6,583 research outputs found

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Motion Planning For Micro Aerial Vehicles

    Get PDF
    A Micro Aerial Vehicle (MAV) is capable of agile motion in 3D making it an ideal platform for developments of planning and control algorithms. For fully autonomous MAV systems, it is essential to plan motions that are both dynamically feasible and collision-free in cluttered environments. Recent work demonstrates precise control of MAVs using time-parameterized trajectories that satisfy feasibility and safety requirements. However, planning such trajectories is non-trivial, especially when considering constraints, such as optimality and completeness. For navigating in unknown environments, the capability for fast re-planning is also critical. Considering all of these requirements, motion planning for MAVs is a challenging problem. In this thesis, we examine trajectory planning algorithms for MAVs and present methodologies that solve a wide range of planning problems. We first introduce path planning and geometric control methods, which produce spatial paths that are inadequate for high speed flight, but can be used to guide trajectory optimization. We then describe optimization-based trajectory planning and demonstrate this method for solving navigation problems in complex 3D environments. When the initial state is not fixed, an optimization-based method is prone to generate sub-optimal trajectories. To address this challenge, we propose a search-based approach using motion primitives to plan resolution complete and sub-optimal trajectories. This algorithm can also be used to solve planning problems with constraints such as motion uncertainty, limited field-of-view and moving obstacles. The proposed methods can run in real time and are applicable for real-world autonomous navigation, even with limited on-board computational resources. This thesis includes a carefully analysis of the strengths and weaknesses of our planning paradigm and algorithms, and demonstration of their performance through simulation and experiments

    Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

    Get PDF
    Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor and outdoor environments due to their small size, superior mobility, and hover capability. In such missions, it is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent successes in commercialization of GPS-based autonomous MAVs, autonomous navigation in complex and possibly GPS-denied environments gives rise to challenging engineering problems that require an integrated approach to perception, estimation, planning, control, and high level situational awareness. Among these, state estimation is the first and most critical component for autonomous flight, especially because of the inherently fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present methodologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only onboard sensing and computation. We start by developing laser and vision-based state estimation methodologies for indoor autonomous flight. We then investigate fusion from heterogeneous sensors to improve robustness and enable operations in complex indoor and outdoor environments. We further propose estimation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning, control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online experimental results are presented throughout the thesis. We conclude by proposing future research opportunities

    Edge Based RGB-D SLAM and SLAM Based Navigation

    Get PDF

    Automated 3D model generation for urban environments [online]

    Get PDF
    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for birds-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the movement of the acquisition vehicle via scan matching; the obtained relative motion estimates are concatenated to form an initial path. Assuming that features such as buildings are visible from both ground-based and airborne view, this initial path is globally corrected by Monte-Carlo Localization techniques using an aerial photograph or a Digital Surface Model as a global map. The second scanner is mounted vertically and is used to capture the 3D shape of the building facades. Applying a series of automated processing steps, a texture-mapped 3D facade model is reconstructed from the vertical laser scans and the camera images. In order to obtain an airborne model containing the roof and terrain shape complementary to the facade model, a Digital Surface Model is created from airborne laser scans, then triangulated, and finally texturemapped with aerial imagery. Finally, the facade model and the airborne model are fused to one single model usable for both walk- and fly-thrus. The developed algorithms are evaluated on a large data set acquired in downtown Berkeley, and the results are shown and discussed

    Fault detection in operating helicopter drive train components based on support vector data description

    Get PDF
    The objective of the paper is to develop a vibration-based automated procedure dealing with early detection of mechanical degradation of helicopter drive train components using Health and Usage Monitoring Systems (HUMS) data. An anomaly-detection method devoted to the quantification of the degree of deviation of the mechanical state of a component from its nominal condition is developed. This method is based on an Anomaly Score (AS) formed by a combination of a set of statistical features correlated with specific damages, also known as Condition Indicators (CI), thus the operational variability is implicitly included in the model through the CI correlation. The problem of fault detection is then recast as a one-class classification problem in the space spanned by a set of CI, with the aim of a global differentiation between normal and anomalous observations, respectively related to healthy and supposedly faulty components. In this paper, a procedure based on an efficient one-class classification method that does not require any assumption on the data distribution, is used. The core of such an approach is the Support Vector Data Description (SVDD), that allows an efficient data description without the need of a significant amount of statistical data. Several analyses have been carried out in order to validate the proposed procedure, using flight vibration data collected from a H135, formerly known as EC135, servicing helicopter, for which micro-pitting damage on a gear was detected by HUMS and assessed through visual inspection. The capability of the proposed approach of providing better trade-off between false alarm rates and missed detection rates with respect to individual CI and to the AS obtained assuming jointly-Gaussian-distributed CI has been also analysed

    Absolute Positioning Using the Earth\u27s Magnetic Anomaly Field

    Get PDF
    Achieving worldwide alternatives to GPS is a challenging engineering problem. Current GPS alternatives often suffer from limitations such as where and when the systems can operate. Navigation using the Earth\u27s magnetic anomaly field, which is globally available at all times, shows promise to overcome many of these limitations. We present a navigation filter which uses the Earth\u27s magnetic anomaly field as a navigation signal to aid an inertial navigation system (INS) in an aircraft. The filter utilizes highly-accurate optically pumped cesium (OPC) magnetometers to make scalar measurements of the Earth\u27s magnetic field and compare them to a map using a marginalized particle filter approach. We demonstrate navigation accuracy of 13 meters DRMS with a high quality magnetic anomaly map at low altitudes with real flight data. We conduct a simulation over the continental United States to predict accuracies with respect to variables like location and altitude. Finally, we address the problem of map availability by presenting a method for a self-building magnetic anomaly model

    Long-term Informative Path Planning with Autonomous Soaring

    Get PDF
    The ability of UAVs to cover large areas efficiently is valuable for information gathering missions. For long-term information gathering, a UAV may extend its endurance by accessing energy sources present in the atmosphere. Thermals are a favourable source of wind energy and thermal soaring is adopted in this thesis to enable long-term information gathering. This thesis proposes energy-constrained path planning algorithms for a gliding UAV to maximise information gain given a mission time that greatly exceeds the UAV's endurance. This thesis is motivated by the problem of probabilistic target-search performed by an energy-constrained UAV, which is tasked to simultaneously search for a lost ground target and explore for thermals to regain energy. This problem is termed informative soaring (IFS) and combines informative path planning (IPP) with energy constraints. IFS is shown to be NP-hard by showing that it has a similar problem structure to the weight-constrained shortest path problem with replenishments. While an optimal solution may not exist in polynomial time, this thesis proposes path planning algorithms based on informed tree search to find high quality plans with low computational cost. This thesis addresses complex probabilistic belief maps and three primary contributions are presented: • First, IFS is formulated as a graph search problem by observing that any feasible long-term plan must alternate between 1) information gathering between thermals and 2) replenishing energy within thermals. This is a first step to reducing the large search state space. • The second contribution is observing that a complex belief map can be viewed as a collection of information clusters and using a divide and conquer approach, cluster tree search (CTS), to efficiently find high-quality plans in the large search state space. In CTS, near-greedy tree search is used to find locally optimal plans and two global planning versions are proposed to combine local plans into a full plan. Monte Carlo simulation studies show that CTS produces similar plans to variations of exhaustive search, but runs five to 20 times faster. The more computationally efficient version, CTSDP, uses dynamic programming (DP) to optimally combine local plans. CTSDP is executed in real time on board a UAV to demonstrate computational feasibility. • The third contribution is an extension of CTS to unknown drifting thermals. A thermal exploration map is created to detect new thermals that will eventually intercept clusters, and therefore be valuable to the mission. Time windows are computed for known thermals and an optimal cluster visit schedule is formed. A tree search algorithm called CTSDrift combines CTS and thermal exploration. Using 2400 Monte Carlo simulations, CTSDrift is evaluated against a Full Knowledge method that has full knowledge of the thermal field and a Greedy method. On average, CTSDrift outperforms Greedy in one-third of trials, and achieves similar performance to Full Knowledge when environmental conditions are favourable

    Guidance, Navigation and Control for UAV Close Formation Flight and Airborne Docking

    Get PDF
    Unmanned aerial vehicle (UAV) capability is currently limited by the amount of energy that can be stored onboard or the small amount that can be gathered from the environment. This has historically lead to large, expensive vehicles with considerable fuel capacity. Airborne docking, for aerial refueling, is a viable solution that has been proven through decades of implementation with manned aircraft, but had not been successfully tested or demonstrated with UAVs. The prohibitive challenge is the highly accurate and reliable relative positioning performance that is required to dock with a small target, in the air, amidst external disturbances. GNSS-based navigation systems are well suited for reliable absolute positioning, but fall short for accurate relative positioning. Direct, relative sensor measurements are precise, but can be unreliable in dynamic environments. This work proposes an experimentally verified guidance, navigation and control solution that enables a UAV to autonomously rendezvous and dock with a drogue that is being towed by another autonomous UAV. A nonlinear estimation framework uses precise air-to-air visual observations to correct onboard sensor measurements and produce an accurate relative state estimate. The state of the drogue is estimated using known geometric and inertial characteristics and air-to-air observations. Setpoint augmentation algorithms compensate for leader turn dynamics during formation flight, and drogue physical constraints during docking. Vision-aided close formation flight has been demonstrated over extended periods; as close as 4 m; in wind speeds in excess of 25 km/h; and at altitudes as low as 15 m. Docking flight tests achieved numerous airborne connections over multiple flights, including five successful docking manoeuvres in seven minutes of a single flight. To the best of our knowledge, these are the closest formation flights performed outdoors and the first UAV airborne docking
    • …
    corecore