

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Policy Search Based Relational
Reinforcement Learning using the

Cross-Entropy Method

A thesis

submitted in fulfillment

of the requirements for the degree

of

Doctor of Philosophy
in

Computer Science

at

The University of Waikato

by

Samuel Sarjant

Department of Computer Science

Hamilton, New Zealand

2013

c© 2013 Samuel Sarjant

Abstract

Relational Reinforcement Learning (RRL) is a subfield of machine learning
in which a learning agent seeks to maximise a numerical reward within
an environment, represented as collections of objects and relations, by per-
forming actions that interact with the environment. The relational repre-
sentation allows more dynamic environment states than an attribute-based
representation of reinforcement learning, but this flexibility also creates
new problems such as a potentially infinite number of states.

This thesis describes an RRL algorithm named Cerrla that creates policies
directly from a set of learned relational “condition-action” rules using the
Cross-Entropy Method (CEM) to control policy creation. The CEM assigns
each rule a sampling probability and gradually modifies these probabilities
such that the randomly sampled policies consist of ‘better’ rules, resulting
in larger rewards received. Rule creation is guided by an inferred partial
model of the environment that defines: the minimal conditions needed to
take an action, the possible specialisation conditions per rule, and a set
of simplification rules to remove redundant and illegal rule conditions,
resulting in compact, efficient, and comprehensible policies.

Cerrla is evaluated on four separate environments, where each environ-
ment has several different goals. Results show that compared to existing
RRL algorithms, Cerrla is able to learn equal or better behaviour in less
time on the standard RRL environment. On other larger, more complex
environments, it can learn behaviour that is competitive to specialised ap-
proaches. The simplified rules and CEM’s bias towards compact policies
result in comprehensive and effective relational policies created in a rela-
tively short amount of time.

Acknowledgements

First and foremost, my deepest gratitude goes to my chief supervisor Bern-
hard Pfahringer. Bernhard had already shown himself to be an excellent
supervisor as my Honours supervisor, but he was even better for my PhD.
He kept me motivated and focused, answered my many questions, sug-
gested various improvements or alternatives to the algorithm, and was al-
ways happy to meet with me outside of our regular meetings. Bernhard’s
wealth of knowledge in many aspects of AI and his excellent eye for detail
have helped shape this research into something far beyond what I could
have ever done alone.

My other supervisors, Kurt Driessens and Tony Smith, have also been a
great help throughout my research. Kurt, who was there at the beginning
of RRL, helped me get started and directed towards a goal. He was also an
excellent source of RRL information, both through direct communication
and from his significant contributions to the RRL field (which may not
even be where it is today if it were not for Kurt). What Tony lacked in RRL
expertise, he more than made up for in his enthusiasm for my research and
his impeccable spelling and grammar skills. Tony’s background allowed
him to provide interesting alternatives for the research, and his passion for
Pac-Man also helped.

A big thank you to my examiners Dr. Peter Andreae at Victoria Univer-
sity in Wellington, New Zealand and Dr. Martijn van Otterlo at Radboud
University, Nijmegen in the Netherlands. I met each of examiner early on
in my PhD and each one helped me focus my research into what resulted
in this thesis. They then graciously helped out once more by examining

vi Acknowledgements

the thesis, providing excellent feedback and suggestions that polished the
work into the state it is today.

Thank you to my parents and siblings for shaping me into the person I am
today. None of them may understand a word of what I am saying when I
explain my research, but they at least courteously nod and smile. Thank
you for supporting me throughout both my PhD and my life in general.

In Belgium, I thank Lieve and Maurice Bruynooghe for hosting me during
my time there, and my coworkers in the oh-so-slightly crowded lab at the
Catholic University of Leuven for helping me out and showing me around
the city.

To all of my friends and coworkers at The University of Waikato: thank
you. Going through a PhD has been much easier knowing that you are all
suffering with me as well. My friends both inside and outside Uni provide
the social interaction that I would go mad without and have made this jour-
ney enjoyable. I’d also like to thank the Tertiary Education Commission,
BuildIT, and The University of Waikato Department of Computer Science
for funding my research.

Other things that kept me sane are metal music, video-games, board-games
(European style, of course!), D&D, and my many other geeky pursuits.
Also, though I may not actively train anymore, I must thank Hanshi David
Nips and all of my fellow martial artists at Taekidokai Martial Arts for
strengthening my discipline, confidence, and resolve in many areas of my
life.

Finally, I thank my partner of nearly six years, Darnielle for being a con-
stant source of love, support, and amusement. She has been a motivating
force, always quick to tell me if I was slacking. . . and also always ready to
provide me with reasons to stay home for the day.

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Research Fields . 3
1.1.1 Artificial Intelligence 3
1.1.2 Machine Learning . 3
1.1.3 Reinforcement Learning 3
1.1.4 Relational Reinforcement Learning 4

1.2 Motivation and Goal . 4
1.3 Thesis Structure . 6

2 Background 9

2.1 Reinforcement Learning . 10
2.1.1 Markov Decision Process 11
2.1.2 Solving Markov Decision Processes 13
2.1.3 Generalisations and Abstractions 16
2.1.4 Reinforcement Learning Summary 21

2.2 Relational Reinforcement Learning 21
2.2.1 Relational Markov Decision Process 22
2.2.2 Benefits and Challenges of RRL 24

2.3 Existing RRL Algorithms . 25
2.4 Application to Game Environments 29
2.5 Summary and Discussion 31

viii Contents

3 Relationally Defined Environments 35

3.1 Terminology . 36
3.1.1 Syntax and Semantics 36
3.1.2 JESS Rule Engine . 40

3.2 Environment Specification Language 41
3.2.1 State Description . 45

3.3 Blocks World . 45
3.3.1 Episodic Description 46
3.3.2 Specification . 47
3.3.3 Goals . 48

3.4 Ms. Pac-Man . 49
3.4.1 Episodic Description 51
3.4.2 Specification . 52
3.4.3 Goals . 54

3.5 Mario . 55
3.5.1 Episodic Description 57
3.5.2 Specification . 57
3.5.3 Goals . 62

3.6 Carcassonne . 63
3.6.1 Episodic Description 65
3.6.2 Specification . 65
3.6.3 Goals . 70

3.7 Summary . 71

4 CERRLA 73

4.1 CERRLA Overview . 74
4.1.1 Example Policy . 76

4.2 Cross-Entropy Method . 77
4.2.1 Application to RRL . 79

4.3 Algorithm Initialisation . 81
4.4 Generating Policy Samples 81
4.5 Evaluating a Policy . 82
4.6 Updating the Distributions 83

4.6.1 Determining Elite Samples 84
4.6.2 Iterative Updates . 85
4.6.3 Updating the Distributions 86
4.6.4 Convergence . 87

Contents ix

4.7 Rule Specialisation and Exploration 88
4.7.1 Rule Specialisation . 88
4.7.2 Rule Exploration . 89
4.7.3 Rule Representation . 90

4.8 Seeding Rules . 90
4.9 Discussion and Future Work 91

5 Agent Observations Model 95

5.1 State Scanning Triggers . 96
5.2 RLGG Rule Creation . 97
5.3 Inferring Simplification Rules 100

5.3.1 Identifying Causal Relationships 101
5.3.2 Creating Implication Rules 105
5.3.3 Creating Equivalence Rules 106
5.3.4 Recording Simplification Rules 106

5.4 Evaluating Simplification Rules 107
5.4.1 Transforming the Rule Conditions 108
5.4.2 Asserting the Simplification Rules 109
5.4.3 Recreating the Rule Conditions 110

5.5 Rule Specialisation . 111
5.5.1 Additive Specialisation 111
5.5.2 Transforming Specialisation 113
5.5.3 Refining the Rule Conditions 115

5.6 Discussion and Future Work 115

6 Algorithm Evaluation 117

6.1 Experiment Methodology 117
6.2 Blocks World Evaluation . 119

6.2.1 Standard Cerrla Performance 119
6.2.2 Scale-free Policies . 123
6.2.3 Comparison to Existing Algorithms 125
6.2.4 Agent Observation Simplification 127
6.2.5 Language Bias . 129
6.2.6 Stochastic Blocks World 130
6.2.7 Blocks World Discussion 132

6.3 Ms. Pac-Man Evaluation . 132
6.3.1 Standard Cerrla Performance 133

x Contents

6.3.2 Language Bias . 137
6.3.3 Transfer Learning . 140
6.3.4 Ms. Pac-Man Discussion 142

6.4 Mario Evaluation . 143
6.4.1 Standard Cerrla Performance 143
6.4.2 Transfer Learning . 148
6.4.3 Mario Discussion . 149

6.5 Carcassonne Evaluation . 151
6.5.1 Standard Cerrla Performance 151
6.5.2 Transfer Learning . 160
6.5.3 Carcassonne Discussion 162

6.6 Summary and Discussion 163

7 Conclusions and Future Work 167

7.1 Summary . 167
7.2 Conclusions . 169
7.3 Limitations . 171
7.4 Future Work . 174

7.4.1 Modular Learning . 174
7.4.2 Cerrla-Related Future Work 176
7.4.3 Environment-Related Future Work 177

7.5 Contributions . 179

References 181

List of Figures

2.1 An illustration of the reinforcement learning framework. 10

3.1 A screenshot of a portion of the Ms. Pac-Man environment. . . 50
3.2 Initial level layouts for the Ms. Pac-Man environment. Each

layout is used for two levels. 52
3.3 A screenshot of the Mario environment. 55
3.4 Example screenshots of the two Mario difficulties. 57
3.5 A screenshot of the Carcassonne environment. 63
3.6 The set of tiles used in the game of Carcassonne. 66

5.1 A 3-block Blocks World state observation example. 96
5.2 An example 3-block Blocks World state. 99

6.1 Cerrla’s performance for the four Blocks World goals. 120
6.2 Example policies created by Cerrla for the four Blocks World

goals. 122
6.3 The relationship between the number of Cerrla’s rules and the

performance in Blocks World. 123
6.4 A comparison of Cerrla’s rate of learning on different sized

Blocks Worldenvironments for the OnG0G1 goal. 123
6.5 A optimal OnG0G1 policy for 3-block Blocks World environ-

ments produced by Cerrla. 124
6.6 A comparison of performance in Blocks World between using

agent observations to simplify rules, and not using them. 127
6.7 An optimal OnG0G1 Blocks World policy produced by Cerrla

after 20,000 episodes without using simplification rules. 129

xii List of Figures

6.8 Cerrla’s performance using an alternative representation of
Blocks World. 129

6.9 Cerrla’s performance in a stochastic Blocks World. 131
6.10 Cerrla’s performance for the three goals in Ms. Pac-Man. . . 134
6.11 Example policies created by Cerrla for the three Ms. Pac-Man

goals. 135
6.12 The relationship between the number of Cerrla’s rules and the

performance in Ms. Pac-Man. 136
6.13 Cerrla’s performance for the three goals in an alternative rep-

resentation of Ms. Pac-Man. 138
6.14 Example policies created by Cerrla for the three goals of an

alternative representation of Ms. Pac-Man. 139
6.15 Cerrla’s performance on the Ten Levels goal when seeded with

a Single Level policy in the Ms. Pac-Man environment. 140
6.16 The hand-coded rules used to seed Cerrla. 141
6.17 Cerrla’s performance on the Single Level goal using the seeded

rules from Figure 6.16 in the Ms. Pac-Man environment. 142
6.18 Cerrla’s performance for the two difficulty goals in Mario. . . 144
6.19 Example Difficulty 0 Mario policy. 145
6.20 Example Difficulty 1 Mario policy. 146
6.21 The relationship between the number of Cerrla’s rules and the

performance for the two Mario goals. 147
6.22 Cerrla’s performance on the Difficulty 1 goal when seeded

with a Difficulty 0 policy in the Mario environment. 148
6.23 Cerrla’s performance for the various goals of Carcassonne. . 153
6.24 Example Single Player Carcassonne policy. 154
6.25 Example Cerrla vs. Random Carcassonne policy. 155
6.26 Example Cerrla vs. Static AI Carcassonne policy. 156
6.27 Example Cerrla vs. Cerrla Carcassonne policy. 156
6.28 Example Cerrla vs. 3 Static AI Carcassonne policy. 158
6.29 Example Cerrla vs. 3 Cerrla Carcassonne policy. 158
6.30 Example Cerrla vs. 5 Static AI Carcassonne policy. 159
6.31 Example Cerrla vs. 5 Cerrla Carcassonne policy. 159
6.32 The relationship between the number of Cerrla’s rules and the

performance in Carcassonne. 161

List of Figures xiii

6.33 Cerrla’s performance when seeded with Single Player behaviour
for the Carcassonne Cerrla vs. Static AI goal. 162

List of Tables

3.1 Predicate definitions for Blocks World. 47
3.2 Predicate definitions for Ms. Pac-Man. 53
3.3 Predicate definitions for Mario. 58
3.4 Terrain scoring in Carcassonne. 65
3.5 Predicate definitions for Carcassonne. 67

6.1 Cerrla’s performance for the Blocks World goals. 120
6.2 Cerrla’s performance for different sizes of Blocks World en-

vironments. 124
6.3 A comparison of performances for various RRL algorithms us-

ing the Blocks World environment. 126
6.4 Comparison of performance between using and not using sim-

plification rules in Blocks World 128
6.5 Cerrla’s performance using an alternative representation of

Blocks World. 130
6.6 Cerrla’s performance in a stochastic Blocks World. 131
6.7 Cerrla’s performance for the Ms. Pac-Man goals. 133
6.8 Cerrla’s performance using an alternative representation of

Ms. Pac-Man. 137
6.9 Cerrla’s performance when seeded with initial rules for the

Ms. Pac-Man Ten Levels goal. 141
6.10 Cerrla’s performance on the Single Level goal using the seeded

rules from Figure 6.16 in the Ms. Pac-Man environment. 141
6.11 Cerrla’s performance for the Mario goals. 144

xvi List of Tables

6.12 Cerrla’s performance when seeded with initial rules for the
Mario Difficulty 1 goal. 149

6.13 Cerrla’s performance for the various Carcassonne goals. . . 152
6.14 Cerrla’s performance when seeded with Single Player behaviour

for the Carcassonne Cerrla vs. Static AI goal. 160

List of Acronyms

AI Artificial Intelligence

CEM Cross-Entropy Method

CERRLA Cross-Entropy Relational Reinforcement Learning Agent

DP Dynamic Programming

EA Evolutionary Algorithm

GA Genetic Algorithm

GGP General Game Playing

ILP Inductive Logic Programming

JESS Java Expert System Shell

KL Kullback-Leibler

LCS Learning Classifier System

LHS Left-Hand Side

LOMDP Logical Markov Decision Process

MDP Markov Decision Process

ML Machine Learning

POMDP Partially Observable Markov Decision Process

RHS Right-Hand Side

RL Reinforcement Learning

xviii List of Tables

RLGG Relative Least General Generalisation

RMDP Relational Markov Decision Process

RRL Relational Reinforcement Learning

SARSA State-Action-Reward-State-Action

TD Temporal Difference

TL Transfer Learning

Publications

The following papers have been published throughout the course of this
research:

Sarjant, S. (2013). A Direct Policy-Search Algorithm for Relational Rein-
forcement Learning. In New Zealand Computer Science Research Student Con-
ference (NZCSRSC) 2013.

Sarjant, S. (2012). Using the online cross-entropy method to learn rela-
tional policies for playing different games. In New Zealand Computer Science
Research Student Conference (NZCSRSC) 2012.

Sarjant, S., Pfahringer, B., Driessens, K., Smith, T. (2011) Using the on-
line cross-entropy method to learn relational policies for playing different
games. In Computational Intelligence and Games (CIG), 2011 IEEE Conference
on, pp. 182–189. IEEE.

Sarjant, S. (2011). CERRLA: Cross-entropy relational reinforcement learn-
ing agent. In New Zealand Computer Science Research Student Conference
(NZCSRSC) 2011.

Sarjant, S. (2010). Cross-entropy relational reinforcement learning. In New
Zealand Computer Science Research Student Conference (NZCSRSC) 2010.

1
Introduction

Look around. What do you see? Perhaps a computer monitor, sitting on
a desk before you. Perhaps a collection of pages bound together with ink
printed upon them. You may even see other people, doing whatever it is
that they’re doing. You are probably reading this thesis because it has some
meaning to you and your goal is to understand the information contained
within. Reading a thesis (or any written document), involves relatively few
actions. Turning the pages (or scrolling, if digital) and reading the infor-
mation in front of you is basically all you need to do, perhaps occasionally
looking up a cited paper that interests you. You will continue to read and
turn pages until you have achieved your goal, whether that is to read the
entire thesis, or just find the ‘juicy parts.’

The above scenario could be represented as a Relational Reinforcement
Learning (RRL) problem: there is a collection of objects (tangible and in-
tangible) and relations between those objects (e.g. contains(thesis, page1) is
a relation that states that the object thesis contains the object page1). An
‘agent’ (i.e. the reader) can act upon these objects with the intent of achiev-
ing a goal such as reading the entire thesis (e.g. turnPage(thesis, page1, right-
Hand) causes the agent to turn page1 in thesis with its rightHand), prefer-
ably achieving that goal in a minimal amount of time. For example, some
actions could be turnPage(thesis, page1, rightHand), readPage(thesis, page1,
reader), makeCoffee(reader, mug), etc. In this scenario, every second spent
reading the thesis is a second not used for other enjoyable activities,1 which

1But what could possibly be more enjoyable than reading this thesis?

2 Chapter 1 Introduction

could be represented numerically as a ‘reward’ of −1 per second with per-
haps some large positive reward upon completing reading. Hence, the
quicker an agent completes reading the thesis, the better the accumulated
reward.

But how does an agent formally represent thesis-reading behaviour? Some
approaches include:

1. A naive approach is to define the appropriate actions to perform for
every possible state of thesis reading (e.g. per page, per thesis, per
reading-format, etc.), but this approach is not generalisable and rep-
resentation grows exponentially larger with the number of possible
objects and relations involved in the thesis-reading problem.

2. A better approach is to define some form of abstraction, such that
given a rough description of a state, the agent knows which action
leads to maximal reward. This still requires the agent to learn which
actions are best in what state, but the abstraction allows it to represent
this information much more compactly than the first approach.

3. An even more general approach is to define some simple rules for
reading the thesis: read the page until it is completed, then move on
to the next page. This behaviour is the implicit result in the prior
two approaches, but it skips the first steps of explicitly representing
which actions have the greatest value.

The algorithm developed in this research attempts to learn behaviour for
solving a problem using the third approach. The problem with this ap-
proach is that the algorithm needs to be able to create useful behaviour
without explicitly learning per state which actions lead towards the great-
est reward.

Before explaining the formal goal of this research, the following section
provides a broad overview of the fields that it is based within.

1.1 Research Fields 3

1.1 Research Fields

1.1.1 Artificial Intelligence

The field of RRL is based within the broad field of Artificial Intelligence
(AI). AI is a field within computer science that is concerned with the de-
velopment of intelligent machines. This is a broad definition, as intelligence
covers a wide range of behaviour and is difficult to formally define. There
have been many definitions of AI, but they generally define AI as “an agent
or system that ‘thinks’ and acts in a rational or human manner” (Russell
and Norvig, 2003). Initially, early AI researchers were optimistic regarding
how soon human-level intelligence AI was going to be developed, but this
proved to be much more difficult than anticipated. AI research gravitated
towards specialised applications (e.g. an AI that only plays Chess, or filters
spam, etc.), but lately research has begun to return towards creating AI that
can perform multiple tasks effectively.

1.1.2 Machine Learning

Machine Learning (ML) is a branch of AI concerned with learning solutions
to problems when they are encountered, rather than simply acting out a
rigid behaviour. A famous definition of ML by Tom Mitchell is:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E (Mitchell, 1997).

That is, if a program’s performance increases after being provided with
experience, it is said to be capable of learning. ML techniques can be
broadly divided into three separate subfields: supervised learning (learning
a model from labelled training data), unsupervised learning (learning the
structure of unlabelled data), and reinforcement learning (learning which
actions to take to maximise numerical reward).

1.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a form of ML in which an agent seeks to
maximise a numerical reward by performing actions within an environment.

4 Chapter 1 Introduction

Actions are selected by using the current observed state as an input to the
agent’s policy, which outputs the actions the agent takes. RL differs from
supervised learning in that the ‘correct’ action is never explicitly stated; an
agent only ever receives a numerical reward, and this reward may not even
be received directly after an action is taken. For example, when playing a
game such as Chess or Checkers, a player only receives a single reward at
the end of a game of either win (+1), loss (-1), or draw (0). The actions per-
formed throughout the game contributed to this reward, and so an agent
must learn a policy that outputs an effective combination of actions and
achieves the greatest reward.

1.1.4 Relational Reinforcement Learning

Relational Reinforcement Learning (RRL) is the name given to RL per-
formed within environments represented as first-order objects and relations
between the objects. The relational representation allows a flexibility in
the state and action descriptions that otherwise could not be achieved with
standard reinforcement learning. A relational state can be composed of
any number of objects and relations and the number of actions available
to the agent also varies based on the objects and relations present. How-
ever, this flexibility also results in an enormous (even infinite) number of
possible states, complicating the learning process. Since its conception in
1998 (Džeroski et al., 1998), numerous algorithms have been developed
for solving RRL problems, though many have only been tested upon the
benchmark Blocks World environment (Section 3.3). The majority of RRL
algorithms use value-based approaches to represent expected reward for
relational states. An agent’s behaviour is then extracted from these values
by greedily performing actions with the largest expected reward.

1.2 Motivation and Goal
The goals of this research are to:

• Develop a new RRL algorithm that learns effective behaviour using
direct policy search methods.

• Investigate the utility of the algorithm over a range of environments
of differing sizes and formats.

1.2 Motivation and Goal 5

The decision to learn behaviour via direct policy search methods was made
because firstly, there already exists a large number of different value-based
approaches with varying levels of performance, and secondly, direct policy
search methods do not need to learn the expected value of actions, and so
are unaffected by changes in the reward function (by changing the size of
the environment, or as a result of modified behaviour).

The proposed approach for the algorithm is to utilise the Cross-Entropy
Method (CEM), a distribution-based optimisation method, to generate rule-
based policies by storing relational rules within distributions and generat-
ing policies by randomly sampling rules, where the probability of sampling
a rule is increased with the rule’s usefulness. This approach allows the al-
gorithm to automatically explore different policies as random samples, but
gradually modifies the sampling distribution such that the generated poli-
cies result in a greater reward. The CEM has been shown to be effective in a
range of different problems, so this research will investigate an application
of the CEM towards learning behaviour in RRL problems.

The second goal is concerned with applying RRL algorithms to larger prob-
lems. Most RRL algorithms are primarily evaluated on the benchmark
‘Blocks World’ environment, which is ideal for demonstrating the core
challenges of RRL, but remains an artificial ‘toy’ problem. This research
will be tested both upon Blocks World problems, and larger problems
with more complex interactions. Games provide excellent environments
for this purpose because they have a set of well-defined gameplay rules,
an obvious reward function (the score), object-orientated elements, com-
plex and often random gameplay elements, and are relatable to humans.
To demonstrate the algorithm’s ability to learn behaviour over a range of
environments, three different games will be used as testbeds for the algo-
rithm.

Regarding additional requirements, the algorithm should be able to:

• Learn behaviour quickly. If it takes a long time to learn effective
behaviour, then the algorithm’s usefulness is reduced.

• Learn effective behaviour without guidance from an external ‘expert.’
It needs to be able to infer its own useful rules when only provided
with observations on the environment and the language in which the

6 Chapter 1 Introduction

environment is represented.

• Represent the behaviour in a comprehensible manner, such that it is
obvious to a human viewer how the policy selects its actions.

1.3 Thesis Structure
The remainder of this thesis is structured as follows:

• Chapter 2 describes the fundamental concepts behind this work and
presents an introduction to the existing related work. These include
an introduction to Reinforcement Learning (RL) and a brief descrip-
tion of the various approaches for RL algorithms, a formal description
of Relational Reinforcement Learning (RRL) and a summary of the al-
gorithms developed for it, and an overview of various AI applications
to playing games.

• Chapter 3 formally defines the syntax that is used by the algorithm
and the specification language that each environment is represented
in. Each of the four environments used within this research are also
formally defined here.

• Chapter 4 presents a full explanation of the algorithm developed in
this research, the Cross-Entropy Relational Reinforcement Learning
Agent (Cerrla). This chapter primarily describes how the algorithm
utilises the CEM to explore and exploit the relational rules that are
created by the algorithm (detailed in Chapter 5).

• Chapter 5 describes how the algorithm extracts information about the
environment to create and explore relational rules for acting within
the environment. This includes initial rule creation, specialisation
conditions, and inferring simplification rules for removing redundant
rule conditions and reducing the effective number of rules the algo-
rithm needs to search.

• Chapter 6 presents evaluation results for Cerrla on the four envi-
ronments defined in Chapter 3. These results include the perfor-
mances on different environmental goals, the effects of alternative
environmental representations, and comparisons to other learning al-
gorithms.

1.3 Thesis Structure 7

• Finally, Chapter 7 discusses the algorithm presented in this disserta-
tion and summarises the work presented in previous chapters, pre-
senting conclusions on the outcome of the work and identifying pos-
sible future work.

A list of the figures, tables, algorithms, acronyms and publications can be
found directly after the table of contents.

2
Background

The previous chapter introduced the concepts that are necessary for un-
derstanding the aim of this research. This chapter should give the reader
a solid understanding of various solutions for Relational Reinforcement
Learning (RRL) and how this research fits into the RRL context. This chap-
ter describes the current state of RRL research, but before that, it describes
the key concepts and existing approaches for Reinforcement Learning (RL)
problems as many RRL algorithms are inspired by propositional RL algo-
rithms and ‘lifted up’ to the relational setting. Three of the testing envi-
ronments used in this research are games, so we also look at various AI
applications towards playing games.

We begin by firstly reviewing the RL framework and existing approaches
towards solving RL problems (Section 2.1). Section 2.2 then formally de-
fines RRL, describing how RL aspects can be ‘lifted’ to the relational set-
ting. We also examine existing RRL algorithms, investigating their relation
to existing RL algorithms and their strengths and weaknesses. Section 2.4
outlines the various reinforcement learning and other related learning al-
gorithm approaches that have been applied to games. Finally, Section 2.5
summarises the content presented in this chapter and discusses how it ap-
plies to the algorithm presented in the following chapters.

10 Chapter 2 Background

2.1 Reinforcement Learning
Reinforcement Learning (RL) is a method of machine learning in which a
learning agent seeks to maximise a numerical reward by interacting with its
environment (Sutton and Barto, 1998; Kaelbling et al., 1996). An agent inter-
acts with an environment in discrete time steps t and at every time step the
environment provides a description of the current state of the environment
st to the agent. The agent then selects an action at to perform, which is re-
turned to the environment. This causes the environment state to transition
to another state st+1 and produce numerical feedback about the quality
of the state transition. The goal of the agent is to maximise the overall
feedback received. Figure 2.1 presents an illustration of the reinforcement
learning loop.

Example 2.1.1. For example, an agent’s interaction with a generic environ-
ment described by a set of numerical features is as follows:

Agent

Environment

action a

state s

reward R

Figure 2.1: An illustration of the reinforcement learning framework.

2.1 Reinforcement Learning 11

Environment: At time step 0, you are in state 23. Feature 2, 6 and 9 are
true. You have 4 possible actions.

Agent: I’ll take action 3.
Environment: You receive a reward of 2. At time step 1, you are now in

state 16. Feature 2, 3 and 5 are true. You have 6 possible
actions.

Agent: I’ll take action 1.
Environment: You receive a reward of −4. At time step 2, you are now

in state 3. Feature 9 is true. You have 2 possible actions.
...

...

Unlike most forms of machine learning, the ‘correct’ action is not known
to the agent; there is only a numerical reward. This is one of the main chal-
lenges in RL: the problem of exploration vs. exploitation. The agent needs to
exploit actions that it knows produce high reward, but also needs to explore
other actions to check if they produce even higher reward. A greedy agent
would simply exploit the first strategy that provides reward, which is prob-
ably not optimal, therefore a learning agent needs some sort of exploration
strategy. This is complicated by the fact that the learning is performed
online within the environment, meaning the environment is a ‘black box’;
states can only be accessed by taking the necessary actions to get to them.
Offline learning allows an agent to select any state and perform an action,
but this thesis will not cover this form of RL.

A comprehensive explanation of RL techniques can be found in Kaelbling
et al. (1996), Sutton and Barto (1998), Szepesvári (2010), Buşoniu et al.
(2010) and Wiering and van Otterlo (2012).

2.1.1 Markov Decision Process

Markov Decision Processes (MDP) (Bellman, 1956; Puterman, 1994) are an
intuitive framework for representing reinforcement learning (Bertsekas and
Tsitsiklis, 1996; Kaelbling et al., 1996; Sutton and Barto, 1998), decision-
theoretic planning (Boutilier and Dearden, 1994) and other stochastic state-
driven domains. A Markov Decision Process (MDP) represents a problem
as a set of connected states that are navigated by selecting actions. Each
transition between states has a probability and a reward associated with it
and the goal of the agent acting within the MDP is to maximise the amount

12 Chapter 2 Background

of reward received by selecting an appropriate action at each time step.

Definition 2.1.1 (Markov Decision Process (MDP)). Formally, an MDP is a
tuple M = 〈S, A, T, R〉, defined as:

• A finite set of states S,

• A finite set of actions A,

• A transition function T : S× A× S→ [0, 1],

• A reward function R : S× A× S→ R.

For every state s ∈ S, the agent is provided with the set of actions A(s) that
can be performed for the current state. When action a is applied in state
s, the transition function defines the probability of transitioning to state
s′ ∈ S as T(s, a, s′). Every T(s, a, s′) ≥ 0 and T(s, a, s′) ≤ 1, and for every
s and a, ∑s′∈S T(s, a, s′) = 1. A numerical reward is also produced using
R(s, a, s′), where the value may be any real numerical value.

The agent’s job is to learn a policy π : S → A (or a probabilistic policy
π : S× A→ [0, 1], but this work focuses on the deterministic form), which
maps states to actions (π(s) = a). The policy is the agent’s method of
interaction with the environment and the agent’s goal is to create a policy
that receives maximal reward when interacting with the environment.

An MDP may also specify a distribution of starting states and/or termi-
nal states. The starting states define the first state an agent may begin in
when learning begins, and terminal states define states in which the episode
is complete (either because the agent reached the goal, or cannot act any-
more).

A core aspect of MDPs is the Markov assumption which states that: “the
current state provides enough information to make an optimal decision.”
This clause restricts the number of environments that fit into the MDP
framework, as environments that are not fully-observable (e.g. hidden-
information domains such as Poker) do not fit this assumption. Nonethe-
less, the MDP framework provides an approximate description for such
environments.

2.1 Reinforcement Learning 13

Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is a generali-
sation of an MDP where the agent does not have access to all state ob-
servations (Kaelbling et al., 1998). A POMDP assumes there is an MDP
modelling the environment, but the agent only has access to a partial ob-
servation of it. Many real-world environments are only partially observ-
able, due to an element of randomness, imperfect sensors, the presence of
other ‘black box’ agents, etc. The three game environments presented in
the next chapter could all be classified as POMDPs because each environ-
ment contains competing agents with unknown behaviour (as well as other
unknown elements of the environment).

Definition 2.1.2 (Partially Observable Markov Decision Process (POMDP)).
Formally, a POMDP is a tuple 〈S, A, O, T, R, Ω〉, such that S, A, T, R are
defined as usual, O is a set of observations upon the actual state S, and Ω
is the observation function Ω : S × A ×O → [0, 1] defining a probability
distribution over observations received given an action and resulting state.

A POMDP can be treated as an MDP, but the learning algorithm may need
to make use of a belief state to probabilistically infer what fully-observed
state the agent is in. Without knowing what state the agent is actually
in, calculations that make use of previous rewards cannot be effectively
utilised.

2.1.2 Solving Markov Decision Processes

The most obvious approach to solving reinforcement learning problems is
to maintain a value function Vπ = S → R that returns an expected reward
for state s if following policy π. The goal is then to create a policy π∗ such
that the value function Vπ∗ achieves the maximal possible reward in every
state. Value functions are defined as:

Vπ(s) = E[
∞

∑
t=0

γtR(st, π(st), st+1)] (2.1)

where 0 < γ < 1 (usually γ = 0.9) to prevent the sum of rewards going
to infinity in environments without a terminal state. This definition states
that the value of a state while following policy π is equal to the expected
reward of all following states.

14 Chapter 2 Background

A value function can also be recorded for every action a in state s, known
as the Q-function Qπ(s, a) (Quality-function). Instead of estimating the ex-
pected reward for every state, the Q-function estimates the expected reward
for every state-action pair:

Qπ(s, a) = E[
∞

∑
t=0

γtR(st, a, st+1)] (2.2)

The values of each function can be estimated by recording an average of the
rewards following each state, or for the Q-function, the rewards following
each individual action taken from the state. As the number of times the
state value is updated approaches infinity, the estimated value becomes
closer to the true value of the state (or state-action).

Existing Value-Based Algorithms

Reinforcement learning problems can be solved with two main approaches:
learning (or being provided with) a model of the environment and using
dynamic programming (DP) to iteratively determine the optimal policy, or
learn the values for states with temporal-difference learning.

Dynamic Programming (DP) computes the value of states by iteratively
propagating rewards back through the MDP using the known transition
and reward functions. While not strictly part of RL, DP provides an alter-
native method of solving MDPs. DP approaches are guaranteed to find the
optimal policy because the optimal value function V∗ can be represented
as the following equation (using the infinite horizon metric as the optimality
metric, Equation 2.1):

V∗(s) = max
a∈A

∑
s′∈S

T(s, a, s′)
(

R(s, a, s′) + γV∗(s′)
)

(2.3)

which can be used to calculate the optimal policy π∗ (by always selecting
the action that leads to the greatest reward). This equation is known as the
Bellman optimality equation (Bellman, 1956) which states that the value of a
state s is equal to the immediate reward received R(s, π(S), s′) following
the current policy π plus the average expected reward for the following
states V(s′) with respect to their transition probability T(s, a, s′).

Two core DP algorithms are value iteration (Bellman, 1956) and policy it-

2.1 Reinforcement Learning 15

eration (Howard, 1960). Value iteration computes the optimal value func-
tion using the Bellman optimality equation to propagate rewards between
states. Policy iteration switches between recomputing the value function
and improving the current policy based on the recomputed value function,
eventually converging to an optimal solution. Both methods are guaran-
teed to find the optimal solution as each iteration always improves the
quality of the agent’s behaviour.

The main problem with dynamic programming approaches is that the tran-
sition and reward functions are usually not known. In this case, an agent
must learn the transition and reward functions if it is to use DP techniques
(known as indirect RL). The DYNA architecture (Sutton, 1991) combines
Q-learning and DP by learning a model while concurrently acting in the
environment. The learned model is then used to generate extra learning ex-
perience by simulating extra interaction with the environment. Prioritised
Sweeping (Moore and Atkeson, 1993) improves upon this idea by prioritis-
ing updates of the learned model to areas where the change in observed
values is greatest.

The other option for value-based learning is Temporal Difference (TD)
learning (direct RL). TD learning incrementally updates the expected value
of states using the immediate observed reward and the estimated rewards
of future states (known as bootstrapping). TD(0) (Sutton and Barto, 1998) is
the simplest form of TD learning. At every time step, the algorithm can
update the value of state s using the observed reward r and value estimate
for the following state V(s′).

Vk+1(s) = Vk(s) + α
(

r + γVk(s′)−Vk(s)
)

(2.4)

where α ∈ [0, 1] is the step-size (or learning rate) parameter that controls
how much values get updated. Like Equation 2.3, the value of a state
depends on following states, but instead of a weighted average of all fol-
lowing states, TD learning only uses the observed transition to update the
value.

To avoid converging to a single, possibly sub-optimal strategy and to search
for potentially better strategies, the agent needs to occasionally explore ac-
tions that are not simply selecting the action that leads to the largest ex-
pected reward. The simplest approach is ε-greedy exploration which selects

16 Chapter 2 Background

a random action with probability ε, otherwise it selects a greedy action.
A problem with this strategy is that it performs unnecessary exploration
in the later stages of learning and that random actions can lead to highly
undesirable states. Another approach is to use Boltzmann exploration, which
uses a ‘temperature’ variable T and the current Q-value estimates to control
action selection:

P(a) =
e

Q(s,a)
T

∑a′∈A(s) e
Q(s,a′)

T

(2.5)

where P(a) defines the probability of selecting action a. The temperature
T is gradually decreased to reduce exploration and increase exploitation.

Q-learning is a popular variation of TD learning, which learns Q-values
for states in a similar manner to TD(0) (Watkins and Dayan, 1992). The
Q-learning update equation is:

Qk+1(s, a) = Qk(s, a) + α
(

r + γ max
a′∈A(s′)

Qk(s′, a′)−Qk(s, a)
)

(2.6)

This equation is nearly identical to Equation 2.4, except it utilises the max
operator to select the best estimated value for the next state. Because of this
operator, Q-learning is an off-policy algorithm, because it only updates Q-
values with the best estimated values. An on-policy variation of Q-learning
is SARSA:

Qk+1(s, a) = Qk(s, a) + α
(

r + γQk(s′, π(s′))−Qk(s, a)
)

(2.7)

Note that the SARSA equation uses the policy’s output action for Q-value
updates instead of the max operator. Both techniques are guaranteed to
converge to the optimal solution given infinite samples, but SARSA re-
quires that the algorithm eventually ceases to explore.

An alternative value-based class of algorithms are actor-critic methods (Wit-
ten, 1977; Barto et al., 1990; Konda and Tsitsiklis, 2003). Actor-critic meth-
ods maintain an explicitly separate policy to the value function. The policy
is known as the actor because it selects the actions and the value function is
known as the critic because it criticises the actions performed by the policy.
The criticism is in the form of TD error:

δt = rt + γV(st+1)−V(st) (2.8)

2.1 Reinforcement Learning 17

If positive, the critic strengthens the probability of selecting the action and
vice-versa. The following update equation defines the preference of selecting
action at in a given state st (where actions with a higher preference are more
likely to be selected):

p(st, at)← p(st, at) + βδt (2.9)

where β is a step-size parameter determining how much the value is up-
dated. Note that together, Equation 2.8 and 2.9 are very similar to the value
and Q-learning update equations.

2.1.3 Generalisations and Abstractions

In small environments, maintaining a table of values for every state (or
every state-action in the case of Q-learning) is enough to learn an optimal
policy in reasonable time. But for larger or more complex environments,
the size of the table grows exponentially larger and becomes difficult to
manage, both in terms of memory usage and value-propagation, resulting
in a slower rate of learning. The following subsections define core general-
isations or abstractions that can be applied to RL techniques to reduce or
approximate the state space of an environment.

Value Function Approximation

Instead of recording the expected value of each state directly, a parame-
terised function can be used to represent the value function of states (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Buşoniu et al., 2010). By
representing the expected reward of states as a function, the agent only
needs to learn the function, which allows it to estimate the expected value
of unseen states as well. This is known as learning a regression model for
predicting a state’s estimated value. A learned model takes a state (and
action) as input and outputs the expected value of the state, in accordance
with the model.

Learning a regression model is a well-understood problem in supervised
learning, but the key difference with learning a regression model in RL
is that learning is performed online, with non-stationary expected state re-
wards. Therefore, the regression model needs to be able to incorporate new
examples and changes to the existing data as the expected values for states

18 Chapter 2 Background

change. This can be achieved either by using an incremental regression model
or learning function approximators with batches of examples (known as
batch RL). Theoretically, any supervised learning algorithm can be used as
a function approximator, either in an incremental or batch fashion, e.g. lin-
ear function approximation (Samuel, 1967; Utgoff and Precup, 1998), decision
trees (Chapman and Kaelbling, 1991; Wang and Dietterich, 1999), neural
networks (Tesauro, 1994; Bertsekas and Tsitsiklis, 1996), evolutionary methods
(Whiteson and Stone, 2006), kernel-based methods (Ormoneit and Sen, 2002)
and support-vector machines (Dietterich and Wang, 2001).

Direct Policy Search

Most approaches in RL learn an optimal policy by maximising the expected
value of actions, where the expected value is either computed from a table
of values or a value-function approximation. Direct policy search com-
pletely skips the need for expected values by instead computing a policy
directly. Value functions are typically larger than the policies generated
from them, and usually encode more information than the policy requires.
For example, given a simple ‘corridor’ environment of length ten, where
the actions available are to go left or right, and the goal is to be in the
far right edge of the corridor, a value function needs to represent the ex-
pected value for each state and each action, whereas a policy simply needs
to say go right.

An obvious method of learning policies is to treat RL as a supervised learning
problem by gathering a number of good examples (goal-achieving) and use
them as input to a classification model. This method transforms RL into
a series of supervised learning tasks (Barto and Dietterich, 2004; Langford
and Zadrozny, 2005). Lagoudakis and Parr (2003) use an approximate policy
iteration (API) framework that uses policy rollouts (Boyan and Moore, 1995)
to create a number of policy samples as input for a classifier algorithm.

P-learning (Džeroski et al., 2001) is partially a value-function approxima-
tion method as it maintains the same structure as Q-learning, but instead
of encoding the expected state values, it simply encodes whether an action
within a state is optimal or not (1 for optimal, 0 for non-optimal). This usu-
ally results in a smaller representation of the state compared to Q-learning,
and does not need to maintain the expected value of state-actions.

2.1 Reinforcement Learning 19

A policy gradient approach uses gradient-descent techniques to locate the
optimal policy. By representing the policy such that a gradient can be
defined for its parameters, the optimal policy can be found by using tech-
niques such as hill-climbing. The REINFORCE algorithm (Williams, 1992)
learns the policy gradient by repeatedly testing the policy against the en-
vironment, then updating the weights of the policy through hill-climbing.
A problem with this algorithm is that it is on-policy and can be relatively
slow. Sutton et al. (1999a) extend the REINFORCE algorithm by combining
it with function approximation to aid the policy gradient estimation and
speed up the rate of convergence.

Baird and Moore (1999) present an alternative policy gradient method
named VAPS (Value and Policy Search). The VAPS algorithm combines
both value function approximation and policy search, allowing the agent
to select actions using either technique. Wierstra and Schmidhuber (2007)
adapt the actor-critic method to learn policy gradient critics in POMDP
environments.

Policies can be generated through the use of an Evolutionary Algorithm
(EA) (Holland, 1992; Goldberg, 1989), either by evolving the entire policy,
or the individual rules that compose the policy (Moriarty et al., 1999). EA
maintains a population of chromosomes, where the best chromosomes are
mutated to produce different chromosomes. EAs require two key factor for
creating policies: 1) an evolvable policy representation, 2) an appropriate
fitness function for the policies. The reward function typically serves as
the fitness function (i.e. reward received for the episode). EAs have been
combined with RL to evolve rule-based policies (Smith, 1983; Grefenstette
et al., 1990) and neural networks (neuro-evolution) (Belew et al., 1992; Whit-
ley et al., 1993; Moriarty et al., 1999).

An alternative application of EA is to learn parts of the policy and bring
them together in combination. In these systems, learning is performed
both on the overall structure of the policy and on the individual compo-
nents that make up the policy. Learning Classifier Systems (LCSs) (Hol-
land, 1995; Lanzi et al., 2000) use a EA and RL techniques to maintain a
population of ‘if-then’ classifiers that map input to an action. The classifiers
represent the agent’s policy, so when input is received, all classifiers with
matching conditions activate. Every classifier has a strength associated with

20 Chapter 2 Background

it that records the expected reward (like value-based RL techniques) and
that strength is also used as a fitness function for selecting classifiers for ge-
netic mutation operations. Dorigo and Colombetti (1998) combine several
LCSs hierarchically to learn behaviour for multiple subtasks.

The XCS classifier (Wilson, 1995) alters the LCS algorithm by using the ac-
curacy of a classifier as the fitness function for genetic mutations instead of
the strength. The accuracy of a classifier is the error between the classifier’s
expected reward and the actual reward received. The fitness of a classifier
is a function of the inverse error such that classifiers that accurately pre-
dict the reward received are more favourable than those that simply have a
high, but erroneous, expected reward. The ‘Hayek machine’ (Baum, 1999)
is similar to an LCS in that it maintains a collection of agents that bid on
which actions to take, where agents that bid on high-quality actions receive
a relative reward. This strategy allows each agent to focus its bids and rule
learning on sub-problems within the environment. The rules each agent
uses are created through evolutionary methods of mutation and random
initial conditions.

Symbiotic, Adaptive Neuro-Evolution (SANE) (Moriarty and Mikkulainen,
1996) uses a neuro-evolution approach to learning behaviour by using sym-
biotic evolution to learn weights for individual neurons within a larger fixed-
size neural network. Each neuron only learns a portion of the policy but
they rely on other neurons to create effective behaviour. Neuro-Evolution
of Augmenting Topologies (NEAT) (Stanley and Miikkulainen, 2002) is an
extension to SANE that allows the topology of the network to change rather
than using static-structure networks. Potter and De Jong (2000) define a
rule-based form of symbiotic evolution, where each chromosome in the
population represents a set of rules that only address a subset of the task.

The Cross-Entropy Method (CEM) is a relatively recent optimisation algo-
rithm similar to Learning Classifier Systems and Evolutionary Algorithms
(Rubinstein, 1997; De Boer et al., 2004). The CEM can be summarised in
two steps: 1) Generate a number of random samples from the current dis-
tribution of data, 2) Update the data distribution such that the best subset
of the random samples (elite samples) are more likely to be sampled in the
next iteration (i.e. minimise the cross-entropy distance between the current
distribution and the observed elite samples). Applied to RL problems, it

2.1 Reinforcement Learning 21

can be used to generate a number of policies, the best of which are used
to influence the sampling distribution such that they are more likely to
be randomly sampled again. Although CEM has been applied to a multi-
tude of different problems, this subsection only describes the applications
of CEM to RL. Other applications include clustering (Kroese et al., 2007),
control and navigation (Helvik and Wittner, 2001), DNA sequencing (Keith
and Kroese, 2002), network reliability (Hui et al., 2005), and continuous
optimisation (Kroese et al., 2006).

Mannor et al. (2003) demonstrate a simple application of CEM to a maze-
traversing RL by representing the agent’s policy as an action distribution
(e.g. move up, down, left, or right) for every location in the maze. The al-
gorithm learns by generating N policy samples, testing them, and the best
policy samples (elite samples) are used to update the sampling probabilities
for every action distribution, such that favourable actions are more likely
to be sampled. Chaslot et al. (2008) apply CEM towards playing the board
game Go by using it to tune the parameters of a Monte-Carlo Tree Search al-
gorithm, improving the results of the algorithm over the non-tuned learner.
Szita and Lörincz (2006) apply CEM to the Tetris video-game by represent-
ing the policy as a vector of weights for features in the game. They also
inject noise into the sampling process to reduce the likelihood of early con-
vergence. Thiery and Scherrer (2009) improve upon this work by adding
additional features and Kistemaker (2008) also applies CEM to learning to
play Tetris.

Szita and Lörincz (2007) create rule-based decision-list policies for playing
the Ms. Pac-Man game by using the CEM to identify which rules are useful
and what order they should be used in. Each decision-list policy is created
from multiple rule distributions by sampling one rule from each distribu-
tion where each distribution also has a probability of being included in
the sampled policy. Each distribution contains the same ‘condition-action’
rules that use high-level actions for the agent’s behaviour (e.g. toDot,
fromGhost, etc. rather than directional movement). The order of the rules
in the policy is dependent on the order of the distributions. The sampled
policies are also hierarchically structured such that multiple rules can be ac-
tivated at once (e.g. Ms. Pac-Man can eat dots while avoiding ghosts). The
algorithm evaluates a number of sampled policies and uses the best poli-
cies (the elite policies) to alter the rule distributions such that effective rules

22 Chapter 2 Background

are more likely to be included in later policies. The authors use predefined
rules, but they also run experiments using (bounded) randomly generated
rules. The research presented in this thesis was initially based upon this
work and uses a similar (relational) method of acting in the Ms. Pac-Man

environment.

2.1.4 Reinforcement Learning Summary

The above summary of algorithms shows that there already exist a large
number of solutions for RL problems but all solutions have a common
weakness: they can only learn behaviour in environments where the repre-
sentation is a static set of features. In many cases this is sufficient, but often
an environment will utilise a changing number of objects and relations be-
tween objects. This can be dealt with by adjusting the state representation
to represent all possible aspects of the environment but every additional
object or relation can exponentially increase the number of features re-
quired to model every possible state of the environment. The following
section introduces Relational Reinforcement Learning (RRL), a subfield of
RL in which an environment is represented as a collection of objects and
relations, providing more freedom in expressing the environment state.

2.2 Relational Reinforcement Learning
Relational Reinforcement Learning (RRL) is a representational generali-
sation of RL that expresses the environment as logical relations between
objects and actions taken upon those objects (Džeroski et al., 2001). Tra-
ditional RL algorithms are based in propositional environments, where the
structure of the states is fixed. But in more complex environments this form
of state representation is not sufficient. States can be dynamically chang-
ing, introducing new objects or removing old objects. RRL represents these
object-based environments using first-order logic, both for observations on
states, and for actions to take within states.

RRL is strongly based on the field of Inductive Logic Programming (ILP),
a subfield of ML in which hypotheses are inductively learned from a set
of logically-defined examples (Lloyd, 1993; Genesereth and Nilsson, 1987;
Muggleton, 1991; Dzeroski, 2001). Examples are represented as sets of facts

2.2 Relational Reinforcement Learning 23

consisting of objects and relations, and additional information about the
examples can be inferred using background knowledge to infer new facts.
ILP’s expressive representation of facts is ideal for representing problems
with a non-fixed number of features.

The syntax used in RRL is strongly based on ILP syntax, defined below
(for a full definition, see Lloyd (1993), Genesereth and Nilsson (1987) or
Dzeroski (2001)):

Definition 2.2.1 (Logic Programming Syntax). Each environment defines
an alphabet Γ of predicates that make up the relational state observations, a sep-
arate set of predicates that make up the available relational actions an agent
can take, and a set of named objects (constants) that are present within the
environment. Each predicate is instantiated with terms: either a constant,
variable, or function. Constants represent unique objects within the environ-
ment, variables are placeholders for constants, and functions return a value
when provided with argument terms. An atom is a predicate that contains
terms. A literal is a negated or non-negated atom. If an atom or literal
does not contain any variable terms, it is grounded. A substitution is a set of
assignments of terms to variables, where each variable is only assigned a
single term.

The Herbrand base of Γ (HBΓ) is the set of all ground atoms that can be
constructed with the state predicates PS (and action predicates PA) and the
constants C. A Herbrand interpretation is a subset of HBΓ.

The main advantage of this alternative representation is the flexibility in
expressing facts about the environment. Where traditional RL defines a
fixed set of attributes with which to represent the environment, RRL is
able to describe any number of facts about any number of objects.

2.2.1 Relational Markov Decision Process

Relational environments are structured using the Relational Markov Deci-
sion Process (RMDP) framework; an extension of the MDP framework seen
in Section 2.1.1. There are multiple definitions of RMDPs (e.g. Wang et al.
(2008), Croonenborghs et al. (2007), Kersting and Raedt (2004), Fern et al.
(2006)), and we use the same one given in Croonenborghs et al. (2007):

Definition 2.2.2 (Relational Markov Decision Process (RMDP)). An RMDP

24 Chapter 2 Background

is defined as the five-tuple M = 〈PS, PA, C, T, R〉, where PS is a set of state
predicates, PA is a set of action predicates, and C is a set of constants.
A ground state (action) atom is of the form p(c1, . . . , cn) with p/n ∈ PS

(p/n ∈ PA) and ∀i : ci ∈ C. A state in the state space S is a set of ground
state atoms; an action in the action state A is a ground action atom. The
transition function T and reward function R are defined as usual by T :
S× A× S→ [0, 1] and R : S× A× S→ R.

The Herbrand base for an RMDP defines all the possible atoms used to
describe a state, though not every atom is necessarily legal. Some combi-
nations of constants could be infeasible for the current environment, and
some combinations of atoms could represent illegal states.

Note that compared to an MDP definition, the RMDP definition is one
which implicitly defines the state and action space, as it simply defines
the components that compose the state and action space. Because states
may have any number of facts, an explicit definition of the state space is
impossible because the number of states may be infinite. However, this
flexibility is also the primary benefit of RRL as there are no restrictions on
which objects or facts are present.

An example environment commonly used in RRL and planning algorithms
is the Blocks World environment (Slaney and Thiébaux, 2001). It consists
of a number of blocks stacked on top of one-another, and a floor upon
which to stack the blocks. A full definition of Blocks World can be found
in Section 3.3. A possible RMDP for a small Blocks World is as follows:

Example 2.2.1 (Blocks World RMDP). Defining the Blocks World alpha-
bet as PS = {on/2, clear/1} (such that on takes two arguments and clear
takes one argument), PA = {move/2}, and C = {a, b, c, d, e, f , fl}, a possible
state could be s1 = {clear(a), on(a, b), on(b, d), on(d, e), on(e, c), on(c, fl)}. s1

defines a single stack of blocks, with a on top and a single action A(s1) =

{move(a, fl)}, which moves block a to the fl, resulting in state s2 (with some
probability given by T(s1, a1, s2) and reward given by R(s1, a1, s2)). Note
that the block f is not present in the state, because relational states do not
necessarily need to include every object.

2.2 Relational Reinforcement Learning 25

2.2.2 Benefits and Challenges of RRL

The relational format has several benefits over the propositional represen-
tation in RL:

• States may contain any (legal) combination of objects and relations.
Each state is a snapshot of the current state of the environment, with
information about each object and the relations between the objects
composing the state description.

• Actions can directly relate to the objects in the state. In proposi-
tional representations, actions may only implicitly relate to objects
(e.g. openDoor1, openDoor2), whereas relational representations ex-
plicitly define the objects required for the action (e.g. open(door1),
open(door2)).

• The first-order representation allows agents to leverage variables to
generalise across objects. This is one of the most important abstrac-
tions of RRL as it allows an agent to define generalised behaviour by
acting upon objects that satisfy the relational properties, rather than
defining behaviour for each individual object.

• Background knowledge can be provided by the environment that defines
rules to automatically infer new facts and define illegal states.

However, it also introduces a number of new challenges as well:

• The flexibility of state descriptions results in an enormous number
of possible states, even when using background knowledge to remove
illegal states. This makes brute-force state-action tables impractical,
so abstractions must be used to create effective learners.

• Measuring distances between first-order states is more difficult than
propositional representations due to the variable number of facts and
objects present between states.

• First-order reasoning is generally slower than propositional methods.

van Otterlo and Kersting (2004) provide more detail about the challenges
faced by RRL.

26 Chapter 2 Background

2.3 Existing RRL Algorithms
This section briefly summarises the distinct approaches that have been used
to learn behaviour within RRL problems, many of which are based on tech-
niques presented in Section 2.1. Refer to the following for comprehensive
surveys on RRL techniques: van Otterlo and Kersting (2004), Tadepalli
et al. (2004), van Otterlo (2005), van Otterlo (2009), or the most recent sur-
vey Wiering and van Otterlo (2012).

There are three primary approaches towards solving RRL problems: static
generalisation methods, which provide the environment generalisations for
value-based methods prior to learning (model-based methods also fall into
this approach); dynamic generalisation methods, which create generalisations
for the environment and use value-based methods for learning; and policy
search methods, which create policies directly, thereby removing the need to
generalise the states of the environment. This section will describe each
approach and discuss existing algorithms that have been created for each
approach.

Static Generalisation Methods

Static generalisation methods provide an abstraction of the state-actions
table such that each entry represents a partial, possibly variable, abstract
state. Standard value-based learning techniques are then used to locate
the optimal policy for the abstract state-action table. This includes algo-
rithms such as CARCASS (van Otterlo, 2004), Logical Markov Decision
Process (LOMDP) framework (Kersting and Raedt, 2004), and Relational
Q-learning (rQ) (Morales, 2003).

Dynamic Generalisation Methods

One of the earliest algorithms for solving RRL problems was the RRL-
system (Džeroski et al., 2001; Driessens, 2004), which combined RL and ILP
to define a general system for learning Q-functions in RRL problems. The
basic idea of the algorithm is to gather a collection of state-action examples
over the course of an episode, updating the Q-value of each state-action
pair using Q-learning, then use the examples as input into a relational
regression classifier to produce a compact classifier that predicts the Q-
value for a state-action.

2.3 Existing RRL Algorithms 27

The first implementation of the RRL-system used the TILDE-RT relational
decision-tree learner (Blockeel and De Raedt, 1998) to represent the Q-
function (denoted as the Q-RRL algorithm). Each node contains a test
consisting of a single query that may share variables with other nodes and
the leaves of the tree contain Q-values. The main problems with Q-RRL is
that it needs to store each state-action example in order to learn an accu-
rate function approximator and that it builds a new tree after every episode
(which takes increasingly longer as the set of examples grows). Driessens
(2004) created several incremental algorithms that remove the need to store
each example: RRL-TG, an incremental relational decision-tree learner that
learns trees of the same structure as the TILDE-RT (Driessens et al., 2001);
RRL-RIB, an instance-based learner that uses a set of well-chosen, expe-
rienced state-action instances to calculate distances for state-action pairs
(Driessens and Ramon, 2003). This distance metric needs to be defined
beforehand by the user. RRL-KBR uses graph kernels and Gaussian pro-
cesses as a regression technique for approximating the value of state-action
pairs (Driessens et al., 2006).

The RRL-TG algorithm was also extended into several different directions:
TGR incorporates tree-restructuring operations to mitigate the effects of
ineffective splits or tests by pruning sub-trees or revising the split (Ramon
et al., 2007). TGR is also able to capably deal with concept drift (goal of
the environment changes). Driessens and Džeroski (2005) combined RRL-
TG and RRL-RIB to create Trendi, a tree-based model with instance-based
representation for the leaves of the tree.

The NPPG algorithm (Kersting and Driessens, 2008) uses policy-gradient
techniques to optimise a weighted sum of regression models created in
stage-wise optimisation during learning. The regression models are cre-
ated using boosting: each regression model is created to cover the examples
previous models do not adequately cover. In the relational setting, this
can mean creating a model for previously unseen features of the state.
Each model is also weighted by a value that is multiplied with the model’s
output predictions. This value can be changed using policy gradient tech-
niques to create better weights. The overall combined model resulting from
the regression models accurately approximates the value function for rela-
tional, propositional and continuous domains (by using the appropriate
regression models for the problem) and does so relatively quickly. Natara-

28 Chapter 2 Background

jan et al. (2011) adapted this algorithm for imitation learning in relational
domains.

An alternative to learning expected values is to learn the structure of an
environment as a probabilistic model of transitions and reward, then use
the model to create the best policy. SVRRL (Sanner, 2005) learns new fea-
tures by probabilistically observing frequencies of joint features as input to
a relational naive Bayes network of success within win-lose environments
(environments in which the agent receives a single terminal reward: either
1 or 0). It is able to learn a concise set of features and an effective strategy
in a relatively low number of training episodes. The QLARC algorithm
(Croonenborghs et al., 2004) learns probabilistic rules for the effects actions
have upon the state that the agent can utilise to perform look-ahead op-
timisation for achieving the goal. MARLIE (Croonenborghs et al., 2007)
extends this by learning a probability tree that models if a given predicate
will be true after taking an action, given the current state and action.

Policy Search Approaches

RRL algorithms employ many of the same direct policy search algorithms
as seen in RL algorithms. As with RL techniques, direct policy search
algorithms are able to ignore the value-function representation of the state
space, which is a considerable advantage in relational state spaces, which
can be enormous (or even infinitely large). Furthermore, policies are able
to generalise over unseen states and scale to larger problems.

As with RL, the most straightforward approach to learning a policy is to
treat the RRL problem as a classification problem by using Inductive Logic
Programming (ILP) algorithms to learn the policy. The Q-RRL algorithm
(Džeroski et al., 2001) uses the TILDE algorithm to learn a P-function in
place of a Q-function (that is, assign actions as optimal or non-optimal). This
variation is known as P-RRL. Other approaches (Khardon, 1999; Yoon et al.,
2002; Martı́n and Geffner, 2004) also follow a similar method of gathering
state-action pairs of optimal policies for learning a model of the policy us-
ing the pairs as positive examples. One problem with supervised learning
approaches is that learning requires sufficient positive examples to learn an
effective model of the policy. Driessens and Džeroski (2004) demonstrate
the positive effects of introducing guidance to learning, however an agent
may not always have an oracle from which to get guidance.

2.3 Existing RRL Algorithms 29

The LRW-API approach (Fern et al., 2006) learns a policy by iteratively per-
forming batches of policy rollouts (Boyan and Moore, 1995) as an approximate
policy iteration algorithm. The algorithm assumes an environment model,
such that any state can be sampled at any time, and estimates the value of
an action by creating w policy trajectories of length h from state s. These
trajectories approximate the expected advantage of each action, which is the
expected gain over existing Q-value estimates, such that learning is focused
on examples with a greater advantage. The algorithm is able to learn poli-
cies for complex problems by first learning on random worlds (LRW) which
are initially very small. Each world is created by performing n random ac-
tions to set a goal state which is not trivial to reach with the current policy.
A policy is learned to solve that goal, then n is increased again, and so on.
The main disadvantage of this method is the ‘controlled experiment’ as-
sumption that the world model can be accessed at any state, whereas RRL
world models are typically ‘black boxes’ that only allow a single action per
state.

There are a number of evolutionary approaches to creating relational poli-
cies. Grey (Muller and van Otterlo, 2005) is an application of the standard
Genetic Algorithm (GA) (Goldberg, 1989) to learning relational decision list
policies. Each chromosome in the population is a relational policy contain-
ing a set of probabilistically evaluated relational rules. Mutation involves
adding or altering rules (by adding conditions or grounding variables to
constants) in a policy and combination of chromosomes using one-point
crossover to combine rules from different policies. Gapi (van Otterlo and
De Vuyst, 2009) is a similar implementation using the GA, but it includes
the use of goal variables which allow the learned policies to be parameteris-
able. The previously mentioned Hayek machine (Baum, 1999), which can
also be altered to operate within relational environments, was able to solve
a 10-block Blocks World problem by dividing the work amongst many
agents. Each agent contained evolutionarily created and mutated rules
which it applied to the problem by ‘bidding’ when it chose to apply them.

Foxcs (Mellor, 2008a,b) extends the XCS system ((Wilson, 1995, see Section
2.1.3) by learning first-order rules for acting in relational environments.
Instead of the bit-string representation, Foxcs uses a first-order clause to
match states. New rules are created by setting the rule conditions as a ran-
dom generalised subset of the current state when no other rules match the

30 Chapter 2 Background

state. Better rules are found by performing GA mutations on existing rules
by altering their conditions (adding/removing literals, generalising/spec-
ifying variable terms). A Foxcs policy is the total population of all rules,
where the action output for a state is probabilistically selected from the set
of all matching rules, using rule accuracy (inverse of prediction error) to
bias selection.

2.4 Application to Game Environments
Games make ideal testbeds for reinforcement learning algorithms due to
their obvious reward signal (win, lose, or a numerical score), simple rules,
and complex gameplay. Games can be in many different formats, from
board games such as Chess, Go and Backgammon, to classic video-games
like Tetris and Pac-Man, to real-world (robotic) sports games like the
RoboCup tasks.

Board Games

One of the earliest achievements of RL (and AI game-playing) was the
Checkers playing algorithm by Samuel (1967), which uses a linear function-
approximator to represent the expected return of states. Another famous
approach is TD-Gammon, a Backgammon playing algorithm developed by
Tesauro (1994). The algorithm used a three-layer neural network as a value-
function approximator in combination with temporal difference learning
to produce an advanced agent that played at the level of human experts,
even learning a never-before-seen strategy. Sanner (2005) also uses the
Backgammon game as a testbed. Other ‘classic’ board games that have
been the focus of RL algorithms are Chess (Thrun, 1995; Baxter et al., 1998)
and Go (Silver et al., 2007; Mayer, 2007). In most approaches, agent training
was achieved by playing against itself.

Modern board games, otherwise known as German-style board games or eu-
rogames, are also beginning to be used as testbeds for AI. Modern board
games, compared to ‘American-style’ board games such as Monopoly

1 or
The Game of Life

2, focus more on strategic elements rather than luck,
and typically keep all players in the game until it ends. Several learn-

1Monopoly was originally published by Parker Brothers in 1904.
2The Game of Life was originally created by Milton Bradley in 1860.

2.4 Application to Game Environments 31

ing algorithms have been developed for playing the resource-trading game
Settlers of Catan

3 (Pfeiffer, 2004; Szita et al., 2009). The game Carcas-
sonne

4 is a well-known game of tile placement with relatively simple rules.
The variability of the tile-placements results in too many possible states for
a brute-force propositional approach. So far, there only appears to be a
single approach to developing an AI for Carcassonne (Heyden, 2009),
though there are AI players available in commercial5 and open-source im-
plementations.6

Video-games

Classic video-games are video-games that typically have a 2D layout, sim-
plistic graphics, basic but not necessarily easy gameplay, and were typically
created in the 1980’s or earlier. Example games and the learning algorithms
applied to them are defined below:

• Tetris
7: policy iteration (Bertsekas and Tsitsiklis, 1996), the RRL meth-

ods developed by Driessens (2004) (RRL-TG, RRL-RIB, and RRL-KBR),
genetic algorithm (Böhm et al., 2005), and policy-gradient cross-entropy
method (Szita and Lörincz, 2006; Thiery and Scherrer, 2009).

• Pac-Man and Ms. Pac-Man
8: rule-based evolutionary approach (Gal-

lagher and Ryan, 2003), neural network (Lucas, 2005), rule-based cross-
entropy method (Szita and Lörincz, 2007), and Monte-Carlo tree search
(Ikehata and Ito, 2011).

• Mario, based on the Super Mario Bros. game9: neuro-evolution (To-
gelius et al., 2009), cognitive architecture (Mohan and Laird, 2009),
and grammatically evolved behaviour trees (Perez et al., 2011).

In all the previously mentioned games, the gameplay is simple enough for
a child to grasp, but often proves to be difficult for an AI to learn effective
behaviour for.

3Settlers of Catan was designed by Klaus Teuber and published by Franckh-Kosmos
Verlag in 1995.

4Carcassonne was designed by Klaus-Jürgen Wrede and published by Rio Grande
Games in 2000.

5Carcassonne for iOS: http://carcassonneapp.com/
6jCloisterZone: http://jcloisterzone.com/
7Tetris was created by Alexey Pajitnov in 1984.
8Pac-Man and Ms. Pac-Man are trademark Namco Bandai Games.
9Super Mario Bros. was developed by Nintendo for the Nintendo Entertainment System.

http://carcassonneapp.com/
http://jcloisterzone.com/

32 Chapter 2 Background

In the past few years, learning algorithms have been applied to modern
video-games as well. Some example testbed games include: first-person
shooter Unreal Tournament

10 (Jacobs et al., 2005; van Hoorn et al., 2009),
3D car racing games (Whiteson et al., 2005; Togelius and Lucas, 2006), role-
playing game Baldur’s Gate

11 (Szita et al., 2008), simulation game Civil-
isation II12 (Branavan et al., 2011), and real-time strategy games (Guestrin
et al., 2003; Ponsen et al., 2006; Sharma et al., 2007).

It is often the case that an algorithm interacts directly with the video-game
software itself; states and actions are extracted through some ‘wrapper’
interface. In these cases, the (R)MDP is assumed to be implicit for the
environment, though games are often POMDPs.

Other games

TicTacToe is a commonly-used toy problem for minimax problems and
has also been used to demonstrate behaviour in several RL problems, such
as multi-agent learning and transfer learning (Boyan, 1992; Olson, 1993;
Sutton and Barto, 1998; Ramon et al., 2007; Croonenborghs et al., 2008).

A grand goal for AI is to be advanced enough such that, when com-
bined with robotics, it could fully control a functional soccer team and win
against the best human team. This is the goal of the RoboCup competition.
Although RL techniques (and the field of robotics) are not yet advanced
enough to control a fully functional robotic soccer team, the ‘keep-away’
subtask of the RoboCup (Stone et al., 2005a) is an ideal multi-agent en-
vironment focusing on cooperation (Walker et al., 2004; Taylor and Stone,
2005; Stone et al., 2005b).

General Game Playing (GGP) (Genesereth et al., 2005) is a subfield of AI
in which an agent is able to play any game, given the full specifications of
the game in Game Description Language. This language is represented as a
set of logical facts and rules, making it ideal for RRL algorithms. Because
the environment model is known, planning or dynamic programming ap-
proaches would also work as well.

10Unreal Tournament was developed by Epic Games and Digital Extremes in 1999.
11Baldur’s Gate was developed by BioWare in 1998.
12Civilisation II was developed by Brian Reynolds, Douglas Caspian-Kaufman and Jeff

Briggs in 1996.

2.5 Summary and Discussion 33

2.5 Summary and Discussion
The above summary of various approaches towards solving RRL (and RL)
problems is only an overview of the various existing algorithms but demon-
strates that there are many different methods of solving RRL problems.
This research aims to solve problems in which the environment model is
not known, nor is it known if the environment model conforms to the MDP
framework, so dynamic programming approaches are not likely to be use-
ful. Static generalisations for environments are also unlikely to be utilised,
as they typically require human intervention to define an effective general-
isation and one of this goals of this research is to minimise human input to
the learning process as much as possible.

The majority of algorithms for solving RRL or RL problems are value-
based, but value-based methods have a common weakness: they are re-
quired to predict an expected value for every state (or in the case of Q-
learning, every state-action combination). A naive method of achieving this
is to repeatedly attempt to visit every state and perform every action until a
close approximation to the true values is learned, but this is only practical
in very small problems. Techniques for approximating the value-function
(or Q-function) have been shown to be effective for a range of different
approximation techniques, but the number of states still affects the learn-
ing rate and/or performance achieved. Using guidance or domain-specific
techniques can simplify the learning problem, but this requires interven-
tion from some external agent.

Policy-search learning methods attempt to learn the agent’s policy directly,
avoiding the need to record rewards received for every state. Value func-
tions typically represent more than they need to and implicitly encode the
‘distance’ to the problem goal, making them vulnerable to non-(R)MDP
or partially observable environments, whereas policy-search methods are
less affected by such environments as they do not need to record values
for individual states. Policy search as classification requires enough posi-
tive examples to be able to build an effective model, something which can
be difficult to achieve in the beginning of learning without guidance. The
LRW-API (Fern et al., 2006) algorithm was able to overcome this problem
by learning policies for reduced versions of the problem, but it also re-
quired access to a world model that allows it to sample any state at any

34 Chapter 2 Background

time in order to learn approximate Q-values for actions. Foxcs’s method
of learning values for rules does encodes a value-function of sorts, and
so is affected by the number of states (performance decreases with larger
environments, Mellor (2008a)).

Grey and Gapi perform direct policy-search using Evolutionary Algorithm
(EA) techniques where an agent’s policy is represented as a decision-list of
condition-action rules. This form of policy-search does not rely on human
intervention and produces relatively comprehensible behaviour, satisfying
two of the three goals of this research. A downside with these EA ap-
proaches is that they often require large populations of samples in order to
learn effective solutions. One of the EA-style algorithms reviewed was the
Cross-Entropy Method (CEM), which maintains a probabilistic distribution
of solutions, rather than the harsher approaches of genetic algorithms in
which solutions may be lost through random mutation. The CEM has been
shown to be effective in RL environments, so this research will investigate
the applicability of the CEM to learning decision-list style policies in RRL
settings. Furthermore, (Szita and Lörincz, 2008) proposed two incremental
alternatives to the standard population-based model of learning, providing
a possible solution to the third research goal of learning behaviour quickly.

RRL algorithms have reached the point where learning an optimal pol-
icy for the standard environment Blocks World with the OnG0G1 goal
(place block X onto block Y) is relatively straightforward (Fern et al., 2006;
Kersting and Driessens, 2008; Mellor, 2008a; van Otterlo and De Vuyst,
2009). Section 2.4 listed a number of games that learning algorithms have
been applied to. Most of the games are relatively easy for humans to play
(and usually somewhat harder to master, e.g. Chess, Go, Tetris), but AI
techniques still struggle. Many of the algorithms only perform well on
the games they were created for (with the obvious exception of GGP al-
gorithms), but they do not necessarily generalise well to different games.
This research aims to create an agent capable of playing a wide range of
games, and so will be explicitly tested upon a range of game environments.
The algorithm created will also be tested on Blocks World to ensure it is
comparable to existing techniques (and to easily demonstrate key concepts
using a well-known environment).

3
Relationally Defined Environments

The goal of this research is to develop a learning agent capable of effec-
tively learning human-comprehensible behaviour in a range of environ-
ments, large and small. In order to achieve such a goal, there needs to be
a common representation for the environments, such that the same learn-
ing agent is able to interact with each one without drastically altering its
method of learning. Relational representations are flexible enough to rep-
resent many different environments, as environmental state observations
can be composed of any number of objects and relations using the pred-
icates defined by the environment. The actions available to the agent can
also change based on the objects and relations present in the state.

This chapter focuses on fully defining the structures used throughout the
thesis. Before any high level definitions are explained, the terminology
used throughout the rest of the thesis is defined, beginning with the specific
syntax of the rule-engine used to define the relational states, to the various
argument types and internal conditions seen within state facts and rules
created by the agent.

The second part of this chapter (Section 3.2) defines the common relational
structure in which the environments are specified. Each environment is
required to have a set of observations, a set of actions, and a goal. En-
vironments may also optionally specify rules that automatically generate
observations and define the preconditions to generate actions, as well as
other optional additions.

36 Chapter 3 Relationally Defined Environments

Finally, the four relational environments used to evaluate the algorithm’s
effectiveness are defined (Sections 3.3–3.6), explaining how each one inter-
acts with the agent and what each environment contributes as an agent
testing platform. Each of the environments must produce relational obser-
vations for the agent, accept relational actions that affect the state of the
environment, and produce a reward based on the agent’s behaviour. The
four testing environments each present different challenges to the learn-
ing agent, which the agent must be able to handle if it is to be deemed a
‘general learner.’

3.1 Terminology
Before explaining how the developed algorithm learns behaviour for acting
in relational environments, the language used to describe the algorithm
and environments throughout the remainder of the thesis must first be
defined.

3.1.1 Syntax and Semantics

This research uses first-order relational rules to interact with a relationally
defined environment, in which the state is described by a number of objects
and relations. To understand the language used to convey this represen-
tation, some concepts must first be defined. The following definitions use
standard ILP syntax (Lavrac and Dzeroski, 1993) with the addition of typed
argument requirements:

• A term t may be either a constant or variable.

• A constant c is a string of characters, beginning with a lowercase letter,
representing a uniquely named object (e.g. a, blinky, cerrla).

• A number is simply a numerical value (integer or floating point), in-
terpreted as a number.

• A variable V is a string of characters, beginning with an uppercase
letter, that serves as an abstract reference to a constant (e.g. X, N3).
When evaluated in a query, a variable binds to a single term using a
substitution map θ = {X1/t1, . . . , Xn/tn} such that all occurrences of
variable Xi are considered to be term ti (written as Xiθ). In this work,

3.1 Terminology 37

variables of different names are implicitly defined to bind to different
terms (except for the anonymous variable, see below).

• The anonymous variable ‘?’ is a special variable that represents any
object. It may bind to any term (including objects that other variables
already bind to) but does not specify a substitution in θ.

• A predicate p is a string of characters, beginning with a lowercase let-
ter, representing a named relation between one or more objects. Each
predicate must define the number and type of arguments it accepts
as a bracketed expression immediately following the predicate name
with n capitalised type names. If a predicate requires a numerical ar-
gument, the type is written as #X where X may be any capitalised
letter. E.g. on(Block, Thing) defines the predicate on, which accepts a
block as the first argument, and a thing as the second argument.

• A type predicate pt is a special predicate for defining the type of an
object. It has an arity of 1 (with no type required) and must be defined
for every object (e.g. thing, ghost, player are all types that can be
assigned to constants). Objects may be of multiple types (e.g. objects
of type block are also of type thing, but not necessarily vice-versa).
Numbers do not need to define their type.

• An atom p(t1, . . . , tn) is a predicate with terms for arguments. Each
term must be of the appropriate type defined by the predicate. E.g. on(X, c)
is an atom with variable X representing a block and constant c (which
must of type thing).

• A ground atom p(c1, . . . , cn) only uses constants for arguments. Each
constant must be of the appropriate type defined by the predicate.

• A fact is a ground atom that is considered true for the current state of
the system. State observations define the conjunction of facts which
are true for the current environment state. E.g. block(a), block(b), on(a,
b) are three facts describing the truth of the state.

• A literal L is an atom or its negation. A negated atom is defined by
prefixing the word not to the atom, e.g. not on(a, b) states that the
relation on(a, b) is not true.

• A clause C is a disjunction of literals ∀X1, . . . , ∀Xn(L1, . . . , Lm) where

38 Chapter 3 Relationally Defined Environments

each Li is a literal and each Xi is a variable occurring in one or more
of the literals. A clause can be written in the form L1, . . . , Ln →
Ln+1, . . . , Lm where the commas on the Left-Hand Side (LHS) rep-
resents a conjunction and the commas on the Right-Hand Side (RHS)
represent a disjunction. Typically there is only a single non-negated
literal on the RHS.

• A clause Ci θ-subsumes another clause Cj if there exists one or more
substitutions for the variables in Ci such that Ciθ ⊆ Cj.

• A rule r = L1, . . . , Ln → T is a combination of literals such that the
LHS of the rule is a conjunction of literals representing a pattern to
match, and the RHS of the rule is a conjunction of one or more non-
negated atoms (T). If T contains variables, they must also be used in
the LHS of the rule. A substitution map is applied to a rule (rθ) by
applying the substitution θ to every literal in r.

Evaluating a rule against a set of atoms s involves checking if the
conditions of the rule θ-subsume the atoms in s. If so, the RHS atom
with the substitution(s) applied is output from the rule as the result
of the evaluation. The application of the output atom(s) depends on
the context in which the rule is evaluated.

As in ILP, all constants and predicates are interpreted with a Herbrand inter-
pretation; that is, every constant is interpreted as itself, and every predicate
is interpreted as the predicate that applies it.

Environment Representation

An environment is defined by three sets of predicates:

• State predicates Ps = {ps,1, . . . , ps,n} define what relations are used to
describe the state observations.

• Type predicates Pt = {pt,1, . . . , pt,n} are a subset of state predicates and
define the types of every object described in the current state.

• Action predicates Pa = {pa,1, . . . , pa,n} define the action predicates an
agent can use to interact with the environment.

An environment state observation consists of a set of facts composed of
state predicates and the current objects of the state describing the current

3.1 Terminology 39

state of the environment s = {ps,1(c1,1, . . . , c1,n), . . . , ps,m(cm,1, . . . , cm,n)}.
The facts of the current state observation are asserted to memory, such that
they are considered true for the current state. The set of valid actions for the
state consist of a set of facts composed of action predicates and objects of
the state A(s) = {pa,1(c1,1, . . . , c1,n), . . . , pa,m(cm,1, . . . , cm,n)}. If the environ-
ment’s current goal specifies any constants, these are defined by the goal
variable substitution map θG = {Gi/ci}, where Gi is an index-dependent
reference to the ith constant in the goal. When it is evaluated, it is substi-
tuted by constant ci. The use of goal variables instead of direct constants
allows the learned behaviour to be parameterisable to any combination of
constants in the goal.

Further information can be added to the state of the environment by us-
ing background knowledge to infer new knowledge from existing knowledge.
Background knowledge is defined as a rule such that when the LHS of the
rule is true with respect to the current state description s, the RHS is also
true and the substituted atom is added to s. E.g. highest(X)→ clear(X) states
that whenever an object is highest, it is also clear.

Details of how each environment transitions from state to state and how
the set of valid actions is created is described in Section 3.2.

Policy Representation

The policies learned by Cerrla are defined as a decision list of condition-
action rules r = ps,1(t1,1, . . . , t1,n), . . . , ps,m(tm,1, . . . , tm,n → pa,i(ti,1, . . . , ti,n),
where the policy is evaluated from top-to-bottom. Each rule is evaluated
against the current state observations s and the outputs of each rule are
returned to the environment in the same order as the rule’s position in the
policy. Each rule in a policy is evaluated independently of other policy
rules (i.e. variable substitutions are not shared between rules). How the
actions are resolved by the environment is dependent on the environment
(see Section 3.2).

E.g. the rule clear(X), highest(Y) → move(X, Y) defines a pattern in which
one object must be clear and another must be highest. If such a pattern is
found in the current state, the substitution(s) are applied to the move action
to produce one or more ground atom move actions.

The arguments of every atom in the rule consist of either constants, num-

40 Chapter 3 Relationally Defined Environments

bers, variables, anonymous variables, or range variables. Range variables
are specially named variables written as Ni, where i is an identifier for
the particular range. Alone, a range variable binds to any number, but if
constrained by dynamic range variables (Lowi ≤ Ni ≤ Highi), it must be
between the Lowi and Highi bounds (inclusive). The bounds are defined as
variable values because they may be subject to change. For more informa-
tion about dynamic ranges, refer to Section 5.5.2.

3.1.2 JESS Rule Engine

This research uses the Java Expert System Shell (Jess) first-order rules en-
gine to facilitate the relational aspect of the environment and algorithm.
Jess was developed by Ernest-Friedman Hill at the Sandia National Lab-
oratories as a Java-based rule engine (Hill, 2003). Jess’ syntax is a super-
set of the CLIPS1 programming language, where statements (atoms, rules,
etc.) consist of nested brackets containing function names and various
symbols (e.g. (block a), (defrule (clear ?X) (highest ?Y) =>

(assert (move ?X ?Y)))). This thesis will use Prolog syntax instead
of Jess’s native syntax for readability, but the semantic intent is the same.

Rete Algorithm

Jess makes use of the Rete algorithm to store facts and efficiently evalu-
ate rules and queries. The Rete algorithm is an efficient pattern matching
algorithm originally designed by Forgy (1982). The algorithm emphasises
speed at the cost of memory by pre-computing partial matches for each
of the facts contained within the structure, such that evaluating pattern-
matches is just a matter of joining partial results.

The algorithm creates a network of interconnected nodes, where each node
takes input, processes the input and, if the node’s test is successful, pro-
duces output to pass down the network. If a set of facts filters all the way
to the bottom of the network, those facts are considered a match for the
pattern (e.g. rule or query) being evaluated. The Rete algorithm is effi-
cient because each node also has a memory of the outputs, such that query
results are pre-computed when the network is constructed and new in-
formation or structure can be quickly processed. The network consists of

1C Language Integrated Production System

3.2 Environment Specification Language 41

several node types: pattern-matching nodes, join nodes, and result nodes.

Pattern-matching nodes consist of a single test condition (such as match-
ing the structure of a fact) that tests each input fact received. If the test
is successful, the fact is passed on as output, otherwise it does nothing.
The testing conditions consist of the conditions present in the rules being
evaluated by the system. E.g. clear(X), above(Y, ?) → move(X)Y creates two
pattern-matching nodes for the two LHS conditions in the rule.

Join nodes combine the outputs of other nodes into a single set of results
using joining tests (e.g. equal variable substitutions). Join nodes define
the structure of the network by defining the connections between pattern-
matching nodes. Join nodes also define special relationships between nodes
such as negated atoms or disjunctions. Because there may be multiple joins
between the inputs, join nodes remember all facts that they receive from
each input (left and right memory). By using this memory, the algorithm is
able to quickly evaluate rules, as each fact need only be tested once per
node.

Result nodes simply output the set of valid substitutions for a rule’s con-
ditions such that the rule conditions θ-subsume the set of currently true
facts. These substitutions are computed from previous joins and pattern-
matching nodes higher up in the network.

The Rete network is also compact, as it reuses results for identical condi-
tions or patterns in separate rules. For example, if we had two rules: A, B, C
and A, B, the network can be compressed by adding an extra output to the
A, B join node (one to a join node with the C pattern-matching node and
one to a result node for the second rule).

3.2 Environment Specification Language
The environments used in this thesis each use a common specification to
define how the environment is represented, and how it is interacted with.
How a problem is presented to a learning agent (known as the language
bias) is very important, as the agent’s behaviour, no matter how advanced,
is restricted by the environment representation. Furthermore, the repre-
sentation of the problem can also effect how efficient the environment is
at representing the state and processing the agent’s actions. As many of

42 Chapter 3 Relationally Defined Environments

these environments are new to RRL, the choice of environment representa-
tion was selected in such a way that a learning algorithm should be able to
create effective behaviour using it.

As defined in Section Section 3.1.1, each environment defines state, type,
and action predicates to represent the state of the environment and the ac-
tions an agent can take within it. Background knowledge rules can be used to
automatically create new knowledge to represent the state, and action rules
can be defined which automatically identify the set of valid actions avail-
able to an agent. Each environment includes a transition function which
either defines formal rules that alter the logical state representation of the
environment, or describes how each action acts upon the environment out-
side of the logical state representation. An environment also defines a re-
ward function which describes how reward is allocated to the agent. Other
environmental details include: constant facts, maximum number of steps per
episode, and goal states.

State Predicates State predicates define the language in which an environ-
mental state is described. Each state predicate is defined by predicate
name, number of arguments, and type of arguments. When a set of
facts representing the environment state is provided to the agent as ob-
servations on the current state, the facts all consist of either state or type
predicates (with constant or number arguments).

Some state predicates are for environmental use only and are not visible
to the agent. I.e. these predicates are only to be used with background
knowledge to infer new information. These predicates are marked with
the symbol †.

Example state predicates include: on(Block, Thing), flying(Enemy),
height(Thing, #H).

Example state facts are: on(a, fl), flying(goomba 42), height(c, 2).

Type Predicates Each object in the environment is defined by one or more
type facts (if an object has multiple types, each type must not conflict
with the other types). Type predicates are single-argument predicates
used to bind objects to typed-groups to assist the learning agent by
restricting the types of objects that can be present in relation and action
facts (known as declarative bias). A type predicate is explicitly defined

3.2 Environment Specification Language 43

as a type predicate in the environment specification.

Types can also be hierarchically arranged by defining an immediate
parent type, such that a single object may be of multiple broader types.
Hierarchical relations between types are written as a← b; c; d; . . . (where
each letter represents a different type predicate) such that any object of
type b, c, or d is also of type a. Formally this is defined as background
knowledge b(X)→ a(X).

Example type predicates are: thing, block, ghost

Example type facts are: thing(mario), block(a), ghost(blinky)

Action Predicates Action predicates define the actions the agent can use
to interact with the environment. Each state predicate is defined by
predicate name, number of arguments, and type of arguments. For
every state in an environment, the set of valid actions (action facts) is
calculated using the action rules (see below).

Example action predicates are: move(Block, Thing), moveTo(Thing, #D),
placeTile(Player, Tile, Location, Orientation)

Example action facts are: move(a, b), moveTo(dot 12, 16), placeTile(cerrla,
tile 8, loc -1 0, r90)

Background Rules Background rules use existing facts in the state to derive
new facts, such that facts do not need to be manually asserted to the
state. When the facts of a state match the LHS of a background knowl-
edge rule, the fact on the RHS is asserted to the state. Note that if the
state changes such that the LHS of the rule is no longer true, the RHS
fact is retracted from the state. Background rules are optional and may
not be required by every environment.

Example background rules are: on(X, Y)→ above(X, B) (whenever X is
on Y, X is also above Y), on(X, Y), above(Y, Z) → above(X, Z) (whenever
X is on Y and Y is above Z, X is above Z).

Action Rules Each action predicate has one or more associated action rules
which define the preconditions necessary for grounded actions to be
available within the current state as valid actions. When the facts of
a state are asserted, the action rules are evaluated against the current
state facts. If the rule produces one or more outputs, each produced

44 Chapter 3 Relationally Defined Environments

action is included in the set of valid actions for the current state.

An example action rule is: clear(X), block(X), clear(Y), not on(X, Y) →
move(X, Y) which states that if block X is clear, and Y is also clear and
not under X, then the action to move X to Y is a valid action.

Transition Rules In some environments, transition rules can be set up which
automatically define the effects of actions selected by the agent. Transi-
tion rules allow the state to automatically be modified when an action
is taken, rather than reasserting all the facts of the environment at ev-
ery step. Transition rules make use of two special operators assert and
retract which each take one fact as an argument to assert/retract the
fact to/from the state observations respectively. In other environments,
defining formal transition rules for modifying the state observations
is not practical (e.g. when the state observations are observations of
an external model of the environment). In that case, the environment
specification informally describes how each action affects the state.

An example transition rule is: move(X, Y), on(X, Z) → assert(on(X, Y)),
retract(move(X, Y)), retract(on(X, Z)) which moves block X onto Z, remov-
ing the move action and the on(X, Y) facts while asserting on(X, Z).

Reward Function Each environment must provide a reward R to the agent
through a reward function. This function does not need to be defined as
a Jess rule, but should be consistent: better performance within the en-
vironment should consistently receive a greater reward than poor per-
formance.

Constant Facts An environment may define a collection of constant facts
that are true in all states. These are formally defined by background
knowledge that is always true, i.e. has no facts on the LHS.

Max Episode Steps Each episode of an environment may be bounded by a
maximum number of steps.

Goal States Goal states define the state in which the goal is achieved. For
every state of an episode, if the goal state θ-subsumes the current facts
of the state, the goal has been achieved. The environment may also
define an informal goal state which is not logically defined, but still
exists in the internal model of the environment.

3.3 Blocks World 45

An example goal state is: ∀X block(X) clear(X)

3.2.1 State Description

The learning agent does not have access to the full environmental model.
At every state, it receives the following information only:

State Observations: represent the current state of the environment. Each
state is composed of both type and relation facts, defined by the envi-
ronment specification.

Valid Actions: define the set of all valid actions that can be taken from this
state (where the action predicates are provided by the state specifica-
tion).

Reward: apart from the first state of the episode, the agent always receives a
reward value, based on the environment’s reward function. This reward
could be as a result of the previous action, or a delayed reward as a
result of many actions.

Goal Substitution Map: defines the constants used in the episode’s current
goal in the form of a goal substitution map θG = {Gi/const}. If there are
no constants in the episode goal, no goal substitution map is provided.

Terminal Flag: indicates if the current state is a terminal state and the episode
has ended. This is to alert the agent that the episode is complete and
provide the agent with the final reward.

Current Agent: in multi-agent environments (e.g. Carcassonne), there may
be multiple agent-behaviours controlled by a single learning agent. The
current agent parameter allows the learning agent to determine which
behaviour to use for the current agent.

3.3 Blocks World
Blocks World is perhaps the most famous environment in relational plan-
ning and learning (Nilsson, 1980; Slaney and Thiébaux, 2001; Russell and
Norvig, 2003). Although it has little practical application (except, perhaps
for shifting containers at a port, for example), it provides a simple envi-
ronment for demonstrating many of the core problems faced by relational

46 Chapter 3 Relationally Defined Environments

reinforcement learners. Blocks World consists of a fixed number of blocks
and a floor large enough to hold them all. Each block is assigned a unique
identifier (a, b, c, . . .). The blocks may be stacked on top of one another or
placed on the floor, but only one block may be moved at a time. Blocks

World goals are defined as various specified configurations of the blocks.

Blocks World is probably the least complex environment that the agent
is tested on (measuring complexity by number of predicates and possible
constants), but possibly the most common environment used within the
RRL field. It introduces the problems of randomised starting states, specific
object-based goals, and success-based rewards (non-minimal rewards are
only received when the goal is achieved). Despite its simplicity, finding
an optimal Blocks World solution has been shown to be NP-hard (Gupta
and Nau, 1992).

Slaney and Thiébaux (2001) presents a formula for calculating the number
of states for worlds with n blocks as:

g(n, k)←
n

∑
i=0

(
n
i

)
(n + k− 1)!
(i + k− 1)!

(3.1)

where k is the number of grounded2 towers of blocks (k = 0 when calcu-
lating all possible state configurations). The number of actions is between
1 and n2 − n (Mellor, 2008a). In a 10-block Blocks World environment,
there are just under 59 million unique states and between 1–90 actions to
take per state, so representing the environment propositionally would be
computationally infeasible.

3.3.1 Episodic Description

Each episode of Blocks World starts with a randomly generated state
of n blocks, with the constraint that the active goal is currently not true.
The initial states are generated using the algorithm defined in Slaney and
Thiébaux (2001):

1. Start with an empty floor and n ungrounded towers each consisting
of a single block.

2. Repeat until all towers are grounded:

2Have been placed on the floor.

3.3 Blocks World 47

a) Arbitrarily select one of the φ yet ungrounded towers.

b) Select the floor with probability g(φ− 1, τ + 1)/g(φ, τ) (τ is the
number of grounded towers) or one of the other towers (grounded
or not) each with probability g(φ− 1, τ)/g(φ, τ), and place the
selected ungrounded tower on to it.

The agent is required to move blocks around until either the goal is met, or
the maximum number of steps are reached.

3.3.2 Specification

State Predicates See Table 3.1 for the state predicates. When a Blocks

World state is observed, only the on and block facts are asserted as
true; all other facts can be inferred from these facts using the background
rules.

Type Predicates Table 3.1 defines the type predicates and their hierarchy.
Each hierarchical rule is added to the background knowledge.

Action Predicates See Table 3.1 for the action predicates.

Background Rules The following background rules are used to assert the
remainder of the object relations to the state:

block(Y), not on(?, Y)→ clear(Y)

on(X, Y)→ above(X, Y)

on(X, Y), above(Y, Z)→ above(X, Z)

Table 3.1: Predicate definitions for Blocks World.
State Predicates
on(Block, Thing) . Block is directly on Thing
above(Block, Thing) . Block is somewhere above Thing
clear(Thing) . Thing can have Blocks placed upon it
highest(Block) . Block is (one of) the highest in the state
†height(Thing, #H) . The height #H of Thing. Not visible to agent.
Action Predicates
move(Block, Thing) . Move a Block on to Thing
Type Hierarchy
thing← block; floor . block and f loor are things

48 Chapter 3 Relationally Defined Environments

on(X, Y), height(Y, N)→ height(X, (N + 1))

height(X, NN), ∀Y (thing(Y), height(Y, (NM ≤ NN)))→ highest(X)

Action Rules The move action rule defines the valid actions that can be taken
in each state:

clear(X), block(X), clear(Y), not on(X, Y)→ move(X, Y)

Transition Rules Actions are resolved using the move transition rule: move(X,
Y), on(X, Z)→ assert(on(X, Y)), retract(move(X, Y)), retract(on(X, Z))

If no action is selected in a state, the episode ends with reward 0.

Reward Function When an episode is complete, either when the goal is
achieved or the maximum number of steps are taken, the agent receives
a reward R of:

R← 1− t− o
M− o

where t is the number of steps taken, o is the optimal (minimum) num-
ber of steps needed to achieve the goal, and M is the maximum number
of steps allowed. Because Blocks World is a simple environment, the
optimal policy can be manually defined to precompute the minimum
number of steps required to complete the goal (the agent does not have
access to this policy or its execution). This reward function is used in
place of a simple −1 per step function because the number of steps to a
goal varies depending on the initial state of the episode (which would
result in large negative rewards for unlucky, but otherwise optimal poli-
cies).

Constant Facts The constant facts that are always true in every Blocks

World goal or size are all constant facts relating to the floor: floor(fl),
clear(fl), height(fl, 0).

Max Episode Steps The maximum number of steps allowed per episode is:
M ← 2n, where n is the number of blocks in the environment. This is
sufficient for all goals evaluated.

3.3.3 Goals

The Blocks World environment has four primary goals:

Stack Place all the blocks into a single tower, such that only one block is

3.4 Ms. Pac-Man 49

on the floor and the rest are above that block. As the blocks may be in
any order, there are multiple states that satisfy this goal. Formally, this
goal is defined as:

on(X, fl), not on(Y, fl)

Unstack Place all blocks on the floor (so every block is clear). There is only
one state that satisfies this goal. Formally, this goal is defined as:

∀X block(X), on(X, fl)

ClearG0 Clear a single block G0, where the replacement for G0 is a block
constant that is not already clear. This goal is also known as ClearA in
other work (G0 is used to emphasise the use of parameterisable goal
variable). G0 changes every episode to a non-clear block. Formally, this
goal is defined as:

clear(G0), block(G0)

OnG0G1 Place block G0 on block G1, where the replacements for G0 and G1

are two different blocks and G0 is not already on G1. This goal is also
known as OnAB in other work (G0G1 was used for clarity). Formally,
this goal is defined as:

on(G0, G1), block(G0), block(G1)

While there are many other possible goals, these four goals are standard
goals in RRL experiments, and will be used for experiments. The size of the
Blocks World environment only changes the number of steps required to
achieve each goal; the definition of the goals remain unchanged. At the
start of an episode, if the goal is already achieved, the environment is re-
initialised with a new state until a state is created where the goal is not
achieved.

3.4 Ms. Pac-Man
Ms. Pac-Man is the (unauthorised) sequel to the famous Pac-Man arcade
video game3 (see Figure 3.1 for an example screenshot). The goal of the
game is for Ms. Pac-Man (the agent) to achieve a high score by eating

3Pac-Man and Ms. Pac-Man are trademark Namco Bandai Games.

50 Chapter 3 Relationally Defined Environments

Figure 3.1: A screenshot of a portion of the MS. PAC-MAN environment.

dots within the level, avoiding hostile ghosts, and eating edible ghosts. The
Ms. Pac-Man environment was originally built from an open-source im-
plementation of Pac-Man.4

Ms. Pac-Man has four simple directional actions, though these are ab-
stracted into higher level actions for the purpose of learning strategic be-
haviour rather than learning how to effectively move about the maze. While
a low-level representation is possible with a relational representation, the
main problem in the environment would be learning how to navigate the
maze, rather than learning effective strategies for achieving the highest
score.

There are four hostile ghosts, each with individual behaviour,5 periodically
released from their cage, which move at the same speed as Ms. Pac-Man.
If a hostile ghost touches Ms. Pac-Man, the agent loses a life and both
the ghosts and Ms. Pac-Man return to their starting positions. Unlike the
original Pac-Man game, the ghosts in Ms. Pac-Man have a 25% chance
of choosing a non-default behaviour direction at a junction (but cannot
turn directly back) so a level cannot be completed by taking a predefined
sequence of actions.

4Originally found at http://www.bennychow.com
5The Pac-Man Dossier (Pittman, 2011) defines each ghost’s behaviour.

http://www.bennychow.com

3.4 Ms. Pac-Man 51

When Ms. Pac-Man eats a powerdot, the ghosts become edible, move at
60% speed, and move in the opposite direction to their normal behaviour
(away from Ms. Pac-Man) for a limited time (the time the ghosts remain
edible decreases per level, see The Pac-Man Dossier (Pittman, 2011, for
exact time). While edible, the ghosts can be eaten by Ms. Pac-Man for an
increasing score bonus for every ghost eaten (see Section 3.4.2 for point
value). When a ghost is eaten, it returns to the cage and is released again
(as a hostile ghost again) after a short time.

Ms. Pac-Man works well as a RRL problem because:

• The state is fully observable with clear objects and relations.

• The reward signal (the score) is obvious and relates directly to the
game.

• Ghosts introduce hostile agents, which actively attempt to limit the
learning agent’s performance. Furthermore the ghost’s behaviour is
non-deterministic, making rigid planned behaviour ineffective.

• It is the first environment to actively require numerical specialisa-
tions for the actions, testing how well the agent deals with numerical
values.

• The agent’s low-level directional movement is calculated from mul-
tiple high-level actions, where the agent may follow one or more
actions simultaneously (e.g. eat dots while avoiding hostile ghosts).
Multiple actions are used to break ties when a rule produces multiple
facts that result in conflicting low-level movement. Szita and Lörincz
(2007) present results demonstrating that following multiple actions
simultaneously achieves better performance than restricting the agent
to a single action.

• Viglietta (2012) proves Pac-Man is NP-hard (to complete a single level
without losing a life). As Ms. Pac-Man is strongly based on Pac-Man
(probably more complex than Pac-Man), the Ms. Pac-Man problem is
also NP-hard.

52 Chapter 3 Relationally Defined Environments

(a) Level layout 1. (b) Level layout 2. (c) Level layout 3.

(d) Level layout 4. (e) Level layout 5.

Figure 3.2: Initial level layouts for the MS. PAC-MAN environment. Each layout is used
for two levels.

3.4.1 Episodic Description

The agent begins each episode on level one, with three lives available to
lose. When the agent successfully eats all dots in the maze, the next level
is loaded, the ghosts are reset to their starting positions, and the agent is
reset to its starting position. Ms. Pac-Man receives a bonus life when it
reaches 10,000 points. Every two levels the layout of the maze changes and
the ghosts in the level become faster and the time in which they are edible
is decreased. If the agent loses all of its lives, the episode ends. The five
level layouts are shown in Figure 3.2

3.4.2 Specification

State Predicates See Table 3.2 for the state predicates. Because there are
multiple non-stationary objects in Ms. Pac-Man, all facts are re-asserted
for every state instead of retracting and asserting new information.

The distance(Thing, #D) predicate is defined as the length of the short-

3.4 Ms. Pac-Man 53

Table 3.2: Predicate definitions for MS. PAC-MAN.
State Predicates
distance(Thing, #D) . Thing is #D units from Ms. Pac-Man

junctionSafety(Junction, #J) . Junction has safety value #J
edible(Ghost) . Ghost is edible
blinking(Ghost) . Ghost is blinking
Action Predicates — where #D (distance) and #J (junctionSa f ety) are meta-
information for resolving actions.
moveTo(Thing, #D) . Move towards Thing
moveFrom(Thing, #D) . Move away from Thing
toJunction(Junction, #J) . Move towards Junction
Type Hierarchy
thing← ghost; dot; powerdot; ghostCentre . All objects are things
junction . An intersection of paths

est path between Ms. Pac-Man and thing. The junctionSafety(Junction,
#J) predicate is defined as the shortest distance between the junction
and nearest ghost minus the distance between the junction and Ms. Pac-
Man. E.g. a junctionSafety(junc 10 12, 4) implies Ms. Pac-Man can reach
junc 10 12 four steps prior to the nearest ghost.

edible and blinking are both qualities the ghosts can have after Ms. Pac-
Man eats a powerdot.

Type Predicates Table 3.2 defines the type predicates and their hierarchy.
Each hierarchical rule is added to the background knowledge.

Action Predicates See Table 3.2 for the action predicates. The numerical
argument within each action is used as meta-information for resolving
Ms. Pac-Man’s movement.

Background Rules Ms. Pac-Man does not define any background rules.

Action Rules The rules for producing the valid actions the agent can take
are as follows:

distance(X, ND)→ moveTo(X, ND)

distance(X, ND)→ moveFrom(X, ND)

junctionSafety(X, NJ)→ toJunction(X, NJ)

where each numerical Ni is used as meta-data for resolving the action

54 Chapter 3 Relationally Defined Environments

into low-level movement.

Transition Rules Ms. Pac-Man does not specify any formal Jess-syntax tran-
sition rules, but Ms. Pac-Man’s movement is determined by iteratively
resolving the actions produced by the policy until a single low-level di-
rection is determined. Ms. Pac-Man can always move in two or more
directions and the action resolution process selects a single direction to
move in.

For each set of action facts produced by the next rule in the policy (eval-
uated first-last), the objects that are closest (#D) or have the highest junc-
tion safety (#J) determine the direction(s) (towards or from) selected. If
moving towards an object, the directions of the shortest path to the ob-
jects are used. If Ms. Pac-Man is moving from an object, the movement is
resolved by removing the shortest path direction as a possible direction
to move in. If there are multiple directions remaining, the next closes-
t/highest junction actions are used to determine direction. If there are
no actions remaining in the current set of actions, the next rule’s set of
actions are used to resolve movement. If no single direction is selected,
either take the same direction as last step, or if not possible, select a
perpendicular direction.

Reward Function The reward function is simply the agent score throughout
the episode. The score is calculated as: 10 points per dot, 50 points per
powerdot, 200, 400, 800, 1600 points respectively for each consecutive
ghost eaten while ghosts are edible. The maximum score that can be
achieved in level one of Ms. Pac-Man is 15,370 points, though this is
very difficult to achieve.

Constant Facts There are no constant facts in Ms. Pac-Man. While the
ghosts are present for the majority of the game, they are not observed
when they are ‘locked-up’ in their cage at the start of a level.

Max Episode Steps There is no bound to the number of steps the agent may
take per episode.

3.4.3 Goals

While there is only one general goal in Ms. Pac-Man (maximise score by
eating dots and ghosts), there are three fundamentally different experimen-

3.5 Mario 55

tal setups that alter how this goal is achieved:

Single Level This goal focuses on reward maximisation within the first level.
This goal biases the agent’s behaviour towards more reckless behaviour,
as it has three lives for a single level. Formally, the goal state is: level(2).

Ten Levels This is essentially the normal setup of the environment. The
agent attempts to maximise score over ten levels of Ms. Pac-Man. Typ-
ically, the episode ends when the agent loses all lives, rather than com-
pleting level ten (which is very difficult, due to increasing ghost diffi-
culty). Formally, the goal state is simply: level(11).

Single Life This goal focuses on survivability and learning cautious be-
haviour. The agent only has a single life, but may earn an extra life
at 10,000 points. Though unlikely to be achieved, the goal is the same
as Ten Levels, and so has the same formal goal state (level(11)).

3.5 Mario

The Mario environment is a clone of the Super Mario Bros.6 video-game
(see Figure 3.3 for an example screenshot). It uses a modification of the In-
finite Mario game,7 an open-source clone of the original game as the envi-

Figure 3.3: A screenshot of the MARIO environment.

6Super Mario Bros. was developed by Nintendo for the Nintendo Entertainment System.
7Can be played at http://www.mojang.com/notch/mario/

http://www.mojang.com/notch/mario/

56 Chapter 3 Relationally Defined Environments

ronment implementation. Infinite Mario was modified further to facilitate
AI agent interfacing with the environment for the Mario AI competition.8

The agent is in control of Mario, who must traverse a fixed-length two-
dimensional level of hazards in an attempt to reach the goal within a finite
time period. Mario can move le f t, right, jump, and run. Mario can also
shoot fireballs (while in fire form), and pickup and shoot koopa shells. Each
level is randomly-generated (but fixed length), constrained by difficulty
parameters, and completable, so the agent must be able to learn how to
handle many different situations. Each level consists of terrain of varying
heights (including deadly pits), a number of different types of enemies,
interactive bricks, and collectable coins and powerups.

Mario has three forms (in decreasing order): fire, large and small. When in
fire and large form, Mario’s height is two units (32 pixels), while in small
form, he is only one unit tall (16 pixels). Whenever Mario is hit by an
enemy, his form decreases. Mario can increase his form by ‘searching’ a
box (by hitting it from underneath with his head), and collecting either a
mushroom (increase to large) or a fireFlower (increase to fire) that may come
out the top of the box.

Mario can dispatch enemies by jumping on to them (except for spiky and
piranhaPlant) or, if in fire mode, shooting a fireball (except for spiky). If
an enemy has wings (is flying), jumping on them only removes the wings.
When a koopa is jumped on, it leaves behind a shell that can be picked up
and used as a one-hit shield or released as a bouncing projectile to destroy
enemies, bricks and damage Mario himself. The only difference between
redKoopas and greenKoopas (other than colour), is that redKoopas will turn
around if they reach a cliff edge.

Mario works well as an RRL problem because:

• The environment is made up of objects that interact in different ways.

• Each level is randomly generated to a set of constraints, such that the
agent must learn flexible behaviour for facing a multitude of different
scenarios.

• The agent is required to advance towards the goal while navigating

8Version 0.1.9. Download the source from http://www.marioai.org/

http://www.marioai.org/

3.5 Mario 57

the immediate challenges of level geometry and enemies.

• Aloupis et al. (2012) proves the original Super Mario Bros. is NP-hard.
Although Infinite Mario does not have the same game mechanics as
the original Super Mario Bros., it is still of a high complexity (and
may still be NP-hard).

3.5.1 Episodic Description

Regardless of the complexity of the randomly-generated level, each episode
of Mario begins with Mario starting the level on the far-left side of the level
in fire form, falling onto a flat stretch of ground (usually with a group of en-
emies advancing towards him). In order to complete the level, Mario must
reach the far-right side of the level. Each level is of length 256 units (where
Mario represents 1 unit, and each unit is 16 × 16 pixels; the granularity
of the distances measured in the state observations). If Mario is hit by an
enemy while in small form, the episode ends. The episode is also ended if
the agent fails to select an action for 30 steps (the agent’s behaviour is con-
sidered inoperative). Examples of the different level difficulties are shown
in Figure 3.4.

The details of the level-generation code are outside the scope of this thesis,
but the source code can be found at http://www.marioai.org/gameplay-track/

getting-started.

(a) Difficulty 0 MARIO environment. (b) Difficulty 1 MARIO environment.

Figure 3.4: Example screenshots of the two MARIO difficulties.

http://www.marioai.org/gameplay-track/getting-started
http://www.marioai.org/gameplay-track/getting-started

58 Chapter 3 Relationally Defined Environments

3.5.2 Specification

The Mario environment is more complex than the Ms. Pac-Man environ-
ment, as evidenced by the greater number of state and action predicates
required to represent the state (see Table 3.3). Note that not every predi-
cate will need to be used in all difficulty levels, as some enemy types are
only present at higher difficulty levels.

State Predicates See Table 3.3 for the state predicates. Like Ms. Pac-Man,
there are many non-stationary objects in Mario, and so all facts are
re-asserted for every state instead of retracting and asserting new infor-
mation. Only objects that are within the current view (and the goal) are
asserted.

Table 3.3: Predicate definitions for Mario.
Relation Predicates
distance(Thing, #D) . Thing is horizontally #D right of Mario.
heightDiff(Thing, #H) . Thing is vertically #H above Mario.
canJumpOnto(Thing) . Mario can feasibly jump on to Thing
canJumpOver(Thing) . Mario can feasibly jump over Thing
flying(Enemy) . Enemy has wings
squashable(Enemy) . Enemy can be jumped on
blastable(Enemy) . Enemy can be shot with fireball
width(Thing, #W) . The horizontal size #W of a Thing
carrying(Shell) . If Mario is carrying Shell
passive(Shell) . If Shell is not moving
Action Predicates — where #D (distance) and #W (width) are meta-
information for resolving actions.
moveTo(Thing, #D) . Move towards Thing
search(Brick, #D) . Search Brick (hit from beneath)
jumpOnto(Thing, #D) . Jump on to Thing
jumpOver(Thing, #D, #W) . Jump over Thing of width #W
pickup(Shell, #D) . Picks up a Shell
shootFireball(Enemy, #D, MarioPower)

. Shoot Enemy with a fireball (when MarioPower = f ire)
shootShell(Enemy, #D, Shell) . Shoot Enemy with a held Shell
Type Hierarchy
thing← brick; enemy; item; goal; pit; shell . All objects are things
enemy← goomba; koopa; piranhaPlant; spiky; bulletBill . Various enemy types
koopa← greenKoopa; redKoopa . Two types of koopa
item← mushroom; coin; fireFlower . Items/powerups
marioPower . Mario’s modes: f ire, large or small

3.5 Mario 59

The distance(Thing, #D) is calculated as the horizontal difference (in pix-
els) between thing and Mario, such that if Thing is to the left of Mario,
#D is negative. height(Thing, #H) is calculated as the vertical difference
(in pixels) between thing and Mario, such that if Thing is below Mario,
#H is negative.

canJumpOnto(Thing) defines objects that could be landed upon (or en-
tered into if thing is an item) in a single jump from Mario’s last grounded
position. This measure is only roughly defined as a rectangle encom-
passing all objects that are within Mario’s maximum jump height and
jump distance, and are not blocked by solid objects directly overhead
(or two units overhead, if Mario is currently in large or fire form). can-
JumpOver(Thing) is defined similarly, except that the height of things
that can be jumped over is decreased by 1.5 units (24 pixels). Techni-
cally, Mario could not jump over objects at the very limit of his horizon-
tal jump range, but Mario only begins jumping when it is possible to
jump on/over the object (in transition rules).

flying, squashable, and blastable are all qualities of enemies, but only fly-
ing is asserted directly (the other two are covered by background knowl-
edge).

width(Thing, #W) defines the width of thing, which is 16 pixels for all
objects except pits which have a variable width (at multiples of 16).

carrying and passive relate to shells left behind by jumped on koopas. If
Mario picks up a shell, carrying(Shell) is true. If the shell is not moving
and on the ground, passive(Shell) is true.

Type Predicates Table 3.3 defines the type predicates and their hierarchy.
Each hierarchical rule is added to the background knowledge.

Action Predicates See Table 3.3 for the action predicates. Like Ms. Pac-
Man, the numerical arguments within the actions are meta-information
for resolving Mario’s movement.

Background Rules There are only two background knowledge rules; they
define how enemies can be killed:

enemy(X), not spiky(X), not piranhaPlant(X)→ assert(squashable(X))

enemy(X), not spiky(X)→ assert(blastable(X))

60 Chapter 3 Relationally Defined Environments

A spiky can only be killed by shooting a shell at it.

Action Rules The rules for producing the valid actions the agent can take
are as follows:

canJumpOn(X), thing(X), distance(X, ((ND < -16) ∨ (ND > 16))) →
moveTo(X, ND)

brick(X), distance(X, (-32 ≤ ND ≤ 32)), heightDiff(X, (16 ≤ NH ≤ 80))
→ search(X, ND)

canJumpOn(X), thing(X), distance(X, (-160≤ ND ≤ 160))→ jumpOnto(X,
ND)

canJumpOver(X), thing(X), distance(X, (-160 ≤ ND ≤ 160)), width(X,
NW)→ jumpOver(X, ND, NW)

canJumpOn(X), passive(X), shell(X), distance(X, ND)→ pickup(X, ND)

marioPower(fire), distance(X, ND), heightDiff(X, (-16 ≤ NH ≤ 16)), en-
emy(X)→ shootFireball(X, ND, fire)

carrying(Z), shell(Z), distance(X, ND), heightDiff(X, (-16 ≤ NH ≤ 16)),
enemy(X)→ shootShell(X, ND, Z)

The rule for the moveTo action uses a negated test such that Mario can
only move to objects not currently horizontally intersecting Mario’s cur-
rent position.

Transition Rules As for Ms. Pac-Man, there are no formally-defined Jess-
syntax transition rules. Mario’s low-level movement can be determined
by multiple actions, as Mario is capable of doing several things at once:
move le f t or right, jump, and run (also used for shooting). Each rela-
tional action contributes a partial low-level action so Mario’s low-level
actions can be determined from multiple rules. When a relational ac-
tion is resolved, it sets one or more of Mario’s unset low-level actions
to either ‘on’ or ‘off’. Each rule in the policy is evaluated until either
all rules have been evaluated (unset actions default to ‘off’), or all of
Mario’s low-level actions have been determined. If a rule produces
multiple action instantiations, Mario only acts upon the closest one (#D
closest to 0).

When resolving actions in Mario, multiple actions may be utilised in

3.5 Mario 61

order to achieve the original action. In order to successfully calculate
jumps, Mario’s maximum jumping distance (while running) is prede-
fined as a constant by the environment.

Selecting an action in Mario does not guarantee that the entire action
will occur. Resolving an action in Mario usually requires multiple time
steps (e.g. jumping onto something) but because the agent makes a de-
cision at every time-step, the original action may not be completed.
Furthermore, due to multiple factors such as Mario’s current position,
momentum, the target’s position, and the layout of the level, resolving
an action is not straightforward.

The moveTo(Thing, #D) action involves moving closer to thing, jumping
over (via jumpOnto) obstacles if necessary. This is achieved by checking
if there are any obstacles directly between Mario and either thing or half
of Mario’s maximum jumping distance, whichever is closer. If there is
an obstacle, Mario jumps on to the top of the obstacle (whatever the
highest point of the obstacle is). This action sets either le f t or right to
‘on’ (and the opposite direction to ‘off’) and possibly sets jump to ‘on’
if necessary.

The search(Brick, #D) action involves moving close enough to be under
brick, then jumping into it. If Mario is more than two units horizontally
away from brick, Mario first moves closer to brick (via moveTo). When
Mario is close enough, jump is set to ‘on’ and either le f t or right is set
to ‘on’ (and the opposite direction to ‘off’) to move towards the brick
until it is struck.

The jumpOnto(Thing, #D) and jumpOver(Thing, #D) actions are resolved
by using moveTo to get close enough to thing such that Mario could fea-
sibly jump on to/over the object (assuming no obstacles obstruct the
jump). When jumping on to an object, the point being jumped to is
defined as directly above the object (or the object itself, if it is an item).
When jumping over things, the point being jumped to is defined as 1.5
units (24 pixels) from the object (on the opposite side of the object to
Mario), incorporating the width of the object into the calculation. If the
Manhattan distance between Mario and the point being jumped to is
greater than Mario’s maximum jumping distance, Mario first moves to
the object (possibly jumping closer, as per the moveTo action). When

62 Chapter 3 Relationally Defined Environments

close enough, jump is set to ‘on’ until Mario is one-third of the horizon-
tal distance between the jumping point and the target point. jumpOnto
and jumpOver use the same low-level actions as moveTo as well as pos-
sibly setting run to ‘on’ if Mario needs to move faster to jump onto an
object.

The pickup(Shell, #D) action involves moving to (via moveTo) the shell,
then picking it up by setting the run action (the action also used to
hold the shell) to ‘on’ until the shootShell action is activated or Mario no
longer holds the shell.

The shootFireball(Enemy, #D) action involves facing the correct direction
(le f t or right) and setting run to the opposite of the previous run action.

The shootShell(Enemy, #D) action involves facing the correct direction
(le f t or right) and setting run to ‘off’.

The resulting low-level behaviour may perform multiple actions simul-
taneously (e.g. moveTo and shootFireball).

Reward Function The agent’s reward is calculated using the default reward
defined by the Mario AI environment which is based on a combina-
tion of factors (enemies killed, items collected, time remaining, distance
travelled, Mario’s mode, etc.):

R← 8× timeLe f t + 1024× isGoal + distancePixels + 32×marioPower

+ 64× f ireFlowers + 58×mushrooms + 16× coins + 42× kills

+ 12× jumpKills + 4× f ireballKills + 17× shellKills

The agent only receives reward when the episode ends, not during the
episode.

The maximum reward for Mario could not easily be computed, due to
the effect time has on reward. Hence, there are two primary reward-
maximising strategies: attempt to complete the level as quickly as pos-
sible (maximising time remaining), or explore the level thoroughly, col-
lecting coins, items and dispatching enemies where possible (maximis-
ing all other factors).

Constant Facts There is one constant in all Mario levels: the goal, with the

3.6 Carcassonne 63

constant facts goal(flag), canJumpOn(flag), and height(flag, 0).

Max Episode Steps Each level has a finite time limit of 200 seconds, which
corresponds to 15 actions.

3.5.3 Goals

As in Ms. Pac-Man, there is only one goal to achieve: reach the end of the
level. However, Mario can generate levels of varying difficulty:

Difficulty 0 The level has no pits, and only has non-flying goombas and piran-
haPlants as enemies.

Difficulty 1 The level has a few short pits, and both flying and non-flying
goombas, koopas (red and green) and piranhaPlants.

Figure 3.5: A screenshot of the CARCASSONNE environment with two players. Note
that each terrain is controlled by only one meeple except a road, which was
linked during a tile placement. The meeple with the white band across the
legs is a farmer.

64 Chapter 3 Relationally Defined Environments

3.6 Carcassonne
Carcassonne is a medieval-themed board game designed by Klaus-Jürgen
Wrede and published by Rio Grande Games (see Figure 3.5 for an example
screenshot). The agent uses an open-source implementation of the game
called JCloisterZone9 for representing the game. In terms of the number
of predicates for describing the state, the Carcassonne environment is the
most complex environment of the testing environments, as it involves a
large number of predicates describing the state of the game, though the
agent can only perform two actions.

The game involves one or more players, where each player’s turn consists
of two consecutive actions. A player’s first action is to place a randomly
drawn tile adjacent to an existing tile on the board, such that the placed
tile’s edges match all adjacent existing tile’s edges and extends the existing
terrain. The player may then optionally place a ‘meeple’ (coloured figure
representing the player’s resources) on one of the terrain types present on
the placed tile. Meeples may only be placed on terrain that does not already
contain a meeple. Points are scored throughout the game by using these
meeples to control various types of terrain and completing the terrain’s end
condition. Points are also scored for any meeples remaining on the board
at the end of the game.

In Carcassonne there are four types of terrain: city, road, cloister, and
farm10. Each tile contains one or more terrain types, orientated in various
ways. Apart from the cloister (which cannot be linked), terrain linked over
multiple tiles is regarded as a single terrain feature. When a terrain is
completed, the person with the most meeples receives points for the terrain
and all meeple(s) within the terrain are returned to the player to be used
in future meeple placements.

A city is completed by closing all open edges (so it cannot be expanded
upon, such as the small city made from 2 tiles in Figure 3.5). A road is
completed by closing each end of the road (with an intersection or cloister,
for example). A cloister is completed when it is surrounded by eight other
tiles. A farm is never completed (or scored) during gameplay, it is only

9Download the source from http://jcloisterzone.com/en/
10More terrain types are added with game expansions. This work only uses the base

game.

http://jcloisterzone.com/en/

3.6 Carcassonne 65

scored at the end of the game.

Carcassonne works well as an RRL problem because:

• There is only a small number of objects and actions, but there is a
high level of strategy required to play effectively.

• Because the drawn tiles are randomised, the probability of playing
the same game twice is very low.

• Because the game board can take nearly any shape during play, a
propositional representation is effectively impossible.

• Carcassonne is the first environment to allow multiple (non-static)
agents. These agents can be the same learning agent, a predefined AI,
or even a human player.

3.6.1 Episodic Description

Each episode of Carcassonne starts with a single tile on the board (al-
ways the same starting tile), and a number of players (specified by the
experiment setup, Section 3.6.3). The order of the players and tiles are ran-
domised, and play begins. The current player draws a tile and places it in a
valid position with any rotation. If the tile cannot possibly be placed any-
where, it is discarded and a new tile is drawn. If the placement results in a
completed terrain, the terrain is scored and any meeples on the completed
terrain are returned to their respective owners.

After placing their tile, a player may also place a meeple on any of the
terrain on the placed tile. They may place it on any terrain that is not
already claimed by a player (by extension across multiple tiles). If the
meeple is placed on terrain that is already completed, the player receives
points for the terrain and the meeple is immediately returned to their stock.
The next player then takes their turn and play repeats until there are no tiles
remaining to be placed. Any meeples still on the board at the end of the
episode are scored with reduced points and the final scores are calculated.

Figure 3.6 lists all the tiles in a game of Carcassonne and their counts.
Table 3.4 defines the scoring method for different terrain types.

66 Chapter 3 Relationally Defined Environments

Figure 3.6: The set of tiles used in the game of CARCASSONNE. The number beneath
each tile represents the number of copies of the tile. Copyright Rio Grande
Games and Roy Levien. Reprinted with permission.

Table 3.4: Terrain scoring in CARCASSONNE. A pennant is a special icon found on city
terrain. See reward function for further details.

Terrain Completed Game end
City 2 per tile + 2 per pennant 1 per tile + 1 per pennant
Road 1 per tile
Cloister 1 + 1 per surrounding tile
Farm 0 3 per completed bordering city

3.6 Carcassonne 67

Table 3.5: Predicate definitions for CARCASSONNE.
Relation Predicates
currentTile(Tile) . The current Tile drawn/placed
currentPlayer(Player) . The current turn Player
tileEdge(Tile, Edge, Terrain) . The Terrain on the Edge of Tile
tileContains(Tile, Terrain) . The Terrain contained within Tile
tileLocation(Tile, Location) . The current Location of Tile
nextTo(Location, Edge, Terrain) . The Edge of Location borders Terrain
numSurroundingTiles(Location, #N) . #N tiles surround Location (1–8)
cloisterZone(Location, Cloister) . A Location neighbouring Cloister
validLoc(Tile, Location, Orientation)

. A valid Tile placement at Location with Orientation
meepleLoc(Tile, Terrain) . A valid meeple placement on Terrain in Tile
controls(Player, Terrain) . Player controls Terrain
placedMeeples(Player, #P, Terrain) . Player has #P meeples on Terrain
open(Terrain, #O) . Terrain has #O edges to close
completed(Terrain) . Terrain is completed
worth(Terrain, #W) . Terrain is worth #W points (if complete)
meeplesLeft(Player, #M) . Player has #M meeples unplaced
score(Player, #S) . Player′s current score is #S
tilesLeft(#T) . There are #T tiles left to place
†locationXY(Location, #Xl, #Yl)

. The #Xl, #Yl coordinates for Location. Not visible to agent
†edgeDirection(Edge, #Xe, #Ye)

. The cardinal direction for each Edge. Not visible to agent cEdge(Edge1,
Edge2) . Edge2 is clockwise from Edge1
ccEdge(Edge1, Edge2) . Edge2 is counter-clockwise from Edge1
oppEdge(Edge1, Edge2) . Edge2 is opposite Edge1
Action Predicates
placeTile(Player, Tile, Location, Orientation)

. Player places Tile at the given Location and Orientation
placeMeeple(Player, Tile, Terrain) . Player places a meeple on Terrain in Tile
Type Hierarchy
terrain← city; road; cloister; farm . Four terrain types
tile . One of the 72 tiles
player . An individual player
location . A location on the board
edge . Four edges: north, east, south, west
orientation . Four orientations: r0, r90, r180, r270

68 Chapter 3 Relationally Defined Environments

3.6.2 Specification

State Predicates See Table 3.5 for the state predicates. The set of state facts
is extracted from the game state after every action.

The currentTile is drawn by the currentPlayer at the start of their turn.
Each tile has four edges, where each tileEdge has some terrain bordering
it. tileContains also defines all the terrain contained by the tile.

All placed tiles have a location, and each location borders one or more
terrains on 1–4 edges. Each location also has a numSurroundingTiles be-
tween 1–8. If a location is one of the eight locations around a cloister, it
is also a cloisterZone.

The set of validLocs is defined for the currentTile, with the correct ori-
entation. A valid location is a vacant location adjacent to one or more
existing tiles where the current tile can be placed (with some rotation)
such that each edge of the current tile matches the edges of the existing
tile(s). When the tile has been placed, meepleLoc defines which terrain
types on the tile the agent can place a meeple on. A valid meeple loca-
tion is a terrain location on the current tile that has no other meeple on
it.

Each terrain has four other facts: which player controls it, how many
meeples have been placed on it (placedMeeples), if it is still open or al-
ready completed, and what it would be worth if it was completed.

meeplesLeft defines how many meeples each player has remaining to
place, score states what each player’s current score is, and tilesLeft states
how many tiles are remaining.

The final facts encode low-level information about the locations and edges
for background knowledge facts.

Type Predicates Table 3.5 defines the type predicates and their hierarchy.
Each hierarchical rule is added to the background knowledge.

Action Predicates See Table 3.5 for the action predicates.

Background Rules Carcassonne has three background knowledge rules:

edge(north)→ cEdge(north, east), ccEdge(north, west), oppEdge(north, south)

3.6 Carcassonne 69

cEdge(N, E), ccEdge(N, W), oppEdge(N, S) → cEdge(E, S), ccEdge(E, N),
oppEdge(E, W)

locationXY(L1, N0, N1), not tileLocation(T1, L1), edgeDirection(E, N2,
N3), locationXY(L2, (N0 + N2), (N1 + N3)), tileLocation(T2, L2), oppEdge(E,
Eopp), tileEdge(T2, Eopp, Ter)→ nextTo(L1, E, Ter)

Action Rules The rules for producing the valid actions the agent can take
are as follows:

currentPlayer(X), validLoc(Y, Z, W)→ placeTile(X, Y, Z, W)

currentPlayer(X), meepleLoc(Y, Z), meeplesLeft(X, (NM > 0)) → place-
Meeple(X, Y, Z)

Transition Rules Like for Ms. Pac-Man and Mario, there are no formally-
defined Jess-syntax transition rules. Only one action is required per
step, but if a policy rule produces more than one action, a random
action is selected from the produced actions.

The placeTile(Player, Tile, Location, Orientation) action is resolved by adding
the current tile to the board at the given location and orientation. If any
terrain is completed, any meeples on the completed terrain are returned
to their respective owners. If no tile placing action is selected, and there
is only one learning agent, the game is over. If there are multiple learn-
ing agents playing, a random placement is selected instead. If no agents
are selecting tile placements, the episode ends prematurely.

The placeMeeple(Player, Tile, Terrain) action is resolved by adding a player’s
meeple to the designated terrain. If the meeple is placed on completed
terrain, the player receives both points for the terrain, and the placed
meeple back. If no meeple placing action is selected, no meeple is
placed, and the next player’s turn begins.

If a static-behaviour AI is present (see Section 3.6.3), its entire turn is
performed automatically by the environment.

Reward Function Like Ms. Pac-Man, the reward function is simply the
score received from the game. Table 3.4 defines how scoring is cal-
culated. However, there are two exceptions: a two-tile completed city is
only worth 2 points (+ 2 per pennant), and when scoring a farm, a city
may only be scored once regardless of the number of farms bordering

70 Chapter 3 Relationally Defined Environments

it.

When multiple learning agents are playing, if an agent does not select a
tile placement on its turn, it receives an arbitrary -1000 reward penalty,
as it is considered to have ‘given up.’ This separates policies that ‘gave
up’ from policies that selected a tile placement every turn.

Because of the random nature of the game, calculating the maximum
number of points is difficult. However, in Section 6.5, the average score
received by the built-in AI is presented as a rough idea of effective
behaviour.

Constant Facts There are twelve constants, eight edge facts and four tile
orientations:

edge(north), edge(east), edge(south), edge(west), edgeDirection(north, 0, -1),
edgeDirection(east, 1, 0), edgeDirection(south, 0, 1), edgeDirection(west,
-1, 0), orientation(R0), orientation(R90), orientation(R180), orientation(R270)

The edgeDirections are primarily used to resolve the nextTo background
rule and are probably of little value to a learning agent.

Actions Per Step The agent is only required to provide 1 action per step, but
if it provides more than one (e.g. if a single policy rule produces multi-
ple actions), a random action is selected from the actions. Note that not
providing an action during the placeMeeple phase is also allowed.

Max Episode Steps Because there are only 72 tiles per game (71 of which
the players can place), each episode is of a fixed length bounded by the
number of tiles remaining.

3.6.3 Goals

Carcassonne only has one goal: maximise your score within the 70 tile and
meeple placements. But there are multiple environment setups that can
fundamentally modify the challenge of the environment.

Single Player Typically, Carcassonne is a multiplayer game, but it can be
played with a single player. This goal biases the agent’s learning to-
wards creating high-valued terrain features without being interrupted
by opposing players.

3.7 Summary 71

Agent vs. Random This goal matches a learning agent against a random-
behaviour player. For selecting actions, the random-behaviour player
selects a random valid location and orientation to place a tile, then
places a meeple on a random valid terrain with 50% probability (oth-
erwise, it does not place a meeple). This goal demonstrates how the
learning agent performs against random behaviour.

Agent vs. Static AI The JCloisterZone game includes a static-behaviour AI
agent that uses a one-step look-ahead maximisation strategy that utilises
tile probabilities to place tiles in an effective manner, both for personally
gaining points, and for blocking other players from completing terrain
types. This goal matches the learning agent against a number of AI op-
ponents, such that the learning is biased towards behaviour for dealing
with a skilled opponent(s).

Agent vs. Agent This goal matches the same agent against itself. That is, the
same learning agent controls all players (but the policies generated for
each agent may not be the same). This goal biases learning towards
defeating opponents of the same skill level, learning a strategy that has
no particular bias against defeating other strategies (which could also be
a drawback). An added benefit of this experimental setup is the agent
receives K samples per episode, where K is the number of players.

3.7 Summary
This chapter has introduced the terminology that will be used through-
out the remainder of the thesis. The Rete algorithm used by Jess is a key
factor in the efficiency of the Cerrla algorithm described in later chap-
ters. This chapter also introduced the standard formatting of the policies
Cerrla produces, such that the rules of a policy may only contain specific
argument types and the conditions of the rules are sorted to heuristically
improve rule evaluation efficiency.

This chapter also introduced the framework for representing a relational
environment, as well as the four environments that are used for testing the
agent in Chapter 6. Table 3.1, 3.2, 3.3 and 3.5 describe the environment
predicates used in each environment and provide a reference for compre-
hending the rules of Cerrla’s produced policies.

4
CERRLA

The aim of this research is to develop a learning algorithm capable of
solving problems within large, relational, reward-driven environments. In
Chapter 2, various existing approaches were described that solve similar
problems. Some approaches (Džeroski et al., 2001; Driessens et al., 2001,
2006; Dabney and McGovern, 2007) used value-based table formalisms that
work fine in computationally small environments, but, without some form
of pre-defined state abstraction, will fail to perform adequately in large,
complex environments. Other approaches search the policy space directly,
avoiding the need to store each state and value, and taking advantage of
relational variables to generalise over collections of objects without need
for pre-defined abstractions.

The Cross-Entropy Method (CEM) is one such policy searching method.
It is similar to evolutionary algorithms, in that it uses a population of
samples and evaluates samples through some fitness function, but the
CEM guides its sampling process in a statistically optimal manner using
Kullback-Leibler (KL) divergence. The CEM has previously been success-
fully applied to games (e.g. Tetris (Kistemaker, 2008), (Szita and Lörincz,
2006) and Ms. Pac-Man (Szita and Lörincz, 2007)).

The algorithm developed here has been named Cross-Entropy Relational
Reinforcement Learning Agent (Cerrla). Cerrla was originally based
upon work by Szita and Lörincz (2007), in which the CEM was used to
optimise a static set of hand-coded rules to generate a policy for playing

74 Chapter 4 CERRLA

Ms. Pac-Man. Cerrla has since expanded the scope of that algorithm
to function in a range of relational environments, generate and specialise
relational rules dynamically, and perform updates in an online, rather than
population-based, manner. The resulting behaviour learned by Cerrla

outputs low complexity, easy-to-read relational policies that obtain large
rewards when evaluated in their respective environments.

This chapter begins with a high-level overview of how Cerrla creates and
optimises relational policies for a given problem. The next section then
formally describes the CEM, the algorithm forming the basis of Cerrla’s
learning. The remaining sections are structured sequentially with respect
to the algorithm’s execution and present a policy-level description of the
agent’s learning process. The details of rule creation and specialisation are
largely found in Chapter 5.

4.1 CERRLA Overview

Algorithm 4.1 Pseudocode summary of the Cerrla algorithm. The algo-
rithm creates and optimises a list of relational rules for acting effectively
within a given environment.

1: Initialise the environment . Chapter 3
2: Initialise distribution set D . Section 4.2.1
3: Observe environment and determine RLGGs . Section 4.3
4: repeat
5: Generate policy πi from D . Section 4.4
6: for j← 1 to 3 do . Evaluate each policy three times
7: Evaluate policy πi against the environment . Section 4.5
8: end for
9: Note policy sample and update distribution D . Section 4.6

10: Specialise rules (if D is ready) . Section 4.7
11: until IsConverged(D) . Section 4.6

Cerrla learns behaviour by randomly sampling rules from a set of can-
didate rule distributions and combines these rules into decision lists which
act as a policy for the agent (an example policy is described in Section
4.1.1 below). The rule distributions are initially uniform, but as empiri-
cally useful rules are identified, their respective sampling probabilities are
increased. The process of randomly sampling data from distributions and
increasing the sampling probability of empirically useful data is known as

4.1 CERRLA Overview 75

the Cross-Entropy Method (CEM), which forms the backbone of Cerrla’s
probability optimisation aspect (described in the rest of Chapter 4). Algo-
rithm 4.1 roughly describes the Cerrla learning process in pseudocode.

Cerrla’s rules are created in a top-down fashion: beginning with an Rela-
tive Least General Generalisation (RLGG) rule for each action (a rule which
defines the minimal preconditions for performing an action), search for
better rules by gradually specialising empirically useful rules, guiding the
search with the probabilities learned by the CEM. The RLGG rule is cre-
ated by observing which patterns of conditions are always true whenever
an action is available in the valid actions for every state (using variable ar-
guments where appropriate). These rules form a foundation from which to
specialise new rules using three separate specialisation operators: adding a
condition to the rule, replacing a variable with a goal variable, and splitting
a numerical range into a subrange. Except for RLGG rules, every rule is a
specialisation of another rule. To avoid creating redundant or illegal rules,
Cerrla also infers and uses a set of simplification rules to remove redundant
or illegal condition combinations from the created rules. The details of rule
discovery are described in Chapter 5.

When beginning learning in a new environment, Cerrla identifies the
RLGG rules and uses each one to seed a new candidate rule distribution
(one for each action). Each specialisation of the RLGG rules also seeds new
candidate rule distributions. When a distribution is seeded, it is filled with
all immediate specialisations of the seed rule. The result is one distribution
for each RLGG rule and each specialisation of the RLGG rules.1

A policy is generated by sampling one rule from each candidate rule dis-
tribution, with respect to the current sampling probabilities for each rule
in the distribution. The distributions themselves also have two properties
that affect policy generation: the probability of any rule being sampled
from the distribution at all, and the relative position of the sampled rule to
other rules in the policy.

Once a policy is generated, it is tested in three separate episodes and as-
signed a value equal to the average total reward received per episode. If
the value of the policy is higher than the Nth

E best policy thus far (where

1Not every specialisation of the RLGG immediately creates a new candidate rule distri-
bution, see Section 4.7.

76 Chapter 4 CERRLA

NE represents the number of ‘elite’ policy samples to use for updating), it
is stored as an elite sample. The elite samples are a subset of all samples
created thus far, and they are defined as the best subset of samples accord-
ing to the values of the samples. A sample remains an elite sample until
there are NE higher-valued elite samples.

After a policy is tested, the probabilities of the distributions are updated.
This involves adjusting the sampling probabilities for the rules in each dis-
tribution and adjusting the distribution’s properties such that the policies
present in the elite samples are more likely to be generated again. This
process repeats, generating and testing policies, then adjusting the sam-
pling probabilities of the distributions to generate better policies. When a
rule becomes highly probable, it branches from the distribution to create a
new distribution with the probable rule as the seed. This new distribution
is filled with specialisations of the seed rule and the seed rule is removed
from the old distribution. A rule will not branch from a distribution if it
was the original seed rule for the distribution.

Cerrla continues to generate and test policies, update the distributions,
and branch rules from distributions until the probabilities for each distri-
bution become stable (i.e. are considered converged). Once converged, the
best elite sample is output as a solution to the problem.

4.1.1 Example Policy

Below is an example policy produced by Cerrla:

clear(G0), clear(G1), block(G0)→ move(G0, G1)

above(X, G1), clear(X), floor(Y)→ move(X, Y)

above(X, G0), clear(X), floor(Y)→ move(X, Y)

This policy is in fact an optimal policy for solving the onG0G1 goal in the
Blocks World environment. The behaviour of the policy is to:

1. Place goal block G0 onto goal object G1 if both are clear.

2. If a block X is on top of goal block G1 and it is clear, place it on the
floor.

3. Same as 2, but with goal block G0 instead of G1.

4.2 Cross-Entropy Method 77

Each of the rules of the policy were sampled from a separate distribution.
When this policy was produced (when Cerrla had converged), all other
distributions had a near-zero usage probability, while the distributions for
each of these rules were near-one. The three rules shown all also had a
high sampling probability, as they were more effective than all other rules
in their respective distributions. Each of these rules required at least two
specialisation operations to get from the RLGG rule to their current state,
and each rule used simplification rules to remove redundant conditions
(e.g. when floor(Y) is true, clear(Y), a condition present in the RLGG rules,
is redundant).

4.2 Cross-Entropy Method
The CEM is an optimisation algorithm that maintains a distribution of pos-
sible solutions to a problem and revises the probabilities of the distribution
with every iteration. Originally developed by Rubinstein (1997), the CEM
was created as an adaptive algorithm for estimating rare event probabili-
ties in complex stochastic processes. It has since been used for a number of
different applications, including game-playing agents (Szita and Lörincz,
2006, 2007; Kistemaker, 2008; Tak, 2010), clustering (Kroese et al., 2007),
control and navigation (Helvik and Wittner, 2001), and continuous optimi-
sation (Kroese et al., 2006) to name a few. For a comprehensive exploration
of the CEM, see De Boer et al. (2004).

Cerrla uses an online variation of the CEM to learn the optimal sampling
probabilities for multiple distributions of rules in parallel. For simplicity,
the following description of the CEM is population-based and only uses
a single distribution, but the changes to Cerrla’s core algorithm are de-
scribed Section 4.2.1.

The algorithm is essentially composed of two steps:

1. Generate N samples from a probability distribution of data and eval-
uate them, assigning a value to them.

2. Sort the samples into descending value order, then use the top subset
of samples E to decrease the KL divergence between the data dis-
tribution and E, thereby increasing the chance of sampling the data
present in E again.

78 Chapter 4 CERRLA

Intuitively, the algorithm works as follows: in the early stages, the algo-
rithm does not perform any worse than random guessing, but as it gathers
samples, it shapes the distribution such that guessing becomes more and
more biased towards high-value samples.

Algorithm 4.2 Pseudocode for the cross-entropy method. Locates the high-
est performing sample in a collection of data.

Require: X = {x1, . . . , xn} . The data distribution (with probabilities
p1, . . . , pn)

Require: N . The population size
Require: ρ . The proportion of elite samples
Require: α . The step-size update parameter

NE = ρ · N . Define the minimum number of elites
for t← 0; IsConverged; t← t + 1 do . Loop until converged

for i← 1 to N do . Generate N samples
sample xi = xj ∈ Xt with probability pt,j . Sample N samples
fi ← f (xi) . Evaluate each sample

end for
sort f1 . . . fN into descending order
γt+1 ← fNE . Determine the elites threshold
Et+1 ← {xi | fi ≥ γt+1} . Extract the elites
for j← 1 to n do . For every element in distribution

p′j ← (∑
xi∈Et+1

1xi=xj)/|Et+1| . Calculate observed distribution

pt+1,j ← α · p′j + (1− α) · pt,j . Step-size update probabilities
end for

end for

Formally the CEM algorithm (shown in Algorithm 4.2) is as follows: the
algorithm begins with a distribution of data (X = {x1, . . . , xn}), where
each data item xi has a corresponding sampling probability pi ∈ [0, 1] :

∑n
j=1 pj = 1 (a distribution is typically uniform at the outset). N sam-

ples are generated (X = {x1, . . . , xN}), selecting data based on its (initially
equal) probability where xi = xj with probability pj. The samples are then
evaluated with some function f (x) and sorted into descending order. The
samples with f (x) ≥ γt+1 are extracted as ‘elite samples’ Et+1, where γt+1

is equal to the value of the Nth
E sorted sample. The minimum number of

elite samples is defined as NE = ρ · N (typically ρ = 0.05). Note that there
may be more than NE elite samples, as multiple samples could have a value
equal to the threshold.

The observed distribution p′t+1(X) = {p′1, . . . , p′n} is then calculated using

4.2 Cross-Entropy Method 79

the frequency of data seen within the elite samples, defined as:

p′j,k ←
(

∑
xi∈Et+1

{
1 if xi = xj

0 otherwise

})/
|Et+1| (4.1)

meaning p′j is equal to the proportion of samples in the elites that are xj.

Instead of directly setting the new probabilities equal to the observed prob-
abilities, the update process can be ‘softened’ by using a step-size update
parameter α (typically α is between 0.4 and 0.9, De Boer et al. (2004)) to
smoothly modify the distribution probabilities:

pt+1,j ← α · p′j + (1− α) · pt,j (4.2)

This sample-update loop is repeated until some convergence measure is
reached; usually either a pre-defined maximum number of iterations have
passed, or all probabilities have converged to either 0 or 1, or the KL di-
vergence between the observed distribution and the current distribution is
less than β for some number of iterations (where β is some positive value
< 0.1).

Costa et al. (2007) prove the convergence properties of the CEM, such that
given a constant α parameter, the algorithm will eventually converge to
a point where all probabilities are either 0 or 1. Furthermore, the paper
proves that the probability for an optimal sample to be drawn is inversely
proportional to α. Hence, a balance between fast convergence and optimal
convergence must be decided upon by the choice of α parameter.

4.2.1 Application to RRL

Cerrla uses a modified form of the CEM to sample and update multiple
candidate rule distributions D in a set of candidate rule distributions D =

{D0, D1, . . .} which are used to create decision-lists of rules that represent
the agent’s policy.

Cerrla uses an online variation of the CEM such that it becomes an incre-
mental method instead of a batch-based method. Szita and Lörincz (2008)
define an ‘online CEM’ which, instead of sampling batches of N samples,
uses a sliding window of N samples, such that the elites E consist of the

80 Chapter 4 CERRLA

best samples from the last N samples (instead of the best samples in a
batch). The minimal size of the elites is still NE.

Initially, D is empty, but as Cerrla learns new behaviour, the number of
rule distributions increases. Each candidate rule distribution contains a
number of rules D = {r1, . . . , rn} consisting of a single seed rule and all
immediate specialisations of that rule (see Section Section 4.7), where each
rule rj has a corresponding probability pj (∑|S|j=1 pj = 1).

Two metrics are used for measuring a distribution: |D| represents the
number of rules within D, and KL(D) represents the inverse Kullback-
Leibler (KL) divergence, or inverse distance from the uniform distribution,
of D. The KL divergence is a non-symmetric measure of the difference
between distribution P and distribution Q (Kullback and Leibler, 1951).
Given the formula for calculating the KL divergence from P to Q as:

dKL(P‖Q) = ∑
i

ln
(P(i)

Q(i)

)
P(i) (4.3)

the inverse distance from the uniform distribution KL(D) is defined as:

KL(D) = |D| ·
(
1− dKL(D‖Duni f orm)

)
= |D| ·

(
1− ∑

r∈D
log|D|(

pr

|D|−1)pr
)

= |D| ·
(
1− ∑

r∈D
log|D|(pr · |D|)pr

)
(4.4)

where log|D| is used instead of ln to normalise the KL divergence to be-
tween [0, 1]. A uniform (not yet updated) distribution has KL(D) = |D|,
but a distribution with a single high probability rule (e.g. pj ≥ 0.95) has
KL(D) ≈ 0. The closer KL(D) is to 0, the more ‘converged’ it is considered.
This is used for population calculations (Section 4.6.1) and specialisation
triggering (Section 4.7.2).

Each D also has two properties: the probability that a rule from D is present
within a policy, p(D) ∈ [0, 1] (initially p(D)← 0.5); and the average relative
position of sampled rules within generated policies, q(D) ∈ [0, 1], where 0
represents the first position and 1 represents the last (initially q(D)← 0.5).

Policy samples are generated from D (Section 4.4) and evaluated against
the environment (Section 4.5). Online CEM allows the algorithm to imme-

4.3 Algorithm Initialisation 81

diately add the sample to the elite samples (depending on sample value)
and update the distribution (Section 4.6). Another modification to the CEM
is that the data changes when the algorithm selects a rule for specialisation,
creating a new candidate rule distribution with new rules (Section 4.7).

4.3 Algorithm Initialisation
The agent begins the learning process with an initially empty set of distri-
butions D = {}, therefore it must create rules that allow it to act within the
environment. To create the rules, it begins the first episode of the experi-
ment and observes the state of the environment, and from that observation,
the agent is able to create a Relative Least General Generalisation (RLGG)
rule for each action present in the state (see Chapter 5 for details of how
this rule is created). Each RLGG rule defines the minimally general condi-
tions for taking the action and the basis of the algorithm’s rule exploration
process.

For every action a, an RLGG rule ra
RLGG is created by setting the LHS of the

rule as the conditions that are always true whenever action a is present (this
is fully explained in Section 5.2). Whenever the observations model modify
the always-true action-conditions, RLGG rule conditions are updated with
the changed conditions.

Each RLGG rule ra
RLGG then seeds a newly created candidate rule distri-

bution Da
RLGG. If there are existing agent observations, the distribution

is filled with all single-step specialisations, as well as creating the ini-
tial ‘branched’ candidate rule distributions (explained later in Section 4.7).
Otherwise, the distribution only contains the RLGG rule (hence pra

RLGG
= 1).

Because the agent’s initial policy is empty when it first creates these rules,
it immediately adds all RLGG rules to the policy in random order.

Example 4.3.1. The RLGG rule calculated for the Blocks World move ac-
tion is (after simplification, see Section 5.4):

rmove
RLGG = (clear(X), clear(Y), block(X) → move(X, Y)) (4.5)

This rule covers every possible move action in Blocks World while re-
maining specific enough to describe the minimal preconditions required
for taking the action.

82 Chapter 4 CERRLA

4.4 Generating Policy Samples
A policy πi is generated by firstly determining which candidate rule dis-
tributions D ∈ D will be used, then sampling a rule from those that are
included. For each D ∈ D, the distribution will only be in the policy with
probability p(D). The position of the distribution’s rule in the policy is
based on q(D) and the relative positions of other distributions, but some
randomness is added to explore different positions. When a distribution
is to be used, a relative position relQ(D) is calculated as a Gaussian dis-
tributed value with the parameters q(D) for the mean of the distribution,
and qσ(D) as the standard deviation which is based on how close p(D) is to
0.5: if p(D) < 0.5 : qσ(D) = p(D) · 0.5, otherwise qσ(D) = (1− p(D)) · 0.5.
Therefore, when a distribution is initialised with p(D) = 0.5, its relative
position in policies varies wildly, but as the sampling probability p(D)

converges to 0 or 1, the relative position becomes more fixed.

When all utilised distributions have calculated a relQ(D) value, they are or-
dered in increasing order and a rule is sampled from each one by selecting
a rule ri with rule probability pi.

Example 4.4.1. An example Blocks World policy sample is:

above(X, G1), clear(X), floor(Y) → move(X, Y)

clear(G0), clear(G1), block(G0) → move(G0, G1)

above(X, G0), clear(X), floor(Y) → move(X, Y)

This example policy is in fact an optimal policy for solving the OnG0G1 task
in Blocks World. Each rule in this policy was sampled from a different
candidate rule distribution.

4.5 Evaluating a Policy
The agent’s policy πi is evaluated when the agent receives the current ob-
servations for the state of the environment. Starting with the first rule in
the policy, each rule’s is evaluated against the state. During this evaluation,
the current goal substitution map is applied to the rule (see Section 3.2.1
for details) and any numerical bounds in the form Nmin

1 or Nmax
1 , defined

as the observed numerical bounds for the variable N1 (see Section 5.5), are

4.6 Updating the Distributions 83

replaced by their respective numerical values.

Recall that the Jess rules engine is used in this research to represent the en-
vironment (Section 3.1.2). Cerrla’s policy evaluation can be streamlined
by taking advantage of the Rete network Jess uses. The rules of the pol-
icy define the structure of the network, where each node is either a rule
condition (identical rule conditions between rules can be shared) or a join
node between two conditions (defining the conjunction of rule conditions).
When the facts defining the current state are asserted to the network as
the current state observations, they are immediately processed through the
nodes of the network, such that matches to the rules of the policy are im-
mediately known. Because an agent’s policy does not change per episode,
the Rete network does not need to be recreated every state, resulting in
efficient policy evaluation.

If the rule query is successful, the resulting variable bindings are applied
to the rule action, creating one or more ground action atoms. Any actions
not present in the set of valid actions provided by the state are removed.
Each rule’s set of actions are stored within a list of sets of resulting actions,
and once enough actions have been created, the list of collections of actions
is returned to the environment to be applied. In most environments, only
a single action will be required, selected randomly from the first set of ac-
tions. However, environments like Ms. Pac-Man which can utilise multiple
actions per step may require the entire list of output actions. Depending on
the environment, the episode may end early if the policy does not produce
any actions (usually accompanied by a large negative reward).

Throughout the episode, the agent receives a reward value, and by the end
of the episode, the policy achieves total reward Rj. To reduce variance
between episodic reward received, each policy sample πi is evaluated over
n episodes and the average reward Ri ← ∑n

j=1 Rj/n is used as the ‘value’
of the policy. In experiments, n = 3, which is small enough to quickly
evaluate different policies, but also large enough to reduce major variance.

4.6 Updating the Distributions
Because Cerrla uses an online CEM, the elite samples are a ‘floating win-
dow’ representing the highest valued samples from the past N iterations.

84 Chapter 4 CERRLA

When sample πi has been evaluated and has an averaged value Ri, it is
added to the sorted elite samples E and the elite samples are then used to
update the distributions.

4.6.1 Determining Elite Samples

The typical CEM is used to optimise a pre-defined set of data that does
not change in size so the population size N and minimum number of elites
NE can remain static. However, Cerrla operates in a wide range of envi-
ronments and the number of rules and level of convergence in Cerrla is
variable at any given episode, so the number of samples required for ob-
taining a representative sample of the current rule distributions also needs
to be flexible. As the number of rules present in D increases, the number of
samples required to get a representative sample should also increase. But,
NE also needs to be small enough to only represent the best samples.

Determining Population Size

The aim of the dynamic population size is to maintain an elite set of sam-
ples that can approximately represent the current state of the set of distri-
butions. E.g. the observed elites distribution can feasibly represent the ap-
proximate probabilities of any given distribution. KL(D) provides a good
indication of the number of rules needed to observe similar probabilities.
However, each distribution also has a sampling probability property p(D),
which represents how important any of the rules in the distribution are.
Therefore, the minimum number of elites NE is set as the largest KL(D)

distribution (weighted by the distribution’s sampling probability p(D)). To
avoid NE becoming too small (e.g. NE ≤ 1), we also set the minimum to
the sum of distribution sample probabilities. This means that policies in-
volving multiple distributions have a larger minimum elite sample set than
simpler policies. The equation for calculating NE is defined below:

NE = max
⌈

arg max
S∈D

(
KL(D) · p(D)

)
︸ ︷︷ ︸

largest distribution

, ∑
S∈D

p(D)︸ ︷︷ ︸
sum distribution

sampling probabilities

⌉
(4.6)

where N = NE/ρ, as with the regular CEM. This results in a relatively
large NE at the beginning of learning which gradually decreases as rule

4.6 Updating the Distributions 85

and distribution sampling probabilities change.

Adding a Sample

Once NE is known, the elite samples can be calculated. To avoid converg-
ing to the same set of samples, any elite samples that have existed for N
iterations are removed. The current sample πi is then added to the elite
samples with value Ri and the elite samples are sorted into descending or-
der. The threshold value is then computed as γ ← ENE , which is the value
of the Nth

E element of the elite samples (or the last value, if |E| < NE). Any
samples valued less than the threshold are dropped from the elite set.

4.6.2 Iterative Updates

Cerrla performs an update at every iteration, but in order to match the
regular CEM update process, the update parameter needs to be reduced
to a single-step value: α1 = α/N. The resulting α1 parameter is small,
but after N iterations, matches the standard α update (assuming a sample
remains in the elite samples for all N iterations).

A restriction applies to updates: a distribution is only updated if it has
been sampled a ‘fair’ amount of times to avoid update bias towards early
samples. Using a coefficient C to determine a fair sample, a distribution is
only updated when n(D) ≥ C · |D| (n(D) represents the number of times
D has been sampled). E.g. a distribution D, where |D| = 15, will not be
updated until it has been sampled 15 · C times. When a distribution is
finally able to be updated, the elites should represent the best rules it was
able to produce.

An appropriate value for C can be determined by solving Equation 4.7,
which defines the proportion of rules p(x) that are sampled at least once
from a uniform distribution X after C · |X| samples (Aslam et al., 2007):

p(x) = 1−
(|X| − 1
|X|

)C·|X|

= 1− e−C (4.7)

Solving for p(x) = 0.95, Equation 4.7 produces C = 2.996 (C = 3 to
simplify values). As C is increased, the probability of sampling each rule
from a candidate rule distribution increases, but at the cost of requiring

86 Chapter 4 CERRLA

more samples before a distribution is updated.

In some environments (e.g. Blocks World), finding a sample with a non-
minimal reward can be rare, and if finding such a sample is less probable
than ρ (the elites proportion), the threshold value for the elites will equal
the minimal reward, resulting in the elites representing every sample (the
randomly sampled distribution E ≈ X). As each sample in the elites cor-
responds to a proportion of the update, an update can still be performed
even if |E| = N by adjusting γ to the next highest threshold, resulting in a
smaller set of elites E′. To match this smaller sample size, α1 is decreased
by a factor of |E′|/NE. In the case where there is no sample better than any
other, no update is performed.

4.6.3 Updating the Distributions

A sample in Cerrla is a policy consisting of multiple relational rules,
where each rule is sampled from a separate candidate rule distribution.
Only the rules that were used throughout the sample’s testing episodes
matter, therefore unused rules are not included in the update and, implic-
itly, negatively updated.

Updating Distribution Properties

The distribution sampling probability p(D) and position q(D) values are
updated using the following equations (derived from Equation 4.2 in Sec-
tion 4.2) with the single-step α1 value.

pt+1(D)← α1 · p′(D) + (1− α1) · pt(D) (4.8)

qt+1(D)← α1 · q′(D) + (1− α1) · qt(D) (4.9)

To calculate q′(D), the following equation determines the average position
of D within the elites (where a value of 0 represents the first distribution
in the policy and a value of 1 represents last in the policy). Note that the
position depends only on the samples that contain D, written as E(D):

q′(D)← 1
|E(D)| ∑

π∈E(D)

index(D, π) (4.10)

where E(D) are the policies in E that utilise distribution D — rather,

4.6 Updating the Distributions 87

utilise a rule from D that produced an action during policy testing — and
index(D, π) ∈ [0, 1] returns the normalised index of D with respect to the
rules that produced actions in the policy, where 0 is first and 1 is last (if π

only used one rule, index(D, π) returns 0.5). If E(D) is empty, q′(D) is not
updated, because if D is not present in E, we cannot determine its observed
position (though p(D) will decrease).

p′(D) is simply calculated as the proportion of policies in E where a rule
from D produced an action (p′(D) = 0 if no rules from D were used).

Updating Rule Distributions

The rule probabilities within the candidate rule distributions are updated
in the normal CEM manner as defined by Equation 4.2 using α1 as the
step-size parameter, but because the samples in Cerrla are entire policies
consisting of multiple rules, each distribution only accounts for the rules
that originated from it. After the rules are updated, all rule probabilities
are normalised to ensure all probabilities sum to 1.0.

4.6.4 Convergence

Cerrla’s learning is considered converged when all candidate rule distri-
butions have converged with respect to a convergence threshold β (β =

0.01 in experiments). A distribution is considered converged when either
p(D) < β or the sum KL divergence of the distribution’s rules, normalised
with respect to α1, is < β:

β ≥ ∑|D|n=1 |pt+1,n − pt,n|
2 · α1

(4.11)

Note that the maximum possible divergence a distribution can achieve is
equal to 2 · α1. If the normalised divergence is less than β (a convergence
threshold), the distribution is considered converged.

Experiments can also specify a fixed number of training episodes, such
that the algorithm will continue to run and update until the fixed number
is reached.

88 Chapter 4 CERRLA

4.7 Rule Specialisation and Exploration
Initially, Cerrla starts without any rules, but it quickly learns RLGG rules
so it can act within the environment. In order to learn better behaviour, the
agent needs to explore more specialised rules. Cerrla’s rule exploration
proceeds using a ‘top-down’ approach, where the ‘top’ rules are the most
general RLGG rules (in terms of the actions they cover).

4.7.1 Rule Specialisation

In Cerrla, rule specialisation only occurs when a new candidate rule dis-
tribution D is created. The rule r that seeded D and all possible single-step
specialisations r′1, . . . , r′k of r (created using the specialisation operations
described in Section 5.5) are added to the new distribution with a uniform
probability of 1/(k + 1). As stated in Section 5.5, each of the specialised
rule’s conditions are simplified and checked for illegal conditions (using
the simplification rules in Section 5.4).

There is a special case for the beginning of learning: after evaluating the
first policy π0 (which only consists of RLGG rules), Cerrla creates the
initial RLGG distributions of D. As well as creating a distribution for ev-
ery RLGG rule, the algorithm also creates a distribution for every ‘distinct’
specialisation of the RLGG rules, where distinct means the specialisation
either introduces a new, non-negated predicate to the rule conditions, or
the specialisation replaces an action variable for a goal variable. By main-
taining one candidate rule distribution per specialisation, Cerrla is able
to test every distinct subset of the actions simultaneously.

Each distinct specialisation creates a new distribution using the branching
procedure (see following subsection) and all non-distinct specialisations are
added to their respective RLGG distributions, with uniform probabilities.
If the RLGG rules or specialisation conditions change, these initial distribu-
tions are recalculated, and any rules (or encompassing distributions) that
are no longer valid are removed.

Example 4.7.1. In Blocks World, for the OnG0G1 goal, there is only one
action: move(X, Y). After the agent has learned all specialisation conditions
and simplification rules (Section 5.5 and 5.3), there are 17 initial candidate
rule distributions, each containing an average of 15.4 rules. These include:

4.7 Rule Specialisation and Exploration 89

• the RLGG distribution (4 rules),

• one floor(Y) distribution (11 rules),

• one block(Y) distribution (20 rules),

• two highest([X, Y]) distributions (∼ 18.5 rules),

• four above([X, Y], [G0, G1]) distributions (17 rules),

• four on([X, Y], [G0, G1]) distributions (∼ 15.5 rules),

• four action-variable replaced ([X, Y]/[G0, G1]) distributions (∼ 12.5
rules).

4.7.2 Rule Exploration

Cerrla explores the set of possible rules by creating new candidate rule
distributions seeded with high-valued rules in search of even higher-valued
ones. The assumption is that high-valued rules will either specialise to
higher valued rules, or are already the highest-valued rules.

With every CEM update, the values of a candidate rule distribution will
change, generally decreasing the KL(D). When a distribution’s KL(D) ≤
δ · |D|, it is ready to ‘branch’ into a new candidate rule distribution, where
δ = min

[
(depth(D) + 1)−1, p(D)

]
, representing the branching point with

respect to the ‘depth’ of distribution D or number of branches away from
the initial RLGG distribution.

A branch involves removing the highest probability rule r′ from the distri-
bution D and using it to ‘seed’ a new candidate rule distribution Dr′ with
depth(D′) = depth(D) + 1 (increasing the ‘depth’), populating the new
distribution with r′ and all immediate specialisations of r′ (using the spe-
cialisation operations described in Section 5.5). KL(D) is then recomputed
for D and if KL(D) ≤ δ · |D| it branches again (using the new highest prob-
ability rule). The one exception and stopping criterion for branching is if
r′ is the rule that originally seeded the distribution. In this case, the rule is
not removed and no branch is made.

The resulting exploration strategy explores current candidate rule distri-
butions and, upon determining highly effective rules within those distri-
butions, specialises those rules in an effort to find even better rules. This

90 Chapter 4 CERRLA

results in rule exploration focusing on rules that are frequently positively
updated (present in the set of elite samples), potentially creating even bet-
ter rules.

4.7.3 Rule Representation

In order to minimise evaluation time of the rules, a rule’s conditions are
heuristically ordered such that the number of partial matches for each con-
dition are probabilistically minimised (the ordering may not be optimal).
The ordering places the conditions with fewest likely matches at the be-
ginning of the rule to minimise the number of matches for each following
condition:

1. If condition A is not negated, and condition B is, A is before B.

2. Compare by argument types within conditions A and B. Referring to
the previous subsection for the hierarchy of arguments, this heuristic
orders conditions based on the proportion of argument types each
condition contains. Starting with the most specific argument type
(constants) and iteratively checking each argument type, if A has a
greater proportion of the argument type than B, A is before B.

3. Compare by number of arguments, where A is before B if A has more
arguments than B.

4. If condition B is a type predicate, and A is not, A is before B.

5. Otherwise, compare A and B alphabetically.

4.8 Seeding Rules
Cerrla was designed to create its own rules when it begins learning, but
it can also be initialised with rules to aid the learning process. Section
4.7.2 describes how new candidate rule distributions are created: by seed-
ing them with a rule and filling the rest of the distribution with imme-
diate specialisations of the seed rule. We can use this technique to intro-
duce user-provided rules into Cerrla at the beginning of learning as a
performance-boosting technique. This technique can also be used to trans-
fer knowledge learned from one goal within the environment to the current
goal by using the rules from the output policy as seeds within the current

4.9 Discussion and Future Work 91

distribution.

Beginning a problem with no previous information is advantageous in that
the algorithm has no previous biases, and demonstrates a stronger ability
to learn. However, it can be difficult for an agent to learn a goal-achieving
strategy when it has no initial behaviour to guide it towards the goal. One
option is to take advantage of Transfer Learning (TL). This is defined as
using knowledge learned in one problem and applying it to another related
problem. By providing the agent with an initial ‘good’ strategy, it can build
upon that strategy to create an ideal strategy for the current problem.

A set of rules is seeded into a Cerrla distribution by providing a file con-
taining the Jess-compatible rules when the algorithm is initialised. Each
rule in the file is used as a seed for a new candidate rule distribution Dseed

and added to the distribution D (assuming the distribution does not al-
ready exist in D). Dseed is initialised with p(Dseed)← 1.0 and q(Dseed)← 0.5
(or the existing distribution’s p(Dseed) and q(Dseed) are changed). As per
usual, each newly created distribution is filled with immediate speciali-
sations of the rule and the rule itself (Section 4.7) if the agent has deter-
mined the specialisation conditions (Section 5.5). Like the RLGG rules, if
the agent observations change, the specialisations for the seeded rules are
recalculated and added to their respective distributions.

Although the seeded distributions have p(Dseed) = 1.0 initially, resulting
in the distribution being present in every sampled policy, it is possible for
p(Dseed) to decrease if rules from the distribution are not evaluated (i.e. the
rule is not used for determining the agent’s behaviour), so seeded rules are
not guaranteed to be present in Cerrla’s final output policy.

4.9 Discussion and Future Work
The Cross-Entropy Method (CEM) provides a solid base for RRL because
it balances exploration and exploitation through the use of guided random
sampling. The algorithm begins with no particular bias towards any given
rules, but gradually exploits higher-achieving rules, eventually selecting
them for specialisation to explore a particular subset of the rule space in
an effort to find higher-achieving rules. A problem with the CEM is that it
can converge to a solution too quickly, but this is mitigated by the branch-

92 Chapter 4 CERRLA

ing mechanism, which removes high-probability rules and places them in
their own distribution with a uniform probability, allowing the algorithm
to investigate the high-probability sample separate from the other rules.

Policies are probabilistically sampled using a number of different probabil-
ities to control which distributions are sampled, where they are placed, and
what rules are sampled from them. A problem with the distribution sam-
pling probability p(D) is that it reflects how often a distribution is used, not
how important that distribution is for achieving high reward. If the policy
contains a rule that is highly effective in a given situation which randomly
occurs, but is otherwise unused, then the distribution for that rule will
only be updated if the policy encounters the situation during testing. This
causes p(D) to decrease, even though the rules contained within the distri-
bution are highly effective. This problem is reduced by testing each policy
three times, providing more opportunities for the rule to be used, but for
extremely rare events, this is not enough. Furthermore, testing each policy
three times reduces the variance of reward received within environments.

By restricting a distribution from updating until it has probabilistically
sampled every rule at least once, the elite samples are able to represent
a fair representation of the best policies. The C coefficient is the key factor
that determines how quickly an agent converges to a particular strategy
and how effective that strategy is. A low C results in quick convergence,
but not necessarily maximally effective behaviour, whereas a high C results
in slower learning, but is more likely to produce better behaviour. C = 3
was found to be a good value for balancing performance with speed (with
a theoretical 95% testing coverage of all rules before updating).

The ‘top-down’ specialisation strategy forms a principled approach to cre-
ating rules as it begins with the most general valid rule for an action and
iteratively produces every possible single-step specialisation of the rule,
steering specialisation toward high-valued rules. In contrast, a Genetic Al-
gorithm (GA) approach creates random mutations and crossovers of high-
valued samples. However, a GA is able to quickly (but randomly) cre-
ate complex samples, whereas the incremental specialisation is required
to branch distributions with high probability samples until the complex
sample is created. This is a potential problem if the stopping criteria for
branching is met before the ideal child sample is able to be created; but,

4.9 Discussion and Future Work 93

because a child can be created from multiple parents, the probability of it
being selected is high. Another advantage GA has is that it can remove
specialisations, which if implemented in Cerrla could create loops and
increase the number of rules produced, slowing down evaluation.

Cerrla is able to easily incorporate user-provided rules into the learning
process by seeding new distributions with the rules at the beginning of
learning. These seeded rules can be created by the user, or are the rules
from a learned policy in a simpler problem within the same environment.
A problem with seeding the rules into distributions is that the rules can
only get more specialised; they cannot generalise. However, the original
seeded rule is still part of the distribution, so if the specialisations of the
rule are not useful, the agent would either learn to use the seed rule, or
simply decrease the entire distribution sampling probability and ignore
that seeded rule.

The learning process could potentially be made quicker by probabilistically
estimating if a sample is unlikely to be added to the elites. Tak (2010) de-
fines a method of ‘cutting out’ samples from the CEM during evaluation if
it is unlikely that they will be added to the elite samples for the SameGame
environment2 (originally inspired from Chaslot et al. (2008)). This method
was shown to reduce the training time of the algorithm by approximately
40%. The same technique could be used for Cerrla by observing the mean
recorded reward at every time-step and prematurely ending any samples
that have a drastically lower reward (by say, three standard deviations).

Szita and Lörincz (2006) outline a problem with the CEM in that it con-
verges too quickly to sub-optimal policies. They provide a solution to
this problem by injecting noise into the (numerical) sampling distribu-
tion, which significantly increased performance on the Tetris3 environment.
Noise could also be applied to Cerrla’s distributions in an attempt to
achieve better results, but the noise injection works best with a steadily
decreasing noise function, which would need to relate to Cerrla’s current
state of distributions. An additional problem is that Cerrla’s data val-
ues (rules) are discrete, not numeric, so noise would need to be applied to

2SameGame is an NP-hard (Kendall et al., 2008) tile-matching puzzle video-game origi-
nally developed by Kuniaki Moribe (under the name “Chain Shot!”)

3Tetris is an NP-hard (Demaine et al., 2003) tile-matching puzzle video-game originally
developed by Alexey Pajitnov.

94 Chapter 4 CERRLA

alternative areas of the algorithm (e.g. sampling probabilities).

5
Agent Observations Model

The previous chapter defines how the Cross-Entropy Method (CEM) is
used in a Relational Reinforcement Learning (RRL) context, specifically
focusing on the higher-level details of how policies are generated, evalu-
ated and updated. However, without rules to optimise, the agent has no
behaviour. This chapter defines the ‘agent observations’ model, which is
crucial in creating, maintaining and specialising rules.

The agent observations model is concerned with learning details about the
environment as the agent encounters new states. These details include: ob-
served conditions for action-related objects, implication relationships be-
tween state facts, and minimum and maximum observed values for nu-
merical terms. The model is constantly updated as Cerrla encounters
new states, though if the model observations do not change, the updates
occur less frequently.

Cerrla saves each agent observations model throughout learning, such
that it can be loaded and re-used when appropriate. When it is saved, ob-
servations relating to the current goal are stored separately from general
environment observations such that information about the general envi-
ronment is retained between experiments, even when the goal is changed.

There are three primary uses for the agent observations model: learning
the RLGG rule for each action, which is the starting point for Cerrla’s
rule exploration (Section 5.2); creating and applying simplification rules
for removing redundant and illegal conditions from rules (Section 5.3 and

96 Chapter 5 Agent Observations Model

5.4); and identifying the set of specialisation conditions for each action
(Section 5.5).

Throughout this chapter, examples of the agent observation techniques
used will often refer to the example Blocks World state shown in Fig-
ure 5.1 as a running example. Ordinarily, the agent would not have access
to the height observations (denoted by †), but they will be treated as non-
internal predicates for this chapter to demonstrate how Cerrla handles
numerical facts.

5.1 State Scanning Triggers
Cerrla begins learning the agent observations model as soon as the episode
starts by scanning each state the agent encounters and extracting any rel-
evant information that aids the learning process. Technically, this state
scanning process could occur for every state, but because the process is
time-consuming, it is only triggered when any one of the following condi-
tions are met:

1. The agent’s Relative Least General Generalisation (RLGG) rules do
not cover all possible actions for the state. RLGG rules should pro-
duce all valid actions for the state and need to be generalised if they
do not (see Section 5.2 for more details).

2. The state contains a fact composed of a predicate that the observa-
tions model has never processed. This is captured by defining basic

Relational State Observations:
block(a) clear(a) above(a, fl)
block(b) clear(c) above(b, fl)
block(c) clear(fl) above(c, fl)
floor(fl) highest(a) †height(a, 2)
thing(a) on(a, b) †height(b, 1)
thing(b) on(b, fl) †height(c, 1)
thing(c) on(c, fl) †height(fl, 0)
thing(fl) above(a, b)
Valid Actions:
move(a, c) move(a, fl) move(c, a)

a

b c

floor

Figure 5.1: A 3-block BLOCKS WORLD state observation example. a is on b which is on
the floor, and c is also on the floor.

5.2 RLGG Rule Creation 97

rules for each unseen predicate (e.g. edible(?)) and triggering the state
scanning process when the rule produces an output.

3. A periodic scan is triggered every 2I steps, where I ← 0 initially.
I is incremented by one if a scan of the state does not change the
agent observations and reset to I ← 0 if a scan does change the agent
observations.

5.2 RLGG Rule Creation
The RLGG rules are a set of rules, one for each action in the environment,
that define the least-general generalisation conditions required for taking
an action — that is, whenever an action is available for the agent to take,
the conditions of the corresponding RLGG rule θ-subsume the facts of the
state and produce the same action, while simultaneously being as specific
as possible. The RLGG technique described here is a simplified version
of the original RLGG algorithm Plotkin (1970), as it only uses facts directly
related to the action (containing one or more of the same terms in the action
atom) as input to the process, rather than incorporating every fact in the
state.

Determining the RLGG was originally devised by Plotkin (1970) as an
ILP method to determine a minimally general clause that represents two
clauses; that is, to create a clause that is able to represent both clauses with
minimal generalisation (not just creating an empty clause, which simply
states all facts are true). A problem with the original RLGG algorithm
proposed by Plotkin (1970) is that it creates a large number of redundant
facts describing every potential merging of clauses and can even create
an infinite number of RLGGs. Sammut (1998) defines a constrained RLGG
algorithm that reduces the number of possible RLGGs by utilising the back-
ground knowledge to limit the merging possibilities. The RLGG algorithm
has also been utilised as the basis of the Golem and Progol algorithms
(Muggleton and Feng, 1992; Muggleton, 1995), which use the RLGG algo-
rithm to efficiently create clauses for defining positive examples within a
data set. RLGG rules are useful in the RRL context because they present
the minimally-general conditions needed to take an action within the envi-
ronment, resulting in a rule that clearly defines an action’s preconditions.

98 Chapter 5 Agent Observations Model

The RLGG algorithm presented in the following subsection is much sim-
pler than the one presented in Plotkin (1970) and Sammut (1998), because
it only records the terms used in the action (represented by X, Y, . . .) and
numerical values (represented by range variables Ni). All other terms are
replaced by anonymous variables. This results in a more general RLGG
than the standard RLGG, losing some information, but it also reduces the
set of possible specialisation conditions to those that are directly related
to the action, reducing the search space of rules. The key assumption be-
hind this decision is that actions specify important objects as their terms;
all other objects are unimportant to making informed decisions. This is
discussed further in Section 7.3.

The RLGG for an action is calculated as the lgg (least general generalisa-
tion) of the set of facts in the state. Ordinarily, the RLGG process incor-
porates background knowledge into the process, but because all facts of a
state are present (via forward chaining), there is no need to utilise back-
ground knowledge to infer new knowledge. The lgg operation is defined
by the following rules (Lavrac and Dzeroski, 1993):

lgg(t, t) = t (5.1)

lgg(s, t) = V, where s 6= t (5.2)

lgg(s, ?) = ? (5.3)

lgg(p(t1, . . . , tn), p(s1, . . . , sn)) = p(lgg(t1, s1), . . . , lgg(tn, sn)) (5.4)

lgg(p(t1, . . . , tn), q(s1, . . . , sm)) is undefined if p 6= q (5.5)

lgg({L1, . . . , Ln}, {K1, . . . , Kn}) = {Lij = lgg(Li, Kj) if defined} (5.6)

Note that the lgg of an anonymous variable ‘?’ remains anonymous (Equa-
tion 5.3).

The RLGG uses the facts related to the current action as input to the pro-
cedure. Given a state s and a set of valid actions A(s) = {a1, . . . , an} :
ai = pa,i(ci,1, ci,2, . . .), the set of state facts directly related to an action ai is
defined as rel(s, ai):

rel(s, ai) = {ps,j(c1, . . . , cn) ∈ s | ∃ck
(

ps,j(. . . , ck, . . .) ∧ pa,i(. . . , ck, . . .)
)
}

(5.7)
which states that the related facts rel(s, ai) are all facts in state s that contain

5.2 RLGG Rule Creation 99

at least one term that action ai contains.

These related facts are used as the conditions for the rule rai = rel(s, ai)→
ai, which we use to update the RLGG rule for action predicate pa:

rpa
RLGG,t = lgg

(
ra

RLGG,t−1, rai θ
−1
ai

)
)

(5.8)

where rpa
RLGG,t−1 is the existing RLGG rule for action predicate pa and

ra
RLGG,t is the updated rule (if there is no existing rule, rpa

RLGG,t ← rai θ
−1
ai

).
The RLGG of the two rules uses a lossy inverse substitution defined by the
current terms of the atomic action ai, such that θ−1

ai
= {ci,1/X, ci,2/Y, . . .}.

Any non-numerical constants not included in θ−1
ai

are replaced by the anony-
mous variable ‘?’; numerical constants are replaced by unique range vari-
ables Nj (these can later be constrained to be within a given numerical
range, see Section 5.5). The resulting rule encodes a rough approxima-
tion (due to lossy inverse substitution) of the least general set of conditions
required for taking action pa.

Example 5.2.1. Referring to Figure 5.1 (replicated in Figure 5.2), the RLGG
calculation process for the three valid actions move(a, c), move(a, fl), move(c,
a) is described in the following example, processing one rule at a time
(beginning with t = 1):

rmove(a, c) = block(a), block(c), thing(a), thing(c), clear(a), clear(c), on(a, b), on(c,
fl), above(a, b), above(a, fl), above(c, fl), height(a, 2), height(c, 1) → move(a,
c)

θ−1
move(a, c) = {a/X, c/Y}

rmove
RLGG,1 = block(X), block(Y), thing(X), thing(Y), clear(X), clear(Y), on(X, ?),

on(Y, ?), above(X, ?), above(Y, ?), height(X, N0), height(Y, N1) → move(X,

a

b c

floor

Figure 5.2: An example 3-block BLOCKS WORLD state also given in Figure 5.1.

100 Chapter 5 Agent Observations Model

Y)

This is already very close to the actual RLGG; only the conditions block(Y),
on(Y, ?), and above(Y, ?) are not always true, as evidenced in the following
example:

rmove(a, fl) = block(a), floor(fl), thing(a), thing(fl), clear(a), clear(fl), on(a, b),
on(b, fl), on(c, fl), above(a, b), above(a, fl), above(b, fl), above(c, fl), height(a,
2), height(fl, 0)→ move(a, fl)

θ−1
move(a, fl) = {a/X, f l/Y}

rmove
RLGG,2 = block(X), thing(X), thing(Y), clear(X), clear(Y), on(X, ?), above(X,

?), height(X, N0), height(Y, N1)→ move(X, Y)

This rule is in fact the RLGG for the Blocks World move action, so there
is no need to describe the process for the final action of the state (as the
rule canot generalise any further). Many of the conditions in this rule are
redundant with respect to other facts though (e.g. on(X, ?) is always true
if above(X, ?) is true) and can be removed using the simplification rules
described in the following section. The simplified rule is:

rmove
RLGG, 2 = clear(X), clear(Y), block(X)→ move(X, Y)

All other conditions in the rule are implied from these three conditions.

5.3 Inferring Simplification Rules
Simplification rules are basic rules defining causal or correlated relation-
ships between patterns of literals, inferred from the environment state ob-
servations. The simplification rules can be applied to Cerrla’s condition-
action rules to remove redundant and illegal conditions. Simplification
rules define either implication (causation) or equivalence (correlation) rela-
tionships between both negated and non-negated literals. They are created
in a manner similar to learning the RLGG rules (Section 5.2), but observe
the relationships between state facts, rather than the action’s relationship
to state facts. Whenever Cerrla creates a new rule, the simplification rules
are immediately applied to the rule to remove redundant conditions or
mark the rule as illegal. This reduces the number of possible rules cre-
ated during rule specialisation and minimises the number of conditions

5.3 Inferring Simplification Rules 101

required for each rule.

Creating implication and equivalence simplification rules is achieved by
identifying causal relationships between state observation facts, and for
equivalence rules, checking if these relationships are symmetric. These
relationships are discovered by Cerrla using the RLGG method defined
in the previous section to identify patterns in the state observations.

5.3.1 Identifying Causal Relationships

Given a state s = {x1, . . . , xn} (such that xi = ps,i(ci,1, ci,2, . . .)), Cerrla

infers a set of implication rules by identifying which related literals are al-
ways true when another given literal is true. This process is nearly identical
to the RLGG rule learning process, except instead of identifying the RLGG
for each action predicate pa (e.g. move), the RLGG is learned for every state
predicate ps,i (e.g. block, clear, on, . . .).

For every xi ∈ s, the set of always true literals are calculated by first identi-
fying the related facts rel(s, xi):

rel(s, xi) = {ps,j(c1, . . . , cn) ∈ s | ∃ck
(

ps,j(. . . , ck, . . .) ∧ ps,i(. . . , ck, . . .)
)
}

(5.9)
which states that the related facts rel(s, ai) are all facts in state s that contain
at least one term also contained in fact xi (note that xi is also an element of
rel(s, xi).

These related facts are used to update the set of always true literals for state
predicate ps,i at time t, written as Tps,i,t (using the same lgg definitions seen
in Section 5.2):

Tps,i,t = lgg
(
Tps,i,t−1, rel(s, xi)θ

−1
xi

)
(5.10)

This RLGG process is slightly different from the RLGG rule creation pro-
cess in that it does not create a rule from the related conditions. Here, θ−1

xi

is used as the inverse substitution map, such that when it is applied to
rel(s, xi), all terms in xi are replaced by variables and all terms not in xi

are replaced by anonymous variables. If t = 1, Tps,i,1 simply becomes the
inversely-substituted related literals rel(s, xi)θ

−1
xi

.

When simplification rules are applied to rules, anonymous variables are
a special case: they may only bind to other anonymous variables. This is

102 Chapter 5 Agent Observations Model

a necessary modification to match with the rule’s use of the anonymous
variable, i.e. terms that are not relevant to the rule’s action. E.g. when
applying a simplification rule, the literal above(X, ?) will not θ-subsume
the rule condition above(Y, X) or above(?, X), but will θ-subsume above(Y,
?) (where θ = {X/Y}). Further details about applying the simplification
rules can be found in Section 5.4.

The resulting set of RLGG conditions for each state predicate ps,i encode the
abstract, variable-term literals that are true whenever a literal with pred-
icate ps,i is true. E.g. in the Blocks World example, whenever a literal
matching on(X, Y) is true, the literal above(X, Y) is also true (where X and
Y are replaced by their respective constants).

Example 5.3.1. The set of always true literals for state predicate block are:

Tblock = above(X, ?), block(X), on(X, ?), thing(X)

That is, whenever block(X) is true, these literals are also true, where X is
substituted by some term.

Negated Relationships: Existence Implies Non-Existence

But what about relationships between true and false facts? Sometimes,
whenever a fact is true, another fact is always false (e.g. if floor(X) is true,
block(X) is never true, where X is the same object). Identifying these re-
lationships is a little more tricky. For a state fact xi, the set of related
state facts can be identified by rel(s, xi) (Equation 5.9). After applying the
inverse substitution operator θ−1

xi
to rel(s, xi), the related facts are trans-

formed into a set of abstract literals using terms from the finite alphabet
Γ(xi) = {V1, . . . , Vn, ?}, where each Vi is a different variable present in θ−1

xi

and n is number of unique terms in xi.

This alphabet of terms Γ(xi) and the state predicates of the environment
Ps = {ps,1, . . . , ps,n} can be combined together to produce the set of all
possible atoms that are related to xi (the Herbrand base of Γ(xi) and Ps:
HB(Γ(xi), Ps)). Note that literals only containing anonymous variables are
not included in HB(Γ(xi), Ps). The type constraints for fact xi can be used
to restrict the number of atoms formed by ensuring that each variable in
Γ(xi) is only used in predicates where the original type of the variable
could be true. For example, let xi = floor(fl), resulting in Γ(xi) = {X, ?}.

5.3 Inferring Simplification Rules 103

The Herbrand base HB({X, ?}, Ps) would not include block(X), as X could
not possibly be a valid term for block with the type restricted to f loor or
any types implied by f loor (i.e. thing).

Using HB(Γ(xi), Ps) and rel(s, xi)θ
−1
xi

, the set of possibly-related literals (re-
stricted to literals containing at least one of xi’s terms) that are always false
for the current state can be calculated as:

¬rel(s, xi) = HB(Γ(xi), Ps) \ (rel(s, xi)θ
−1
xi

) (5.11)

Like the related facts, these untrue related literals ¬rel(s, xi) = {L0, . . . , Ln}
(the line indicates the literals are not true) can be used as input to the RLGG
method to produce a set of literals that are always false Fps,i,t for the state
predicate ps,i.

Example 5.3.2. The set of always false literals for state predicate block are:

Fblock = above(X, X), floor(X), on(X, X)

That is, whenever block(X) is true, these literals are always false, where X
is substituted by some term.

Negated Relationships: Non-Existence Implies Existence

Just as the existence of a fact implies the non-existence of another fact,
Cerrla can also calculate which facts are implied to be true when another
fact is explicitly false. That is, when a rule explicitly has the negation of an
atom as a condition, which literals are always true when the negated atom
is false?

The previous subsection described how the set of untrue related literals
¬rel(s, xi) = {L0, . . . , Ln} can be calculated using the known related facts
rel(s, xi), and the Herbrand base of variable term state atoms HB(Γ(xi), Ps).
From this information, Cerrla can infer a set of always true literals for ev-
ery untrue related literal Lj ∈ ¬rel(s, xi) using the same RLGG process
seen in Equation 5.10 with one caveat: the set of related facts can only con-
tain literals containing terms present in Lj. Note that separate sets of always
true literals are maintained for predicates with different terms because they
may include anonymous variables, altering how the simplification rule can

104 Chapter 5 Agent Observations Model

be applied to a policy-rule’s conditions:

TLj,t
= lgg

(
TLj,t−1, rel(s, xi)θ

−1
Lj

)
(5.12)

where θ−1
Lj

is an inverse substitution map containing only the substitutions

in θ−1
xi

which replace a constant with a variable present in Lj. The resulting
set of always true facts represent the literals that are always true when Lj is
untrue (e.g. no fact with a substitution for the variables in Lj is present in
the state).

These ‘non-existence implies existence’ simplification rules can only be ap-
plied to clauses that explicitly state if a literal is false (negated). It cannot be
used to infer the existence of other literals with the closed world assumption:
“any facts not asserted as true are assumed false,” e.g. the representation
used to represent environment states.

Example 5.3.3. In the Blocks World environment, the always true literals
for not on(X, ?):

Tnot on(X, ?) = above(?, X), floor(X), on(?, X), clear(X), thing(X)

This encodes the set of facts that are true if not on(X, ?) is true (there
is no substitution for X such that it is on some anonymous, non-action-
related object). not on(X, ?) is actually equivalent to the literal floor(X) and
this relationship can be utilised to replace occurrences of not on(X, ?) with
floor(X) (Section 5.3.3).

Pairwise Relationships

Sometimes relationships between literals are more complex than a one-
to-one causal relationship. With a small addition to the previous methods,
Cerrla can also observe causal relationships for pairs of literals. While this
could be extended to observe triplicate causal relationships and beyond, the
theoretical benefit would not be worth the associated cost of learning the
relationships.

Given a fact xi ∈ s : xi = ps,i(ci,1, ci,2, . . .) and its inversely substituted
related literals rel(s, xi)θ

−1
xi

= {ps,j(V0, . . . , Vn), . . .}, a set of always true lit-
erals and always false literals can be calculated for every pair of literals (xi ∧
ps,j(V0, . . . , Vn)). The procedure for doing so uses the same RLGG processes

5.3 Inferring Simplification Rules 105

(Equation 5.10 and 5.11), but the always true/false sets Tps,i∧ps,j(V0,...,Vn),t /
Fps,i∧ps,j(V0,...,Vn),t are unique to the pair (where different terms for ps,j use
different always true/false sets).

Example 5.3.4. The pairwise set of always true literals for clear(X) and on(?,
X) is:

Tclear∧on(?, X) = above(?, X), floor(X), on(?, X), clear(X), thing(X)

This encodes the relationship that states if X is clear and an anonymous,
non-action-related object is on X, then X is the f loor (only the floor can
be clear when something is on it). This relationship could not be encoded
using only singular relationships between literals.

5.3.2 Creating Implication Rules

Given the always true/false sets of literals, creating implication rules is
straightforward. For every state predicate ps, a simplification rule is created
for each always true literal in Tps in the form ps(X, Y, . . .) ⇒ T, where T is
one of the literals in Tps (an implication rule is not created if ps(X, Y, . . .) =
T). Similarly, for every always false literal in Fps , a simplification rule is
created as ps(X, Y, . . .) ⇒ not F, where F is one of the literals in Fps . Pair-
wise simplification rules are created in a similar manner, except the pair of
conditions are on the LHS of the rule.

The rules are interpreted by simplifying to the LHS of the rule, such that if a
set of literals {A, B, C, . . .} is simplified with the simplification rule A⇒ B,
the resulting simplified set of literals is {A, C, . . .}, because B is redun-
dant when A is present (logical resolution, Robinson (1965)). Furthermore,
illegal sets of conditions can be identified by checking for a negated post-
condition. E.g. given the set {A,¬B, . . .}, the rule A⇒ B identifies this set
as an illegal set.

Example 5.3.5. The relationships described in Example 5.3.1, 5.3.2, and 5.3.4
produce the following simplification rules:

block(X)⇒ above(X, ?),

block(X)⇒ thing(X),

block(X)⇒ not above(X, X),

block(X)⇒ not floor(X),

106 Chapter 5 Agent Observations Model

clear(X), on(?, X)⇒ above(?, X),

clear(X), on(?, X)⇒ floor(X)

5.3.3 Creating Equivalence Rules

Implication rules are useful for removing redundant conditions, but even
stronger equivalence rules A ⇔ B can be created if fully correlated com-
binations of conditions exist. Equivalence rules are used for simplification
by replacing any occurrence of the right-side fact B for the left-side fact A.

During the simplification rule creation process, an equivalence rule A⇔ B
is created instead of an implication rule A ⇒ B only if A ⇒ B ∧ BθB ⇒
AθB. A and B represent one or more literals, and θB is a substitution map
used to ensure the RHS of the simplification rule does not contain any
variables not found in the LHS of the rule. θB is defined to replace every
non-anonymous term in B with a variable (X, Y, . . .). All other terms not
substituted by θB are replaced by the anonymous variable.

If BθB ⇒ AθB exists, an equivalence rule A ⇔ B or BθB ⇔ AθB can be cre-
ated, where the preferred equivalence rule is selected using the descend-
ing preference list for the LHS literal(s): {type facts, relation facts, negated
facts} (where facts with fewer terms, and alphabetical comparison are used
for breaking ties).

Example 5.3.6. The implication rule on(X, ?) ⇒ block(X) can be replaced
with the equivalence rule block(X) ⇔ on(X, ?) because on(X, Y) ⇒ block(X)
and block(X) is the preferred LHS because it is a type literal.

Pairwise equivalence rules can also be created in a similar manner to sin-
gular fact equivalence rules, except the implication rules are checking for
two conditions, i.e. reversing the implication A ∧ B ⇒ C results in a check
for CθC ⇒ AθC ∧CθC ⇒ BθC. If both A and B are implied by C, the equiva-
lence rule C ⇔ A ∧ B is created (the LHS is always the singular condition).

Example 5.3.7. The pairwise implication rule clear(X), on(?, X) ⇒ floor(X)
(from Example 5.3.5) can be replaced with the equivalence rule floor(Y) ⇔
clear(Y)∧ on(X, Y) because floor(X)⇒ on(?, X) and floor(X)⇒ clear(X).

5.4 Evaluating Simplification Rules 107

5.3.4 Recording Simplification Rules

It is not necessary for the agent to record every implication or equivalence
rule created. Because equivalence rules replace facts on the right-side of
the rule whenever they are encountered, any other rules containing those
facts will never trigger (assuming the equivalence rules are evaluated first,
which is the case, see Section 5.4). Furthermore, if two equivalence rules
have the same condition on the right-side, which one triggers? To resolve
these issues, when a simplification rule is created, the following steps are
checked:

1. If the rule is an implication rule A ⇒ B, it is only added if there are
no existing equivalence rules D ⇔ B (the same B) or E ⇔ A (the
same A).

2. If the rule is an equivalence rule B ⇔ C, it is not added if there is an
existing equivalence rule A⇔ B (as B is simplified to A).

3. If there is an existing equivalence rule C ⇔ B (same right-side condi-
tion), the equivalence rule with the simplest conditions is kept (refer
to the descending preference list in the prior subsection).

4. When an equivalence rule A ⇔ B is added, any existing implication
rules mentioning B are removed.

The inferred simplification rules for each environment can be found online
at http://www.samsarjant.com/cerrla/.

5.4 Evaluating Simplification Rules
When a rule is created, Cerrla’s inferred simplification rules are applied
to the rule’s conditions to remove redundant predicates, producing a se-
mantically equivalent simplified set of conditions (the original conditions
are also recorded for use in further rule specialisations, see Section 5.5).

Simplification rules are applied by checking whether a simplification rule
θ-subsumes the rule conditions and if so, removes the redundant facts de-
fined by the rule. Cerrla already uses an efficient method for checking if a
rule’s conditions match a set of facts: the Rete algorithm employed by Jess.
By using a Rete network to represent the simplification rules, Cerrla can

http://www.samsarjant.com/cerrla/

108 Chapter 5 Agent Observations Model

efficiently determine matches to the simplification rules and automatically
remove redundant conditions by treating a rule’s conditions as asserted
atoms. However, because the set of rule conditions contain variable terms
and negated literals, simplifying them requires pre- and post-processing to
assert them as facts to the state. Before describing how the Rete simplifica-
tion network is created, this section first describes the special transforma-
tion process that the rule conditions are subject to in order for them to be
simplified.

5.4.1 Transforming the Rule Conditions

Because the rule conditions contain variables, they cannot be asserted di-
rectly to the Rete simplification network. Each condition is preprocessed
to replace terms with constant terms, so the simplification rules can be ap-
plied to them. For every condition in the rule, the following preprocessing
steps are performed:

1. If the condition is negated, the name of the condition is prefixed by
‘neg ’ and the condition is treated as not negated. This is because
negated facts cannot be asserted as facts to the Rete simplification
network. E.g. not clear(. . .) becomes neg clear(. . .).

2. If a condition term is not present in the rule’s action literal (e.g. anony-
mous variables), then it is replaced with the constant free. When
simplification rules are evaluated, free variables in the conditions
can only match with anonymous variables in the simplification rule.
E.g. clear(?) would be represented as clear(free).

3. Otherwise, the term is replaced with a unique identifier constant id#,
where # represents some number. This replacement is recorded in a
replacement map θ∗, such that any other occurrences of the term are
replaced by the same identifier constant. This allows the simplifica-
tion rules to treat variable terms in the rule conditions as constants to
be matched against variables in the simplification rules. E.g. above(X,
fl) would be represented as above(id0, id1), where θ∗ = {X/id0, fl/id1}.

Example 5.4.1. Transforming the conditions clear(X), clear(Y), height(Y, N0),
not on(X, ?) produces the following:

5.4 Evaluating Simplification Rules 109

clear(id0), clear(id1), height(id1, id2), neg on(id0, free)

where θ∗ = {X/id0, Y/id1, N0/id2}.

5.4.2 Asserting the Simplification Rules

Creating the Rete network of simplification rules (separate to the network
representing the environment state) involves defining each simplification
rule in a Jess-compatible format, such that redundant conditions are auto-
matically removed and illegal condition combinations are identified. Each
simplification rule (implication or equivalence) asserts two separate rules
to the simplification Rete network: the redundant condition removal rule
and the illegal state rule. An illegal state is identified by negating the non-
preferred (RHS) of the rule and evaluating it. If the negated rule matches
the set of conditions, then a new fact illegal() is asserted to the Rete network,
representing an illegal condition combination.

When a simplification rule is evaluated, anonymous variables in the rule
can only match with anonymous terms. To enforce this restriction, when
the rule is asserted to the simplification Rete network all anonymous vari-
ables are replaced with the constant free. Because the rule conditions also
perform the same replacement, anonymous variables in simplification rules
will only match with corresponding free constants in rules.

When the conditions of a simplification rule are asserted, negated condi-
tions are also prefixed with ‘neg ’ (as per step 1 in the previous subsection).
The Jess-compatible rules for each type of simplification rules are defined
below.

Each simplification rule uses the special assert and retract operators (pre-
viously defined in Section 3.2, under Transition Rules) which add/remove
facts to/from the set of asserted facts.

Implication Rules

An implication rule X ⇒ Y is asserted as:

X, Y → retract(Y)

This rule checks for a match to both X and Y of the simplification rule and
if it exists, removes the condition(s) Y represents.

110 Chapter 5 Agent Observations Model

Example 5.4.2. The implication rule above(X, Y)⇒ not highest(Y) is asserted
as:

above(X, Y), neg highest(Y)→ retract(neg highest(Y))

Equivalence Rules

An equivalence rule X ⇔ Y is asserted as:

Y → retract(Y), assert(X)

This rule checks for a match to Y of the simplification rule and if it exists,
removes the condition(s) Y represents and asserts the condition(s) in X.

Example 5.4.3. The equivalence rule floor(Y) ⇔ clear(Y) ∧ above(X, Y) is as-
serted as:

clear(Y), above(X, Y)→ retract(clear(Y)), retract(above(X, Y)), assert(floor(Y))

Illegal State Rules

Illegal state rules are created for both implication and equivalence rules
to check if the illegal state of both X and ¬Y exist. Note that if Y con-
tains multiple conditions, they are represented in disjunctive format (via
De Morgan’s laws). Also, any double negative conditions are simplified
to a non-negated condition. As usual, negated conditions are represented
with the neg prefix.

X, not Y → assert(illegal())

This rule checks for a match to X and negated Y of the simplification rule
and if it exists, asserts the (illegal) fact to the Rete network, indicating the
condition combination represents an illegal state.

Example 5.4.4. The two rules from Example 5.4.2 and 5.4.3 also assert the
following illegal state rules respectively:

above(X, Y), highest(Y)→ assert(illegal())

floor(Y), neg clear(Y) ∨ neg above(X, Y)→ assert(illegal())

5.4.3 Recreating the Rule Conditions

After the simplification rules have been run, unless the conditions are il-
legal(), the rule conditions are extracted from the network and recreated.

5.5 Rule Specialisation 111

This is accomplished by simply applying the formatting steps in reverse,
using the inverse of replacement map θ∗ to replace all unique identifier
constants with their original terms. free terms are replaced with anony-
mous variables. Any facts prefixed by neg are returned to their original
fact form and negated.

If a rule’s conditions are illegal, the conditions are not recreated and the
rule is marked as illegal. Illegal rules are not used by Cerrla and removed
from the specialisation process.

5.5 Rule Specialisation
The previous sections defined how the agent organises the information
observed in the environment. This section defines how that information is
used to specialise rules. When a rule r is specialised, all possible single-step
specialisations {r′1, . . . , r′i} are created using the following specialisation op-
erations.

Example 5.5.1. The examples in this section use the simplified Blocks

World move RLGG rule (first seen in Example 5.2.1)

rmove
RLGG = clear(X), clear(Y), block(X)→ move(X, Y)

After every specialised rule is created, the conditions of the rule are sim-
plified (Section 5.4) by removing redundant conditions and checking if the
conditions are illegal. In the latter case, the rule will not be added to the
set of specialisations. If the specialised and simplified rule differs from the
rule that created it, it is added to the set of specialisations.

5.5.1 Additive Specialisation

Additive specialisation involves specialising a rule by adding more con-
ditions to it. The set of specialisations for each action is identified while
creating the RLGG rule; they are the inversely substituted conditions that
are not RLGG rule conditions (Section 5.2). Additive specialisation only
uses conditions it has observed to be true to ensure that specialisation only
adds feasibly possible conditions to the rules (though combinations of con-
ditions may result in illegal rules anyway, but this is detected using the
simplification rules, Section 5.4).

112 Chapter 5 Agent Observations Model

Recall that for every valid action, a temporary rule consisting of related
conditions rai = L1, . . . , Ln → ai (where L1, . . . , Ln are literals represent-
ing ai’s related conditions as per rel(s, ai)) and a lossy inverse substitu-
tion θ−1

ai
were used to update the conditions of the RLGG rule ra

RLGG,t =

M1, . . . , Mn → pa(X, Y, . . .) (where M1, . . . , Mn are literals representing the
RLGG conditions at time t). After updating the RLGG rule with action ai,
the set of specialisation literals for rules with action predicate a is iteratively
updated as:

specsa,t ← specsa,t−1 ∪
(
({L1, . . . , Ln}θ−1

ai
) \ {M1, . . . , Mn}

)
(5.13)

Each literal in specsa,t represents two possible specialisations: the negated
and non-negated versions of each.

The specialisation conditions can also include specialisation conditions that
directly relate to the environment goal. By expanding the inverse substi-
tution map θ−1

ai
to include inverse substitutions for every substitution in

the goal substitution map θG = {Gi/ci}, relationships between the action’s
terms and the goal terms can be encoded as potential specialisation con-
ditions. This expanded inverse substitution map θ−1

ai,G
= {c1/X, c2/Y, . . . ,

ci/G0, ci+1/G1, . . .} is applied in the same way as θ−1
ai

in Equation 5.13 to
add specialisation conditions concerning goal and action terms to the set of
specialisation conditions. However, there is one restriction: added literals
must contain at least one variable present in the rule’s action (i.e. X, Y, . . .).

Additive specialisations are applied to a rule r by creating a new rule r′

for every negated and non-negated literal in specsa,t (where a is the same
action predicate used in r) with the literal added to the conditions. If, after
simplifying the rule, the conditions of r′ differ from r, and r′ is not illegal
according to the simplification rules, it is added to the set of specialisations
for r.

Note that the rule specialisation conditions only include conditions that
contain at least one mention of the terms used in the action. This focuses
rule specialisation towards defining the conditions for the directly relevant
objects to the rule’s action. The assumption is that the terms of a rule’s
action are the most relevant objects for performing the action. If special-
isation conditions that do not explicitly reference the action’s terms are
also included as specialisation operators, the number of possible special-

5.5 Rule Specialisation 113

isations increases dramatically and results in many specialised rules with
conditions of little utility. Further discussion is given in Section 5.6.

Example 5.5.2. Some example rules created by adding conditions to rmove
RLGG

(Example 5.5.1). Note that each rule has been simplified using the simpli-
fication rules to remove redundant literals (evident for rmove

1 and rmove
3):

rmove
1 = clear(X), block(X), floor(Y)→ move(X, Y)

rmove
2 = clear(X), clear(Y), block(X), not highest(X)→ move(X, Y)

rmove
3 = above(X, G0), clear(X), clear(Y)→ move(X, Y)

5.5.2 Transforming Specialisation

Specialisation can also occur by modifying the existing conditions. There
are two methods of doing this: range splitting and goal term replacement.

Range Splitting

Range splitting creates specialised rules by splitting an existing range (or a
variable representing a number) into up to five overlapping sub-ranges: the
lower half, the upper half, a central half, and if applicable, a negative sub-range
(lower bound to 0), and a positive sub-range (0 to upper bound). As part of
the agent observations model, the observed values for each numerical term
are recorded with respect to every action predicate, using the inverse sub-
stitution map θ−1

ai
(defined in Section 5.2) to convert the literal containing

the numerical term into a variable format key for accessing the range. That
is, each range is stored within a map of the form (Ljθ

−1
ai

) 7→ [Nmin
j , Nmax

j],
where Nmin

j and Nmax
j represent the real-valued minimum and maximum

observed values for the range respectively.

The observed values for each range are recorded because it allows ranges
to be specified as variable fractions of the observed range instead of fixed
numerical values, which means that if the observed values change, the vari-
able fractions still represent an identical subset of the range. The bounds of
a range can be expressed either as a real number (i.e. when 0 is a bound),
an observed range bound Nmin

j or Nmax
j , or as a linearly interpolated value

between Nmin
j and Nmax

j , written as lerp(Nmin
j , Nmax

j , R ∈ [0, 1]). This func-

114 Chapter 5 Agent Observations Model

tion is interpreted as:

lerp(Nmin, Nmax, α) = (1− α) · Nmin + α · Nmin (5.14)

Example 5.5.3. The ranges produced by splitting N1 in rmove
RLGG (Example

5.5.1):

rmove
1 = clear(X), clear(Y), height(Y, (Nmin

1 ≤ N1 ≤ lerp(Nmin
1 , Nmax

1 , 0.5))),
block(X)→ move(X, Y)

rmove
2 = clear(X), clear(Y), height(Y, (lerp(Nmin

1 , Nmax
1 , 0.25) ≤

N1 ≤ lerp(Nmin
1 , Nmax

1 , 0.75))), block(X)→ move(X, Y)

rmove
3 = clear(X), clear(Y), height(Y, (lerp(Nmin

1 , Nmax
1 , 0.5) ≤ N1 ≤ Nmax

1)),
block(X)→ move(X, Y)

In Chapter 6, all ranges are provided with numerical values so the reader
does not need to refer to observed range values for an environment.

Goal Argument Replacement

Goal term replacement involves substituting all occurrences of one of the
variables in the rule’s action with a goal variable. For every variable in
the rule’s action atom (X, Y, . . .) and every current goal term (G0, G1, . . . ∈
θG, the current goal substitution map), a substitution θH is applied to the
rule r, such that one of the variables in the rule is replaced by one of the
goal variables to create a new rule r′. To ensure the rule is legal (i.e. the
replacement has not created impossible conditions), every condition in the
rule that contains a goal term is checked to see if it exists in the agent’s goal
term observations, which observe every different literal and term position
each goal variable has been present in.

For every state s, the set of observed goal term positions is updated by
adding θGs to the set, where all non-goal related terms are replaced by
anonymous variables. If every condition in θGr′ is in the set of observed
goal term positions, the rule is considered legal.

Example 5.5.4. The specialisations of rmove
RLGG (Example 5.2.1) produced by

goal term replacement for the OnG0G1 goal are:

rmove
1 = clear(G0), clear(Y), block(G0), height(G0, N0), height(Y, N1)→ move(G0,

Y)

5.6 Discussion and Future Work 115

rmove
2 = clear(X), clear(G0), block(X), height(X, N0), height(G0, N1)→ move(X,

G0)

rmove
3 = clear(G1), clear(Y), block(G1), height(G1, N0), height(Y, N1)→ move(G1,

Y)

rmove
4 = clear(X), clear(G1), block(X), height(X, N0), height(G1, N1)→ move(X,

G1)

5.5.3 Refining the Rule Conditions

Whenever a rule is created, the conditions are simplified using the simpli-
fication process detailed in Section 5.4. The rule conditions are then heuris-
tically sorted as defined in Section 4.7.3, such that the conditions with the
fewest likely matches are at the beginning of the rule to quickly refine the
number of possible variable replacements for a rule.

5.6 Discussion and Future Work
The use of the observation model allows the algorithm to keep the number
of specialisations low, both by restricting the number of possible speciali-
sations and by simplifying specialised rules to remove redundancies. The
specialisation conditions are limited to action-related conditions to limit
the number of possible rules created, thereby increasing the efficiency of
the learning process. Chapter 6 examines the effects of using simplification
rules on Cerrla’s performance.

The observations model is composed of a separate goal-based model and
environment model to allow learned relationships to be applied to new
problems in the same environment. By explicitly separating the environ-
ment observations from the current goal observations, the agent can reuse
learned environment models on alternative goals within the same environ-
ment.

Cerrla’s current language bias results in relatively few specialisation con-
ditions because it does not concern itself with non-action related terms for
the rules that are created. This results in simpler rules, smaller rule distri-
butions and therefore, a shorter training time to create effective behaviour.
However, this restriction may also negatively affect Cerrla’s performance.

116 Chapter 5 Agent Observations Model

A future direction for Cerrla is to allow non-action-related conditions to
be included as specialisation conditions. This should be implemented care-
fully, to avoid creating needlessly complex rules defining situations that
have no affect on the rule’s behaviour.

Another area of future work is defining a better method to handle numer-
ical terms. The current method of defining ranges and splitting them into
3–5 arbitrary sub-ranges is effective, but crude. A possible alternative is to
organise observed numerical values into a Gaussian distribution such that
ranges are defined by standard deviations from the mean.

6
Algorithm Evaluation

This chapter describes the experiments performed to evaluate Cerrla, and
the results obtained. Where possible, experiments are evaluated against re-
lated approaches to provide a comparison to the algorithm’s performance.
Unless stated otherwise, parameters are set as described in Chapter 4:
α = 0.6 (Section 4.2), β = 0.01 (Section 4.6.4), C = 3 (Section 4.6.2), ρ = 0.05
(Section 4.2), and distribution properties are initialised as p(D) = 0.5 and
q(D) = 0.5 (Section 4.2.1).

6.1 Experiment Methodology
All results shown are the averaged result of ten experiments, where each
experiment consists of Cerrla learning behaviour in an environment for
a specific goal, beginning with no prior knowledge of the environment
(unless otherwise stated). The standard deviation shown for results is the
deviation between experiments. The random generators for each experi-
ment are seeded with the experiment iteration number and unless spec-
ified otherwise, each experiment begins without any information from
prior experiments. Each policy sample is evaluated over three episodes
to produce the averaged value (see Section 4.5 for details). Experiments
were performed on Intel R© CoreTM i7-2600 CPU @ 3.40GHz machines,
where each experiment only uses a single core and was limited to 4GB
RAM. The output files created for all experiments can be found at http:

//www.samsarjant.com/cerrla/.

http://www.samsarjant.com/cerrla/
http://www.samsarjant.com/cerrla/

118 Chapter 6 Algorithm Evaluation

Performance is measured with two metrics (each metric represents the
mean value over ten experiments): the online performance of the algo-
rithm’s sampled policies, and the greedy performance (the performance of
the best elite policies).

The online performance is measured as the mean score of a sliding win-
dow of samples (where the window contains 100 samples). This is not
an exact measure of the sampled policy’s performances, but it provides
a close approximation to the actual performance. When learning is com-
pleted (either after a fixed number of episodes or β convergence is reached),
all probabilities are fixed (no more updates) and 100 policies are generated
and tested to produce the true mean online performance. Some figures may
also include a Standard Deviation (SD) of the sample performance between
experiments.

The greedy performance is calculated as the mean performance of the best
elite sample, measured every 300 episodes. The mean is calculated as the
average reward received by testing the current best elite sample in 100
episodes (these episodes are not included in the episode count or training
time).

Each environment also lists the final (averaged) results for each goal in the
experiments in tables (e.g. Table 6.1). Each row in the table presents the
goal, the average number of episodes required to converge (if using β con-
vergence, see below), the final mean reward for sampled policies (± stan-
dard deviation), the final mean reward for the greedy policy (± standard
deviation), the mean number of candidate rule distributions at the begin-
ning and end of learning (which increases due to branching, Section 4.7.2),
the mean number of rules at the beginning and end of learning (where
rules are created whenever a distribution is created, Section 4.7.2), and the
mean training time in seconds for an experiment to be completed (this does
not include time spent testing greedy policies or determining the true sam-
pled policy performance). All measurements of time should be regarded
as approximate values and are only presented as rough guides.

Each environment also presents example policies created by Cerrla for
each goal. The rules of the policies have not been changed except for any
defined sub-ranges, which have instantiated any dynamic range bounds
with values and altered the appearance of the range to be more compre-

6.2 Blocks World Evaluation 119

hensible. The environmental specification tables in Chapter 3 list the defi-
nitions of each of the predicates used in the environments.

Convergence is either determined by Cerrla (using β, see Section 4.6.4),
or the algorithm is run for a fixed number of episodes, regardless of β con-
vergence. If training for a fixed number of episodes, Cerrla is restricted
from branching further distributions after 90% of the training episodes have
passed. This is to stop Cerrla creating new, uniform-distributions imme-
diately before performing the final test of the experiment.

6.2 Blocks World Evaluation
The first evaluation of the algorithm tries to determine whether it is able
to learn behaviour for the standard RRL benchmark environment Blocks

World (defined in Section 3.3). As stated in Section 3.3.3, the algorithm
was tested on the Stack, Unstack, ClearG0, and OnG0G1 goals, with different
numbers of blocks, and the results are compared to the published results
for other algorithms (Section 6.2.1). The Blocks World environment is also
used to examine the effects of the simplification rules created by the agent
observations model (Section 6.2.4). The language in which an environment
is presented can affect an agent’s performance, so Section 6.2.5 examines
the effects of representing Blocks World using a different relational spec-
ification. Section 6.2.6 explores the effects on Cerrla’s performance when
actions in Blocks World have non-deterministic effects. Finally, Section
6.2.7 presents a summary and discussion of Cerrla’s performance in the
Blocks World environment.

6.2.1 Standard CERRLA Performance

The first set of experiments for Blocks World simply tests the default
learning behaviour of Cerrla on the four Blocks World goals. Each
Blocks World environment is initialised with ten blocks, and in the ClearG0

and OnG0G1 case, the goal blocks are selected as any blocks that do not
immediately satisfy the goal. For each goal, Figure 6.1 presents the per-
formance, Figure 6.2 lists example policies that are generated by Cerrla

at the end of learning, and Table 6.1 lists other details about the learning
process.

120 Chapter 6 Algorithm Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 R
ew

ar
d

Episodes

Unstack Goal

Greedy
Sampled

Sampled (SD)

(a) Unstack goal, 10 blocks, CERRLA uses β
convergence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

A
ve

ra
ge

 R
ew

ar
d

Episodes

Stack Goal

Greedy
Sampled

Sampled (SD)

(b) Stack goal, 10 blocks, CERRLA uses β con-
vergence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000

A
ve

ra
ge

 R
ew

ar
d

Episodes

ClearG0 Goal

Greedy
Sampled

Sampled (SD)

(c) ClearG0 goal, 10 blocks, CERRLA uses β
convergence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4000 8000 12000 16000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

OnG0G1 Goal

Greedy
Sampled

Sampled (SD)

(d) OnG0G1 goal, 10 blocks, CERRLA uses β
convergence.

Figure 6.1: CERRLA’s performance for the four BLOCKS WORLD goals. Included is the
average performance for the greedy policy, the average sampled policy per-
formance, and the standard deviation of the average sampled policy perfor-
mance between experiments.

Table 6.1: Averaged results (over ten experiments) regarding CERRLA’s performance in
the four goals of the BLOCKS WORLD environment. Convergence is deter-
mined with β convergence.

Goal Episodes Sampled Greedy
Distri-
butions

Rules Time (s)

Unstack 785 ± 117 0.94 ± 0.04 1.0 ± 0.0 5–6 24–24 4
Stack 1265 ± 170 0.98 ± 0.02 1.0 ± 0.0 5–5 24–23 4
ClearG0 8507 ± 2280 0.96 ± 0.01 0.99 ± 0.03 9–17 80–123 22
OnG0G1 10677 ± 4744 0.93 ± 0.05 1.0 ± 0.0 17–25 243–302 44

6.2 Blocks World Evaluation 121

Cerrla consistently learns an optimal policy for every problem in Blocks

World, especially quickly for the Unstack and Stack goals (Figure 6.1a and
6.1b), as the rule required for optimal behaviour is immediately available
within the initial distributions (as indicated by the greedy policy perfor-
mance). The number of rules actually goes down due to branching creating
an existing distribution in the Stack goal. The Unstack goal has the opposite
case: a branch occurs and creates a new distribution of size 1 due to no
more possible specialisations. Cerrla also consistently finds optimal poli-
cies (except for a single case for ClearG0) for both the ClearG0 and OnG0G1

goals within ∼10,000 episodes (shown by the greedy performance), but
the sampled performance does not meet the greedy performance because the
distribution and/or rule probabilities do not converge to 0 or 1. This prob-
lem is largely due to how the distribution’s usage probabilities (p(D)) are
updated.

Each distribution’s p(D) reflects the observed probability of a distribution
being present within the elite samples. In the ClearG0 case there are usu-
ally multiple rules, each existing in different distributions, that are capable
of achieving the goal. The resulting elite samples then consist of equally-
valued samples from multiple distributions, which result in p′(D) < 1, and
no single distribution being updated to p(D) = 1. This problem is grad-
ually resolved with further updates, as random selection will eventually
favour one distribution over another.

In the OnG0G1 case, the distribution usage problem is a side effect of the
randomised environment. In the OnG0G1 problem, there is a chance that
the initial states of all three evaluation episodes of a policy will not require
all three rules of the optimal OnG0G1 policy (Figure 6.2d). This results
in the elites containing subsets of the optimal policy, thereby observing a
usage of p′(D) < 1 for the unused rules. The following updates cause
p(D) for the unused rules to decrease, resulting in sampled policies that
do not contain the distribution. Although the rule is clearly optimal when
it is needed, because the environment does not always require it, p(D) is
updated to reflect the observed probability that the rule will be required to
solve the goal. This problem is mitigated by requiring that each sampled
policy be tested three times, resulting in a larger probability that all optimal
rules will be utilised.

122 Chapter 6 Algorithm Evaluation

clear(X), block(X), floor(Y)→ move(X, Y)

(a) An example optimal policy generated by
CERRLA for the Unstack goal after 5000
episodes of learning.

clear(X), highest(Y), block(X)→ move(X, Y)

(b) An example optimal policy generated by
CERRLA for the Stack goal after 5000
episodes of learning.

above(X, G0), clear(X), clear(Y) → move(X,
Y)

(c) An example optimal policy generated by
CERRLA for the ClearG0 goal after 10,000
episodes of learning.

clear(G0), clear(G1), block(G0) → move(G0,
G1)

above(X, G1), clear(X), floor(Y) → move(X,
Y)

above(X, G0), clear(X), floor(Y) → move(X,
Y)

(d) An example optimal policy generated by
CERRLA for the OnG0G1 goal after 20,000
episodes of learning.

Figure 6.2: Example policies created by CERRLA for the four BLOCKS WORLD goals.

The policies in Figure 6.2 represent the best elite policies generated at the
end of training for each of the respective goals from an arbitrary exper-
iment. Cerrla does not always converge to the exact same policies; the
rules may differ slightly (but remain optimal, e.g. for ClearG0, shifting blocks
to the floor or to blocks), or for the OnG0G1 goal, the order of the rules may
change. These policies also only contain the minimum rules necessary
to (optimally) achieve their respective goals; no redundant rules remain.
Furthermore, each rule only contains the minimal conditions required to
define the intent of the rule. Note that each rule also contains inequality
tests between variables (Section 5.5.3) — these have been hidden for clarity.

Rule and Slot Growth

Figure 6.3 shows the relationship between the mean number of rules and
the mean sampled performance over the course of learning. Because no dis-
tribution is updated until it has evaluated a ‘fair’ number of rules (defined
in Section 4.6.2), no new distributions are created until approximately 1000
episodes have passed. For both the ClearG0 and OnG0G1 goals, Cerrla

ceases to explore further rules at approximately the 10,000 episode mark,
indicating that further specialisations would only decrease its performance.
Any further episodes are concerned primarily with determining the op-
timal probabilities for the current rules present in the distribution. The
exploration for the ClearG0 goal takes longer to converge due to multi-

6.2 Blocks World Evaluation 123

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000
 80

 85

 90

 95

 100

 105

 110

 115

 120

 125
A

ve
ra

ge
 R

ew
ar

d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, ClearG0 Goal

 Sampled
Rules

(a) The relationship between the number of
CERRLA’s rules and the performance in
BLOCKS WORLD for the ClearG0 goal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4000 8000 12000 16000 20000
 240

 250

 260

 270

 280

 290

 300

 310

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, OnG0G1 Goal

 Sampled
Rules

(b) The relationship between the number of
CERRLA’s rules and the performance in
BLOCKS WORLD for the OnG0G1 goal.

Figure 6.3: The relationship between the number of CERRLA’s rules and the perfor-
mance in BLOCKS WORLD for the ClearG0 and OnG0G1 goals.

ple possibilities for optimal rules, whereas the OnG0G1 exploration closely
matches the performance because further exploration only creates sub-
optimal rules.

6.2.2 Scale-free Policies

Figure 6.4 and Table 6.2 illustrate the differences in learning in Blocks

World environments of different sizes. Cerrla also requires roughly the

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

A
ve

ra
ge

 R
ew

ar
d

Maximum Episodes

Comparison of Different Blocks World Sizes, OnG_0G_1 Goal

3 Blocks
5 Blocks
7 Blocks

10 Blocks
20 Blocks

100 Blocks
3-10 Blocks

Figure 6.4: A comparison of CERRLA’s rate of learning on different sized BLOCKS

WORLDS for the OnG0G1 goal. Shown are the averaged greedy perfor-
mances over ten runs, using β convergence.

124 Chapter 6 Algorithm Evaluation

Table 6.2: Averaged results (over ten experiments) for different sized BLOCKS WORLD

environments using the OnG0G1 goal. Training and testing is performed with
the same number of blocks.

Blocks Episodes Greedy Greedy (10)
Distri-
butions

Rules Time (s)

3 Blocks 11115 ± 7386 0.97 ± 0.07 0.73 ± 0.16 17–27 237–313 22
5 Blocks 11120 ± 5558 0.87 ± 0.14 0.76 ± 0.17 17–26 243–306 28
7 Blocks 10539 ± 5738 0.98 ± 0.06 0.97 ± 0.08 17–24 243–301 35
10 Blocks 10677 ± 4744 1.0 ± 0.0 1.0 ± 0.0 17–25 243–302 44
20 Blocks 8486 ± 2821 0.98 ± 0.04 0.98 ± 0.04 17–26 242–330 86
100 Blocks 10016 ± 3205 0.97 ± 0.02 1.0 ± 0.0 17–30 244–332 1,639
3–10 Blocks 10263 ± 2756 1.0 ± 0.01 0.99 ± 0.03 17–25 242–302 34

same number of training episodes. These experiments clearly demonstrate
Cerrla’s indifference to state size, as the 100 block Blocks World has
over 10163 possible states, but only takes 37 times longer than for 10 block
Blocks World (with approximately 5.9 × 107 possible states). The size
of the state does not affect the learning rate because Cerrla searches for
a policy in rule space, which remains constant, rather than in state space,
which increases exponentially with the number of blocks.

The structure of the environment determines the structure of the policies
that Cerrla learns. For example, Figure 6.5 shows a policy that is opti-
mal in 3-block Blocks World, but sub-optimal in 10-block Blocks World.
The same policy is only optimal in 5 and 7-block environments in spe-
cific situations, but these occur frequently enough that it may be produced
as Cerrla’s final policy. 10-block and larger environments decrease the
chances of such policies becoming elite policies because such a simple strat-
egy is usually sub-optimal.

Cerrla performs better in larger environments because there are fewer
policies that can achieve the goal in minimal steps, whereas in small en-
vironments there are more policies that can achieve the goal in minimal
steps. This would result in potentially sub-optimal policies within the elite

clear(G0), clear(G1), block(G0)→ move(G0, G1)
clear(X), block(X), floor(Y)→ move(X, Y)

Figure 6.5: A optimal OnG0G1 policy for 3-block BLOCKS WORLD environments pro-
duced by CERRLA.

6.2 Blocks World Evaluation 125

samples, affecting the rule and distribution updates.

In the 3-block environment, it is relatively easy for the agent to achieve the
goal, though the resulting policy is only near-optimal for 3-block and not
10-block Blocks World. In the 5-block environment, because sub-optimal
policies are often ‘optimal enough,’ Cerrla struggles to converge to a sin-
gle solution, resulting in an overall decreased level of performance when
testing on both the 5 and 10-block environments. 7-block Blocks World

is large enough such that Cerrla generally produces optimal policies for
7 and 10 block environments. The 10, 20, and 100-block environments typ-
ically produce optimal policies, though there are some exceptions. The
rarity of randomly achieving the goal state in these larger environments
reduces the set of possibly useful rules, focusing the set of elites to only
include optimal or very near optimal samples.

When training on a varied number of blocks, Cerrla performs well, out-
putting the optimal policy in the majority of cases. This is probably because
sub-optimal samples are less likely to be in the elites due to each sample
being tested three times. If just one of the tests is in a larger environment,
the sample may not be recorded as an elite sample, resulting in the elite
samples containing mostly optimal samples.

6.2.3 Comparison to Existing Algorithms

As Blocks World is a common testing environment in RRL algorithms, a
direct comparison of performance can be made between Cerrla and other
RRL algorithms, though there is no guarantee that the specification of the
environments are identical. Most Blocks World experiment setups for
other RRL algorithms vary the number of blocks between 3–5 throughout
training (Driessens and Džeroski, 2005; Mellor, 2008a), typically to help
value-based algorithms generalise over Blocks World environments of
different sizes, so Cerrla is trained on a varying number of blocks (but
tested in a 10 block environment). The performance of the greedy (best
elite) policies is used for Cerrla’s performances.

Results for the policy-based Grey (Muller and van Otterlo, 2005) and Gapi

(van Otterlo and De Vuyst, 2009) algorithms are not included due to an
obscure evaluation metric. LRW-API (Fern et al., 2006) is also not included
as it uses a version of Blocks World in which any state is accessible at any

126 Chapter 6 Algorithm Evaluation

time.

Table 6.3 lists performance results for the Stack and OnG0G1 goals in Blocks

World. It also presents the (approximate) number of training episodes re-
quired to learn the resulting behaviour. Cerrla ranks among the best
learners in terms of performance for both the Stack and OnG0G1 goals
when compared to other algorithms, though it requires more episodes
than most other algorithms. When trained within an environment of vary-
ing numbers of blocks, Cerrla does not consistently find an optimal pol-
icy for OnG0G1, but still maintains a relatively high performance and re-
quires fewer training episodes for the OnG0G1 goal. Although it is difficult
to compare training time of learning without recreating all experiments,
Cerrla’s training time is similar to the faster algorithms such as RRL-TG
and Trendi.

The Grey and Gapi algorithms (Muller and van Otterlo, 2005; van Otterlo
and De Vuyst, 2009) are algorithmically most similar to Cerrla, but un-
fortunately their results were not published in a quantifiable format. Both
use a form of the Genetic Algorithm (GA) to learn decision-list policies.

Table 6.3: A comparison of performances for various RRL algorithms in the BLOCKS

WORLD environment for the Stack and OnG0G1 goals. Also included are
the number of episodes required for training (where information is avail-
able). Sources for performances are from Džeroski et al. (2001), Driessens
and Džeroski (2005), Kersting and Driessens (2008), Croonenborghs et al.
(2007), Mellor (2008b). Note that some figures are approximate readings
from a graph.

Algorithm Average Reward # of Training
Episodes (×1000)

Stack OnG0G1 Stack OnG0G1
Cerrla

∗ 1.0 1.0 1.3 10.7
Cerrla

† 1.0 ∼ 0.99 1.6 10.3
P-RRL 1.0 ∼ 0.9 0.045 0.045
RRL-TG ∼ 0.88 ∼ 0.92 0.5 12.5
RRL-TG‡ 1.0 ∼ 0.92 30 30
RRL-RIB ∼ 0.98 ∼ 0.9 0.5 2.5
RRL-KBR 1.0 ∼ 0.98 0.5 2.5
Trendi 1.0 ∼ 0.99 0.5 2.5
TreeNPPG — ∼ 0.99 — 2
Marlie 1.0 ∼ 0.98 2 2
Foxcs 1.0 ∼ 0.98 20 50

∗10 blocks. †3–10 blocks. ‡P-learning.

6.2 Blocks World Evaluation 127

They are able to learn optimal policies for the OnG0G1 goals, though it is
unclear exactly how many training episodes each one requires. Because
Grey and Gapi use the GA to create their policies, the output policies can
include ‘useless’ rules and conditions that have no direct negative effect on
the semantic intent of the policy, but add clutter to the behaviour. Cerrla’s
probabilistic updating of rule probabilities and use of simplification rules
result in less ‘cluttered’ policies, while maintaining the semantic intent of
the policy.

The main disadvantage of the Cerrla algorithm is that it requires a rel-
atively large number of episodes to construct an optimal policy, in com-
parison to various value-based algorithms. As shown in the previous sub-
section, the number of episodes remains roughly constant regardless of
Blocks World size. However, because it only uses the results of a policy
per episode (rather than per state), computation is quite fast. An addi-
tional advantage is that Cerrla does not require a distance-metric (RRL-
RIB, Trendi) or kernel (RRL-KBR) to be defined.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

The Effects of Using Simplification Rules, OnG0G1 Goal

w/ Simplification (Greedy)
w/o Simplification (Greedy)
w/ Simplification (Sampled)

w/o Simplification (Sampled)

Figure 6.6: A comparison of performance for the OnG0G1 goal in the BLOCKS WORLD

environment between using agent observations to simplify rules, and not
using them. Greedy performances have been omitted for clarity. Each ex-
periment ran for a fixed 20,000 episodes.

128 Chapter 6 Algorithm Evaluation

Table 6.4: Averaged results (over ten experiments) between using agent observations
to simplify rules, and not using them for the OnG0G1 goal in the BLOCKS

WORLD environment. Each experiment ran for a fixed 20,000 episodes.

OnG0G1 Sampled Greedy
Distri-
butions

Rules Time (s)

w/ Simplification 0.91 ± 0.04 0.98 ± 0.04 17–27 243–321 87
w/o Simplification 0.77 ± 0.05 0.91 ± 0.17 26–40 764–1144 232

6.2.4 Agent Observation Simplification

To test whether rule simplification aids performance, Cerrla is tested on
the OnG0G1 goal within Blocks World without the use of simplification
rules created through agent observations (Section 5.3). Figure 6.6 and Ta-
ble 6.4 illustrate the results, compared against using simplification rules.
Learning is fixed to 20,000 episodes per experiment because the algorithm
does not converge in a reasonable time when not using simplification rules.

There is a clear difference in performance, where the lack of simplification
rules results in a dramatically larger number of rules and distributions,
slowing down the learning process and affecting the sampled performance
with its constant exploration. Furthermore, the greedy performance of
Cerrla when not using agent observations is worse than the sampled per-
formance (though Cerrla still manages to create optimal policies in most
experiments).

No comparison is performed on episodic convergence speed because when
simplification rules are disabled the algorithm continues to explore and
does not reach β-convergence in a reasonable amount of time. For this
reason training is fixed to 20,000 episodes. The lack of simplification rules
results in training taking almost three times as long than when using sim-
plified rules, which is likely due to the increased number of distributions
and (redundant) conditions within each rule, thus increasing the overall
rule evaluation time.

Another interesting result is the drop in performance of the normal Cerrla

algorithm when training episodes are fixed to 20,000. The performance
drops from the normal optimal performance due to the algorithm running
longer than it needs to. This is probably due to a small number of elite sam-
ples, resulting in a non-insignificant probability of only containing samples

6.2 Blocks World Evaluation 129

in which all three rules of the optimal policy are not used during testing.
This causes the distribution’s usage to shift to some value p(D) < 0.5,
affecting performance.

Figure 6.7 shows one of the best elite policies produced by Cerrla without
the use of simplification rules. Each rule in the policy clearly contains
redundant conditions and some conditions could be simplified to a simpler
form (e.g. clear(Y) and on(?, Y) are equivalent to floor(Y)), but semantically
the policy is optimal.

6.2.5 Language Bias

The representation of an environment can have a significant effect on an
algorithm’s performance. The Blocks World environment can be repre-
sented in several different forms, though each form has the same basic
actions (block manipulation). One possible alternative representation is an
abstraction of the Blocks World specification given in Section 3.3, which
we will call BWnoFloor. This version removes explicit references to the floor
object, replaces all references to thing with block, represents relations to the
floor with the predicate onFloor(Block), and interacts with the floor by adding
the action predicate moveFloor(Block). The added predicates encompass all
interaction with the floor; all other predicates explicitly deal with blocks.

Cerrla’s performance for the OnG0G1 goal in BWnoFloor is shown in Fig-
ure 6.8 and Table 6.5, contrasted against the performance of Cerrla in the

above(X, G0), clear(X), clear(Y), above(X, ?), on(X, ?), on(?, Y)→ move(X, Y)
above(X, G1), above(X, Y), clear(X), clear(Y), above(X, ?), on(X, ?), not above(Y, ?) → move(X,

Y)
clear(G0), clear(G1), block(G0), above(G0, ?), on(G0, ?), not above(G0, G1)→ move(G0, G1)

Figure 6.7: An optimal OnG0G1 BLOCKS WORLD policy produced by CERRLA after
20,000 episodes without using simplification rules.

Table 6.5: CERRLA’s performance using an alternative representation of BLOCKS

WORLD for the OnG0G1 goal. Convergence is determined with β conver-
gence.

OnG0G1 Episodes Sampled Greedy
Distri-
butions

Rules Time (s)

Normal BW 10677 ± 4744 0.93 ± 0.05 1.0 ± 0.0 17–25 243–302 44
BWnoFloor 6346 ± 1048 0.83 ± 0.08 0.97 ± 0.06 27–31 364–398 29

130 Chapter 6 Algorithm Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Comparison of Alternative Environment Representations, OnG0G1 Goal

Blocks World
BWnoFloor

Blocks World (SD)
BWnoFloor (SD)

Figure 6.8: CERRLA’s performance using an alternative representation of BLOCKS

WORLD for the OnG0G1 goal. Greedy performances have been omitted
for clarity. Convergence is determined with β convergence.

standard Blocks World. The change in environment representation does
not affect Cerrla’s greedy performance much, though sampled perfor-
mance is lower. The alternative representation also results in much quicker
average convergence speed, probably because all the rules that can form
an optimal policy exist in the initial distributions (whereas Blocks World

rules require at least one branch). To check that Cerrla is not converg-
ing too early in BWnoFloor, another experiment fixes the number of training
episodes to 20,000, but the results do not significantly improve. The al-
ternative representation also results in a much larger initial distribution of
rules and distributions than the regular representation, but this does not
appear to negatively affect Cerrla’s convergence to a final solution.

6.2.6 Stochastic Blocks World

Another alternative Blocks World setup is to allow the actions to have
non-deterministic effects to observe how Cerrla’s behaviour changes. With
probability p = 0.8, an action behaves as normal, pnull = 0.1 the action does
nothing, and prand = 0.1 the action is instead a random valid action. To
compensate for the reduced probability of success, the maximum number
of episodes M is set as M ← 2n/p, where n is the number of blocks in the
environment. However, the reward function remains the same, such that

6.2 Blocks World Evaluation 131

an agent may receive a non-optimal reward even with an optimal policy
(and vice-versa). During testing, the environment is deterministic (p = 1.0)
so accurate performance can be measured.

As shown in Figure 6.9 and Table 6.6, the sampled performance is lower
than the regular performance, which was expected, as the reward function
was not changed to accommodate random actions during training. How-
ever, the greedy performance is tested on a deterministic Blocks World,
so 0.92± 0.14 is an accurate measure of performance. Because the random
behaviour reduces each policy’s observed reward, policies that run for mul-
tiple steps are less likely to be included within the elite samples (even if
the policy is optimal). This results in a more stable set of elite samples, but
these elites may not be optimal. Nonetheless, the greedy performance is
still reasonably good, which shows Cerrla is not significantly affected by
non-deterministic action effects.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Non-Deterministic Blocks World, OnG0G1 Goal

Deterministic
Non Deterministic
Deterministic (SD)

Non-Deterministic (SD)

Figure 6.9: CERRLA’s performance in a stochastic BLOCKS WORLD for the OnG0G1
goal. Convergence is determined with β convergence.

Table 6.6: CERRLA’s performance in a stochastic BLOCKS WORLD for the OnG0G1 goal.
Convergence is determined with β convergence.

OnG0G1 Episodes Sampled Greedy
Distri-
butions

Rules Time (s)

Deterministic 10677 ± 4744 0.93 ± 0.05 1.0 ± 0.0 17–25 243–302 44
Stochastic 9168 ± 3368 0.74 ± 0.07 0.92 ± 0.14 17–28 243–339 42

132 Chapter 6 Algorithm Evaluation

What is not shown by Table 6.6 is that from the ten non-deterministic ex-
periments, six produce optimal policies, three produce sub-optimal but
consistently goal-achieving policies, and one produces a policy that only
achieves the goal ∼ 66% of the time.

6.2.7 Blocks World Discussion

This section examined several aspects of both Blocks World and Cerrla’s
learning algorithm. Section 6.2.1 showed that Cerrla is able to consistently
learn an optimal or near-optimal policy for all four Blocks World goals,
but only when the number of blocks is > 10. In smaller Blocks Worlds,
the reduced number of blocks makes it easier to achieve goal states, causing
the elite samples to become noisy and affect optimal policy convergence.
When the number of blocks varies from three to ten, Cerrla learns near-
optimal behaviour (> 0.99 average reward) in a relatively short amount
of time. In comparison to other RRL algorithms, Cerrla is better than or
equal in performance and is of a similar speed to the fastest algorithms.

The use of simplification rules (created via agent observations) is clearly
beneficial (Section 6.2.4), both in terms of performance and run time. An
alternative representation of Blocks World can decrease training time by
producing more initial distributions for the agent to examine. Changing
Blocks World’s action resolution to be non-deterministic also influences
Cerrla’s performance, but average performance remains near-optimal (>
0.92).

6.3 Ms. Pac-Man Evaluation
The Ms. Pac-Man environment contains three different goals for the agent
to be tested upon: Single Level, Single Life, and Ten Levels. As in the previous
section, we examine the effects of an alternative environment representa-
tion in the Single Level goal. Section 6.3.3 investigates the effects of transfer-
ring knowledge learned in the Single Level and Single Life goals to an agent
in the Ten Levels goal, as well as testing the effect of adding hand-coded
rules to the learning process.

The Ms. Pac-Man experiments were limited to a fixed number of episodes
because it was found that Cerrla occasionally did not achieve β-convergence,

6.3 Ms. Pac-Man Evaluation 133

resulting in experiments that took far to long to complete. The values for
the fixed number of episodes were selected to arbitrarily limit the length of
each experiment.

6.3.1 Standard CERRLA Performance

The default parameters for Cerrla produce the results seen in Figure 6.10a,
6.10b, 6.10c and Table 6.7. Cerrla shows roughly the same performance
curve for all three goals, though the scale differs per goal. An unfortunate
side-effect of the Ms. Pac-Man environment (as well as the Mario envi-
ronment) is that as the agent improves its behaviour, each episode takes
longer to complete, increasing the overall training time.

Within a Single Level, Cerrla achieves an average greedy performance of
7196 points per episode. Comparing this to the scores presented in Szita
and Lörincz (2007),1 Cerrla learns a policy that performs better than the
conceptually equivalent CE-randomRB agent (achieves mean score of 6382
in 50,000 episodes), but worse than CE-fixedRB (achieves mean score of
8186 in 50,000 episodes). Figure 6.11a shows an example elite policy pro-
duced by Cerrla at the end of training. The policy behaviour focuses
primarily on eating edible ghosts, but when no edible ghosts are available, it
eats powerdots (breaking ties by moving to things that are not ghosts or the
ghost centre point) and finally eating any remaining dots.

With only a Single Life, Cerrla achieves an average greedy performance of
4616 points per episode. It achieves this by learning a policy similar to the
one learned for the Single Level goal — that is, eating edible ghosts (Figure
6.11b). This strategy is relatively safe because when a ghost is edible, it is not

Table 6.7: Averaged results (over ten experiments) regarding CERRLA’s performance
for the three goals of the MS. PAC-MAN environment at the end of a fixed
number of episodes.

Goal Sampled Greedy
Distri-
butions

Rules Time (s)

Single Level 6861 ± 357 7137 ± 277 15–28 86–184 21,063
Single Life 4183 ± 422 4274 ± 279 15–26 86–154 13,473
Ten Levels 11500 ± 1963 12473 ± 1984 15–41 86–199 89,154

1It is likely that the Ms. Pac-Man environments used are not identical, but the reward
function should be identical.

134 Chapter 6 Algorithm Evaluation

 0

 2000

 4000

 6000

 8000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Single Level Goal

Greedy
Sampled

Sampled (SD)

(a) Single Level goal, limited to 10,000
episodes.

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Single Life Goal

Greedy
Sampled

Sampled (SD)

(b) Single Life goal, limited to 10,000 episodes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Ten Levels Goal

Greedy
Sampled

Sampled (SD)

(c) Ten Levels goal, limited to 20,000 episodes.

Figure 6.10: CERRLA’s performance for the three goals in MS. PAC-MAN. Included
is the average greedy performance, the average sampled policy perfor-
mance, and the standard deviation of the average sampled policy perfor-
mance between experiments. Each experiment runs for a fixed number of
episodes.

6.3 Ms. Pac-Man Evaluation 135

edible(X), distance(X, N2)→ moveTo(X, N2)
powerdot(X), distance(X, N2)→ moveTo(X, N2)
thing(X), distance(X, N2), not ghost(X), not ghostCentre(X)→ moveTo(X, N2)
dot(X), distance(X, (26.0 ≤ N0 ≤ 52.0))→ moveFrom(X, N0)

(a) Example Single Level MS. PAC-MAN policy generated by CERRLA. Achieves an average
reward of 7534.

edible(X), distance(X, N5)→ moveTo(X, N5)
powerdot(X), distance(X, N5)→ moveTo(X, N5)

(b) Example Single Life MS. PAC-MAN policy generated by CERRLA. Achieves an average re-
ward of 4542.

dot(X), distance(X, N2)→ moveTo(X, N2)
thing(X), distance(X, (13.0 ≤ N0 ≤ 39.0)), not ghost(X)→ moveFrom(X, N0)
ghost(X), distance(X, N0), not edible(X)→ moveFrom(X, N0)
powerdot(X), distance(X, (26.0 ≤ N0 ≤ 52.0))→ moveFrom(X, N0)
distance(X, (13.0 ≤ N0 ≤ 39.0)), not dot(X), not edible(X)→ moveFrom(X, N0)
thing(X), distance(X, (26.0 ≤ N0 ≤ 39.0)), not dot(X), not ghostCentre(X) → moveFrom(X,

N0)

(c) Example Ten Levels MS. PAC-MAN policy generated by CERRLA. Achieves an average re-
ward of 12,457.

Figure 6.11: Example policies created by CERRLA for the three MS. PAC-MAN goals.

hostile. However, Cerrla does not learn to use any defensive rules, such as
moving from hostile ghosts, possibly because the strategy of keeping ghosts
edible has little need of such a rule.

In the largest Ms. Pac-Man goal, Ten Levels, Cerrla achieves an aver-
age greedy performance of 12,473 points per episode. Because it typically
achieves > 10, 000 points, it also receives an extra life, which increases the
performance of the agent by increasing survivability. Figure 6.11c shows
an example elite policy produced after 20,000 episodes of training. The pol-
icy behaviour basically just moves towards dots, but when faced with dots
at equal distances in multiple directions, there is a bias towards moving
from hostile ghosts and other things at a mid-distance. In all Ten Levels goal
experiments, the agent produced policies of a similar structure, indicating
that the basic behaviour of eating dots is a useful strategy.

The Ten Levels goal searches significantly more distributions and rules than
the prior two goals, but this is partially due to the number of training

136 Chapter 6 Algorithm Evaluation

episodes being twice as long. At episode 9000 (which is when branching
would be disabled if training was fixed at 10,000 episodes like the other
goals), Cerrla had an average of 31 distributions and 190 rules for the
Ten Levels goal. However, performance continues to increase after 10,000
episodes, so the extra distributions and rules may be required for reaching
the final level of performance. The side-effect of increased training time
proportional to performance is evident for the Ten Levels goal, as episodes
take significantly longer to evaluate than for the prior two goals.

Other AI approaches to the Ms. Pac-Man environment are able to score
> 10, 000 points in the Single Life goal (Galván-López et al., 2010) and >

20, 000 points for a goal similar to the Ten Levels goal (Ikehata and Ito,
2011) (with many more algorithms competing in the Pacman-vs-Ghosts
competition2), so Cerrla is far from the best Ms. Pac-Man player. But,
as an algorithm capable of learning behaviour in multiple environments,
Cerrla is competitive with some of the specialised algorithms for playing
Ms. Pac-Man.

Rule and Slot Growth

Figure 6.12 shows the relationship between the mean number of rules and
the mean sampled performance in the Single Level and Ten Levels goals. Like

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000
 60

 80

 100

 120

 140

 160

 180

 200

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, Single Level Goal

 Sampled
Rules

(a) The relationship between the number of
CERRLA’s rules and the performance in
MS. PAC-MAN for the Single Level goal.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 4000 8000 12000 16000 20000
 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, Ten Levels Goal

 Sampled
Rules

(b) The relationship between the number of
CERRLA’s rules and the performance in
MS. PAC-MAN for the Ten Levels goal.

Figure 6.12: The relationship between the number of CERRLA’s rules and the perfor-
mance in MS. PAC-MAN for the Single Level and Ten Levels goals.

2http://www.pacman-vs-ghosts.net/

http://www.pacman-vs-ghosts.net/

6.3 Ms. Pac-Man Evaluation 137

Blocks World, rule specialisation does not begin until approximately 1000
episodes. Note that rule specialisation is automatically disabled in the fi-
nal 10% of training episodes. In each goal, performance generally increases
with increases in the number of rules. Rule exploration appears to be close
to convergence in Figure 6.12a, though performance does continue to in-
crease after specialisation is disabled. In Figure 6.12b, both rule exploration
and sampled performance increase in a smooth upward curve, and could
potentially continue upwards if the number of training episodes was not
fixed at 20,000.

6.3.2 Language Bias

Like Blocks World, this section investigates the effects on Cerrla’s per-
formance when the environment representation is altered. The current
Ms. Pac-Man environment only has three actions: moveTo, moveFrom, and
toJunction. The alternative version of Ms. Pac-Man expands these actions
by using the more descriptive actions: toDot, toPowerDot, toGhost, toGhost-
Centre, toJunction, fromPowerDot, fromGhost, and fromGhostCentre. These ac-
tions introduce a bias towards the actions the agent can perform, as they
restrict the agent’s possible actions to a subset of Ms. Pac-Man behaviour
(e.g. there is no fromDot action, which is a practically useless action).

Figure 6.13a, 6.13b, 6.13c and Table 6.8 show the results achieved by Cerrla

within the same finite number of episodes for the alternative representation
of the Ms. Pac-Man environment. Cerrla’s performance (and generated
policies) using the alternative representation are not significantly differ-
ent from that of the normal representation. This is likely because all spe-
cialised actions can be semantically replicated by the general Ms. Pac-Man

actions. Unlike Blocks World, the alternative representation actually be-

Table 6.8: Averaged results (over ten experiments) regarding CERRLA’s performance
for the three goals using an alternative representation of the MS. PAC-MAN

environment at the end of a fixed number of episodes.

Goal Sampled Greedy
Distri-
butions

Rules Time (s)

Single Level 6973 ± 398 7118 ± 258 12–20 58–90 18,612
Single Life 4216 ± 265 4312 ± 182 12–17 58–79 10,609
Ten Levels 9555 ± 748 9524 ± 1519 12–33 58–142 77,033

138 Chapter 6 Algorithm Evaluation

 0

 2000

 4000

 6000

 8000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Single Level Goal

Greedy
Sampled

Sampled (SD)

(a) Single Level goal (alternative representa-
tion), limited to 10,000 episodes.

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Single Life Goal

Greedy
Sampled

Sampled (SD)

(b) Single Life goal (alternative representa-
tion), limited to 10,000 episodes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Ten Levels Goal

Greedy
Sampled

Sampled (SD)

(c) Ten Levels goal (alternative representa-
tion), limited to 20,000 episodes.

Figure 6.13: CERRLA’s performance for the three goals in an alternative representa-
tion of MS. PAC-MAN. Included is the average greedy performance, the
average sampled policy performance, and the standard deviation of the
average sampled policy performance between experiments. Each experi-
ment runs for a fixed number of episodes.

6.3 Ms. Pac-Man Evaluation 139

edible(X), distance(X, N5)→ toGhost(X, N5)
powerdot(X), distance(X, N1)→ toPowerDot(X, N1)
dot(X), distance(X, N3)→ toDot(X, N3)

(a) Example Single Level MS. PAC-MAN policy using an alternative representation generated by
CERRLA. Achieves an average reward of 7376.

edible(X), distance(X, N29)→ toGhost(X, N29)
powerdot(X), distance(X, N25)→ toPowerDot(X, N25)
ghost(X), distance(X, N30), not edible(X)→ fromGhost(X, N30)

(b) Example Single Life MS. PAC-MAN policy using an alternative representation generated by
CERRLA. Achieves an average reward of 4527.

dot(X), distance(X, N3)→ toDot(X, N3)
powerdot(X), distance(X, (22.4375 ≤ N2 ≤ 28.5625))→ fromPowerDot(X, N2)
powerdot(X), distance(X, (25.5 ≤ N2 ≤ 50.0))→ fromPowerDot(X, N2)
powerdot(X), distance(X, (13.25 ≤ N2 ≤ 37.75))→ fromPowerDot(X, N2)
powerdot(X), distance(X, N1)→ toPowerDot(X, N1)

(c) Example Ten Levels MS. PAC-MAN policy using an alternative representation generated by
CERRLA. Achieves an average reward of 13,386.

Figure 6.14: Example policies created by CERRLA for the three goals of an alternative
representation of MS. PAC-MAN.

gins with fewer distributions and rules than the original representation,
which is probably because the alternative representation does not define
‘useless’ actions (e.g. fromDot).

The most obvious difference between the original and alternative perfor-
mances is the standard deviation of the sampled performances between
experiments. The alternative representation has a high initial standard
deviation that gradually decreases to a low value, indicating that at the
beginning of learning, Cerrla has multiple strategies available to it for
achieving high reward (e.g. focus on eating edible ghosts or just eating
dots) but it eventually converges to a similarly performing strategy for all
ten experiments. In the original representation, the large standard devia-
tion occurs later in the experiment because the algorithm needs to firstly
remove useless rules (such as moveFrom dot), and the strategies that Cerrla

converges to are less similar to each other.

Example policies produced by Cerrla in the alternative Ms. Pac-Man en-
vironment are shown in Figure 6.14a, 6.14b, and 6.14c. The policies have

140 Chapter 6 Algorithm Evaluation

the same general strategy for each of the goals (eat ghosts, eat ghosts, and
eat dots respectively) as the original representation policies.

The comparison between the original and alternative representations sug-
gests that a change of representation has little effect on Cerrla’s learning
behaviour in the Ms. Pac-Man environment. If the alternative representa-
tion is a fundamental shift in how the environment is represented (e.g. us-
ing low level data about exact positions of objects and low-level direction
actions), Cerrla may learn significantly different behaviour.

6.3.3 Transfer Learning

Transfer Learning

Because the Single Level and Single Life problems are essentially subsets
of the Ten Levels problem, behaviour learned for solving each goal can be
used to seed a new Cerrla distribution for the Ten Levels goal. A successful
policy for completing the first level (or maximising reward within the first
level) should improve initial performance within the larger Ten Levels goal.
Only one experiment is performed here, using the rules from the policy
given in Figure 6.11a as the seeded rules, because the policies produced for
the Single Life goal are very similar to Single Level policies.

Figure 6.15 and Table 6.9 show the performance of Cerrla on the Ten Levels
goal when seeded with the Single Level example policy from Figure 6.11a.
Although performance is lower than unseeded performance initially, at ap-
proximately 10,000 episodes seeded performance outperforms unseeded,
converging to an average greedy performance of 16,443, nearly 4000 points
higher than unseeded. The initial bias the seeded rules provide towards
eating edible ghosts allows Cerrla to focus its learning around those rules,
rather than attempting to find an arbitrary strategy, resulting in an even

Table 6.9: Averaged results (over ten experiments) comparing CERRLA’s seeded and
unseeded learning for the Ten Levels goal in the MS. PAC-MAN environment
at the end of 20,000 training episodes.

Goal Sampled Greedy # Distri-
butions # Rules Time (s)

Unseeded 11500 ± 1963 12473 ± 1984 15–58 86–557 500,987
Seeded 12840 ± 2529 16443 ± 1083 17–85 94–797 705,624

6.3 Ms. Pac-Man Evaluation 141

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Seeded vs. Unseeded Performance, Ten Levels Goal

Unseeded
Seeded

Unseeded (SD)
Seeded (SD)

Figure 6.15: CERRLA’s performance on the Ten Levels goal when seeded with a Single
Level policy in the MS. PAC-MAN environment. Included is the sampled
policy performance (and standard deviation) for seeded and unseeded
CERRLA. Each experiment trains for 20,000 episodes.

better learned strategy.

Hand-Coded Rules

As a closer comparison to the hand-coded results presented in Szita and
Lörincz (2007), and to evaluate whether the agent learns a better strategy,
this experiment examines the effects of seeding Cerrla with the rules in
Figure 6.16.

Incorporating the hand-coded rules does not have any significant effect
on Cerrla’s performance (Figure 6.17 and Table 6.10). Cerrla did not
incorporate the hand-coded rules (or specialisations thereof) in all of the
final policies produced in experiments and when it did, it was only the
first (moveTo) hand-coded rule. This rule was typically followed by a more

powerdot(X), distance(X, (0 ≤ N0 ≤ 12.5)), ghost(Z), distance(Z, (0 ≤ N1 ≤ 12.5)), not
edible(Z)→ moveTo(X, N0)

powerdot(X), distance(X, (0 ≤ N0 ≤ 12.5)), ghost(Z), distance(Z, (0 ≤ N1 ≤ 12.5)), edible(Z)
→ moveFrom(X, N0)

Figure 6.16: The hand-coded rules used to seed CERRLA. Note that the distance sub-
ranges are explicitly represented with the range function.

142 Chapter 6 Algorithm Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Ms. Pac-Man, Effect of Hand-Coded Rules, Single Level Goal

Unseeded
Hand-Coded

Unseeded (SD)
Hand-Coded (SD)

Figure 6.17: CERRLA’s performance on the Single Level goal using the seeded rules
from Figure 6.16 in the MS. PAC-MAN environment. Included is the sam-
pled policy performance (and standard deviation) for normal and hand-
coded seeded CERRLA. Each experiment trains for 10,000 episodes.

Table 6.10: CERRLA’s performance on the Single Level goal using the seeded rules
from Figure 6.16 in the MS. PAC-MAN environment at the end of 10,000
training episodes.

Goal Sampled Greedy # Distri-
butions # Rules Time (s)

Unseeded 6861 ± 357 7137 ± 277 15–28 86–184 21,063
Hand-coded 6682 ± 600 6879 ± 412 17–30 100–183 16,613

general moveTo(powerdot, N0) rule, resulting in the hand-coded rule being
redundant.

Szita and Lörincz (2007)’s CEM algorithm using hand-coded rules achieved
an average performance of 8186, compared to Cerrla seeded with hand-
coded rules achieving an average greedy performance of 6879. The rules
given in Figure 6.16 are not the only rules used in the hand-coded CEM
algorithm (there are 42 in total), but they are rules that Cerrla is unable
to create due to restrictions in the specialisation process (the restriction to
only include action-related rule conditions, see Section 5.5.1). If Cerrla

is seeded with the entire set of hand-coded rules, it may achieve a better
performance, but because every other hand-coded rule is able to be created
by Cerrla, the difference in performance may not be significant.

6.4 Mario Evaluation 143

6.3.4 Ms. Pac-Man Discussion

Cerrla is able to learn behaviour for acting effectively within the Ms. Pac-
Man environment. For the Single Level goal, Cerrla learns a slightly better
strategy to the comparable CEM algorithm (Szita and Lörincz, 2007) that
uses random rules, but it does not learn a better strategy than the hand-
coded rules version. In the Ten Levels goal (e.g. full Ms. Pac-Man game),
Cerrla’s average score is not enough to challenge the current state-of-the-
art algorithms,3 which are able to achieve mean scores > 31, 000 points
per episode (Ikehata and Ito, 2011). It appears that Cerrla’s Ten Levels
performance could be improved with further training, as the gradient of
performance in Figure 6.10c is still positive at 20,000 episodes.

The current (and alternative, see Section 6.3.2) representation of Ms. Pac-
Man results in relatively few rules to explore, which in turn results in
simplistic, but effective policies. The representation also restricts the rules
Cerrla can create. For example, Cerrla cannot create a rule that moves to
a powerdot when a ghost is near because conditions regarding ghosts cannot
be added to rules concerning powerdots in the action. Section 6.3.3 demon-
strates the beneficial effects of using previously learned behaviour for a
smaller problem as input to a larger problem.

6.4 Mario Evaluation
The Mario environment contains two difficulty-based goals to be tested
upon: Difficulty 0 (low-threat enemies and level layout) and Difficulty 1
(more difficult enemies and level layout). In the former difficulty, the en-
emies are easy to avoid/dispatch, so the primary source of reward is how
quickly Mario completes the level. In the latter difficulty, enemies are too
numerous and dangerous to avoid, so reward is primarily received by de-
feating enemies carefully and advancing as far as possible. Cerrla trains
for a fixed 50,000 episodes for each goal , which was selected arbitrarily
as an ample training period. Section 6.4.1 presents the results of Cerrla’s
learning for each goal, and Section 6.4.2 investigates the effects of seeding
behaviour learned for the Difficulty 0 goal into the Difficulty 1 goal.

3‘The Ms. Pac-Man Competition,’ http://cswww.essex.ac.uk/staff/sml/pacman/
PacManContest.html and similar environment ‘Ms. Pac-Man vs. Ghosts Competi-
tion,’ http://www.pacman-vs-ghosts.net/

http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
http://www.pacman-vs-ghosts.net/

144 Chapter 6 Algorithm Evaluation

6.4.1 Standard CERRLA Performance

Figure 6.18a, 6.18b and Table 6.11 show Cerrla’s results for the Mario

environment. The Mario environment has a large number of rules and
distributions to evaluate, resulting in a slow initial learning rate for each
goal. There is a large difference between the training time for each goal,
where Difficulty 0 takes over five times longer than Difficulty 1. This is
probably because Mario is less likely to die in Difficulty 0, therefore caus-
ing each episode to last longer. Cerrla’s performance in Mario is unable
to be compared to other algorithms that use the Mario environment due to
different reward functions and gameplay mechanics but, as a rough com-
parison, the approximate average performance that I personally achieve is
provided using the same reward function defined in Section 3.5.2.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Mario, Difficulty 0 Goal

Greedy
Sampled

Sampled (SD)

(a) Difficulty 0 goal, limited to 50,000 episodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Mario, Difficulty 1 Goal

Greedy
Sampled

Sampled (SD)

(b) Difficulty 1 goal, limited to 50,000 episodes.

Figure 6.18: CERRLA’s performance for the two difficulty goals in MARIO. Included
is the average greedy performance, the average sampled policy perfor-
mance, and the standard deviation of the average sampled policy perfor-
mance between experiments. Each experiment trains for 50,000 episodes.

Table 6.11: Averaged results (over ten experiments) regarding CERRLA’s performance
for the two goals of the MARIO environment at the end of 50,000 training
episodes.

Goal Sampled Greedy # Distri-
butions # Rules Time (s)

Diff 0 6504 ± 451 6683 ± 515 46–164 702–2851 122,637
Diff 1 2939 ± 156 3142 ± 83 83–183 1527–3783 25,246

6.4 Mario Evaluation 145

For the Difficulty 0 goal, Cerrla achieves an average greedy performance
of 6683 per episode (and an average sampled performance of 6504). As a
comparison, I personally achieve approximately 7300± 2113. Throughout
training, the best elite policy consistently achieves ∼ 6500, but the sampled
performance does not reach that point until the algorithm is forced to stop
branching at episode 45,000 onward. The lower sampled performance is
likely due to the constant exploration of new distributions and rules (evi-
denced in the Rule and Slot Growth figures at the end of this subsection).
The sampled performance has a relatively high standard deviation, pos-
sibly because the agent is able to complete a level in most cases, but it
occasionally gets stuck or is hit by too many enemies, resulting in a lower
episode reward.

As a performance comparison, the static ‘ForwardJumpingAgent’ (a sim-
ple AI that runs and jumps forward continuously) achieves an average
reward of 6951 per episode. Clearly, Cerrla has trouble learning high re-
ward behaviour for the Difficulty 0 goal. Cerrla typically learns policies
that gather nearby powerups and stomp on nearby goombas, which is a
more dangerous and slower strategy than ForwardJumpingAgent.

The example Difficulty 0 policy presented in Figure 6.19 is similar to For-
wardJumpingAgent’s behaviour, but with additional actions while ad-
vancing. The first rule causes Mario to continuously shoot fireballs at
goombas (when in fire mode) and the second rule is a forward-jumping rule.
While moving forward and shooting goombas, the remaining rules are for:
grabbing coins, searching bricks, jumping onto non-powerup objects (such

marioPower(fire), canJumpOn(X), goomba(X), heightDiff(X, N0), width(X, N1), distance(X,
N2)→ shootFireball(X, N2, fire)

canJumpOn(X), heightDiff(X, N0), distance(X, (37.0 ≤ N1 ≤ 304.0)), not powerup(X), not
enemy(X)→ jumpOnto(X, N1)

canJumpOn(X), canJumpOver(X), coin(X), heightDiff(X, (-171.75 ≤ N0 ≤ 0.75)), distance(X,
(-163.25 ≤ N1 ≤ -29.75))→ moveTo(X, N1)

brick(X), heightDiff(X, N2), distance(X, (-75.75 ≤ N0 ≤ 74.75)), width(X, (16.0 ≤ N1 ≤
16.0)), not canJumpOver(X)→ search(X, N2)

canJumpOn(X), distance(X, N1), heightDiff(X, (-85.5 ≤ N0 ≤ 87.0)), not fireFlower(X), not
item(X), not powerup(X)→ jumpOnto(X, N1)

canJumpOn(X), coin(X), heightDiff(X, N0), distance(X, N1)→ jumpOnto(X, N1)

Figure 6.19: Example Difficulty 0 MARIO policy generated by CERRLA. Achieves an
average reward of 7277.

146 Chapter 6 Algorithm Evaluation

as bricks, enemies, and coins), and the final rule is another coin collecting
rule if nothing else fires. Because this policy causes Cerrla to actively
dispatch goombas and collect coins while advancing forward, it achieves a
greater average reward than ForwardJumpingAgent of 7277.

For the Difficulty 1 goal, Cerrla achieves an average greedy performance
of 3142 per episode (and an average sampled performance of 2939). As a
comparison, I personally achieve approximately 3130± 1010. As with Dif-
ficulty 0, the best elite policy stays relatively constant at ∼ 3000 and the
sampled performance only begins to match that performance in the final
10% of training when rule exploration is disabled. The standard deviation
of this goal is proportionally much lower than the Difficulty 0 goal, possi-
bly because the environment is much more difficult to complete, therefore
the majority of policies will not receive a bonus reward for completing the
level. The ForwardJumpingAgent achieves an average reward of 3049 per
episode. In this case, Cerrla performs slightly better than the Forward-
JumpingAgent, possibly because for this difficulty it is harder to reach the
goal by simply jumping forward; completing a Difficulty 1 level requires
more advanced behaviour.

marioPower(fire), squashable(X), heightDiff(X, N0), width(X, N1), distance(X, N2) → shoot-
Fireball(X, N2, fire)

marioPower(fire), canJumpOn(X), enemy(X), heightDiff(X, N0), distance(X, N2), width(X,
(16.0 ≤ N1 ≤ 16.0)), not flying(X)→ shootFireball(X, N2, fire)

marioPower(fire), flying(X), heightDiff(X, N0), distance(X, N2), width(X, (16.0 ≤ N1 ≤ 16.0)),
not goomba(X)→ shootFireball(X, N2, fire)

marioPower(fire), flying(X), heightDiff(X, N0), width(X, N1), distance(X, (60.5 ≤ N2 ≤
345.0))→ shootFireball(X, N2, fire)

canJumpOn(X), heightDiff(X, N0), distance(X, (46.5 ≤ N1 ≤ 304.0)), not item(X), not pit(X),
not redKoopa(X)→ jumpOnto(X, N1)

flag(X), distance(X, N1), heightDiff(X, (-69.5 ≤ N0 ≤ 87.0))→ jumpOnto(X, N1)
canJumpOn(X), heightDiff(X, N0), distance(X, N1), not goomba(X), not item(X), not piran-

haPlant(X), not redKoopa(X)→ jumpOnto(X, N1)
canJumpOn(X), heightDiff(X, (-69.5 ≤ N0 ≤ 87.0)), distance(X, (46.5 ≤ N1 ≤ 304.0)), not

redKoopa(X), not passive(X)→ jumpOnto(X, N1)
canJumpOn(X), distance(X, N1), heightDiff(X, (-69.5 ≤ N0 ≤ 8.75)), not brick(X), not mush-

room(X)→ jumpOnto(X, N1)
canJumpOn(X), heightDiff(X, N0), distance(X, (46.5 ≤ N1 ≤ 304.0)), not pit(X), not red-

Koopa(X)→ jumpOnto(X, N1)

Figure 6.20: Example Difficulty 1 MARIO policy generated by CERRLA. Achieves an
average reward of 3221.

6.4 Mario Evaluation 147

The example Difficulty 1 policy presented in Figure 6.20 involves more rules
than the Difficulty 0 example policy. It achieves an average reward of 3221.
The first four rules are all concerned with shooting enemies (while in fire
mode) and the fifth and sixth rules result in Mario advancing through the
level while shooting (jumping onto things while doing so). The remaining
rules are all concerned with jumping onto various things, using negated
conditions to exclude particular objects. Interestingly, Mario avoids jump-
ing on redKoopas for many of these rules. This could be a coincidence, or
it could be an informed choice, as redKoopas do not walk off the edges of
terrain, so they are only a threat if they are at the same level as Mario. This
policy lacks behaviour for picking up and shooting shells, but that may be
because Mario is not able to effectively use them without hitting himself.
It also does not define explicit rules for jumping over pits, though many
rules do have the condition not to jump into pits.

Rule and Slot Growth

Due to the large number of rules present in the Mario environment at
the beginning of learning resulting in a larger elites set E, Cerrla does
not perform any rule specialisation until approximately episode 6000 and
10,000 in the Difficulty 0 and Difficulty 1 goals respectively (Figure 6.21).
However, this does not mean the agent was not performing updates to the

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 10000 20000 30000 40000 50000
 500

 1000

 1500

 2000

 2500

 3000

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, Difficulty 1 Goal

 Sampled
Rules

(a) The relationship between the number of
CERRLA’s rules and the performance in
MARIO for the Difficulty 0 goal.

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 0 10000 20000 30000 40000 50000
 1000

 1500

 2000

 2500

 3000

 3500

 4000

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, Difficulty 0 Goal

 Sampled
Rules

(b) The relationship between the number of
CERRLA’s rules and the performance in
MARIO for the Difficulty 1 goal.

Figure 6.21: The relationship between the number of CERRLA’s rules and the perfor-
mance for the two MARIO goals.

148 Chapter 6 Algorithm Evaluation

rule probabilities, as evidenced by the increase in performance. After rule
specialisation begins, the performance does not increase by much, indicat-
ing that the initial rules are all that are needed for the agent to reach the
level of performance it is at when 50,000 episodes have passed.

Rule exploration is roughly linear and does not appear to decrease over
time, which may be a result of the large number of predicates and numer-
ical ranges present in the Mario environment. With the large number of
predicates, there are many different specialisation conditions for rules, es-
pecially when using negated conditions. With the current representation
of Mario, negated specialisation conditions do not restrict the scope of a
rule as much as non-negated conditions do, especially if the negated condi-
tion is rare. The large numerical ranges present in Mario (distance, height,
and width) can be split into sub-ranges multiple times before there are any
major effects on Cerrla’s behaviour, hence the algorithm may continue
investigating these sub-ranges for several splits.

6.4.2 Transfer Learning

An obvious area for transfer learning in the Mario environment is to first
train on the Difficulty 0 goal and then seed the resulting policy into a new
Cerrla distribution for the Difficulty 1 goal. This allows the agent to get a
head-start in how to deal with basic level traversal and handling enemies.

Figure 6.22 and Table 6.12 show the performance of Cerrla on the Dif-
ficulty 1 goal when seeded with the policy in Figure 6.19. The sampled
performance of the seeded and unseeded algorithms is nearly identical,
indicating that the seeded rules from the Difficulty 0 goal are not helpful
(nor a hindrance) to the agent’s performance. This could be a result of the
Difficulty 0 rules being ineffective in the Difficulty 1 environment (because
they only concern goombas) or due to the large number of distributions and

Table 6.12: Averaged results (over ten experiments) comparing CERRLA’s seeded and
unseeded learning for the Difficulty 1 goal in the MARIO environment at the
end of 50,000 training episodes.

Goal Sampled Greedy # Distri-
butions # Rules Time (s)

Unseeded 2939 ± 156 3142 ± 83 83–183 1527–3783 25,246
Seeded 2878 ± 83 3070 ± 103 91–177 1654–3736 19,974

6.4 Mario Evaluation 149

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Mario, Seeded vs. Unseeded Performance, Difficulty 1 Goal

Unseeded
Seeded

Unseeded (SD)
Seeded (SD)

Figure 6.22: CERRLA’s performance on the Difficulty 1 goal when seeded with a Diffi-
culty 0 policy in the MARIO environment. Included is the sampled policy
performance (and standard deviation) for seeded and unseeded CERRLA.
Each experiment trains for 50,000 episodes.

rules created for the Mario environment, reducing the likelihood of using
the seeded rules.

The seeded rules do result in a larger average greedy performance than
the unseeded rules, though not by much. Because the seeded rules are
initialised with p(D) = 1, they are likely to be present in all greedy poli-
cies throughout learning, so the greedy policies are likely to have a higher
minimum performance.

6.4.3 Mario Discussion

The Mario environment is quite challenging for Cerrla, as it is unable to
learn behaviour better than a simple ForwardJumpingAgent. In Cerrla’s
defense, ForwardJumpingAgent is probably the fastest possible agent to
reach the goal, if it is lucky enough to survive the level. Nonetheless,
Cerrla clearly learns somewhat effective behaviour, as evidenced by the
upward slope of the performances.

Cerrla’s low performance could be due to multiple factors, such as:

Large search space: Mario contains many different objects, which result
in many rules and distributions. Every rule in the distribution increases

150 Chapter 6 Algorithm Evaluation

the complexity of the problem and reduces the speed at which Cerrla

learns effective behaviour.

Not enough training episodes: There is a possibility that Cerrla could learn
better behaviour if given more training episodes, but the Mario envi-
ronment suffers from the curse of proportional training time to reward
(bounded by level length and time limit), as evident for the Difficulty
0 goal. Possible solutions include: restricting the number of actions
performed per episodes, reducing the length of the levels, or reducing
the maximum time available per episode but each measure changes the
nature of the problem and could result in the agent learning fundamen-
tally different behaviour.

Stochastic action resolution: When the environment grounds the relational
actions Cerrla returns, it does not guarantee that Mario will achieve
the action Cerrla selected. This is because there are multiple factors
to take into account when resolving actions (e.g. terrain obstacles, en-
emy movement, Mario’s momentum) and the algorithm that resolves
Mario’s high level actions only resolves the action with an imperfect se-
ries of low-level actions. Furthermore, resolution of an action requires
multiple time-steps, during which objects in the environment may move
or the agent may select different high-level actions to resolve, compli-
cating the process further.

Ineffective representation: The relational representation for Mario (see Sec-
tion 3.5.2) may not be expressive enough for Cerrla to create better
behaviour that is capable of consistently completing a level. One pos-
sible deficiency is that the agent does not have access to a retreating
or avoiding action, in the case of enemies that cannot be killed easily.
A possible solution is to refine the actions into specialised actions that
only deal with a specific type of object (e.g. jump onto enemies, move
to coin), but this has been shown in prior environments to have little
effect on performance.

Complicated reward function: While not technically a problem, the complex
reward function, combined with randomised level layout, results in an
impossible-to-create optimal policy (Mario has been shown to be an
NP-hard problem, Aloupis et al. (2012)). Future experiments could sep-
arate the problem into different reward functions, such as: fastest level

6.5 Carcassonne Evaluation 151

completion, most enemy kills, and most items collected.

The greedy performance metric in Mario is not always better than the
sampled performance value. In the Difficulty 0 goal, the greedy policy is
significantly affected by probability changes in the distributions. In the
Difficulty 1 goal, it is much closer to the sampled performance, but never
rises significantly higher. In each case, it converges to no worse than the
sampled performance.

Seeding Cerrla with rules produced from the Difficulty 0 goal and learn-
ing in the Difficulty 1 goal does not have much of an effect on Cerrla’s
performance, possibly because the seeded rules are already present in the
initial distributions.

In the Mario environment, Cerrla creates a large number of rules be-
cause there are so many different objects in the Mario environment. The
size of the policies may be too large for the Cerrla algorithm to learn in
an efficient manner. As seen in Section 6.4.1, no new rules are created until
well into learning, which reflects the algorithm’s inability to quickly find
a reasonable solution upon which to build other rules. Another problem
linked to this is that Cerrla is unlikely to achieve β-convergence because
the algorithm continues to explore new distributions of rules until it gets
to a point where there are either no more specialisations, or further spe-
cialisations are clearly less useful than the rule that created them.

A possible solution for this is to hierarchically restrict type-predicate spe-
cialisations, such that rules only use type specialisations from the next level
down in the type hierarchy (see Section 3.2). E.g. a rule containing thing(X)
can only specialise that type to the next level down in the type hierarchy
(e.g. brick, enemy, item, goal, pit, or shell are the only valid specialisations
that are one step lower in the type hierarchy).

6.5 Carcassonne Evaluation
There are multiple different goals in the Carcassonne environment: Sin-
gle Player, Cerrla vs. Random AI, Cerrla vs. Static AI (two, four, and six
players), and Cerrla vs. Cerrla (two, four, and six players). Section 6.5.1
presents the results Cerrla achieves for each of the goals, as well as eval-
uating learned behaviour on different goals. Like for previous environ-

152 Chapter 6 Algorithm Evaluation

ments, behaviour from one goal can be seeded into another, and the results
are presented in Section 6.5.2.

6.5.1 Standard CERRLA Performance

As a comparison, the static AI provided with the JCloisterZone program
is used on the same goals, citing the average performance achieved over
100 episodes. The static AI selects actions using a one-step look-ahead
maximisation strategy to test every possible tile/meeple placement, where
the best action is selected as the one which ranks the highest according to
an internal score function. This function is tuned towards both increasing
game score, and blocking opponent’s future moves (by tracking which tiles
are left to place). The resulting behaviour is a skilled AI player that presents
a challenge for human (and AI) opponents.

We also cite the average performance of a random AI opponent (random
tile placement, and 50% chance to place a meeple on random terrain) as a
lower bound for performance.

Table 6.13 and Figure 6.23 show the performances of Cerrla for the dif-
ferent Carcassonne goals. In every goal Cerrla begins with a relatively
small number of distributions, though each distribution contains an aver-

Table 6.13: Averaged results (over ten experiments) regarding CERRLA’s performance
for the various game-types in the CARCASSONNE environment at the end of
50,000 training episodes. Some behaviour is also tested against the static
AI agent (denoted by ↪→).

Goal Sampled Greedy
Distri-
butions

Rules Time (s)

Single Player 138 ± 6 146 ± 5 14–90 325–2011 71,066
↪→ vs. Static AI — 53 ± 6 — — —
Cerrla vs. Random AI 78 ± 4 78 ± 4 14–90 337–2003 34,786
↪→ vs. Static AI — 63 ± 5 — — —
Cerrla vs. Static AI 60 ± 3 63 ± 3 14–98 335–2160 43,596
Cerrla vs. 3 Static AI 37 ± 3 38 ± 2 14–79 330–1752 38,180
Cerrla vs. 5 Static AI 25 ± 2 27 ± 2 14–99 322–2235 41,336
Cerrla vs. Cerrla 49 ± 3 49 ± 4 14–81 343–1850 26,234
↪→ vs. Static AI — 40 ± 5 — — —
Cerrla vs. 3 Cerrla 29 ± 3 29 ± 3 14–89 343–2005 17,840
↪→ vs. 3 Static AI — 27 ± 2 — — —
Cerrla vs. 5 Cerrla 20 ± 2 20 ± 2 15–87 348–1871 13,199
↪→ vs. 5 Static AI — 22 ± 1 — — —

6.5 Carcassonne Evaluation 153

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, Single Player

(a) Single Player goal, limited
to 50,000 episodes. Also
evaluated against Static AI
opponent.

Legend

Greedy
vs. Static AI

Sampled
Sampled (SD)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. Random AI

(b) CERRLA vs. Random AI
goal, limited to 50,000
episodes. Also evaluated
against Static AI opponent.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. Static AI

(c) CERRLA vs. Static AI goal,
limited to 50,000 episodes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. 3 Static AI

(d) CERRLA vs. 3 Static AI
goal, limited to 50,000
episodes.

 0

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. 5 Static AI

(e) CERRLA vs. 5 Static AI
goal, limited to 50,000
episodes.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. CERRLA

(f) CERRLA vs. CERRLA
goal, limited to 50,000
episodes. Also evaluated
against Static AI opponent.

 0

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. 3 CERRLA

(g) CERRLA vs. 3 CERRLA
goal, limited to 50,000
episodes. Also evaluated
against 3 Static AI oppo-
nents.

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, CERRLA vs. 5 CERRLA

(h) CERRLA vs. 5 CERRLA
goal, limited to 50,000
episodes. Also evaluated
against 5 Static AI oppo-
nents.

Figure 6.23: CERRLA’s performance for the various goals of CARCASSONNE. Included
is the average greedy performance, the average sampled policy perfor-
mance, the standard deviation of the average sampled policy performance
between experiments, and in appropriate graphs, the performance against
a Static AI. Learning is limited to 50,000 episodes for every goal.

154 Chapter 6 Algorithm Evaluation

age of ∼ 24 rules. The large number of training episodes results in a long
training time, but each episode is of a fixed length so the algorithm does
not suffer from an increased run time with increased performance. In all
goals where there is only a single Cerrla agent per episode and some
number of non-Cerrla opponents, training time is approximately 40,000
seconds (∼11 hours per experiment). The boost in training speed is evident
in the Cerrla vs. X Cerrla goals, where training time is roughly inversely
proportional to the number of Cerrla agents, due to an increased number
of policy samples received per episode. Cerrla was able to β-converge for
some goals before the 50,000 training episodes were completed, indicat-
ing that the fixed limit of 50,000 training episodes is sufficient for learning
effective behaviour.

A common observation among all Cerrla policies is that they each contain
at least one rule that guarantees that Cerrla always selects a tile placement
(typically the last rule of the policy), therefore it never ends an episode
prematurely and misses out on scoring uncompleted terrain.

On the Single Player goal, Cerrla achieves an average greedy performance
of 138 points per episode (∼ 1.94 points per tile placed). As a compari-

player(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (4.5 ≤ N2 ≤
8.0))→ placeTile(cerrla, Y, Z, W)

player(cerrla), meepleLoc(Y, Z), cloisterZone(?, Z)→ placeMeeple(cerrla, Y, Z)
player(cerrla), meepleLoc(Y, Z), completed(Z)→ placeMeeple(cerrla, Y, Z)
player(cerrla), meeplesLeft(cerrla, (0.0 ≤ N1 ≤ 3.5)), validLoc(Y, Z, W), numSurround-

ingTiles(Z, (2.75 ≤ N2 ≤ 6.25)), cloisterZone(Z, ?) → placeTile(cerrla, Y, Z, W)
player(cerrla), controls(cerrla, ?), placedMeeples(cerrla, (1.0 ≤ N0 ≤ 2.0), ?), validLoc(Y, Z,

W), numSurroundingTiles(Z, (3.625 ≤ N2 ≤ 5.375))→ placeTile(cerrla, Y, Z, W)
meepleLoc(Y, Z), city(Z), tileEdge(Y, ?, Z), open(Z, N1), worth(Z, (0.0 ≤ N2 ≤ 12.0)), not

controls(cerrla, ?), not nextTo(?, ?, Z)→ placeMeeple(cerrla, Y, Z)
player(cerrla), meeplesLeft(cerrla, (2.5 ≤ N1 ≤ 4.0)), meepleLoc(Y, Z), worth(Z, (6.0 ≤ N2 ≤

18.0)), not farm(Z)→ placeMeeple(cerrla, Y, Z)
player(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤ N2 ≤

6.25))→ placeTile(cerrla, Y, Z, W)
player(cerrla), meeplesLeft(cerrla, (4.0 ≤ N1 ≤ 7.0)), meepleLoc(Y, Z) → placeMeeple(cerrla,

Y, Z)
player(cerrla), validLoc(Y, Z, W)→ placeTile(cerrla, Y, Z, W)

Figure 6.24: An example policy generated by CERRLA for the Single Player CARCAS-
SONNE goal. Achieves an average reward of 147 and 61 on Single Player
and vs. Static AI goals respectively.

6.5 Carcassonne Evaluation 155

son, the static AI achieves an average score of 200 points per episode and
the random AI achieves an average of 24 points per episode. Figure 6.24
gives an example policy produced by Cerrla at the end of 50,000 training
episodes that achieves an average reward of 147. Due to Carcassonne’s
increased level of complexity, the policy is much larger than policies cre-
ated for other environments. The policy’s behaviour involves placing tiles
in tight groups, near cloisters (to increase the value of the cloister) or just
a default random placement. Meeples are placed on the starting city, clois-
ters, completed terrain, high worth terrain (between 6.0 and 18.0 worth), or
if the agent still has many meeples left, any valid terrain. The resulting
strategy builds compact maps while claiming completed terrain and any
other highly valued terrain.

The Single Player learned behaviour is also tested against a Static AI oppo-
nent to test how effective it is when an opponent is competing for points.
Compared to other experiments against a single opponent the resulting av-
erage performance of 48 is quite strong and actually performs slightly bet-
ter than the agent trained in Cerrla vs. Cerrla, though training directly
against the Static AI produces better results. Section 6.5.2 investigates using
this Single Player policy as a seed for training against a Static AI.

currentPlayer(cerrla), validLoc(Y, Z, W), numSurroundingTiles(Z, (4.5 ≤ N2 ≤ 8.0)) →
placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (3.625
≤ N2 ≤ 5.375))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), meepleLoc(Y, Z), not tileEdge(Y, ?, Z)→ placeMeeple(cerrla, Y, Z)
currentPlayer(cerrla), meepleLoc(Y, Z), worth(Z, (4.0 ≤ N2 ≤ 12.0)), tileEdge(?, ?, Z), not

cloisterZone(?, Z)→ placeMeeple(cerrla, Y, Z)
currentPlayer(cerrla), meepleLoc(Y, Z), completed(Z)→ placeMeeple(cerrla, Y, Z)
currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤

N2 ≤ 6.25)), cloisterZone(Z, ?) → placeTile(cerrla, Y, Z, W)
currentPlayer(cerrla), meeplesLeft(cerrla, (0.0 ≤ N1 ≤ 3.5)), controls(cerrla, ?), validLoc(Y, Z,

W), numSurroundingTiles(Z, (2.75 ≤ N2 ≤ 4.5)), cloisterZone(Z, ?) → placeTile(cerrla, Y,
Z, W)

currentPlayer(cerrla), meeplesLeft(cerrla, (4.0 ≤ N1 ≤ 7.0)), meepleLoc(Y, Z), tileEdge(Y, ?,
Z), not farm(Z)→ placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤ N2 ≤ 6.25)) →
placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), validLoc(Y, Z, W)→ placeTile(cerrla, Y, Z, W)

Figure 6.25: Example CERRLA vs. Random CARCASSONNE policy created by CERRLA.
Achieves an average reward vs. Static AI of 70.

156 Chapter 6 Algorithm Evaluation

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (4.5 ≤
N2 ≤ 8.0))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), meepleLoc(Y, Z), worth(Z, (3.0 ≤ N2 ≤ 6.0)), not nextTo(?, ?, Z) →
placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), controls(cerrla, ?), meepleLoc(Y, Z), worth(Z, (3.0 ≤ N2 ≤ 6.0)) →
placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), meeplesLeft(cerrla, (4.0 ≤ N1 ≤ 7.0)), meepleLoc(Y, Z), worth(Z, (1.5 ≤
N2 ≤ 4.5)), not completed(Z)→ placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (3.625
≤ N2 ≤ 5.375))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), meeplesLeft(cerrla, (4.0 ≤ N1 ≤ 7.0)), meepleLoc(Y, Z), tileEdge(Y, ?,
Z), open(Z, N11)→ placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤ N2 ≤ 6.25)), clois-
terZone(Z, ?) → placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤
N2 ≤ 6.25))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), validLoc(Y, Z, W)→ placeTile(cerrla, Y, Z, W)

Figure 6.26: Example CERRLA vs. Static AI CARCASSONNE policy created by CERRLA.
Achieves an average reward of 65.

validLoc(Y, Z, W), currentPlayer(X), numSurroundingTiles(Z, (4.0 ≤ N2 ≤ 7.0)), controls(X,
?) → placeTile(X, Y, Z, W)

validLoc(Y, Z, W), currentPlayer(X), meeplesLeft(X, (0.0 ≤ N1 ≤ 3.5)), numSurround-
ingTiles(Z, (2.5 ≤ N2 ≤ 4.0)), controls(X, ?), not cloisterZone(Z, ?) → placeTile(X, Y,
Z, W)

meepleLoc(Y, Z), currentPlayer(X), city(Z), controls(X, ?) → placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X), score(X, (0.0 ≤ N0 ≤ 35.0)), meeplesLeft(X, (1.75 ≤ N1
≤ 5.25)), numSurroundingTiles(Z, (2.5 ≤ N2 ≤ 4.0)), controls(X, ?), not cloisterZone(Z,
?) → placeTile(X, Y, Z, W)

meepleLoc(Y, Z), currentPlayer(X), cloisterZone(?, Z)→ placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X), meeplesLeft(X, (2.625 ≤ N1 ≤ 4.375)), controls(X, ?),

placedMeeples(X, (1.0 ≤ N0 ≤ 2.5), ?) → placeTile(X, Y, Z, W)
validLoc(Y, Z, W), currentPlayer(X), numSurroundingTiles(Z, (2.5 ≤ N2 ≤ 4.0)), controls(X,

?), placedMeeples(X, (1.0 ≤ N0 ≤ 2.5), ?) → placeTile(X, Y, Z, W)
meepleLoc(Y, Z), currentPlayer(X), open(Z, N4)→ placeMeeple(X, Y, Z)
meepleLoc(Y, Z), currentPlayer(X), farm(Z), worth(Z, (0.0 ≤ N2 ≤ 5.0)), placedMeeples(X,

(1.0 ≤ N0 ≤ 2.0), ?), nextTo(?, ?, Z)→ placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X)→ placeTile(X, Y, Z, W)

Figure 6.27: Example CERRLA vs. CERRLA CARCASSONNE policy created by CERRLA.
Achieves an average reward vs. Static AI of 49.

6.5 Carcassonne Evaluation 157

In two-player Carcassonne, Cerrla can be trained against three different
opponent types: Random AI, Static AI, or Cerrla (itself). Each player in
two-player Carcassonne places 35–36 tiles. To present a fair comparison
between performances, the learned behaviour for the Cerrla vs. Random AI
and Cerrla vs. Cerrla goals are also evaluated against a Static AI oppo-
nent, resulting in an average greedy performance of 63 and 40 respectively.

Of the three goals, Cerrla performs approximately equally well when
trained against the Static or Random AI (achieving an average greedy per-
formance of 60 and 63: 1.77 and 1.69 points per tile respectively). It is inter-
esting to see that Cerrla learns equally effective behaviour when trained
against a Random AI or a Static AI. This may be a result of Cerrla simply
learning an effective strategy for playing against a single generic opponent,
rather than learning an effective strategy for a particular type of opponent.
In the Cerrla vs. Cerrla case, it is much harder to do this because the
opponent is also applying the same strategy, resulting in a split reward
amongst the particular terrain being claimed. Because the policies are pro-
duced from the same distribution, they are generally of equal utility, so the
elite samples only contain average policies. In comparison, against a very
strong or very weak opponent, the agent can continue to improve whilst
the opponent continues with the same strategy.

Against a Random and Static AI, a Static AI achieves an average perfor-
mance of 99 and 92 respectively and a Random AI achieves an average per-
formance of 22 and 20 respectively. In all three two-player goals, Cerrla

outperforms the Random AI, but does not match the Static AI’s perfor-
mance.

Like the performances achieved for the two goals, the Cerrla vs. Static
AI (Figure 6.26) and Cerrla vs. Random AI policies (Figure 6.25) are fairly
similar in intent. Both place tiles in tight groups when possible, as well
as placing tiles near cloisters. Meeples are typically placed on high worth
(> 3.0) or cloisters first (though cloisters are expressed as not tileEdge(Y, ?, Z)
and not nextTo(?, ?, Z) — simplification is not able to create equivalencies
for these). Other meeple placements go to completed terrain and any non-
farm terrain when Cerrla still has four or more meeples left to place. The
Cerrla vs. Cerrla also places tiles in clusters, but not explicitly by cloisters.
It places meeples in cities, cloisters, open terrain, and low worth farms (which

158 Chapter 6 Algorithm Evaluation

seems to be a bad rule). All of the policies also contain the default tile
placement rule as the final rule to ensure that a tile placement is always
selected.

In four-player Carcassonne, Cerrla is trained against three Static AIs
or itself (three times). Because there are four separate agents competing
for points, completing large scoring terrain is significantly harder. Each
player places between 17–18 tiles. Training against the Static AI opponents
results in a stronger learned strategy (average greedy performance of 37:
2.08 points per tile), whereas training against itself in a four-player game
achieves an average performance of 29 when tested against Static AI oppo-
nents. Comparatively, against Static AI opponents, a Static AI achieves an
average performance of 50 and a Random AI achieves an average perfor-

currentPlayer(cerrla), controls(cerrla, ?), meepleLoc(Y, Z), worth(Z, (3.0 ≤ N2 ≤ 6.0)) →
placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (4.5 ≤
N2 ≤ 6.25))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (3.625
≤ N2 ≤ 5.375))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤ N2 ≤ 6.25)), clois-
terZone(Z, ?) → placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), meepleLoc(Y, Z), worth(Z, (1.5 ≤ N2 ≤ 4.5)) → placeMeeple(cerrla, Y,
Z)

currentPlayer(cerrla), meepleLoc(Y, Z), not farm(Z)→ placeMeeple(cerrla, Y, Z)
currentPlayer(cerrla), validLoc(Y, Z, W)→ placeTile(cerrla, Y, Z, W)

Figure 6.28: Example CERRLA vs. 3 Static AI CARCASSONNE policy generated by
CERRLA. Achieves an average reward of 39.

meepleLoc(Y, Z), currentPlayer(X), cloisterZone(?, Z)→ placeMeeple(X, Y, Z)
meepleLoc(Y, Z), currentPlayer(X), farm(Z), score(X, (0.0≤ N0 ≤ 14.0)), not placedMeeples(X,

N83, ?) → placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X), controls(X, ?), cloisterZone(Z, ?) → placeTile(X, Y, Z,

W)
validLoc(Y, Z, W), currentPlayer(X), numSurroundingTiles(Z, (2.75 ≤ N2 ≤ 6.25)), con-

trols(X, ?) → placeTile(X, Y, Z, W)
meepleLoc(Y, Z), currentPlayer(X), tileEdge(Y, ?, Z), score(X, (0.0 ≤ N0 ≤ 7.0)), open(Z,

N569), not farm(Z)→ placeMeeple(X, Y, Z)
meepleLoc(Y, Z), currentPlayer(X), not farm(Z)→ placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X), numSurroundingTiles(Z, (1.0 ≤ N2 ≤ 4.5)) →

placeTile(X, Y, Z, W)

Figure 6.29: Example CERRLA vs. 3 CERRLA CARCASSONNE policy generated by
CERRLA. Achieves an average reward vs. Static AI of 29.

6.5 Carcassonne Evaluation 159

mance of 18.

The Cerrla vs. 3 Static AI policy (Figure 6.28) has simple meeple placement
rules: claim any terrain with worth > 1.5 and any non-farm terrain. This
allows the agent to claim terrain quickly but may result in it running out of
meeples. Tile placement is in tight groups, as with previous policies. The
Cerrla vs. 3 Cerrla policy (Figure 6.29) contains some meeple-placing
rules for specific situations: placing them on cloisters, on a farm for that
player’s first meeple placement, on open terrain when it has not scored
beyond seven points, and then on any non-farm terrain. Tile placement is
in clusters as usual. These particular rules allow the agent to claim a farm
and other terrain early, which might be worth something later on in the
game. However, it does not claim high worth terrain, which may be why it
performs worse than the other four-player policies.

currentPlayer(cerrla), meepleLoc(Y, Z), worth(Z, (2.25 ≤ N2 ≤ 6.75)) → placeMeeple(cerrla,
Y, Z)

currentPlayer(cerrla), controls(cerrla, ?), placedMeeples(cerrla, (1.0 ≤ N0 ≤ 2.0), ?), valid-
Loc(Y, Z, W), numSurroundingTiles(Z, (4.5 ≤ N2 ≤ 8.0))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), score(cerrla, (0.0 ≤ N0 ≤ 6.5)), meepleLoc(Y, Z), open(Z, (1.0 ≤ N1 ≤
2.0))→ placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), meeplesLeft(cerrla, (4.0 ≤ N1 ≤ 7.0)), meepleLoc(Y, Z), tileEdge(Y, ?, Z)
→ placeMeeple(cerrla, Y, Z)

currentPlayer(cerrla), controls(cerrla, ?), validLoc(Y, Z, W), numSurroundingTiles(Z, (2.75 ≤
N2 ≤ 6.25))→ placeTile(cerrla, Y, Z, W)

currentPlayer(cerrla), validLoc(Y, Z, W)→ placeTile(cerrla, Y, Z, W)

Figure 6.30: Example CERRLA vs. 5 Static AI CARCASSONNE policy generated by
CERRLA. Achieves an average reward of 29.

validLoc(Y, Z, W), currentPlayer(X), cloisterZone(Z, ?) → placeTile(X, Y, Z, W)
meepleLoc(Y, Z), currentPlayer(X), city(Z)→ placeMeeple(X, Y, Z)
meepleLoc(Y, Z), currentPlayer(X), score(X, (0.0 ≤ N0 ≤ 8.0)), worth(Z, (0.0 ≤ N2 ≤ 7.0)),

not city(Z), not farm(Z), not completed(Z), not nextTo(?, ?, Z)→ placeMeeple(X, Y, Z)
meepleLoc(Y, Z), currentPlayer(X), controls(X, ?), not city(Z), not farm(Z), not completed(Z),

not nextTo(?, ?, Z)→ placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X), numSurroundingTiles(Z, (2.75 ≤ N2 ≤ 6.25)), con-

trols(X, ?), not cloisterZone(Z, ?) → placeTile(X, Y, Z, W)
meepleLoc(Y, Z), currentPlayer(X), not completed(Z)→ placeMeeple(X, Y, Z)
validLoc(Y, Z, W), currentPlayer(X), nextTo(Z, ?, ?) → placeTile(X, Y, Z, W)

Figure 6.31: Example CERRLA vs. 5 CERRLA CARCASSONNE policy generated by
CERRLA. Achieves an average reward vs. Static AI of 22.

160 Chapter 6 Algorithm Evaluation

In six-player Carcassonne, Cerrla can be trained either against five Static
AIs, or against itself with six separate policies. Players need to be quick to
control and expand terrain, as each player only has 11–12 tile placements
per episode. As with the previous goals, training against the Static AI op-
ponents results in a stronger learned strategy (average greedy performance
of 25: 2.11 points per tile). Training against itself in a six-player game
achieves an average performance of 20, both against itself and Static AI op-
ponents. Comparatively, against Static AI opponents, a Static AI achieves
an average performance of 35 and a Random AI achieves an average per-
formance of 12.

The Cerrla vs. 5 Static AI policy (Figure 6.30) claims terrain early in the
game (when score ≤ 6.5) or any terrain with worth ≥ 2.25. These should
be sufficient in six-player Carcassonne as there are only 11–12 meeple
placements per game. The Cerrla vs. 5 Cerrla policy (Figure 6.31) is more
complex, placing meeples on cities, cloisters (the third rule; the algorithm
could not simplify the conditions), or uncompleted terrain.

Rule and Slot Growth

Cerrla’s rule specialisation in each of the four goals shown in Figure 6.32
is roughly linear, though in all goals, average performance does continue to
increase with exploration, indicating a higher performance may be reached
with further training episodes, though the increase may not be significant.
As each goal uses almost the same rules, rule specialisation begins at ap-
proximately 3000 episodes for each goal, and continues upwards with lin-
ear growth until specialisation is disabled at 45,000 episodes. Like Mario,
Carcassonne has many relation predicates, though most ranges are re-
stricted to relatively small finite integer values between 0 and 10.

6.5.2 Transfer Learning

Like Ms. Pac-Man and Mario, Cerrla has the opportunity to use previ-
ously learned behaviour for one goal as a seed for another in the Carcas-
sonne environment. In this case, the Single Player policy seen in Figure
6.24 is used to seed the algorithm in the Cerrla vs. Static AI goal.

Figure 6.33 and Table 6.14 present the results of seeded vs. unseeded be-
haviour. The inclusion of proven useful rules at the beginning of learning is

6.5 Carcassonne Evaluation 161

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, Single Player Goal

 Sampled
Rules

(a) The relationship between the number of
CERRLA’s rules and the performance in
CARCASSONNE for the Single Player goal.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10000 20000 30000 40000 50000
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, CERRLA vs. Static AI Goal

 Sampled
Rules

(b) The relationship between the number of
CERRLA’s rules and the performance in
CARCASSONNE for the CERRLA vs. Static
AI goal.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, CERRLA vs. 3 Static AI Goal

 Sampled
Rules

(c) The relationship between the number of
CERRLA’s rules and the performance in
CARCASSONNE for the CERRLA vs. 3 Static
AI goal.

 0

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

A
ve

ra
ge

 R
ew

ar
d

R

ul
es

Episodes

Relationship Between Number of Rules and
Sampled Performance, CERRLA vs. 5 Static AI Goal

 Sampled
Rules

(d) The relationship between the number of
CERRLA’s rules and the performance in
CARCASSONNE for the CERRLA vs. 5 Static
AI goal.

Figure 6.32: The relationship between the number of CERRLA’s rules and the perfor-
mance for the Single Player and CERRLA vs. X Static AI CARCASSONNE

goals.

Table 6.14: Averaged results (over ten experiments) comparing CERRLA’s seeded and
unseeded learning for the CERRLA vs. Static AI goal in the CARCASSONNE

environment at the end of 50,000 training episodes.

Goal Sampled Greedy # Distri-
butions # Rules Time (s)

Unseeded 60 ± 3 63 ± 3 14–98 335–2160 43,596
Seeded 61 ± 2 64 ± 3 23–102 385–2099 48,094

162 Chapter 6 Algorithm Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000

A
ve

ra
ge

 R
ew

ar
d

Episodes

Carcassonne, Seeded vs. Unseeded Performance, CERRLA vs. Static AI goal

Unseeded
Seeded

Unseeded (SD)
Seeded (SD)

Figure 6.33: CERRLA’s performance on the CERRLA vs. Static AI goal when seeded
with a Single Player policy in the CARCASSONNE environment. Included is
the sampled policy performance (and standard deviation) for seeded and
unseeded CERRLA. Each experiment trains for 50,000 episodes.

clearly useful to Cerrla, as initial seeded performance is higher, but both
converge to roughly the same sampled and greedy performances. This per-
formance may be a natural threshold for the current language Cerrla uses
to represent the rules.

6.5.3 Carcassonne Discussion

In every scenario of Carcassonne (single, two, four, six players), Cerrla

learned behaviour for achieving roughly 2.0 points per tile placed (when
trained against Static AI opponents). In comparison, the Static AI achieves
approximately 2.8 points per tile placed. However, the behaviour learned is
not useless, as it easily outperforms a Random AI. For some Carcassonne

goals, Cerrla was able to β-converge, indicating that the fixed 50,000 train-
ing episodes for all experiments are sufficient for the algorithm to learn a
final converged behaviour for the goal. Seeding Cerrla with an effective
strategy is helpful in initial performance for the Cerrla vs. Static AI, but
does not result in a greater final performance than unseeded learning.

All the example policies shown include a default tile placing rule (usually
near the end of the policy), and most include one or more tile placing rules
for placing tiles in clusters. These rules are likely Cerrla’s best option for

6.6 Summary and Discussion 163

placing tiles near open terrain that it controls, as it cannot represent more
complex rules with the current language bias of only using action-related
conditions. A rule with a more focused strategy could be:

currentPlayer(X), controls(X, V), nextTo(Z, ?, V) validLoc(Y, Z, W), city(V)
→ placeTile(X, Y, Z, W)

This rule states that the current player X should place tile Y next to a city
V that X controls (thereby expanding the city). The key conditions are
those concerning V. Cerrla’s current language bias does not allow non-
action related variables to be shared among conditions or use specialisation
conditions that do not contain any action variables, therefore it can never
explicitly create such a rule. Allowing Cerrla to use non-action special-
isation conditions and share non-action variables would result in many
more rules created per specialisation operation, increasing the number of
training episodes required for learning, but it could also increase Cerrla’s
performance on Carcassonne and other environments.

Due to the nature of Cerrla vs. Cerrla experiments, the average perfor-
mance is bound to the average reward received by all players, as every
player’s policy and score is used to advance Cerrla’s learned behaviour.
To test if Cerrla is simply learning locally effective policies (only good
at outperforming itself), the Cerrla vs. Cerrla policies are also tested
against Static AI opponents, but the performance of the policies remain
roughly the same, indicating the learned behaviour is equally effective
against itself and Static AI opponents. However, these policies still per-
form worse than those learned for the Cerrla vs. Static AI goal, so the
decrease in training time is counterbalanced by a decrease in performance.

6.6 Summary and Discussion
This chapter has shown that Cerrla is able to effectively learn relational
policies for solving different problems within a range of environments
when provided with only the environment’s relational specification and
the observations made upon each state.

In the Blocks World environment, Cerrla consistently learns optimal
policies for each of the four goals within Blocks World environments of
ten blocks or more, achieving better results than all comparison algorithms

164 Chapter 6 Algorithm Evaluation

and learning the behaviour in a relatively short amount of time. In the
Ms. Pac-Man environment, Cerrla achieves a similar performance to the
specialised Ms. Pac-Man algorithm it was based upon, but there is much
room for improvement in performance. The complex Mario environment
proves to be more challenging for Cerrla, as it only performs roughly
equal to a ‘forward-jumping’ agent, but it is still able to create effective
policies using Mario’s relational representation. Carcassonne is also a
difficult environment in which Cerrla does not perform at the same level
as a static min-max AI, but it performs much better than random. It is
also able to learn effective behaviour for a range of different Carcassonne

scenarios involving competing players of different skill levels, where the
final policies produced by Cerrla reflect the different strategies required
for the different problems.

In general, Cerrla does not achieve better performance than specialised al-
gorithms for the Ms. Pac-Man, Mario, and Carcassonne environments,
but in all environments it does identify behaviours for achieving a reason-
able performance. If the goal is to achieve the highest performance in a
single environment, a specialised, domain-dependent solution would be a
better choice than Cerrla. If the goal is to perform well across a range of
environments for a range of different goals (approximately at the level of a
non-expert human), Cerrla has been shown to be a capable algorithm.

This chapter also investigated the effect language bias has on Cerrla’s per-
formance (in the Blocks World and Ms. Pac-Man environments). Cerrla

achieves a similar level of performance when using alternative representa-
tions of the environment, though these alternatives follow the same gen-
eral structure as the original representations. Section 6.2.4 showed the
benefit of recording agent observations for assisting rule simplification (in
Blocks World). There is a clear advantage to simplifying the rules, both
in terms of performance and evaluation time. Section 6.2.6 investigated
how a stochastic environment affect’s Cerrla’s performance (compared
to deterministic Blocks World). Because there are fewer elite samples,
Cerrla is more likely to converge to policies that are created earlier in the
experiment, which may be sub-optimal solutions.

In the Blocks World environment, Cerrla is quite fast (in training time),
even though it processes more episodes than most other algorithms. Be-

6.6 Summary and Discussion 165

cause Cerrla has a fixed strategy per episode, the Rete network represen-
tation of the policy’s rules efficiently evaluates the relational rules against
each state’s facts. Other computation includes policy sampling, updating
and rule specialisation, but these only occur every three episodes at most.
There is also an additional overhead for observing states when performing
agent observations, but this typically only occurs in the first few episodes of
learning until it has a stable model of the environment. The policies shown
throughout this chapter are all reasonably comprehensive and mostly con-
tain non-redundant rules. There are some cases where simplification fails
to remove redundant or illegal rule conditions, but in the latter case the
CEM decreases the probability of sampling the illegal rule.

Transfer of existing behaviour for smaller goals to larger problems is bene-
ficial in some cases, or no worse than unseeded learning in other cases. The
seeded rules provide the Cerrla algorithm with a base strategy to build
upon, testing new rules in combination with the seeded rules. However,
the additional rules can also slow learning down, as each additional rule
increases the complexity of the learning process.

Cerrla’s primary drawback is the number of episodes it requires to learn
an effective policy. In Blocks World this is not a big issue, as the run
time is quite fast, but in the larger environments, experiments can take
quite some time to complete. Another aspect of large environments is that
Cerrla usually needs a fixed episode limit for experiments to complete
within an acceptable amount of time. Greedy policies can be produced at
any point, but in order to measure the algorithm’s utility, experimentation
requires a termination point.

7
Conclusions and Future Work

This dissertation has described and evaluated the Cerrla algorithm, a di-
rect policy-search RRL algorithm for learning effective goal-achieving be-
haviour within a range of environments. This chapter summarises the re-
search presented (Section 7.1) and presents conclusions made on the algo-
rithm (Section 7.2). Some of the choices made during this research impose
limitations on the settings in which Cerrla is useful, detailed in Section
7.3. Section 7.4 discusses potential future work for Cerrla and the RRL
field in general. Finally, Section 7.5 presents a list of the research’s contri-
butions.

7.1 Summary
The first three chapters of this thesis ‘set the stage’ for the remainder of the
thesis by presenting an overview of the RRL field, the existing approaches
towards solving problems in RRL and related problems, and the language
and environments that were used to evaluate the algorithm.

The Blocks World environment was an obvious choice for a testing en-
vironment, as it is the benchmark testing environment used throughout
the RRL field, primarily due to its simplicity and ability to demonstrate
core learning concepts. Ms. Pac-Man was selected as a testing environ-
ment because the research presented in this thesis started as an extension
to the CEM Ms. Pac-Man playing agent by Szita and Lörincz (2007) and
the environment also presents several new problems to the algorithm, such

168 Chapter 7 Conclusions and Future Work

as numerical attributes, non-deterministic behaviour, and no fixed reward
limit. Furthermore, the environment also presents additional problems for
a learning algorithm to deal with, such as competing agents (the ghosts),
numerical values, and non-immediate action resolution. The Mario and
Carcassonne environments present much more complex environments,
introducing elements such as partial observability of the level, a large num-
ber of object types and relations, and an increased set of actions per state.

In Chapter 4 and 5 we looked at the details of how Cerrla creates, opti-
mises, and specialises relational rules for creating effective relational poli-
cies for solving goals within relational environments. Chapter 4 focused on
the higher level creation of policies by utilising an online modified CEM to
rule and distribution probabilities and to guide the exploration process of
rule specialisation. Chapter 4 also looked at seeding Cerrla with rules at
the beginning of learning to provide a potential boost to Cerrla’s perfor-
mance. This was also easily integrated by using the branching (and seed-
ing) mechanic introduced in Section 4.7.2. Chapter 5 described the agent
observations model and how it is used to create the initial RLGG rules, de-
termine the set of all useful specialisation operators, and infer simplifica-
tion rules by observing the relations between facts within the environment.
The inferred model only uses the current state observation and valid ac-
tions to incrementally determine the dynamics of both environment-wide
and goal-related observations.

Chapter 6 presented the results Cerrla achieves for the four environments,
with results for the environmental goals, the effects of seeding rules, and
investigating other aspects of the algorithm. Cerrla was shown to be able
to learn optimal policies for all four of the Blocks World environment
goals. The Blocks World environment was also used to demonstrate the
benefits of learning and applying simplification rules to the algorithm’s
learned policy rules. In the three game environments, Cerrla learned
effective policies for achieving high reward, demonstrating the algorithm’s
ability to learn behaviour across a range of environments. Each learned
policy conveys the agent’s behaviour in a simple, rule-by-rule, format with
few redundant conditions. Seeding Cerrla with prior behaviour was also
shown to be helpful or in the worst case, had no effect on performance.

7.2 Conclusions 169

7.2 Conclusions
The Cerrla algorithm developed throughout this research has been shown
to be an effective policy search algorithm, capable of learning optimal poli-
cies in Blocks World and learning reasonably effective behaviour in the
game environments. While it may not perform as well as specialised algo-
rithms, it exhibits good scalability to problems and the ability to be gen-
erally applied to a range of different environments. Cerrla’s emphasis
on minimally complex rules and policies not only results in comprehen-
sible behaviour (relative to say, a neural network or ensemble of models),
but also minimises rule evaluation time. The algorithm does not require
any human input or other forms of guidance to locate optimal policies be-
cause it creates rules and policies in a hypothesis-based manner: create the
rule/policy then test it, rather than extract the rule/policy from previous
episodes.

Cerrla creates relational policies by creating, optimising, and specialising
relational rules in a methodical general-to-specific fashion, using a modi-
fied online CEM as the optimisation framework. The use of the CEM con-
fers several benefits: Firstly, compared to value-based methods, no values
need to be recorded, as the utility of a policy (and the rules of the policy)
within the CEM is dependent on the relative ranking of the policy to other
sampled policies. Hence, the algorithm only needs to produce policies that
have a higher relative ranking to other policies in order to begin updat-
ing the distributions. This benefit also guides Cerrla’s rule exploration
strategy: Cerrla typically begins learning with a small number of general
(in terms of rule conditions) rules that are unlikely to be optimal. How-
ever, some will invariably be better than others, allowing the algorithm
to specialise those rules, creating better rules, and learning a new relative
ranking of policy samples, continuing the exploration until no better rules
are found.

Secondly, because unused rules and distributions are implicitly negatively
updated during the update step of the CEM, the final policies produced
by Cerrla will only contain empirically useful rules and distributions.
This also allows the algorithm to eliminate rules with illegal conditions
that could never subsume the state which were not simplified by the agent
observation simplification rules. The opposite case is also beneficial: useful

170 Chapter 7 Conclusions and Future Work

rules and distributions are positively updated. This results in more samples
and, if a rule’s probability is high enough, specialisation of the rule. By
concentrating on high probability rules, specialisation is restricted to rules
that have been shown to be useful.

Finally, the CEM has been shown to be a fast method, at least in Blocks

World, with respect to the number of episodes it processes. Except for
when Cerrla is scanning the state to update the agent observations model
(which generally only occurs in the first few episodes of training), Cerrla

does not need to perform significant computation during policy evaluation;
most of Cerrla’s computation occurs during the update, specialisation
and policy sampling processes. Jess’s Rete network is ideal for represent-
ing Cerrla’s static policies because the network only needs to be recreated
when a policy is sampled and immediately calculates matches to the pol-
icy’s rules when the state of the environment is asserted into the network.

The other half of the Cerrla algorithm is the rule creation and speciali-
sation process. Cerrla takes a principled approach towards exploration
of the rule space by beginning with the least general generalisation rules
(RLGG), then exploring incremental specialisations of interesting rules.
These specialisations are guided with the use of agent observations to re-
duce the number of possible specialisations and simplify any specialisa-
tions that result in redundant or illegal rule conditions, resulting in fewer
redundant rules to optimise in the CEM aspect of the algorithm. Addi-
tionally, the simplification process results in fewer rule conditions, which
makes the rule easy-to-comprehend for a human viewer. Without simpli-
fication rules, Cerrla’s performance and learning speed are significantly
lower, and the comprehensibility of the rules decreases.

As shown in Section 6.2.2, Cerrla’s relational rule representation of be-
haviour results in scale-free learning, where the number of episodes re-
quired remains relatively constant regardless of the number of objects in
the environment. In small-scale problems, this is a disadvantage because
Cerrla represents more than it needs to, but in large-scale problems, the
state space is abstracted into generalised rules. Scale-free learning is evi-
dent in Ms. Pac-Man and Carcassonne too, as the algorithm begins with
nearly the same number of rules and distributions (subject to random ini-
tial states) even though the scale or nature of the problem changes. In

7.3 Limitations 171

Mario, the number of rules and distributions increases with difficulty be-
cause higher difficulties introduce new types of objects.

An additional advantage of using rule-based behaviour is that rules can be
provided to Cerrla at the beginning of learning as something to use for
potentially improved performance. Seeding a new set of distributions with
previously learned rules is beneficial to the final performance or at least no
worse than unseeded. Although seeding rules does increase the number
of distributions, the added rules provide an improved starting point that
Cerrla can base its learning upon. The simple representation of the rules
also makes it easy for a human to manually input rules as seeds, which
Cerrla will test and possibly specialise to create more useful rules.

A key component of Cerrla’s language bias is to restrict the specialisation
conditions to those that contain action variables. This reduces the number
of possible rules to evaluate per distribution, but it does also constrain
what sort of rules Cerrla can create. In many cases, the arguments of an
action are all that need to be defined in a rule’s conditions, but there may
be cases where defining relations on non-action arguments create useful
rules. The problem with allowing such specialisations is that the number of
rules created per specialisation operation increases, increasing the number
of rules Cerrla needs to examine and decreasing the rate of learning.

Cerrla’s main disadvantage is the amount of training episodes required
to converge to a final policy. Compared to other policy search algorithms,
Cerrla is among the fastest, but it is typically slower than value-based
algorithms. However, as a result of the rule-based representation Cerrla

uses, the size of the search space for solutions remains constant, regardless
of the scale of the environment (unless a change in scale also changes the
environment dynamics).

7.3 Limitations
Although Cerrla was designed to be generally applicable across a range
of environments, there are some known limitations that may restrict its
utility. Some of the design choices made in Chapter 4 and 5 were often a
trade-off between minimising the number rules created and the complexity
of created rules.

172 Chapter 7 Conclusions and Future Work

An obvious limitation of Cerrla is the general limitations of RRL itself.
An environment must specify a numerical reward which the learning agent
uses to guide its learning. However, in many tasks a reward is not obvious
(e.g. for a human, reward is often internally represented in the form of
pleasure/displeasure) or does not full encapsulate the problem goal (e.g. in
Ms. Pac-Man, there is no explicit reward for avoiding ghosts; the agent
must implicitly learn this). The other intrinsic limitation is the reactiveness
of RRL agents. While it is possible to learn a model of the environment
and use plan-based solutions (e.g. Marlie Croonenborghs et al. (2007)),
this can be very difficult in complex environments such as Mario and
Carcassonne. Cerrla uses a purely reactive strategy (if state, then action)
and so it will have trouble learning effective behaviour in environments
requiring complex plans.

Although policy-search based learning methods have their advantages over
value-based methods, there are some limitations. As seen in Section 6.2.3,
Cerrla requires significantly more episodes than most value-based meth-
ods to converge to a solution in Blocks World, though this can also be
an advantage — Cerrla’s rate of episodic convergence is scale-free with
respect to the number of blocks. An additional problem with episodic,
policy-search is the problem of environments with ‘easily-attainable’ goals,
that is, goals which can be achieved with a wide range of different be-
haviours. As evidenced in 3 and 5 block Blocks World (Section 6.2.2), the
easily attainable goal resulted in an increased number of useful rules, slow-
ing convergence to a single solution and ultimately resulting in a poorer
performance than the 10-block variant.

As previously noted in Section 6.2.1, the method in which Cerrla iden-
tifies useful/non-useful distributions can be detrimental when a clearly
useful rule is not always applicable in the environment. If a rule is rarely
applicable, the distribution it is contained within will gradually become
less used, even if the rule is useful when it is applicable. This creates a bias
towards learning policies that only contain the absolutely necessary rules
for achieving high performance, preventing Cerrla from taking advantage
of lucrative rare situations.

The restriction to only use action and goal-related variables in Cerrla’s
rules was primarily motivated to reduce the set of possible specialisations,

7.3 Limitations 173

while defining enough information about the rule’s action to make in-
formed decisions. While this does result in a comparatively low number
of possible specialisations, it also makes some assumptions about the envi-
ronment:

1. That each action specifies at least one argument. Cerrla constructs
rules by identifying the RLGG for an action where the set of potential
conditions each contain at least one action argument. E.g. Cerrla

could not learn any behaviour in a low-level, directional-based rep-
resentation of Ms. Pac-Man (e.g. up, down, etc.); it is better suited to
learning high-level strategies using abstract actions (the representa-
tion seen in Section 3.4.

2. A related assumption is that each action in an environment defines
all the necessary arguments for making informed decisions. It is
assumed that conditions which do not directly reference an action-
related argument are not required for making decisions about tak-
ing that action, though in Section 6.5.3 this assumption is violated
as adding non-action-related specialisation conditions would allow
Cerrla to create more powerful rules. But this would also result in a
much larger set of possible specialisation conditions, slowing the rate
of learning.

3. Individual named objects hold no special significance. Cerrla as-
sumes the relations acting on an object are enough to denote signif-
icance and so Cerrla will not be able to directly act on significant,
non-goal related objects (except with relations defined with variable
arguments).

In general, Cerrla is best at learning high-level behaviour in environments
with object-based actions and relationally-described objects.

While not technically a limitation of Cerrla per se, the representation of
the environments can be a major factor in the effectiveness of Cerrla’s
learned behaviour. As noted above, actions should be defined with the
objects they act upon but this can be difficult to determine. The relations
used to express the state of the environment should also define the connec-
tions between objects but to what extent should this go to? For example,
in Ms. Pac-Man and Mario, the distance predicate defines the distance

174 Chapter 7 Conclusions and Future Work

between the agent and another object, but what about defining distances
between any two given objects? The ‘optimal’ representation for an envi-
ronment is unlikely to be answered (or even answerable), but the represen-
tation directly affects how Cerrla can represent behaviour.

A related point is how much of a state should be described? While Cerrla

should theoretically be able to continue to make decisions in POMDPs
where only a portion of the state is shown, the rate of learning is likely
to be much slower, as the RLGG for an action will be much more gen-
eral, resulting in more specialisation conditions and therefore more rules
to optimise. Furthermore, there would be fewer simplification rules to sim-
plify the rule conditions. If only a portion of the valid actions were given
per state, Cerrla should continue to function normally, as the RLGG and
specialisation conditions would not change.

7.4 Future Work
Cerrla’s limitations described in the previous section leave many differ-
ent areas open for expansion of the algorithm. We first look at extending
Cerrla by adding hierarchical ‘modular’ learning to the algorithm, which
divides a problem into several smaller sub-problems (Section 7.4.1). We
then discuss other future work for the Cerrla algorithm (Section 7.4.2) and
more broadly, future work for RRL testing environments (Section 7.4.3).

7.4.1 Modular Learning

A prototype extension to Cerrla that was investigated throughout the
course of this research was adding the ability to learn and apply modules:
policies that can be used to achieve sub-goals throughout the course of an
episode. By splitting a problem into multiple sub-goals, the curse of dimen-
sionality is reduced, resulting in less work for the algorithm, and complex
problems can be broken down into modular sub-problems. Cerrla already
produces relational, parameterisable policies (by using goal replacements),
so applying modular policies is simply a matter of inserting the appro-
priate policy into the agent’s current policy when the sub-goal needs to
be achieved. Sub-goals can be automatically identified as achieving a spe-
cific fact (e.g. clear(G0)), or the (non-)existence of an object (e.g. edible(?),

7.4 Future Work 175

not(coin(?))).

In order to utilise a module, the agent must first learn it. A naive approach
is to learn the modules offline: learn a module for every possible sub-goal
(using parameterisable goal variables where appropriate) before learning
the main environmental goal, but this may result in the agent learning
modules for useless sub-goals and wastes training time. A less wasteful
approach is to simultaneously learn and utilise the module only when it is
required online. This approach involves maintaining a separate distribution
for each goal/sub-goal and learning behaviour using the standard Cerrla

algorithm. In either case, the algorithm needs to identify when the sub-goal
is achieved and define an internal reward function.

Preliminary results indicate that online modular learning is ineffective and
slow, even in the relatively simple Blocks World environment (OnG0G1

goal). Often the module learned is not optimal, because the internal reward
function of −1 per step is not accurate enough to identify truly optimal
policies. In Blocks World, Cerrla often learns the optimal policy in the
main distribution, rather than utilising the module. Future work will focus
primarily on defining an effective internal reward, as well as other methods
for speeding up the modular learning process.

Modules are automatically inserted instead of presented as options (see Sut-
ton et al. (1999b), Croonenborghs et al. (2008), and Section 2.1.2) to avoid
increasing the number of actions available to the agent. However, auto-
matic insertion of modular behaviour may not always be necessary. For
example, in the Mario environment, achieving the existence of a goomba
could be a potential module sub-goal (though ultimately one which the
agent has little control over). Whenever the goomba is present in a rule, the
module for achieving the existence of a goomba is automatically inserted.

A possible solution for unwanted module use is to assign each modular
sub-goal a probability of use, like distribution usage p(D). Another alter-
native is to treat modules as actions and incorporate them into Cerrla’s
rule learning process (i.e. transform them into relational options). Like
other rules in Cerrla, each module rule starts with the RLGG conditions
for use and Cerrla explores specialisations of the rule, identifying the
most useful rules. E.g. for the clear(G0) sub-goal, the RLGG rule would
be not clear(G0)→ achieve clear(G0) and specialisations add extra conditions

176 Chapter 7 Conclusions and Future Work

relating to the G0 argument.

7.4.2 CERRLA-Related Future Work

Other directions for future research regarding the Cerrla algorithm are
described below. Each direction considers individual aspects of Cerrla

that could be improved or proposes major changes to the core algorithm.

• As mentioned throughout the thesis, Cerrla uses a particular lan-
guage bias that only uses action-related conditions as specialisation
conditions. This restricts the number of possible rules Cerrla can
create, reducing the number of episodes required to test all rules, but
also restricting what Cerrla can represent. A future modification to
Cerrla is to allow any condition to be added as a specialisation. This
will result in more rules being created, and therefore longer training
times, but the expressivity of the rules increases as well. Preliminary
results indicate that the additional conditions dramatically increase
the training time and have little effect on performance in Blocks

World and Carcassonne. Future work should focus on expanding
the agent observations model to identify which non action-related
conditions are potentially useful for each action (rather than add any
conditions to rules) and also to broaden the scope of the simplifica-
tion rules so they can identify redundant or illegal conditions that do
not share an argument.

• Cerrla’s current method of handling numerical values naively as-
sumes that the values observed within a range are uniformly dis-
tributed. The range splitting operation (Section 5.5.2) does not ac-
commodate the distribution of observed values. A possible solution is
to record the distribution of observed numerical values for the poli-
cies in the elite samples. That is, if a certain subset of numerical val-
ues frequently occur for the elite policies, then future specialisations
should focus on those subranges.

• Currently Cerrla evaluates its policies deterministically (top to bot-
tom), but an alternative is to evaluate them probabilistically by evalu-
ating every rule of the policy and probabilistically selecting an action
to perform. Probabilistic action selection could also be weighted by
using each distribution’s p(D) as a weight for selecting the rule’s

7.4 Future Work 177

action. Probabilistic action selection simplifies policy creation by re-
moving the need for distribution position (q(D)) but because every
rule in a policy is evaluated, policy evaluation time will increase.
Probabilistic action selection may also negatively affect the agent’s
performance by occasionally selecting useless rules. Experiments per-
formed in van Otterlo (2009) show that probabilistic action selection
does not perform as well as deterministic action selection for its re-
lational rule policies, but Cerrla may have different results when
using weighted probabilistic action selection.

• As stated in Section 4.9, Cerrla’s training time could be potentially
reduced by using a halting heuristic that prematurely terminates eval-
uation of a policy if it is unlikely to be an elite (originally performed
in Tak (2010)). Because CEM only uses the samples with a value ≥ γ

(elite samples), the algorithm can ignore samples that are unlikely to
be within the elite samples.

It would be difficult to apply this method to environments that only
provide a single reward at the end of the episode (such as Blocks

World), but environments that provide reward throughout evalua-
tion (e.g. Ms. Pac-Man, Mario, and Carcassonne) can probabilisti-
cally terminate policies that are not achieving a reward similar to that
of elite policies. Care should be taken not to be too strict in removing
policies (else potential elite samples could be removed).

• An extension of Cerrla’s transfer learning mechanism is to modify
the algorithm to be represented in a similar form as the NPPG algo-
rithm (Kersting and Driessens, 2008). Behaviour is learned by iter-
ating through a shortened Cerrla process of quickly identifying the
most useful policy (e.g. reduce the population size N and/or increase
α) and using it as a starting point for a new rule distribution via the
seeding procedure described in Section 4.8. The rough starting point
should make it easier for the agent to create high-reward policies.
However, this strategy requires a much faster version of Cerrla to be
able to learn behaviour in a reasonable amount of time.

7.4.3 Environment-Related Future Work

Future work regarding the environments defined in this research:

178 Chapter 7 Conclusions and Future Work

• The relational ‘wrappers’ for each of the four environments presented
in this thesis were created manually by defining and extracting the
features, relations and actions from the raw game-state and defining
action-resolution procedures for the relational actions. This is a bi-
ased and time-consuming task and usually requires direct access to
the low-level non-relational model of each environment. The rela-
tional representation selected by the person who created the environ-
ment wrapper would not necessarily be the same if a different person
created it.

A helpful future preprocessing tool would be the ability to automat-
ically extract a (useful) relational representation from an environ-
ment (such as Ms. Pac-Man, etc.), such that an agent utilising this
tool could be applied to any task without the need for a relational
‘wrapper’ to be defined beforehand. The representation would be
deterministically created, such that multiple applications of the tool
produce the same representation. The tool would need to identify
the relevant objects, discern the relations between them (such as dis-
tance between), and identify/create an appropriate reward function.
Such a tool could accept input directly from the model of an environ-
ment (using the environment’s variables as sources of information),
or take a human-like approach of using the visualisation of the envi-
ronment as input. An additional benefit of this tool is the ability to
extract higher-level features from an existing representation, allow-
ing a learning agent to perform high-level strategies. Creating a tool
such as this would be no easy task and would require several years
of work, but a successful implementation would be extremely helpful
not just for the field of RRL, but also for other fields such as machine
learning and computer vision.

• An interesting study into the effects of language bias on learning al-
gorithms could be achieved by reversing the behaviour being learned
in a typical RL setup. By treating the environment representation
as the target ‘behaviour’ to be learned, where the representation can
change within a certain set of parameters, the most effective environ-
ment representation can be identified as the representation in which
Cerrla (or any RRL learner) achieves the greatest reward. The results
of this experiment would identify the types of environment represen-

7.5 Contributions 179

tation that the learning algorithm performs best in.

7.5 Contributions
An itemised summary of the research’s contributions is presented below:

• In Chapter 3, I provided a relational specification for the Ms. Pac-
Man, Mario, and Carcassonne environments. Future RRL algo-
rithms can use these implementations (directly or as an inspiration to
an alternative representation) as large scale testing environments.

• In Chapter 4, I presented the direct policy search algorithm named
Cerrla that uses a modified version of the Cross-Entropy Method
(CEM) to identify the most useful combination of rules for solving
goals within relational environments. This algorithm has been shown
to be fast, effective and produce human-comprehensible behaviour.

• In Chapter 5, I presented the agent observations model which is able
to automatically infer simplification rules for an environment and
identify the minimal preconditions and potential specialisation op-
erations required for creating useful relational rules. Cerrla uses
this model to remove unnecessary conditions from rules and guide
its specialisation process.

• In Chapter 6, I demonstrated Cerrla’s utility in four separate envi-
ronments, where each environment contains multiple goals.

In the RRL benchmark environment Blocks World, Cerrla per-
forms as well as state-of-the-art existing RRL algorithms for all four
goals. It does require more episodes than most approaches, but the
number of episodes remains roughly fixed regardless of environment
scale.

In the Ms. Pac-Man environment, Cerrla achieved results similar to
the propositional CEM algorithm it was based on, as well as learn-
ing behaviour for alternative Ms. Pac-Man goals. Seeding a Cerrla

agent with initial behaviour for a simpler goal was also shown to
significantly improve performance on more complex goals.

Experiments on the Mario environment show that the complex state

180 Chapter 7 Conclusions and Future Work

space and imprecise action resolution make this a difficult environ-
ment for Cerrla, though it is able to create a basic strategy for score
maximisation.

The Carcassonne environment provides a large number of different
goals, testing solo and multiplayer performance against a number of
different opponents at varying skill levels. In each scenario Cerrla

performs well, but never learns a strategy that would be better than
the specialised AI.

Additionally, on all environments, I investigated the utility of ‘seed-
ing’ Cerrla with previously learned or manually defined rules. In all
environments seeding increases or, in the worst case, has no negative
effect on final performance.

A list of publications regarding the research presented in this thesis can be
found in Publications at the beginning of the thesis.

References

Aloupis, G., Demaine, E. D., Guo, A. (2012). Classic nintendo games are
(NP-)hard. Tech. rep., arXiv 1203.1895.

Aslam, J. A., Popa, R. A., Rivest, R. L. (2007). On estimating the size and
confidence of a statistical audit. In Proceedings of the USENIX Workshop on
Accurate Electronic Voting Technology, EVT’07, pp. 8–8. Berkeley, CA, USA:
USENIX Association.
http://dl.acm.org/citation.cfm?id=1323111.1323119

Baird, L., Moore, A. (1999). Gradient descent for general reinforcement
learning. In Proceedings of the 1998 conference on Advances in neural in-
formation processing systems II, pp. 968–974. Cambridge, MA, USA: MIT
Press. ISBN 0-262-11245-0.
http://dl.acm.org/citation.cfm?id=340534.340892

Barto, A., Dietterich, T. (2004). Reinforcement learning and its relation-
ship to supervised learning. Handbook of learning and approximate dynamic
programming, 2, 47–64.

Barto, A. G., Sutton, R. S., Anderson, C. W. (1990). Neuronlike adaptive
elements that can solve difficult learning control problems. In Diederich,
J. (Ed.), Artificial neural networks, pp. 81–93. Piscataway, NJ, USA: IEEE
Press. ISBN 0-8186-2015-3.
http://dl.acm.org/citation.cfm?id=104134.104143

Baum, E. B. (1999). Toward a model of intelligence as an economy of agents.

http://dl.acm.org/citation.cfm?id=1323111.1323119
http://dl.acm.org/citation.cfm?id=340534.340892
http://dl.acm.org/citation.cfm?id=104134.104143

182 References

Mach. Learn., 35(2), 155–185. doi:10.1023/A:1007593124513.
http://dx.doi.org/10.1023/A:1007593124513

Baxter, J., IVidgell, A., Weaver, L. (1998). KnightCap: A chess program
that learns by combining TD(lambda) with game-tree search. In Machine
learning: proceedings of the fifteenth international conference (ICML’98), p. 28.
Morgan Kaufmann Pub.

Belew, R. K., McInerney, J., Schraudolph, N. N. (1992). Evolving networks:
Using the genetic algorithm with connectionist learning. In Langton,
C. G., Taylor, C., Farmer, D. J., Rasmussen, S. (Eds.), Artificial Life II, pp.
511–547. Redwood City, CA: Addison-Wesley.

Bellman, R. (1956). Dynamic programming and Lagrange multipliers. Pro-
ceedings of the National Academy of Sciences of the United States of America,
42(10), 767.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena
Scientific, 1st edn. ISBN 1886529108.

Blockeel, H., De Raedt, L. (1998). Top-down induction of first-order logical
decision trees. Artif. Intell., 101(1-2), 285–297. doi:10.1016/S0004-3702(98)
00034-4.
http://dx.doi.org/10.1016/S0004-3702(98)00034-4

Böhm, N., Kókai, G., Mandl, S. (2005). An evolutionary approach to Tetris.
In The Sixth Metaheuristics International Conference (MIC2005).

Boutilier, C., Dearden, R. (1994). Using abstractions for decision-theoretic
planning with time constraints. In Proceedings of the twelfth national confer-
ence on Artificial intelligence (vol. 2), AAAI’94, pp. 1016–1022. Menlo Park,
CA, USA: American Association for Artificial Intelligence. ISBN 0-262-
61102-3.
http://dl.acm.org/citation.cfm?id=199480.199519

Boyan, J. (1992). Modular neural networks for learning context-dependent game
strategies. Ph.D. thesis, Citeseer.

Boyan, J., Moore, A. (1995). Generalization in reinforcement learning:
Safely approximating the value function. Advances in neural information
processing systems, 7, 369–376.

http://dx.doi.org/10.1023/A:1007593124513
http://dx.doi.org/10.1016/S0004-3702(98)00034-4
http://dl.acm.org/citation.cfm?id=199480.199519

References 183

Branavan, S. R. K., Silver, D., Barzilay, R. (2011). Non-linear Monte-
Carlo search in Civilization II. In Proceedings of the Twenty-Second in-
ternational joint conference on Artificial Intelligence - Volume Volume Three,
IJCAI’11, pp. 2404–2410. AAAI Press. ISBN 978-1-57735-515-1. doi:
10.5591/978-1-57735-516-8/IJCAI11-401.
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-401

Buşoniu, L., Babuška, R., De Schutter, B., Ernst, D. (2010). Reinforcement
Learning and Dynamic Programming Using Function Approximators. Boca
Raton, Florida: CRC Press.

Chapman, D., Kaelbling, L. P. (1991). Input generalization in delayed re-
inforcement learning: an algorithm and performance comparisons. In
Proceedings of the 12th international joint conference on Artificial intelligence -
Volume 2, IJCAI’91, pp. 726–731. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-160-0.
http://dl.acm.org/citation.cfm?id=1631552.1631569

Chaslot, G., Winands, M. H. M., Szita, I., van den Herik, H. J. (2008). Cross-
entropy for Monte-Carlo tree search. ICGA Journal, 31(3), 145–156.

Costa, A., Jones, O. D., Kroese, D. (2007). Convergence properties of the
cross-entropy method for discrete optimization. Operations Research Let-
ters, 35(5), 573 – 580. doi:10.1016/j.orl.2006.11.005.
http://www.sciencedirect.com/science/article/pii/S0167637706001313

Croonenborghs, T., Driessens, K., Bruynooghe, M. (2008). Learning rela-
tional options for inductive transfer in relational reinforcement learning.
In Proceedings of the 17th international conference on Inductive logic program-
ming, ILP’07, pp. 88–97. Berlin, Heidelberg: Springer-Verlag. ISBN 3-540-
78468-3, 978-3-540-78468-5.
http://dl.acm.org/citation.cfm?id=1793494.1793509

Croonenborghs, T., Ramon, J., Blockeel, H., Bruynooghe, M. (2007). Online
learning and exploiting relational models in reinforcement learning. In
Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pp. 726–731.

Croonenborghs, T., Ramon, J., Bruynooghe, M. (2004). Towards informed
reinforcement learning. In Proceedings of the ICML2004 workshop on rela-
tional reinforcement learning, pp. 21–26. Citeseer.

http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-401
http://dl.acm.org/citation.cfm?id=1631552.1631569
http://www.sciencedirect.com/science/article/pii/S0167637706001313
http://dl.acm.org/citation.cfm?id=1793494.1793509

184 References

Dabney, W., McGovern, A. (2007). Utile distinctions for relational rein-
forcement learning. In Proceedings of the 20th international joint conference
on Artifical intelligence, IJCAI’07, pp. 738–743. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=1625275.1625394

De Boer, P., Kroese, D., Mannor, S., Rubinstein, R. (2004). A tutorial on the
cross-entropy method. Annals of Operations Research, 134(1), 19–67.

Demaine, E. D., Hohenberger, S., Liben-Nowell, D. (2003). Tetris is hard,
even to approximate. In Proceedings of the 9th annual international confer-
ence on Computing and combinatorics, COCOON’03, pp. 351–363. Berlin,
Heidelberg: Springer-Verlag. ISBN 3-540-40534-8.
http://dl.acm.org/citation.cfm?id=1756869.1756918

Dietterich, T., Wang, X. (2001). Support vectors for reinforcement learn-
ing. In De Raedt, L., Flach, P. (Eds.), Machine Learning: ECML 2001, vol.
2167 of Lecture Notes in Computer Science, pp. 600–600. Springer Berlin /
Heidelberg. ISBN 978-3-540-42536-6.

Dorigo, M., Colombetti, M. (1998). Robot shaping: an experiment in behavior
engineering. The MIT Press.

Driessens, K. (2004). Relational reinforcement learning. Ph.D. thesis, Depart-
ment of Computer Science, Katholieke Universiteit Leuven, Belgium.

Driessens, K., Džeroski, S. (2004). Integrating guidance into relational rein-
forcement learning. Machine Learning, 57(3), 271–304.

Driessens, K., Džeroski, S. (2005). Combining model-based and instance-
based learning for first order regression. In Proceedings of the 22nd interna-
tional conference on Machine learning, pp. 193–200. ACM. ISBN 1595931805.

Driessens, K., Ramon, J. (2003). Relational instance based regression for
relational reinforcement learning. pp. 123–130.

Driessens, K., Ramon, J., Blockeel, H. (2001). Speeding up relational re-
inforcement learning through the use of an incremental first order deci-
sion tree learner. In Proceedings of the 12th European Conference on Machine
Learning, EMCL ’01, pp. 97–108. London, UK, UK: Springer-Verlag. ISBN

http://dl.acm.org/citation.cfm?id=1625275.1625394
http://dl.acm.org/citation.cfm?id=1756869.1756918

References 185

3-540-42536-5.
http://dl.acm.org/citation.cfm?id=645328.650008

Driessens, K., Ramon, J., Gärtner, T. (2006). Graph kernels and gaussian
processes for relational reinforcement learning. Mach. Learn., 64(1-3), 91–
119. doi:10.1007/s10994-006-8258-y.
http://dx.doi.org/10.1007/s10994-006-8258-y

Dzeroski, S. (2001). Relational Data Mining. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1st edn. ISBN 3540422897.

Džeroski, S., De Raedt, L., Blockeel, H. (1998). Relational reinforcement
learning. In Page, D. (Ed.), Inductive Logic Programming, vol. 1446 of
Lecture Notes in Computer Science, pp. 11–22. Springer Berlin Heidelberg.
ISBN 978-3-540-64738-6. doi:10.1007/BFb0027307.
http://dx.doi.org/10.1007/BFb0027307

Džeroski, S., De Raedt, L., Driessens, K. (2001). Relational reinforcement
learning. Machine Learning, 43, 7–52. doi:10.1023/A:1007694015589.
http://dx.doi.org/10.1023/A%3A1007694015589

Fern, A., Yoon, S., Givan, R. (2006). Approximate policy iteration with a
policy language bias: solving relational markov decision processes. J.
Artif. Int. Res., 25(1), 75–118.
http://dl.acm.org/citation.cfm?id=1622543.1622546

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1), 17 – 37. doi:
10.1016/0004-3702(82)90020-0.
http://www.sciencedirect.com/science/article/pii/0004370282900200

Gallagher, M., Ryan, A. (2003). Learning to play Pac-Man: An evolutionary,
rule-based approach. In Evolutionary Computation, 2003. CEC’03. The 2003
Congress on, vol. 4, pp. 2462–2469. IEEE.

Galván-López, E., Swafford, J. M., O’Neill, M., Brabazon, A. (2010). Evolv-
ing a ms. pacman controller using grammatical evolution. In Proceed-
ings of the 2010 international conference on Applications of Evolutionary Com-
putation - Volume Part I, EvoApplicatons’10, pp. 161–170. Berlin, Hei-
delberg: Springer-Verlag. ISBN 3-642-12238-8, 978-3-642-12238-5. doi:

http://dl.acm.org/citation.cfm?id=645328.650008
http://dx.doi.org/10.1007/s10994-006-8258-y
http://dx.doi.org/10.1007/BFb0027307
http://dx.doi.org/10.1023/A%3A1007694015589
http://dl.acm.org/citation.cfm?id=1622543.1622546
http://www.sciencedirect.com/science/article/pii/0004370282900200

186 References

10.1007/978-3-642-12239-2 17.
http://dx.doi.org/10.1007/978-3-642-12239-2 17

Genesereth, M., Love, N., Pell, B. (2005). General game playing: Overview
of the AAAI competition. AI Magazine, 26(2), 62.

Genesereth, M. R., Nilsson, N. J. (1987). Logical foundations of artificial intelli-
gence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN
0-934613-31-1.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1st edn. ISBN 0201157675.

Grefenstette, J. J., Ramsey, C. L., Schultz, A. C. (1990). Learning sequential
decision rules using simulation models and competition. Mach. Learn.,
5(4), 355–381. doi:10.1023/A:1022677607120.
http://dx.doi.org/10.1023/A:1022677607120

Guestrin, C., Koller, D., Gearhart, C., Kanodia, N. (2003). Generalizing
plans to new environments in relational MDPs. In Proceedings of the 18th
international joint conference on Artificial intelligence, IJCAI’03, pp. 1003–
1010. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=1630659.1630803

Gupta, N., Nau, D. S. (1992). On the complexity of blocks-world planning.
Artif. Intell., 56(2-3), 223–254. doi:10.1016/0004-3702(92)90028-V.
http://dx.doi.org/10.1016/0004-3702(92)90028-V

Helvik, B. E., Wittner, O. (2001). Using the cross-entropy method to guide/-
govern mobile agent’s path finding in networks. In Proceedings of the Third
International Workshop on Mobile Agents for Telecommunication Applications,
MATA ’01, pp. 255–268. London, UK, UK: Springer-Verlag. ISBN 3-540-
42460-1.
http://dl.acm.org/citation.cfm?id=645701.663366

Heyden, C. (2009). Implementing a computer player for Carcassonne. Master’s
thesis, Maastricht University.

Hill, E. F. (2003). Jess in Action: Java Rule-Based Systems. Greenwich, CT,
USA: Manning Publications Co. ISBN 1930110898.

http://dx.doi.org/10.1007/978-3-642-12239-2_17
http://dx.doi.org/10.1023/A:1022677607120
http://dl.acm.org/citation.cfm?id=1630659.1630803
http://dx.doi.org/10.1016/0004-3702(92)90028-V
http://dl.acm.org/citation.cfm?id=645701.663366

References 187

Holland, J. H. (1992). Adaptation in natural and artificial systems. Cambridge,
MA, USA: MIT Press. ISBN 0-262-58111-6.

Holland, J. H. (1995). Escaping brittleness: the possibilities of general-
purpose learning algorithms applied to parallel rule-based systems. In
Computation & Intelligence, pp. 275–304. Menlo Park, CA, USA: American
Association for Artificial Intelligence. ISBN 0-262-62101-0.
http://dl.acm.org/citation.cfm?id=216000.216016

van Hoorn, N., Togelius, J., Schmidhuber, J. (2009). Hierarchical controller
learning in a first-person shooter. In Proceedings of the 5th international
conference on Computational Intelligence and Games, CIG’09, pp. 294–301.
Piscataway, NJ, USA: IEEE Press. ISBN 978-1-4244-4814-2.
http://dl.acm.org/citation.cfm?id=1719293.1719344

Howard, R. A. (1960). Dynamic programming and Markov Processes. MIT
Press, Cambridge, MA.

Hui, K.-P., Bean, N., Kraetzl, M., Kroese, D. (2005). The cross-entropy
method for network reliability estimation. Annals of Operations Research,
134(1), 101–118. doi:10.1007/s10479-005-5726-x.
http://dx.doi.org/10.1007/s10479-005-5726-x

Ikehata, N., Ito, T. (2011). Monte-Carlo tree search in Ms. Pac-Man. In
Computational Intelligence and Games (CIG), 2011 IEEE Conference on, pp.
39–46. IEEE.

Jacobs, S., Ferrein, A., Lakemeyer, G. (2005). Unreal Golog bots. In Proceed-
ings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning
in Computer Games, pp. 31–36.

Kaelbling, L. P., Littman, M. L., Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artif. Intell., 101(1-2),
99–134. doi:10.1016/S0004-3702(98)00023-X.
http://dx.doi.org/10.1016/S0004-3702(98)00023-X

Kaelbling, L. P., Littman, M. L., Moore, A. W. (1996). Reinforcement learn-
ing: a survey. J. Artif. Int. Res., 4(1), 237–285.
http://dl.acm.org/citation.cfm?id=1622737.1622748

http://dl.acm.org/citation.cfm?id=216000.216016
http://dl.acm.org/citation.cfm?id=1719293.1719344
http://dx.doi.org/10.1007/s10479-005-5726-x
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dl.acm.org/citation.cfm?id=1622737.1622748

188 References

Keith, J., Kroese, D. P. (2002). Rare event simulation and combinatorial
optimization using cross entropy: sequence alignment by rare event sim-
ulation. In Proceedings of the 34th conference on Winter simulation: exploring
new frontiers, WSC ’02, pp. 320–327. Winter Simulation Conference. ISBN
0-7803-7615-3.
http://dl.acm.org/citation.cfm?id=1030453.1030500

Kendall, G., Parkes, A., Spoerer, K. (2008). A survey of NP-complete puz-
zles. ICGA Journal, 31(1), 13–34.

Kersting, K., Driessens, K. (2008). Non-parametric policy gradients: a
unified treatment of propositional and relational domains. In Proceed-
ings of the 25th international conference on Machine learning, ICML ’08,
pp. 456–463. New York, NY, USA: ACM. ISBN 978-1-60558-205-4. doi:
10.1145/1390156.1390214.
http://doi.acm.org/10.1145/1390156.1390214

Kersting, K., Raedt, L. D. (2004). Logical markov decision programs and
the convergence of logical TD(lambda). In ILP, pp. 180–197.

Khardon, R. (1999). Learning to take actions. Mach. Learn., 35(1), 57–90.
doi:10.1023/A:1007571119753.
http://dx.doi.org/10.1023/A:1007571119753

Kistemaker, S. (2008). Cross-entropy method for reinforcement learning.

Konda, V. R., Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM J.
Control Optim., 42(4), 1143–1166. doi:10.1137/S0363012901385691.
http://dx.doi.org/10.1137/S0363012901385691

Kroese, D., Porotsky, S., Rubinstein, R. (2006). The cross-entropy method
for continuous multi-extremal optimization. Methodology and Computing
in Applied Probability, 8, 383–407. 10.1007/s11009-006-9753-0.
http://dx.doi.org/10.1007/s11009-006-9753-0

Kroese, D., Rubinstein, R., Taimre, T. (2007). Application of the cross-
entropy method to clustering and vector quantization. Journal of Global
Optimization, 37, 137–157. 10.1007/s10898-006-9041-0.
http://dx.doi.org/10.1007/s10898-006-9041-0

http://dl.acm.org/citation.cfm?id=1030453.1030500
http://doi.acm.org/10.1145/1390156.1390214
http://dx.doi.org/10.1023/A:1007571119753
http://dx.doi.org/10.1137/S0363012901385691
http://dx.doi.org/10.1007/s11009-006-9753-0
http://dx.doi.org/10.1007/s10898-006-9041-0

References 189

Kullback, S., Leibler, R. A. (1951). On information and sufficiency. Annals
of Mathematical Statistics, 22, 49–86.

Lagoudakis, M. G., Parr, R. (2003). Least-squares policy iteration. J. Mach.
Learn. Res., 4, 1107–1149.
http://dl.acm.org/citation.cfm?id=945365.964290

Langford, J., Zadrozny, B. (2005). Relating reinforcement learning perfor-
mance to classification performance. In Proceedings of the 22nd interna-
tional conference on Machine learning, ICML ’05, pp. 473–480. New York,
NY, USA: ACM. ISBN 1-59593-180-5. doi:10.1145/1102351.1102411.
http://doi.acm.org/10.1145/1102351.1102411

Lanzi, P. L., Stolzmann, W., Wilson, S. W. (Eds.) (2000). Learning Classi-
fier Systems, From Foundations to Applications. London, UK, UK: Springer-
Verlag. ISBN 3-540-67729-1.

Lavrac, N., Dzeroski, S. (1993). Inductive Logic Programming: Techniques and
Applications. New York, NY, 10001: Routledge. ISBN 0134578708.

Lloyd, J. W. (1993). Foundations of Logic Programming. Secaucus, NJ, USA:
Springer-Verlag New York, Inc. ISBN 0387181997.

Lucas, S. (2005). Evolving a neural network location evaluator to play Ms.
Pac-Man. In Proceedings of the IEEE Symposium on Computational Intelli-
gence and Games, pp. 203–210. Citeseer.

Mannor, S., Rubinstein, R., Gat, Y. (2003). The cross entropy method for
fast policy search. In In International Conference on Machine Learning, pp.
512–519. Morgan Kaufmann.

Martı́n, M., Geffner, H. (2004). Learning generalized policies from planning
examples using concept languages. Applied Intelligence, 20(1), 9–19. doi:
10.1023/B:APIN.0000011138.20292.dd.
http://dx.doi.org/10.1023/B:APIN.0000011138.20292.dd

Mayer, H. (2007). Board representations for neural go players learning by
temporal difference. In Computational Intelligence and Games, 2007. CIG
2007. IEEE Symposium on, pp. 183–188. IEEE.

http://dl.acm.org/citation.cfm?id=945365.964290
http://doi.acm.org/10.1145/1102351.1102411
http://dx.doi.org/10.1023/B:APIN.0000011138.20292.dd

190 References

Mellor, D. (2008a). A Learning Classifier System Approach to Relational Re-
inforcement Learning. Ph.D. thesis, School of Electrical Engineering and
Computer Science, The University of Newcastle, Australia.

Mellor, D. (2008b). A learning classifier system approach to relational re-
inforcement learning. In Bacardit, J., Bernadó-Mansilla, E., Butz, M. V.,
Kovacs, T., Llorà, X., Takadama, K. (Eds.), Learning Classifier Systems, pp.
169–188. Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-540-88137-7.
doi:10.1007/978-3-540-88138-4 10.
http://dx.doi.org/10.1007/978-3-540-88138-4 10

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill International Edi-
tions. ISBN 0-07-042807-7.

Mohan, S., Laird, J. (2009). Learning to play Mario. Tech. rep., Center for
Cognitive Architecture, University of Michigan.

Moore, A. W., Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13, 103–130.
10.1007/BF00993104.
http://dx.doi.org/10.1007/BF00993104

Morales, E. (2003). Scaling up reinforcement learning with a relational rep-
resentation. In Proc. of the Workshop on Adaptability in Multi-agent Systems,
pp. 15–26.

Moriarty, D., Schultz, A., Grefenstette, J. (1999). Evolutionary algorithms
for reinforcement learning. Journal of Artificial Intelligence Research, 11,
241–276.

Moriarty, D. E., Mikkulainen, R. (1996). Efficient reinforcement learning
through symbiotic evolution. Mach. Learn., 22(1-3), 11–32. doi:10.1007/
BF00114722.
http://dx.doi.org/10.1007/BF00114722

Muggleton, S. (1991). Inductive logic programming. New Generation Com-
puting, 8(4), 295–318. doi:10.1007/BF03037089.
http://dx.doi.org/10.1007/BF03037089

http://dx.doi.org/10.1007/978-3-540-88138-4_10
http://dx.doi.org/10.1007/BF00993104
http://dx.doi.org/10.1007/BF00114722
http://dx.doi.org/10.1007/BF03037089

References 191

Muggleton, S. (1995). Inverse entailment and progol. New Generation Com-
puting, Special issue on Inductive Logic Programming, 13(3-4), 245–286.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1630

Muggleton, S., Feng, C. (1992). Efficient induction of logic programs. In-
ductive logic programming, 38, 281–298.

Muller, T., van Otterlo, M. (2005). Evolutionary reinforcement learning in
relational domains. In Proceedings of the 7th European Workshop on Rein-
forcement Learning. Citeseer.

Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J. W. (2011).
Imitation learning in relational domains: A functional-gradient boosting
approach. In IJCAI, pp. 1414–1420.

Nilsson, N. J. (1980). Principles of artificial intelligence. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc. ISBN 0-934613-10-9.

Olson, D. (1993). Learning to play games from experience: An application of
artificial neural networks and temporal difference learning. Master’s thesis,
Pacific Lutheran University.

Ormoneit, D., Sen, S. (2002). Kernel-based reinforcement learning. Mach.
Learn., 49(2-3), 161–178. doi:10.1023/A:1017928328829.
http://dx.doi.org/10.1023/A:1017928328829

van Otterlo, M. (2004). Reinforcement learning for relational MDPs. In
Nowe, A., Lenaerts, T., Steenhaut, K. (Eds.), Proceedings of the Machine
Learning Conference of Belgium and the Netherlands, BeNeLearn ’04, pp. 138–
145. Brussels: Brussels.
http://doc.utwente.nl/64849/

van Otterlo, M. (2005). A survey of reinforcement learning in relational
domains. CTIT Technical Report series TR-CTIT-05-31, Centre for Telem-
atics and Information Technology University of Twente, Enschede.

van Otterlo, M. (2009). The Logic of Adaptive Behaviour: Knowledge Representa-
tion and Algorithms for the Markov Decision Process Framework in First-Order
Domains. IOS Press, Amsterdam.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1630
http://dx.doi.org/10.1023/A:1017928328829
http://doc.utwente.nl/64849/

192 References

van Otterlo, M., De Vuyst, T. (2009). Evolving and transferring probabilistic
policies for relational reinforcement learning. In BNAIC 2009: Benelux
Conference on Artificial Intelligence.

van Otterlo, M., Kersting, K. (2004). Challenges for relational reinforcement
learning. In Tadepalli, P., Givan, R., Driessens, K. (Eds.), Proceedings of
the Workshop on Relational Reinforcement Learning of the International Con-
ference on Machine Learning, ICML ’04, pp. 74–80. Corvallis: Oregon State
University.
http://doc.utwente.nl/64887/

Perez, D., Nicolau, M., O’Neill, M., Brabazon, A. (2011). Evolving be-
haviour trees for the Mario AI competition using grammatical evolu-
tion. In Proceedings of the 2011 international conference on Applications of
evolutionary computation - Volume Part I, EvoApplications’11, pp. 123–132.
Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-642-20524-8.
http://dl.acm.org/citation.cfm?id=2008402.2008417

Pfeiffer, M. (2004). Reinforcement learning of strategies for Settlers of
Catan. In Proceedings of the International Conference on Computer Games:
Artificial Intelligence, Design and Education, Reading, UK.
http://eprints.pascal-network.org/archive/00000425/

Pittman, J. (2011). The Pac-Man dossier. http://home.comcast.net/∼jpittman2/

pacman/pacmandossier.html. [Online; accessed 15-April-2012].

Plotkin, G. D. (1970). A note on inductive generalization. Machine Intelli-
gence, 5, 153–163.

Ponsen, M., Muñoz-Avila, H., Spronck, P., Aha, D. (2006). Automatically
generating game tactics through evolutionary learning. AI Magazine,
27(3), 75.

Potter, M. A., De Jong, K. A. (2000). Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents. Evol. Comput., 8(1), 1–29.
doi:10.1162/106365600568086.
http://dx.doi.org/10.1162/106365600568086

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York, NY, USA: John Wiley & Sons, Inc., 1st
edn. ISBN 0471619779.

http://doc.utwente.nl/64887/
http://dl.acm.org/citation.cfm?id=2008402.2008417
http://eprints.pascal-network.org/archive/00000425/
http://home.comcast.net/~jpittman2/pacman/pacmandossier.html
http://home.comcast.net/~jpittman2/pacman/pacmandossier.html
http://dx.doi.org/10.1162/106365600568086

References 193

Ramon, J., Driessens, K., Croonenborghs, T. (2007). Transfer learning in re-
inforcement learning problems through partial policy recycling. In Pro-
ceedings of the 18th European conference on Machine Learning, ECML ’07,
pp. 699–707. Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-540-74957-
8. doi:10.1007/978-3-540-74958-5 70.
http://dx.doi.org/10.1007/978-3-540-74958-5 70

Robinson, J. A. (1965). A machine-oriented logic based on the resolution
principle. J. ACM, 12(1), 23–41. doi:10.1145/321250.321253.
http://doi.acm.org/10.1145/321250.321253

Rubinstein, R. Y. (1997). Optimization of computer simulation models with
rare events. European Journal of Operational Research, 99(1), 89 – 112. doi:
10.1016/S0377-2217(96)00385-2.
http://www.sciencedirect.com/science/article/pii/S0377221796003852

Russell, S. J., Norvig, P. (2003). Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edn. ISBN 0137903952.

Sammut, C. (1998). Prolog, refinements and RLGG’s. In Proceedings of the
8th International Workshop on Inductive Logic Programming, ILP ’98, pp.
225–234. London, UK, UK: Springer-Verlag. ISBN 3-540-64738-4.
http://dl.acm.org/citation.cfm?id=647998.742776

Samuel, A. L. (1967). Some studies in machine learning using the game
of checkers. II: recent progress. IBM J. Res. Dev., 11(6), 601–617. doi:
10.1147/rd.116.0601.
http://dx.doi.org/10.1147/rd.116.0601

Sanner, S. (2005). Simultaneous learning of structure and value in relational
reinforcement learning. In Proceedings of the ICML 2005 Workshop on Rich
Representations for Reinforcement Learning.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., Ram, A. (2007).
Transfer learning in real-time strategy games using hybrid CBR/RL. In
Proceedings of the 20th international joint conference on Artifical intelligence,
IJCAI’07, pp. 1041–1046. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
http://dl.acm.org/citation.cfm?id=1625275.1625444

http://dx.doi.org/10.1007/978-3-540-74958-5_70
http://doi.acm.org/10.1145/321250.321253
http://www.sciencedirect.com/science/article/pii/S0377221796003852
http://dl.acm.org/citation.cfm?id=647998.742776
http://dx.doi.org/10.1147/rd.116.0601
http://dl.acm.org/citation.cfm?id=1625275.1625444

194 References

Silver, D., Sutton, R., Müller, M. (2007). Reinforcement learning of local
shape in the game of go. In Proceedings of the 20th international joint con-
ference on Artifical intelligence, IJCAI’07, pp. 1053–1058. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=1625275.1625446

Slaney, J., Thiébaux, S. (2001). Blocks World revisited. Artificial Intelligence,
125(1-2), 119 – 153. doi:DOI:10.1016/S0004-3702(00)00079-5.

Smith, S. F. (1983). Flexible learning of problem solving heuristics through
adaptive search. In Proceedings of the Eighth international joint conference on
Artificial intelligence - Volume 1, IJCAI’83, pp. 422–425. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=1623373.1623474

Stanley, K. O., Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evol. Comput., 10(2), 99–127. doi:10.1162/
106365602320169811.
http://dx.doi.org/10.1162/106365602320169811

Stone, P., Kuhlmann, G., Taylor, M. E., Liu, Y. (2005a). Keepaway soccer:
From machine learning testbed to benchmark. In RoboCup, pp. 93–105.

Stone, P., Sutton, R., Kuhlmann, G. (2005b). Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3), 165–188.

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning,
and reacting. SIGART Bull., 2(4), 160–163. doi:10.1145/122344.122377.
http://doi.acm.org/10.1145/122344.122377

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduc-
tion (Adaptive Computation and Machine Learning). The MIT Press. ISBN
0262193981.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y. (1999a). Policy gra-
dient methods for reinforcement learning with function approximation.
In NIPS, pp. 1057–1063.

Sutton, R. S., Precup, D., Singh, S. (1999b). Between MDPs and semi-MDPs:
a framework for temporal abstraction in reinforcement learning. Artif.

http://dl.acm.org/citation.cfm?id=1625275.1625446
http://dl.acm.org/citation.cfm?id=1623373.1623474
http://dx.doi.org/10.1162/106365602320169811
http://doi.acm.org/10.1145/122344.122377

References 195

Intell., 112(1-2), 181–211. doi:10.1016/S0004-3702(99)00052-1.
http://dx.doi.org/10.1016/S0004-3702(99)00052-1

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 4(1), 1–103.

Szita, I., Chaslot, G., Spronck, P. (2009). Monte-carlo tree search in Settlers
of Catan. In ACG, pp. 21–32.

Szita, I., Lörincz, A. (2006). Learning Tetris using the noisy cross-entropy
method. Neural Comput., 18(12), 2936–2941. doi:10.1162/neco.2006.18.12.
2936.
http://dx.doi.org/10.1162/neco.2006.18.12.2936

Szita, I., Lörincz, A. (2007). Learning to play using low-complexity rule-
based policies: illustrations through Ms. Pac-Man. J. Artif. Int. Res., 30(1),
659–684.
http://dl.acm.org/citation.cfm?id=1622637.1622654

Szita, I., Lörincz, A. (2008). Online variants of the cross-entropy method.
Tech. rep., arXiv:0801.1988.

Szita, I., Ponsen, M., Spronck, P. (2008). Keeping adaptive game AI inter-
esting. In CGAMES 2008, pp. 70–74.

Tadepalli, P., Givan, R., Driessens, K. (2004). Relational reinforcement learn-
ing: An overview. In Proceedings of the ICML-2004 Workshop on Relational
Reinforcement Learning, pp. 1–9.

Tak, M. (2010). The cross-entropy method applied to samegame.
http://www.unimaas.nl/games/files/bsc/Tak Bsc-paper.pdf

Taylor, M. E., Stone, P. (2005). Behavior transfer for value-function-
based reinforcement learning. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, AAMAS
’05, pp. 53–59. New York, NY, USA: ACM. ISBN 1-59593-093-0. doi:
10.1145/1082473.1082482.
http://doi.acm.org/10.1145/1082473.1082482

Tesauro, G. (1994). Td-gammon, a self-teaching backgammon program,
achieves master-level play. Neural Comput., 6(2), 215–219. doi:10.1162/

http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1162/neco.2006.18.12.2936
http://dl.acm.org/citation.cfm?id=1622637.1622654
http://www.unimaas.nl/games/files/bsc/Tak_Bsc-paper.pdf
http://doi.acm.org/10.1145/1082473.1082482

196 References

neco.1994.6.2.215.
http://dx.doi.org/10.1162/neco.1994.6.2.215

Thiery, C., Scherrer, B. (2009). Improvements on Learning Tetris with Cross
Entropy. International Computer Games Association Journal, 32, 23–33.
http://hal.inria.fr/inria-00418930

Thrun, S. (1995). Learning to play the game of Chess. In Advances in Neural
Information Processing Systems 7, pp. 1069–1076. The MIT Press.

Togelius, J., Karakovskiy, S., Koutnı́k, J., Schmidhuber, J. (2009). Super
mario evolution. In Computational Intelligence and Games, 2009. CIG 2009.
IEEE Symposium on, pp. 156–161. IEEE.

Togelius, J., Lucas, S. (2006). Evolving robust and specialized car racing
skills. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pp.
1187–1194. IEEE.

Utgoff, P., Precup, D. (1998). Constructive Function Approximation, vol. 453,
chap. 14, p. 219. Kluwer Academic Publishers.

Viglietta, G. (2012). Gaming is a hard job, but someone has to do it! Tech.
rep., arXiv:1201.4995.

Walker, T., Shavlik, J., Maclin, R. (2004). Relational reinforcement learning
via sampling the space of first-order conjunctive features. In Proceedings
of the ICML Workshop on Relational Reinforcement Learning, Banff, Canada.

Wang, C., Joshi, S., Khardon, R. (2008). First order decision diagrams for
relational MDPs. J. Artif. Int. Res., 31(1), 431–472.
http://dl.acm.org/citation.cfm?id=1622655.1622668

Wang, X., Dietterich, T. G. (1999). Efficient value function approximation
using regression trees. In In Proceedings of the IJCAI Workshop on Statistical
Machine Learning for Large-Scale Optimization.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–
292. 10.1007/BF00992698.
http://dx.doi.org/10.1007/BF00992698

http://dx.doi.org/10.1162/neco.1994.6.2.215
http://hal.inria.fr/inria-00418930
http://dl.acm.org/citation.cfm?id=1622655.1622668
http://dx.doi.org/10.1007/BF00992698

References 197

Whiteson, S., Stone, P. (2006). Evolutionary function approximation for
reinforcement learning. J. Mach. Learn. Res., 7, 877–917.
http://dl.acm.org/citation.cfm?id=1248547.1248578

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R., Kohl, N. (2005).
Automatic feature selection in neuroevolution. In Proceedings of the
2005 conference on Genetic and evolutionary computation, GECCO ’05, pp.
1225–1232. New York, NY, USA: ACM. ISBN 1-59593-010-8. doi:
10.1145/1068009.1068210.
http://doi.acm.org/10.1145/1068009.1068210

Whitley, D., Dominic, S., Das, R., Anderson, C. W. (1993). Genetic reinforce-
ment learning for neurocontrol problems. Mach. Learn., 13(2-3), 259–284.
doi:10.1007/BF00993045.
http://dx.doi.org/10.1007/BF00993045

Wiering, M., van Otterlo, M. (Eds.) (2012). Reinforcement Learning: State-Of-
The-Art, vol. 12. Springer-Verlag New York Incorporated.

Wierstra, D., Schmidhuber, J. (2007). Policy gradient critics. In Proceedings
of the 18th European conference on Machine Learning, ECML ’07, pp. 466–
477. Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-540-74957-8. doi:
10.1007/978-3-540-74958-5 43.
http://dx.doi.org/10.1007/978-3-540-74958-5 43

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3-4), 229–256. doi:
10.1007/BF00992696.
http://dx.doi.org/10.1007/BF00992696

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evol. Comput.,
3(2), 149–175. doi:10.1162/evco.1995.3.2.149.
http://dx.doi.org/10.1162/evco.1995.3.2.149

Witten, I. H. (1977). An adaptive optimal controller for discrete-time
Markov environments. Information and Control, 34(4), 286 – 295. doi:
10.1016/S0019-9958(77)90354-0.
http://www.sciencedirect.com/science/article/pii/S0019995877903540

Yoon, S., Fern, A., Givan, R. (2002). Inductive policy selection for first-order
MDPs. In Proceedings of the Eighteenth conference on Uncertainty in artificial

http://dl.acm.org/citation.cfm?id=1248547.1248578
http://doi.acm.org/10.1145/1068009.1068210
http://dx.doi.org/10.1007/BF00993045
http://dx.doi.org/10.1007/978-3-540-74958-5_43
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1162/evco.1995.3.2.149
http://www.sciencedirect.com/science/article/pii/S0019995877903540

198 References

intelligence, UAI’02, pp. 568–576. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-897-4.
http://dl.acm.org/citation.cfm?id=2073876.2073944

http://dl.acm.org/citation.cfm?id=2073876.2073944

	Front Matter
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Publications

	Introduction
	Research Fields
	Artificial Intelligence
	Machine Learning
	Reinforcement Learning
	Relational Reinforcement Learning

	Motivation and Goal
	Thesis Structure

	Background
	Reinforcement Learning
	Markov Decision Process
	Solving Markov Decision Processes
	Generalisations and Abstractions
	Reinforcement Learning Summary

	Relational Reinforcement Learning
	Relational Markov Decision Process
	Benefits and Challenges of RRL

	Existing RRL Algorithms
	Application to Game Environments
	Summary and Discussion

	Relationally Defined Environments
	Terminology
	Syntax and Semantics
	JESS Rule Engine

	Environment Specification Language
	State Description

	Blocks World
	Episodic Description
	Specification
	Goals

	Ms. Pac-Man
	Episodic Description
	Specification
	Goals

	Mario
	Episodic Description
	Specification
	Goals

	Carcassonne
	Episodic Description
	Specification
	Goals

	Summary

	CERRLA
	CERRLA Overview
	Example Policy

	Cross-Entropy Method
	Application to RRL

	Algorithm Initialisation
	Generating Policy Samples
	Evaluating a Policy
	Updating the Distributions
	Determining Elite Samples
	Iterative Updates
	Updating the Distributions
	Convergence

	Rule Specialisation and Exploration
	Rule Specialisation
	Rule Exploration
	Rule Representation

	Seeding Rules
	Discussion and Future Work

	Agent Observations Model
	State Scanning Triggers
	RLGG Rule Creation
	Inferring Simplification Rules
	Identifying Causal Relationships
	Creating Implication Rules
	Creating Equivalence Rules
	Recording Simplification Rules

	Evaluating Simplification Rules
	Transforming the Rule Conditions
	Asserting the Simplification Rules
	Recreating the Rule Conditions

	Rule Specialisation
	Additive Specialisation
	Transforming Specialisation
	Refining the Rule Conditions

	Discussion and Future Work

	Algorithm Evaluation
	Experiment Methodology
	Blocks World Evaluation
	Standard Cerrla Performance
	Scale-free Policies
	Comparison to Existing Algorithms
	Agent Observation Simplification
	Language Bias
	Stochastic Blocks World
	Blocks World Discussion

	Ms. Pac-Man Evaluation
	Standard Cerrla Performance
	Language Bias
	Transfer Learning
	Ms. Pac-Man Discussion

	Mario Evaluation
	Standard Cerrla Performance
	Transfer Learning
	Mario Discussion

	Carcassonne Evaluation
	Standard Cerrla Performance
	Transfer Learning
	Carcassonne Discussion

	Summary and Discussion

	Conclusions and Future Work
	Summary
	Conclusions
	Limitations
	Future Work
	Modular Learning
	Cerrla-Related Future Work
	Environment-Related Future Work

	Contributions

	References

