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Abstract

Dataflow analysis and gradual typing are both well-studied methods to gain information about
computer programs in a finite amount of time. The gradual program analysis project seeks to
combine those two techniques in order to gain the benefits of both. This thesis explores the
background information necessary to understand gradual program analysis, and then briefly
discusses the research itself, with reference to publication of work done so far. The background
topics include essential aspects of programming language theory, such as syntax, semantics, and
static typing; dataflow analysis concepts, such as abstract interpretation, semilattices, and fixpoint
computations; and gradual typing theory, such as the concept of an unknown type, liftings of
predicates, and liftings of functions.
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Gradual Program Analysis
Introduction

This thesis lays out the background material for the Gradual Program Analysis project
investigated by this author in collaboration with Jenna Wise, Jonathan Aldrich, and Joshua
Sunshine from Carnegie Mellon University; Éric Tanter from the University of Chile; and
Johannes Bader from Facebook. The project’s initial goal was to understand how the static
analysis tool Facebook Infer manages different types of uncertainty when analyzing source code
for null-pointer bugs. Later goals included systematizing this uncertainty management via
techniques inspired by the work on gradual program verification (Bader, Aldrich, & Tanter, 2018),
implementing this new program analysis as a new checker in Infer, and generalizing the approach
to other types of analyses besides null-pointer analysis. The following sections in this introduction
elaborate on these motivating factors more. The rest of this thesis will lay out the relevant
technical details.
Facebook Infer

Infer is a static analysis tool developed by Facebook, which is used to detect bugs in
source code written in the languages Java, C, C++, and Objective-C. The tool includes several
built-in bug checkers, such as Eradicate, which finds null-pointer bugs. Infer also includes a
framework for defining new checkers based on abstract interpretation.
Null-pointer Analysis

We initially developed gradual analysis in the specific context of gradualizing null-pointer
analysis, and then later generalized it to other analyses. A pointer is a number that refers to, or
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references, a location in a computer’s memory. A program can dereference a pointer to make use
of the data which the pointer references. However, in many popular languages, a pointer can also
be null, which means that it actually references nothing. In this case, it is a fatal error to
dereference that pointer. This is one of the most common types of bugs in computer programs, to
the point that Tony Hoare (2009), the inventor of the null pointer, has called it his “billion-dollar
mistake”. The goal of null-pointer analysis is to automatically find null-pointer bugs in computer
programs, or otherwise ensure the absence of such bugs.
False Positives

A static analysis program reads the source code of another program and returns zero or
more warnings about potential issues. If a sound static analysis returns no warnings, that serves as
a proof that the program has no issues of the type for which the analysis was searching. However,
this approach tends to produce many false positives, making it difficult for programmers to
distinguish signal from noise when using such an analysis tool. Thus, many tools in industry
make unsound assumptions in order to cut down on the number of false positives produced. These
unsound tools can have false negatives, in which no warnings are produced but the analyzed
program still has bugs.
Gradual Verification

Similar to static analysis, the technique of static verification allows programmers to have
the computer check certain properties of their programs. The ongoing work on gradual
verification seeks to make these tools easier to use. Gradual verification acknowledges that some
properties are difficult to verify statically, and thus instead modifies programs to automatically
check that those properties are satisfied at runtime. This prevents the program from wandering
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into undesired behavior. The gradual analysis project takes inspiration from gradual verification,
also inserting runtime checks to augment its (hopefully reduced) set of static warnings.

Relevant Literature

This work essentially combines gradual typing with abstract-interpretation-based static
analysis, also known as dataflow analysis. Both topics are explored in much existing literature.
Dataflow Analysis

CMU program analysis class. The Dataflow Analysis section below will draw heavily
from the program analysis course at Carnegie Mellon University (Aldrich, 2019), specifically the
lectures “Introduction, Program Representation, and Syntactic Analysis” and “Dataflow Analysis
and Abstract Interpretation”.

Abstract interpretation. Cousot and Cousot (1977) introduced the technique of abstract
interpretation for static analysis.

Kildall fixpoint algorithm. A few years before that, Kildall (1973) had introduced an
efficient algorithm that can be used for computing the fixpoint of a dataflow analysis.
Gradual Typing

Siek and Taha (2006) developed gradual typing to combine static typing and dynamic
typing within the same language.

Refined criteria for gradual typing. After the term became popular in the following
decade, Siek, Vitousek, Cimini, and Boyland (2015) introduced a formal property called the
gradual guarantee to make precise the distinction between languages that are gradually typed and
languages that are not.
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Abstracting Gradual Typing. More recently, the Abstracting Gradual Typing (AGT)

framework provides a systematic way to transform a static type system into a gradual type system
that automatically satisfies the gradual guarantee (Garcia, Clark, & Tanter, 2016).
Null-pointer Analysis

Besides Infer’s Eradicate, the gradual analysis project drew inspiration from a few other
modern null-pointer analysis tools.

Granullar. The Granullar type system (Brotherston, Dietl, & Lhoták, 2017) uses gradual
typing and nullability type annotations to analyze for null pointers in only some parts of the code,
by letting the programmer set boundaries between checked and unchecked code.

NullAway. Uber’s NULLAWAY (Banerjee, Clapp, & Sridharan, 2019) reduces the
annotation burden of static pluggable type checking for null-pointer exceptions through targeted
unsound assumptions. They aim for no false negatives in practice on checked code.

Preliminaries

Syntax

Programming languages must specify the set of permissible programs. In an imperative

language, that specification would probably include a specification of the set of permissible
instructions, such as that shown in Figure 1.

This imperative syntax definition can be thought of as a shorthand for defining a set of
strings. The “x, y, z ∈ VAR” part means that we assume that we already have a set of names VAR

for variables in our programs, and that in the rest of the specification, the letters x, y, and z can
each be replaced by any of those names in order to form a valid instruction. Then I ∶∶= ⋯

defines the set I as the union of several smaller sets of instructions, each of which is separated by
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x, y, z ∈ VAR
I ∶∶= x := null | x := cons y, z | x, y := &z

| x := y | if x | if not x

Figure 1. Syntax for an example imperative language.

a vertical bar |. For instance, “x := y” corresponds to the set {x := y ∶ x, y ∈ VAR}. As more
concrete examples, if we have foo, bar, baz ∈ VAR, then

foo := cons bar, bar and baz := null and if foo and bar, baz := &foo

are all valid instructions in the set I .
In a functional language, programs are sometimes referred to as terms, which might be

syntactically defined as follows:

x ∈ VAR

t ∶∶= x | �x.t | t t

v ∶∶= �x.t

This is a recursive definition, so if x, y, f ∈ VAR then

x and �x.x and (�x.x) y and �f .�x.f x and �f .(�x.f (x x)) (�x.f (x x))

are all valid terms. Note that parentheses are sometimes necessary for disambiguation. Finally,
the nonrecursive definition v defines values, which are essentially terms that are fully evaluated.
The next section will clarify this notion of evaluation.
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Small-step Operational Semantics

It is also valuable to formalize the runtime behavior of programs. One way to do this is to
define a relation ←→ on the set of program states. In functional languages such as the lambda
calculus defined syntactically above, a program state is just a term. We read t1 ←→ t2 as “t1 reduces

to t2 in one step.” This relation might be defined using inference rules as follows (Pierce, 2002):

APP1 t1 ←→ t′1
t1 t2 ←→ t′1 t2

APP2 t2 ←→ t′2
v1 t2 ←→ v1 t′2

APPABS
(�x.t12) v2 ←→ [x → v2]t12

This syntax defines an inference rule by listing the premises above the line and the conclusion
below, with the rule name written to the side. For instance, the APP1 rule says that if t1 reduces to
t′1 in one step, then the function call t1 t2 reduces to t′1 t2 in one step. In other words, simplify
function definitions before applying those functions to values. In the APPABS rule, the syntax
[x → v2]t12 means to take t12, and replace every instance of the variable x with the value v2. As it
turns out, this substitution is not completely trivial, since sometimes variable names are not
unique, but we will not go into those subtleties here.

This relation is of course not transitive, but these step reductions can be chained to fully
evaluate terms. Often the notation ←→∗ is used to denote the transitive closure of ←→; for example,
consider the following reduction (Trunov, 2016), using two APPABS steps:

(�x.x y) (�y.y z) ←→ (�y.y z) y ←→ y z, so (�x.x y) (�y.y z) ←→∗ y z

Dataflow Analysis

The first half of gradual program analysis is static program analysis, more specifically
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dataflow analysis.
Abstract Interpretation

For simplicity, we will just use the natural numbers ℕ0 = {0, 1, 2,…} to represent the set
of pointers. Conventionally, null = 0. Then for the language defined in Figure 1, at any given
point during program execution, each variable could take on any of these pointer values in ℕ0. We
could formalize this mapping from variables to pointer values (as well as their evolution over
time, and the memory which the pointers reference) in the form of semantics, but we will not do
that here. We will define an abstract interpretation instead of a concrete one.

First we choose a set L = {N,P , ⊤} of abstract values. Each of these represents a set of
concrete values in ℕ0, as shown in the following correspondence:

N ↭ {0}, P ↭ ℤ+ = {1, 2,…}, ⊤ ↭ ℕ0 = {0, 1, 2,…}

Then in our analysis, we will work with maps of the form � ∶ VAR ⇀ L. For instance at a
particular program point we might have �(x) = N , �(y) = P , and �(z) = ⊤, meaning that we
know x will definitely be null when the program reaches that point, y will definitely not be null at
that point, and z may or may not be null.
Flow Function

Then the question arises of how we abstractly evaluate our program from one point to the
next. In other words, if the abstract state is � before an instruction � ∈ I , how can we update � to
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reflect the set of possible program states after � is executed? We do this by defining a flow function:

fJx := nullK(�) = �[x → N]

fJx := cons y, zK(�) = �[x → P ]

fJx, y := &zK(�) = �[z → P ][x → ⊤][y → ⊤]

fJx := yK(�) = �[x → �(y)]

fJif xK(�) = �[x → P ]

fJif not xK(�) = �[x → N]

On the left side of each equality, we specify the subset of instructions to which that line applies.
The instruction template is typeset in JK for clarity, but it is just a parameter to the function f .
Then on the right, we return a new map �′ ∶ VAR ⇀ L, in this case always by updating one or
more of the existing mappings in �. For instance, if � is x := y and �(x) = ⊤ and �(y) = N , then
after passing through our flow function to get �′ = fJ�K(�), we have �′(x) = �′(y) = N .
Control Flow Graph

The instructions if x and if not x allow us to do logical decision-making by culling
program states in which x is null or non-null, respectively. We represent this branching by
arranging instructions into a control flow graph, such as the one shown in Figure 2.

To evaluate this program concretely, we first assign the local variable a the value null.
We then construct a pair, both of whose cells take on the contents of the variable a, which is in
this case null; thus the new pair is (null, null). We store that pair somewhere in memory and
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a := null1
b := cons a, a2

if b3
a, b := &b4

if not b 5
a := b 6

Figure 2. Control flow graph for an example program.

assign to b a pointer value that is the location in memory where we stored the pair. Since b is now
not null, we follow the if b branch. We dereference b to get its two contents null and null,
and assign them to a and b respectively. (Of course, a was already null, so this doesn’t change
a). Now that b is null, we follow the if not b branch, and assign a to take on the value of b,
which again doesn’t change a.
Semilattice with Join

When evaluating a program concretely as we did in the previous section, we are only ever
at a single program point. We follow the evaluation deterministically. However, this has the
drawback that we do not know how long the program will take to finish executing. It may even
have an infinite loop, and thus never finish. This is the reason we use abstract interpretation in the
first place: it allows us to obtain definitive information about how a program will execute, in a
finite amount of time.

Recall the flow function f from earlier. If we have a map � ∶ VAR ⇀ L that describes all
the possible program states before an instruction � executes, then we can take �′ = fJ�K(�) to
describe all the possible program states after � executes. But how do we know what to use for �?
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For instance, in Figure 2, there are two incoming edges to node 5 . If we take the analysis data
directly from 2 , then we have a → N because that is how f interprets a := null. On the other
hand, if we take the analysis data from 4 , then we have a → ⊤, because that is how f interprets
a, b := &b. We need some way to combine both of these analysis results to encompass all of the
possible states leading into 5 .

To do this, we can give L a semilattice structure via the subset relation ⊆, resulting in the
Hasse diagram shown in Figure 3. This partial order induces an associative, commutative,
idempotent (Davey & Priestley, 2002) join operation ⊔ ∶ L × L → L defined by
N ⊔ P = N ⊔ ⊤ = P ⊔ ⊤ = ⊤ where the rest of the cases are given by the aforementioned
properties. Since ⊔ is idempotent, if all the incoming edges to a node agree with each other, then
� is the same as all of them. But if two incoming edges disagree, this operation allows us to take,
for instance, �(a) = N ⊔ ⊤ = ⊤ for the case mentioned in the previous paragraph.
Fixpoint Algorithm

To tie all these pieces together, we use a fixpoint algorithm (Kildall, 1973) to compute the
final table mapping variables to abstract values in L for every point in the program, as shown in
Table 1. We start with an empty table, depicted on the lefthand side. Then we apply the flow
function to node 1 , yielding a → N , and propagate these results to node 2 which follows.
Applying f to 2 then yields b → P , which we propagate to 3 and 5 . Next we analyze 3
and propagate to 4 , which retains the same results because we already had b → P . After
analyzing 4 , we now have a → ⊤ and b → ⊤, so we ⊔ these into 3 and 5 . Since the analysis
leading into 3 has been updated, we need to analyze it again and propagate the resulting a → ⊤

to 4 . Finally, we analyze 5 and propagate the results to 6 .
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⊤

N P

Figure 3. Hasse diagram for our null-pointer analysis semilattice, ordered by ⊆.
Table 1
Analyzing the program in Figure 2 until reaching a fixpoint.

1 2 3 4 3 5
a b a b a b a b a b a b a b

1
2 N N N N N N
3 N P N P ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
4 N P N P ⊤ P ⊤ P
5 N P N P ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
6 ⊤ N

The preceding narration illustrates the general idea of the algorithm, which is that, starting
at the entry point to the program, we take the analysis at a node, run it through f , and use ⊔ to
propagate those results to the nodes which follow. If any of those nodes actually changed, we add
them to the queue of nodes we will run through f next. Once the queue becomes empty, the
algorithm terminates and we have our final analysis table. Conveniently, there is room for
ambiguity in this algorithm; the one we describe here is chosen for its decent performance, but
using the properties of L and f , one can prove that the same fixpoint will eventually be reached
by any algorithm that does not neglect specific nodes in the graph.

As shown in Table 1, these final analysis results give information about the original
program: for instance, b will never be null when 4 is executed, and will always be null when
6 is executed. However, our analysis is not completely precise: for instance, even though a is
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always null, our analysis deems it ⊤ at all program points past 2 , because we update it from a
value retrieved from memory, which our analysis does not model very well. In general, Rice’s
theorem (Rice, 1953) tells us that it is impossible to create a perfectly precise, sound static
analysis. This is where the ideas from gradual typing come in.

Gradual Typing

Type systems are another well-studied tool for getting static information about programs.
The field of gradual typing seeks to address the inherent imprecisions and inconveniences of type
systems by allowing them to be not just pessimistically uncertain, but also optimistically

uncertain. This section mirrors the presentation in Garcia et al. (2016).

Typing Rules and Judgments

We start by defining syntax for a slightly more complicated lambda calculus, with types.

T ∈ TYPE

x ∈ VAR

b ∈ BOOL

n ∈ ℤ

t ∈ TERM

T ∶∶= Int | Bool | T → T

t ∶∶= n | b | x | �x ∶ T .t | t t | t + t | if t then t else t | t ∶∶ T

Intuitively, a type corresponds to a set of values with operations on values in that set. Thus Int is
the type of integers, and Bool is the type of booleans—that is, true or false. We can simply write
out an integer in ℤ or a boolean in the set BOOL as a term. Then terms also include variables x,
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lambda abstractions (functions) �x ∶ T .t, and applications (function calls) t t. Note that the
syntax for a lambda abstraction now requires that we declare the type of the parameter x. We also
include some syntax specific to the new types we have introduced, such as sums and branches.
Finally, we have syntax t ∶∶ T for casting a term to be of type T . This is useless in the statically
typed context, but it will become more useful when we gradualize this language.

In contrast to the fixpoint calculation required for dataflow analysis, type systems often
proceed using inference rules such as the ones in Figure 4 to produce typing judgments on terms.
These inference rules follow the same format as the ones we used to define operational semantics
of the untyped lambda calculus earlier. If there exists a valid typing derivation for a given term,
then that term is said to be well-typed. For instance, the following derivation shows that in a
context where x is of type Int, the term x + 42 is also of type Int:

(T+)
(TX) x ∶ Int ∈ x ∶ Int

x ∶ Int ⊢ x ∶ Int
(TN)

x ∶ Int ⊢ 42 ∶ Int Int = Int Int = Int
x ∶ Int ⊢ x + 42 ∶ Int

This knowledge could then be used to prove, for instance, that in any context, if you take the
function �x ∶ Int.x + 42 and apply it to the number 8, the result is of type Int:

(TAPP)
(T�) x ∶ Int ⊢ x + 42 ∶ Int

⊢ �x ∶ Int.x + 42 ∶ Int → Int
(TN)

⊢ 8 ∶ Int Int = dom(Int → Int)
⊢ (�x ∶ Int.x + 42) 8 ∶ Int

The conclusion of this particular typing judgment should be obvious: simply replace x with 8,
then add it to 42 to yield 50, which is an integer. However, in general it is not always feasible to
evaluate a term to determine its type. Some terms may take an exponential (or greater) amount of
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TX x ∶ T ∈ Γ
Γ ⊢ x ∶ T

TN
Γ ⊢ n ∶ Int

TB
Γ ⊢ b ∶ Bool

TAPP
Γ ⊢ t1 ∶ T1 Γ ⊢ t2 ∶ T2 T2 = dom(T1)

Γ ⊢ t1 t2 ∶ cod(T1)

T+ Γ ⊢ t1 ∶ T1 Γ ⊢ t2 ∶ T2 T1 = Int T2 = Int
Γ ⊢ t1 + t2 ∶ Int

TIF
Γ ⊢ t1 ∶ T1 Γ ⊢ t2 ∶ T2 Γ ⊢ t3 ∶ T3 T1 = Bool

Γ ⊢ if t1 then t2 else t3 ∶ equate(T2, T3)

T� Γ, x ∶ T1 ⊢ t ∶ T2

Γ ⊢ (�x ∶ T1.t) ∶ T1 → T2
T:: Γ ⊢ t ∶ T T = T1

Γ ⊢ (t ∶∶ T1) ∶ T1

Figure 4. Typing rules for our simply-typed lambda calculus.

time to reduce in relation to their size, whereas the time it takes to typecheck a given term is
always linear in the size of that term.
Unknown Types

We would like to insist that every term be well-typed, since it can be shown that this
ensures the program will not get stuck (that is, reduce to a nonfinal point at which further
reduction is undefined). Unfortunately, this requirement is problematic for a couple of reasons.
First, our type system is strongly normalizing, so every well-typed term will eventually fully
reduce, producing a value. This implies that our simply-typed lambda calculus is not
Turing-complete: it is impossible to knowingly exclude all non-terminating programs without
also excluding some interesting terminating ones as well. As a trivial example, it is impossible to
write an interpreter for our language in itself, but there are also many other interesting programs
we cannot write using this type system. More sophisticated type systems, such as System F
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(Girard, 1971), provide far greater expressive power while still retaining strong normalization, but
in the end, that property is incompatible with Turing-completeness.

Second, it can be very difficult to write types even for programs that are possible to write
in a given type system. Often, when initially designing a program, the programmer does not have
the clearest idea in their head of what the types should be. For these cases, dynamically-typed

languages such as Python are often used to iterate quickly on an idea. Unfortunately, as a program
grows into a larger-scale system, the absence of static types tends to make maintenance more and
more difficult. At that point, the system is already written in a dynamic language, so the addition
of static types would require first porting the program to a different language, which is almost
never feasible. It would be desirable to have a more friendly migration path from a dynamically
typed program to a statically typed one; this is the essence of gradual typing.

As mentioned previously, this thesis uses the AGT approach to gradual typing, which
starts by extending the set of types to include an unknown type ?:‹T ∈ GTYPE

t̃ ∈ GTERM‹T ∶∶= ? | Int | Bool | ‹T → ‹T
t̃ ∶∶= … | �x ∶ ‹T .t̃ | t̃ ∶∶ ‹T | …

Notice that TYPE ⊆ GTYPE and TERM ⊆ GTERM. Thus, any program in the original (static)
language is also a program in this extended gradual language. However, since ? is now a type,
this language also allows an embedding of the untyped lambda calculus we discussed previously.
This new language provides the entire spectrum of typedness, from completely untyped to
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completely typed.
Concretization

In order to use our gradually typed language, we must give meaning to the new types
which we have defined. AGT does this via a function  ∶ GTYPE → (TYPE) given by

(Int) = {Int} (Bool) = {Bool}

(‹T1 →
‹T2) = (‹T1) ı→ (‹T2) (?) = TYPE

using the following operator:

⋅ ı→ ⋅ ∶ (TYPE) × (TYPE) → (TYPE)ÙT1 ı→ ÙT2 = {T1 → T2 ∶ T1 ∈ ÙT1, T2 ∈ ÙT2}

As an example, (? → Bool) = {T → Bool ∶ T ∈ TYPE}. Next, given this interpretation of
gradual types as sets of static types, we will lift predicates and functions on static types to
predicates and functions on gradual types, which will allow us to lift our entire type system.
Lifting Predicates

Say we have a predicate or relation P ⊆ TYPE × TYPE. An example would be
equality—that is, P (T1, T2) ⇐⇒ T1 = T2. As mentioned before, the general theme of gradual
typing is optimistic uncertainty, so we would like to lift this predicate to a new predicate‹P ⊆ GTYPE × GTYPE that, in a way, gives its parameters the benefit of the doubt. In other words,
if ‹T1 and ‹T2 are certain, static types, then ‹P (‹T1, ‹T2) should reflect P itself. But if one or the other
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is an uncertain gradual type, then ‹P (‹T1, ‹T2) should optimistically hold true if there is a possibility
that ‹T1 and ‹T2 could be compatible under P .

We formalize this notion of optimism as follows. First, we define

ÙP ⊆ (TYPE) × (TYPE)ÙP (ÙT1, ÙT2) iff ∃(T1, T2) ∈ ÙT1 × ÙT2 s.t. P (T1, T2)

which we call the collecting lifting. Then we define the gradual lifting

‹P ⊆ GTYPE × GTYPE‹P (‹T1, ‹T2) iff ÙP ((‹T1), (‹T2))

using our concretization function  defined earlier.
Returning to our example of equality, if we let ∼ be the gradual lifting of =, then we find

that the lifting is still reflexive and symmetric, but no longer transitive. For example,
Int → ? ∼ Int → Int, but also Int → ? ∼ Int → Bool. The intuitive explanation for this is that
gradual typing is intrinsically short-sighted: it checks whether something immediately makes
sense (for instance, it is not true that Int → ? ∼ Bool → ?), but is not global in scope.
Abstraction

In order to lift predicates it is sufficient to define a concretization function  and use
collecting semantics. However, when we next try to lift functions, we will need one extra piece.
Specifically, we require a function � ∶ +(TYPE) → GTYPE such that the following two
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properties hold:

• (soundness) If ÙT is not empty, then ÙT ⊆ (�(ÙT )).
• (optimality) If ÙT is not empty and ÙT ⊆ (‹T ) then (�(ÙT )) ⊆ (‹T ).

It can be shown that this uniquely characterizes �:

�({Int}) = Int

�({Bool}) = Bool

�({Ti1 → Ti2}) = �({Ti1}) → �({Ti2})

�(ÙT ) = ? otherwise

The notation {Ti} here refers to a set of types indexed by i. Since this � satisfies the two
properties listed above, it is said to form a Galois connection with  .
Lifting Functions

Armed with this abstraction function, we can now lift functions on TYPE. We start by
assuming a (partial) function F ∶ TYPE × TYPE ⇀ TYPE; we define the collecting lifting of F to
be

ÙF ∶ (TYPE) × (TYPE) → (TYPE)ÙF (ÙT1, ÙT2) = {F (T1, T2) ∶ (T1, T2) ∈ ÙT1 × ÙT2}



GRADUAL PROGRAM ANALYSIS 22
and the gradual lifting to be

‹F ∶ GTYPE × GTYPE ⇀ GTYPE‹F (‹T1, ‹T2) = �(ÙF ((‹T1), (‹T2)))

and likewise for functions of arity greater than 2.
At this point we are ready to fully lift the typing rules from Figure 4 to work on our

gradual language with GTERM and GTYPE. We have already lifted = to ∼. The only remaining
tasks are to lift the functions dom, cod, and equate tofldom, ficod, and ⊓ respectively. It can be
shown that the liftings of the first two functions are as follows:

fldom ∶ GTYPE ⇀ GTYPE ficod ∶ GTYPE ⇀ GTYPEfldom(‹T1 →
‹T2) = ‹T1

ficod(‹T1 →
‹T2) = ‹T2fldom(?) = ? ficod(?) = ?

Finally, the lifting of equate to ⊓ looks like this:

Int ⊓ Int = Int Bool ⊓ Bool = Bool ‹T ⊓ ? = ? ⊓ ‹T = ‹T
(‹T11 →

‹T12) ⊓ (‹T21 →
‹T22) = (‹T11 ⊓ ‹T21) → (‹T12 ⊓ ‹T22)

The complete static portion of our gradual type system is shown in Figure 5.
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‹TX x ∶ ‹T ∈ Γ

Γ ⊢ x ∶ ‹T ‹TN
Γ ⊢ n ∶ Int

‹TB
Γ ⊢ b ∶ Bool‹TAPP

Γ ⊢ t̃1 ∶ ‹T1 Γ ⊢ t̃2 ∶ ‹T2
‹T2 ∼fldom(‹T1)

Γ ⊢ t̃1 t̃2 ∶ficod(‹T1)‹T+ Γ ⊢ t̃1 ∶ ‹T1 Γ ⊢ t̃2 ∶ ‹T2
‹T1 ∼ Int ‹T2 ∼ Int

Γ ⊢ t̃1 + t̃2 ∶ Int‹T IF
Γ ⊢ t̃1 ∶ ‹T1 Γ ⊢ t̃2 ∶ ‹T2 Γ ⊢ t̃3 ∶ ‹T3

‹T1 ∼ Bool

Γ ⊢ if t̃1 then t̃2 else t̃3 ∶ ‹T2 ⊓ ‹T3‹T� Γ, x ∶ ‹T1 ⊢ t̃ ∶ ‹T2

Γ ⊢ (�x ∶ ‹T1.t̃) ∶ ‹T1 →
‹T2

‹T :: Γ ⊢ t̃ ∶ ‹T ‹T ∼ ‹T1

Γ ⊢ (t̃ ∶∶ ‹T1) ∶ ‹T1

Figure 5. Typing rules for our gradually-typed lambda calculus.

Discussion

The preceding sections lay out the background material for gradual program analysis. This
final section discusses the research itself at a high level. Some discussion has already appeared in
an extended abstract for the SPLASH 2019 undergraduate student research competition (Estep,
2019) and at the Workshop on Gradual Typing at the POPL 2020 conference (Estep et al., 2020).
Current Research

Reverse-engineered Infer. While the Facebook Infer tool advertises Eradicate as its
primary null-safety checker, it also includes a few other checkers for null-pointer bugs. The most
current checker is activated via the command-line parameter --nullsafe. Before starting on
general gradual program analysis, we worked through the code of the --nullsafe checker to
understand how it works, since no documentation previously existed for that checker. The
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checker’s design informed the direction of the rest of the project.

Lifting semilattices. AGT can be applied fairly directly to a simple null-pointer analysis
with a lattice of two elements by adjoining a single element ?. To construct a framework that
could be applied to other static analyses, we designed a general way to lift a semilattice L to
create a larger structure ‹L. Then using the AGT framework to lift predicates and functions, it can
be shown that this larger structure ‹L actually forms a semilattice structure under the lifted join
operation ⊔̃, but of course not under the lifted order relation.

Lifting flow functions. In gradual typing, judgments are made from inference rules,
which are simply transferred syntactically to the new system once all the sets, predicates, and
functions have been lifted. In contrast, our dataflow analysis framework defines an explicit flow
function. We initially tried lifting this flow function just using the AGT way to lift functions,
which worked, but felt insufficiently elegant. Later, we reformalized the analysis so that the flow
function is parametric in the set of lattice elements, so that it does not need to be lifted at all.

Static analysis warnings. By combining the lifted semilattice ordering relation with a
safety function that is parametric in the set of semilattice elements just like the flow function, we
provided a way to automatically decide when to give static warnings after computing the analysis
fixpoint with the lifted semilattice.

Simple runtime checks. A fair amount of literature in gradual typing has been devoted to
performing runtime checks for the types that have been only partially verified. This is nontrivial,
because in general, it is undecidable to determine whether a value is of a particular type, such as if
that type is a function type. Our framework avoids this complexity by assuming that it is efficient
to check membership of any abstract lattice element, and thus provides a simple way to perform
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runtime checks after the static part of the gradual analysis is completed.

Null-pointer implementation. We implemented the null-pointer case of gradual analysis
as a new checker in the Facebook Infer tool, then evaluated it by using it to analyze 15 of the 18
repositories analyzed in the evaluation of NULLAWAY (Banerjee et al., 2019). We compared the
set of warnings against the warnings produced by Eradicate and --nullsafe, and our prototype
seems to give fewer false positives than those existing tools. However, it is unclear exactly what
this means, as none of the tools gave a significant number of true positives for any of those
repositories, so it is possible that our tool simply produces fewer warnings in general, which
would not strictly be a benefit.
Future Research

Proofs. From evidence we have so far, we believe that our framework satisfies certain
properties, such as the so-called “gradual guarantee” (Siek et al., 2015, p. 1). However, we have
yet to provide static proofs for these claims.

Better experiments. As mentioned above, the empirical evaluation we have performed so
far is insufficient to demonstrate the practicality of our approach. It would be desirable to use our
prototype to analyze repositories with actual errors in them, to see which it catches and which it
does not.

Composable analysis component. Some recent work in abstract interpretation (Keidel &
Erdweg, 2019) shows how to decompose a static analysis into a composition of reusable
components. It would be interesting to see whether our framework can be formalized as a
component in that system. This may also cut down on the proofs that we would need to write.
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General runtime checks. To allow our approach to generalize to as many analyses as

possible, it would be desirable to use the extensive literature from gradual typing to provide a way
to perform runtime checks for arbitrary values, not just those that can be easily checked against
our semilattice.
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