526,865 research outputs found

    Call-by-name Gradual Type Theory

    Full text link
    We present gradual type theory, a logic and type theory for call-by-name gradual typing. We define the central constructions of gradual typing (the dynamic type, type casts and type error) in a novel way, by universal properties relative to new judgments for gradual type and term dynamism, which were developed in blame calculi and to state the "gradual guarantee" theorem of gradual typing. Combined with the ordinary extensionality (η\eta) principles that type theory provides, we show that most of the standard operational behavior of casts is uniquely determined by the gradual guarantee. This provides a semantic justification for the definitions of casts, and shows that non-standard definitions of casts must violate these principles. Our type theory is the internal language of a certain class of preorder categories called equipments. We give a general construction of an equipment interpreting gradual type theory from a 2-category representing non-gradual types and programs, which is a semantic analogue of Findler and Felleisen's definitions of contracts, and use it to build some concrete domain-theoretic models of gradual typing

    A Reasonably Gradual Type Theory

    Full text link
    Gradualizing the Calculus of Inductive Constructions (CIC) involves dealing with subtle tensions between normalization, graduality, and conservativity with respect to CIC. Recently, GCIC has been proposed as a parametrized gradual type theory that admits three variants, each sacrificing one of these properties. For devising a gradual proof assistant based on CIC, normalization and conservativity with respect to CIC are key, but the tension with graduality needs to be addressed. Additionally, several challenges remain: (1) The presence of two wildcard terms at any type-the error and unknown terms-enables trivial proofs of any theorem, jeopardizing the use of a gradual type theory in a proof assistant; (2) Supporting general indexed inductive families, most prominently equality, is an open problem; (3) Theoretical accounts of gradual typing and graduality so far do not support handling type mismatches detected during reduction; (4) Precision and graduality are external notions not amenable to reasoning within a gradual type theory. All these issues manifest primally in CastCIC, the cast calculus used to define GCIC. In this work, we present an extension of CastCIC called GRIP. GRIP is a reasonably gradual type theory that addresses the issues above, featuring internal precision and general exception handling. GRIP features an impure (gradual) sort of types inhabited by errors and unknown terms, and a pure (non-gradual) sort of strict propositions for consistent reasoning about gradual terms. Internal precision supports reasoning about graduality within GRIP itself, for instance to characterize gradual exception-handling terms, and supports gradual subset types. We develop the metatheory of GRIP using a model formalized in Coq, and provide a prototype implementation of GRIP in Agda.Comment: 27pages + 2pages bibliograph

    Call-by-Name Gradual Type Theory

    Get PDF
    We present gradual type theory, a logic and type theory for call-by-name gradual typing. We define the central constructions of gradual typing (the dynamic type, type casts and type error) in a novel way, by universal properties relative to new judgments for gradual type and term dynamism. These dynamism judgements build on prior work in blame calculi and on the "gradual guarantee" theorem of gradual typing. Combined with the ordinary extensionality (eta) principles that type theory provides, we show that most of the standard operational behavior of casts is uniquely determined by the gradual guarantee. This provides a semantic justification for the definitions of casts, and shows that non-standard definitions of casts must violate these principles. Our type theory is the internal language of a certain class of preorder categories called equipments. We give a general construction of an equipment interpreting gradual type theory from a 2-category representing non-gradual types and programs, which is a semantic analogue of the interpretation of gradual typing using contracts, and use it to build some concrete domain-theoretic models of gradual typing

    Gradual Program Analysis

    Get PDF
    Dataflow analysis and gradual typing are both well-studied methods to gain information about computer programs in a finite amount of time. The gradual program analysis project seeks to combine those two techniques in order to gain the benefits of both. This thesis explores the background information necessary to understand gradual program analysis, and then briefly discusses the research itself, with reference to publication of work done so far. The background topics include essential aspects of programming language theory, such as syntax, semantics, and static typing; dataflow analysis concepts, such as abstract interpretation, semilattices, and fixpoint computations; and gradual typing theory, such as the concept of an unknown type, liftings of predicates, and liftings of functions

    Gradual Liquid Type Inference

    Full text link
    Liquid typing provides a decidable refinement inference mechanism that is convenient but subject to two major issues: (1) inference is global and requires top-level annotations, making it unsuitable for inference of modular code components and prohibiting its applicability to library code, and (2) inference failure results in obscure error messages. These difficulties seriously hamper the migration of existing code to use refinements. This paper shows that gradual liquid type inference---a novel combination of liquid inference and gradual refinement types---addresses both issues. Gradual refinement types, which support imprecise predicates that are optimistically interpreted, can be used in argument positions to constrain liquid inference so that the global inference process e effectively infers modular specifications usable for library components. Dually, when gradual refinements appear as the result of inference, they signal an inconsistency in the use of static refinements. Because liquid refinements are drawn from a nite set of predicates, in gradual liquid type inference we can enumerate the safe concretizations of each imprecise refinement, i.e. the static refinements that justify why a program is gradually well-typed. This enumeration is useful for static liquid type error explanation, since the safe concretizations exhibit all the potential inconsistencies that lead to static type errors. We develop the theory of gradual liquid type inference and explore its pragmatics in the setting of Liquid Haskell.Comment: To appear at OOPSLA 201

    A Reasonably Gradual Type Theory

    Get PDF
    International audienceGradualizing the Calculus of Inductive Constructions (CIC) involves dealing with subtle tensions between normalization, graduality, and conservativity with respect to CIC. Recently, GCIC has been proposed as a parametrized gradual type theory that admits three variants, each sacrificing one of these properties. For devising a gradual proof assistant based on CIC, normalization and conservativity with respect to CIC are key, but the tension with graduality needs to be addressed. Additionally, several challenges remain: (1) The presence of two wildcard terms at any type-the error and unknown terms-enables trivial proofs of any theorem, jeopardizing the use of a gradual type theory in a proof assistant; (2) Supporting general indexed inductive families, most prominently equality, is an open problem; (3) Theoretical accounts of gradual typing and graduality so far do not support handling type mismatches detected during reduction; (4) Precision and graduality are external notions not amenable to reasoning within a gradual type theory. All these issues manifest primally in CastCIC, the cast calculus used to define GCIC. In this work, we present an alternative to CastCIC called GRIP. GRIP is a reasonably gradual type theory that addresses the issues above, featuring internal precision and general exception handling. For consistent reasoning about gradual terms, GRIP features an impure sort of types inhabited by errors and unknown terms, and a pure sort of strict propositions. By adopting a novel interpretation of the unknown term that carefully accounts for universe levels, GRIP satisfies graduality for a large and well-defined class of terms, in addition to being normalizing and a conservative extension of CIC. Internal precision supports reasoning about graduality within GRIP itself, for instance to characterize gradual exception-handling terms, and supports gradual subset types. We develop the metatheory of GRIP using a model formalized in Coq, and provide a prototype implementation of GRIP in Agda

    Sound focusing by gradient index sonic lenses

    Full text link
    Gradient index sonic lenses based on two-dimensional sonic crystals are here designed, fabricated and characterized. The index-gradient is achieved in these type of flat lenses by a gradual modification of the sonic crystal filling fraction along the direction perpendicular to the lens axis. The focusing performance is well described by an analytical model based on ray theory as well as by numerical simulations based on the multiple-scattering theory.Comment: 4 pages, 4 figure

    A Comparison of Timber Models for Use in Public Policy Analysis

    Get PDF
    In this paper, we compare and contrast two types of timber models that have been used for public policy analysis. These models have been variously used to predict price, inventory and market welfare impacts under different exogenous forces that impact timber markets. The framework and theory for each model type is presented and discussed. We then thoroughly test the two model types across six potential exogenous shocks to timber markets, ranging from instantaneous demand shocks to gradual supply adjustments. Our comparison indicates that these models predict potentially important differences in timber market behavior. These differences are important to consider for those who do public policy analysis.
    • …
    corecore