14 research outputs found

    A scalable packetised radio astronomy imager

    Get PDF
    Includes bibliographical referencesModern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, including the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based processing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very different, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams

    Gracefully degrading systems using the bulk-synchronous parallel model with randomised shared memory

    No full text

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Gracefully Degrading Systems Using the Bulk-Synchronous Parallel Model with Randomised Shared Memory

    No full text
    The Bulk-Synchronous Parallel Model, BSPM, was proposed as a bridging model for parallel computation by Valiant. By using Randomised Shared Memory, RSM, this model offers an asymptotically optimal emulation of the PRAM[1]. By using the BSPM with RSM, we show how a gracefully degrading massively parallel system can be obtained through: memory duplication to ensure global memory integrity, and to speed up the reconfiguration; a global recon guration method that restores the logical properties of the system, after a fault occurs. We assume fail-stop processors, single faults, no spare processors, and no significant loss of network throughput as a result of faults. Work done during recon guration is shared equally among the live processors, with minimal coordination. The overhead of the scheme and the graceful degradation achieved depend on the program being executed. We evaluate the reconfiguration, overhead, and graceful degradation of the system experimentally

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Quality-oriented adaptation scheme for multimedia streaming in local broadband multi-service IP networks

    Get PDF
    The research reported in this thesis proposes, designs and tests the Quality-Oriented Adaptation Scheme (QOAS), an application-level adaptive scheme that offers high quality multimedia services to home residences and business premises via local broadband IP-networks in the presence of other traffic of different types. QOAS uses a novel client-located grading scheme that maps some network-related parameters’ values, variations and variation patterns (e.g. delay, jitter, loss rate) to application-level scores that describe the quality of delivery. This grading scheme also involves an objective metric that estimates the end-user perceived quality, increasing its effectiveness. A server-located arbiter takes content and rate adaptation decisions based on these quality scores, which is the only information sent via feedback by the clients. QOAS has been modelled, implemented and tested through simulations and an instantiation of it has been realized in a prototype system. The performance was assessed in terms of estimated end-user perceived quality, network utilisation, loss rate and number of customers served by a fixed infrastructure. The influence of variations in the parameters used by QOAS and of the networkrelated characteristics was studied. The scheme’s adaptive reaction was tested with background traffic of different type, size and variation patterns and in the presence of concurrent multimedia streaming processes subject to user-interactions. The results show that the performance of QOAS was very close to that of an ideal adaptive scheme. In comparison with other adaptive schemes QOAS allows for a significant increase in the number of simultaneous users while maintaining a good end-user perceived quality. These results are verified by a set of subjective tests that have been performed on viewers using a prototype system

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    corecore