
Call-by-Name Gradual Type Theory

Max S. New1

Northeastern University, Boston, USA
maxnew@ccs.neu.edu

Daniel R. Licata2

Wesleyan University, Middletown, USA
dlicata@wesleyan.edu

Abstract
We present gradual type theory, a logic and type theory for call-by-name gradual typing. We define
the central constructions of gradual typing (the dynamic type, type casts and type error) in a
novel way, by universal properties relative to new judgments for gradual type and term dynamism.
These dynamism judgements build on prior work in blame calculi and on the “gradual guarantee”
theorem of gradual typing. Combined with the ordinary extensionality (η) principles that type
theory provides, we show that most of the standard operational behavior of casts is uniquely
determined by the gradual guarantee. This provides a semantic justification for the definitions of
casts, and shows that non-standard definitions of casts must violate these principles. Our type
theory is the internal language of a certain class of preorder categories called equipments. We
give a general construction of an equipment interpreting gradual type theory from a 2-category
representing non-gradual types and programs, which is a semantic analogue of the interpretation
of gradual typing using contracts, and use it to build some concrete domain-theoretic models of
gradual typing.

2012 ACM Subject Classification Theory of computation → Type structures, Theory of com-
putation → Axiomatic semantics, Theory of computation → Categorical semantics, Theory of
computation → Type theory, Theory of computation → Denotational semantics

Keywords and phrases Gradual Typing, Type Systems, Program Logics, Category Theory, De-
notational Semantics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.24

Related Version An extended version of this article is available from the arXiv [20], https:
//arxiv.org/abs/1802.00061.

Acknowledgements We thank Amal Ahmed for countless insightful discussions of this work.

1 This material is based upon work supported by the National Science Foundation under grant CCF-
1453796. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

2 This research was partially supported by the United States Air Force Research Laboratory under
agreement numbers FA-95501210370 and FA-95501510053. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of the United States Air Force Research Laboratory, the U.S. Government or Carnegie Mellon University.

© Max S. New and Daniel R. Licata;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:maxnew@ccs.neu.edu
mailto:dlicata@wesleyan.edu
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.24
https://arxiv.org/abs/1802.00061
https://arxiv.org/abs/1802.00061
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 Call-by-Name Gradual Type Theory

1 Introduction

Gradually typed languages allow for static and dynamic programming styles within the same
language. They are designed with twin goals of allowing easy interoperability between static
and dynamic portions of a codebase and facilitating a smooth transition from dynamic to
static typing. This allows for the introduction of new typing features to legacy languages
and codebases without the enormous manual effort currently necessary to migrate code from
a dynamically typed language to a fully statically typed language. Gradual typing allows
exploratory programming and prototyping to be done in a forgiving, dynamically typed style,
while later that code can be typed to ease readability and refactoring. Due to this appeal,
there has been a great deal of research on extending gradual typing [29, 25] to numerous
language features such as parametric polymorphism [1, 12], effect tracking [2], typestate [33],
session types [11], and refinement types [14]. Almost all work on gradual typing is based
solely on operational semantics, and recent work such as [24] has codified some of the central
design principles of gradual typing in an operational setting. In this paper, we are interested
in complementing this operational work with a type-theoretic and category-theoretic analysis
of these design principles. We believe this will improve our understanding of gradually typed
languages, particularly with respect to principles for reasoning about program equivalence,
and assist in designing and evaluating new gradually typed languages.

One of the central design principles for gradual typing is gradual type soundness. At its
most general, this should mean that the types of the gradually typed language provide the
same type-based reasoning that one could reasonably expect from a similar statically typed
language, i.e. one with effects. While this has previously been defined using operational
semantics and a notion of blame [31], the idea of soundness we consider here is that the
types should provide the same extensionality (η) principles as in a statically typed language.
This way, programmers can reason about the “typed” parts of gradual programs in the
same way as in a fully static language. This definition fits nicely with a category-theoretic
perspective, because the β and η principles correspond to definitions of connectives by a
universal property. The second design principle is the gradual guarantee [24], which we will
refer to as graduality (by analogy with parametricity). Informally, graduality of a language
means that syntactic changes from dynamic to static typing (or vice-versa) should result in
simple, predictable changes to the semantics of a term. More specifically, if a portion of a
program is made “more static”/“less dynamic” then the new program should either have the
same behavior or result in a runtime type error. Other observable behavior such as values
produced, I/O actions performed or termination should not be changed.

In this paper, we codify these two principles of soundness and graduality directly into a
logical syntax we dub (call-by-name) Gradual Type Theory (Section 2). For graduality, we
develop a logic of type and term dynamism that can be used to reason about the relationship
between “more dynamic” and “less dynamic” versions of a program, and to give novel
specifications/universal properties for the dynamic type, type errors, and runtime type casts
of a gradually typed language. These universal properties extend the judgmental approach to
type theory (see [16, 21]) to the key features of gradual typing. For soundness, we assert β
and η principles as axioms of term dynamism, so it can also be used to reason about programs’
behavior. Furthermore, using the η principles for types, we show that most of the operational
rules of runtime casts of existing (call-by-name) gradually typed languages are uniquely
determined by these constraints of soundness and graduality (Section 3). For example,
uniqueness implies that any enforcement scheme in a specific gradually typed language that
is not equivalent to the standard “wrapping” ones must violate either soundness or graduality.



M.S. New and D. R. Licata 24:3

We have chosen call-by-name because it is a simple setting with the necessary η principles
(for negative types) to illustrate our technique; we leave a call-by-value extension to future
work.

We give a sound and complete category theoretic semantics for gradual type theory in
terms of certain preorder categories (double categories where one direction is thin) (Section 4).
We show that the contract interpretation of gradual typing [30] can be understood as a tool
for constructing models (Section 5): starting from some existing language/category C, we first
implement casts as suitable pairs of functions/morphisms from C, and then equip every type
with canonical casts to the dynamic type. We apply this to construct some concrete models
in domains (Section 6). Conceptually, gradual type theory is analogous to Moggi’s monadic
metalanguage [18]: it clarifies general principles present in many different programming
languages; it is the internal language of a quite general class of category-theoretic structures;
and, for a specific language, a number of useful results can be proved all at once by showing
that a logical relation over it is a model of the type theory.

A logic of dynamism and casts. Before proceeding to the technical details, we explain at
a high level how our type theory accounts for two key features of gradual typing: graduality
and casts. The “gradual guarantee” as defined in [24] applies to a surface language where
runtime type casts are implicitly inserted based on type annotations, but we will focus
here on an analysis of fully elaborated languages, where explicit casts have already been
inserted (so our work does not yet address gradual type checking). The gradual guarantee
as defined in [24] makes use of a syntactically less dynamic ordering on types: the dynamic
type (universal domain) ? is the most dynamic, and A is less dynamic than B if B has the
same structure as A but some sub-terms are replaced with ? (for example, A→ (B × C) is
less dynamic than ?→ (B×?), ?→? and ?). Intuitively, a less dynamic type constrains the
behavior of the program more, but consequently gives stronger reasoning principles. This
notion is extended to closed well-typed terms t : A and t′ : A′ with A less dynamic than
A′: t is syntactically less dynamic than t′ if t is obtained from t′ by replacing the input and
output type of each type cast with a less (or equally) dynamic type (in [24] this was called
“precision”). For example, if add1 : ?→ N and true : ?, then add1 ((?⇐ N)(N⇐ ?)true) (cast
true from dynamic to N and back, to assert it is a number) is syntactically less dynamic
than add1 ((? ⇐ ?)(? ⇐ ?)true) (where both casts are the identity). Then the gradual
guarantee [24] says that if t is syntactically less dynamic than t′, then t is semantically less
dynamic than t′: either t evaluates to a type error (in which case t′ may do anything) or
t, t′ have the same first-order behavior (both diverge or both terminate with t producing a
less dynamic value). In the above example, the less dynamic term always errors (because
true fails the runtime N check), while the more dynamic term only errors if add1 uses its
argument as a number. In contrast, a program that returns a different value than add1 (true)
does will not be semantically less dynamic than it.

The approach we take in this paper is to give a syntactic logic for the semantic notion of
one term being less dynamic than another, with 0 (type error) the least element, and all
term constructors monotone. We call this the term dynamism relation t v t′, and it includes
not only syntactic changes in type casts, as above, but also equational laws like identity and
composition for casts, and βη rules – so t v t′ intuitively means that t type-errors more than
(or as much as) t′, but is otherwise equal according to these equational laws. A programming
language that is a model of our type theory will therefore be equipped with a semantic tJvKt′

relation validating these rules, so tJvKt′ if t type-errors more than t′ up to these equational
and monotonicity laws. In particular, making type cast annotations less dynamic will result

FSCD 2018



24:4 Call-by-Name Gradual Type Theory

in related programs, and if JvK is adequate (doesn’t equate operationally distinguishable
terms), then this implies the gradual guarantee [24]. Therefore, we say a model “satisfies
graduality” in the same sense that a language satisfies parametricity.

Next, we discuss the relationship between term dynamism and casts/contracts, one of
the most novel parts of our theory. Explicit casts in a gradually typed language are typically
presented by the syntactic form (B ⇐ A)t, and their semantics is either defined by various
operational reductions that inspect the structure of A and B, or by “contract” translations,
which compile a language with casts to another language, where the casts are implemented
as ordinary functions. In both cases, the behavior of casts is defined by inspection on types
and part of the language definition, with little justification beyond intuition and precedent.

In gradual type theory, on the other hand, the behavior of casts is not defined by inspection
of types. Rather, we use the new type and term dynamism judgments, which are defined
prior to casts, to give a few simple and uniform rules specifying casts in all types via a
universal property (optimal implementation of a specification). Our methodology requires
isolating two special subclasses of casts, upcasts and downcasts. An upcast goes from a
“more static” to a “more dynamic” type – for instance (? ⇐ (A → B)) is an upcast from
a function type up to the dynamic type – whereas a downcast is the opposite, casting to
the more static type. We represent the relationship “A is less dynamic than B” by a type
dynamism judgment A v B (which corresponds to the “naïve subtyping” of [31]). In gradual
type theory, the upcast 〈B � A〉 from A to B and the downcast 〈A � B〉 from B to A
can be formed whenever A v B. This leaves out certain casts like (?× N)⇐ (N× ?) where
neither type is more dynamic than the other. However, as first recognized in [10], these
casts are macro-expressible [6] as a composite of an upcast to the dynamic type and then a
downcast from it (define (B ⇐ A)t as the composite 〈B � ?〉〈?� A〉t).

A key insight is that we can give upcasts and downcasts dual specifications using term
dynamism, which say how the casts relate programs to type dynamism. If A v B, then for
any term t : A, the upcast 〈B� A〉t : B is the least dynamic term of type B that is more
dynamic than t. In order-theoretic terms, 〈B� A〉t : B is the v-meet of all terms u : B with
t v u. Downcasts have a dual interpretation as a v-join. Intuitively, this property means
upcast 〈B� A〉t behaves as much as possible like t itself, while supporting the additional
interface provided by expanding the type from A to B.

This simple definition has powerful consequences that we explore in Section 3, because
it characterizes the upcasts and downcasts up to program equivalence. We show that
standard implementations of casts are the unique implementations that satisfy β, η and
basic congruence rules. In fact, almost all of the standard operational rules of a simple
call-by-name gradually typed language are term-dynamism equivalences in gradual type
theory. The exception is rules that rely on disjointness of different type connectives (such as
〈?→ ?� ?〉〈?� ?× ?〉t 7→ 0), which are independent, and can be added as axioms.

2 Gradual Type Theory

In this section, we present the rules of gradual type theory (GTT). Gradual type theory
presents the types, connectives and casts of gradual typing in a modular, type-theoretic way:
the dynamic type and casts are defined by rules using the judgmental structure of the type
theory, which extends the usual judgmental structure of call-by-name typed lambda calculus
with a syntax for type and term dynamism. Since the judgmental structure is as important
as these types, we present a bare preorder type theory (PTT) with no types first. Then we
can modularly define what it means for this theory to have a dynamic type, casts, functions
and products, and gradual type theory is preorder type theory with all of these.



M.S. New and D. R. Licata 24:5

A type A′ type
A v A′

Γ ctx Γ′ ctx
Φ : Γ v Γ′

Γ ctx A type
Γ ` t : A

Φ : Γ v Γ′ Γ ` t : A
A v A′ Γ′ ` t′ : A′

Φ ` t v t′ : A v A′

Figure 1 Judgment Presuppositions of Preorder Type Theory.

X base type
X type · ctx

Γ ctx A type x 6∈ dom(Γ)
Γ, x : A ctx Γ, x : A,Γ′ ` x : A

Figure 2 Preorder Type Theory: Type and Term Structure.

Preorder Type Theory. Preorder type theory (PTT) has 6 judgments: types, contexts,
type dynamism, dynamism contexts, terms and term dynamism. Their presuppositions (one
is only allowed to make a judgment when these conditions hold) are presented in Figure 1,
where A type and Γ ctx have no conditions. The types, contexts and terms (Figure 2) are
structured as a standard call-by-name type theory. Terms are treated as intrinsically typed
with respect to a context and an output type, contexts are ordered lists (this is important
for our definition of dynamism context below). For bare preorder type theory, the only types
are base types, and the only terms are variables and applications of uninterpreted function
symbols (whose rule we omit). In the extended version [20], we give a precise definition of a
signature specifying valid base types, function symbols, and type and term dynamism axioms.
A substitution γ : Γ′ ` Γ is defined as usual as giving, for every typed variable in the output
context x : A ∈ Γ, a term of that type relative to the input context Γ′ ` γ(x) : A. Our term
language supports a notion of substitution where if γ : Γ′ ` Γ and Γ ` t : A then Γ′ ` t[γ] : A.

Next, we discuss the new judgments of type dynamism, dynamism contexts, and term
dynamism. A type dynamism judgment (Figure 3) A v B relates two well-formed types, and
is read as “A is less dynamic than B”. In preorder type theory, the only rules are reflexivity
and transitivity, making type dynamism a preorder, and axioms from a signature (omitted).

The remaining rules in Figure 3 define type dynamism contexts Φ, which are used in the
definition of term dynamism. While terms are indexed by a type and a typing context, term
dynamism judgments Φ ` t v t′ : A v A′ are indexed by two terms Γ ` t : A and Γ′ ` t′ : A′,
such that A v A′ (A is less dynamic than A′) and Γ is less dynamic than Γ′. Thus, we
require a judgment Φ : Γ v Γ′, which lifts type dynamism to contexts pointwise (for any
x : A ∈ Γ, the corresponding x′ : A′ ∈ Γ′ satisfies A v A′). This uses the structure of Γ and
Γ′ as ordered lists: a dynamism context Φ : Γ v Γ′ implies that Γ and Γ′ have the same
length and associates variables based on their order in the context, so that Φ is uniquely
determined by Γ and Γ′; this is sufficient because of an admissible exchange rule for terms.
We notate dynamism contexts to evoke a logical relations interpretation of term dynamism:
under the conditions that x1 v x′1 : A1 v A′1, . . . then we have that t v t′ : B v B′.

The term dynamism judgment admits constructions (Figure 4) corresponding to both
the structural rules of terms and the preorder structure of type dynamism, beginning from
arbitrary term dynamism axioms (see the extended version [20] for a formal definition). First,
there is a rule (TmPrec-Var) that relates variables. Next there is a compositionality rule
(TmPrec-Comp) that allows us to prove dynamism judgments by breaking terms down
into components. We elide the definition of substitution dynamism Φ ` γ v γ′ : Ψ, which is
pointwise term dynamism. Last, we add an appropriate form of reflexivity (TmPrec-Refl)

FSCD 2018



24:6 Call-by-Name Gradual Type Theory

A v A
A v B B v C

A v C · : · v ·
Φ : Γ v Γ′ A v A′

(Φ, x v x′ : A v A′) : Γ, x : A v Γ′, x′ : A′

Figure 3 Type and Context Dynamism.

x v x′ : A v A′ ∈ Φ
Φ ` x v x′ : A v A′ TmPrec-Var

Φ ` t v t′ : A v A′ Ψ ` γ v γ′ : Φ
Ψ ` t[γ] v t′[γ′] : A v A′ TmPrec-Comp

Γ ` t : A Φ : Γ v Γ
Φ ` t v t : A v A

TmPrec-Refl

Φ : Γ v Γ′ ` t v t′ : A v A′

Φ′ : Γ′ v Γ′′ ` t′ v t′′ : A′ v A′′

Ψ : Γ v Γ′′ ` t v t′′ : A v A′′ TmPrec-Trans

Figure 4 Primitive Rules of Term Dynamism.

and transitivity (TmPrec-Trans) as rules, whose well-formedness depends on the reflexivity
and transitivity of type dynamism. While the reflexivity rule is intuitive, the transitivity
rule is more complex. Consider an example where A v A′ v A′′ and B v B′ v B′′:

x v x′ : A v A′ ` t v t′ : B v B′ x′ v x′′ : A′ v A′′ ` t′ v t′′ : B′ v B′′

x v x′′ : A v A′′ ` t v t′′ : B v B′′

In a logical relations interpretation of term dynamism, we would have relations vA,A′ ,
vA′,A′′ , vA,A′′ and similarly for the B’s, and the term dynamism judgment of the conclusion
would be interpreted as “for any u vA,A′′ u′′, t[u/x] vB,B′′ t′′[u′′/x′′]′′. However, we could
only instantiate the premises of the judgment if we could produce some middle u′ with
u vA,A′ u′ vA′,A′′ u′′. In such models, a middle u′ always exists, because an implicit
condition of the transitivity rule is that vA,A′′ is the relation composite of vA,A′ and vA′,A′′

(the composite exists by type dynamism transitivity, and type dynamism witnesses are unique
in PTT (thin in the semantics)). PTT itself does not give a term for this u′, but the upcasts
and downcasts in gradual type theory do (take it to be 〈A′� A〉u or 〈A′ � A′′〉u′′).

Sometimes it is convenient to use the same variable name at the same type in both t and
t′, so we sometimes write x : A in a dynamism context for x v x : A v A, and write Γ for
xi v xi : Ai v Ai for all xi : Ai in Γ. Similarly, we write A as the conclusion of a dynamism
judgment for A v A, so Γ ` t v t′ : A means Γ v Γ ` t v t′ : A v A.

Gradual Type Theory. Preorder Type Theory gives us a simple foundation with which
to build Gradual Type Theory in a modular way: we can characterize different aspects of
gradual typing, such as a dynamic type, casts, and type errors separately.

We start by defining upcasts and downcasts, using type and term dynamism in Figure 5.
Given that A v A′, the upcast is a function from A to A′ such that for any t : A, 〈A′� A〉t
is the least dynamic term of type A′ that is more dynamic than t. The UR rule can be
thought of as the “introduction rule”, saying 〈A′� A〉x is more dynamic than x, and then
UL is the “elimination rule”, saying that if some x′ : A′ is more dynamic than x : A, then it



M.S. New and D. R. Licata 24:7

Γ ` t : A A v A′

Γ ` 〈A′ � A〉t : A′ Upcast
Γ ` t : A′ A v A′

Γ ` 〈A� A′〉t : A
Downcast

A v A′

x v x : A v A ` x v 〈A′ � A〉x : A v A′ UR
A v A′

x′ v x′ : A′ v A′ ` 〈A� A′〉x′ v x′ : A v A′ DL

A v A′

x v x′ : A v A′ ` 〈A′ � A〉x v x′ : A′ v A′ UL
A v A′

x v x′ : A v A′ ` x v 〈A� A′〉x′ : A v A
DR

A v A′

x : A v x : A ` 〈A� A′〉〈A′ � A〉x v x : A
RetractAx

A v ? Γ ` 0A : A
Φ : Γ v Γ

Φ ` 0A v t : A

Figure 5 Upcasts, Downcasts, Dynamic Type and Type Error.

is more dynamic than 〈A′ � A〉x – since 〈A′ � A〉x is the least dynamic term with this
property. The rules for projections are dual, ensuring that for x′ : A′, 〈A � A′〉x′ is the
most dynamic term of type A that is less dynamic than x′. In fact, combined with the
TmPrec-Trans rule, we can show that it has a slightly more general property: 〈A′� A〉x
is not just less dynamic than any term of type A′ more dynamic than x, but is less dynamic
than any term of type A′ or higher, i.e. of type A′′ w A′.

As we will discuss in Section 3, these rules allow us to prove that the pair of the upcast
and downcast form a Galois connection (adjunction), meaning 〈A′� A〉〈A� A′〉t v t and
t v 〈A� A′〉〈A′� A〉t. However in programming practice, the casts satisfy the stronger
condition of being a Galois insertion, in which the left adjoint, the downcast, is a retract
of the upcast, meaning t wv 〈A � A′〉〈A′� A〉t. We can restrict to Galois insertions by
adding the retract axiom RetractAx. Most theorems of gradual type theory do not require
it, though this axiom is satisfied in all models of preorder type theory in Section 6.

The remaining rules in Figure 5 define the dynamic type and type errors, which are also
given a universal property in terms of type and term dynamism. The dynamic type is defined
as the most dynamic type. The type error, written as 0, is defined by the fact that it is a
constant at every type A that is a least element of A. By transitivity, this further implies
that 0A v t : A v A′ for any A′ w A.

Next we illustrate how simple negative types can be defined in preorder type theory.
Figure 6 presents the rules for function types, while the product and unit types are analogous
(see the extended version [20]). The type and term constructors are the same as those in
the simply typed λ-calculus. Each type constructor extends type dynamism in the standard
way [10, 31, 24]: every connective is monotone in every argument, including the function
type. Due to the covariance of the function type, type dynamism is sometimes referred to as
“naïve subtyping”; see 5 for a semantic intuition. For term dynamism, we add two classes
of rules. First, there are congruence rules that “extrude” the term constructor rules for
the type, which are like a “congruence of contextual approximation” condition. Next, the
computational rules reflect the ordinary β, η equivalences as equi-dynamism: we write wv
to mean a rule exists in each direction (which requires that the types and contexts are also
equi-dynamic).

We call the accumulation of all of these connectives gradual type theory. In the extended
version [20], we define a GTT signature, which gives axioms for base types, function symbols,
type dynamism, and term dynamism, which all may make use of the dynamic type, casts,
type error, function types and product types, in addition to the rules of PTT.

FSCD 2018



24:8 Call-by-Name Gradual Type Theory

A v A′ B v B′

A→ B v A′ → B′
Γ, x : A ` t : B

Γ ` λx : A.t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

Φ, x v x′ : A v A′ ` t v t′ : B v B′

Φ ` λx : A.t v λx′ : A′.t′ : A→ B v A′ → B′

Φ ` t v t′ : A→ B v A′ → B′

Φ ` u v u′ : A v A′

Φ ` t u v t′ u′ : B v B′

Γ ` (λx : A.t)u wv t[u/x] : B Γ ` t wv (λx : A.t x) : A→ B v A→ B

Figure 6 Function Type.

3 Theorems and Constructions in Gradual Type Theory

In this section, we discuss some consequences of the simple axioms of gradual type theory.
We show that almost every reduction in an operational presentation of call-by-name gradual
typing, and many principles used in optimization of implementations, are justified by the
universal property for casts in all types, the β, η rules, and the congruence rules for connectives
and terms. Thus, the combination of graduality and η principles is a strong specification for
gradual typing and considerably narrows the design space. We summarize these derivations
in the following theorem:

I Theorem 1. In Gradual Type Theory, all of the following are derivable whenever the
upcasts, downcasts are well-formed.
1. Universal Property: Casts are unique up to wv.
2. Identity: 〈A� A〉t wv t and 〈A� A〉t wv t.
3. Composition: 〈A′′ � A〉t wv 〈A′′ � A′〉〈A′� A〉t and dually, 〈A � A′′〉t wv
〈A� A′〉〈A′ � A′′〉t.

4. Function Cast Reduction: 〈A′ → B′ � A→ B〉t wv λx : A′.〈B′ � B〉(t(〈A� A′〉x))
and 〈A→ B � A′ → B′〉t wv λx : A′.〈B � B′〉(t(〈A′� A〉x)).

5. Product Cast Reduction: 〈A′0 ×A′1 � A0 ×A1〉t wv (〈A′0 � A0〉π0t, 〈A′1 � A1〉π1t)
and 〈A0 ×A1 � A′0 ×A′1〉t wv (〈A0 � A′0〉π0t, 〈A1 � A′1〉π1t).

6. Adjunction: t v 〈A� A′〉〈A′� A〉t and 〈A′� A〉〈A� A′〉t v t, for which the retract
axiom is the converse.

7. Cast Congruence: x v y : A v B ` 〈A′ � A〉x v 〈B′ � B〉y : A′ v B′ and
x′ v y′ : A′ v B′ ` 〈A� A′〉x′ v 〈B � B′〉y′ : A v B.

8. Errors: 〈A′� A〉0A wv 0A′ , and by the retract axiom 〈A� A′〉0A wv .0A′ .
9. Equi-dynamism implies isomorphism: If A wv B, then A is isomorphic to B.

We present one example proof (most of the rest can be found in the extended version),
and give some intuition for the others based on the defining properties of upcasts and
downcasts as meets and joins. Part 1 says that this specification defines them uniquely,
which we can prove by duplicating the rules for upcasts/downcasts and showing the two are
wv. First, identity (2) and composition (3) are intuitive consequences that are sometimes
operational reductions. Part 2 says the cast from a type to itself is the identity function
and is easily justified by the specification: given t : A, t itself is the least dynamic element
of A that is at least as dynamic as t. Part 3 says that if A v A′ v A′′ then casts between
A,A′′ factor through A′. This is important operationally, justifying the common rule
〈A→ B � ?〉t 7→ 〈A→ B � ?→ ?〉〈?→ ?� ?〉t which says that casting to a function type



M.S. New and D. R. Licata 24:9

f v λx.fx

f, x v x′ ` f v f : A→ B v A→ B

f, x v x′ ` x v x′ : A v A′

f, x v x′ ` x v 〈A� A′〉x′ : A v A
f, x v x′ ` fx v f(〈A� A′〉x′) : B v B

f, x v x′ ` fx v 〈B′ � B〉(f(〈A� A′〉x′)) : B v B′

λx.fx v λx′ : A′.〈B′ � B〉(f(〈A� A′〉x′))
f ` f v λx′ : A′.〈B′ � B〉(f(〈A� A′〉x′)) : A→ B v A′ → B′

f : A→ B ` 〈A′ → B′ � A→ B〉f v λx′ : A′.〈B′ � B〉(f(〈A� A′〉x′)) : A′ → B′

Figure 7 Function Upcast Implementation (one case).

first does the first order check to make sure t is a function, and then performs the checking
of the function’s behavior. More generally, it implies that casts from A to B commute over
the dynamic type, e.g. 〈?� B〉〈B� A〉x wv 〈?� A〉x – intuitively, if casts only perform
checks, and do not change values, then a value’s representation in the dynamic type should
not depend on how it got there.

Next, consider the function contract reduction (4) (5 is similar). These equivalences are
the standard “wrapping” implementations from [8, 7]: a function upcast uses the downcast on
inputs and upcast on outputs and vice-versa for the downcast. This shows that the standard
implementation is in fact the unique implementation to satisfy soundness and graduality.
We present one of the cases for upcasts in Figure 7; the other 3 proofs are similar. First,
we use the UL rule to reduce to showing the wrapping implementation is more dynamic
than f itself. Then we use transitivity to η-expand f and then apply the λ congruence rule.
Then we know the upcast 〈B′� B〉· makes the term more dynamic and then apply function
application congruence and use DR to show that the downcast of x′ is still more dynamic
than x. The other cases and the product cases follow by similar proofs.

Next, as mentioned previously, the adjunction property (6) shows that the upcast and
downcast are a Galois connection with the upcast as the upper/left adjoint. This tells us
that given A v A′, the “round-trip” from A′ down to A and back results in a less dynamic
term and the other round-trip results in a more dynamic term. In programming practice,
we expect the round trip from A to A′ and back to be in fact an identity, as in the above
retract axiom RetractAx. This theorem is the basis for our model (Section 6) where we
define type dynamism as a pair of functions with these properties.

Next, it is important for proving the gradual guarantee [24] that all term constructors
are congruences with respect to type and term dynamism. While for types like functions and
products these are primitive rules, for casts congruence is derivable (7).

Error strictness (8) states that upcasts and downcasts are strict with respect to the type
error 0. The upcast preserves 0 because it is a left/upper adjoint and therefore preserves
colimits/joins like 0. The proof that the downcast preserves 0 is less modular, and uses the
upcast, the retract axiom, and strictness of the upcast.

Finally, because types A and B in gradual type theory can be related both by type
dynamism A v B and by functions A→ B, there are two reasonable notions of equivalence
of types3. First, equi-dynamism A wv B means A v B and B v A. Second, isomorphism
means there exist functions f : A → B and g : B → A such that f ◦ g wv (λx : B.x) and
g ◦ f wv (λx : A.x). Part 9 gives an isomorphism for any equi-dynamic types.

3 Corresponding to the two notions of isomorphism in double categories

FSCD 2018



24:10 Call-by-Name Gradual Type Theory

The converse, isomorphic types are equi-dynamic, does not hold by design, because it does
not match gradual typing practice. Gradually typed languages typically have disjointness of
connectives as operational reductions; for example, disjointness of products and functions
can be expressed by an axiom 〈(C ×D)� ?〉〈?� (A→ B)〉x v 0 which says that casting
a function to a product errors. This axiom is incompatible with all isomorphic types
being equi-dynamic, because a function type can be isomorphic to a product type (e.g.
X → Y ∼= (X → Y ) × 1), and for equi-dynamic types A and B, a cast 〈B � ?〉〈?� A〉x
should succeed, not fail (if it fails, then every term of A, B equal 0; see the extended
version). That is, disjointness axioms make equi-dynamism an intensional property of the
representation of a type, and therefore stronger than isomorphism. Nonetheless, the basic
rules of gradual type theory do not imply disjointness; in Section 6, we discuss a countermodel.

4 Categorical Semantics

Next, we define what a category-theoretic model of preorder and gradual type theory is,
and prove that PTT/GTT are internal languages of these classes of models by proving
soundness and completeness (i.e. initiality) theorems. This alternative axiomatic description
of PTT/GTT is a useful bridge between the syntax and the concrete models presented
in Section 6. The models are in preorder categories, which are categories internal to the
category of preorders.4 A preorder category is a category where the set of all objects and set
of all arrows are each equipped with a preorder (a reflexive, transitive, but not necessarily
anti-symmetric, relation). Furthermore the source, target, identity and composition functions
are all monotone with respect to these orderings. A preorder category is equivalently a
double category where one direction of morphism is thin. Intuitively, the preorder of objects
represents types and type dynamism, while the preorder of morphisms represents terms and
term dynamism, and we reuse the notation v for the orderings on objects and morphisms.

While the axioms of a preorder category are similar to the judgmental structure of
preorder type theory, in a preorder category, morphisms have one source object and one
target object, whereas in preorder type theory, terms have an entire context of inputs and
one output. This is a standard mismatch between categories and type theories, and is often
resolved by assuming that models have product types and using categorical products to
interpret the context [13]. However, we will take a multicategorical view, in which our notion
of model will axiomatize algebraically a notion of morphism with many inputs. Though
for ordinary simple type theory the difference between the two is a matter of taste, for
preorder type theory the difference is important when modeling term and specifically context
dynamism. If a context is just a product of objects, then one context Γ should be less
dynamic than another just when their product is, but in the syntax of our type theory, we
only say a context is less dynamic than another when they are less dynamic point-wise. Since
we allow for type dynamism axioms, this would mean that the syntax of context dynamism
would be incomplete if it were interpreted this way. Instead, we give a multicategorical
definition in which the notion of context dynamism in the model is also pointwise. Specifically,
we define a model of preorder type theory to be a cartesian preorder multicategory, which
is like a preorder multicategory that does not necessarily have true product objects, but
whose morphisms’ source can be a “virtual” product of objects, i.e. a context. For a general
definition of multicategory that includes the notion we present, see [4]. In the extended
version [20], we prove soundness and completeness of PTT for CPMs.

4 To avoid confusion, these are not categories that happen to be preorders (thin categories) and these
are not categories enriched in the category of preorders, where the hom-sets between two objects are
preordered, but the objects are not.



M.S. New and D. R. Licata 24:11

I Definition 2 (CPM). A cartesian preorder multicategory (CPM) C consists of a preordered
set of “objects” C0, a preordered set of “multiarrows” C1, monotone functions “source”
s : C1 → Ctx(C)0, “target” t : C1 → C0, “projection” x : Ctx(C)0 × C0 × Ctx(C)0 → C1
and composition ◦ : C1 ×Ctx(C)0 Ctx(C)1 → C1. Here Ctx(C)0 is the set of lists of objects
preordered pointwise, and a substitution γ ∈ Ctx(C)1(Γ;B1, . . . , Bn) consists of a multiarrow
γ(i) ∈ C1(Γ;Bi) for each i ∈ 1, . . . , n, also preordered pointwise, and with composition
defined in the same way as syntactic substitutions. Additionally these satisfy associativity
and unitality laws (see the extended version [20]).

Gradual Typing Structures. Next, we describe the additional structure on a CPM to model
full gradual type theory: casts are modeled by an equipment [23], a dynamic type by a
greatest object, and the type error by a least element of every hom-set.

I Definition 3 (Gradual Structure on a CPM).
1. A CPM C is an equipment if for every A v B, there exist morphisms uA,B ∈ C(A,B) and

dA,B ∈ C(B,A) such that uA,B v idB and idA v uA,B and dA,B v idB and idA v dA,B.
An equipment is coreflective if also dA,B ◦ uA,B v idA.

2. A greatest object in a CPM C is a greatest element of the preorder of objects C0.
3. A CPM C has local bottoms if every hom set C(A1, . . . , An;B) has a least element ⊥

and for every substitution γ we have ⊥ ◦ γ wv ⊥.

Next, we define a cartesian closed CPM, which will model negative function and product
types. We present the definition for function types in detail; a definition of a cartesian CPM
(CPM with products) is in [20]. A cartesian closed CPM is a CPM with a choice of both
cartesian and closed structure. Since all of the concrete models we consider are strict, we
take a strict interpretation of naturality and βη, but this could likely be weakened.

I Definition 4 (Closed CPM). A Closed CPM is a CPM C with a monotone function on
objects →: C2

0 → C0 making for every pair of objects X,Y ∈ C an “exponential” object
X → Y with a monotone function λ : C(Γ, X;Y )→ C(Γ;X → Y ) that is natural in an
appropriate sense, with a morphism app ∈ C(X → Y,X;Y ) such that the function given by
f 7→ app ◦ (f, x(X)) is an inverse to λ (all up to equality).

In the extended version [20], we prove the following, where a GTT category is a CPM
that is cartesian closed, a coreflective equipment and has a greatest object and local bottoms.

I Definition 5 (Interpretation of Gradual Type Theory/Soundness). For any GTT signature
Σ and GTT category C and interpretation L·M : Σ → C of the base types and function
symbols in Σ such that all type and term dynamism axioms in Σ are true in C, there is a
compositional extension of L·M to an interpretation of all types and terms of GTT generated
by Σ, such that all derivable type and term dynamism theorems are true in C.

I Theorem 6 (Completeness of GTT Category Semantics). For any GTT signature Σ, for
any GTTΣ types A,B if for every interpretation L·M : Σ→ C, JAK v JBK holds, then A v B
is derivable. For any GTTΣ contexts Φ : Γ v Γ′, types A v A′, and terms Γ ` t : A and
Γ′ ` t′ : A′, if for every interpretation JtK v Jt′K, then Φ ` t v t′ : A v A′ derivable.

As usual, the proof of completeness is by building a GTT category from the syntax such
that the true dynamism theorems are precisely the derivable ones.

FSCD 2018



24:12 Call-by-Name Gradual Type Theory

5 Semantic Contract Interpretation

As a next step towards constructing specific GTT categories, we define a general contract
construction that provides a semantic account of the “contract interpretation” of gradual
typing, which models a gradual type by a pair of casts. The input to our contract construction
is a locally thin 2-category C, whose objects and arrows should be thought of as the types and
terms of a programming language, and each hom-set C(A,B) is ordered by an “approximation
ordering”, which is used to define term dynamism in our eventual model. We require each
hom-set to have a least element (the type error), and the category to be cartesian closed
(function and product types/contexts) in the strict sense of a 2-category whose underlying
category is cartesian closed and where λ, application, pairing and projection are all functorial
in 2-cells. The contract construction then “implements” gradual typing using the morphisms
of the non-gradual “programming language” C.

Coreflections. To build a GTT model from C, we need to choose an interpretation of type
dynamism (the ordering on objects of the CPM) that induces appropriate casts, which we
know by Theorem 1.6 must be Galois connections that satisfy the retract axiom. Such Galois
connections are called Galois insertions (in order theory), coreflections (in category theory)
and embedding-projection pairs (in domain theory). While we presented the retract axiom
earlier as an wv, in all of our models the semantics of the composition 〈A� B〉 ◦ 〈B� A〉
is strictly equal to the identity so we will make a model using “strict” coreflections because
it is slightly simpler. Since type dynamism judgments must induce a coreflection, we will
construct a model where the semantics of a type dynamism judgment A v B is literally a
coreflection. However, there can be many different coreflections between two objects of our
2-category C, so this first step of our construction does not produce a preorder category, where
type dynamism is an ordering, but rather a double category. Double categories generalize
preorder categories in the same way that categories generalize preorders: the ordering on
objects is generalized to proof-relevant data specifying a second class of vertical morphisms,
and the ordering on terms becomes a notion of 2-dimensional “square” between morphisms.
In the model we build from C, the vertical morphisms will model type dynamism and be
coreflections, while the (horizontal) morphisms of a preorder category will be arbitrary
morphisms of C and model terms. We still require only double categories that are locally
thin, in that there is at most one 2-cell filling in any square. Thus, the first step of our
contract construction can be summarized as creating a double category that is an equipment
with the retract property, i.e. a double category modeling upcasts and downcasts, a slight
variation on a theorem in [23]:

I Definition 7 (Equipment of Coreflections [23]). Given a 2-category C we construct a (double
category) equipment CoReflect(C) as follows. Its object category has C0 as objects and
coreflections in C as morphisms. Horizontal morphisms are given by morphisms in C and
a 2-cell from f : A → B to f ′ : A′ → B′ along (uA, dA) : A / A′ and (uB , dB) : B / B′ is a
2-cell in C from uB ◦ f to f ′ ◦ uA or equivalently from f ◦ dA to dB ◦ f ′. From a vertical
arrow (u, d), the upcast is u and the downcast is d.

As is well-known in domain theory, any mixed-variance functor preserves coreflections
[32, 27], so the product and exponential functors of C extend to be functorial also in
vertical arrows. This produces the classic “wrapping” construction familiar from higher-order
contracts [8]:(u, d)→ (u′, d′) = (d→ u′, u→ d′)



M.S. New and D. R. Licata 24:13

Vertical Slice Category. The double category CoReflect(C) is not yet a model of gradual
type theory for two reasons. First, gradual type theory requires a dynamic type: every type
should have a canonical coreflection into a specific type. Second, type dynamism in GTT
is proof-irrelevant, because the rules do not track different witnesses of A v B, but there
may be different coreflections from A to B. It turns out that we can solve both problems at
once by taking what we call the “vertical slice” category over an object D ∈ CoReflect(C)
that is rich enough to serve as a model of the dynamic type. In CoReflect(C)/D, the objects
are not just an object A of C, but an object with a vertical morphism into D, in this case a
coreflection written (uA, dA) : A / D.5 Thus, gradual types are modeled as coreflections into
the dynamic type, analogous to Scott’s “retracts of a universal domain” [22]. Then a vertical
arrow from (uA, dA) : A / D to (uB , dB) : B / D is a coreflection (uA,B , dA,B) : A / B that
factorizes uA = uB ◦ uA,B and dA = dA,B ◦ dB : this means the enforcement of A’s type can
be thought of as also enforcing B’s type. Since upcasts are monomorphisms and downcasts
are epimorphisms, this factorization is unique if it exists, so there is at most one vertical
arrow between any two objects of CoReflect(C)/D. If we took the retract axiom as wv
rather than strict equality, then the factorization would only be essentially unique, i.e. any
two factorizations would be equivalent; since our models are all strict, we defer exploring a
weak variant to future work. Further, the identity coreflection (id, id) : D /D is a vertically
greatest element since any morphism is factorized by the identity.

I Definition 8 (Vertical Slice Category). Given any double category E and an object D ∈ E,
we can construct a double category E/D by defining (E/D)0 to be the slice category E0/D,
a horizontal morphism from (c : A / D) to (d : B / D) to be a horizontal morphism from A

to B in E, and the 2-cells are similarly inherited from E.

Next consider a cartesian closed structure on CoReflect(C)/D. The action of → (respect-
ively ×, 1) on objects is given by composition of the action in CoReflect(C) (u, d)→ (u′, d′)
with an arbitrary choice of “encoding” of the “most dynamic function type” (u→, d→) : (D →
D) / D. In most of the models we consider later, D is a sum and this coreflection simply
projects out of the corresponding case, failing otherwise. This reflects the separation of the
function contract into “higher-order” checking (u, d)→ (u′, d′) and “first-order tag” checking
(u→, d→) that has been observed in implementations [10].

Finally, we construct a multicategory Multi(C) from the double category CoReflect(C)/D.
A multiarrow A1, . . . , An;B is given by a horizontal arrow A1× ...×An;B in CoReflect(C)/D.
The ordering A v A′ is given by the vertical arrows A / A′ of CoReflect(C)/D (i.e. core-
flections), which is lifted pointwise to contexts by the definition of a CPM. The ordering
f : (A1, . . . , An;B) v g : (A′1, . . . , A′n;B′) is given by squares in CoReflect(C)/D (using the
action/monotonicity of × on the pointwise orderings Ai v A′i of the context). Combining
these constructions, we produce:

I Theorem 9 (Contract Model of Gradual Typing). If C is a locally thin cartesian closed 2-
category with local ⊥s, then for any object D ∈ C with chosen coreflections c→ : (D → D)/D,
c× : (D×D)/D, and c1 : 1/D, then (Multi(CoReflect(C)/idd), c→, c×, c1) is a GTT category.

6 Concrete Models

Next, we produce some concrete models by instantiating Theorem 9.

5 We do not write A v D because coreflections are not a preorder.

FSCD 2018



24:14 Call-by-Name Gradual Type Theory

There are two models based on domains that are operationally inadequate in that they
identify the dynamic type error and diverging programs: term dynamism is given by the
“definedness ordering” of domain theory. Both are based on the 2-category of domains
(ω-cppos), continuous functions, and the domain ordering on functions, with different choices
of universal domain. The first is merely a new presentation of Dana Scott’s classical models
of untyped λ-calculus, showing that Scott’s model is already a model of gradual typing [22].
That is, we find the solution to the recursive domain equation D ∼= N⊥⊕ (D×D)⊕ (D → D)
where ⊕ is the coalesced sum of domains. The classical technique for solving this equation
naturally produce the required coreflections (D ×D) / D and (D → D) / D. The second
is a variation where product and function types have overlapping representation, showing
that the product and function types cannot be proven disjoint in gradual type theory. To do
this, we construct a universal domain as a product of basic connectives rather than a sum:
D′ ∼= N⊥× (D′×D′)× (D′ → D′). This is a kind of “coinductive”/”object-oriented” dynamic
type: an element of the dynamic type responds to messages (given by the projections), and
if it “doesn’t implement” a message it returns ⊥. Then 〈(?× ?) � ?〉〈?� (?→ ?)〉x 6≡ 0

the domain has elements that are non-trivial in both the D ×D and D → D positions.
Next, to produce a domain theoretic model that is adequate, we want a notion of domain

that has, in addition to the definedness ordering needed for solving recursive domain equations,
a separate notion of type error and error-approximation ordering. This can be accomplished
using “pointed domain preorders”, which are both domains and preorders with a least element
in a compatible way. First, the diverging element must be maximal in the error ordering,
so that they are sufficiently independent. Next, the error ordering must be an admissible
relation so that the set of monotone functions is closed under limits.

I Definition 10 ((Pointed) Domain Preorder). A domain preorder is a set X with two
orderings ≤ and v such that (X,≤) is an ω-cppo with ≤-least element ⊥ and v is a preorder
closed under limits of ≤-ω-chains such that ⊥ is v-maximal. A continuous function of
domain preorders is a function of the underlying sets that is continuous with respect to ≤
and monotone with respect to v. A domain preorder is pointed if it has a v-least element 0.

The model is given by the 2-category of pointed domain preorders, with the v ordering, but
to solve domain equations we use the category of all domain preorders. The 2-category with
the domain ordering satisfies the criteria of [27] and so we can construct a suitable domain
preorder by solving a similar equation to Scott’s model: D ∼= N⊥,0⊕(D0×D0)⊕(D0 → D0),
where D0 freely adjoins a v-least element. Then the dynamic type is given by D0, and we
can construct coreflections (with respect to v) (D0 ×D0) / D0 and (D0 → D) / D: the
downcast produces 0 unless it is the D ×D (respectively D → D) case and the 1 / D is the
unique coreflection between those objects. We need the fact that ⊥ is maximal to prove
these functions are monotone, see the extended version for more details [20].

7 Related and Future Work

Our logic and semantics of type and term dynamism builds on the formulation introduced
with the gradual guarantee in [24], but the rules of our system differ in two key ways. First,
our system includes the β, η equivalences as equi-dynamism axioms, making term dynamism
a more semantic notion. Second, we only allow casts that are either upcasts or downcasts (as
defined by type dynamism), whereas their system allows for a more liberal “compatibility”
condition. Accordingly our rules of dynamism for casts are slightly different, but where it
makes sense, the rules of the two systems are interderivable.



M.S. New and D. R. Licata 24:15

Our semantic model of contracts as coreflections has precedent in much previous work,
though we are the first to make precise the relationship to gradual typing’s notions of type
and term dynamism.

Henglein’s work [10] on dynamic typing defines casts that are retracts to the dynamic
type, introduced the upcast-followed-by-downcast factorization that we use here, and defines
a syntactic rewriting relation similar to our term dynamism rules. Further they define a
“subtyping” relation that is the same as type dynamism and characterize it by a semantic
property analogous to the semantics of type dynamism in our contract model. The upcast-
downcast factorization of an arbitrary cast is superficially similar to the work on triple casts
in [26], which collapse a sequence of casts starting at A and ending at B into a downcast to
A uB followed by an upcast to B. But note that this factorization is opposite (downcast
and then upcast), and the upcast-downcast factorization requires only a dynamic type, while
the converse requires an appropriate middle type, similarly to image factorization. Moreover,
[9] shows that the correctness of factorization through A uB is not always possible.

Findler and Blume’s work on contracts as pairs of projections [7] is also similar. There a
contract is defined in an untyped language to be given by a pair of functions that divide
enforcement of a type between the a “positive” component that checks the term and a
“negative” component that checks the continuation, naturally supporting a definition of blame
when a contract is violated. We give no formal treatment of blame in this paper, but our
separation into upcasts and downcasts naturally supports a definition of blame analogous to
theirs. In their paper, each component c is idempotent and satisfies c v id. Their work is
fundamentally untyped so a direct comparison is difficult.

Recent work on interoperability in a (non-gradual) dependently typed language [5] defines
several variations of Galois connections to serve as models of casts with different properties.
This work validates their comments that ordinary monotone Galois connections serve as a
model of the upcasts and downcasts associated to type precision.

There are two recent proposals for a more general theory of gradual typing: Abstracting
Gradual Typing (AGT) [9] and the Gradualizer [3]. Broadly, their systems and ours are
similar in that type dynamism and graduality are central and a gradually typed language is
constructed from a statically typed language. Gradual type theory is quite different in that it
is based on an axiomatic semantics, whereas both of theirs are based on operational semantics.
As such our notion of gradual type soundness is stronger than theirs: we assert program
equivalences whereas their soundness theorem is related to the syntactic type soundness
theorem of the static language. Their systems also develop a surface syntax for gradually
typed languages (including implicit casts and gradual type checking), whereas our logic here
only applies to the runtime semantics of the language. Finally, AGT is based on abstract
interpretation and uses a Galois insertion between gradual types and sets of static types, but
we do not see a precise relationship to our use of coreflections.

Relative to this related work, we believe the axiomatic specification of casts via a universal
property relative to dynamism is a new idea in gradual typing, as is our categorical semantics
and the presentation of the contract interpretation as a model construction.

In this paper we have shown that the combination of soundness and graduality produces
strong specifications for call-by-name gradual typing implementations. However so far we
have only validated this by denotational semantics, and we plan to develop operational models
of this kind of gradual type theory where term dynamism is modeled by a type of contextual
approximation. We also will investigate extensions to richer languages. First, we would like
to develop a similar theory for call-by-value gradual typing, as every gradually typed language
in use today is call-by-value. We plan to build on existing work on categorical semantics and

FSCD 2018



24:16 Call-by-Name Gradual Type Theory

universal properties of types in call-by-value [15, 28]. The combination of gradual typing and
parametric polymorphism has proven quite complex [17, 19, 1, 12]. If we could show that
the combination of graduality with parametricity has a unique implementation, as we have
shown here for simple typing, it would provide a strong semantic justification for a design.

References
1 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for

free: Parametricity, with and without types. In International Conference on Functional
Programming (ICFP), 2017.

2 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual effect sys-
tems. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’14, pages 283–295, 2014.

3 Matteo Cimini and Jeremy G. Siek. Automatically generating the dynamic semantics of
gradually typed languages. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pages 789–803, 2017.

4 G. S. H. Cruttwell and Michael A. Shulman. A unified framework for generalized multicat-
egories. Theory and Applications of Categories, 24(21), 2009. arXiv:arXiv:0907.2460.

5 Pierre-Evariste Dagand, Nicolas Tabareau, and Éric Tanter. Foundations of Depend-
ent Interoperability. working paper or preprint, 2017. URL: https://hal.inria.fr/
hal-01629909.

6 Matthias Felleisen. On the expressive power of programming languages. ESOP’90, 1990.
7 Robby Findler and Matthias Blume. Contracts as pairs of projections. In International

Symposium on Functional and Logic Programming (FLOPS), 2006.
8 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In

International Conference on Functional Programming (ICFP), pages 48–59, sep 2002.
9 Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In ACM

Symposium on Principles of Programming Languages (POPL), 2016.
10 Fritz Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput. Program.,

22(3):197–230, 1994.
11 Atsushi Igarashi, Peter Thiemann, Vasco Vasconcelos, and Philip Wadler. Gradual session

types. In International Conference on Functional Programming (ICFP), 2017.
12 Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. On polymorphic gradual typing. In

International Conference on Functional Programming (ICFP), Oxford, United Kingdom,
2017.

13 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1986.

14 Nico Lehmann and Éric Tanter. Gradual refinement types. In ACM Symposium on Prin-
ciples of Programming Languages (POPL), 2017.

15 Paul Blain Levy. Call-by-Push-Value. Ph. D. dissertation, Queen Mary, University of
London, London, UK, mar 2001.

16 Per Martin-Löf. On the meanings of the logical constants and the justifications of the logical
laws (sienna lectures). Nordic Journal of Philosophical Logic, 1(1):11–60, 1983/1996.

17 Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time sealing,
or, theorems for low, low prices! In European Symposium on Programming (ESOP), mar
2008.

18 Eugenio Moggi. Notions of computation and monads. Inform. And Computation, 93(1),
1991.

19 Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity. In In-
ternational Conference on Functional Programming (ICFP), pages 135–148, sep 2009.

http://arxiv.org/abs/arXiv:0907.2460
https://hal.inria.fr/hal-01629909
https://hal.inria.fr/hal-01629909


M.S. New and D. R. Licata 24:17

20 Max S. New and Daniel R. Licata. Call-by-name gradual type theory. CoRR, 2018. URL:
http://arxiv.org/abs/1802.00061.

21 Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathem-
atical Structures in Computer Science, 11:511–540, 2001.

22 Dana Scott. Data types as lattices. Siam Journal on computing, 5(3):522–587, 1976.
23 Michael Shulman. Framed bicategories and monoidal fibrations. Theory and Applications

of Categories, 20(18):650–738, 2008.
24 Jeremy Siek, Micahel Vitousek, Matteo Cimini, and John Tang Boyland. Refined criteria

for gradual typing. In 1st Summit on Advances in Programming Languages, SNAPL 2015,
2015.

25 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop (Scheme), pages 81–92, 2006.

26 Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In ACM Sym-
posium on Principles of Programming Languages (POPL), pages 365–376, 2010.

27 Michael B Smyth and Gordon D Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal on Computing, 11(4), 1982.

28 Sam Staton and Paul Blain Levy. Universal properties of impure programming languages.
In ACM Symposium on Principles of Programming Languages (POPL), 2013.

29 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to
programs. In Dynamic Languages Symposium (DLS), pages 964–974, 2006.

30 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In ACM Symposium on Principles of Programming Languages (POPL), San Fran-
cisco, California, 2008.

31 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming (ESOP), pages 1–16, 2009.

32 Mitchell Wand. Fixed-point constructions in order-enriched categories. Theoretical Com-
puter Science, 8(1):13–30, 1979.

33 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In
Proceedings of the 25th European Conference on Object-oriented Programming, ECOOP’11,
2011.

FSCD 2018

http://arxiv.org/abs/1802.00061

	Introduction
	Gradual Type Theory
	Theorems and Constructions in Gradual Type Theory
	Categorical Semantics
	Semantic Contract Interpretation
	Concrete Models
	Related and Future Work

