
HAL Id: hal-03596652
https://hal.inria.fr/hal-03596652v2

Submitted on 2 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reasonably Gradual Type Theory
Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, Éric Tanter

To cite this version:
Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, Éric Tanter. A Reasonably Gradual Type
Theory. Proceedings of the ACM on Programming Languages, In press. �hal-03596652v2�

https://hal.inria.fr/hal-03596652v2
https://hal.archives-ouvertes.fr

124

A Reasonably Gradual Type Theory
KENJI MAILLARD, Gallinette Project-Team, Inria, France

MEVEN LENNON-BERTRAND, Gallinette Project-Team, Inria, France

NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

ÉRIC TANTER, PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile

Gradualizing the Calculus of Inductive Constructions (CIC) involves dealing with subtle tensions between

normalization, graduality, and conservativity with respect to CIC. Recently, GCIC has been proposed as a

parametrized gradual type theory that admits three variants, each sacrificing one of these properties. For

devising a gradual proof assistant based on CIC, normalization and conservativity with respect to CIC are

key, but the tension with graduality needs to be addressed. Additionally, several challenges remain: (1) The

presence of two wildcard terms at any type—the error and unknown terms—enables trivial proofs of any

theorem, jeopardizing the use of a gradual type theory in a proof assistant; (2) Supporting general indexed

inductive families, most prominently equality, is an open problem; (3) Theoretical accounts of gradual typing

and graduality so far do not support handling type mismatches detected during reduction; (4) Precision and

graduality are external notions not amenable to reasoning within a gradual type theory. All these issues

manifest primally in CastCIC, the cast calculus used to define GCIC. In this work, we present an extension

of CastCIC called GRIP. GRIP is a reasonably gradual type theory that addresses the issues above, featuring

internal precision and general exception handling.GRIP features an impure (gradual) sort of types inhabited by

errors and unknown terms, and a pure (non-gradual) sort of strict propositions for consistent reasoning about

gradual terms. By adopting a novel interpretation of the unknown term that carefully accounts for universe

levels, GRIP satisfies graduality for a large and well-defined class of terms, in addition to being normalizing

and a conservative extension of CIC. Internal precision supports reasoning about graduality within GRIP
itself, for instance to characterize gradual exception-handling terms, and supports gradual subset types. We

develop the metatheory of GRIP using a model formalized in Coq, and provide a prototype implementation of

GRIP in Agda.

CCS Concepts: • Theory of computation→ Type theory; Type structures; Program reasoning.

Additional Key Words and Phrases: Gradual typing, proof assistants, dependent types

ACM Reference Format:
Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter. 2022. A Reasonably Gradual Type

Theory. Proc. ACM Program. Lang. 6, ICFP, Article 124 (August 2022), 29 pages. https://doi.org/10.1145/3547655

1 INTRODUCTION
Extending gradual typing [Siek and Taha 2006; Siek et al. 2015] to dependent types is a challenging

endeavor due to the intricacies of type checking and conversion in the presence of imprecision at

both the type and term levels. Early efforts looked at gradualizing specific aspects of a dependent

∗
This work is partially funded by CONICYT FONDECYT Regular Project 1190058 and Inria Équipe Associée GECO.

Authors’ addresses: Kenji Maillard, Gallinette Project-Team, Inria, Nantes, France, kenji.maillard@inria.fr; Meven Lennon-

Bertrand, Gallinette Project-Team, Inria, Nantes, France, meven.lennon-bertrand@inria.fr; Nicolas Tabareau, Gallinette

Project-Team, Inria, Nantes, France, nicolas.tabareau@inria.fr; Éric Tanter, PLEIAD Lab, Computer Science Department

(DCC), University of Chile, Santiago, Chile, etanter@dcc.uchile.cl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/8-ART124

https://doi.org/10.1145/3547655

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

HTTPS://ORCID.ORG/0000-0001-5554-3203
HTTPS://ORCID.ORG/0000-0002-7079-8826
HTTPS://ORCID.ORG/0000-0003-3366-2273
HTTPS://ORCID.ORG/0000-0002-7359-890X
https://doi.org/10.1145/3547655
https://orcid.org/0000-0001-5554-3203
https://orcid.org/0000-0002-7079-8826
https://orcid.org/0000-0002-7079-8826
https://orcid.org/0000-0003-3366-2273
https://orcid.org/0000-0002-7359-890X
https://doi.org/10.1145/3547655

124:2 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

type system (e.g., subset types and refinements [Lehmann and Tanter 2017; Tanter and Tabareau

2015], or the fragment without inductive types [Eremondi et al. 2019]). Recently, Lennon-Bertrand

et al. [2022] studied gradual typing in the context of the Calculus of Inductive Constructions (CIC),
the theory at the core of many proof assistants such as Coq [The Coq Development Team 2020].

Gradual CIC. Lennon-Bertrand et al. [2022] develop a gradualization of CIC, called GCIC. For
instance, as in simply-typed gradual typing, one can use the unknown type ? to defer some checks

to runtime: (_𝑥 : ?. 𝑥 + 1) 𝑣 is well-typed for any 𝑣 , and may reduce to a runtime error if 𝑣 is

not a natural number. GCIC is a source language, whose semantics is given by elaboration to

a dependently-typed cast calculus, called CastCIC. CastCIC is an extension of Martin-Löf type

theory (MLTT) [Martin-Löf 1971] with (non-indexed) inductive types, and with exceptions as

introduced by Pédrot and Tabareau [2018]. For a given type 𝐴, there are two exceptional terms,

namely err𝐴 representing runtime type errors, and ?𝐴 representing the unknown term, which

can optimistically stand for any term of type 𝐴. In particular, the unknown type is ?□, where
□ denotes the universe (omitting levels for brevity here). Additionally, CastCIC features a cast

operator ⟨𝐵 ⇐ 𝐴⟩ 𝑡 , which supports treating a term 𝑡 of type 𝐴 as a term of type 𝐵, without

requiring any relation between 𝐴 and 𝐵. The above example in GCIC elaborates to the CastCIC
term (_𝑥 : ?□.⟨N ⇐ ?□⟩ 𝑥 + 1) ⟨?□ ⇐ 𝑉 ⟩ 𝑣 , where 𝑉 is the type of 𝑣 . If 𝑣 is 10, this term reduces

to 11; if 𝑣 is true, the term reduces to errN. The dependently-typed setting involves a number of

peculiarities and complexities, which come from the fact that there are unknown terms at all types,

and that gradual computation can happen at the type level as well.

Variants of Gradual CIC. Crucially, Lennon-Bertrand et al. [2022] uncover an inherent tension

in the gradualization of CIC, dubbed the Fire Triangle of Graduality, which states that three

fundamentally desirable properties cannot be fully satisfied simultaneously: (1) strong normalization,

a property of particular relevance in the context of proof assistants, (2) conservativity with respect

to CIC, namely the ability to faithfully embed the static theory in the gradual theory, and (3)

graduality, which guarantees that typing and evaluation are monotone with respect to precision.
1

Precision is an essential notion in gradual typing [Siek et al. 2015], which captures the expected

behavior of casts: when a type 𝐴 is more precise than 𝐵, written 𝐴 ⊑ 𝐵, then casting from 𝐴 to

𝐵 does not fail, and doing the roundtrip back to 𝐴 is the identity; the formal formulation of this

property, coined graduality by New and Ahmed [2018], is that when 𝐴 ⊑ 𝐵, the cast operations

induce an embedding-projection pair between 𝐴 and 𝐵. Additionally, ? is the least precise type, and
therefore casting from 𝐴 to the unknown type ? and back is always the identity. The maximality

of the unknown type is a key element in the tension captured by the Fire Triangle of Graduality.

Indeed, if ? → ? ⊑ ?, then by graduality it is possible to embed the untyped lambda calculus, and

in particular the diverging term Ω := (_ 𝑥 : ?. 𝑥 𝑥) (_ 𝑥 : ?. 𝑥 𝑥).
To study different resolutions of the Fire Triangle in a unified framework, Lennon-Bertrand

et al. [2022] develop GCIC as a parametrized gradualization of CIC. GCIC admits three variants,

each sacrificing one property: GCICG
satisfies both conservativity and graduality at the expense of

admitting divergence, GCICN
dynamically avoids non-termination but this carefulness inevitably

leads to some terms violating graduality, and finally, GCIC↑
restricts the typing relation of CIC

to exclude those non-gradual terms and hence satisfies graduality and termination but does not

admit all CIC terms. CastCIC is itself parametrized, yielding CastCICG
, CastCICN

, and CastCIC↑

as dependent cast calculi underlying each of the three GCIC variants.

1
In the gradual typing literature, graduality is first known as the gradual guarantees [Siek et al. 2015]; the dynamic aspect

thereof was later reformulated by New and Ahmed [2018] under a more semantic form, which turns out to be stronger than

the dynamic gradual guarantee in the setting of dependent types [Lennon-Bertrand et al. 2022].

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:3

Termination and Universe Levels. InGCIC, the unknown type is the unknown term at the universe

type, □. But due to predicativity in CIC there is in fact an infinite hierarchy of universes □𝑖 . This

means that in GCIC there is one unknown type per level of the stratification; each ?□𝑖
is the least

precise type among all types at level 𝑖 and below. The two GCIC variants that ensure termination

avoid divergence by shifting universe levels either statically (GCIC↑
) or dynamically (GCICN

).

GCIC↑
restricts the typing rule of the function type compared to vanilla CIC by incrementing the

universe level of the function type with respect to that of its components. Its main downside is that

it is not a conservative extension of CIC: due to this modified typing rule, some valid CIC terms

are statically rejected. The prototypical example is that of recursive large elimination, such as the

type of n-ary functions over natural numbers (in Coq):

Fixpoint nArrow (n : N) : □0 := match n with 0 ⇒ N | S m ⇒ N → narrow m.

The term nArrow n is a type (i.e., a term of type □0), and we have for example nArrow 0 ≡ N and

nArrow 2 ≡ N → N → N. The reason this definition is ill-typed in CIC↑
is that the universe level

at which to define the resulting type is unbounded. Another more practical example is that of a

dependently-typed printf function, whose actual arity depends on the input string. Still, GCIC↑

captures a large and useful fragment of CIC, which includes most examples of functional programs

found in predicative System F and also uses of dependent types where large elimination has a

statically-known bound.

In the context of a gradual proof assistant based onCIC, the normalizing and conservative variant

GCICN
is therefore the most appealing, as it ensures decidability of typing, (weak) canonicity,

and supports all existing developments and libraries by virtue of being a conservative extension

of CIC. GCICN
avoids non-termination by introducing a universe shift during reduction, which

unfortunately means that some terms break graduality. For instance, while nArrow is well-typed
in GCICN

, the type forall (n :N), nArrow n does not satisfy the embedding-projection property

with respect to any unknown type ?□𝑖
, because the appropriate universe level is not known a priori.

However, apart from the fact that GCICN
does not satisfy graduality globally, little is known about

its gradual properties as its metatheory in this regard has not been developed. In particular, there

is no clear characterization of a class of terms for which graduality holds.

A Refined Stratification of Precision. In this work, we observe that by refining the stratification of

precision we can develop a full account of graduality for an extension of CastCICN
, called GRIP.

The key idea is that ?□𝑖
should be the least precise type among all types at level 𝑖 and below, except

for dependent function types at level 𝑖 (which are however still less precise than ?□𝑖+1
). We can

precisely characterize problematic terms as those that are not self-precise (i.e., more precise than

themselves). As we will see, for function types, self-precision means monotonicity with respect

to precision. A recursive large elimination as in nArrow is not monotone because, nArrow ?N

computes to ?□𝑖
for some fixed level 𝑖 , but there is no 𝑖 such that nArrow 𝑛 ⊑?□𝑖

uniformly for

all 𝑛. We prove that the dynamic gradual guarantee holds in GRIP for any self-precise context,

and that casts between types related by precision induce embedding-projection pairs between

self-precise terms. Therefore, this change in perspective in the interpretation of the unknown type

and the associated notion of precision yields a gradual theory that conservatively extends CIC, is
normalizing, and satisfies graduality for a large and well-defined class of terms. Specifically, we

prove that all terms that would be well-typed with a level-shifting dependent product type (as used

by GCIC↑
/CastCIC↑

) can be embedded in GRIP and proven to be self-precise, and hence satisfy

graduality. Also, some terms that fall outside of that fragment can be proven self-precise in GRIP.

Internalizing Precision, Reasonably. While we could study graduality for GRIP externally, we

observe that we can exploit the expressiveness of the type-theoretic setting to internalize precision

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:4 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

and its associated reasoning. In particular this makes it possible to state and prove, within the theory

itself, results about (self-)precision and graduality for specific terms. For such internal reasoning to

be reliable, GRIP adopts a two-layer structure, with an impure hierarchy of types for gradual terms,

and a pure sort of propositions that can refer to gradual terms and errors, but whose inhabitants

cannot use errors or unknown terms. This approach to isolate effects is inspired by prior approaches

to soundly reason about effectful programs internally with dependent types [Casinghino et al. 2014;

Kimmell et al. 2012; Pédrot and Tabareau 2020; Stump et al. 2010; Swamy et al. 2016] (discussed

in §7), most notably the Reasonably Exceptional Type Theory RETT [Pédrot et al. 2019]. RETT
supports consistent reasoning about exceptional terms by featuring a layer of possibly exceptional

terms, and a separate layer of pure terms in which raising an exception is prohibited. This way,

the consistency of the logical layer is guaranteed, while allowing non-trivial interaction with the

exceptional layer. Technically, the two layers are defined using two distinct universe hierarchies.

Additionally, internalizing precision requires the gradual type theory to satisfy extensionality

principles in order to support the notion of precision as error approximation [New and Ahmed

2018]. To this end, GRIP builds upon the observational type theory TTobs [Pujet and Tabareau

2022]. Based on the seminal work on Observational Type Theory [Altenkirch et al. 2007], TTobs

provides a setoidal equality in a specific universe P of definitionally proof-irrelevant propositions.

This universe of strict propositions, introduced by Gilbert et al. [2019] and supported in recent

versions of Coq and Agda, makes it possible to define an extensional notion of equality, while

trivializing the so-called higher coherence hell by imposing that any two proofs of a given equality

are definitionally equal. The resulting theory is arguably much simpler and closer to the current

practice of proof assistants than cubical type theory [Cohen et al. 2017; Vezzosi et al. 2019], which

is another approach to provide extensional principles with computational content.

A major insight of this work is to realize that we can actually merge the logical universe of

RETT used to reason about exceptional terms with the universe P of proof-irrelevant propositions

in order to define an internal notion of precision that is extensional and whose proofs cannot be

trivialized with exceptional terms.

Applications of Internal Precision. Being able to internally reason about the graduality of terms in

a theory that is not globally gradual is essential for a gradual proof assistant. Because precision

semantically accounts for error approximation [New and Ahmed 2018], internal precision provides a

useful reasoning principle to certify gradual programs. Just like internal equality enables reasoning

using Leibniz equality (i.e., deducing that 𝑃 𝑏 holds given both 𝑃 𝑎 and 𝑎 = 𝑏), internal precision

makes it possible to deduce the correctness of a gradual program from the correctness of another:

if we have 𝑎 ⊑ 𝑏 and 𝑃 𝑎 for a correctness criterion 𝑃 that is self-precise and thus monotone, then

𝑃 𝑏 holds. For instance, consider the following two functions related by precision:

add1 := _𝑥 : N.𝑥 + 1 ⊑ add1? := _𝑥 : ?□.(⟨N ⇐ ?□⟩ 𝑥) + 1

The term 𝑡 := mapN N add1 𝑙 is fully static and hence does not fail, given a non-error list 𝑙 : L N.

Now, to show that the term 𝑢 := map ?□ N add1? 𝑙 ′ (where 𝑙 ′ is ⟨L ?□ ⇐ L N⟩ 𝑙) also does not fail,

one can either reason directly on the definition of 𝑢, or one can deduce the property “for free” from

the fact that 𝑡 ⊑ 𝑢, which follows from the monotony of map.2

Additionally, internal precision makes it possible to support gradual subset types, in which a type

can be refined by a proposition expressed using precision. Moreover, in the literature, exception

handling is never considered when proving graduality because this mechanism inherently allows

terms that do not behave monotonically with respect to precision. Internal precision enables us

2
The fact that map : Π𝐴𝐵 : □.(𝐴 → 𝐵) → L𝐴 → L𝐵 is self-precise and hence monotone with respect to all its arguments

is proven by simple induction on lists. See the Agda development for details of this example.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:5

to support exception handling in the impure layer of the type theory, and to consistently reason

about the graduality (or not) of exception-handling terms.

Structure of the Article. We proposeGRIP, a novel gradual type theory with internal precision and

a two-layer architecture that enables consistent reasoning about potentially failing and imprecise

gradual programs. GRIP is a strongly-normalizing extension of CIC that satisfies graduality for

a large and well-defined class of terms. After a brief informal overview of the main elements

of GRIP and their applications (§2), we formalize GRIP as an extension of CastCIC with a sort

of propositions (§ 3) and a precision relation for internal reasoning about graduality (§ 4). We

present a model of GRIP in CIC, which validates its metatheoretical properties (§5). §6 discusses

extensions of GRIP and §7 reviews related work. We provide a Coq formalization of the model and

a proof-of-concept implementation in Agda (artifact after evaluation).

2 A BRIEF OVERVIEW OF GRIP

CastCIC has been introduced by Lennon-Bertrand et al. [2022] as a variant of CIC with exceptional

terms and a cast operator, designed to support the source gradual type theory GCIC. Due to the use
of conversion for typing in dependently-typed systems, GCIC requires elaboration into CastCIC
for both its static and dynamic semantics. This elaboration, which introduces casts as necessary to

account for imprecision in GCIC terms, is not the focus of this work; instead, we tackle issues at the

level of the design and semantics of the type theory with casts, CastCIC. After a quick refresher on

CastCIC, this section introduces the two-layer architecture of GRIP for consistent reasoning about

gradual programs, the notion of internal precision and its application to reason about graduality,

including in the presence of exception handling, and gradual subset types.

2.1 Background on CastCIC

Technically, CastCIC features an impure hierarchy of universes □𝑖 (read “Type”) where one can

freely use unknown terms, noted ?𝐴 for any type 𝐴, and errors, noted err𝐴. The hierarchy □𝑖 is

explicitly cumulative, meaning that there is a constructor] : □𝑖 → □𝑖+1 that permits to consider a

type at level 𝑖 as a type at level 𝑖 + 1. CastCIC also features inductive types such as natural numbers

(noted N), booleans (noted B) and lists of elements of type 𝐴 (noted L 𝐴). The only difference with

the corresponding inductive types in CIC is that there are two additional constructors for each

inductive type, one corresponding to errors err and the other to the unknown term ? at that type.
Additionally, CastCIC features casts, whose typing rule is

Γ ⊢ 𝐴 :□𝑖 Γ ⊢ 𝐵 :□𝑖 Γ ⊢ 𝑡 :𝐴

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 :𝐵

A cast converts any term of type 𝐴 to a term of type 𝐵, with no constraint between 𝐴 and 𝐵. This

means that a cast propagates deeper when types are compatible, e.g., two function types:

⟨𝐴2 → 𝐵2 ⇐ 𝐴1 → 𝐵1⟩ 𝑓 { _𝑦 : 𝐴2.⟨𝐵2 ⇐ 𝐵1⟩ (𝑓 ⟨𝐴1 ⇐ 𝐴2⟩𝑦)

But when 𝐴 and 𝐵 are not compatible, a cast reduces to an error in 𝐵, e.g., between booleans and

natural numbers, we have ⟨N ⇐ B⟩ true { errN. Following Pédrot and Tabareau [2018], both ?
and err behave like call-by-name exceptions. In particular, this means that (_𝑥 : N.0) errN { 0,

not errN. Also, exceptions can only be caught on positive types such as inductives, not on negative

types such as functions. Notably, errΠ𝑥 :𝐴.𝐵 ≡ _𝑥 : 𝐴. err𝐵 .
Themain features ofCIC that are absent inCastCIC are an impredicative universe of propositions

and a general notion of indexed inductive types.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

https://gitlab.inria.fr/kmaillar/grip-a-reasonably-gradual-type-theory
https://gitlab.inria.fr/kmaillar/grip-a-reasonably-gradual-type-theory
https://zenodo.org/record/6928465

124:6 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

2.2 A Universe for Logical Reasoning
Directly inspired by the work on the reasonably exceptional type theory RETT [Pédrot et al. 2019],

GRIP features two distinct kind of sorts: the impure hierarchy of types □𝑖 of CastCIC, and a pure

impredicative sort of definitionally proof-irrelevant propositions P. While propositions can be

about gradual terms and errors, they cannot be themselves inhabited by unknown terms or errors,

thereby ensuring consistent logical reasoning. Lennon-Bertrand et al. [2022] show that no good

notion of equality can be defined in the impure hierarchy of types because of an unsolvable tension

between canonicity and the reduction of cast on equality. In GRIP, the absence of imprecision in

P means the cast operator does not need to be defined between propositions, and therefore the

tension disappears.

To be able to reason about properties of inductive types in P, their elimination principles needs

to be extended for predicates in P. However, contrarily to predicates valued in the impure hierarchy

of types, there is no default behavior for errors and ?. Thus eliminators in P require additional

arguments to deal with those two exceptional cases, in a way reminiscent of try-catch for exception

handling. For instance, the eliminator for B (if-then-else) is given by:

catchP
B : ∀(𝑃 : B → P), 𝑃 true → 𝑃 false → 𝑃 errB → 𝑃 ?B → ∀(𝑏 : B), 𝑃 𝑏

In this logical layer, it becomes possible to reliably prove properties, because it is not possible to

prove a false result in P by means of the unknown (or error) term, contrarily to □. For instance, we

can prove that casting from B to N is always an error, stated as ∀(𝑏 : B), ⟨N ⇐ B⟩ 𝑏 = errN. This

result is proven by a direct use of reflexivity of equality because the cast simply reduces to an error.

2.3 Internal Precision
GRIP features internal precision as an heterogeneous relation in the pure logical universe P, defined

between gradual types and terms of gradual types, as expressed by the typing rules:

Γ ⊢ 𝐴, 𝐵 : □𝑖

Γ ⊢ 𝐴 ⊑𝑖 𝐵 : P

Γ ⊢ 𝐴, 𝐵 : □𝑖 Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵

Γ ⊢ 𝑡 ⊑𝐴 𝐵 𝑢 : P

Because the universe level at which gradual types are defined plays a central role in the definition

of precision, we explicitly annotate type precision with the level at which it occurs. Note that

precision on proofs of propositions is undefined: there is no way to be imprecise in the logical layer.

Garcia et al. [2016] describe a systematic approach to design gradual languages, in which precision

follows from the interpretation of gradual types as the set of static types that they denote. For

instance, the type N → ? denotes all function types with N as domain; this type is deemed more

precise than the unknown type ? because the latter denotes any type. Therefore, precision among

types coincides with the set inclusion of their denotations. Of course, in the context of a stratified

hierarchy of types, with full dependency, the situation is more challenging.

To better reflect the semantics of CastCICN
with respect to universe levels during reduction,

which avoids diverging terms such as Ω without affecting typing, in GRIP we adjust the denotation

of the unknown type at universe level 𝑖 , ?□𝑖
, so that it excludes dependent function types at level 𝑖 .

Consequently, at level 𝑖 , all type constructors except functions are more precise than ?□𝑖
, so the

following propositions hold (mentioning only lists as the prototypical example of inductive types):

□𝑖 ⊑𝑖+1 ?□𝑖+1
L 𝐴 ⊑𝑖 ?□𝑖

whenever 𝐴 ⊑𝑖 ?□𝑖
] 𝐴 ⊑𝑖+1 ?□𝑖+1

?□𝑖
⊑𝑖 ?□𝑖

In particular, in order to be more precise than the unknown type, a dependent function type needs

to be guarded by an explicit use of cumulativity with] : □𝑖 → □𝑖+1. This means that we can derive

] (N → N) ⊑1 ?□1
and] (?□0

→ ?□0
) ⊑1 ?□1

, but N → N ̸⊑0 ?□0
and ?□0

→ ?□0
̸⊑0 ?□0

.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:7

Once the definition of precision on the unknown type is fixed, the rest of the definition is naturally

obtained from congruence/extensional rules. We do not detail here the definition of internal term

precision (presented in §4) but, for instance, precision between two functions 𝑓 ⊑∀𝑎,𝐵 𝑎 ∀𝑎′,𝐵′ 𝑎′ 𝑔

boils down to pointwise precision: ∀𝑎 𝑎′, 𝑎 ⊑
𝐴 𝐴′ 𝑎′ → 𝑓 𝑎 ⊑

𝐵 𝑎 𝐵′ 𝑎′ 𝑔 𝑎
′
. The only remaining

subtlety is the definition of term precision in the impure sort □𝑖 , as it should be connected to

type precision, because terms of □𝑖 are types. Precision on types, when seen as terms of the

sort □𝑖 , is the restriction of type precision to types that are more precise than ?□𝑖
, i.e., 𝐴 ⊑□𝑖 □𝑖

𝐵 corresponds to 𝐴 ⊑𝑖 𝐵 ∧ 𝐵 ⊑𝑖 ?□𝑖
.

Consequently, GRIP has the global property that ?𝐴 is maximal for term precision of any type

𝐴, even when 𝐴 is □𝑖 , but ?□𝑖
is not maximal for type precision at level 𝑖 , so as to avoid the Fire

Triangle, as explained in §1. Conversely, however, type precision is stable by product formations,

i.e., in the non-dependent case if 𝐴 ⊑𝑖 𝐴
′
and 𝐵 ⊑𝑖 𝐵

′
then 𝐴 → 𝐵 ⊑𝑖 𝐴

′ → 𝐵′
. This is not the case

for term precision, again because of the Fire Triangle and of the maximality of ?□ as a term.

This design forces certain terms to be non-monotone, in particular those built using large

elimination. Consider the type-level function t0 := _ b ⇒ if b then N else N → N. We have

false ⊑ ?B, but we do not have t false ≡ N → N ⊑ ?□0
. We can address the issue in this simple

case by posing t1 := _ b ⇒ if b then]N else] (N → N), which explicitly uses cumulativity,

so t1 is monotone as a function of type B → □1. Using cumulativity however does not work

for recursive large elimination as the nArrow function discussed in the introduction, because the

appropriate universe level is not known statically. While being typable in GRIP, Ω and similar

self-applications that would be non-terminating in CastCICG
are also not self-precise, witnessing

their pathological behavior.

Armed with these notions of precision, it becomes possible to axiomatize directly in P the various

properties they satisfy and their relation to casts. Note that because this axiomatization occurs

in the definitionally proof-irrelevant universe P, there is no need to endow the axioms with any

computational meaning: they just need to be justified by a model to guarantee consistency (§5).

2.4 Internal Reasoning about Graduality
Graduality [New and Ahmed 2018] and the dynamic gradual guarantee (DGG) [Siek et al. 2015]

are usually established as global properties of a gradual language. However, as mandated by the

Fire Triangle of Graduality [Lennon-Bertrand et al. 2022], graduality cannot hold globally in a

terminating gradual extension of CIC. While Lennon-Bertrand et al. [2022] simply do not attempt

to study graduality for CastCICN
, the situation of GRIP in this regard is both novel and unique:

because precision is an internal notion within a type theory that allows for consistent reasoning,

we can account for graduality. We can also exactly state the DGG theorem that holds in GRIP.

Dynamic Gradual Guarantee. In essence, the DGG says that if a term 𝑥 is more precise than a

term 𝑦, then for any evaluation context 𝐶 , 𝐶 𝑥 “error approximates” 𝐶 𝑦—meaning that 𝐶 𝑥 can fail

more than𝐶 𝑦, but if it does not fail, then both are equivalent. Essentially, this property is about the

monotonicity of contexts with respect to precision. In our setting, an evaluation context is simply a

function from some type 𝐴 to the type B of booleans, so the DGG corresponds to the monotonicity

of functions, that is, DGG : ∀(𝐴 : □) (𝐶 : 𝐴 → B) (𝑥 𝑦 : 𝐴), 𝑥 ⊑
𝐴 𝐴

𝑦 → 𝐶 𝑥 ⊑B B 𝐶 𝑦.

As we have seen above with nArrow, not all functions are monotone in GRIP. To establish

monotonicity internally in a general manner, we need a notion that does not make sense only

for function types. Fortunately, a direct consequence of the pointwise definition of precision on

functions is that monotonicity of functions corresponds to their self-precision. In general, we write

𝑎⊑
𝐴 for self-precision, meaning that 𝑎 : 𝐴 is such that 𝑎 ⊑

𝐴 𝐴
𝑎.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:8 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

In GRIP, DGG 𝐴 𝐶 is equivalent to 𝐶 ⊑
𝐴→B . In other words, for any type 𝐴 and for any context 𝐶

that is self-precise, we have the usual dynamic gradual guarantee between two elements 𝑥 and 𝑦

related by the precision over 𝐴. This means that we can understand existing gradual systems in

which the DGG holds globally as systems where every context is self-precise by construction.

Graduality. Graduality [New and Ahmed 2018] is defined as the fact that when 𝐴 ⊑𝑖 𝐵, for any

𝑎 : 𝐴 and 𝑏 : 𝐵, there is an adjunction ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊑
𝐵 𝐵

𝑏 ↔ 𝑎 ⊑
𝐴 𝐵

𝑏 ↔ 𝑎 ⊑
𝐴 𝐴

⟨𝐴 ⇐ 𝐵⟩ 𝑏, and
furthermore the roundtrip is the identity on 𝐴 up to equiprecision: ⟨𝐴 ⇐ 𝐵⟩ ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊑

𝐴 𝐴
𝑎 (the

reverse precision relation is a consequence of reflexivity and the adjunction property).

As we show in §4.2 (Prop. 3), GRIP globally satisfies graduality, except for the fact that 𝑎 : 𝐴 and

𝑏 : 𝐵 must both be self-precise for it to hold.

Applications. Graduality and the DGG can be exploited in several ways using internal precision.

A potential use is to develop internally the theory of precision, showing for instance that casts

between types related by precision do compose (which is not the case for arbitrary types). Another

possible use is to derive proofs of precision on open terms that can appear during reasoning. For

instance, when using gradual subset types (introduced in §2.6 below) to define functions, it becomes

necessary to discharge proof obligations related to the precision of terms containing free variables.

One can also exploit the reasoning principle of the DGG for certifying gradual programs. We

mention in §1 the case of two programs that use the map function and its self-precision to deduce

that a gradual program does not fail. More generally, given any correctness criterion for 𝑡 (for

instance that the resulting list has the same length as the input list) knowing 𝑡 ⊑ 𝑢 is sufficient

to deduce the corresponding criterion for 𝑢, as long as the criterion is self-precise. Considering

that proofs of self-precision could be automated for a large class of terms (see Theorem 7, which in

particular covers all the terms mentioned in this example), the proof burden of correctness results

can be considerably lowered by exploiting the DGG compared to direct reasoning. Alternatively,

GRIP lets user construct precision proofs where actual non-trivial reasoning is needed, as illustrated

in the next section.

2.5 Exception Handling and Graduality
All languages in the theoretical literature that address graduality are devoid of exception handling

mechanisms. The reason is that handling runtime type errors makes it possible to define terms

that are not monotone with respect to precision, and so graduality cannot hold globally. However,

in practice, exception handling (and other language mechanisms in tension with graduality) are

key ingredients and one would ideally like to account for them. As explained above, the situation

of GRIP in this regard is new and singular: since we can internally and consistently reason about

precision, we can support exception handling terms, and still establish their monotonicity as specific

theorems proven in the type theory itself. Below we illustrate such an exception-handling term

and its proof of monotonicity within GRIP.
The catch operator on B is not monotone with respect to precision. Consider its type signature:

catch□B : ∀(𝐴 : □) (𝑎true : 𝐴) (𝑎false : 𝐴) (𝑎errB : 𝐴) (𝑎?B : 𝐴),B → 𝐴

There is no reason for 𝑎?B , given to handle the unknown term case, to be less precise than 𝑎true
and 𝑎false. In our setting, the catch operation (and its dependent generalization) can be considered,

without endangering any properties of the system. Moreover, we can show that precision is

preserved in specific uses of catch.

To illustrate, consider the following optimized implementation of (iterated) multiplication of a

list of natural numbers, with two functions, that takes advantage of the fact that 0 is an absorbing

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:9

element (we use pattern matching syntax for induction on lists to ease the reading):

multerrL nil := 1

multerrL (cons 𝑛 𝑙) := if (is_zero 𝑛) then errN else 𝑛 ∗ multerrL 𝑙

multL 𝑙 := catch□N N 0 (_ 𝑛 : N.1 + 𝑛) 0 ?N (multerrL 𝑙)

The function multerrL returns an error as soon as a 0 is encountered in the list, short-circuiting the

recursive computation. The wrapper function multL catches errors raised by multerrL and returns 0

in that case. In general, multL is not monotone because when the input list is an error, it returns

the value 0, which is not more precise than the return value on other lists. But multL is monotone

on lists that do not contain errors, because in such cases errors are used in a delimited manner in

order to optimize execution. In GRIP, we can make this explicit and prove the following theorem:

mult⊑L : ∀(𝑙 𝑙 ′ : L N), not- errL 𝑙 → 𝑙 ⊑L N L N 𝑙 ′ → multL 𝑙 ⊑N N multL 𝑙 ′ .

where not- errL is a predicate ensuring that the list is not errL N and does not contain errN in

its elements. Again, details can be found in the Agda development.

2.6 Gradual Subset Types
The logical layer P enables stating and proving formal properties on the gradual, impure layer □.

But in a dependently-typed setting, it is also important to be able to use the properties stated in P to

constrain types in □, using for instance subset types. Recall that a subset type is a type 𝐴 enriched

with a proposition 𝑃 , noted {𝑎 : 𝐴 & 𝑃 𝑎}, and an inhabitant is a dependent pair (𝑎; 𝑝), such that

𝑎 : 𝐴 and 𝑝 : 𝑃 𝑎. This means that in GRIP we need a way to embed P into □. Note that this cannot

be a direct injection, as propositions in P cannot be inhabited with exceptions. Therefore, we need

a special operator Box : P → □ that takes a proposition 𝑃 and freely adds errBox 𝑃 and ?Box 𝑃 to 𝑃 .

This allows us to define lists of size 𝑛 as the type

SizedL 𝐴 𝑛 := {𝑙 : L 𝐴 & Box (len 𝑙 = 𝑛)}.

This way, we can gradually define the append
?
function as

append
?

: ∀𝐴 𝑛 𝑚, SizedL 𝐴 𝑛 → SizedL 𝐴𝑚 → SizedL 𝐴 (𝑛 +𝑚)
append

?
𝐴 𝑛 𝑚 (𝑙 ; _) (𝑙 ′; _) := (𝑙 ++ 𝑙 ′; ?Box (len (𝑙 ++ 𝑙 ′)=𝑛+𝑚))

where the proof that the result is of the right size is avoided through imprecision. It is also possible

to define the precise append function that contains the actual proof that the resulting size is valid:

append : ∀𝐴 𝑛 𝑚, SizedL 𝐴 𝑛 → SizedL 𝐴𝑚 → SizedL 𝐴 (𝑛 +𝑚)
append 𝐴 𝑛 𝑚 (𝑙 ; box 𝑝) (𝑙 ′; box 𝑝′) := (𝑙 ++ 𝑙 ′;++lemma 𝑙 𝑙 ′ · ap

2
+ 𝑝 𝑝′)

where ++lemma is the proof that the length of two appended lists is equal to the sum of their

lengths, 𝑒 · 𝑒′ is the concatenation of equality and ap
2
is a witness that (binary) functions preserve

equalities.

In GRIP, these two append functions can be distinguished in the logical layer by using the

following predicate, which indicates that a property in the impure layer has really been proven:

validBox : ∀𝑃 : P, Box 𝑃 → P validBox 𝑃 (errBox 𝑃) := ⊥
validBox 𝑃 (box 𝑝) := ⊤ validBox 𝑃 (?Box 𝑃) := ⊥

Posing validSizedL (_;𝑝) := validBox _ 𝑝 , the precise append function is the only one of the two

versions for which one can prove:

valid_append : ∀𝐴 𝑛 𝑚 𝑙 𝑙 ′, validSizedL𝑙 → validSizedL𝑙
′ → validSizedL(append 𝐴 𝑛 𝑚 𝑙 𝑙 ′)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:10 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

In a gradual setting, we can also use the unknown term in order to avoid an explicit definition of

the resulting size of the list. For instance, the filter function can be given the imprecise type

filter : ∀𝐴 𝑛 (𝑃 : 𝐴 → P), SizedL 𝐴 𝑛 → SizedL 𝐴 ?N

However, there is no way to give a valid implementation of a filter function of that type, because

the size of the filtered list cannot be proven to be equal to ?N in the logical layer. Taking advantage

of the internal notion of precision, we can define an alternative notion of sized list in GRIP as

SizedL⊑ 𝐴 𝑛 := {𝑙 : L 𝐴 & Box (len 𝑙 ⊑N N 𝑛)}.
Using this notion of sized lists, it is possible to define a valid filter function of type

filter⊑ : ∀𝐴 𝑛 (𝑃 : 𝐴 → P), SizedL⊑ 𝐴 𝑛 → SizedL⊑ 𝐴 ?N .

because the proof that the size of the filtered list is more precise than ?N directly follows from the

fact that ?N is the maximal element of type N.

3 GRADUAL TYPES AND PURE PROPOSITIONS
In this section, we present the two-layer core of GRIP, intended to be both a gradual cast calculus,

target for elaboration of a gradual surface language, and a pure language to consistently reason

about programs in that cast calculus. In § 3.1, we give an overview of the gradual part of the

language, while §3.2 introduces the pure sort of propositions. Finally, §3.3 discusses how to soundly

support interactions between these two layers.

3.1 The Impure Layer of Gradual Terms
As seen in § 2.1, CastCIC is an extension of MLTT with primitives for gradual typing, namely

casts, errors and unknown terms. For the impure layer of gradual terms, GRIP follows significantly

CastCIC [Lennon-Bertrand et al. 2022], with someminor modifications and presentation differences

highlighted below, in particular the support for exception handling and explicit cumulativity.

The syntax and typing rules of the gradual layer of GRIP are given in Fig. 1. They feature a

hierarchy of universes □𝑖 , dependent products Π introduced by _-abstraction and destructed by

applications, and inductive types, introduced by constructors and destructed by catch operators.

Here we do not consider inductive types with indices, such as equality, whose treatment is deferred

to §6.1. For readability we only formally present listsL, however the calculus can readily be extended
with other parametrized instances ofW-types (see §6.2), as done forCastCIC. Throughout the article,
and in particular for examples, we take the liberty to use dependent sums Σ, natural numbers N and

booleans B. The typing rule (List-Catch) for the catch operator on lists requires two additional

arguments with respect to the usual recursor on lists, one for the case of an error, and one for ?.
Note that the usual recursor on lists ind□L which simply propagates err and ?, as used in CastCIC,
can be recovered from the catch operator by defining ℎerr to be err and ℎ? to be ?.

Like Agda, GRIP uses explicit cumulativity. The operator] lifts a type from one universe to the

next, and operators ↑and ↓ coerce between a type and its lift. We choose explicit cumulativity due

to the central role it plays in the definition of internal precision (§4—see §6 for further discussion

on explicit versus implicit cumulativity). As for the gradual part of the calculus, it features the

unknown terms ?𝐴 : 𝐴, errors err𝐴 : 𝐴, and casts ⟨𝐵 ⇐ 𝐴⟩ 𝑎 between arbitrary types at the same

universe level.

As any dependent type theory, GRIP relies on a notion of conversion that allows us to convert a

term of type 𝑇 ′
to a term of type 𝑇 (Rule Conv) as soon the two types are convertible. Conversion

is defined as the reflexive, symmetric and transitive closure of reduction with the additional [-

conversion for functions and the fact that ↑and ↓ are inverse of each other.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:11

⊢ Γ ⊢ · and ⊢ Γ, 𝑥 : 𝑇 whenever ⊢ Γ and Γ ⊢ 𝑇 :□𝑖

Γ ⊢ 𝑡 :𝑇

Univ

⊢ Γ

Γ ⊢ □𝑖 :□𝑖+1

Var

⊢ Γ (𝑥 : 𝑇) ∈ Γ

Γ ⊢ 𝑥 :𝑇

Prod

Γ ⊢ 𝐴 :□𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵 :□𝑖

Γ ⊢ Π𝑥 : 𝐴.𝐵 :□𝑖

Abs

Γ ⊢ 𝐴 :□𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑡 :𝐵

Γ ⊢ _ 𝑥 : 𝐴.𝑡 : Π𝑥 : 𝐴.𝐵

App

Γ ⊢ 𝑡 : Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 :𝐴

Γ ⊢ 𝑡 𝑢 :𝐵 [𝑥/𝑢]

List

Γ ⊢ 𝐴 : □𝑖

Γ ⊢ L𝐴 : □𝑖

List-Nil

Γ ⊢ 𝐴 : □𝑖

Γ ⊢ nil𝐴 : L𝐴

List-Cons

Γ ⊢ 𝐴 : □𝑖 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : L𝐴

Γ ⊢ cons𝐴 𝑎 𝑙 : L𝐴

List-Catch

Γ ⊢ 𝑃 : L𝐴 → □𝑖 Γ ⊢ ℎnil : 𝑃 nil𝐴 Γ ⊢ ℎcons : Π(𝑎 : 𝐴) (𝑙 : L𝐴) .𝑃 𝑙→𝑃 (cons𝐴 𝑎 𝑙)
Γ ⊢ ℎerr : 𝑃 errL 𝐴 Γ ⊢ ℎ? : 𝑃 ?L 𝐴 Γ ⊢ 𝑙 : L𝐴

Γ ⊢ catch□L 𝐴
𝑃 ℎnil ℎcons ℎerr ℎ? 𝑙 : 𝑃 𝑙

Unk

Γ ⊢ 𝐴 :□𝑖

Γ ⊢ ?𝐴 :𝐴

Err

Γ ⊢ 𝐴 :□𝑖

Γ ⊢ err𝐴 :𝐴

Cast

Γ ⊢ 𝐴 :□𝑖 Γ ⊢ 𝐵 :□𝑖 Γ ⊢ 𝑡 :𝐴

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 :𝐵

Cum

Γ ⊢ 𝐴 :□𝑖

Γ ⊢] 𝐴 :□𝑖+1

Coe

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ ↑𝑎 :] 𝐴

Coe-Inv

Γ ⊢ 𝑎 :] 𝐴

Γ ⊢ ↓ 𝑎 : 𝐴

Conv

Γ ⊢ 𝑡 :𝑇 ′ Γ ⊢ 𝑇 : □𝑖 Γ ⊢ 𝑇 ′ ≡ 𝑇 : □𝑖

Γ ⊢ 𝑡 :𝑇

Γ ⊢ 𝑡 ≡ 𝑡 ′ : 𝑇 (Congruence, reflexivity, symmetry and transitivity rules omitted)

Conv-Red

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑡 ′ : 𝐴 𝑡 { 𝑡 ′

Γ ⊢ 𝑡 ≡ 𝑡 ′ : 𝐴

Π-[

Γ, 𝑥 : 𝐴 ⊢ 𝑡 𝑥 ≡ 𝑡 ′ 𝑥 : 𝐵

Γ ⊢ 𝑡 ≡ 𝑡 ′ : Π𝑥 : 𝐴.𝐵

Coe-Retr

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ ↓ (↑𝑎) ≡ 𝑎 : 𝐴

Coe-Sect

Γ ⊢ 𝑎 :] 𝐴

Γ ⊢ ↑(↓ 𝑎) ≡ 𝑎 :] 𝐴

Fig. 1. GRIP: typing of the impure layer — based on CastCIC

The dynamic behavior of these terms is presented by means of a reduction relation in Fig. 2,

directly adapted from that of CastCIC. There are three sets of rules. The first is for standard rules of
MLTT, i.e., the usual 𝛽-rule for functions and]-rule for lists. The second corresponds to propagation
of both ? and err as exceptions as advocated for by Pédrot and Tabareau [2018]. The last describes

the behavior of the cast primitive, which computes based on the shape of its two type arguments.

The first five rules propagate casts between types with the same head constructor. The next four

correspond to failures, either when the source and target types are incompatible, when one of

them is an error, or when trying to cast a product type into the unknown type of its level. This

last rule Π-Err is crucial for normalization, as it is responsible for the failure of terms such as Ω.
Next, rule Up-Down can be understood as a form of]-rule for ?□: it showcases the fact that casts

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:12 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

into ?□ work as canonical forms for it (when their domain is of a certain form), with casts from ?□
as destructors. Finally rule L-Dec decomposes casts from a list into the unknown type through

L?□, the most general type with L as a head constructor, letting rules L-L-Nil and L-L-Cons
further decompose the innermost cast if applicable. Finally, Red-Cong complements the top-level

reduction given by the other rules with congruence closure. For the purpose of that rule L, cons𝐴,
nil𝐴 and catch□L 𝐴

are treated as terms applied to their arguments.

As standard in rewriting systems for programming languages, reduction is orthogonal (left-linear

and without critical pairs), and so the standard parallel reduction proof technique [Takahashi 1995]

applies to show that it is confluent. This is further witnessed by the confluence checker of Agda,

which accepts the definitions of the proof-of-concept implementation.

3.2 The Pure Layer for Reasoning on Gradual Terms
The casts ⟨𝐵 ⇐ 𝐴⟩ 𝑡 and exceptional terms err𝐴, ?𝐴 are fundamental features to enable gradual

programming. However, as a consequence all types are inhabited, so logical consistency, and thus

meaningful internal reasoning on programs, is lost. To remedy this problem, following the insight

of RETT [Pédrot et al. 2019], we introduce an additional layer dedicated to sound reasoning, which

must therefore be free of the gradual primitives. As in RETT, the separation between the impure

and pure layers is controlled by means of sorts: alongside the impure hierarchy of gradual terms

□𝑖 , we introduce a new impredicative
3
sort P of definitionally proof-irrelevant pure propositions.

Since the propositional layer is pure, there is no “unknown proposition” ?𝑃 for a proposition 𝑃 . But

this is not needed, because in that layer axioms suffice, as they are readily convertible to any other

term by propositional irrelevance.

In more details, Fig. 3 shows how GRIP extends what was essentially CastCIC with this new

sort P (P-Wf). In particular, an extension of conversion specifies that any two proofs of the same

proposition are convertible (P-Irr). We use s for a generic sort, that is either P or □𝑖 for some 𝑖 . At

this stage, there are only two ways to construct propositions. On one side, the empty proposition

⊥ (⊥-Wf) with no introduction, and elimination in the form of an explosion principle (⊥-Elim). On
the other, universal quantification over propositions or types (∀-Wf) introduced by _-abstraction

(∀-Intro) and eliminated by application (∀-Elim). Implication 𝑃 → 𝑄 between propositions is

defined as the non-dependent quantification ∀(_ : 𝑃), 𝑄 . More interesting ones will be added later,

such as the precision relation (Fig. 4). However, further logical connectives can already be encoded

on top of the primitives we already have, using impredicativity and definitional proof-irrelevance

[Gilbert et al. 2019]. For instance, the proposition true can defined by ⊤ := ⊥ → ⊥.
The success of the separation of layers is given by the following theorem, proven in §5.

Theorem 1 (Logical soundness of GRIP). If MLTT extended with strict propositions is consistent then
there is no closed proof ⊢ 𝑒 : ⊥ of the empty proposition ⊥ : P in GRIP.

3.3 Crossing Sort Boundaries
Eliminations. Because of the important differences between the two layers of GRIP, their interac-

tions need to be finely controlled in order to stay well-behaved. This is done by providing restricted

elimination of inhabitants of types from one layer to types of the other.

In one direction, eliminating from the pure propositional layer to the impure gradual one is

allowed only through the empty proposition ⊥, by using the explosion principle, a.k.a. ex-falso
(⊥-Elim). This can be seen as a strengthening of the singleton elimination criterion of the usual Prop
sort of Coq, in a way that respects definitional proof-irrelevance [Gilbert et al. 2019]. Effectively,

3
Impredicativity is inessential but simplifies the exposition while matching the model in §5; the Agda development shows

how this presentation can be adapted to a predicative hierarchy P𝑖 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:13

Head, Whnf□, head : Whnf□ → Head

Head ∋ ℎ ::= □ | Π | L |] 𝐴 Whnf□ ::= □𝑖 | Π𝑥 : 𝐴.𝐵 | L𝐴 |] 𝐴

head (□𝑖) := □ head (Π𝑥 : 𝐴.𝐵) := Π head (L𝐴) := L head (] 𝐴) :=]

𝑡 { 𝑡 ′

Π-𝛽 : (_ 𝑥 : 𝐴.𝑡) 𝑢 { 𝑡 [𝑢/𝑥] Catch-nil : catch□L 𝐴
𝑃 ℎnil ℎcons ℎerr ℎ? nil𝐴 { ℎnil

Catch-cons : catch□L 𝐴
𝑃 ℎnil ℎcons ℎerr ℎ? (cons𝐴 𝑎 𝑙) { ℎcons 𝑎 𝑙 (catch□L 𝐴

𝑃 ℎnil ℎcons ℎerr ℎ? 𝑙)

Propagation rules for ? and err

Π-Unk : ?
Π(𝑥 :𝐴) .𝐵 { _(𝑥 : 𝐴) .?𝐵 Π-Err : err

Π(𝑥 :𝐴) .𝐵 { _(𝑥 : 𝐴). err𝐵

Cum-Unk : ?] 𝐴 { ↑ ?𝐴 Catch-Unk : catch□L 𝐴
𝑃 ℎnil ℎcons ℎerr ℎ? ?L𝐴 { ℎ?

Cum-Err : err] 𝐴 { ↑err𝐴 Catch-Err : catch□L 𝐴
𝑃 ℎnil ℎcons ℎerr ℎ? errL𝐴 { ℎerr

L-Cast-Unk : ⟨L𝐴′ ⇐ L𝐴′′⟩ ?L𝐴 { ?L𝐴′ L-Cast-Err : ⟨L𝐴′ ⇐ L𝐴′′⟩ errL𝐴 { errL𝐴′

Down-Unk : ⟨𝑇 ⇐ ?□𝑖
⟩ ??□𝑖

{ ?𝑇 Down-Err : ⟨𝑇 ⇐ ?□𝑖
⟩ err?□𝑖

{ err𝑇 when 𝑇 ∈ Whnf□

Reduction rules for cast

Π-Π : ⟨Π(𝑦 : 𝐴2) .𝐵2 ⇐ Π(𝑥 : 𝐴1) .𝐵1⟩ 𝑓 { _𝑦 : 𝐴2 .⟨𝐵2 ⇐ 𝐵1 [⟨𝐴1 ⇐ 𝐴2⟩𝑦/𝑥]⟩ (𝑓 ⟨𝐴1 ⇐ 𝐴2⟩𝑦)

Cum-Cum : ⟨] 𝐴′ ⇐] 𝐴⟩ ↑ 𝑡 { ↑⟨𝐴′ ⇐ 𝐴⟩ 𝑡 Univ-Univ : ⟨□𝑖 ⇐ □𝑖 ⟩𝐴 { 𝐴

L-L-Nil : ⟨L𝐴′ ⇐ L𝐴′′⟩ nil𝐴 { nil𝐴′

L-L-Cons : ⟨L𝐴′ ⇐ L𝐴′′⟩ (cons𝐴 𝑎 𝑙) { cons𝐴′
(
⟨𝐴′ ⇐ 𝐴⟩ 𝑎

) (
⟨L𝐴′ ⇐ L𝐴⟩ 𝑙

)
Head-Err : ⟨𝑇 ′ ⇐ 𝑇 ⟩ 𝑡 { err𝑇 ′ when 𝑇,𝑇 ′ ∈ Whnf□ and head𝑇 ≠ head𝑇 ′

Dom-Err : ⟨𝑇 ⇐ err□𝑖
⟩ 𝑡 { err𝑇 Cod-Err : ⟨err□𝑖

⇐ 𝑇 ⟩ 𝑡 { errerr□𝑖
when 𝑇 ∈ Whnf□

Cast-Π-Err : ⟨?□𝑖
⇐ Π𝑥 : 𝐴.𝐵⟩ 𝑓 { err?□𝑖

Up-Down : ⟨𝑌 ⇐ ?□𝑖
⟩ ⟨?□𝑖

⇐ 𝑋 ⟩ 𝑡 { ⟨𝑋 ⇐ 𝑌 ⟩ 𝑡 when 𝑋 ∈ Whnf□ and 𝑌 is L ?□, □ or] 𝐴

L-Dec : ⟨?□𝑖
⇐ L𝐴⟩ 𝑡 { ⟨L𝐴 ⇐ L ?□𝑖

⟩⟨L ?□𝑖
⇐ ?□𝑖

⟩ 𝑡 when L𝐴 ≠ L ?□

Congruence (𝐴, 𝐵 and 𝑡 denote arbitrary terms)

C ::= [·] | Π𝑥 : C. 𝐵 | Π𝑥 : 𝐴.C | _ 𝑥 : C. 𝑡 | _ 𝑥 : 𝐴. C | 𝑡 C | C 𝑡

| ?C | errC | ⟨𝐵 ⇐ C⟩ 𝑡 | ⟨C ⇐ 𝐴⟩ 𝑡 | ⟨𝐵 ⇐ 𝐴⟩ C |] C | ↑ C | ↓ C

| nilC | consC | catch□L C

Red-Cong

𝑡 { 𝑡 ′

C[𝑡] { C[𝑡 ′]

Fig. 2. GRIP: Reduction rules – adapted from CastCIC

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:14 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

P-Wf

Γ ⊢
Γ ⊢ P : □0

P-Irr
Γ ⊢ 𝑃 : P Γ ⊢ 𝑝, 𝑞 : 𝑃

Γ ⊢ 𝑝 ≡ 𝑞 : 𝑃

⊥-Wf

Γ ⊢
Γ ⊢ ⊥ : P

⊥-Elim
Γ ⊢ 𝑝 : ⊥ Γ ⊢ 𝐴 : s

Γ ⊢ exfalso𝐴 𝑝 : 𝐴

∀-Wf

Γ ⊢ 𝐴 : s Γ, 𝑥 : 𝐴 ⊢ 𝑃 : P

Γ ⊢ ∀(𝑥 : 𝐴), 𝑃 : P

∀-Intro
Γ, 𝑥 : 𝐴 ⊢ 𝑝 : 𝑃

Γ ⊢ _(𝑥 : 𝐴) .𝑝 : ∀(𝑥 : 𝐴), 𝑃

∀-Elim
Γ ⊢ 𝑓 : ∀(𝑥 : 𝐴), 𝑃 Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑓 𝑎 : 𝑃 [𝑎/𝑥]

List-Catch-Prop

Γ ⊢ 𝑃 : L𝐴 → P Γ ⊢ ℎnil : 𝑃 nil𝐴 Γ ⊢ ℎcons : Π(𝑎 : 𝐴) (𝑙 : L𝐴).𝑃 𝑙→𝑃 (cons𝐴 𝑎 𝑙)
Γ ⊢ ℎerr : 𝑃 errL 𝐴 Γ ⊢ ℎ? : 𝑃 ?L 𝐴 Γ ⊢ 𝑙 : L𝐴

Γ ⊢ catchP
L 𝐴

𝑃 ℎnil ℎcons ℎerr ℎ? 𝑙 : 𝑃 𝑙

Box-Wf

Γ ⊢ 𝑃 : P

Γ ⊢ Box 𝑃 : □0

Box-Intro
Γ ⊢ 𝑝 : 𝑃

Γ ⊢ box𝑃 𝑝 : Box 𝑃

Box-Elim
Γ ⊢ 𝐴 : Box 𝑃 → s Γ ⊢ ℎ : Π(𝑝 : 𝑃).𝐴(box𝑃𝑝)

Γ ⊢ ℎerr : 𝐴 errBox𝑃 Γ ⊢ ℎ? : 𝐴 ?Box𝑃 Γ ⊢ 𝑡 : Box 𝑃

Γ ⊢ catchBox 𝑃 𝐴ℎℎerr ℎ? 𝑙 : 𝐴 𝑡

Box-Box : ⟨Box𝑄 ⇐ Box 𝑃⟩ 𝑡 { errBox𝑄 C ::= . . . | ∀(𝑥 : C), 𝐵 | ∀(𝑥 : 𝐴), 𝐵 | boxC | catchBox C

Fig. 3. GRIP: Extensions of typing and reduction for propositions and boxing (s = P or □𝑖)

one is allowed to use a proof of a proposition to inhabit a type only to show that we are in an

inconsistent context, typically in an unreachable branch of a match. In practice, this ends up not

being too restrictive, since quite a few propositions are defined on top of ⊥. For instance, internal
precision defined in §4 ultimately reduces to a combination of ∀ and ⊥ after case analysis on its

type parameters.

In the other direction, eliminators from the impure layer to the pure layer need to take errors and

? into account. Indeed, since these terms do not exist as propositions, they cannot be used when

matching on an impure argument. Thus, the need for a catch recursor is even more dire than for

types, because we cannot rely on errors in the target type to provide “default” values for an err or

? scrutinee, as an ind recursor does. On lists, for instance, we get catchP
L 𝐴

, which behaves exactly

the same as catch□L 𝐴
except that it can be used on predicates of type L𝐴 → P.

Embedding Propositional Invariants within □. In order to quantify over a proposition in a type,

or carry a proof along some data, propositions must be embeddable into types and equipped with

err and ?. As illustrated in §2.6 with the case of gradual subset types, this is achieved through the

type Box 𝑃 (Fig. 3) that packs a proposition 𝑃 : P (Box-Wf). A proof 𝑝 : 𝑃 of a proposition can be

used to inhabit Box 𝑃 using the constructor box𝑃 (Box-Intro). Moreover, as any other type, Box 𝑃
is equipped with exceptional constructors errBox𝑃 and ?Box𝑃 . The eliminator on Box is given by a

catch operator, similar to the one for lists (Box-Elim), whose obvious reduction rules are omitted.

We extend the reduction of casts to Box (Box-Box) by reducing a cast between Box-types to an

error. This peculiar definition is chiefly due to the fact that we cannot decide entailment between

arbitrary propositions 𝑃 and 𝑄 , and so cannot decide when casting box𝑃 𝑝 to Box 𝑄 should return

some box𝑄 𝑝′ or fail.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:15

4 INTERNALIZING PRECISION
The pure logical layer P is used to assert properties of the impure gradual layer □. But none of

the primitives introduced in §3 enable direct reasoning on the most important relation between

gradual programs: precision. In this section, we provide exactly this, by extending the logical layer

with an internal precision relation specifying the behavior of casts (§4.1).

However, having a definition of precision is not enough: as we cannot reason by induction on

types, general properties such as transitivity of precision cannot be derived from the definition

in §4.1 alone. This is why we also need to directly add properties of precision (§4.2). As those

are added as new constants inhabiting propositions, we do not need to specify anything about

them. Indeed, all inhabitants of propositions are definitionally equal, so none of them is better than

another. The only thing of importance is to preserve consistency of the theory, by ensuring that

the properties are validated by the model (§5).

Although the impure layer does not globally satisfy graduality, a large fragment of the language

behaves well, in the sense that it is monotone with respect to precision (§4.3). In particular, we show

that this fragment subsumes GRIP↑, a fragment inspired by CastCIC↑
, the normalizing gradual

variant proposed by [Lennon-Bertrand et al. 2022] (Corollary 8).

4.1 The Precision Relation
The raison d’être of the propositional layer is to host the precision relation, that provides an entry

point for specifying correctness properties of casts. Precision is formulated in two distinct flavors

for types and terms: a homogeneous relation 𝐴 ⊑𝑖 𝐵 on types 𝐴, 𝐵 : □𝑖 of a common universe

level 𝑖 , and a heterogeneous relation 𝑎 ⊑
𝐴 𝐵

𝑏 between terms 𝑎 : 𝐴 and 𝑏 : 𝐵. These two precision

relations are internalized as two new primitive type formers, and their content is described by their

behaviour on their type parameters. In practice we present these relations through a confluent

reduction system in Fig. 4, corresponding to a definition by case analysis on the type parameters,

which is how the model of §5 proceeds. We note 𝑎 ⊒⊑𝐴 𝑎′ for 𝑎 ⊑
𝐴 𝐴

𝑎′ ∧ 𝑎′ ⊑
𝐴 𝐴

𝑎.

Let us now explain the two main properties we expect to hold. First, the precision relation

should be transitive: there should be an operation · such that if 𝑒 : 𝐴 ⊑𝑖 𝐵 and 𝑒′ : 𝐵 ⊑𝑖 𝐶 then

𝑒 · 𝑒′ : 𝐴 ⊑𝑖 𝐶 . Second, the precision relation cannot be reflexive. Indeed, reflexivity at function

types 𝐴 → 𝐵 entails monotonicity: due to the way we define precision, if a function 𝑓 : 𝐴 → 𝐵

verifies 𝑓 ⊑ 𝑓 then for any 𝑎 ⊑
𝐴 𝐴

𝑎′, 𝑓 𝑎 ⊑
𝐵 𝐵

𝑓 𝑎′. But we do not want to globally forbid such

non-monotone features, as we rather made the design choice to allow some non-monotonicity in

GRIP, e.g. the catch construct. As a consequence, reflexivity becomes a property, and we say that

a type 𝐴 : □𝑖 is self-precise, noted 𝐴⊑𝑖
, when it is a reflexive element of ⊑𝑖 . Similarly, a term 𝑎 : 𝐴 is

called self-precise, noted 𝑎⊑
𝐴 , when it is related to itself by ⊑

𝐴 𝐴
. Not every type is self-precise, but

the precision relation is quasi-reflexive: if two types 𝐴, 𝐵 are related by precision 𝑒 : 𝐴 ⊑𝑖 𝐵, both

are self-precise,
4
so we have self-precision proofs ⌊𝑒⌋ : 𝐴⊑𝑖 , ⌈𝑒⌉ : 𝐵⊑𝑖

.

Let us now turn to the actual content of the precision relations as defined in Fig. 4. Term and type

precision are internally supported by adding two new term formers, whose typing is given by the

first two rules ⊑-Type-Wf and ⊑-Wf. □-Refl-Ty next states that each universe □𝑖 is self-precise

(as a type), P-Refl-Ty that P is self-precise at level 0, and]-Cong-Ty and L-Cong-Ty that] and L
are congruent for precision on types at the adequate levels. Precision at product types is the crux

of the definition of precision, we defer its explanation of Π-Cong to after the other rules. For now,

it is only important to note that contrarily to other type formers, there is no rule to relate product

4
In order to obtain transitivity on function types, the precision relation needs to be at least co-transitive, a property obtained

here as a consequence of quasi-reflexivity.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:16 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

⊑-Type-Wf

Γ ⊢ 𝐴, 𝐵 : □𝑖

Γ ⊢ 𝐴 ⊑𝑖 𝐵 : P

⊑-Wf

Γ ⊢ 𝐴, 𝐵 : □𝑖 Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵

Γ ⊢ 𝑡 ⊑𝐴 𝐵 𝑢 : P

□-Refl-Ty

Γ ⊢
Γ ⊢ □𝑖⊑ : □⊑𝑖+1

𝑖

P-Refl-Ty
Γ ⊢

Γ ⊢ P⊑ : P⊑0

]-Cong-Ty

] 𝐴 ⊑𝑖+1
] 𝐵 { 𝐴 ⊑𝑖 𝐵

L-Cong-Ty
L𝐴 ⊑𝑖 L𝐵 { 𝐴 ⊑𝑖 𝐵

Π-Cong

Π𝑥 : 𝐴.𝐵 ⊑𝑖 Π𝑥 : 𝐴′ .𝐵′ { 𝐴 ⊑𝑖 𝐴′ ∧

∀𝑎0 𝑎1, 𝑎0 ⊑𝐴 𝐴 𝑎1 → 𝐵 [𝑎0/𝑥] ⊑𝑖 𝐵 [𝑎1/𝑥] ∧
∀𝑎′

0
𝑎′

1
, 𝑎′

0
⊑𝐴′ 𝐴′ 𝑎

′
1
→ 𝐵′ [𝑎′

0
/𝑥 ′] ⊑𝑖 𝐵′ [𝑎′1/𝑥

′] ∧
∀𝑎 𝑎′, 𝑎 ⊑𝐴 𝐴′ 𝑎

′ → 𝐵 [𝑎/𝑥] ⊑𝑖 𝐵′ [𝑎′/𝑥 ′]

□-⊑
𝐴 ⊑□𝑖 □𝑖

𝐵 { 𝐴 ⊑𝑖 𝐵 ∧ 𝐵 ⊑𝑖 ?□𝑖

□-?-Bound
Γ ⊢

Γ ⊢ □𝑖 ? : □𝑖 ⊑𝑖+1 ?□𝑖+1

P-?-Bound
Γ ⊢

Γ ⊢ P? : P ⊑0 ?□0

]-?-Bound
Γ ⊢ 𝑤 : 𝐴⊑𝑖

Γ ⊢]?𝑤 :] 𝐴 ⊑𝑖+1 ?□𝑖+1

L-?-Bound
Γ ⊢ 𝑤 : 𝐴 ⊑𝑖 ?□𝑖

Γ ⊢ L?𝑤 : L𝐴 ⊑𝑖 ?□𝑖

err-Refl
Γ ⊢ 𝑤 : 𝐴⊑𝑖

Γ ⊢ ⊑-reflerr 𝑤 : err
⊑
𝐴

𝐴

?-Refl
Γ ⊢ 𝑤 : 𝐴⊑𝑖

⊢ ⊑-refl?𝑤 : ?
⊑
𝐴

𝐴

err-⊑
Γ ⊢ 𝑤𝐴 : 𝐴⊑𝑖 Γ ⊢ 𝑤𝐵 : 𝐵⊑𝑖 Γ ⊢ 𝑤𝑏 : 𝑏⊑𝐵

Γ ⊢ err -min𝑤𝐴𝑤𝐵 𝑤𝑏 : err𝐴 ⊑𝐴 𝐵 𝑏

?-⊑
Γ ⊢ 𝑤𝐴 : 𝐴⊑𝑖 Γ ⊢ 𝑤𝑎 : 𝑎⊑𝐴 Γ ⊢ 𝑤𝐵 : 𝐵⊑𝑖

Γ ⊢ ?-max𝑤𝐴𝑤𝑎𝑤𝐵 : 𝑎 ⊑𝐴 𝐵 ?𝐵

P-⊑
Γ ⊢ 𝑃 : P Γ ⊢ 𝑄 : P

Γ ⊢ P-irr 𝑃 𝑄 : 𝑃 ⊑P P 𝑄

Box-Cong
Box 𝑃 ⊑0 Box𝑄 { 𝑃 ⊑P P 𝑄

Box-⊑
Γ ⊢ 𝑏 : Box 𝑃 Γ ⊢ 𝑏′ : Box𝑄

Γ ⊢ box⊑irr 𝑏 𝑏
′

: 𝑏 ⊑Box𝑃 Box𝑄 𝑏′

L-⊑-nil
Γ ⊢ 𝐴 : □

Γ ⊢ nil⊑ 𝐴 : nil⊑L𝐴

L-⊑-cons
cons𝑎 𝑙 ⊑L𝐴 L𝐴′ cons𝑎

′ 𝑙 { 𝑎 ⊑𝐴 𝐴′ 𝑎
′ ∧ 𝑙 ⊑L𝐴 L𝐴′ 𝑙

′

NoConf-nil-cons
nil ⊑L𝐴 L𝐴′ cons𝑎 𝑙 { ⊥

NoConf-cons-nil
cons𝑎 𝑙 ⊑L𝐴 L𝐴′ nil { ⊥

Π-⊑

𝑓 ⊑
Π𝑥 :𝐴.𝐵 Π𝑥 :𝐴′ .𝐵′ 𝑔 {

∀𝑎0 𝑎1, 𝑎0 ⊑𝐴 𝐴 𝑎1 → 𝑓 𝑎0 ⊑𝐵 𝑎0 𝐵 𝑎1

𝑓 𝑎1 ∧
∀𝑎′

0
𝑎′

1
, 𝑎′

0
⊑𝐴′ 𝐴′ 𝑎

′
1
→ 𝑔 𝑎′

0
⊑

𝐵′ 𝑎′
0

𝐵′ 𝑎′
1

𝑔 𝑎′
1
∧

∀𝑎 𝑎′, 𝑎 ⊑𝐴 𝐴′ 𝑎
′ → 𝑓 𝑎 ⊑𝐵 𝑎 𝐵′ 𝑎′ 𝑔 𝑎

′

]-⊑
𝑎 ⊑]𝐴]𝐵 𝑏 { ↓𝑎 ⊑𝐴 𝐵 ↓𝑏

Fig. 4. Precision on types and terms

types as terms, only as types. This is the technical counterpart of the intuition given in §2.3 that

precision between products should be guarded by an explicit use of cumulativity.

Next come the rules for type formers as terms: all of them—apart, crucially, from product types—

are either directly self-precise (as terms of □𝑖) or congruent because they are congruent for type

precision and bounded above by ?□. Indeed, heterogeneous precision between types reduces to

homogeneous precision between types more precise than ?□𝑖
by virtue of □-⊑, tying the knot

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:17

between the two notions. As a consequence, a proof of precision 𝐴 ⊑□𝑖 □𝑖
𝐴 entails that 𝐴 ⊑𝑖 𝐴

as well as 𝐴 ⊑𝑖 ?□𝑖
. □𝑖 , P are bounded by ?□ via □-?-Bound, P-?-Bound, whereas] require

that its parameter is self-precise, rule]-?-Bound, and L that its parameter is bounded by ?□, rule
L-?-Bound. The two exceptional types err□ and ?□ are also self-precise, both as types and terms

of the universe, using instances of err-Refl and ?-Refl.
More generally, the rules err-Refl and ?-Refl ensure that the terms err𝐴 and ?𝐴 are in relation

with themselves, while err-⊑ and ?-⊑ say that they are respectively minimal and maximal—for

self-precise terms of a self-precise type.

Heterogeneous precision between propositions is degenerate (P-⊑), meaning that any two

propositions are related by precision. Monotonicity of Boxwith respect to precision on propositions
(Box-Cong) means that precision between boxed propositions is degenerate as well. To validate

this, we endow Box types with a precision relation collapsing all terms (Box-⊑). This is sensible, as
it showcases the fact that no (self-precise) context should be allowed to distinguish two proofs of a

proposition, since those, even Boxed, ought to be observationally subsingletons. It also makes the

eager erroring behavior of Box-Box sensible, since the error is as good an inhabitant of a Boxed
proposition as any.

Cumulativity preserves the relation between types coming from lower levels (]-⊑), meaning that

coercions between a type and its lifting are monotone. On inductive types the precision relation

closely resembles binary parametricity [Bernardy et al. 2012], relating a constructor to itself when

arguments are related (L-⊑-nil, L-⊑-cons). Two no confusion principles (NoConf-nil-cons,
NoConf-cons-nil) allow to deny the relatedness of lists that have distinct head constructors.

5

Finally, we need to explain how function types are related by (type) precision. For simplicity, we

start with the non-dependent case that takes the standard shape found in other gradual languages:

two function types 𝐴 → 𝐵 and 𝐴′ → 𝐵′
are related whenever their domains and codomains are

related: 𝐴 ⊑𝑖 𝐴
′ ∧ 𝐵 ⊑𝑖 𝐵

′
. The relation of precision 𝑓 ⊑

𝐴→𝐵 𝐴′→𝐵′ 𝑔 between functions 𝑓 : 𝐴 → 𝐵

and 𝑔 : 𝐴′ → 𝐵′
has to ensure that (1) 𝑓 is monotone with respect to the precision on 𝐴 and 𝐵; (2) 𝑔

is monotone with respect to the precision on 𝐴′
and 𝐵′

; and (3) given inputs 𝑎 : 𝐴, 𝑎′ : 𝐴′
related by

precision 𝑎 ⊑
𝐴 𝐴

𝑎′, 𝑓 𝑎 : 𝐵 is related to 𝑔 𝑎′ : 𝐵′
by ⊑

𝐵 𝐵
. Condition (3) boils down to the standard

definition of (binary) parametricity on function types. Additional conditions (1-2) are required to

ensure quasi-reflexivity at function types: since we do not want to globally impose that functions

respect precision, we need to explicitly require that precision only relates monotone functions. For

a function 𝑓 : 𝐴 → 𝐵 between self-precise types, being self-precise is logically equivalent to being

monotone with respect to precision, so conditions (1-3) are equivalent in that case.

In the case of dependent function types (Π-Cong), domains must be related similarly to the

non-dependent case but the codomains must now be related as type families, meaning that they

are required to satisfy variants of the conditions (1-3) with respect to type precision. Finally, the

relation between dependent functions is described by Π-⊑ and requires again that both functions

are monotone and map related input to related outputs, at the adequate types.

Example 2 (Necessity of monotonicity in function types). Consider the two functions of type 0 →
unit given by 𝑓 := catch0 (_(𝑥 : 0).unit) () errunit and 𝑔 := catch0 (_(𝑥 : 0).unit) ?unit ()
using the eliminator for the empty inductive type 0, catch0 : Π(𝑃 : 0 → □) (ℎerr : 𝑃 err0) (ℎ? :

𝑃 ?0) (𝑥 : 0).𝑃 𝑥 . These functions verify that ∀𝑥 ⊑0 0 𝑦, 𝑓 𝑥 ⊑unit unit 𝑔𝑦, but neither 𝑓 or 𝑔 are

monotone. As a consequence, precision on function types need to be restricted to monotone

5
In the case of lists and using transitivity, we can derive solely from these two rules that any non-exceptional constructor is

discriminable from errL𝐴, ?L𝐴 , e.g. that nil @L𝐴 L𝐴
errL𝐴 , and ?L𝐴 @L𝐴 L𝐴

errL𝐴 . For other inductive types such as

0 or unit, these rules should be assumed primitively, e.g. ?0 @0 0 err0 for the empty type 0.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:18 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

functions. Taking 𝑓 to be instead the constant function with value errunit, or 𝑔 the constant

function with value ?unit shows that we really need both functions to be monotone.

4.2 Properties of Precision
Wenow extend the theorywith properties about precision that are validated by ourmodel (presented

in §5), in order to allow users to reason abstractly about precision proofs in GRIP. Thus, whenever
we say that a property “holds” in this section, it should be understood as a twofold statement: first,

the property is validated in the model, and so we add a new constant in GRIP, witnessing its truth.

Embedding-projection pairs. Why do we care so much about precision? The fundamental reason

is that casts between types that are related by precision are well-behaved. We adopt the approach

of New and Ahmed [2018] to characterize well-behaved pairs of casts as those that form an

embedding projection pair (ep-pair). In our setting that allows non monotone functions, the

definition of an ep-pair needs to be relativized to self-precise elements.

Definition 1 (Embedding projection pairs). A pair of functions (⟨𝐵 ⇐ 𝐴⟩ : 𝐴 → 𝐵, ⟨𝐴 ⇐ 𝐵⟩ :

𝐵 → 𝐴) is an embedding projection pair, notation ⟨𝐵 ⇐ 𝐴⟩ ⊣ ⟨𝐴 ⇐ 𝐵⟩ , when:
Monotonicity both ⟨𝐵 ⇐ 𝐴⟩ and ⟨𝐴 ⇐ 𝐵⟩ are monotone with respect to precision,

∀𝑎 𝑎′ : 𝐴, 𝑎 ⊑𝐴 𝐴 𝑎′ → ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊑𝐵 𝐵 ⟨𝐵 ⇐ 𝐴⟩ 𝑎′

∀𝑏 𝑏′ : 𝐵,𝑏 ⊑𝐵 𝐵 𝑏′ → ⟨𝐴 ⇐ 𝐵⟩ 𝑏 ⊑𝐵 𝐵 ⟨𝐴 ⇐ 𝐵⟩ 𝑏′

Adjunction for any self-precise terms 𝑎 : 𝐴,𝑏 : 𝐵 the following adjunction property is verified

𝑎⊑
𝐴 ∧ 𝑏 ⊑

𝐵 → ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊑𝐵 𝐵 𝑏 ↔ 𝑎 ⊑𝐴 𝐴 ⟨𝐴 ⇐ 𝐵⟩ 𝑏,

Retraction a self-precise term 𝑎 : 𝐴 is equiprecise with its downcast-upcast:

𝑎⊑
𝐴 → ⟨𝐴 ⇐ 𝐵⟩ ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊑𝐴 𝐴 𝑎

The reverse precision relation is a consequence of reflexivity and the adjunction property.

We call ⟨𝐵 ⇐ 𝐴⟩ − : 𝐴 → 𝐵 the upcast associated to the ep-pair and ⟨𝐴 ⇐ 𝐵⟩ − : 𝐵 → 𝐴 the
downcast.

Proposition 3. In GRIP, any pair of casts (⟨𝐵 ⇐ 𝐴⟩ : 𝐴 → 𝐵, ⟨𝐴 ⇐ 𝐵⟩ : 𝐵 → 𝐴) between types
𝐴 ⊑𝑖 𝐵 related by precision forms an embedding projection pair witnessed by

⊑-ep-pair : ∀𝐴𝐵, 𝐴 ⊑𝑖 𝐵 → ⟨𝐵 ⇐ 𝐴⟩ ⊣ ⟨𝐴 ⇐ 𝐵⟩ .

Proof. The addition of the constant ⊑-ep-pair is justified by the model of GRIP presented in §5, in

particular by the functorial component of El in Theorem 9 providing an ep-pair for any two types

related by precision. □

Order-like properties. In order to establish that two types are related by precision, we can use the

generic axioms of the precision relations described in Fig. 5 beside those of Fig. 4. Type precision is

a quasi-reflexive and transitive relation, and so is term precision at any self-precise type, meaning

that ⊑
𝐴 𝐴

is quasi-reflexive and transitive whenever 𝐴⊑𝑖
. Moreover, using Fig. 4, they admit err

and ? as respectively smallest and largest (self-precise) elements. More generally, heterogeneous

term precision satisfies indexed variants of quasi-reflexivity and transitivity on self-precise types.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:19

Quasi-reflexivity and transitivity

Implicit bindings𝑤𝐴 : 𝐴⊑𝑖 ,𝑤𝐵 : 𝐵⊑𝑖 ,𝑤𝐶 : 𝐶⊑𝑖
:

⌊−⌋ : 𝐴 ⊑𝑖 𝐵 → 𝐴 ⊑𝑖 𝐴 ⌊−⌋ : ∀{𝑤𝐴𝑤𝐵}, 𝑎 ⊑𝐴 𝐵 𝑏 → 𝑎 ⊑𝐴 𝐴 𝑎

⌈−⌉ : 𝐴 ⊑𝑖 𝐵 → 𝐵 ⊑𝑖 𝐵 ⌈−⌉ : ∀{𝑤𝐴𝑤𝐵}, 𝑎 ⊑𝐴 𝐵 𝑏 → 𝑏 ⊑𝐵 𝐵 𝑏

− · − : 𝐴 ⊑𝑖 𝐵 → 𝐵 ⊑𝑖 𝐶 → 𝐴 ⊑𝑖 𝐶 − · − : ∀{𝑤𝐴𝑤𝐵 𝑤𝐶 }, 𝑎 ⊑𝐴 𝐵 𝑏 → 𝑏 ⊑𝐵 𝐶 𝑐 → 𝑎 ⊑𝐴 𝐶 𝑐

Decomposition of casts
Upper-decomposition

Γ ⊢ 𝑤𝐴𝑋 : 𝐴 ⊑𝑖 𝑋 Γ ⊢ 𝑤𝐵𝑋 : 𝐵 ⊑𝑖 𝑋 Γ ⊢ 𝑤𝑎 : 𝑎⊑𝐴

Γ ⊢ upper-decomp𝑤𝐴𝑋 𝑤𝐵𝑋 𝑤𝑎 : ⟨𝐵 ⇐ 𝑋 ⟩ ⟨𝑋 ⇐ 𝐴⟩ 𝑎 ⊒⊑𝐵 ⟨𝐵 ⇐ 𝐴⟩ 𝑎

Decomposition of heterogenous term precision

For𝐴 ⊑𝑖 𝑋, 𝐵 ⊑𝑖 𝑋, 𝑎 ⊑𝐴 𝐵 𝑏 ↔ 𝑎⊑𝐴 ∧ ⟨𝑋 ⇐ 𝐴⟩ 𝑎 ⊑𝑋 𝑋 ⟨𝑋 ⇐ 𝐵⟩ 𝑏 ∧ 𝑏⊑𝐵 (1)

Fig. 5. Axioms of precision

Functoriality & monotonicity of casts.
Cast-Id

𝐴⊑𝑖 𝑎⊑𝐴

⟨𝐴 ⇐ 𝐴⟩ 𝑎 ⊒⊑𝐴 𝑎

Upcast-Comp

𝐴 ⊑𝑖 𝐵 𝐵 ⊑𝑖 𝐶 𝑎⊑𝐴

⟨𝐶 ⇐ 𝐵⟩ ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊒⊑𝐶 ⟨𝐶 ⇐ 𝐴⟩ 𝑎

Downcast-Comp

𝐴 ⊑𝑖 𝐵 𝐵 ⊑𝑖 𝐶 𝑐 ⊑𝐶

⟨𝐴 ⇐ 𝐵⟩ ⟨𝐵 ⇐ 𝐶⟩ 𝑐 ⊒⊑𝐴 ⟨𝐴 ⇐ 𝐶⟩ 𝑐

Cast-Mon

⟨− ⇐ −⟩ ⊑
Π(𝐴𝐵:□𝑖) .𝐴→𝐵 ≡ ∀𝐴𝐴′ (𝑤𝐴 : 𝐴 ⊑𝑖 𝐴′) 𝐵 𝐵′ (𝑤𝐵 : 𝐵 ⊑𝑖 𝐵′)

(𝑎 : 𝐴) (𝑎′ : 𝐴′) (𝑤𝑎 : 𝑎 ⊑𝐴 𝐴′ 𝑎
′), ⟨𝐵 ⇐ 𝐴⟩ 𝑎 ⊑𝐵 𝐵′ ⟨𝐵′ ⇐ 𝐴′⟩ 𝑎′

Characterization of heterogenous term precision

For𝐴⊑𝑖 , 𝐵⊑𝑖 , 𝑎 ⊑𝐴 𝐵 𝑏 ↔ 𝑎 ⊑𝐴 𝐴 ⟨𝐴 ⇐ 𝐵⟩ 𝑏 ∧ 𝑏⊑𝐵 (2)

Fig. 6. Properties of precision

Decomposition of casts and heterogeneous precision. A further fundamental property of casts is

that they decompose through any type less precise than both the source and the target of the cast:

if 𝐴 ⊑𝑖 𝑋 and 𝐵 ⊑𝑖 𝑋 , then for any self-precise term 𝑎 : 𝐴, the cast ⟨𝐵 ⇐ 𝐴⟩ 𝑎 is equiprecise to an

upcast from 𝐴 to 𝑋 followed by a downcast to 𝐵:

𝑎⊑
𝐴 → ⟨𝐵 ⇐ 𝑋 ⟩ ⟨𝑋 ⇐ 𝐴⟩ 𝑎 ⊒⊑𝐵 ⟨𝐵 ⇐ 𝐴⟩ 𝑎

Heterogenous term precision ⊑
𝐴 𝐵

satisfy a similar decomposition property Eq. (1) expressing

that the relation between self-precise elements can be reduced to homogeneous precision at any

common upper bound 𝑋 of 𝐴, 𝐵 for type precision. In particular, whenever 𝐴, 𝐵 : □𝑖 are more

precise than ?□𝑖
, that is when 𝐴, 𝐵 are self-precise as terms of □𝑖 , ?□𝑖

provides such a common

upper bound for precision. As long as precision and cast are concerned, self precise types 𝐴, 𝐵 : □𝑖

that are not bounded by ?□𝑖
can be adequately replaced by] 𝐴 and] 𝐵, thanks to]-Cong-Ty and

]-⊑, for which ?□𝑖+1
is an upper bound. As a consequence of these properties, heterogeneous term

precision between self precise types can be reformulated using solely homogeneous precision at

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:20 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

𝐴, 𝐵 and casts:

𝑎 ⊑𝐴 𝐵 𝑏 ↔ 𝑎⊑
𝐴 ∧ ⟨?□ ⇐] 𝐴⟩ ↑𝑎 ⊑?□ ?□

⟨?□ ⇐] 𝐵⟩ ↑𝑏 ∧ 𝑏 ⊑
𝐵

↔ 𝑎 ⊑𝐴 𝐴 ⟨𝐴 ⇐ 𝐵⟩ 𝑏 ∧ 𝑏 ⊑
𝐵

Composing casts. Using Upper-decomposition and the monotonicity of embedding projection

pairs, we can show that the ep-pair induced by precision are functorial: casting a self-precise term

𝑎 of a self-precise type 𝐴 to 𝐴 itself is equiprecise to 𝑎 (Cast-Id), a succession of upcasts between

precision-related types combine to a single upcast (Upcast-Comp) and similarly for downcasts

(Downcast-Comp).

Failure of threesomes. Since casts decompose in a well-behaved way through any upper bound, it

is natural to wonder whether a similar property would hold for lower bounds, as can be found in

threesomes [Siek andWadler 2010] in the simply-typed gradual setting. In general, if𝑌 ⊑𝑖 𝐴,𝑌 ⊑𝑖 𝐵

we can derive from properties of casts that for any self-precise term 𝑎 : 𝐴, ⟨𝐵 ⇐ 𝑌 ⟩ ⟨𝑌 ⇐ 𝐴⟩ 𝑎 ⊑
𝐵 𝐵

⟨𝐵 ⇐ 𝐴⟩ 𝑎, and taking 𝐴 = 𝐵 = N, 𝑌 = err□𝑖
and 𝑎 = 0 shows that this precision ordering can be

strict. We could still expect that this relation is an equiprecision when 𝑌 is sufficiently close to both

𝐴 and 𝐵, typically when it is their meet 𝐴 ⊓ 𝐵 for the precision relation. Such a condition is known

as the Beck-Chevalley condition in the literature on hyperdoctrines and descent [Lawvere 1970],

and the following counterexample shows that this property does not hold in GRIP.

Example 4 (No cast decomposition through meets). Computing the meet of 𝑋1 = N → N and

𝑋2 = Π(𝑏 : B) (if 𝑏 then N else B) gives
𝑋1 ⊓ 𝑋2 = Π(𝑥 : N ⊓ B) N ⊓ (if ⟨B ⇐ N ⊓ B⟩ 𝑥 then N else B)

= Π(𝑥 : err□) N ⊓ (if errB then N else B)
= Π(𝑥 : err□) N ⊓ err□

= err□ → err□

Now computing the result of casting 𝑓 : 𝑋1 := _(𝑛 : N).5 to 𝑋2 directly and through 𝑋1 ⊓ 𝑋2, and

evaluating both results on true, we obtain

(⟨𝑋2 ⇐ 𝑋1⟩ 𝑓) true = (_(𝑏 : B).⟨if 𝑏 then N else B ⇐ N⟩ 𝑓 (⟨N ⇐ B⟩ 𝑏)) true
= (_(𝑏 : B).⟨if 𝑏 then N else B ⇐ N⟩ 𝑓 errN) true
= (_(𝑏 : B).⟨if 𝑏 then N else B ⇐ N⟩ 5) true
= ⟨if true then N else B ⇐ N⟩ 5 = ⟨N ⇐ N⟩ 5 = 5

and

(⟨𝑋2 ⇐ 𝑋1 ⊓ 𝑋2⟩⟨𝑋1 ⊓ 𝑋2 ⇐ 𝑋1⟩ 𝑓) true = (⟨𝑋2 ⇐ err□ → err□⟩⟨err□ → err□ ⇐ 𝑋1⟩ 𝑓) true
= (⟨𝑋2 ⇐ err□ → err□⟩ _(𝑥 : err□) . errerr□) true
= (_(𝑏 : B). errif 𝑏 then N else B) true = errN

Note that for these examples the call-by-name behavior of err [Pédrot and Tabareau 2018] is crucial.
In particular, ⟨𝑋2 ⇐ 𝑋1⟩ 𝑓 @ ⟨𝑋1 ⇐ 𝑋1 ⊓ 𝑋2⟩⟨𝑋1 ⊓ 𝑋2 ⇐ 𝑋2⟩ 𝑓 and the cast from 𝑋1 to 𝑋2 cannot

be decomposed through a type more precise than both 𝑋1 and 𝑋2. This counterexample can be

adapted to use dependent sums Σ instead of dependent products, showing that this phenomenon is

proper to type dependency and function types are not crucial.

Note that all the properties presented in this section only apply to self-precise terms. The behavior

of cast on types or terms that are not self-precise, typically non monotone functions, is left partially

unconstrained.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:21

Dynamic Gradual Guarantee. A crucial property of precision is that self-precise contexts (i.e.,
functions for a type 𝐴 to B) are monotone. As explained in §2.4, this is a form of Dynamic Gradual

Guarantee, and it follows directly from the definition of precision for functions.

Theorem 5 (Dynamic Gradual Guarantee). For any 𝐴 : □ and boolean context 𝐶 : 𝐴 → B such that
𝐶 ⊑

𝐴→B , if 𝑥,𝑦 : 𝐴 are such that 𝑥 ⊑
𝐴 𝐴

𝑦, it also holds that 𝐶 𝑥 ⊑B B 𝐶 𝑦.

4.3 Monotone Fragment
By adequately restrictingGRIP, we can consider a fragment where every term is monotone. On that

fragment, precision between functions only needs a single heterogeneous component, bypassing

boilerplate proofs of monotonicity. In practice, a characterization of this fragment could be used to

automatically synthesize monotonicity proofs and lift a sizeable share of the burden imposed to the

programmer.

There are two main non-monotone features in GRIP. The catch constructor, which purposely

allows for a non-monotone treatment of err and ? (see Example 2), is the first source of non-

monotone terms. The second source of non-monotone terms lie in the use of Π to produce terms of

a universe, which cannot be monotone due to the Fire Triangle of Graduality. However, Lennon-

Bertrand et al. [2022] explain how to sidestep the latter obstruction by systematically lifting Π
types by one universe level up, a soluution employed in their CastCIC↑

system—the only variant

of CastCIC that satisfies both normalization and graduality, by sacrificing conservativity over CIC.
We can rethink CastCIC↑

as an attempt to guarantee that every well-typed term is self-precise in

order to globally satisfy graduality. Inspired by this technique, we construct GRIP↑, a subsystem of

GRIP where every term is self-precise.

Monotone catch. The typical non-monotone construction in GRIP, is the catch construction on

inductive types (see Example 2). However there is a generic way to prove that a catch is monotone,

assuming adequate precision hypotheses on its arguments. In the case of lists, monotonicity of

catch□L 𝐴
amounts to:

∀𝑙 𝑙 ′, 𝑙 ⊑L𝐴 L𝐴 𝑙 ′→ catch□L 𝐴 𝑃 ℎnil ℎcons ℎerr ℎ? 𝑙 ⊑
𝑃 𝑙 𝑃 𝑙 ′ catch

□
L 𝐴 𝑃 ℎnil ℎcons ℎerr ℎ? 𝑙

′

A natural proof of monotonicity proceeds by successive induction on 𝑙 and 𝑙 ′ using catchP
. The

cases with distinct head constructors, e.g. 𝑙 = nil, 𝑙 ′ = cons𝑎 𝑙 ′′, are contradictory thanks to the

no-confusion rules for precision on list (for instance NoConf-nil-cons). For the valid cases, we

need to assume that the the branches ℎnil and ℎcons are less precise than ℎerr and more precise

than ℎ?, and that ℎcons is self-precise, e.g. ℎerr ⊑
𝑃 errL𝐴 𝑃 nil ℎnil. In particular, ind□L 𝑃 ℎnil ℎcons :=

catch□L 𝐴
𝑃 ℎnil ℎcons err𝑃 errL𝐴

?𝑃 ?L𝐴
is always monotone if 𝑃 , ℎnil and ℎcons are self-precise.

GRIP↑, a gradual fragment of GRIP. In Lennon-Bertrand et al. [2022], the system CastCIC↑
is

both gradual and normalizing, at the cost of being more conservative than CIC: some terms are

typable in CIC, but not in CastCIC↑
. This is done by systematically increasing the level of a Π type.

Drawing inspiration from this, we can define GRIP↑, which has exactly the same rules for typing

and conversion as Figs. 1 and 2, but for rule Prod replaced by the following rule Π-GRIP↑, and uses
of catch□L 𝐴

restricted to ind□L 𝐴
as defined above.

Π-GRIP↑

Γ ⊢GRIP↑ 𝐴 : □𝑖 Γ, 𝑥 : 𝐴 ⊢GRIP↑ 𝐵 : □𝑖

Γ ⊢GRIP↑ Π𝑥 : 𝐴.𝐵 : □𝑖+1

To distinguish the two, we use ⊢GRIP for judgments inGRIP, and ⊢GRIP↑ for judgments inGRIP↑. It
is rather straightforward to define a translation [−] from GRIP↑ to GRIP: the translation preserves

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:22 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

all term and type constructor but Π types where it adds an explicit coercion due to cumulativity:

[Π𝑥 : 𝐴.𝐵] :=] (Π𝑥 : [𝐴] .[𝐵])
[_ 𝑥 : 𝐴.𝑡] := ↑(_ 𝑥 : [𝐴] .[𝑡])
[𝑡 𝑢] := (↓ [𝑡]) [𝑢]

Extending this translation to contexts in a pointwise fashion, we obtain the following correctness

lemma.

Lemma 6. The translation [−] from GRIP↑ to GRIP forms a syntactic model:

(1) If Γ ⊢GRIP↑ 𝑡 : 𝐴 and 𝑡 { 𝑡 ′ in CastCIC↑ then [Γ] ⊢GRIP [𝑡] ≡ [𝑡 ′] : [𝐴] in GRIP;
(2) If Γ ⊢GRIP↑ 𝑡 : 𝐴 then [Γ] ⊢GRIP [𝑡] : [𝐴].

Proof. For point (1), 𝛽-reduction is preserved thanks to Coe-Retr and all other rules are the same

in both systems. Point (2) is then immediate from the observation that Π-GRIP↑ can be translated

to an application of Prod followed by Cum, Abs is translated to an application of the same rule

followed by Coe, and App is modified with an application of Coe-Inv. □

Theorem 7 (Self-precision of GRIP↑ embedding). If ⊢GRIP↑ 𝑡 : 𝐴 then [𝑡] ⊑[𝐴] is derivable.
Proof. We prove more generally that if Γ ⊢GRIP↑ 𝑡 : 𝐴 then we can build a proof 𝑡 ′ such that

[Γ]Y ⊢GRIP 𝑡 ′ : [𝑡]0 ⊑[𝐴]0 [𝐴]1

[𝑡]1, where [Γ, 𝑥 : 𝐴]Y := [Γ]Y , 𝑥0 : [𝐴]0, 𝑥1 : [𝐴]1, 𝑥Y : 𝑥0 ⊑[𝐴]0 [𝐴]1

𝑥1,

and [𝑥]𝑖 := 𝑥𝑖 . The proof proceeds by induction on the typing derivation. The case of ind□L 𝐴
has

already been outlined above, thus we only treat the other central case where 𝑡 = Π𝑥 : 𝐴.𝐵.

By induction hypothesis, we have [Γ]Y ⊢GRIP 𝑖ℎ𝐴 : [𝐴]0 ⊑[□𝑖]0 [□𝑖]1

[𝐴]1 and [Γ]Y , 𝑥0 :

[𝐴]0, 𝑥1 : [𝐴]1, 𝑥Y : 𝑥0 ⊑[𝐴]0 [𝐴]1

𝑥1 ⊢GRIP 𝑖ℎ𝐵 : [𝐵]0 ⊑[□𝑖]0 [□𝑖]1

[𝐵]1, and need to prove that

] (Π𝑥0 : [𝐴]0.[𝐵]0) ⊑[□𝑖+1]0 [□𝑖+1]1

] (Π𝑥1 : [𝐴]1.[𝐵]1). Hence, using□-⊑,]-Cong-Ty and]-?-Bound,
that Π𝑥0 : [𝐴]0 .[𝐵]0 ⊑𝑖 Π𝑥1 : [𝐴]1.[𝐵]1. The two heterogeneous precision required by Π-Cong are

direct consequences of 𝑖ℎ𝐴 and 𝑖ℎ𝐵 using □-⊑ to relate type and term precision at level 𝑖 . Finally,

the monotonicity of [𝐵]0 and [𝐵]1 are consequences of 𝑖ℎ𝐵 and quasi-reflexivity of precision that

holds because every type in the context is self-precise. □

Combining this theorem with Theorem 5, we get that the DGG holds for any GRIP↑ context.

Corollary 8 (Dynamic Gradual Guarantee for GRIP↑). If ⊢GRIP↑ 𝐶 : 𝐴 → B, then for any 𝑥,𝑦 such
that 𝑥 ⊑[𝐴] [𝐴] 𝑦 is derivable, also (↓ [𝐶]) 𝑥 ⊑B B (↓ [𝐶]) 𝑦 is.

Terms that fall outside of the GRIP↑ fragment include recursive dependent arities such as nArrow
(§2.3), and pathological terms such as Ω (§1) that would be non-terminating in a globally gradual

system such as GCICG
. More interestingly, examples like multerrL (§2.5) can be manually proven

to be gradual even if they do not belong to GRIP↑ because they use catch locally.

5 A MODEL OF A REASONABLY GRADUAL TYPE THEORY
In this section we prove Theorem 1, that is the relative consistency of GRIP with a hierarchy of 𝑛

universes with respect toMLTT6 with (𝑛 + 1) universes and a type of definitionally proof irrelevant
propositions. To do so, we exhibit a model where types are equipped with a relation reflecting

precision. We formalized the components of this model (for two universes □0 and □1) in Coq. The

construction of the model can be stratified in 3 layers:

• first, a computational layer that provides meaning to casts and exceptional terms err𝐴, ?𝐴 ;

• second, a relational layer that equips every type with a relation and defines a compatible

global heterogeneous relation between elements;

6
With the standard type formers 0, 1, 2, W, Σ, Id and Π.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:23

Let El X : □ := X .1.

Inductive code : □𝑖 → □𝑖+1 :=

| code_Nat : code Nat

| code_Pi (A : □□𝑖) (B : El A → □□𝑖) :

code (forall a, El (B a))

| ...

where □□𝑖 := (Σ(A : □𝑖) code A).

Fixpoint cast (A B : □□𝑖) : A → B :=

match A .2, B .2 with

| code_Nat, code_Nat⇒ _ n ⇒ n

| code_Nat, code_Pi _ _ ⇒ _ _ ⇒ err _

| code_Pi A0 A1, code_Nat⇒ _ _⇒ err _

| code_Pi A0 A1, code_Pi B0 B1 ⇒
_ (f : forall a, El (A1 a)) (b : El B0) ⇒
cast (A1 _) (B1 b) (f (cast B0 A0 b))

|

Fig. 7. Simplified code for the universe of codes and of cast.

• third, a logical layer ensuring that said relations do capture well-behaved casts whenever all

inputs are adequately related.

Computational layer. The computational layer closely resembles the discrete model of Lennon-

Bertrand et al. [2022], and we explain here its main features. The introduction of exceptional terms

follows the approach of ExTT [Pédrot and Tabareau 2018]. Its main point is to extend each inductive

type with two new constructors, one for ? and one for err. Product types and functions are left

unmodified, defining ? and err pointwise.
We depart from this model on universes, so that we can define the cast primitive by case analysis

on types. Taking inspiration from Boulier et al. [2017], we interpret types as codes when they are

seen as terms, and as the semantics of those codes when they are seen as types. Thus, the standard

interpretation for a term inhabiting a type is maintained, but a function taking as argument an

element of the universe □□𝑖 can now perform a case analysis on the code of the type. The precise

construction of the interpretation of the universe hierarchy employs a technique presented by

Sattler and Vezzosi [2020]. We first define an inductive family code : □𝑖 → □𝑖+1 describing codes

for types and then pack it as □□𝑖 : □𝑖+1 := Σ(𝐴 : □𝑖) code𝐴, using the first projection as decoding.

We can then define an operation cast : forall (A B : □□𝑖), A → B by induction on these codes,

following the reduction rules of Fig. 2. Fig. 7 presents a simplified version of this construction, to

which codes for the translation of the types err□𝑖
, ?□𝑖

, P, L𝐴 and □𝑗 (for 𝑗 < 𝑖) are added in the

actual development.

The exceptional model of Pédrot and Tabareau [2018] leave the interpretation of exceptions

at the universe □ unspecified. We exploit this underspecification, and define err□𝑖
as the unit

type 1 with a single element. ?□𝑖+1
is interpreted by an inductive type unknown (Fig. 8) closed

by all type constructors but dependent functions. Beyond the two constructors err_unknown
and unk_unknown interpreting respectively err?□ and ??□ , univ_unknown allows to embed the

preceding universe, cum_unknown hosts any type from said preceding universe (including product

types), and list_unknown can be used to embed lists of elements from □□𝑖+1. Additional inductive

types would be represented with supplementary constructors. The interpretation of ?□0
do not use

univ_unknown and cum_unknown.

Relational layer. We now endow the translation of every type with a homogeneous relation

prec : forall (A : □□𝑖), A → A → SProp. Thanks to the characterization of heterogeneous preci-

sion in Fig. 6, we can use prec together with cast to obtain an heterogeneous relation on all types

at the same universe level:

Let hprec (A B : □□𝑖) (a : El A) (b : El B) : SProp := prec A a (cast A B b) ∧ prec B b b .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:24 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

Inductive unknown :=

| err_unknown

| univ_unknown (A : □□𝑖)

| cum_unknown (A : □□𝑖) (a : El A)

| list_unknown (l : list unknown)

| unk_unknown.

Inductive prec_unk : unknown→ unknown→ SProp :=

| err_any : sp x → prec_unk err_unknown x

| unk_any : sp x → prec_unk x unk_unknown

| univ_prec : A ⊑
□□𝑖 □□𝑖

B →
prec_unk (univ_unknown A) (univ_unknown B)

| cum_prec A a B b : sp A → sp B → hprec A B a b →
prec_unk (cum_unknown A a) (cum_unknown B b)

| list_prec l1 l2 : lift_list prec_unk l1 l2→
prec_unk (list_unknown l1) (list_unknown l2).

Fig. 8. Translation of ?□ and its precision relation.

The construction of prec proceeds first by induction on the universe level, and then by induction on

the code of the type. The cases for err□𝑖
, P, inductive types, dependent functions and cumulativity

injection follow the formulae given for precision in Fig. 4. In particular, defining homogeneous

precision at function types relies on heterogeneous precision on the codomain. On universes, we

use precision for the smaller universe, obtained by induction hypothesis on the universe level.

The precision for unknown is described on the right of Fig. 8. err_unknown and unk_unknown are
respectively smaller and larger than self-precise terms of any summand. univ_prec embeds the

relation from □□𝑖 and cum_prec relate elements of self-precise types using the heterogeneous

relation determined by □□𝑖 . Finally, list_prec lifts the precision on unknown to lists.

Property layer. Once all definitions are in place, we need to show that the relations thus defined

do characterize well-behaved casts. This is summarized by the following definitions.

Definition 2 (Partial preorder). A partial preorder on a type 𝑋 is a transitive and quasi-reflexive
relation ⊑

𝑋 𝑋
on 𝑋 .

An element 𝑥 of a partial preorder 𝑋 is self-precise, notation 𝑥 ⊑
𝑋 , when 𝑥 ⊑

𝑋 𝑋
𝑥 . A pair of

functions 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑋 between partial preorders 𝑋,𝑌 forms an embedding projection
pair if it satifisfies the condition of Definition 1. A type family with casts consists of a type family

𝐵 : 𝐴 → □ equipped with two functions ⇑𝐵
𝑎,𝑎′ : 𝐵 𝑎 → 𝐵 𝑎′ and ⇓𝐵

𝑎,𝑎′ : 𝐵 𝑎
′ → 𝐵 𝑎.

Definition 3 (Indexed partial preorder). If 𝐴 is a partial preorder and 𝐵 a type family with cast such
that each 𝐵 𝑎 is endowed with a relation ⊑

𝐵 𝑎 𝐵 𝑎
, then 𝐵 is an indexed partial preorder when

• whenever 𝑎⊑
𝐴 , ⊑

𝐵 𝑎 𝐵 𝑎
is a partial preorder;

• if 𝑎 ⊑
𝐴 𝐴

𝑎′, then (⇑𝐵
𝑎,𝑎′ , ⇓𝐵𝑎,𝑎′) forms an ep-pair;

• whenever 𝑎⊑
𝐴 , 𝑏 ⊑

𝐵𝑎 , ⇑𝐵𝑎,𝑎 𝑏 ⊒⊑𝐵 𝑎 𝑏 ⊒⊑𝐵 𝑎⇓𝐵𝑎,𝑎 𝑏;
• if 𝑎0 ⊑

𝐴 𝐴
𝑎1 ⊑

𝐴 𝐴
𝑎2, 𝑏

⊑
𝐵𝑎

0 , then ⇑𝐵𝑎1,𝑎2

⇑𝐵𝑎0,𝑎1

𝑏 ⊒⊑𝐵 𝑎2
⇑𝐵𝑎0,𝑎2

𝑏 and ⇓𝐵𝑎2,𝑎1

⇓𝐵𝑎1,𝑎0

𝑏 ⊒⊑𝐵 𝑎2
⇓𝐵𝑎2,𝑎0

𝑏

Now the model validates the following:

Theorem 9 (Properties of precision). The universes□□𝑖 is a partial preorder for term and type precision
and the type families El : □□𝑖 → □𝑖 equiped with cast are indexed partial preorders. unknown is a
greatest element for term precision on the universe.

The proof of this theorem proceed by induction on multiset of codes, showing that the relation

induced by a code is partial preorder, that pairs of casts between the partial preorders induced by a

pair of codes form an ep-pair and that the eppairs induced by a triple of code compose adequately.

To that end, we prove and use a lemmas asserting that type constructors from □□𝑖 preserve partial

preorders and ep-pairs, e.g. the relation on ∀𝑎 : El𝐴, El(𝐵 𝑎) induced by a code code_Pi A B is a

partial preorder whenever El𝐴 is a partial preorder and El ◦ 𝐵 is an indexed partial preorder.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:25

The properties presented in §4.2 are consequences of this theorem, using the decomposition of

heterogeneous term relation through any upper bound for the precision relation, the fact that any

type at universe level 𝑖 is bounded by ?□𝑖+1
and cumulativity preserves and reflects precision.

Metatheoretical properties induced by the model. Since P is translated to SProp and ⊥ to ⊥ in the

model, any closed proof ⊢ 𝑒 : ⊥ induces a corresponding closed term of an empty type in the target

type theory. This proves the relative consistency of GRIP with respect to MLTT equipped with

enough universes and extended with a type of strict proposition as claimed in Theorem 1. This

result can be further refined by analyzing the translation of each reduction steps from Fig. 2 and

realizing that these can be simulated by at least one step in the target type theory, reusing a proof

technique found in Lennon-Bertrand et al. [2022].

Theorem 10 (Normalization of GRIP). GRIP is normalizing.
Proof sketch. Since each step of reduction in the source is mapped to at least one step of reduction

in the target, any infinite reduction sequence in the source maps to an infinite reduction sequence

in the target as well. Gilbert et al. [2019] show that MLTT+SProp is normalizing, so an infinite

reduction sequence cannot exist in the target, and so not in the source either. □

6 EXTENSIONS OF GRIP

We now discuss several extensions of GRIP for future work.

6.1 Observational Equality
GRIP features two kinds of sorts, □ for (impure) computationally relevant types and P for defi-

nitionally proof irrelevant propositions. The main purpose of P is to be able to define precision

internally in GRIP, by induction on types. In the recent work of Pujet and Tabareau [2022], P is

used in the same way to define a notion of observational equality by induction on types, satisfying

extensionality principles. It turns out that internal precision and observational equality can both

be integrated in GRIP. We can add in P a notion of equality 𝑥 =𝐴 𝑦 for any terms 𝑥 and 𝑦 of type 𝐴,

together with a transport operation:

Transport

Γ ⊢ 𝐴 : □𝑖 Γ ⊢ 𝐵 : □𝑖 Γ ⊢ 𝑒 : 𝐴 = 𝐵 Γ ⊢ 𝑡 : 𝐴

Γ ⊢ transport 𝐴 𝐵 𝑒 𝑡 : 𝐵

Intuitively, transport can be seen as the safe version of cast, using a proof of equality between types

in the logical layer as a guard to ensure it never fails.

There are two main interests in adding a notion of observational equality to GRIP. First, it
allows us to state many properties than cannot be only stated using internal precision. For instance,

equality is necessary to express internally what antisymmetry means for internal precision, and

prove that it holds on types for which all terms are self-precise. Second, it provides a canonical way

to express (non-gradual) subset types in GRIP, thus recovering a flavor of indexed inductive types.

6.2 Inductive Types
A large class of inductive types can be encoded using well-founded trees W𝐴𝐵 with nodes indexed

by𝐴 : □ of arity 𝐵 : 𝐴 → □, a.k.a. W-types [Altenkirch et al. 2015; Hugunin 2020]. A mild extension

of GRIP could add such types W𝐴𝐵 with a constructor sup𝐴,𝐵 : Π(𝑎 : 𝐴) (𝑘 : 𝐵 𝑎 → W𝐴𝐵) →
W𝐴𝐵 and a corresponding eliminator catchW𝐴𝐵 . These types would then be self-precise whenever

𝐴 is a self-precise type and 𝐵 self-precise as a type family. In general, it is not reasonable to expect

W-types to be below unknown, that is W𝐴𝐵 ⊑□𝑖 □𝑖
?□𝑖

, because the constructor sup takes a

function as argument that cannot be faithfully encoded in ?□𝑖
. The more restricted class of finitary

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:26 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

W-types, meaning that 𝐵 𝑎 is a finite type for any 𝑎 : 𝐴, however supports such a bounding rule so

that finitary W-types are also precise as terms in the universe. The inductive type of lists L𝑋 is an

instance of a finitary W-type with 𝐴 = 1 + 𝑋 , 𝐵(inl ()) = 0 and 𝐵(inr𝑥) = unit.
It is also possible to add general indexed inductive types in P, such as less-or-equal in N. Gilbert

et al. [2019] describe a general criterion to detect which inductive types in P can be eliminated into

□. Basically, this criterion amounts to detecting when an indexed inductive type can be encoded

with a fixpoint over its indices. This criterion also works for GRIP, and could be reused directly.

6.3 From GRIP to a Gradual Proof Assistant
GRIP is still quite far from a real-life proof assistant. As explained at the beginning of §2, usual

gradual systems are separated into two languages: a source language where types are compared

in an optimistic way using the wildcard ?, and a target language with casts to explicitely flag

where those optimistic assumptions are made, so as to be able to raise errors in case of type

incompatibilities discovered during program evaluation. Here we concentrated on designing the

target language, as our contributions apply mostly to it, with the expectation that the source and

elaboration layers as presented in Lennon-Bertrand et al. [2022] could be easily adapted to our

extensions. Consequently, we chose to present our type theory in a standard, undirected fashion,

rather than using the bidirectional approach of Lennon-Bertrand et al. [2022]. However, building

an actual proof assistant involves tackling that elaboration layer, and the many subtle points it

involves, which were only partially solved by [Lennon-Bertrand et al. 2022]. One example would

be the interaction between unification (the main and crucial feature of elaboration in e.g. Coq) and
gradual features of the language, especially consistency.

But even if one considers only the target language, incorporating it in an actual proof assistant is

no small feat. In GRIP, we made a wealth of technical choices (impredicativity of P, explicit cumu-

lativity, and so on) that might need to be reconsidered if one wishes to integrate gradual features in

a proof assistant that takes a different path. In particular, a proper treatment of universe levels is a

challenge. For instance, a system more flexible (and probably easier to use) than GRIP would allow

casts between types at different levels, but this would cause an unprecedented dependency between

reduction (of casts) and universe levels, which in turn raises subtle implementation questions.

Similarly, we made some choices in the definition of precision, both in the rules of Fig. 4 and the

properties reflected in GRIP in §4.2. They were in part guided by the aim to make the system as

ready for use as possible, but they might need to be reconsidered in a practical implementation.

Finally, an interesting design point pertains to the catch primitive. Actual proof assistants

usually do not rely on recursors, but instead provide facilities for pattern-matching in various

forms. Implementations of catch should be adapted to those. In particular, a mechanism to present

monotone catch as presented in §4.3 could take inspiration from the implementation of higher

inductive types, with path-constructors replaced by monotonicity constraints.

7 RELATEDWORK
Effects in dependent type theory. Incorporating effects in type theory, specifically errors as needed

for gradual systems, is particularly challenging. Indeed, the presence of effects triggers a strong

tension with the metatheoretic properties of CIC, putting logical consistency in danger, as clarified

by the Fire Triangle of Pédrot and Tabareau [2020]. Several programming languages mix dependent

types with effectful computation, either giving up on metatheoretical properties, such as Dependent

Haskell [Eisenberg 2016], which allows diverging type-level expressions, or by restricting the

dependent fragment to pure expressions [Swamy et al. 2016; Xi and Pfenning 1998]. Stump et al.

[2010] study the sound coexistence of a type theory with diverging terms via an effect system and

a mechanism of termination casts to recover totality for any term given a proof of its termination.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

A Reasonably Gradual Type Theory 124:27

This mechanism is used in Trellys [Kimmell et al. 2012] and its successor Zombie [Casinghino

et al. 2014], which are call-by-value dependently-typed languages that separate the pure logical

fragment from the impure programming fragment using consistency classifiers in the typing

judgment. This integrated approach supports sound reasoning about potentially diverging programs.

Recently, Pédrot and Tabareau [2017, 2018] build up from general considerations on effects to

specifically consider exceptions in type theory. Pédrot et al. [2019] introduce RETT, exploiting
universe hierarchies to introduce a separation between an effectful, inconsistent layer and a pure,

consistent one to reason about the effectful one.GRIP is directly inspired by RETT to support sound

reasoning about gradual programs.

Strict propositions and observational equality. It has long been recognized that equality in standard

MLTT is too syntactic. Observational type theory [Altenkirch et al. 2007] was proposed to address

this issue, but only thanks to work on incorporating (definitional) irrelevance in dependent type

theory [Abel and Scherer 2012; Gilbert et al. 2019] was it possible to recently turn this proposition

into a concrete system [Pujet and Tabareau 2022], by using the definitionally proof-irrelevant sort

to host the observational equality. The sort P and the precision relation of GRIP are very much

inspired respectively by the sort of definitionally proof-irrelevant propositions of Gilbert et al.

[2019] and the observational equality of Pujet and Tabareau [2022].

Directed type theory. Segal and Rezk types characterize well-behaved types in directed type

theory [Riehl and Shulman 2017; Weaver and Licata 2020] in a fashion very similar to self-precise

types in GRIP: Segal types have (up-to-homotopy) unique composition of morphisms (transitivity),

while Rezk types satisfy a local notion of univalence (antisymmetry). In these works, any type

is equipped with (higher) identities, an important difference with our setting where we do not

globally ensure reflexivity of the precision relations, that is self-precision of types and terms.

Gradual typing and dependent types. This work continues a line of research in combining de-

pendent types and dynamic type checking, as first explored by [Ou et al. 2004], more specifically

following the gradual typing approach [Siek and Taha 2006; Siek et al. 2015], and extending it to a

full-blown dependent type theory. Ou et al. [2004] study a programming language with separate

dependently- and simply-typed fragments, using arbitrary runtime checks at the boundary. The

blame calculus of Wadler and Findler [2009] considers subset types on base types, where the

refinement is an arbitrary term, as in hybrid type checking [Knowles and Flanagan 2010], but lacks

dependent function types. Tanter and Tabareau [2015] provide casts for subset types with decidable

properties in Coq, and Dagand et al. [2018] support dependent interoperability [Osera et al. 2012]

in Coq. All these approaches lack the notion of precision that is central to gradual typing. Gradual

refinement types [Lehmann and Tanter 2017] differ from the gradual subset types presented here

in that they are an extension of liquid types [Rondon et al. 2008] with imprecise logical formulas,

based on an SMT-decidable logic about base types. Eremondi et al. [2019] study the gradualization

of CC𝜔 , and propose approximate normalization to ensure decidable typechecking. Approximate

normalization satisfies the dynamic gradual guarantee, but not graduality in the sense of [New and

Ahmed 2018], because casting to an imprecise type and back can yield the unknown term instead of

the original term. The most recent and complete attempt to gradualize CIC, upon which we build

in this work, is the study of GCIC and its underlying cast calculus CastCIC [Lennon-Bertrand et al.

2022], which comes under three variants. GRIP is an extension of CastCIC that allows for sound

reasoning about gradual programs and, thanks to internal precision, can account for the specific

form of graduality supported by CastCICN
, the normalizing conservative extension of CIC, and

can embed CastCIC↑
as a subclass of terms that are self-precise. Eremondi et al. [2022] extends

GCIC with gradual propositional equality using runtime witnesses of plausible equality, taking

inspiration from evidence tracking in Abstracting Gradual Typing [Garcia et al. 2016].

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

124:28 Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter

REFERENCES
Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical

Methods in Computer Science Volume 8, Issue 1 (3 2012). https://doi.org/10.2168/LMCS-8(1:29)2012

Thorsten Altenkirch, Neil Ghani, Peter G. Hancock, Conor McBride, and Peter Morris. 2015. Indexed containers. J. Funct.
Program. 25 (2015). https://doi.org/10.1017/S095679681500009X

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the
Workshop on Programming Languages meets Program Verification (PLPV 2007). 57–68. https://doi.org/10.1145/1292597.

1292608

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free: Parametricity for dependent types. Journal
of Functional Programming 22, 2 (March 2012), 107–152. https://doi.org/10.1017/S0956796812000056

Rastislav Bodík and Rupak Majumdar (Eds.). 2016. Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2016). ACM Press, St Petersburg, FL, USA. https://doi.org/10.1145/2837614

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In

Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17,
2017. 182–194. https://doi.org/10.1145/3018610.3018620

Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. 2014. Combining proofs and programs in a dependently typed

language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2014). ACM Press, San Diego, CA, USA, 671–684. https://doi.org/10.1145/2535838.2535883

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2017. Cubical Type Theory: A Constructive Interpreta-

tion of the Univalence Axiom. FLAP 4, 10 (2017), 3127–3170. http://collegepublications.co.uk/ifcolog/?00019

Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2018. Foundations of Dependent Interoperability. Journal of
Functional Programming 28 (2018), 9:1–9:44. https://doi.org/10.1017/S0956796818000011

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. arXiv:1610.07978 [cs.PL]

Joseph Eremondi, Ronald Garcia, and Éric Tanter. 2022. Propositional Equality for Gradual Dependently-Typed Programming.

Proceedings of the ACM on Programming Languages 6, ICFP (Sept. 2022). https://doi.org/10.1145/3547627

Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate Normalization for Gradual Dependent Types. See[ICFP

2019], 88:1–88:30. https://doi.org/10.1145/3341692

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing, See [Bodík and Majumdar 2016],

429–442. https://doi.org/10.1145/2837614 See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance without K.

Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 1–28. https://doi.org/10.1145/3290316

Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). 2020. LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020. ACM Press. https://doi.org/10.1145/3373718

Jasper Hugunin. 2020. Why Not W?. In 26th International Conference on Types for Proofs and Programs, TYPES 2020, March
2-5, 2020, University of Turin, Italy (LIPIcs, Vol. 188), Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:9. https://doi.org/10.4230/LIPIcs.TYPES.2020.8

ICFP 2019. Proceedings of the 24th ACM SIGPLAN Conference on Functional Programming (ICFP 2019). Vol. 3. ACM Press.

Garrin Kimmell, Aaron Stump, Harley D. Eades III, Peng Fu, Tim Sheard, Stephanie Weirich, Chris Casinghino, Vilhelm

Sjöberg, Nathan Collins, and Ki Yung Ahn. 2012. Equational reasoning about programs with general recursion and

call-by-value semantics. In Proceedings of the 6th workshop on Programming Languages Meets Program Verification (PLPV
2012). ACM Press, 15–26. https://doi.org/10.1145/2103776.2103780

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid type checking. ACM Transactions on Programming Languages and
Systems 32, 2 (Jan. 2010), Article n.6. https://doi.org/10.1145/1111037.1111059

Bill Lawvere. 1970. Equality in hyperdoctrines and comprehension schema as an adjoint functor. In Proceedings of the AMS
Symposium on Pure Mathematics XVII. 1–14.

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2017). ACM Press, Paris, France, 775–788. https://doi.org/10.1145/3009837.

3009856

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. 2022. Gradualizing the Calculus of Inductive

Constructions. ACM Transactions on Programming Languages and Systems 44, 2 (June 2022). https://doi.org/10.1145/

3495528

Per Martin-Löf. 1971. An Intuitionistic Theory of Types. Unpublished manuscript.

Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs, In Proceedings of the 23rd ACM SIGPLAN

Conference on Functional Programming (ICFP 2018). Proceedings of the ACM on Programming Languages 2, 73:1–73:30.
https://doi.org/10.1145/3236768

Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. 2012. Dependent Interoperability. In Proceedings of the 6th
workshop on Programming Languages Meets Program Verification (PLPV 2012). ACM Press, 3–14. https://doi.org/10.1145/

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1145/2837614
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/2535838.2535883
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1017/S0956796818000011
https://arxiv.org/abs/1610.07978
https://doi.org/10.1145/3547627
https://doi.org/10.1145/3341692
https://doi.org/10.1145/2837614
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3373718
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.1145/2103776.2103780
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/3009837.3009856
https://doi.org/10.1145/3009837.3009856
https://doi.org/10.1145/3495528
https://doi.org/10.1145/3495528
https://doi.org/10.1145/3236768
https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1145/2103776.2103779

A Reasonably Gradual Type Theory 124:29

2103776.2103779

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. 2004. Dynamic Typing with Dependent Types. In

Proceedings of the IFIP International Conference on Theoretical Computer Science. 437–450. https://doi.org/10.1007/1-4020-

8141-3_34

Pierre-Marie Pédrot and Nicolas Tabareau. 2017. An effectful way to eliminate addiction to dependence. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer

Society, 1–12. https://doi.org/10.1109/LICS.2017.8005113

Pierre-Marie Pédrot and Nicolas Tabareau. 2018. Failure is Not an Option - An Exceptional Type Theory. In Proceedings of
the 27th European Symposium on Programming Languages and Systems (ESOP 2018) (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer-Verlag, Thessaloniki, Greece, 245–271. https://doi.org/10.1007/978-3-319-89884-

1_9

Pierre-Marie Pédrot and Nicolas Tabareau. 2020. The fire triangle: how to mix substitution, dependent elimination, and effects.

Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 58:1–58:28. https://doi.org/10.1145/3371126

Pierre-Marie Pédrot, Nicolas Tabareau, Hans Fehrmann, and Éric Tanter. 2019. A Reasonably Exceptional Type Theory.

See[ICFP 2019], 108:1–108:29. https://doi.org/10.1145/3341712

Loïc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now For Good. Proceedings of the ACM on Programming
Languages 6, POPL (Jan. 2022). https://doi.org/10.1145/3498693

Emily Riehl and Michael Shulman. 2017. A type theory for synthetic ∞-categories. Higher Structures 1 (2017), 147–223 (78).
https://doi.org/10.21136/HS.2017.06

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2008), Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM

Press, 159–169. https://doi.org/10.1145/1375581.1375602

Christian Sattler and Andrea Vezzosi. 2020. Partial Univalence in n-truncated Type Theory, See [Hermanns et al. 2020],

807–819. https://doi.org/10.1145/3373718.3394759

Jeremy Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the Scheme and Functional
Programming Workshop. 81–92.

Jeremy Siek and Philip Wadler. 2010. Threesomes, with and without blame. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2010). ACM Press, Madrid, Spain, 365–376.

https://doi.org/10.1145/1706299.1706342

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing.

In 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 32). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Asilomar, California, USA, 274–293. https://doi.

org/10.4230/LIPIcs.SNAPL.2015.274

Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. 2010. Termination Casts: A Flexible Approach to Termination with

General Recursion. In Proceedings Workshop on Partiality and Recursion in Interactive Theorem Provers (PAR 2010). 76–93.
https://doi.org/10.29007/3w36

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin.

2016. Dependent types and multi-effects in F
★
, See [Bodík and Majumdar 2016], 256–270. https://doi.org/10.1145/2837614

M. Takahashi. 1995. Parallel Reductions in _-Calculus. Information and Computation 118, 1 (1995), 120 – 127. https:

//doi.org/10.1006/inco.1995.1057

Éric Tanter and Nicolas Tabareau. 2015. Gradual Certified Programming in Coq. In Proceedings of the 11th ACM Dynamic
Languages Symposium (DLS 2015). ACM Press, Pittsburgh, PA, USA, 26–40. https://doi.org/10.1145/2816707.2816710

The Coq Development Team. 2020. The Coq proof assistant reference manual. https://coq.inria.fr/refman/ Version 8.12.

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical Agda: A Dependently Typed Programming Language

with Univalence and Higher Inductive Types. Proc. ACM Program. Lang. 3, ICFP, Article 87 (July 2019), 29 pages.

https://doi.org/10.1145/3341691

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European
Symposium on Programming Languages and Systems (ESOP 2009) (Lecture Notes in Computer Science, Vol. 5502), Giuseppe
Castagna (Ed.). Springer-Verlag, York, UK, 1–16. https://doi.org/10.1007/978-3-642-00590-9_1

Matthew Z. Weaver and Daniel R. Licata. 2020. A Constructive Model of Directed Univalence in Bicubical Sets, See

[Hermanns et al. 2020], 915–928. https://doi.org/10.1145/3373718.3394794

Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’98). ACM Press, 249–257.

https://doi.org/10.1145/277650.277732

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 124. Publication date: August 2022.

https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3341712
https://doi.org/10.1145/3498693
https://doi.org/10.21136/HS.2017.06
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3373718.3394759
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.29007/3w36
https://doi.org/10.1145/2837614
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1145/2816707.2816710
https://coq.inria.fr/refman/
https://doi.org/10.1145/3341691
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/3373718.3394794
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 A Brief Overview of GRIP
	2.1 Background on CastCIC
	2.2 A Universe for Logical Reasoning
	2.3 Internal Precision
	2.4 Internal Reasoning about Graduality
	2.5 Exception Handling and Graduality
	2.6 Gradual Subset Types

	3 Gradual types and pure propositions
	3.1 The Impure Layer of Gradual Terms
	3.2 The Pure Layer for Reasoning on Gradual Terms
	3.3 Crossing Sort Boundaries

	4 Internalizing precision
	4.1 The Precision Relation
	4.2 Properties of Precision
	4.3 Monotone Fragment

	5 A model of a reasonably gradual type theory
	6 Extensions of GRIP
	6.1 Observational Equality
	6.2 Inductive Types
	6.3 From GRIP to a Gradual Proof Assistant

	7 Related Work
	References

