption). In particular we described a genetic algorithm approach

which uses the encoding and operators for the bounded subsumption and can also

be characterised as a stochastic refinement search. We introduced a novel binary

representation for clauses in the bounded subsumption lattice. This binary repre-

sentation is based on the encoding tuples 〈K, θ〉 and the morphism with the bounded

subsumption lattice described above. We discussed the properties of the binary rep-

resentation and showed that lgg(least general generalisation) and mgs(most general

specialisation) for the bounded subsumption lattice, i.e. lgg⊥ and mgs⊥, can be

implemented by simple bitwise operations on the binary encoding of clauses. This
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representation and encoding together with genetic and stochastic refinement oper-

ators are implemented in GA-Progol, an extension of Progol in which a stochastic

refinement setting can be selected instead of Progol’s standard refinement setting

which uses a A-like search. In addition to the genetic algorithm, we also described

other stochastic refinement searches including Quick Generalisation (QG) algorithm

and QG/GA search which are implemented in GA-Progol and algorithms based on

Asymmetric Relative Minimal Generalisation (ARMG) which are implemented in

ProGolem. QG algorithm is a stochastic algorithm which constructs maximally

general consistent clauses by randomly pruning Progol bottom clauses. The QG

sampling algorithm can be viewed as a stochastic refinement search with unary re-

finement operator which randomly samples from “fringe” clauses (i.e. maximally

general consistent clauses in the hypothesis space). We describe a sampling algo-

rithm based on QG which returns the clause with highest positive compression from a

sample of s calls to QG. We also described a combination of QG and GA (i.e. QG/GA

algorithm) in which the initial population of the GA consists of clauses generated by

the QG algorithm. ProGolem implements an efficient (and non-determinate) vari-

ant of Golem’s RLGG for the subsumption relative to ⊥. This is called Asymmetric

Relative Minimal Generalisation (ARMG) or armg⊥ which similar to lgg⊥ is defined

based on subsumption relative to ⊥ where the clause length is bounded by the length

of the initial bottom clause. ProGolem, therefore does not need the determinacy re-

strictions used in Golem. ProGolem combines bottom-clause construction in Progol

with a Golem control strategy which uses armg⊥ in place of determinate RLGG.

ProGolem uses random sampling and a beam search to construct ARMGs with new

examples at each iteration. We also describe a stochastic GA-like search imple-

mented in ProGolem. Clause refinement in ProGolem can be viewed as stochastic

refinement search relative to ⊥.

8. Empirical evaluation

Algorithms described above which are implemented based on the framework of

stochastic refinement relative to bounded subsumption are evaluated on artificial

and real-world problems. These results can be summarised as follows. We showed

that using lgg⊥ crossover operator can improve the convergence of the genetic search.

It was shown that in the random trains problem, the genetic search can lead to sig-
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nificantly increased efficiency for learning complex target concepts and this can be

achieved without substantial decrease of accuracy. We compared GA and A∗ on a

set of problems involving long target clauses with different sizes, i.e. a subset of

Phase Transition (PT) dataset. The results clearly suggested the advantage of GA

for learning long clauses, i.e. GA found a solution with a similar or better accu-

racy than A∗ in significantly less time. We demonstrated that GA-Progol can find

the correct solution for some special cases where the solution cannot be found by

Progol’s refinement operator due to its incompleteness. The experimental results

comparing A∗, QG and QG/GA suggested the efficiency and accuracy advantages of

QG/GA in particular in problems with long target clauses and when the density of

consistent clauses (Cs%) is low. The results also suggested a potential advantage of

the GA-like search in some problems, i.e. the accuracy of ARMG with the GA-like

search on Pyrimidines dataset is significantly higher than Aleph, QG and ARMG

with beam search.

9.2 Conclusions

The main research questions raised in Chapter 1 can be summarised as follows:

1. What are the properties of the hypothesis space bounded by a bottom clause?

2. How can the generality order of clauses and the relevant concepts such as refinement

be adapted to be used in a stochastic search?

3. Can a stochastic refinement search, e.g. in the form of a Genetic Algorithm, achieve

performance improvements over existing search methods for the bounded hypothesis

space, e.g. A* search in Progol?

Note that these questions are related, i.e. in order to address the third question we

need to address the first and the second questions.

In order to address the first question, the concept of bounded subsumption was intro-

duced in this thesis and it was demonstrated that Progol’s refinement can be charac-

terised with respect to this order. We also studied the lattice and cover structure of
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bounded subsumption and it was shown that this lattice is isomorphic to an atomic

lattice and a lattice of partitions. We have also shown that, unlike for θ-subsumption,

ideal refinement operators and efficient least and minimal generalisation operators (i.e.

lgg⊥ and armg⊥) can be defined for bounded subsumption.

In order to address the second question, we introduced the concept of stochastic refine-

ment operators and adapted a framework, called stochastic refinement search. We dis-

cussed the properties of a stochastic refinement search as two well known Markovian ap-

proaches: 1) Gibbs sampling algorithm and 2) random heuristic search. The refinement

graph theory has been viewed as the main theoretical foundation of ILP [NCdW97].

Since the publication of this theory, there have been attempts to build ILP systems

based on stochastic and randomised methods (e.g. [PKK93, Sri00, TNM02, RK03,

ZSP06, PŽZ+07, MTN07, DPZ08]). However, to date there is very little theory to

support the developments of these systems. We believe the research on stochastic

refinement presented in this thesis is a step in this direction.

In order to address the third question, we described and evaluated algorithms and

implementations which are based on (i) the encoding and refinement operators for

bounded subsumption and (ii) stochastic refinement relative to a bottom clause. We

described and evaluated three different set of implementations: i) a stochastic refine-

ment search based on Genetic Algorithms (GA), ii) Quick Generalisation (QG) and

a combination of QG and GA (QG/GA) and iii) stochastic search based on Asym-

metric Relative Minimal Generalisation (ARMG). The experimental results suggested

that these algorithms can outperform existing search methods for the bounded hy-

pothesis space, e.g. A* search in Progol. The results indicated the efficiency and

accuracy advantages of the stochastic algorithms, in particular in problems with long

target clauses. The results also suggested that a combination of these algorithms, i.e.

QG/GA can provide increased accuracy over each individual approach.

Hence, we believe that the research questions raised in Chapter 1 have been addressed in

this thesis. Parts of this thesis have already been published as conference and journal

papers, e.g. Proceedings of the 10th, 12th, 18th, 19th and 20th International Con-

ference on Inductive Logic Programming [TNM00], [TNM02], [TNM08], [MSTN10a]

and [TNM11], Proceedings of the Genetic and Evolutionary Computation Conference
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(GECCO) [TNM01] and Machine Learning Journal [MTN07] and [TNM09].

The theoretical analysis and algorithms described in this thesis can be adapted for any

ILP system which uses a bottom clause or a template for generating the hypotheses.

These include ILP systems which use some form of Inverse Entailment (e.g. [IY98],

[Ino01], [RBR03] and [YII13]). The following are examples of related works by other

authors who have used and cited parts of the research presented in this thesis (via our

previously published papers listed above): learning symbolic and numeric constraints

in a pattern (i.e. bottom clause) using a GA [BV01], a simulated annealing frame-

work for ILP [SPR04b], learning theories using Estimation of Distribution Algorithms

(EDA) and reduced bottom clauses [PZ12], heuristic inverse subsumption in full-clausal

theories using mode-directed bottom generalisation [YII13] and fast relational learning

using bottom clause professionalisation with artificial neural networks [FZG14].

Moreover, the results of this thesis have also contributed to some related research out-

side the scope of the thesis. These include a probabilistic ILP setting for bounded sub-

sumption called Hypothesis Frequency Estimation (HFE) [TNBRM12] and a Bayesian

meta-interpretative learning using higher-order stochastic refinement [MLCTN13]. These

are discussed in the following section.

The GA approach for bounded subsumption discussed in this thesis can be compared

with the GA-based systems such as GA-SMART [GS92] which require a language

template extracted (manually) from background knowledge. However, as discussed in

Section 6.3 there are problems for defining templates and also these systems use a very

limited form of background knowledge. In this thesis we described a genetic algorithm

approach in which a template (i.e. a bottom clause) is automatically constructed using

ILP methods (e.g. Inverse Entailment). Hence, in the hybrid GA-ILP framework

described in this thesis, background knowledge is used in the same way as in the ILP

systems such as Progol and Aleph. This GA-ILP framework not only uses a standard

ILP representation (unlike the GA-based systems discussed in Section 6.3) but we also

showed that the proposed encoding is isomorphic to the bounded subsumption lattice.

This property can be used to design task-specific genetic operators.
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There are however several limitations about the proposed framework, algorithms and

implementations discussed in this thesis. We discuss these limitations together with

some work in progress and further research in the next section.

9.3 Further research

In this section we discuss some work in progress and further research related to this the-

sis. These are mainly related to addressing some limitations of the proposed framework,

algorithms and implementations discussed in this thesis. Some of these limitations are

inherited from the ILP setting which we have considered in this thesis (i.e. Progol’s

ILP setting) and some are related to our specific implementations.

The first limitation which we discuss in this section is related to the single clause

assumption which has been inherited from Progol’s ILP setting. The next limitation

is related to the sensitivity of Progol-like algorithms to the order of examples. This

is related to the fact that bottom-clauses which define the hypothesis space (bounded

subsumption) are generated from the next seed example and in some problems this

could affect the solution found by these systems. Again, this is inherited from Progol’s

ILP setting. The other limitation is related to the specific implementation of the

partition-based encoding proposed in this thesis. In the following we describe these

limitations in more details and also discuss work in progress and further research to

address each limitation.

Learning clausal theories and Meta-Interpretive Learning (MIL). The the-

oretical analyses and implementations described in this thesis use a single clause as-

sumption which has been inherited from Progol’s ILP setting. For example each node

in the bounded subsumption lattice is a single clause and each individual in the GA

population stands for a single clause. The final hypothesis consists of clauses each cor-

responding to an iteration of the cover-set algorithm. There are alternative approaches

(e.g. [PŽZ+07], [MLTN12] and [YII13]) to Progol’s greedy cover-set algorithm which

consider clausal theories rather single clauses at a time. However, the refinement and

search space for clausal theories are more complex than that for single clauses. The

approach which we have taken to extend the results of this thesis to clausal theories
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is based on a new ILP setting called Meta-Interpretive Learning (MIL) [MLPTN14].

In the MIL setting clausal theories are represented as a single higher-order clause.

Hence, learning first-order clausal theories can be achieved by learning single higher-

order clauses in the MIL setting. In other words, the MIL setting can be viewed as a

bridge to extend the theories on single clause refinement (and stochastic refinement)

to the clausal theories. It has been shown (Propositions 2 and 4 in [MLPTN14]) that

single higher-order clauses in MIL form a subsumption lattice which is bounded by a

single higher-order clause. The initial MIL setting which was only applied to gram-

matical inference has been extended to dyadic definite clauses [ML13]. The stochastic

refinement described in this thesis has been already adapted [MLCTN13] for the MIL

setting. As future work we would like extend other results from this thesis to the MIL

setting, in particular the analysis of bounded (higher-order) subsumption lattice and

a genetic algorithms approach to learning clausal theories. From a GA point of view,

this setting would be similar to the Pittsburgh approach [Smi83, JSG93] in which each

individual in the population encodes a set of rules.

A probabilistic learning and inference approach for bounded subsumption.

In this thesis we studied the bounded subsumption and stochastic search algorithms in

a Progol-like ILP setting. In this setting a bottom clause is constructed from the next

positive example and the subsumption lattice bounded by this bottom clause defines

the search space. Because of Progol’s set-covering algorithm, the output of the learning

is sometime sensitive to the initial order of the examples. The approach described here

was initially developed to address this problem by averaging over different permutations

of the examples, however, it turned out to be useful as a simple probabilistic ILP

approach which could also be used in other similar ILP settings.

This method can be used whenever training examples act as seeds to define the hy-

pothesis space, e.g. in the ILP systems where a most specific clause is built from the

next positive example. Hence, different permutations of the training examples define

different parts of the hypothesis space. We used this property to sample from the hy-

pothesis space by random permutations of the training data. Probability of hypotheses

can be estimated based on the frequency of occurrence when random permutations of

the training data (and hence different seeds for defining the hypothesis space) are con-
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sidered. We have developed a probabilistic ILP technique called Hypothesis Frequency

Estimation (HFE) [TNBRM12] based on the method described above.

HFE has been used in [BCLM+11] and [TNMR+13] to learn probabilistic food-webs

from ecological data. In this problem abductive ILP has been used to learn ground

hypotheses in the form of eats relations between different species from training data

on the abundance of different species following an agricultural management. The set

of ground hypotheses can be visualised as a network of trophic links (food webs). In

this network a ground fact eats(a, b) is represented by a trophic link from species b

to species a. Using HFE, the probabilities or the thickness of trophic links are esti-

mated based on the frequency of occurrence from random permutations of the training

data. This probabilistic network can also be represented using standard probabilis-

tic representations in ILP such as SLPs [Mug96] or ProbLog [DKT07]. For this we

can use relative frequencies in the same way probabilities are used in probabilistic

ILP. We can then use the probabilistic inferences based on these representations to

estimate other probabilities. We have used this method in the leave-one-out exper-

iments in [TNBRM12] to evaluate probabilistic tropic networks and compare them

with non-probabilistic networks. The results showed that the predictive accuracies for

the non-probabilistic networks are significantly lower than the probabilistic networks.

This suggests that using the permutation based HFE method for estimating probabil-

ities of hypotheses leads to significant increased predictive accuracies compared to the

non-probabilistic hypotheses.

HFE can be viewed as a method for sampling hypotheses and prediction based on

model averaging for the hypothesis space bounded by a bottom clause. This method

is based on direct sampling from the hypothesis space and can be used to build an

average model from possible worlds. This can also be viewed as an approximations to

Bayes optimal classifier and can be used for prediction.

We have only evaluated HFE approach for ground hypotheses in an abductive setting.

However, the same approach can be used to estimate the probabilities for non-ground

hypotheses based on sampling from the bounded hypothesis space. As future work we

would like to apply HFE in applications involving non-ground hypotheses and also to

integrate HFE into the stochastic refinement and search algorithms described in this
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thesis for bounded subsumption.

GA representation: binary versus partition-based encoding. The binary rep-

resentation used in GA-Progol is one possible implementation of the partition-based

encoding described in Chapter 5. As mentioned in Chapter 7, this binary representation

is redundant, i.e. there is a many-to-one genotype-to-phenotype mapping. A redun-

dant representation is not regarded as a serious problem in GAs and some authors (e.g.

[Alt95] and [RG03]) suggest that under some conditions a redundant representation

can even improve the genetic search. Nevertheless, the redundancy in our proposed

binary representation of variable partitions can be avoided using a different encoding.

GA-Progol also includes an implementation based on Grouping Genetic Algorithms

(GGA) [Fal98]. However, this has not been thoroughly tested and as future work we

intend to complete and evaluate this implementation.

Fast subsumption testing for bounded subsumption. In this thesis we have

shown the morphism between the bounded subsumption lattice and an atomic lattice.

As mentioned in Chapter 4 an atomic subsumption testing can be reduced to a unifi-

cation problem which can be decided in linear time [GL85]. This means that efficient

subsumption testing algorithms might be designed for clauses in bounded subsump-

tion. This subject was not investigated in this thesis and could be a topic for future

research.
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N. Lavrač and S. Džeroski, editors, Proceedings of the Seventh Interna-
tional Workshop on Inductive Logic Programming, pages 77–84. Springer-
Verlag, Berlin, 1997. LNAI 1297.

[BG95] F. Bergadano and D. Gunetti. Inductive Logic Programming: From Ma-
chine Learning to Software Engineering. The MIT Press, 1995.

[BGD02] L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimiza-
tion approach to the probabilistic traveling salesman problem. In PPSN
VII: Proceedings of the 7th International Conference on Parallel Problem
Solving from Nature, pages 883–892, London, UK, 2002. Springer-Verlag.

[BGSS03] M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational learning as
search in a critical region. J. Mach. Learn. Res., 4:431–463, 2003.

[BMV91] I. Bratko, S. Muggleton, and A. Varsek. Learning qualitative models of
dynamic systems. In Proceedings of the Eighth International Machine
Learning Workshop, San Mateo, Ca, 1991. Morgan-Kaufmann.

[BP00] S. Boettcher and A. G. Percus. Solving constraint satisfaction problems
with heuristic-based evolutionary algorithms. In Proceedings of the 2000
Congress on Evolutionary Computation CEC00, pages 1578–1584, Cali-
fornia, USA, 2000. IEEE Press.

[BS99] L. Badea and M. Stanciu. Refinement operators can be (weakly) per-
fect. Proceedings of the 9th International Workshop on Inductive Logic
Programming, 1634:21–32, 1999.

[BV01] A. Braud and C. Vrain. A genetic algorithm for propositionalization. In
Proceedings of the International Conference on Inductive Logic Program-
ming, pages 27–40. Springer, 2001.
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Appendix A

Progol’s algorithms

The following are Progol’s algorithms for constructing the bottom clause (⊥i), cover

set algorithm and A∗-like algorithm for finding a clause with maximal compression as

described in [Mug95].

Algorithm A.1 Algorithm for constructing ⊥i.

1. Given natural numbers h, i, Horn clauses B, definite clause e and set of mode dec-

larations M .

2. Let k = 0, hash : Terms → N be a hash function which uniquely maps terms to

natural numbers, e be the clause normal form logic program a∧ b1 ∧ ..∧ bn, ⊥i = 〈〉

and InTerms= ∅.

3. If there is no modeh in M such that a(m) @ a then return !. Otherwise let m be

the first modeh declaration in M such that a(m) @ a with substitution θh. Let ah

be a copy of a(m) and for each v/t in θh if v corresponds to a #type in m then

replace v in ah by t otherwise replace v in ah by vk where k = hash(t) and add v to

InTerms if v corresponds to +type. Add ah to ⊥i.

4. If k = i return ⊥i else k = k + 1.

5. For each modeb m in M let {v1, .., vn} be the variables of +type in a(m) and T (m) =

T1 × ..× Tn be a set of n-tuples of terms such that each Ti corresponds to the set of

all terms of the type associated with vi in m (term t is tested to be of a particular

type by calling Prolog with type(t) as goal). For each 〈t1, .., tn〉 in T (m) let ab be a
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copy of a(m) and θ = {v1/t1, .., vn/tn}. If Prolog with depth-bound h succeeds on

goal abθ with the set of answer substitutions Θb then for each θb in Θb and for each

v/t in θb if v corresponds to a #type in m then replace v in ab by t otherwise replace

v in ab by vk where k = hash(t) and add v to InTerms if v corresponds to -type.

Add ab to ⊥i.

6. Goto step 4.

In the following we describe Progol’s A∗-like algorithm for finding clause with maximal

compression. First we define some auxiliary functions which are used in this algorithm.

Definition 98 Auxiliary functions. Let the examples E be a set of Horn clauses.

Let h, i,B, e,M,⊥i be as in Definition 43 and let C, k, θ be as in Definition 45.

d′(v) =















0 if there is no -type variable in the head of ⊥i

0 if v is -type in the head of ⊥i

∞ if v is not in ⊥i

(minu∈Uvd
′(u)) + 1 otherwise

where Uv are the -type variables in atoms in the body of C which contain +type occur-

rences of v. Below state s has the form 〈C, θ, k〉. c is a user-defined parameter for the

maximal clause body length. |S| denotes the cardinality of any set S.

ps = |{e : e ∈ E and B ∧ C ∧ e -h !}|

ns = |{e : e ∈ E and B ∧ C ∧ e -h !}|

cs = |C|− 1

Vs = {v : u/v ∈ θ and u in body of C}

hs = minv∈Vsd
′(v)

gs = ps − (cs + hs)

fs = gs − ns
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best(S) is a state s ∈ S which has cs ≤ c and for which there does not exist s′ ∈ S for

which fs′ > fs.

prune(s) =















true if ns = 0 and fs > 0
true if gs ≤ 0
true if cs ≥ c
false otherwise

terminated(S, S′) =







true if s = best(S), ns = 0, fs > 0 and
for each s′ in S′ it is the case that fs ≥ gs′

false otherwise

Algorithm A.2 A∗-like algorithm for searching the lattice defined by ⊥i.

1. Given h,B, e,⊥i as in Definition 43.

2. Let Open = {〈!, ∅, 1〉} and Closed = ∅.

3. Let s = best(Open) and Open = Open−{s}.

4. Let Closed = Closed ∪{s}.

5. If prune(s) goto 7.

6. Let Open = (Open∪ρ(s))−Closed.

7. If terminated(Closed,Open) then return best(Closed).

8. If Open = ∅ then print ‘no compression’ and return 〈e, ∅, 1〉.

9. Goto 3.

In the following we describe Progol’s cover set algorithm.

Definition 99 Unflattening. Let C = h ← X,Y be a definite clause in which

X = (s1 = t1, .., sn = tn) is a conjunction of atoms with predicate symbol ‘=’ and Y is a

conjunction of atoms with predicate symbols other than ‘=’. The clause C ′ = h′ ← Y ′ is

called the unflattening of C if and only if C ′ is derived from C by successively resolving

away each si = ti in X with the clause (U = U ←).
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Algorithm A.3 Progol’s cover set algorithm

1. h, i,B,M are given as in Definition 43 and E is the subset of B corresponding to

atoms in modeh declarations in M .

2. If E = ∅ then return B.

3. Let e be the first example in E.

4. Construct ⊥i for e using Algorithm A.1

5. Construct state s from ⊥i using Algorithm A.2

6. Let C ′ be the unflattening of C(s) (Definition 99).

7. Let B = B ∪ C ′.

8. Let E′ = {e : e ∈ E and B ∧ e -h !}.

9. Let E = E − E′.

10. Goto 2.
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Appendix B

Examples of logic-based learning
using genetic search

In this section we describe some of logic-based learning systems which use a genetic

search. In particular features which are relevant to the implementation and evaluation

of algorithms in this thesis (e.g. representation, operators and fitness function) are

discussed in this section.

GA-SMART

The lack of a proper (binary) representation, and consequently difficulties for defini-

tion and implementation of genetic operators, has been a main problem for applying

standard GAs in first-order domain. GA-SMART [GS92] was the first relational learn-

ing system which tackled this problem by restricting concept description language and

introducing a language template. A template in GA-SMART is a fixed length CNF

formula which must be defined by the user. Mapping a formula into bit-string is done

by setting the corresponding bits to represent the occurrences of predicates in the for-

mula. An example of a language template and mapping a formula to a bit-string are

shown in Figure B.1.

Genetic search in GA-SMART is guided by a fitness function which combines complete-

ness and consistency together with simplicity of the relation measured by the number

of literals in the formula. The following is the fitness function used in GA-SMART:

f(ϕ) = α ∗ [m+(ϕ)/(M+ + β ∗m−(ϕ))] + γ ∗ (1− n(ϕ)/n(Λ)) (B.1)
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Λ= [black(x) ∨ grey(x) ∨ dotted(x)] ∧ [black(y) ∨ grey(y) ∨ dotted(y)]∧
[black(z) ∨ grey(z) ∨ dotted(z)] ∧ [black(w) ∨ grey(w) ∨ dotted(w)]∧
[next right(x, y) ∨ not next right(x, y)] ∧ [next right(x, z) ∨ not next right(x, z)]∧
[adj(x,w) ∨ not next right(x,w)] ∧ [next right(y, z) ∨ not next right(y, z)]∧
[next right(y,w) ∨ not next right(y,w)] ∧ [next right(z,w) ∨ not next right(z,w)]

ϕ= black(x) ∧ [grey(y) ∨ dotted(y)] ∧ next right(x, y) ∧ next right(z,w)
(a) A language template Λ and a formula ϕ

1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
(b) Mapping formula ϕ to a bit-string

Figure B.1: An example of a language template and mapping a formula to a bit-string
in GA-SMART [GS92].

In this formula M+ is the number of positive instances of the target concept in the

training set, m+(ϕ) is the number of positive instances verifying a formula ϕ, m−(ϕ) is

the number of negative instances, and n(ϕ) the number of literals occurring in ϕ. The

first term of fitness function captures completeness and consistency and the second term

evaluates the simplicity of the formula by comparing the number of literals occurring

in ϕ to the global number of literals defined in template Λ.

Other novelty of the system is that it can use generalising and specialising operators

as well as conventional uniform and one-point crossover operators. These genetic op-

erators randomly generalise and specialise a formula by bitwise ANDing and ORing

of parent strings. For this purpose a subset of template randomly selected and the

corresponding bits of parents are ANDed or ORed together. Figure B.2 shows an ex-

ample of generalising crossover operator in GA-SMART. The probabilities for uniform,

two-point, specialising and generalising crossover operators are as follows:

pu = (1− a ∗ f) ∗ b (B.2)

p2pt = (1− a ∗ f) ∗ (1− b) (B.3)

ps = a ∗ f ∗ r (B.4)

pg = a ∗ f ∗ (1− r) (B.5)

In these equations, a and b are tunable parameters, f = [f(s1) + f(s2)]/2 is the mean

value of the fitness of two parental strings s1 and s2, and r = [(m+(s1) + m−(s1) +

m+(s2)+m−(s2)]/[(M++M−)∗2] is the mean value of the ratio between the number of

instances covered by ϕ(s1) and ϕ(s2), respectively, and the global number of instances

in the training set.
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∆ = [black(w) ∨ grey(w) ∨ dotted(w)]
(a) Randomly selected subset of the template

1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
(b) Parents

1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
(c) Offsprings

Figure B.2: An example of generalising crossover in GA-SMART [GS92]. First ∆, a
subset of the template is randomly generated then the corresponding bits of parents
are ORed together.

GA-SMART can learn several concepts at the same time by using a distributed genetic

algorithm in which each sub-population can evolve a different concept. This system

uses several standard methods in GAs such as fitness scaling, crowding factors as well

as migration of individuals between sub-population.

REGAL [GN96] and G-NET [AGLS98] closely follow the same idea of GA-SMART and

employ user-defined templates for mapping first-order clauses into bit strings. These

systems therefore need to adopt a non-standard first-order representation based on a

template which is a conjunction of internally disjunctive predicates. The main problem

of this approach is that the number of conjuncts grows combinatorially with the number

of predicates. The template, therefore, can be very large in some circumstances and

difficulties related to defining the template by the user is also a major disadvantage of

this approach.

DOGMA

DOGMA [Hek98] is a learning system which uses GAs for learning first-order concepts.

Like GA-SMART, this system uses language templates for encoding first-order logic

into binary strings and mapping a formula to a binary string is done by setting the

corresponding bits of the template. An example of a language template in DOGMA

and mapping a formula to a bit-string are shown in figure B.3. In this template, the

symbol * may be used to collapse a set of values.

Genetic operators in DOGMA are defined at two different levels: chromosomes level
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Λ = size(x, [s,m, l]) ∧ shape(x, [sq, tr, ∗]) ∧ shape(y, [sq, tr, ∗]) ∧ ontop(x, y, [yes, no])
ϕ = size(x, [s,m]) ∧ shape(y, [tr]) ∧ ontop(x, y, [yes])

(a) A language template Λ and a formula ϕ

1 1 0 1 1 1 0 1 0 1 0
(b) Mapping formula ϕ to a bit-string

Figure B.3: An example of a language template (a) and mapping a formula to a bit-
string (b) in DOGMA [Hek98].

and families level. Families are built by selecting useful chromosomes of different

species. Speciation is done by background seeding operator which randomly selects

sub-structures from background knowledge and encode them into bit-strings. Hence,

chromosomes are divided into species according the part of background knowledge

which they may use. The purpose of speciation is to enhance diversity and to separate

different kinds of rules. This system uses two operator for manipulating families. These

operators are break and join which randomly split or merge families into new families.

Evaluation and selection are also done at family level. DOGMA combines Minimum

Description Length (MDL) [QR89] with Information Gain(IG) [Qui90] and uses the

minimum of these as the fitness value. Other features including crossover operators

are similar to GA-SMART.

DOGMA has suffers from the same disadvantages related to using a template as men-

tioned about GA-SMART.

SIAO1

SIAO1 [SAK95] is a learning system which combines the covering-set algorithm of the

learning system AQ [MMHL86] with a GA. The covering-set algorithm, which have

been used in many of inductive learning systems, starts by selecting a positive example

as a seed and then continues by generalising the seed example. The role of GA in

SIAO1 is to search for the best generalisation of the seed example according to a

rule-evaluation criterion.

SIAO1 uses a direct mapping for representing first-order rules which means that no

binary encoding is required. Crossover is done by randomly selecting a site and then
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Pyramid X Colour X yellow Supports Y X Ø Ø Ø
Ø Ø Colour Y yellow Supports c d Length d 7

(a)

Pyramid X Colour X yellow Supports c d Length d 7
Ø Ø Colour Y yellow Supports Y X Ø Ø Ø

(b)

Figure B.4: An example of crossover operator in SIAO1 [SAK95]. Predicates and
arguments after crossover point in parental rules (a) are exchanged and two offspring
(b) are generated.

swapping the predicates and arguments between parental rules. Figure B.4 shows an

example of crossover operators in SIAO1. Mutation in this system is done by randomly

selecting a predicate or variable and then generalising it according to a hierarchical

background knowledge which is known for the problem. This background knowledge

includes a hierarchy of concepts and predicates. Hence, this system uses a simple

form of background knowledge. Fitness function in SIAO1 combines completeness and

consistency together with syntactical generality (which can be measured by the number

of variables in the formula or the size of disjunctions and intervals) and user preference

for presence of some relations in the concept.

The genetic operators in SIAO1 are limited because of the direct representation which

could lead to a low diversity population. For example in crossover operator, two genes

at the same position must represent the same predicate. The other problem of SIAO1 is

due to its unusual genetic algorithm which starts with only one individual and therefore

the genetic search is sensitive to the choice of the seed example.

GLPS

GLPS [LW95] is a learning system based on Genetic Programming (GP) [Koz91] where

hierarchical representations are used rather than fixed length bit-strings. However,

unlike most GP systems which use Lisp expressions as the representation language,

GLPS uses logic programs. This system evolves a randomly generated forest of AND-

OR trees each corresponding to a rule of the logic program. Figure B.5 shows a

logic program and corresponding AND-OR trees. Crossover point is determined by

a randomly generated set of numbers. According to this set, the crossover operator
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C1 : cup(?x) : −insulate heat(?x), stable(?x), lif table(?x).
C2 : cup(?x) : −paper cup(?x).
C3 : stable(?x) : −bottom(?x, ?b), f lat(?b).
C4 : stable(?x) : −bottom(?x, ?b), concave(?b).
C5 : stable(?x) : −has support(?x).
C6 : lif table(?x) : −has(?x, ?y), handle(?y).
C7 : lif table(?x) : −small(?x),made from(?x, ?y), low density(?y).

OR

cup(?x)

paper_cup(?x)

insulate_heat(?x)

stable(?x)

liftablr(?x)stable(?x) bottom(?x,?b)     flat(?b)   bottom(?x,?b) concave(?b)

has_support(?x)

liftable(?x)

has(?x,?b) handle(?y) low_density(?y)

small(?x) made_from(?x,?y)

AND

AND AND AND

AND

AND

ANDOR

OROR

Figure B.5: Examples of program trees in GLPS [LW95].

exchanges a whole logic program, some rules, clauses or literals between parents. One

important feature of this system is that unlike conventional GP, the induced logic

programs are syntactically valid and there is no need for GP closure assumption. GLPS

uses GP as the main mechanism for inducing logic programs and therefore it cannot

benefit from background knowledge during the learning process. All other features are

similar to conventional GP.

LOGENPRO [WL97] is a generalisation and extension of GLPS which can learn pro-

grams not only in Prolog but also in different programming languages including LISP

and Fuzzy Prolog. All other features are similar to GLPS and it shares the same

advantages and disadvantages.

STEPS

STEPS [KGC99] is a learning system which can induce higher-order concepts. This

system uses Escher programming language [Llo95] to represent examples and hypothe-
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ses. Escher is a combination of logic programming and functional programming. This

system, therefore, can represent highly structured concepts.

STEPS uses Strongly Typed Genetic Programming (STGP) [Mon93] to evolve higher-

order concepts in the form of program trees. In this system, crossover operators are

modified to preserve type consistency and variable consistency of STGP. This system

also uses special kinds of mutation operators which randomly add or drop disjuncts

and conjuncts to the program tree. Other features are similar to conventional GP

systems, in particular those based on STGP.
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