
Long-Term Informative Path

Planning with Autonomous

Soaring

Joseph L. Nguyen

A thesis submitted in fulfillment
of the requirements of the degree of

Doctor of Philosophy

Australian Centre for Field Robotics
School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

May 2016

Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of the University or other institute of higher
learning, except where due acknowledgement has been made in the text.

Joseph L. Nguyen

31 August, 2015

Abstract
Joseph L. Nguyen Doctor of Philosophy
The University of Sydney May 2016

Long-Term Informative Path
Planning with Autonomous

Soaring

The ability of unmanned aerial vehicles (UAVs) to cover large areas efficiently is
valuable for information gathering missions. For long-term information gathering, a
UAV may extend its endurance by accessing energy sources present in the atmosphere.
Thermals are a favourable source of wind energy and thermal soaring is adopted in
this thesis to enable long-term information gathering. This thesis proposes energy-
constrained path planning algorithms for a gliding UAV to maximise information gain
given a mission time that greatly exceeds the UAV’s endurance.

This thesis is motivated by the problem of probabilistic target-search performed by an
energy-constrained UAV, which is tasked to simultaneously search for a lost ground
target and explore for thermals to regain energy. This problem is termed informative
soaring (IFS) and combines informative path planning (IPP) with energy constraints.
IFS is shown to be NP-hard by showing that it has a similar problem structure to the
weight-constrained shortest path problem with replenishments. While an optimal solu-
tion may not exist in polynomial time, this thesis proposes path planning algorithms
based on informed tree search to find high quality plans with low computational cost.

This thesis addresses complex probabilistic belief maps and three primary contribu-
tions are presented:

• First, IFS is formulated as a graph search problem by observing that any fea-
sible long-term plan must alternate between 1) information gathering between

Abstract iii

thermals and 2) replenishing energy within thermals. This is a first step to
reducing the large search state space.

• The second contribution is observing that a complex belief map can be viewed
as a collection of information clusters and using a divide and conquer approach,
cluster tree search (CTS), to efficiently find high-quality plans in the large search
state space. In CTS, near-greedy tree search is used to find locally optimal plans
and two global planning versions are proposed to combine local plans into a full
plan. Monte Carlo simulation studies show that CTS produces similar plans
to variations of exhaustive search, but runs five to 20 times faster. The more
computationally efficient version, CTSDP , uses dynamic programming (DP) to
optimally combine local plans. CTSDP is executed in real time on board a UAV
to demonstrate computational feasibility.

• The third contribution is an extension of CTS to unknown drifting thermals.
A thermal exploration map is created to detect new thermals that will even-
tually intercept clusters, and therefore be valuable to the mission. Time win-
dows are computed for known thermals and an optimal cluster visit schedule is
formed. A tree search algorithm called CTSDrift combines CTS and thermal ex-
ploration. Using 2400 Monte Carlo simulations, CTSDrift is evaluated against
a Full Knowledge method that has full knowledge of the thermal field and a
Greedy method. On average, CTSDrift outperforms Greedy in one-third of tri-
als, and achieves similar performance to Full Knowledge when environmental
conditions are favourable.

Acknowledgements

I would first like to thank my supervisor Prof Salah Sukkarieh for offering me the
opportunity to pursue my research doctorate at the Australian Centre for Field
Robotics (ACFR). Your high level guidance and support has been a cornerstone
to both my academic and personal development.

Next, I would like to greatly thank my co-supervisor Dr Nicholas Lawrance for his
deep insight, time and patience throughout my research. Our discussions lead to
numerous fruitful ideas that would not have occurred to me alone. I would also like
to thank Dr Robert Fitch for his insight, knowledge and support. In particular, I
have vastly improved my written communication skills and enhanced my professional
development.

Many thanks goes to the CDMRG group. I’ve learned how to “read” papers and
enjoyed every one of our weekly meetings. They have given true meaning to the act
of research. I’ve also had an amazing time with the LEAF group. To Jag, for showing
me what real engineering involves and for showing me that flying involves more than
winging it. To Dan, for solving all my autopilot issues. And to the rest of the group,
Nick, Jen and Ali, for providing warmth (much needed) at Marulan. To everyone at
ACFR, thank you for our many discussions both academic and non-academic; they
have been highly enlightening and entertaining. It has been a pleasure working with
you all and I hope the ACFR continues to be an inspirational place for both young
and hardened researchers.

Finally, I would like to express my greatest gratitude to my family whom without I
would not be here today. Thank you for taking care of my mind and body, and for
picking me up in the rough times without my realisation.

To my loving family for their unwavering support.

Contents

Declaration i

Abstract ii

Acknowledgements iv

Contents vi

List of Figures x

List of Algorithms xiii

Abbreviations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Approach . 3

1.4 Contributions . 5

1.5 Thesis Structure . 6

2 Related Work 8

2.1 Soaring . 8

2.1.1 Autonomous Soaring . 10

2.1.2 Mission Planning with Autonomous Soaring 11

Contents vii

2.1.3 Persistence Planning with Recharging 12

2.2 Probabilistic Search . 13

2.2.1 Probabilistic Search in Robotics 14

2.3 Budgeted Informative Path Planning (BIPP) 15

2.4 Monte Carlo Tree Search (MCTS) . 17

3 Informative Soaring 19

3.1 Computational Complexity . 20

3.2 Six Degree of Freedom Gliding . 21

3.2.1 Simplified Gliding Model . 23

3.3 Thermal Model and Energy Constraint 25

3.3.1 Time Cost . 26

3.4 Probabilistic Search Framework . 27

3.4.1 Information Environment . 27

3.4.2 Sensor Agent . 27

3.4.3 Belief Representation . 28

3.4.4 Cost Function . 29

3.4.5 Decision-Making Policy . 29

3.4.6 Simplified Framework . 29

3.4.7 Finite Horizon Planning . 30

3.4.8 Sensor Model . 31

3.4.9 Utility Function Formulation 32

3.5 Summary . 35

4 Informative Soaring Path Planning 36

4.1 Tree Search Approach . 37

4.2 Motion Model Lookup Table . 38

4.3 Generation of Inter-thermal Path Segments 38

4.4 Optimising Thermalling Time . 41

Contents viii

4.5 Global Path Planning . 45

4.5.1 Finite Horizon Tree Search (FHTS) 47

4.5.2 Monte Carlo Tree Search (MCTS) 48

4.5.3 Cluster Tree Search (CTS) . 52

4.6 Numerical Simulations . 58

4.6.1 Thermalling Time Optimisation Results 58

4.6.2 Evaluation of FHTS . 59

4.6.3 Simple Scenario . 62

4.6.4 Complex Scenario . 62

4.6.5 MCTS and CTSSeq Exploration Weight Selection 65

4.6.6 Comparison of Search Algorithms 67

4.7 Summary . 69

5 Experiments 71

5.1 Experimental Hardware and Software 71

5.2 Experimental Setup . 75

5.3 Experimental Results . 76

5.4 Summary . 78

6 Informative Soaring with Drifting Thermals 83

6.1 Thermal Exploration Map . 84

6.1.1 Probability of Covering a Location 85

6.1.2 Thermal Exploration Map Generation 88

6.2 ITPs for Moving Thermals . 89

6.2.1 Thermal Tracking . 90

6.2.2 Boundary Value Constraint 93

6.3 Cluster Schedule . 95

6.3.1 Thermal Time Windows . 95

6.3.2 Branch and Bound for Cluster Scheduling 97

Contents ix

6.4 CTS Drift . 102

6.5 Numerical Simulations . 107

6.5.1 Plan Trajectories . 110

6.5.2 Monte Carlo Simulations . 114

6.6 Summary . 127

7 Conclusion 128

7.1 Summary of Contributions . 129

7.2 Future Research . 131

Bibliography 134

List of Figures

2.1 Static soaring in a thermal . 9

2.2 Dynamic soaring in wind shear . 10

3.1 Information gathering between thermals 20

3.2 Applied forces and velocity vectors for a gliding aircraft 22

3.3 Velocity profile for a toroidal thermal 25

3.4 UAV states s and control actions u for a finite horizon plan 31

3.5 Sensor model components and function 32

3.6 Belief function update . 34

4.1 Set of inter-thermal path segments between two thermals 40

4.2 Set of inter-thermal path segments for thermal self-transition 40

4.3 Global planning using tree search . 41

4.4 A hypothetical tree showing further branching 42

4.5 Schematic plan for thermalling time optimisation 43

4.6 Belief map clustering . 45

4.7 FHTS binary tree example . 49

4.8 Two clusters with even splits on initial belief b0 55

4.9 Thermalling time optimisation example 59

4.10 Altitude allocation for thermalling time optimisation example 60

4.11 Simple map . 61

4.12 Complex map . 61

List of Figures xi

4.13 Simple scenario utility gain . 62

4.14 Complex scenario utility gain . 63

4.15 Top-view trajectories over the complex map 64

4.16 Monte Carlo simulations for MCTS and CTSSeq 66

4.17 Monte Carlo simulations comparing MCTS, CTSSeq and CTSDP . . . 68

4.18 MCTS plan on the 2-cluster map . 69

4.19 Horizon-3 CTSDP plan on the 2-cluster map 69

5.1 Skywalker 1900 UAV assembled at the ACFR, and used for hardware
demonstrations in this thesis. 72

5.2 Skywalker 1900 UAV fuselage equipped with electronics as labelled. . 74

5.3 The search region over Marulan, NSW Australia 75

5.4 Flight test Case-1 Horizon-1 CTSDP 77

5.5 Flight test Case-1 Horizon-2 CTSDP 79

5.6 Flight test Case-2 Horizon-1 CTSDP 80

5.7 Flight test Case-3 Horizon-1 CTSDP 81

5.8 Mission utility over time comparing the benefit of replanning (Case-2)
to no replanning (Case-3). 81

6.1 Thermal coverage footprint probability cone 86

6.2 Evolution of possible thermal positions along ±σΨ directions over time 87

6.3 The two possible scenarios when a location ξ = (x, y) is covered at the
circumference of the thermal coverage footprint. 88

6.4 Two PDF slices of the probability cone 89

6.5 Corresponding CDFs for each PDF slice in Figure 6.4 90

6.6 Belief map and corresponding thermal exploration map 91

6.7 The set of inter-thermal path segments (ITPs) between two drifting
thermals . 94

6.8 Two examples showing the time window optimisation solution 96

6.9 Example condition when parent job serviced time is reduced to service
a new job before its due date . 101

List of Figures xii

6.10 Two schedules for a scenario of five jobs 103

6.11 Thermal exploration loop trajectory 108

6.12 Thermal exploration probability decay function 109

6.13 Example Full Knowledge plan and schedule for 3-cluster map with
µΨ = −170◦ . 111

6.14 Greedy plan for same scenario in Figure 6.13 112

6.15 CTSDrift plan and replans for same scenario in Figure 6.13 115

6.16 Utility and computational time for 3-cluster map and wind direction
µΨ = −170◦. 116

6.17 Utility and computational time for 5-cluster map and wind direction
µΨ = −170◦. 118

6.18 Utility and computational time for 7-cluster map and wind direction
µΨ = −170◦. 119

6.19 Utility for 3-cluster map and wind direction µΨ = 100◦. 120

6.20 Utility for 5-cluster map and wind direction µΨ = 100◦. 120

6.21 Utility for 7-cluster map and wind direction µΨ = 100◦. 121

6.22 Competition matrix for all simulation runs showing percentage of sce-
narios row method acquired 5% more utility than column method. . . 121

6.23 Decomposed competition matrices for each desired utility. 122

6.24 Average utility for all simulation runs. 123

6.25 Average number of detected thermals for all simulation runs 123

6.26 . 124

6.26 Average number of clusters serviced. 125

6.27 Plans of Full Knowledge, Greedy and CTSDrift methods for an instance
of the 7-cluster map . 126

List of Algorithms

1 Thermalling Time Optimisation . 46
2 Finite Horizon Tree Search . 48
3 Monte Carlo Tree Search . 50
4 Sequential Cluster Tree Search . 54
5 Dynamic Programming Cluster Tree Search 56
6 Cluster Schedule . 99
7 Cluster Tree Search Drift . 104

Abbreviations

ACFR Australian Centre for Field Robotics
AI artificial intelligence
BFS breadth first search
BIC Bayesian information criteria
BIPP budgeted informative path planning
BnB branch and bound
CDF cumulative density function
COP correlated orienteering problem
CTS cluster tree search
DFS depth first search
DoF degree of freedom
DP dynamic programming
EM expectation maximisation
FC flight computer
FHTS finite horizon tree search
GA genetic algorithm
GCS ground control station
GMM Gaussian mixture model
GNC guidance, navigation and control
GP Gaussian process
GPS global positioning system
GTSP generalised travelling salesman problem
IDDFS iterative deepening depth first search
IFS informative soaring
ILP integer linear program
IMU inertial measurement unit
IPP informative path planning
ITP inter-thermal path segment
LOMS locally optimal myopic search
MCTS Monte Carlo tree search
MILP mixed integer linear program
PDF probability density function
PID proportional integral derivative

Abbreviations xv

POMDP partially observable Markov decision process
PTSP physical travelling salesman problem
RAVE rapid action value estimation
RRT rapidly-exploring random tree
SD standard deviation
SQP sequential quadratic programming
TSP travelling salesman problem
TW-TSP travelling salesman problem with time windows
UAS unmanned aerial system
UAV unmanned aerial vehicle
UB upper bound
UCB upper confidence bound
UKF unscented Kalman filter

Chapter 1

Introduction

The aim of this thesis is to develop a framework for energy-constrained informative
path planning (IPP) with an autonomous aerial glider. An autonomous glider is an
unmanned aerial vehicle (UAV) that is not powered by propellers or other means
of active propulsion, but instead relies on energy from atmospheric wind currents.
Thermals are bubbles of rising warm air formed when the ground is heated unevenly,
usually by the sun, and are an important source of wind energy to gliders. The
process of circling in thermals is known as thermal soaring and enables a glider to
increase its potential energy, resulting in increased flight time. Extended flight time
provides important opportunities for applications in long-term information gathering,
including mapping, search and rescue, target-tracking and surveillance.

1.1 Motivation

This thesis is motivated by the problem of long-term search for a lost ground-target
using a gliding UAV. Conventional aircraft and UAVs equipped with onboard sensors
to detect and track targets play an important role in search missions because of their
ability to cover large areas efficiently, but limited flight endurance diminishes their
effectiveness in long-term missions. Pioneering work in autonomous soaring has shown

1.2 Related Work 2

that extended flight times are possible [6, 46], and it is now feasible to integrate soaring
into flight planning for long-term search.

A common approach to solving the search problem is to use a probabilistic formulation
because it provides a mathematically consistent framework for handling uncertain-
ties due to modelling errors, sensor noise, environmental disturbances and execution
errors [23, 34, 129]. This is known as probabilistic search whereby information is
gathered by minimising uncertainty in the probabilistic model of the target state.
To perform long-term information gathering using soaring, mission planning must
achieve two objectives: 1) maintain kinetic and potential energy levels above a mini-
mum threshold by flying in such a way as to harvest energy from wind, and 2) plan
informative flight paths that yield high-gain observations to minimise uncertainty in
the probabilistic model. Whereas previous work has addressed each objective sepa-
rately, this thesis considers both objectives together. This is defined as the informative
soaring (IFS) problem.

1.2 Related Work

The work in this thesis primarily draws upon three fields: 1) autonomous soaring,
2) probabilistic search, and 3) budgeted informative path planning (BIPP). Firstly,
an understanding of the mechanisms of autonomous soaring is crucial for integrating
soaring into flight planning. While a number of soaring modes exist, pioneering
research that culminated in the practical demonstration of UAV thermal soaring [6,
46] indicate that thermal soaring is currently a reliable mode of energy capture for
integration with useful mission objectives.

Secondly, probabilistic search in robotics uses an information theoretic framework to
address path planning in the target-search problem. As such, mission planners are
able to incorporate high-level information prior to tasking UAVs to conduct the search
mission. Probabilistic search is well studied in the literature as surveyed by Chung
et al. [34] and this thesis adopts the popular Bayesian formulation. However, the

1.3 Approach 3

path planning component is extended by exploiting structure present in IFS and is
shown to outperform a state-of-the-art probabilistic search method.

Finally, the field of BIPP is closely related to IFS. The goal of a BIPP problem is
to generate a plan that maximises information gain about a given spatio-temporal
phenomenon subject to a travel cost budget. IFS shares this same goal but includes
additional constraints imposed by soaring. Approaches for BIPP often exploit mono-
tone submodular objective functions to provide global performance guarantees [66].
However, this class of method relies on the assumption that the set of possible obser-
vation locations is finite and known in advance. It is infeasible to pre-compute such
a reachable set in IFS because reachability depends on the energy state of the UAV
at any given time. An alternative solution is tree search as shown in [17, 51] and is
employed in this thesis.

1.3 Approach

IFS combines IPP with energy constraints and can be viewed as a variant of weight-
constrained shortest path with replenishments, an NP-hard problem [115]. Although
existing complexity results suggest an optimal solution is not possible in polynomial
time, this thesis proposes an approach informed by observations of the problem struc-
ture that leads to improved performance over greedy (myopic) search. The first key
observation proposed in this thesis is that any feasible plan must alternate between
two modes: 1) information gathering in non-thermal areas, and 2) visiting thermals
to regain energy. This observation reduces the search state space such that the set of
feasible plans only comprises connections of path segments between thermal nodes.
A search tree is created where each node represents the spatio-temporal state of a
thermal and each edge represents either an ITP or a climb path inside a thermal. This
natural discrete problem structure is then amenable to search techniques appropriate
for large graphs.

IFS is treated in two stages. The first assumes thermals are known and stationary to
simplify the problem and motivate a solution approach. The second stage relaxes the

1.3 Approach 4

assumption to unknown thermals drifting with the prevailing wind, adding a layer of
thermal exploration to planning.

The problem of planning over complex probabilistic models, or belief maps, is con-
sidered, in which information is arranged in disjoint, localised clusters. Firstly,
a state-of-the-art search method using rapidly-exploring random trees (RRTs) and
gradient-based optimisation is shown to gather suboptimal information because path
optimisation is localised to a single cluster. To rectify this myopia, finite horizon tree
search (FHTS) is presented and shown to improve performance over myopic search. A
method called Monte Carlo tree search (MCTS) that embeds random sampling in tree
search is then adapted to reduce computational time while still providing nonmyopic
plans similar to FHTS. A novel methodology is proposed to further reduce computa-
tional time by using the belief map partitioning as a heuristic to direct effort earlier in
the search process towards information-rich regions. The algorithm is named cluster
tree search (CTS) and versions using FHTS and MCTS are evaluated. Simulation
results show that CTS produces nonmyopic plans for complex belief maps with the
least computational time compared to all other methods. The most computationally
efficient algorithm using dynamic programming (DP), called CTSDP , is implemented
on hardware to prove real-time capability and demonstrate replanning.

In the second stage, the CTS approach is extended to account for unknown drift-
ing thermals. First, this thesis proposes a thermal exploration map to detect ther-
mals that will eventually intercept information clusters. Second, time windows are
computed for known thermals and an optimal schedule is formed using branch and
bound (BnB) tree search to service clusters. The schedule orders the clusters to visit
given a processing time for each cluster. Third, since cluster processing times are
finite, BnB is also employed in CTS using information gain rate as the bound; the
new algorithm is called CTSDrift. Simulation results show that when environmental
conditions are favourable, CTSDrift achieves similar performance to a Full knowledge
method that has full knowledge of thermals. However, there remains a performance
gap between CTSDrift and Full knowledge on average, despite CTSDrift performing
better than a Greedy method in one-third of trials.

1.4 Contributions 5

1.4 Contributions

The contributions of this thesis are:

• Formulating a graph search structure for IFS such that any nonmyopic plan
alternates between information gathering between thermals and energy replen-
ishment at thermals. This drastically decreases the search state space such that
feasible plans only comprise connections of path segments between thermals.

• Proposing the CTS algorithm that identifies clusters on the belief map and then
applies FHTS and MCTS to plan subtrees of local plans at each cluster. The
most computationally efficient version CTSDP optimally combines local plans
using DP to generate a full plan. CTSDP selects the combination of local plans
that maximises overall utility given a mission time.

• Using empirical simulations to demonstrate that the IFS formulation coupled
with the proposed CTS algorithms delivers high quality plans with similar utility
gain to long-horizon FHTS and MCTS. The proposed CTS algorithms are
shown to achieve these results with greatly reduce computational cost.

• Implementing CTSDP on board a UAV to demonstrate real-time capability.
The hardware experiments showed that 15-minute plans can be generated in
less than four seconds and suggest longer missions can also be feasibly planned.

• Proposing an extension algorithm CTSDrift to handle unknown drifting ther-
mals. CTSDrift is evaluated using Monte Carlo simulation and shown to have
comparable performance to planning with full knowledge of thermals when envi-
ronmental conditions are favourable. On average, CTSDrift outperforms greedy
search in one-third of simulations.

Components of this thesis have previously appeared in a number of publications.
The IFS problem was first introduced in [91] where FHTS using the proposed IFS
formulation was shown to outperform a state-of-the-art search method. Improvements

1.5 Thesis Structure 6

in computational efficiency were demonstrated using MCTS and CTS in [92]. This
research was expanded in a journal paper [78] and further detailed with additional
work incorporating replanning and hardware validation in another journal paper [93].
Finally, IFS with drifting thermals was presented in [94].

1.5 Thesis Structure

The remainder of the thesis is organised as follows:

Chapter 2 reviews related work in four research areas: 1) autonomous soaring, 2)
probabilistic search, 3) BIPP, and 4) MCTS.

Chapter 3 establishes the framework of IFS. Fundamental elements of the problem
are described, including 1) the UAV equations of motion, 2) the thermal model and
energy constraint and 3) the probabilistic search framework.

Chapter 4 explains the IFS solution approach. First, a motion model lookup table
is implemented to enable rapid path generation. The resulting motion primitives
are used in the process of developing ITPs. Plans created during tree search are
continually time-optimised by shifting thermalling time to stronger thermals in the
plan to maximise time for information gathering. Lastly, global planning is presented
where FHTS, MCTS and CTS are described. The proposed algorithms are evaluated
using numerical simulations.

Chapter 5 presents the results of a hardware demonstration of the CTSDP algorithm.
These experiments successfully validate real-time planning for IFS using a UAV.

Chapter 6 extends CTSDP to handle unknown drifting thermals. Modifications
include: 1) developing a thermal exploration map to efficiently detect new thermals to
access currently unserviceable clusters, 2) computing time windows of thermals when
they are predicted to pass over clusters and using these time windows to compute an
optimal cluster visit schedule and 3) using BnB tree search in CTS. The resulting
algorithm called CTSDrift is compared against Greedy and Full Knowledge.

1.5 Thesis Structure 7

Chapter 7 concludes with a summary of the contributions made in this thesis and
suggests areas for future work.

Chapter 2

Related Work

This chapter discusses related work from four fields: 1) autonomous soaring, 2) prob-
abilistic search, 3) budgeted informative path planning (BIPP), and 4) Monte Carlo
tree search (MCTS).

2.1 Soaring

Soaring is the process of collecting energy from wind currents in the atmosphere.
Soaring was discovered when some birds were observed to fly for extended periods of
time without flapping their wings and seemingly without losing airspeed or altitude.
Early aerodynamic research had shown that energy is lost due to drag by any object
moving through a fluid. Thus, it was determined that these birds were capturing
energy from the wind [4, 97, 105]. This process is known as soaring. There are
two primary methods of energy capture from the wind, static soaring and dynamic
soaring.

Static soaring is the process of flying through air that is rising relative to the ground.
This method is utilised by both birds and manned gliders where there are naturally
occurring sources of rising air, namely thermals, ridge lift and lee waves [98, 123].
Among these energy sources, thermals are favoured by both birds and human glider

2.1 Soaring 9

pilots because they are relatively common and easy to use for energy gain, particularly
in cross country soaring [99, 116]. A thermal is created when an area of the ground
is heated, usually by the sun, to a warmer temperature than surrounding areas. The
warm air is less dense and rises with respect to the cooler surrounding air, and an
aircraft that flies in the rising air will collect energy, as illustrated in Figure 2.1.

Dynamic soaring involves flying through distributions of wind speed, or wind shear, to
obtain increased kinetic energy, as depicted in Figure 2.2. This type of flight is often
performed cyclically with the energy gained in each cycle being used to travel towards
a destination before starting the next cycle. This method was originally discovered
by observing birds such as albatrosses soar over regions of the ocean where wind shear
was present [56, 124, 130]. Naturally occurring sources of wind shear are boundary
layers that occur over surfaces such as the ground or ocean, shear generated by flow
around geographic obstacles, and meteorological shear. Dynamic soaring generally
requires good knowledge of the wind field to calculate energy-gain trajectories.

Warm air rises relative to the surrounding cooler air

Cool air is displaced and sinks outside the thermal

Figure 2.1 – Static soaring in a thermal [73].

2.1 Soaring 10

xi

zi

yi

Upwind climb

High altitude turn

Downwind dive

Low altitude turn

Figure 2.2 – Dynamic soaring in wind shear [73].

Early research in soaring focused on how birds identified and used sources of energy,
the amount of energy that could be obtained, and how they integrated soaring be-
haviours with their needs for travelling and foraging flight [108, 126]. Parallel research
for manned aircraft focused mainly on static soaring, which is the primary energy cap-
ture mode for manned gliders. This has lead to the development of relatively simple
algorithms such as the speed-to-fly rules [83, 84] for cross country soaring. These rules
are used to determine when a vehicle should utilise a thermal and when it should travel
to maximise overall average speed based on estimated thermal strengths.

2.1.1 Autonomous Soaring

While the bird flight and manned glider problems have received significant attention,
it is only in recent years that autonomous soaring with UAVs has been addressed as a
research problem. The earliest research attempted to imitate the behaviour of manned
glider pilots by utilising simple gliding rules, such as estimating the best orbital radius
for a thermal for cross country flights with autonomous gliders [5, 6, 8]. Extensions
to this work by Edwards and Silverberg [46] culminated in the demonstration of
a fully autonomous glider that flew for over 4 hours on a 97km round trip flight,
unofficially setting a new soaring record. Furthermore, Andersson et al. [11] analysed

2.1 Soaring 11

the stability of a thermal centring controller, which then led to the first demonstration
of cooperative thermal soaring [10].

Dynamic soaring has also been considered, but due to the difficulty of testing, has
mainly been limited to simulation. Previous studies have used offline numerical opti-
misation techniques and showed that shear layers over the ocean should contain suffi-
cient energy to provide continuous or assisted flight for small (< 10kg) UAVs [81, 133].
Further work examined online reactive strategies for soaring in shear and turbulent
wind fields. Boslough [20] and Barate et al. [13] separately examined dynamic soaring
in shear by designing bio-inspired trajectories that were optimised using evolutionary
algorithms, and assessing flight behaviour on real platforms. Lawrance and Sukkarieh
[74] proposed a piecewise trajectory controller that generated and tracked positive en-
ergy gain paths for dynamic soaring in wind shear.

Some work has attempted to create a model or utilise a known model of the wind
field to perform soaring. For turbulent fields including gust and orographic lift, De-
penbusch and Langelaan [39, 40], Langelaan [70] proposed model predictive control
for wind energy extraction. Chakrabarty and Langelaan [27, 28, 29] introduced en-
ergy maps and heuristic graph search for long distance flight planning with energy
harvesting in a known field. Lawrance and Sukkarieh [75, 76, 77] examined the fea-
sibility of mapping an unknown wind field for extended endurance in an exploration
exploitation scheme using a Gaussian process (GP).

2.1.2 Mission Planning with Autonomous Soaring

Advances in autonomous soaring prompted new research that applied soaring to per-
sistent information gathering. Cutler et al. [38] presented some of the first studies to
explore the feasibility of improving UAV mission effectiveness by extracting energy
from wind. A UAV cycled between monitoring a stationary target and replenishing
energy using ridge soaring, and simulation results showed that persistence was possi-
ble if the target was at a distance from the ridge less than four times the ridge height.
A more complex scenario was explored by Cobano et al. [36] where multiple glid-

2.1 Soaring 12

ing UAVs were coordinated to visit points-of-interest in a region containing thermals.
Short horizon plans where generated at 1Hz using a modified depth first search (DFS)
method to handle pop-up points of interest. This work was extended with RRT* for
longer horizon planning to avoid inter-vehicle collisions [35]. A distributed approach
to large area, long duration surveillance and coverage was considered with hetero-
geneous UAVs under communication constraints [1–3]. In this line of work, pairs
of gliders switched between their predefined coverage trajectories to allow the lower
energy state glider to greedily reach a known thermal and replenish.

Although existing work has begun to address long duration surveillance, probabilistic
information gathering with gliding UAVs is yet to be explored. The work in this
thesis is interested in generating nonmyopic plans that are not restricted to predefined
coverage paths and that visit thermals in a non-greedy manner.

2.1.3 Persistence Planning with Recharging

Mission planning with autonomous soaring is a special case of persistence planning
with recharging in which there exists a resource that requires replenishment for the
mission to continue. In general, this problem involves a group of worker agents that
carry out the mission and a group of charging agents that replenish the workers. Jin
et al. [58] studied the refuelling of multiple UAVs by a tanker aircraft, formulating
the problem as an instance of combinatorial optimisation and used DP to solve for
the optimal schedule, noting that it resembled travelling salesman problem with time
windows (TW-TSP). Kaplan and Rabadi [59] modelled the multiple tanker problem
as a manufacturing job shop with parallel machines and applied classical scheduling
methods including mixed integer linear program (MILP) and heuristic search algo-
rithms. In a similar scenario, Litus et al. [82] considered finding a set of meeting points
for a charging robot to service multiple static workers using discrete and continuous
optimisation techniques with a guaranteed approximation to the global solution for
the discrete case. Mobile worker robots with varying trajectories were addressed in
Mathew et al. [86, 87]. The trajectories were discretised into sets of charging locations

2.2 Probabilistic Search 13

and cast as a generalised travelling salesman problem (GTSP) to be solved either as
an integer linear program (ILP) or using a travelling salesman problem (TSP) solver.
Palmer et al. [96] presented the stochastic collection and replenishment scenario as a
combinatorial optimisation problem and used A* to find the optimal schedule. The
scheduling of clusters in Section 6.3 makes use of this literature. However, the entire
IFS problem cannot be solved using these approaches because discrete meeting points
or observation locations vary with the UAV energy state throughout time and cannot
be pre-computed.

2.2 Probabilistic Search

The aim of probabilistic search is to minimise the time to detect a lost or hidden
target, or equivalently, to maximise information gain within a given time. The search
problem has been studied extensively in the literature where classical search theory
from mathematics and operations research had been concerned with constructing
stochastic optimisation models [15, 41, 117]. However, with modern computer sys-
tems, they have been replaced by algorithmic approaches in robotics suitable for
real-time application [34].

Probabilistic search is a popular framework because it accounts for uncertainties that
may originate from modelling errors, sensor noise, environmental disturbances and
execution errors. The optimal search problem involves a target located in Euclidean
n-space (continuous) or one of a possibly infinite collection of cells (discrete). A prior
probability distribution of the target location is known to the searcher at time zero
and is called the belief function or map. There is a detection function that models the
sensor used to detect the target and is applied at the searcher’s location over the map
to reduce the probability of target existence in a region of cells. The search problem
is to find a plan that maximises the probability of target detection or minimises the
time to detection given a constraint on the path length.

The above formulation was detailed in the seminal work of Koopman [62, 63, 64] for
maritime warfare strategies. This classical era of search theory was concerned with

2.2 Probabilistic Search 14

the development of simple models for search and detection, quickly followed by more
analytically rigorous approaches that developed necessary and/or sufficient conditions
on the optimality of search plans. This line of research has been summarised in
surveys [15, 41] and by Stone [117] who developed conditions for uniformly optimal
search plans and used Langrange multipliers for optimisation. A key result in the
discrete case is that maximising the probability of detection is NP-complete, and
minimising expected time until detection is NP-hard [122]. Near-optimal solutions to
variations on the optimal search problem have been proposed using BnB methods [44,
110, 125]. In these scenarios, the target may be stationary or transition according to
a Markov process through a grid of cells and the searcher is also confined to move to
an adjacent cell at each time step.

2.2.1 Probabilistic Search in Robotics

To improve search performance in realistic environments, classical search theory was
extended by considering non-linear motion models for search vehicles and Bayesian
filters for target motion uncertainty and sensor noise. The Bayesian approach to prob-
abilistic search comprises an estimation or data fusion process and a decision making
or path planning process. The Bayesian estimation process is suitable for combin-
ing non-linear motion models and heterogeneous non-Gaussian sensor observations
with general non-Gaussian belief functions [22, 68, 118]. Common belief representa-
tions have included Gaussians (Kalman filtering) [19, 43], particles [54, 65], certainty
grids [72] and GPs [50, 55, 119]. Once the belief function is updated, decision making
can be performed using a metric obtained from the belief function.

The decision making process in robotics uses an information theoretic measure (or
metric). Examples include Shannon entropy [106], Fisher information, information
rate [47], mutual information (entropy reduction) [21, 67] or variance reduction [17].
These measures are popular in robotic exploration, sensor-placement and environ-
mental monitoring problems. A closely related metric more commonly used in search
is the cumulative probability of detection. This metric captures the reduction in prob-

2.3 Budgeted Informative Path Planning (BIPP) 15

ability density prior to target detection, which aims to detect the target in minimal
time [23, 51, 129].

In the line of work [23, 51, 129], a Bayesian filter was used to cyclically predict target
motion and perform belief updates from sensor measurements. This method allowed
for a fully distributed approach with multiple search vehicles, which ameliorated
the drawback of myopic path planning using finite horizon planning [23] or greedy
neighbour cell selection [57]. Complete search was guaranteed in Yang et al. [131]
using a decentralised strategy based on an opportunistic cooperative learning method.
A lower bound and relaxed upper bound on the search time were provided.

Our algorithms build on this large body of work by integrating an energy constraint
and replenishment at thermals to solve the IFS problem. This approach mirrors
related work in multi-agent search where inter-agent collision avoidance was ad-
dressed [51]. Adding the collision avoidance constraint to the optimisation framework
avoided the need for reactive strategies. The integrated energy constraint in IFS offers
the same benefit by removing the need for switching between information gathering
and energy capture. IFS adopts the Bayesian framework in probabilistic search as
part of its information gathering component.

2.3 Budgeted Informative Path Planning (BIPP)

The IPP problem arises in sensing applications where information must be continu-
ously gathered to provide a good estimate of the state of the environment throughout
time. The utility of measurements taken at each point along the planned path de-
pends on all previous measurements in space and time. For example, if the agent
returns to a location where it had recently taken a measurement, the utility of the
current measurement would be relatively low. More formally, the objective functions
for IPP are generally submodular [66], which means standard DP approaches for path
planning cannot be used to solve IPP. The property of submodularity closely relates
the objective functions of IPP and probabilistic search. Choi and How [33] addressed

2.3 Budgeted Informative Path Planning (BIPP) 16

this issue by using a smoothing filter on the information reward to efficiently quantify
information accumulation to plan paths.

In BIPP, a time or energy budget is also considered. Chekuri and Pal [32] proposed a
quasi-polynomial time algorithm with an O(logOPT) approximation, called recursive
greedy, for BIPP with a monotone submodular objective function. Recursive greedy
was adopted by Meliou et al. [89] as a single step black box planner to plan a series
of cyclic paths all starting and ending at the same node. This method was applied to
monitor spatio-temporal phenomena at a finite set of locations and was demonstrated
to efficiently generate nonmyopic plans. Binney et al. [17] also employed recursive
greedy for a graph-based BIPP formulation that considered a time-varying objective
function and observations taken along edges of the graph instead of just the vertices.
They compared their method to finite horizon planning but results suggested there
was not a significant increase in performance. An interesting extension is the cor-
related orienteering problem (COP) problem [132], where information is assumed to
be spatially correlated. Mixed integer quadratic programming was employed to plan
optimal tours for a single and multiple robots to estimate time-varying, spatially-
correlated scalar fields.

One difficulty in applying this class of method is the assumption that the set of pos-
sible observation locations is finite and known in advance. Even with known thermal
locations, it is infeasible to pre-compute such a reachable set because reachability
depends on the energy state of the UAV at any given time. Any path that visits a
desired set of locations must also obey the dynamic constraints of the UAV.

Although no work so far has addressed IFS directly, tree search methods are commonly
employed for IPP with UAVs [79]. A computational advantage is that the running
time of tree search is predominantly governed by the choice of planning horizon. To
plan high utility paths, the adapted MCTS algorithm in this thesis utilises recent
exciting results originally designed for two-player games where the size of the game
tree is too large to be searched exhaustively [24]. The proposed CTS method builds
small local trees and then combines them to yield a full plan.

2.4 Monte Carlo Tree Search (MCTS) 17

2.4 Monte Carlo Tree Search (MCTS)

MCTS is a search method that combines tree search with random sampling to tractably
find near-optimal and optimal solutions to large state space problems in which pre-
vious search methods have failed. MCTS gained widespread popularity in the field
of game artificial intelligence (AI) after it was shown to win against human players
on small boards of computer Go. The AI community had perceived this feat to be
infeasible or at least some decades away [24].

The idea behind MCTS was first proposed in a method by Coulom [37] that won
the 10th KGS computer-Go tournament for a 9 × 9 board. The proposed algorithm
iteratively propagated random simulations from the current node in a game tree to
the end of the game and used these statistics to select tree nodes that had higher
probabilities of success than the current node. However, there was no guarantee of
convergence to the optimal move. The solution to this non-guarantee was provided
by Kocsis and Szepesvári [60], Kocsis et al. [61] by considering the upper confidence
bound (UCB) from Bandit problems when selecting nodes to expand. The UCB
balanced exploitation of promising nodes suggested from random simulations with
exploration of alternative nodes, such that the probability of selecting the right move
convergences to one, given sufficient time.

Since the inclusion of UCB, MCTS has been extensively studied in game AI. Browne
et al. [24] provided an extensive survey of the various applications of MCTS partic-
ularly in games, including multi-player [26, 120], single-player [111], real-time (e.g.
video) games [109], large partially observable Markov decision processs (POMDPs) [112]
and learning [113]. Many enhancements have also been investigated, such as adding
expert knowledge for exploration [30], and rapid action value estimation (RAVE) [53]
to name a couple. Almost all research has been targeted at improving performance
for games, especially computer Go.

There has been a small but growing proportion of work aimed at non-game domains.
Perez et al. [100] applied MCTS as a low-level search method in their hierarchical
planner to solve the physical travelling salesman problem (PTSP). Tom and Müller

2.4 Monte Carlo Tree Search (MCTS) 18

[121] examined the sailing domain using MCTS to solve the stochastic shortest path
problem where a sailboat searched for the shortest path between two points under
fluctuating wind conditions. MCTS has also received attention in production manage-
ment problems [31]. Likewise, this thesis identifies and levers the benefits of MCTS
in searching the large state space of IFS.

Chapter 3

Informative Soaring

This chapter defines the informative soaring (IFS) problem and establishes its math-
ematical framework. IFS involves deploying an energy-constrained gliding UAV to
search for a lost ground target within a bounded search region for a finite mission time.
It is assumed that thermals exist in the airspace over the search environment and that
the UAV can visit them to replenish energy, as depicted in Figure 3.1. Thermals are
assumed to be known and stationary for the solution approach in Chapter 4, but are
extended to be unknown and drifting in the general wind direction in Chapter 6. The
target is assumed to be stationary and its 2D position on a horizontal ground plane
represents its state. Information about the uncertain target state is captured by a
belief function or map over the bounded environment. The objective of IFS is to plan
a path that minimises the belief uncertainty, or equivalently maximises information
gain, within the given mission time. The associated constraint is that the UAV must
maintain sufficient energy (or altitude) during the mission.

This chapter is organised as follows. Section 3.1 first clarifies that IFS is an NP-hard
problem. Section 3.2 describes the realistic six degree of freedom (DoF) UAV motion
model used for path generation. Section 3.3 then defines the thermal model and
transforms the energy constraint of the UAV into a time cost. Section 3.4 formalises
the elements of probabilistic search. The formal outline is followed by a simplified
framework that describes how finite horizon planning replaces the globally optimal

3.1 Computational Complexity 20

Figure 3.1 – An example of information gathering between thermals and energy re-
plenishment within thermals. Thermals are represented by columns of upward
pointing arrows [80].

search plan with a tractable locally optimal plan. Section 3.4 finishes with outlines
of the sensor model and utility function formulation for the simplified framework.

3.1 Computational Complexity

IFS combines IPP with energy constraints and can be viewed as a variant of weight-
constrained shortest path, a canonical NP-hard problem [52]. Given a directed graph
where every edge has a cost and weight, the objective is to find a least-cost path
between a start node and a goal node such that the total path weight is bounded
below some threshold. An example is long-haul aircraft routing where each graph
node represents a flight. An edge weight represents the flight time, and an edge
cost represents maintenance time. The objective is to minimise maintenance while
ensuring flying time between maintenance is below a regulatory maximum [42]. In
IFS, edge costs represent uncertainties in the target state and edge weights represent
energy expenditure of the UAV. More precisely, IFS is an instance of the weight-
constrained shortest path problem with replenishments where energy is periodically

3.2 Six Degree of Freedom Gliding 21

replenished by climbing in thermals. This problem variant is also NP-hard [115].

3.2 Six Degree of Freedom Gliding

A 6-DoF motion model is necessary to accurately model gliding flight. The UAV
motion model affects the accuracy of sensor observations, and hence, determines the
accuracy of the simulation. The 6-DoF dynamic model used in this thesis is adopted
from Lawrance [73] and summarised here.

The model assumes the UAV is a point mass subject to aerodynamic forces (lift L

and drag D) and weight force (mg). Body force due to side-slip is not considered.
Lift acts perpendicularly to the air-relative velocity vector Va, while drag acts in the
opposite direction of Va, shown in Figure 3.2. The aerodynamic forces are defined
in an air-relative frame, denoted by subscript a; weight force is directed downwards
in an (Earth-fixed) inertial frame, denoted by subscript i. The inertial velocity Vi

defines the UAV motion in the inertial frame, and the wind vector W is defined as
motion of the air with respect to the inertial axes. The UAV air-relative velocity Va

can be expressed as a function of the inertial velocity Vi and the wind W:

Va = Vi −W, (3.1a)

where

Va =

ẋa

ẏa

ża

 , Vi =

ẋi

ẏi

żi

 , W =

Wx

Wy

Wz

 . (3.1b)

Note that W is negative in Equation (3.1a) because a tailwind (positive Wx in hor-
izontal flight) reduces the air-relative airspeed and hence reduces the aerodynamic
forces. The applied forces and velocity vectors are illustrated in Figure 3.2. The air-
relative climb angle γa is the angle from the inertial xyi plane to Va. The air-relative
heading angle ψa represents the airspeed direction relative to the inertial x-axis. The
bank angle φ is the rotation of the lift vector around the velocity vector Va.

3.2 Six Degree of Freedom Gliding 22

To determine the equations of motion, the sum of forces can be related to the velocity
using Newtonian dynamics. Assuming the UAV is aligned with the velocity vector so
that side-force is zero, the resulting force sum is:

F = L + D +mg. (3.2)

Any acceleration of the aircraft must result from applied forces:

F = mP̈

= m
dṖ
dt
, (3.3)

where P denotes the inertial position (see Figure 3.2). Rearranging for the inertial
velocity in Equation (3.1a) and substituting Equation (3.2) into Equation (3.3) gives:

P̈ = 1
m

(L + D +mg) = d

dt
(Va + W) . (3.4)

 zi

yi

xi

D

L

mg

iz−
ix

iy
-Wx

-Wy

Wz aV

ψa

γa φ

P

Figure 3.2 – Applied forces and velocity vectors for a gliding aircraft [73].

3.2 Six Degree of Freedom Gliding 23

Separating Equation (3.4) into components along the principle axes (xi, yi, zi) yields
three equations that can be solved simultaneously to yield the equations of motion
shown on p. 81 of [73]. These equations account for wind and can be used for both
static and dynamic soaring. However, due to their complexity, they can only be
numerically integrated over time to simulate gliding flight. Numerically integrating
these equations is too slow for IFS and so these equations are simplified in this thesis.

3.2.1 Simplified Gliding Model

The motion model from Lawrance [73] is first simplified by assuming that wind speed
is zero in non-thermal areas. The simplified motion model is used for information
gathering flight between thermals, while a circling flight mode is assumed during
thermalling for energy replenishment. The time required to circle a thermal is de-
scribed in Section 3.3. The simplified UAV state vector:

s = [p, φ, ψ, x, y, z]T , (3.5)

comprises roll rate p, bank angle φ, heading angle ψ, and position [x, y, z]T . Note
that the subscript a has been dropped because W = 0. From here onwards, all
components are defined in the inertial frame and subscript i will also be dropped.
The state vector evolves over time according to the dynamic model:

ṡ = f(s, u), (3.6a)

s′ = s +
∫

ṡdt, (3.6b)

where f is a continuous-time state transition function, ṡ is the state rate vector, u is
a control input vector and s′ is the new state after integration. A constant velocity V
between the minimum sink condition and best glide ratio is assumed. The minimum
sink condition is the airspeed at which the UAV stays aloft the longest, while the best
glide ratio airspeed allows the UAV to achieve the longest range [101]. For a steady
turn, a larger bank angle φ corresponds to a higher climb angle γa (before stall) such

3.2 Six Degree of Freedom Gliding 24

that more altitude is lost. By limiting bank angle to φmax, and roll rate p = dφ/dt to
pmax, the rate of change dγa/dt can be assumed to be approximately zero.

The control input is a waypoint u = [xu, yu]T , which is converted into a heading error
ψerr in Equation (3.7). The heading error ψerr is managed by a proportional integral
derivative (PID) controller h(.) to command a roll rate pcmd in Equation (3.8). The
roll acceleration ṗ is obtained with linear dynamics Equation (3.9) and the simplifed
equations of motion are shown as Equations 3.11 – 3.13. Note that the quadratic
solution for γ in Equation (3.13) is analytical and computed at every simulation time
step tk.

ψerr = g(ψ,u), (3.7)

pcmd = h(ψerr), (3.8)

ṗ = −p+ pcmd, (3.9)

φ̇ = p, (3.10)

ψ̇ = g tan φ

V
, (3.11)

ẋ

ẏ

ż

 =

V cos γ cos ψ

V cos γ sinψ

−V sin γ

 , (3.12)

sin γ = −b−
√
b2 − 4ac

2a , (3.13a)

where
a = m2g2, (3.13b)

b = −mg cos2φ qSk, (3.13c)

c = −(m2g2 + cos2φ q2S2kCD,0), (3.13d)

and
q = 1

2ρV
2, (3.13e)

3.3 Thermal Model and Energy Constraint 25

k = πAe. (3.13f)

In Equation (3.13), mg is the aircraft weight, q is dynamic pressure, S is the reference
wing area, CD,0 is the zero-lift drag coefficient, ρ is the air density,A is the wing as-
pect ratio, and e is the Oswald efficiency factor. Derivation details of Equation (3.13)
can be found in pp. 82-83 of [73].

3.3 Thermal Model and Energy Constraint

This thesis uses the toroidal thermal model presented in [73] shown in Figure 3.3.
The toroidal model has rising air in the centre core surrounded by sinking air, closely
modelling the observed airflow pattern of thermals (cf. Figure 2.1). In [73], the
derived equations offer a wind vector [Wx, Wy, Wz]T for any point in space originating
from a thermal. In this thesis, it is assumed that a controller exists to command the
UAV to circle the thermal centre at a fixed distance of the UAV’s minimum turning
radius rmin. Accordingly, the only important component for increasing the UAV’s

−2 −1
0

1 2

−2

0

2

−3

−2

−1

0

1

2

3

x/R
y/R

z/
R

(a) Velocity vector field

−2
−1

0
1

2

−2

0

2

−3

−2

−1

0

1

2

3

x/R
y/R

z
/R

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

(b) Vertical velocity slices

Figure 3.3 – Velocity profile for a toroidal thermal [73].

3.3 Thermal Model and Energy Constraint 26

altitude z is the vertical wind component:

Vz(z) = −VcoreR2πrmin
sin

(
πrmin
R

)(
cos

(
π(z − zτ)
kτR

)
+ 1

)
, (3.14)

where R is the thermal radius, Vcore is the thermal centre velocity, zτ is the thermal
centre altitude, and kτ is an elliptical axis ratio. For thermal τ , these parameters are
included in the thermal state vector:

sτ = [Vcore, R, kτ , xτ , yτ , zτ , uτ , vτ]T . (3.15)

The thermal centre spatial position is [xτ , yτ , zτ]T and centre xy-planar velocity is
[uτ , vτ]T .

3.3.1 Time Cost

The energy state of a gliding UAV is the amount of usable flight energy in terms of
potential (altitude) and kinetic (airspeed) components. Given the constant airspeed
assumption from Section 3.2.1, the UAV altitude z is a suitable proxy for the UAV
energy state. Thus, minimum and maximum energy bounds define a corresponding
operating altitude range [zmin, zmax]. Thermals that lie within this range enable
the UAV to gain altitude. For a thermal τ , Equation (3.14) shows that there is an
altitude range [zτmin, zτmax] in which the rate of energy gain is favourable. In this
thesis, all thermals are assumed to have the same zτ , so the lower altitude bound is
set accordingly zmin = zτmin.

The time required to climb in a thermal can be computed using:

ttherm =
∫ zτmax

zτmin

z

vz + Vz(z)dz, (3.16)

where vz is a constant gliding vertical velocity at rmin. This effectively allows the
energy constraint to be transformed into a thermalling time cost. Additionally, ther-
mals have varying strengths Vcore such that the UAV may consider visiting stronger

3.4 Probabilistic Search Framework 27

thermals to climb faster or weaker thermals if they are spatially well-positioned close
to high information regions on the belief map.

3.4 Probabilistic Search Framework

A mathematical model is presented for probabilistic search. The general framework
is based on the work [49, 85] and includes models for the components: 1) information
environment, 2) sensor agent or searcher, 3) belief representation, 4) cost function
and 5) decision-making policy. This framework provides a theoretical foundation for
optimal decision-making in information gathering. This framework is then simplified
to facilitate tractable path planning for IFS. Specific model details are provided for
each component.

3.4.1 Information Environment

Information is present in the environment E , which captures all mission specific states
ξ ∈ E . A state at time step k is defined as ξk. In the search problem, the environment
state commonly represents the position and velocity of the lost ground target. The
probabilistic transition model TE : E×E 7→ R with TE(ξk−1, ξk) defines the probability
of moving from ξk−1 to ξk.

3.4.2 Sensor Agent

The sensor agent or UAV state was defined as s ∈ S in Equation (3.5). The sensor
agent is capable of changing its state by executing a control action u ∈ U . The
probabilistic transition model TS : S × U × S 7→ R with TS(sk−1, uk−1, sk) defines
the probability of transitioning from state sk−1 using action uk−1 to state sk.

The sensor agent is also capable of taking observations of the environment using
onboard sensors. A sensor observation is denoted z ∈ Z. The probabilistic sensor

3.4 Probabilistic Search Framework 28

model O : E × S × Z 7→ R with O(ξk, sk, zk) defines the probability of the sensor
agent making observation zk at environment state ξk and sensor state sk.

In this thesis, the UAV state transition model is assumed to be deterministic. This
assumption holds because the UAV is relatively small compared to its sensor footprint
such that motion uncertainty has less impact on search performance. Therefore, there
exists a deterministic model FS : S × U 7→ S that accurately describes the UAV’s
state transition sk = FS(sk−1, uk−1) given the previous state and action.

3.4.3 Belief Representation

In many real-world situations, the environment state is only partially observable.
Thus, it is necessary to maintain a belief of the environment state at each time step,
denoted bk ∈ B, where B is the space of all probability distributions over E . The
probabilistic belief transition model TB : B × U × B 7→ R with TB(bk−1, uk−1, bk)
defines the probability of transition from prior belief bk−1 to posterior belief bk when
control uk−1 is applied. The belief update is determined using a prediction-update
cycle; the prediction step integrates the change in the environment state due to TE
with the prior belief, and the update step fuses sensor observations in O, assuming
deterministic motion FS , into the propagated belief from the prediction step. These
two steps are mathematically expressed in sequence as:

bk(ξk) =
∫
TE(ξk−1, ξk) bk−1(ξk−1) dξk−1, (3.17a)

bk(ξk) = O(ξk, sk, zk) bk(ξk)∫
O(ξk, sk, zk) bk(ξk) dξk

. (3.17b)

Equation (3.17a) is the Chapman-Kolmogorov equation [129], where bk is the prop-
agated belief prior to data fusion. bk(ξk) at every ξk ∈ E results from multiplying
the transition model TE(ξk−1, ξk) with the prior belief at every ξk−1 ∈ E and inte-
grating over all ξk−1. Equation (3.17b) is Bayes’ rule which incorporates the sensor
observation model O(ξk, sk, zk) with the propagated belief bk, normalised by the
denominator, to give the posterior belief bk.

3.4 Probabilistic Search Framework 29

3.4.4 Cost Function

The information gathering performance is measured using a cost (or loss) function
L : B×S ×U 7→ R where L(bk, sk, uk) returns a scalar value that describes the cost
of being in the system state (bk, sk) and the action uk is applied.

3.4.5 Decision-Making Policy

A policy or plan π specifies which action u to take for any system state (b, s) ∈ B×S
over the time span of the mission M . The variable M ∈ Z+ is the total number
of time steps specified by the mission. The policy is a set of mapping functions
π = [µ0, µ1, . . . , µM−1] over M . The mapping function µk : B × S 7→ U maps a
system state (bk, sk) ∈ B × S to an action uk ∈ U . The decision-making process
chooses the optimal policy π∗ that minimises the total cost over M time steps:

π∗ = arg min
π

M−1∑
k=0

L (bk, sk, µk(bk, sk)) . (3.18)

3.4.6 Simplified Framework

The optimal policy in Equation (3.18) can be numerically solved for finite state sys-
tems using DP, first introduced by Bellman [14] and further refined by Bertsekas [16].
The method, known as value iteration, iteratively solves for the optimal cost function
at each finite state and is stored in memory [71]. The optimal policy can be recovered
online from the stored optimal cost functions for the corresponding real-time system
states. However, this process is known to be computationally intractable for systems
with a large state space [71, 103].

Instead, this thesis uses finite horizon planning, which is optimal1 with respect to the
planning horizon. Any uncertainty in the form of large drifts from the planned path
is handled by replanning, a characteristic advantage of finite horizon planning. Both

1Finite horizon planning is still globally suboptimal.

3.4 Probabilistic Search Framework 30

the formal and simplified frameworks handle continuous system states and controls.
However, in simulation, the belief function is represented using discrete grids and the
agent state transition is queried from the lookup table described in Section 3.2.1.

3.4.7 Finite Horizon Planning

A finite horizon open loop plan involves determining a sequence of control actions
vk based on the latest belief. The sequence of control actions has length or horizon
N �M for tractability:

vk , [uk, uk+1, . . . , uk+N−1]T . (3.19)

For a finite horizon plan starting with belief bk and state sk as illustrated in Figure 3.4,
the performance measure over horizon N is given as:

J(bk, sk, vk) =
k+N−1∑
j=k

L(bj, sj, uj) + Lk+N(bk+N , sk+N). (3.20)

The final cost term Lk+N(bk+N , sk+N) outside the summation is zero if a solution
exists or is infinity otherwise [71]; in search, a solution is assumed to always exist, so
the performance measure is simply:

J(bk, sk, vk) =
k+N−1∑
j=k

L(bj, sj, uj). (3.21)

The finite horizon planning problem reduces to solving for the locally optimal plan
comprising the optimal sequence of actions:

v∗k = arg min
vk

k+N−1∑
j=k

L(bj, sj, uj). (3.22)

3.4 Probabilistic Search Framework 31

Figure 3.4 – The set of UAV states s and control actions u for a finite horizon plan
of length N starting at time step k.

3.4.8 Sensor Model

Every finite horizon plan contains sensor observations zj at every sensor state sj for
each time step j. For an observation, a sensor detection likelihood p(zj = D | ξ, sj)
describes the conditional probability of detecting the target at state ξ. The sensor
detection likelihood describes the probability of a true positive detection and assumes
no false positives.

In the literature, there are a number of choices for the sensor model. While the radial
basis function is a popular choice [51], an alternative used in aerial surveillance is the
seeability sensor model [38]. The sensor model used in this thesis:

p(zj = D | ξ, sj) = cos θj
1 + (dj/dnorm)4 , (3.23)

closely resembles the seeability model. The difference between the seeability model
and Equation (3.23) is that instead of squaring the denominator component, it is
raised to the fourth power and results in a higher localised probability density. In
Equation (3.23), θj is the viewing angle from the glider down-vector to ξ, dj = ||ξ−xj||
is the Euclidean distance from the glider position xj = [x, y, z]Tj , and dnorm is a
fixed normalising quantity that scales the magnitude of dj, effectively defining the
sensor footprint. These components are labelled in Figure 3.5(a). Note that this
sensor model is continuous and differentiable, which is a necessary condition for use
in gradient-based optimisation described in Section 4.3. Additionally, zj = D is

3.4 Probabilistic Search Framework 32

(a) Sensor model components
XY

P
ro

b.
 o

f D
et

ec
tio

n

[20, 90]

0

50

100

0

50

100
0

0.2

0.4

0.6

0.8

1

(b) Sensor model function

Figure 3.5 – Sensor model components and function. At sensing state sj , the sensor
has a viewing angle θj to every environment state ξ at Euclidean distance dj away.
In 3.5(b), the sensor is positioned at coordinates [20, 90] and the surface plot
represents the probability of detection p(Dj | ξ, sj) over every state ξ ∈ E . Higher
density represents higher probability of detection.

abbreviated toDj from here onwards for notational convenience. An example function
p(Dj | ξ, sj) is shown in Figure 3.5(b).

3.4.9 Utility Function Formulation

The utility function used in this thesis is the cumulative probability of detection. As
mentioned in Section 2.2, this measure aims to detect the target in minimal time.
The utility is updated after each finite horizon plan starting at time step k is gener-
ated, comprising N sensing locations and control actions (see Figure 3.4). The target
transition probability TE(ξj−1, ξj) is assumed to be zero. Firstly, this removes the
prediction step Equation (3.17a), which would require a relatively expensive convo-
lution process. Secondly, this means the target belief is stationary over the horizon
N , and so each consecutive sensor observation is conditionally independent. This
result allows observations to be combined through multiplication as the intersection
of observation sets, which is simpler than dealing with the union of sets.

To combine observations, the complement of target detection Equation (3.23) is used.

3.4 Probabilistic Search Framework 33

The complement represents the likelihood of not detecting the target within an ob-
servation assuming no false positives, called the no-detection likelihood:

p(Dj | ξ, sj) = 1− p(Dj | ξ, sj). (3.24)

The combined no-detection likelihood treats the consecutive sensor observations as
one unified no-detection observation. It is defined for the entire horizon as:

p(Dk+1:k+N | ξ, sk+1:k+N) , p(Dk+1:k+N | ξ, sk,vk)

=
N∏
j=1

p(Dk+j | ξ, sk+j). (3.25)

Next, Bayes’ rule (Equation (3.17b)) is used to update the prior belief ξk, but the
normalisation factor is neglected. The advantage of not normalising the updated
belief is that the joint probability of not detecting the target in all the previous finite
horizon plans from 1 to k can be represented by simply marginalising the pseudo-
updated belief at the current planning time step k [129]. The pseudo-update equation
is:

bk+1 = bk
N∏
j=1

p(Dk+j | ξ, sk+j). (3.26)

The (scalar) joint probability of no-detection is obtained by marginalising the pseudo-
updated belief bk+1 over all possible target positions ξ ∈ E :

p(Dk+1:k+N | bk, sk, vk) =
∫
ξ

bk+1dξ, (3.27)

and represents the residual probability that the target remains undetected up to the
current planning time step k + 1 despite the search effort expended up to this time.
The cumulative probability of detection after this planning horizon is simply the
complement of Equation (3.27):

J(bk, sk,vk) = 1− p(Dk+1:k+N | bk, sk, vk). (3.28)

3.4 Probabilistic Search Framework 34

The process of updating the belief by incorporating sensor observations with the prior
belief is depicted in Figure 3.6. This simple illustration shows how the prior belief
changes with three sensor observations. The cumulative probability of detection after
combining the three observations is the volume beneath the surface of the pseudo-
density function representing the updated belief in Figure 3.6(c).

(a) Prior belief

(b) Combined detection likelihood of three
sensor observations

(c) Posterior belief

Figure 3.6 – An example of updating a belief function with three sensor observations.
Each belief function in 3.6(a) and 3.6(c) represents the level of uncertainty of
the target state, with more density representing higher uncertainty. In 3.6(b),
the dashed vertical lines indicate the sensor locations and the red line connects
them on a ground plane. Higher density represents higher probability of detection.
In 3.6(c), target uncertainty in the posterior belief is reduced proportionally to the
sensor detection density. The volume beneath the posterior belief represents the
cumulative probability of no-detection.

3.5 Summary 35

3.5 Summary

This chapter presented the mathematical framework and necessary components of
IFS. These components included the UAV motion model, thermal model and related
energy constraint, probabilistic search framework, sensor model and utility function
formulation. Firstly, the UAV motion model was presented from first principles. The
model was simplified by assuming zero wind during gliding, constant airspeed and
zero pitch rate to reduce the UAV state vector.

Secondly, the thermal model was adopted from [73], but it was reasoned that only
the vertical velocity component was required for IFS. The UAV energy constraint
was converted into a time cost given the constant velocity assumption.

Thirdly, the probabilistic search framework was formally presented, describing un-
certainty in the target state, sensor state and observation model. Uncertainty in the
system states was captured by a belief function and Bayes’ rule was introduced as the
fundamental method for updating the belief with sensor observations. The general
decision-making policy to determine the optimal plan was shown to be intractable for
large state spaces. Finite horizon planning was introduced as an alternative solution
that provided locally optimal plans.

Fourthly, the sensor model was presented; a modification to the seeability metric was
made, and the model was described to be continuous and differentiable for compati-
bility with gradient-based optimisation (to be explained in Section 4.3). Finally, the
cumulative probability of detection was selected as the utility function, and belief
propagation with this measure was outlined.

The main challenge in this thesis is to tractably plan a maximally informative path
subject to energy constraints. The assumptions and simplifications described in each
component of this chapter attempt to realise this objective by reducing the problem
complexity.

Chapter 4

Informative Soaring Path Planning

This chapter details the path planning algorithms for informative soaring (IFS). Hav-
ing established IFS is NP-hard in Section 3.1, a tree search approach is employed and
first described in Section 4.1. The tree search framework comprises a local and a
global planner. The local planner generates ITPs, while the global planner combines
ITPs to generate a full plan. In Section 4.2, a lookup table of flight trajectories
or motion primitives is computed to generate paths in a computationally tractable
manner. Using these motion primitives, Section 4.3 explains how ITPs are generated
using gradient descent. Section 4.4 follows by describing how to maximise a given
plan’s utility by minimising thermalling time. The general approach of global path
planning in Section 4.5 involves concatenating a sequence of ITPs and determining
how long the UAV should spend in each thermal. Based on this approach, four tree
search methods are introduced in order of increasing ingenuity to address planning
in the large state space of IFS. Finally, numerical simulations demonstrate the per-
formances of the four tree search algorithms and graphics depict the behaviour of the
local planner.

4.1 Tree Search Approach 37

4.1 Tree Search Approach

As outlined in Chapter 3, IFS involves searching a large state space to find the opti-
mal plan that maximises information gain. Previous research has adopted sampling-
based planning using finite horizon RRT [22] to find a feasible plan and then utilised
gradient-based optimisation to yield locally optimal paths. This thesis provides a bet-
ter solution based on an initial key observation about the problem structure of IFS.
This observation reduces the search state space and removes the need for sampling-
based methods.

The key observation is that in the long term, any feasible plan must alternate between
two modes: 1) replenishing energy within thermals, and 2) performing information
gathering between thermals while expending energy. This property leads to building
a search tree where a node represents a thermal state in space and time and an edge
represents either an ITP or a climb path inside a thermal. This natural discrete
problem structure removes the need for searching in a continuous space using RRT-
style solutions for instance. Instead, the problem structure is amenable to standard
graph search techniques appropriate for large graphs.

Formally, a search tree T consisting of nodes v ∈ V is constructed from the root
node v0 representing the initial system state S0 , 〈b0, s0, T 〉. T is the set of known
thermals. Each node v represents a system state that is reached by a sequence of ITPs
from the root node v0. The depth d of a node vd directly corresponds to the number
of concatenated ITPs. The UAV always finishes at the goal thermal node v ∈ V \v0 of
an ITP. The amount of time spent thermalling critically depends on the total energy
expended on the sequence of ITPs such that the UAV is always safely above zmin.
Each tree node also has an associated utility J(v) and cost C(v). The utility is the
cumulative probability of detection defined by Equation (3.28) where J(v) ∈ [0, 1].
The cost is the cumulative travel time, including both information gathering time
and thermalling time. A feasible plan π is represented by a leaf or terminal node vt
with cost within some time budget B > 0. An optimal plan π∗ maximises J(vt).

4.2 Motion Model Lookup Table 38

4.2 Motion Model Lookup Table

To generate ITPs in tree search, the glider motion model must be forward propagated
using integration as shown in Equation (3.6). As there is no closed-form solution for
integrating the motion model Equation (3.12) given either pcmd or φ, the glider state
s must be forward-propagated in time using numerical integration. However, this is
computationally expensive for planning; instead, a lookup table of end-states S is
pre-computed and then called during ITP generation. The lookup table has three
inputs, (p, φ, ψerr), where each parameter is discretised as shown:

[−pmax : ∆p : pmax], (4.1a)

[−φmax : ∆φ : φmax], (4.1b)

[0 : ∆ψerr : 2π). (4.1c)

Equations (3.8) – (3.13) are applied to each (p, φ, ψerr) ∈ P×Φ×Ψerr using a constant
time step tk to generate the lookup table of corresponding output states s′ ∈ S. For
any given initial state s1, the next state s2 is acquired from the lookup table output
state s′ with a simple addition of initial heading ψ1 to ψ′, and initial position [x1, y1]
to [x′, y′]. The remaining state elements in s2, [p2, φ2, z2], are directly copied from the
corresponding elements in s′. This lookup table effectively replaces Equations (3.8) –
(3.13) as the steering function.

4.3 Generation of Inter-thermal Path Segments

According to the discrete tree search problem formulation, a finite set of ITPs is
required between each pair of thermals. If the UAV returns to its starting thermal
node, this is known as a self-transition. To generate this set of ITPs, the minimum
energy path r0 is first considered; for a pair of thermals, this path is the direct straight-
line connection between the two thermals, shown as the dashed line in Figure 4.1.

4.3 Generation of Inter-thermal Path Segments 39

The straight-line path is deformed using gradient descent to gradually maximise the
utility Equation (3.28) subject to the constraint that the end altitude zk+N is above
zmin to generate a set of ITPs R, as shown in Figure 4.1:

maximise
vk

J(bk, sk, vk) (4.2)

subject to zk+N ≥ zmin. (4.3)

To perform gradient descent, an ITP r ∈ R is discretised into a finite set of N − 1
points xk+1:k+N−1, each point corresponding to an (x, y) UAV position and excludes
the initial and goal thermal positions. A sensor observation is made at each one of
these N−1 points, and local gradients of the belief function prior to path deformation
are computed. Since the control input is a spatial position u = [x, y]T , the controls
vector v defined in Equation (3.22) is iteratively updated using these gradients:

vi+1
k = vik − α

∂bk(xik+1:k+N−1)
∂xik+1:k+N−1

, (4.4a)

where
vik = xik+1:k+N−1, (4.4b)

∂bk(xik+1:k+N−1)
∂xik+1:k+N−1

=
[
∂bk(xik+1)

xik+1
, . . . ,

∂bk(xik+N−1)
xik+N−1

]
. (4.4c)

The update iteration is i and the update step size is α > 0. During path deformation,
some waypoints in vi+1

k may closely cluster together due to a steep belief gradient.
Some of these waypoints are removed during the iterative process to ensure that the
lookup table trajectories generated by the PID controller (in Section 3.2.1) can track
a smooth path. The process terminates once the local gradients of every point vi+1

k in
an ITP r are zero or the final-state altitude zk+N is below zmin, resulting in the set of
feasible ITPs R. If a pair of thermals are too far apart, R = ∅. For the self-transition
case, a setup of four initial paths is used to offer good spatial coverage, as illustrated
in Figure 4.2.

4.3 Generation of Inter-thermal Path Segments 40

X (m)

Y
 (

m
)

A

B

-1000 -500 0 500 1000

-800

-600

-400

-200

0

200

400

600

800

Figure 4.1 – The set of ITPs R between thermals A and B, including the initial path
r0 (dashed line). Darker regions represent higher belief uncertainty or information.

X (m)

Y
 (

m
) A

-2000 -1000 0 1000 2000

-2000

-1500

-1000

-500

0

500

1000

1500

2000

Figure 4.2 – The set of ITPs R for thermal self-transition. The circle marks the
return-trip gliding range from thermal A. There are four possible initial paths r0
(dashed lines) from which gradient-based optimisation returns the solid line paths.

Using the entire set of ITPs R in tree search is computationally costly. Instead, a
subset of ITPs Q ∈ R is selected for tree search. The criterion is that Q represents a
good spread of potential utilities J(v) and costs C(v). It is this reason that a constant

4.4 Optimising Thermalling Time 41

X (m)

Y (m)

Z
 (

m
)

A

B

C D

E

-2000

-1000

0

1000

2000

-1000

0

1000

0
200
400

Figure 4.3 – Global planning using tree search. The UAV started at thermal A and tree
search has selected the best ITP from thermal A to E and then from thermal E to
D (solid lines). Approaches for selecting the best ITPs are described in Chapter 4.
Dashed lines from thermal D represent the current step ITP options from three
sets {Q1, Q2, Q3} with varying information gain and energy expenditure.

step size α is chosen instead of using more sophisticated optimisation methods such as
line search [95], which may reach the terminal condition faster but lack path diversity.
In this thesis, if |R| ≤ 3 then Q contains all of R. Otherwise, a maximum of three
ITPs is chosen: 1) the maximum utility, 2) the minimum cost, and 3) the median
utility/cost path segment. The intention is to capture a diversity of paths while
also limiting the size of Q. This choice of ITPs for global tree search planning is
exemplified in Figure 4.3; three ITP sets {Q1, Q2, Q3} originate from thermal D.

4.4 Optimising Thermalling Time

The amount of energy captured in a thermal is determined by the wind strength Vcore
and the UAV thermalling time ttherm. While Vcore is assumed to be constant, the
UAV is able to vary the amount of time spent in each thermal. Spending more time
thermalling results in less time available for information gathering. Therefore, there

4.4 Optimising Thermalling Time 42

exists a minimum required thermalling time such that the UAV finishes the plan at
the minimum safe altitude zmin. The process of minimising the time the UAV spends
in thermals, while not altering ITPs, is referred to as thermalling time optimisation.

As detailed in Section 4.5, one of the steps in plan generation is to choose the best
ITP q ∈ Q and then extend it by creating a new set of path options R′ starting from
the q’s endpoint. A new subset Q′ ⊆ R′ is computed, and this process is repeated
until the time of the plan equals or exceeds the mission time.

A naive approach to thermalling time optimisation is to further branch the search
tree to yield discrete thermalling times from the goal node of each ITP, shown in
Figure 4.4. However, the additional branching of the search tree induced by discrete
thermalling times causes a significant increase in the size of the search space. To avoid
this effect, a thermalling time optimisation algorithm is introduced that guarantees
the global minimum thermalling time for any concatenation of ITPs.

For example, Figure 4.3 shows two linked ITPs in solid orange that have been deemed
the best ITPs, one from thermal A to E and the other from thermal E to D. If
this process of plan generation is performed using brute force tree search, then the
exponential scaling will disallow real-time planning. Tree search methods feasible for
real-time planning are presented in Section 4.5 where the definition of the best q is
provided from each tree search variant.

The time spent in a given thermal is varied by choosing the exit altitude zntop. The

inter-thermal
path segments

inter-thermal
path segments

thermalling
times

Figure 4.4 – A hypothetical tree showing further branching at the goal node of an ITP.
The addition branches with square nodes represent discrete potential thermalling
times. The thermalling time optimisation algorithm removes the need for this
hypothetical branching.

4.4 Optimising Thermalling Time 43

entry altitude znbottom is determined by the exit altitude of the previous thermal zn−1
top

and the length of the previous ITP. An illustration is provided in Figure 4.5 where
the UAV altitude is shown as a function of time. The goal of thermalling time
optimisation is to choose appropriate exit altitudes zntop such that the total time spent
in thermals is minimised.

The time spent in a thermal can be varied only under certain conditions. Given a
plan comprising N1 thermal nodes, a node whose thermalling time can be adjusted
is available. Intuitively, a node is available if its entry and exit altitudes respect
the minimum and maximum altitude constraints and the current thermalling time is
non-zero. Further, it is assumed that the first and last nodes of the plan are fixed.

(a) Schematic initial plan

(b) Posterior plan

Figure 4.5 – A schematic plan of N thermal nodes prior to thermalling time opti-
misation is outlined in 4.5(a). Thermalling segments are highlighted with light
blue columns. A new ITP (from nprevious to nlast) is added, and thermalling time
is allocated to M available nodes to minimise total time. The thermalling time
of nprevious is initially zero. The posterior plan after calling the thermalling time
optimisation algorithm (Algorithm 1) is shown in 4.5(b). The dashed sawtooth
line represents the prior plan. The thermalling altitude of thermal c is completely
utilised as it is stronger than b. A small amount of thermalling time is still required
at the weakest thermal d, shown as the new blue segment.

1Different to N in Equation (3.19)

4.4 Optimising Thermalling Time 44

Therefore, the subset of available nodes M ⊆ N is defined as follows:

M ← {n ∈ N | ¬nfirst, ¬nlast, zntop−znbottom > 0,

zntop−znbottom < zmax−zmin}.
(4.5)

An example of time optimisation through adjusting thermalling times is shown in Fig-
ure 4.5(b). The thermalling time spent in each thermal tmtherm ∈ [0, tmax] is bounded
above by the maximum thermalling time tmax as computed using Equation (3.16)
from zmmin to zmmax. Since all thermals are assumed to have the same zmin and zmax,
tmmax = tmax ∀m ∈ M . The total thermalling time for a given plan is denoted Ttherm.
By minimising Ttherm, more time is available for information gathering to maximise
the plan utility since the mission time is fixed. The thermalling time optimisation
formulation is:

minimise
{zM
bottom

, zMtop}
Ttherm =

M∑
m=1

tmtherm (4.6)

subject to zMbottom ≥ zmin, (4.7)

zMtop ≤ zmax. (4.8)

and an exact solution is provided to solve (4.6)–(4.8) with pseudocode listed as Al-
gorithm 1. Given a plan that starts at the maximum altitude zmax and must end at
zmin, the idea is to shift ttherm from weaker to stronger thermals.

First, line 3 sorts thermals in M in order of decreasing strength into M . Referring
to the schematic diagram in Figure 4.5(a), lines 6-22 of Algorithm 1 correspond to
adjusting the altitudes {zmtop, zmbottom} of every node m (lines 14, 18) until the altitude
of nlast matches zmin. Figure 4.5(b) depicts the posterior plan after Algorithm 1 is
called. The thermalling altitude at thermal c is completely utilised as it is stronger
than thermal b which is not used here, and never used again in the future. Thermalling
time is added at thermal d to bring the altitude of nlast up to zmin. Continually
applying Algorithm 1 to future plans that evolve from current thermalling time-

4.5 Global Path Planning 45

optimised plans ensures, by induction, that each future plan is globally optimal with
minimum time cost T ∗therm. Additionally, nodes m that have been marked unavailable
for thermalling (line 20) are not included in the input set N of Algorithm 1 for future
plans.

4.5 Global Path Planning

The elements described above in Section 4.2 to Section 4.4 provide a unified approach
to generate and optimise local paths. Global path planning considers the available
set of local ITPs to generate a global plan that maximises information gain within
the mission time. The problem is that the large state space in IFS makes it difficult
to determine the globally optimal plan. Exhaustive tree search is guaranteed to find
the optimal plan, but is computationally intractable for long mission times. An ideal
global tree search method should provide two properties: 1) near-optimal plans, and
2) computational efficiency. In typical IFS scenarios, the belief map can be viewed as a
collection of regions or clusters that vary in information content. These non-uniform

(a) Uniform prior belief

cluster 1

cluster 2

(b) Post trajectory clustered belief

Figure 4.6 – A prior uniform belief that is transformed into two clusters of information
(darker patches) after a single trajectory. This example illustrates the natural
tendancy for the formation of clusters in information gathering problems. In 4.6(b),
the orange trajectory started at the circle and finished at the diamond. There
is more certainty that the target is not found at locations closer to the finish
because the UAV is lower in altitude from gliding, providing more precise sensor
observations according to Equation (3.23).

4.5 Global Path Planning 46

Algorithm 1 Thermalling Time Optimisation
Input: N thermal nodes, bottom and top altitudes of N : (zNbottom, zNtop), plan time t
Output: an update of the input parameters
1: function ThermTimeOpt(N, zNbottom, zNtop, t)
2: get M using Equation (4.5)
3: M ← sort M in order of decreasing Vcore
4: altexcess ← zlastbottom − zmin
5: zprevioustop ← zprevioustop − altexcess
6: for each m ∈M do
7: altrequired ← zprevioustop − zpreviousbottom

8: if altrequired = 0 then
9: return
10: end if
11: altavailable ← zmax − zmtop
12: if altavailable > altrequired then
13: zmupper ← zmtop + altrequired
14: AdjustAlt(zmtop, zmupper, zMbottom, zMtop)
15: t← t+ tmtherm . using Equation (3.16)
16: return
17: else
18: AdjustAlt(zmtop, zmax, zMbottom, zMtop)
19: t← t+ tmtherm . using Equation (3.16)
20: mark m as unavailable for thermalling
21: end if
22: end for
23: end function

24: function AdjustAlt(zmstart, zmfinish, zMbottom, zMtop)
25: K ← {m, . . . , nprevious} . thermal nodes to the right of thermal m
26: for each k ∈ K do
27: if k 6= kfirst then
28: zkbottom ← zkbottom + (zmfinish − zmstart)
29: end if
30: if k 6= klast then
31: zktop ← zktop + (zmfinish − zmstart)
32: end if
33: end for
34: end function

belief maps can be constructed from prior knowledge about the particular search
instance at hand. But even if there is no prior knowledge and the initial belief map

4.5 Global Path Planning 47

is uniform, the belief map quickly becomes non-uniform because observations along a
sequence of ITPs induces spatial partitioning. An example is depicted in Figure 4.6.
As a consequence, locally optimal greedy planners are myopic in information gathering
problems because they can become stuck within one cluster, especially if clusters are
highly separated in space. This thesis proposes four planning algorithms in order of
increasing ingenuity to compute high-quality nonmyopic plans without incurring the
computational time cost of exhaustive search.

4.5.1 Finite Horizon Tree Search (FHTS)

This thesis begins by adapting simple tree search methods to form a solution to
IFS that is called finite horizon tree search. FHTS is a basic state space approach
that nests depth-limited search in best-first search [107]. The idea is to perform
tree expansion using the ITP generation method presented in Section 4.3 and then
determine the time spent in thermals using thermalling time optimisation presented
in Section 4.4. A full tree is constructed with respect to a given search depth, the best
leaf-to-root path is determined, and then the first ITP along this path is selected. The
process then repeats from the endpoint of the selected ITP until the given mission
time limit is reached.

FHTS is listed as Algorithm 2 with a corresponding illustration in Figure 4.7. FHTS
starts at the root node v0 with initial system state S0 (line 2). From the root node
v0, all feasible ITPs are generated (by solving Equation (4.2)) up to the finite horizon
depth dfh to yield the set of tree nodes Vdfh (line 5 and Figure 4.7(a)). Feasible ITPs
comprise {Q1, . . . , Qτ} where τ ≤ |T |; each Q is the set of ITPs with respect to
each goal thermal in range of a starting UAV state s such that the final UAV altitude
z ≥ zmin.

All nodes Vdfh are time optimised (independently) using Algorithm 1. The maximum
utility leaf node v∗dfh is identified in line 8, and depicted as the star in Figure 4.7(a).

A single-step transition (line 9) is performed along the path towards the star in
Figure 4.7(b). The child node v∗1 becomes the new root v0 from which a new tree is

4.5 Global Path Planning 48

Algorithm 2 Finite Horizon Tree Search
Input: initial system state S0, mission time tm, finite horizon depth dfh
Output: plan π, expanded nodes Ve
1: function FHTS(S0, tm, dfh)
2: create root node v0 with state S0
3: Ve ← v0
4: while v∗dfh .t < tm do . select v0.t first
5: create finite horizon tree nodes Vdfh from v0 . solve Equation (4.2)
6: ThermTimeOpt(Vdfh)
7: Ve ← Ve ∪ Vdfh
8: v∗dfh ← arg maxVdfh Vdfh .J . max utility leaf
9: v0 ← v∗1 . transition one step
10: end while
11: π ← v∗dfh
12: return 〈π, Ve〉
13: end function

built, and the process is repeated until the time at the best leaf node v∗dfh .t exceeds
the mission time tm (line 4). FHTS returns the plan π, which is the best final leaf
node v∗dfh , and all expanded nodes Ve.

FHTS runs in O(nd) time where n is the branching factor of the search tree: n =
max{|Q1|, . . . , |QM |}. By iteratively searching with a depth-limited tree, FHTS
achieves reduced computational complexity compared with exhaustive tree search.
However, FHTS still suffers from a degree of myopia due to the limited search horizon.
This soft-myopia limitation becomes prominent when high utility branches (or ITPs)
exist further down the tree, but can only be reached by first traversing low utility
branches. If the search horizon is too short, this high utility route will never be
considered because the total utility of a short-horizon route will only be a function of
the current low utility branches.

4.5.2 Monte Carlo Tree Search (MCTS)

The second algorithm proposed in this thesis is an adaption of Monte Carlo tree
search [24]. Although MCTS was originally developed for two-player adversarial
games such asGo, MCTS is modified here as an algorithm for solving the IFS problem;

4.5 Global Path Planning 49

(a) 1st expansion (b) 2nd expansion

Figure 4.7 – Binary tree example. In 4.7(a), a finite horizon tree is built from the
(square) root node, all nodes representing the set Vd3 . The best utility node is
marked (star) and a one-step transition is made along the bold line. In 4.7(b), a
new tree is built from the (square) root node, and the process is repeated. Note the
new best path in 4.7(b) does not follow on from the old best path in this example.

the UAV can be viewed as a player in an adversarial game against nature.

MCTS is a best-first search algorithm designed for very large state spaces. When
applied to the IFS problem, it helps to mitigate the soft-myopia limitation of FHTS.
MCTS combines single-node expansion with further random explorations to the full
tree depth to compute a one-off end-state utility after each expansion. By accumu-
lating random explorations to end-states, known as rollouts, each node is assigned an
approximate full-horizon utility. Tree search is concentrated at expected high utility
regions of the tree by expanding more promising nodes identified by the rollouts.

The adaptation of MCTS proposed in this thesis is listed as Algorithm 3. The search
starts at the root node v0 and descends into the tree T by recursively selecting a child
node with the best reward value (lines 6, 23). The selection process returns a node
vd at depth d that is the node with the highest reward value that has not been fully
expanded.

At node vd, there exists a set of possible child nodes or ITPsQ. Such nodes correspond
to actions in the original MCTS formulation. A new child vd+1 is expanded from vd

by randomly selecting one of the previously unchosen children q ∈ Q in line 7. Then,
a simulation (rollout) is performed using a sequence of random ITPs until the mission
time is met (lines 9, 32).

4.5 Global Path Planning 50

The rollout yields an end-state utility, ∆, that is then back-propagated (line 10) and
tallied to the exploration term statistic of each node along the path from vd+1 to
v0. Then a new vd is selected as before and the search process continues until a
user-defined computational limit is reached.

At this point, a search tree has been constructed rooted at v0 complete with value
statistics at every node. The best-value child of v0 is selected and labelled v1. Node
v1 is then relabelled as v0 and the entire process repeats until the time estimate of v0

(v0.t) exceeds the mission time tm and the final plan π is returned.

The reward function used in this algorithm is the upper confidence bound [60]:

UCT = ∆(vd) + Cp

√√√√2 lnn(vd−1)
n(vd)

. (4.9)

Equation (4.9) is the sum of an exploitation term and the exploration term. The
exploitation term ∆(vd) is the average rollout utility of node vd. The exploration

Algorithm 3 Monte Carlo Tree Search
Input: initial system state S0, mission time tm, exploration weight Cp
Output: plan π, expanded nodes Ve
1: function MCTS(S0, tm, Cp)
2: create root node v0 with state S0
3: Ve ← v0
4: while v0.t < tm do
5: while within computational limit do
6: vd ← Selection(v0, Cp)
7: vd+1 ← expand vd using an unchosen action . solve Equation (4.2)
8: ThermTimeOpt(vd+1)
9: ∆← Simulation(vd+1)

10: Backup(vd+1, ∆)
11: Ve ← Ve ∪ vd+1
12: end while
13: v0 ← BestChild(v0, Cp) . transition one step, update v0.t
14: end while
15: π ← v0
16: return 〈π, Ve〉
17: end function

4.5 Global Path Planning 51

18: function Selection(v, Cp)
19: while v is nonterminal do
20: if v not fully expanded then
21: return v
22: else
23: v ← BestChild(v, Cp)
24: end if
25: end while
26: end function

27: function BestChild(v, Cp)
28: return arg maxv′ UCT . using Equation (4.9)
29: end function

30: function Simulation(v)
31: while v is nonterminal do
32: v ← expand v using a random action . solve Equation (4.2)
33: ThermTimeOpt(v)
34: end while
35: return utility ∆ of v
36: end function

37: function Backup(v, ∆)
38: while v not null do
39: n(v)← n(v) + 1 . increment visit count
40: ∆(v)← ∆(v) + ∆(parent of v)
41: v ← parent of v
42: end while
43: end function

term ensures that each node vd has a nonzero probability of selection, where Cp > 0
is a constant weight, and n(vd) and n(vd−1) are the number of times vd and its parent
vd−1 have been visited. The upper confidence bound is commonly used in MCTS
applications because it resolves the exploration-exploitation dilemma; its growth of
regret is within a constant factor of the slowest possible rate O(log n) [60, 69].

In typical MCTS applications, the average utility ∆(vd) is used to approximate the
expected outcome for two-player games. In this proposed adaptation, ∆(vd) is re-
placed with the maximum utility encountered so far on all rollouts from node vd and

4.5 Global Path Planning 52

its family of child nodes. The maximum is suitable for IFS, as the objective is to
maximise the end-state utility. Subsequently, instead of building a new tree for every
call of Algorithm 3, all nodes of the successor v1 are stored to retain promising nodes
that may lead to high utility end-states.

The exploration weight Cp governs the solution quality and computational complex-
ity by varying the degree of exploration during tree search. The value Cp = 1/

√
2

has been shown to satisfy Hoeffding’s inequality for ∆(vd) ∈ [0, 1], which provides
an upper bound on the probability that ∆(vd) deviates from its expected value [60].
However, as MCTS has been modified by replacing the average utility with the max-
imum, other values of Cp may be more suitable as suggested by Browne et al. [24].
In this these, Cp is treated as a tuning parameter; a range of values is explored and
a value that retains good solutions but reduces computational time is selected. In
practice, MCTS is an anytime algorithm by virtue of this adjustable Cp term and the
adjustable computational limit (line 5).

4.5.3 Cluster Tree Search (CTS)

As mentioned in Section 4.5, a complex belief map can be viewed as a collection
of clusters that vary in information content. Hence, instead of biasing tree growth
towards high information clusters in a single shot, the belief map can be partitioned
upfront and search effort devoted to unique clusters. This heuristic to guide search
is embedded in the proposed CTS algorithms (Algorithm 4 and Algorithm 5), which
require five to 20 times less computational effort compared to single-shot planning
methods such as FHTS and MCTS.

CTS proceeds by initially identifying regions of high information gain (information
clusters), ordering these clusters according to a metric (e.g. shortest travel distance),
and associating nearby thermals with each cluster. Tree search is then used to gen-
erate local plans within each cluster using the associated thermals. Each local plan
is constrained to finish at the nearest thermal associated with the next cluster. The
transition path may traverse thermals unassociated with any cluster. Finally, a full

4.5 Global Path Planning 53

plan is generated by concatenating the best combination of local plans.

In this thesis, two instantiations of CTS are presented. The first algorithm builds
and combines local plans sequentially and is thus referred to as sequential cluster tree
search (CTSSeq). The second algorithm, dynamic programming cluster tree search
(CTSDP), generates local plans for every cluster and optimally combines them using
DP. CTSDP can be naturally implemented in parallel, but this extension is not
considered in this thesis.

Sequential CTS (CTSSeq)

Sequential CTS is listed as Algorithm 4. At line 2, a set of information clusters is
computed using a Gaussian mixture model (GMM) [18]. The input data to the GMM
algorithm is an array of belief values above a threshold αb for all cells ξ ∈ E . The
threshold αb is a function of the mean µb and standard deviation (SD) σb of all belief
cell values and scores whether or not each cell contains sufficiently high information
to be part of a cluster:

αb = µb + wσb. (4.10)

The weight w is typically 0.5. For an input estimate of the number of clusters N ,
the GMM algorithm uses expectation maximisation (EM) to assign the input data to
N clusters (or Gaussian component densities) such that the posterior probabilities of
the GMM parameters are maximised. The parameters include the cluster means, co-
variances and mixture proportions. Since EM uses random initial GMM parameters,
EM is explicitly repeated a finite number of times, typically 10 times. The optimised
GMM parameters giving the highest posterior probabilities from one of these runs are
chosen. In addition, the GMM algorithm is repeated for different integer values of N ,
typically from 1 to 10 depending on the anticipated maximum number of potential
clusters. The N -clusters GMM with the highest Bayesian information criteria (BIC)
is chosen and its parameters are returned as output. Refer to Bishop [18] for more
details.

Once the cluster locations and sizes have been determined, their order of visit from the

4.5 Global Path Planning 54

Algorithm 4 Sequential Cluster Tree Search
Input: initial UAV state s0, mission time tm, exploration weight Cp
Output: plan π
1: function CTSSeq(s0, tm, Cp)
2: create N clusters with system states {S1

0 , S
2
0 , . . . , S

N
0 }: beliefs

{b1, b2, . . . , bN} are represented as a GMM; nearby thermals are associated with
each cluster

3: π ← ∅
4: S1

0〈s1
0〉 ← S0〈s0〉 . initial UAV state

5: for i = 1 : N do
6: tim ← tm .

∑
bi/
∑
b0 . allocated time is a fraction of initial belief

7: πi ←MCTS(Si0, tim, Cp)
8: π ← Rewire(π, πi)
9: Si+1

0 〈si+1
0 〉 ← from end-state s of πi

10: end for
11: return π
12: end function

13: function Rewire(π, π′)
14: if π = ∅ then
15: return π ← π′

16: else
17: Q ← all ITPs in {π, π′}
18: Q ← {q ∈ Q | J(q) > threshold}
19: return π ← min

∣∣∣Q \ Q∣∣∣ route visiting all q ∈ Q . using TSP GA solver
20: end if
21: end function

initial UAV position to a home position is computed using a TSP genetic algorithm
(GA) solver [12]. Each cluster centre represents a city in the TSP and the minimum
distance route is easily computed, since the number of cities is small (typically < 10).
Thermals are assigned to a cluster if they fall within a threshold distance ατ from
the cluster centre. The threshold ατ is based on the UAV’s ability to harvest energy
from a thermal to gather a sufficient percentage of information from a cluster. In
this thesis, ατ is unique for each cluster and is a function of the mean and SD of the
distances from all known thermals to each cluster centre.

After the cluster preprocessing step is completed, the initial glider state s0 is asso-
ciated with the initial system state S1

0 of the first cluster in line 4 of Algorithm 4.

4.5 Global Path Planning 55

The cluster mission time tim is set proportionally to the belief probability density of
cluster i with respect to the total belief probability density (one) (line 6). In line 7,
MCTS (Algorithm 3) is used to generate a local cluster plan πi that is constrained
to finish at the closest thermal of cluster i+1 or the home position using minimum
cost (or straight-line) ITPs if necessary. The cluster plan πi is concatenated to the
current plan π with the possibility of rewiring (line 8). This process is repeated for
the remaining clusters (lines 5 – 10) to sequentially generate the full plan π.

The purpose of rewiring is to address belief maps comprising multiple clusters that
share common thermals. Since clusters are searched independently, some ITPs be-
tween common thermals overlap each other, and the subsequent ITPs contribute little
utility to the plan. Rewiring is designed to remove these subsequent ITPs. A sim-
ple example is depicted in Figure 4.8. The two clusters evenly split b0 such that
the identical ITPs shown are locally optimal for the given mission time. One of the
middle straight-line paths should be removed, and the resulting surplus search time
can be allocated to subsequent clusters (if they exist). To remove low utility ITPs,
a thresholded subset of high utility ITPs Q ⊆ Q , {π, π′} is extracted in line 18
and enforced to be visited by a TSP GA solver. Low utility ITPs q ∈ Q \ Q are only
visited if they are necessary for linking a path from the start to end position.

X (m)Y (m)

Z
 (

m
)

A

B

-1000

0

1000-1000

0

1000

0

300

Figure 4.8 – Two clusters with even splits on belief b0 result in identical paths between
thermals A and B for each cluster. Thermal self-transitions are not allowed here
to illustrate the condition. Dashed lines for cluster one, solid lines for cluster two.

4.5 Global Path Planning 56

Dynamic Programming CTS (CTSDP)

The CTSDP algorithm is an alternative approach to solving the rewiring problem
identified in Figure 4.8. During tree search, every node of each cluster tree is assigned
a utility v.J and cost v.C. By assuming that the cluster trees are independent, DP
can be used to select a node from each cluster tree and combine them to form a plan
π that maximises the mission utility π.J for a total cost π.C less than or equal to the
budget mission time π.C ≤ B. In this sense, the plan π formed using DP is optimal.

CTSDP is listed as Algorithm 5. Preprocessing is performed to compute the set of
clusters as in Algorithm 4. Line 8 assigns the initial glider position si0 of cluster i
as the position of any thermal in cluster i because cluster trees are assumed to be
independent. Cluster mission time tim is a fraction ε greater than the proportion
of belief density (as used in Algorithm 4) to allow DP greater freedom in balancing
mission time among clusters (line 10). FHTS (Algorithm 2) is used (instead of MCTS)
to generate cluster trees V i

e (line 11), which are then stored in T (line 12) for use in

Algorithm 5 Dynamic Programming Cluster Tree Search
Input: initial UAV state s0, mission time tm, finite horizon depth dfh
Output: plan π
1: function CTSDP (s0, tm, dfh)
2: create N clusters with system states {S1

0 , S
2
0 , . . . , S

N
0 }: beliefs

{b1, b2, . . . , bN} are represented as a GMM; nearby thermals are associated with
each cluster

3: T← ∅ . set of N cluster trees
4: for i = 1 : N do
5: if i = 1 then
6: S1

0〈s1
0〉 ← S0〈s0〉 . initial UAV position

7: else
8: Si0〈si0〉 ← position of any thermal of cluster i
9: end if
10: tim ← ε . tm .

∑
bi/
∑
b0

11: V i
e ← FHTS(Si0, tim, dfh)

12: T(i)← V i
e

13: end for
14: return π ← DP on T using (T.J, T.C)
15: end function

4.5 Global Path Planning 57

DP (line 14).

DP is implemented using discrete cost budgets and forward recursion on N stages
corresponding to N clusters. Each stage i = 1, . . . , N contains a cost budget vector
Bi, a stage utility vector Ji and a stage cost vector Ci. The cost budget is arbitrarily
discretised as:

Bi =

{0, . . . , tm} ∈ R≥0, if i < N

tm, otherwise.
(4.11)

For every bi ∈ Bi, a corresponding ji ∈ Ji and ci ∈ Ci are computed by considering
the utility and cost of every node vi ∈ V i

e in the cluster i tree and the accumulated
utilities and costs from all previous stages captured in Ji−1 and Ci−1. The first stage
is the simplest to compute using:

j1 = max V 1
e .J

(
V 1
e .C ≤ b1

)
, (4.12a)

c1 = arg max
V 1
e .C≤ b1

V 1
e .J

(
V 1
e .C ≤ b1

)
. (4.12b)

For the subsequent stages, the utilities and costs are computed recursively using:

ji = max
{
V i
e .J

(
V i
e .C ≤ bi

)
+ Ji−1

(
Ci−1 ≤

(
bi − V i

e .C
))}

, (4.13a)

ci = arg max
V ie .C≤ bi+Ci−1(Ci−1≤(bi−V ie .C))

{
V i
e .J

(
V i
e .C ≤ bi

)
+ Ji−1

(
Ci−1 ≤

(
bi − V i

e .C
))}

.

(4.13b)
The utility jN for bN = tm is the maximum sum of utilities from all clusters for the
mission time budget tm.

It is noted that either FHTS or MCTS can be used as the local search procedure.
However, finite horizon search schemes are known to perform well on single Gaussian
belief maps, providing near-optimal performance [129]. This observation informs the
preference for FHTS in Algorithm 5.

4.6 Numerical Simulations 58

4.6 Numerical Simulations

The proposed algorithms are evaluated by conducting four numerical simulations.
Firstly, the thermalling time optimisation algorithm is evaluated in isolation. Sec-
ondly, the performance of FHTS is compared against a state-of-the-art search algo-
rithm, locally optimal myopic search (LOMS), on two different search maps. Thirdly,
an appropriate exploration weight Cp is selected for MCTS and CTSSeq. Finally, the
performances of MCTS, CTSSeq and CTSDP are compared on three belief maps with
2, 3, and 4 clusters and 10 known thermals randomly distributed throughout the
environment airspace.

The algorithms are implemented using MATLAB. All numerical simulations are per-
formed using a desktop computer with a 3.4GHz Intel Core i7-2600 processor.

4.6.1 Thermalling Time Optimisation Results

The behaviour of the thermalling time optimisation algorithm (Algorithm 1) is first
validated. The example shown in Figure 4.9 demonstrates a plan that has been time
optimised. The plan visits thermals categorised into three classes: {strong, normal,
weak} with Vcore = {1.6, 3.3, 8.0}m/s. The time taken to climb the entire height
of each thermal class is ttherm = {150, 50, 20} s. All thermals have R= 75m, k = 3,
z0 =150m, and the altitude bounds are zmin=100m and zmax=220m. The plan begins
at altitude zmax and ends at zmin. The sequence comprises information gathering ITP
segments (falling altitudes) and thermalling segments (rising altitudes).

Examining this sequence, thermalling time ttherm spent in weak thermals is minimised.
Where possible, ttherm is shifted to previous normal or strong thermals. With respect
to normal thermals, ttherm is shifted to previous strong thermals.

This result is made explicit in Figure 4.10. The Available altitude is the greatest
cumulative amount of thermalling altitude available. For example, there are five
strong thermals, each with 120m of available thermalling altitude, totalling 600m.
Note that the initial thermal is not counted in calculating altitude allocation. The

4.6 Numerical Simulations 59

Thermalling Time Optimisation

Time (min)

A
lti

tu
de

 (
m

)

N S N

W

N W

N

S

N

S
S W

S

0 10 20 30 40 50 60

50

100

150

200

250

Figure 4.9 – An example time-optimised plan. {Strong, normal, weak} thermals are
labelled {S, N, W} at the top altitudes of thermalling segments. The altitude limits
{zmin, zmax} = {100, 220}m are displayed as dashed lines.

ITP altitude is the cumulative drop in altitude from information gathering ITPs,
allocated to thermal classes based on the goal thermal of the ITP. The Used altitude
is the actual cumulative thermalling altitude for each thermal class after applying
Algorithm 1. Figure 4.10 shows that initial ITP thermalling altitude is shifted from
weak to normal and strong thermals. The percentage values indicate the ratio of
Used to ITP altitude for each thermal class. Without Algorithm 1, the ITP and Used
altitude would be equal within each class.

4.6.2 Evaluation of FHTS

In this section, the FHTS algorithm is evaluated to understand how its performance
varies with finite horizon depth dfh. The aim is to empirically examine the relation-
ship between dfh and mission utility (cumulative probability of detection) in reason-
able search scenarios. A secondary objective is to understand how FHTS compares
to existing methods.

4.6 Numerical Simulations 60

Altitude Allocation

A
lti

tu
de

 L
en

gt
h

(m
)

120%

104%

66%

Strong Normal Weak
0

100

200

300

400

500

600
Available

ITP

Used

Figure 4.10 – Altitude allocation for each thermal class {strong, normal, weak}. Each
bar represents the sum of altitudes for every thermal in each class. The Available
altitude is the sum of altitudes (zmax−zmin) for every thermal. The ITP altitude is
the sum of altitudes expended on information gathering ITPs. The Used altitude is
the actual thermalling altitude after applying Algorithm 1. The percentage values
indicate the ratio of Used to ITP thermalling altitude (or time). Algorithm 1 has
shifted altitude from weak to strong thermals indicated by the Used altitude bars;
without Algorithm 1, the ITP and Used altitude would be equal within each class.

Two search scenarios are studied, referred to as simple and complex to reflect the rela-
tive number of thermals and structure of the prior belief. In the simple scenario, a sin-
gle Gaussian prior belief is used and four thermals of equal strength (Vcore = 3.3m/s)
evenly cover the search region, shown in Figure 4.11. For the complex scenario, the
initial belief comprises three clusters and there are eight thermals of varying strength,
illustrated in Figure 4.12. The glider starts at the top of thermal A in both cases.
The mission times are 45 and 60 minutes respectively, and it is assumed that the
target is never detected.

FHTS is benchmarked against a LOMS algorithm. LOMS greedily alternates between
search and energy-gain flight modes. In search mode, a five-step horizon RRT is com-
bined with gradient descent to generate search paths that maximise local information
gain. When the UAV’s energy drops below a fixed threshold, the planner switches to

4.6 Numerical Simulations 61

X (m)
Y (m)

Z
 (

m
)

A

B

C

D

-1000

0

1000

-2000

-1000

0

1000

2000

0
200
400

Figure 4.11 – Simple map with one cluster of belief uncertainty (or information)
represented by the dark patch centred in the map. Circles represent the return-
trip gliding range from the thermal centres. Each circle has a radius of 1600m.

X (m)

Y (m)

Z
 (

m
)

A

B

C

D
E

F
G H

-2000

0

2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0
300

cluster-1

cluster-2

cluster-3

Figure 4.12 – Complex map with three clusters of information. Thermals are classed
as strong: {C, E, H}, normal: {A, D, F}, and weak: {B, G}.

energy-gain mode, which simply involves flying a direct path to the nearest thermal
and circling to the top. Since RRT induces path randomness, 100 LOMS trials are
performed.

Time step tk = 1s is used for the glider motion and sensor models. That is, the lookup
table contains tk = 1s trajectories generated using a 0.01s numerical integration time
step. The velocity is constant at V =13m/s; φmax=45◦ and pmax=10◦/s. The glider’s
aerodynamic and geometric properties are listed in [73]. The sensor model dnorm is

4.6 Numerical Simulations 62

150m.

4.6.3 Simple Scenario

In the simple scenario, there is no significant performance gain with an increase
in depth dfh, as highlighted in Figure 4.13. The reason is that the search region
is well covered by the thermals. Accordingly, LOMS and FHTS performances are
comparable. This empirical result suggests near-greedy FHTS is near-optimal for
simple belief maps.

4.6.4 Complex Scenario

In the complex scenario, FHTS outperforms LOMS as shown in Figure 4.14. The
reason is that plans with dfh≥4 look ahead far enough in space to capture information
at cluster-3, depicted in Figure 4.15(a). For dfh ≤ 3, FHTS performs similarly to

Simple Map Utility

Mission Time (min)

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
,1

]

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Horizon = 1

Horizon = 2

Horizon = 3
Horizon = 4

Horizon = 5

Horizon = 6
Horizon = 7

LOMS: mean

LOMS: 1σ

Figure 4.13 – In the simple scenario, FHTS and LOMS performances are similar. Dots
denote FHTS single-transition steps as the mission elapses.

4.6 Numerical Simulations 63

Complex Map Utility

Mission Time (min)

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
,1

]

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Horizon = 1

Horizon = 2

Horizon = 3
Horizon = 4

Horizon = 5

Horizon = 6
Horizon = 7

LOMS: mean

LOMS: 1σ

Figure 4.14 – In the complex scenario, FHTS outperforms LOMS for dfh ≥ 4 where
short-term utility is sacrificed for higher end-state utility.

LOMS because both have limited planning scope, clarified in Figure 4.15(b) and
Figure 4.15(c).

The idea that longer plans sacrifice short-term utility for higher end-state utility is
illustrated in Figure 4.15(d) and Figure 4.15(e). At the 2nd transition step, dfh = 7
has already planned a path to cluster-3 to maximise its total planning utility, but
this requires traversing the less informative path CA. In contrast, the shorter horizon
planner with dfh=4 myopically selects the higher-utility transition path BD, reducing
the time available for searching cluster-3 later in the mission.

However, there is no clear trend between dfh and the end-state utilities in Figure 4.14
(and Figure 4.16 in Section 4.6.5). Local minima exist because high-quality interme-
diate paths chosen by shorter dfh plans may be disregarded by longer dfh plans. This
problem of non-monotonic performance due to local minima prevents the prescrip-
tion of appropriate dfh values for complex scenarios, strengthening the motivation for
MCTS and CTS.

4.6
N
um

ericalSim
ulations

64

A

B

C

D

E

F

G

H

(a) dfh =4

A

B

C

D

E

F

G

H

(b) dfh =3

A

B

C

D

E

F

G

H

(c) LOMS

A

B

C

D

E

F

G

H

(d) dfh =4, Trans-2

A

B

C

D

E

F

G

H

(e) dfh =7, Trans-2

Figure 4.15 – Top-view trajectories over the complex map (Figure 4.12) comparing FHTS and LOMS. The current-state
belief map surface is shown in all cases. In 4.15(a) and 4.15(b), the FHTS plans with dfh=4 and 3 show that only dfh=4
plans ahead adequately to reach cluster-3. Similarly in 4.15(c), the scope of LOMS is limited to locally optimal paths.
Orange solid lines represent search mode paths and green dashed lines represent energy-gain mode paths. In 4.15(d) and
4.15(e), blue dashed lines represent lookahead planning paths at the 2nd transition step. These subfigures illustrate how
dfh= 7 sacrifices short-term utility for higher end-state utility; the less informative transition path CA is taken along its
planned path C to H, whereas the path BD of dfh=4 has higher current transition utility.

4.6 Numerical Simulations 65

4.6.5 MCTS and CTSSeq Exploration Weight Selection

To evaluate the performance of MCTS and CTSSeq, an appropriate value for the
exploration weight Cp in Equation (4.9) must first be identified. A Monte Carlo
simulation is utilised to determine a Cp value that generates good plans in the complex
scenario (Figure 4.12). The computed Cp is assumed to be suitable for other complex
scenarios.

Discrete values of Cp in [0, 1] are evaluated over 50 trials due the the random nature
of rollouts. The final utilities and computational times of every MCTS simulation
is recorded and compare against the utilities and computational times of FHTS for
dfh = 1 to 7.

Results for MCTS and CTSSeq appear in Figure 4.16(a) and Figure 4.16(b) respec-
tively. MCTS achieves comparable utility to FHTS (dfh = 7) with Cp ≥ 0.05 and
reasonable computational time for Cp ≤ 0.1. CTSSeq achieves high utility across
all weights and very fast computational time (over 10 times faster than MCTS) for
Cp≤0.1.

Cp = 0 corresponds to DFS, whereas large values approach the behaviour of breadth
first search (BFS). In Figure 4.16(b), the jump in computational time between Cp=
0.1 and 0.2 comes from a large increase in branching resembling BFS. This is due to
a small difference between the exploration and exploitation terms in Equation (4.9)
around these Cp weights.

The greater variance in utility in Figure 4.16(b) compared to Figure 4.16(a) arises
from the rewiring procedure in Algorithm 4 (line 8) intermediately removing low
utility ITPs to find better plans with the subsequent clusters. This sometimes works
well with utilities ≈0.9. Other times, the minor utilities of removed low utility ITPs
add up to marginally reduce the final utility. On rare occasions, rewiring removes
ITPs that appear to be low utility at an intermediate cluster, but subsequent cluster
ITPs are of even lower utility. The algorithm cannot backtrack, resulting in poor
outlier solutions.

From this analysis, an exploration weight Cp=0.1 is selected for the final experiments

4.6 Numerical Simulations 66

in Section 4.6.6. This weight Cp=0.1 provides high-quality plans with relatively low
computational time (two minutes for CTSSeq on average).

Mission Utility

P
ro

b.
 o

f D
et

ec
tio

n
[0

,1
]

0 0.01 0.05 0.08 0.1 0.2 0.4 0.6 1 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

Computational Time

T
im

e
(m

in
)

MCTS Weight FHTS Horizon

0 0.01 0.05 0.08 0.1 0.2 0.4 0.6 1 1 2 3 4 5 6 7
0

50

100

(a) MCTS

Mission Utility

P
ro

b.
 o

f D
et

ec
tio

n
[0

,1
]

0 0.01 0.05 0.08 0.1 0.2 0.4 0.6 1 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

Computational Time

T
im

e
(m

in
)

MCTS Weight FHTS Horizon

0 0.01 0.05 0.08 0.1 0.2 0.4 0.6 1 1 2 3 4 5 6 7
0

5

10

15

(b) CTSSeq

Figure 4.16 – MCTS and CTSSeq with 50 trials for each weight Cp vs. FHTS on the
complex map (Figure 4.12).

4.6 Numerical Simulations 67

4.6.6 Comparison of Search Algorithms

To understand MCTS, CTSSeq and CTSDP on a broader range of IFS scenarios, the
algorithms are applied to three belief maps containing 2, 3 and 4 information clusters.
Their performances are compared by testing on 50 instances of each map where each
instance contains 10 thermals in randomised locations. CTSDP utilises three FHTS
search horizons dfh = {1, 2, 3}, and ε=20%. The simulation results are displayed in
Figure 4.17. Spatial plan instances for the 2-cluster map using MCTS and Horizon-3
CTSDP are visualised in Figure 4.18 and Figure 4.19.

In Figure 4.17, the utilities from all methods have high variances because some setups
of randomised thermals offer poor map coverage; thus, their maximum theoretical
utility is low. With this in mind, Figure 4.17 provides three algorithmic performance
insights. Firstly, the utilities of both CTSSeq and CTSDP are generally better than
those of MCTS because they isolate and search clusters of information. Performance
between MCTS and both CTS variants for the 4-cluster map (Figure 4.17(c)) is
similar because clusters are spatially closer together. Secondly, CTSSeq utility is
better than that of Horizon-1 (greedy) CTSDP across all three maps. However, the
Horizon-2, 3 variants tend to outperform CTSSeq since they build more cluster tree
nodes with intermediate J(v) and C(v) than Horizon-1 CTSDP . This offers DP more
intermediate options to optimise over. Finally, both CTSSeq and CTSDP require less
computational time than MCTS. On average, CTSSeq is 1.5 to ten times faster (than
MCTS) and CTSDP is five to 20 times faster. For CTSSeq, there is a decreasing
trend in computational time with increasing number of clusters, corroborating the
efficiency of solving subproblems under the divide and conquer scheme. For CTSDP ,
the required computational time is consistently low, which suggests that near-optimal
plans are quickly found with search effort concentrated at clusters of information.

4.6
N
um

ericalSim
ulations

68

Mission Utility

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
, 1

]

MCTS CTS-DP
full seq h1 h2 h3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Computational Time

T
im

e
(m

in
)

MCTS CTS-DP
full seq h1 h2 h3

0

10

20

30

40

50

60

70

(a) 2-cluster map

Mission Utility

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
, 1

]

MCTS CTS-DP
full seq h1 h2 h3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Computational Time

T
im

e
(m

in
)

MCTS CTS-DP
full seq h1 h2 h3

0

10

20

30

40

50

60

70

(b) 3-cluster map

Mission Utility

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
, 1

]

MCTS CTS-DP
full seq h1 h2 h3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Computational Time

T
im

e
(m

in
)

MCTS CTS-DP
full seq h1 h2 h3

0

10

20

30

40

50

60

70

(c) 4-cluster map

Figure 4.17 – Simulation results comparing MCTS, CTSSeq and CTSDP . Full-MCTS is MCTS (Algorithm 3) while seq-MCTS
is CTSSeq (Algorithm 4). CTSDP with finite horizons {h1, h2, h3} employs DP for optimal cluster time allocation. Every
algorithm is trialled on the same 50 setups of 10 randomised thermal locations for each map.

4.7 Summary 69

X (m)

Y (m)

Z
 (

m
)

Start

Finish

-2000

0

2000

0

2000

4000

6000

8000

0
300

Figure 4.18 – MCTS on an instance of 10 randomised thermals on the 2-cluster map.
The final belief map profile is shown, and the final utility is 0.8488.

X (m)

Y (m)

Z
 (

m
)

Start

Finish

-2000

0

2000

0

2000

4000

6000

8000

0
300

minimum-cost
path segment

Figure 4.19 – Horizon-3 CTSDP on the same setup instance in Figure 4.18. The
final utility is 0.9133. The local plans from each cluster tree are linked by one
minimum-cost path segment (ITP).

4.7 Summary

The IFS problem was addressed using a two-tier local and global planning approach.
The elements of local planning included: 1) a lookup table to quickly simulate 6-
DoF UAV motion, 2) generating ITPs via gradient descent on the belief map and 3)

4.7 Summary 70

minimising a plan’s total thermalling time to maximise time allocated to information
gathering. Global planning utilised these elements in tree search. Tree search methods
considered include: 1) FHTS, 2) MCTS and 3) the proposed CTS algorithm with two
variants CTSSeq and CTSDP . FHTS was capable of finding nonmyopic plans at the
cost of longer horizons, which in turn, increased computational time exponentially.
For reasonable horizons of three and four, FHTS was shown to remain myopic and
the correct horizon could not be predicted for different problems. This soft-myopia
problem was addressed by MCTS which concentrated tree search effort at promising
regions of the search tree via a tradeoff between node exploitation and exploration.
The exploration weight Cp required tuning for different problems. CTS eliminated
parameter tuning by exploiting the idea that complex belief maps comprise informa-
tion clusters that can be searched locally and local plans combined to form a complete
plan.

Intuitions and observations about the tree search methods were verified by numerical
simulation results. In particular, CTSDP was demonstrated to return high quality
path plans similar to full MCTS without clustering, but with a drastically reduced
computational cost. Furthermore, results verified that near-greedy search on a single
information cluster is near-optimal, which was the driving factor behind CTS.

Chapter 5

Experiments

This chapter provides the results of flight tests performed to validate the CTSDP al-
gorithm running on-board a small UAV test platform. The flight tests demonstrated
two features of the algorithm. Firstly, the tests showed that the algorithm is compu-
tationally efficient enough to generate plans with low latency (less than 4 seconds)
on board the flight computer. Secondly, the flight tests showed that the motion
model lookup table generated sufficiently accurate path plans, that when combined
with a closed-loop controller, the aircraft could track the generated trajectories in the
presence of wind, dynamic modelling errors, control surface deflection lag and sensor
noise.

This chapter begins by describing the experimental hardware and software. Then,
the experimental setup is detailed with modifications to CTSDP to realise the demon-
stration. Finally, the experimental results are reported.

5.1 Experimental Hardware and Software

The platform used in the experimental flight trials was a Skywalker 1900 UAV, a 1.9
metre wingspan motorised aircraft assembled at the ACFR shown in Figure 5.1. The
UAV was equipped with a flight computer (FC) paired with a custom-made autopilot

5.1 Experimental Hardware and Software 72

developed at the ACFR [127, 128], displayed in Figure 5.2. The CTSDP algorithm
was executed by the FC, which sent high-level guidance commands to the autopilot.

A MATLAB Simulink [88] simulation was utilised to develop the implementation of
CTSDP on hardware. The Simulink model was modular such that it isolated high-level
planning performed by CTSDP from the base modules. These base modules comprise
a 6-DoF flight dynamic model, sensor models (inertial measurement unit (IMU),
global positioning system (GPS) receiver, magnetometer, barometer, static and dy-
namic pressure sensors), actuator models (ailerons, elevator, rudder, throttle), and
a guidance, navigation and control (GNC) module. State estimation was performed
using an unscented Kalman filter (UKF) given simulated noisy sensor measurements.
Given the UAV state estimates, the GNC module then performed guidance and con-
trol using PID controllers to generate low-level actuator commands to achieve bank
angle, airspeed, and altitude targets set by the CTSDP planning module.

Figure 5.1 – Skywalker 1900 UAV assembled at the ACFR, and used for hardware
demonstrations in this thesis.

5.1 Experimental Hardware and Software 73

The GNC module was configured to automatically generate C code for use on the au-
topilot. The autopilot was designed with a 168MHz ARM Cortex-M4 microcontroller
running the ChibiOS/RT hard real-time operating system [114]. Making use of the
ChibiOS/RT hardware abstraction layer, the autopilot received data from an IMU,
GPS, magnetometer, barometer and differential pressure sensor, and was processed
by the GNC software. A removable memory card enabled autopilot configuration
files to be read and flight data to be logged. A 900MHz wireless link to a custom-
developed ground control station (GCS) provided a telemetry link and the ability
to upload configurable parameters in real time. The system could be switched to
manual flight mode, which used a 2.4GHz radio control system. Likewise, the CTSDP
planning module was configured to generate C code to run on the FC, which was
built with a 1GHz ARM Cortex-A8 microcontroller running Linux. Further details
of both the Simulink simulation and complete unmanned aerial system (UAS) can be
found in [127, 128].

5.1
Experim

entalH
ardware

and
Software

74

2.4GHz receiver 900MHz wireless link

Flight Computer (FC) Autopilot

Figure 5.2 – Skywalker 1900 UAV fuselage equipped with electronics as labelled.

5.2 Experimental Setup 75

5.2 Experimental Setup

The flight experiments were conducted at Marulan, NSW Australia, and the search
region is shown in Figure 5.3. As the aim of the experiments was to validate real-time
planning, three aspects of the IFS problem were simplified for the flight tests. Firstly,
the UAV did not glide but maintained a constant altitude of 80m using throttle. When
the UAV reached a simulated thermal, it simply moved on to the next waypoint.
Secondly, the belief map was updated in simulation on the FC because there was
no onboard sensor for target detection. Thirdly, the search region was limited to be
within a visual line-of-sight range of 600m for safety. Accordingly, there were only two
information clusters, and a maximum of three thermals, as illustrated in Figure 5.4.
The mission time was 15 minutes.

N
E

[0,0] [0,100]

[-400,100][-400,-400]

[0,-400]

Figure 5.3 – The search region is shown as the gridded box over Marulan, NSW
Australia. The ground station shown with local coordinates (0, 0) has latitude-
longitude coordinates (−34.594868, 150.055452). The x-axis aligns with North,
while the y-axis aligns with East. The five (x, y) coordinates have the units of
metres. The photo was taken from Google maps [90].

5.3 Experimental Results 76

Nevertheless, the Simulink software framework was set up to be modular such that
multiple Simulink blocks or modules could be added. For a realistic search mission
using thermals, two additional modules would be integrated: 1) a thermal detection
and energy capture module, and 2) a target sensing module.

A total of four trials were performed. The first two trials were classed as Case-1
and differ in CTSDP horizon length. Horizon one and two were used for each trial
respectively. The succeeding trials were called Case-2 and Case-3.

Case-1 Horizon-1 CTSDP contained two replan events. The first replan occurred when
a new thermal was added (3mins into the mission), and the second replan occurred
when an existing thermal disappeared (8mins into the mission).

Case-1 Horizon-2 CTSDP also contained two replan events. The two Case-1 tests
aimed to demonstrate that CTSDP was fast enough to achieve real-time replanning
on board the UAV.

Case-2 contained one replan event when an existing thermal instantaneously moved
to a better information location (3mins into the mission).

Case-3 did not contain any replan events. Case-2 and Case-3 highlighted that replan-
ning when new thermals were detected was beneficial to the mission objective.

5.3 Experimental Results

The flight path for Case-1 Horizon-1 CTSDP is shown in Figure 5.4. The UAV was
manually piloted to 80m altitude at which the initial plan Plan-0 was computed. Ev-
ery plan finished at (0, −100)m to prevent the UAV from finishing directly above the
GCS for safety. Figure 5.4(a) shows the flight path after the first replan was computed
(up to the start of the second replan) when a new thermal Thml-3 was hypothetically
detected (by an external source). The first replan Plan-1 was not completely executed
because of the second replan; the remainder of Plan-1’s computed plan Plan-rem is
also displayed (dashed line). In Figure 5.4(b), the second replan Plan-2 was com-
puted when Thml-2 disappeared. Figure 5.4 might imply Plan-2 collected far more

5.3 Experimental Results 77

Case-1 Horizon-1

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Plan-1

Plan-rem

Home
Start

Finish

Thml-1

Thml-2

Thml-3

(a) Flight path after first replan

Case-1 Horizon-1

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Plan-1

Plan-2

Home
Start

Finish

Thml-1

Thml-3

(b) Flight path after second replan

Figure 5.4 – Case-1 Horizon-1 CTSDP . Plan-0 is the initial plan. The first replan
Plan-1 is computed when Thml-3 appears. The second replan Plan-2 is computed
when Thml-2 disappears. Plan-rem denotes the remainder of the latest plan not
executed because a subsequent replan is generated. Home represents the GCS at
(0, 0)m; the UAV returns to (0, −100)m to avoid flying directly above the GCS.
The manual mode climb and land segments are omitted. The initial belief map is
shown, and not altered as it would be in the mission, for visual clarity.

5.4 Summary 78

utility than Plan-rem; however, only a small value of extra utility was gained given
the utility already collected by Plan-0 and Plan-1. In Figure 5.4(b), Plan-2 switched
to the right cluster because it contained more utility relative to the left cluster after
Plan-1 was executed. In contrast, Plan-1 focused effort at the left cluster because it
contained more utility (than the right cluster) at the time of computation of Plan-1.

During the flight test, (re)planning computational times for Horizon-1 CTSDP were
recorded to vary between one and three second(s) with subsequent replans requiring
less time than the initial plan. For Horizon-2 CTSDP , computational times var-
ied between two and four seconds, which agreed with the trend in the simulation
results (Figure 4.17) and validated CTSDP was capable of real-time planning. Fig-
ure 5.5 presents the flight paths after the first and second replan events for Horizon-2
CTSDP . This test was slightly modified such that Plan-3 was computed when Thml-1
disappeared (not Thml-2).

The flight test results for Case-2 and Case-3 are shown in Figure 5.6 and Figure 5.7
respectively. In Case-2, Plan-2 was computed when Thml-1 disappeared and Thml-3
simultaneously appeared. It is clear from Figure 5.8 that the ability to replan benefits
the mission objective with a higher final mission utility is evident in these scenarios.
Furthermore, the trajectories in Figures 5.4–5.7 illustrate that the controller can han-
dle non-simulated disturbances such as wind and control surface lag using simulated
planned trajectories from the lookup table.

The reduced mission times in Figure 5.8 compared to the target 15 minute mission
time stemmed from two causes. First, a constant airspeed of 15m/s was commanded
during the flight tests for safety, while the planning airspeed used in the lookup table
was 13m/s. Second, no time was spent thermalling in the demonstrations.

5.4 Summary

New algorithms developed for long-term information gathering are required to run in
real time for practical use. This chapter validated the most computationally efficient

5.4 Summary 79

Case-1 Horizon-2

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Plan-1

Plan-rem

Home
Start

Finish

Thml-1

Thml-2

Thml-3

(a) Flight path after first replan

Case-1 Horizon-2

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Plan-1

Plan-2

Home
Start

Finish

Thml-2

Thml-3

(b) Flight path after second replan

Figure 5.5 – Case-1 Horizon-2 CTSDP . Plan-2 is computed when Thml-3 appears;
Plan-3 is computed when Thml-1 disappears.

5.4 Summary 80

Case-2 Horizon-1

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Plan-rem

Home

Start

Finish

Thml-1

Thml-2

(a) Flight path after initial plan

Case-2 Horizon-1

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Plan-1

Home

Start

Finish

Thml-2

Thml-3

(b) Flight path after a replan

Figure 5.6 – Case-2 Horizon-1 CTSDP . Plan-2 is computed when Thml-1 disappears
and Thml-3 simultaneously appears.

5.4 Summary 81

Case-3 Horizon-1

X
 [N

or
th

] (
m

)

Y [East] (m)

-500

-400

-300

-200

-100

0

100

200

-500 -400 -300 -200 -100 0 100 200

Plan-0

Home

Start

Finish

Thml-1

Thml-2

Figure 5.7 – Case-3 Horizon-1 CTSDP . No replanning occurs.

Comparison of Utilities

Time (min)

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
,1

]

Replan @ 3:00min

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Case-2: One Replan

Case-3: No replan

Figure 5.8 – Mission utility over time comparing the benefit of replanning (Case-2) to
no replanning (Case-3).

planning algorithm proposed in this thesis for IFS, CTSDP , through flight tests. A
number of subordinate features were simplified to focus on realising the core compo-

5.4 Summary 82

nent of the demonstration, namely validating the computational efficiency of CTSDP
seen in the simulation results from Chapter 4. However, the software framework is
modular to accommodate additional modules; for long-term IFS, two extra modules
would be added, namely 1) a thermal detection and energy capture module, and 2)
a target sensing module.

Three core competencies were validated by the experiments. First, re(planning) com-
putational times were recorded to vary between one and four seconds for a 15 minute
mission. Since thermalling time can be in the order of minutes during which a new
plan is computed, CTSDP is fast enough for practical longer mission times. Second,
uncertainty in the form of wind and UAV control surface lag not modelled in simula-
tion were handled by the UAS, as validated by smooth and well-tracked trajectories.
Finally, the experiments demonstrated the lookup table of trajectories was feasible
for real-time planning. The level of discretisation was suitable for memory storage
and path planning precision.

Chapter 6

Informative Soaring with Drifting

Thermals

The algorithms presented in Chapter 4 assumed that thermal positions are known
and stationary. In this chapter, these assumptions are relaxed to provide a more
realistic approach to planning in an unknown wind field. In the literature, thermals
have been observed to arise from hot ground features and form cumulus clouds down-
wind as thermals drift with the prevailing winds [101]. There exists relatively new
weather systems such as doppler radar to measure wind patterns with state updates
every minute [48]. Ideally, these systems would be incorporated into path planning;
however, the vast environmental search area in IFS presents a challenge to the infras-
tructural setup of current systems. Alternatively, the UAV can explore for thermals
given knowledge of the terrain and/or weather patterns. In general, incorporating
such prior knowledge in the form of a belief map can result in optimal performance.

As a first approach to solving IFS with drifting thermals, thermals are assumed to drift
in the general wind direction. According to this prior knowledge, it would be time-
efficient to explore upwind of information clusters so that newly detected thermals
eventually intercept the clusters. An exploration belief map captures the mechanisms
of this idea, and these mechanisms are described in Section 6.1.

With a number of detected thermals known by the planner, ITP generation can be

6.1 Thermal Exploration Map 84

considered. In the case of drifting thermals, thermal motion must be tracked so that
an ITP can finish at the goal thermal. A linear motion model estimates the thermal
trajectory and a Kalman filter handles the thermal state uncertainty. The constraint
that an ITP must intercept a moving thermal is formulated as a boundary value
equality constraint problem. These concepts are presented in Section 6.2.

To generate a global plan, a schedule is created with the desire to optimally visit
and service information clusters. To generate the schedule, time windows are first
identified for each cluster by calculating when known thermals will pass over each
cluster. These time windows are crucial for computing the schedule and BnB tree
search is selected as the solver; details are provided in Section 6.3.

Finally, tree search is used to compute a global plan using the service schedule. BnB
tree search is employed as part of the algorithm called CTSDrift. The main difference
between CTSDrift and CTSDP from Chapter 4 is that DP is replaced with equal
search times among clusters because there may not be enough thermals to service
every cluster. BnB is used to remove low utility rate ITPs during individual cluster
tree search instead of retaining them for DP. An algorithmic description is provided
in Section 6.4.

CTSDrift is empirically evaluated using numerical simulations in Section 6.5. CTSDrift
is compared against a Greedy method that uses greedy cluster selection instead of
scheduling, and random direction thermal exploration. Both methods are compared
against the case when all drifting thermals are known with full certainty, known as
the Full Knowledge method.

6.1 Thermal Exploration Map

Without any knowledge of the wind field, it suffices to explore for new thermals in
random directions. However, given that the objective of IFS is to maximise informa-
tion gain based on the belief map, thermals existing upwind of information clusters
are more valuable to the mission. Based on this idea, a thermal exploration map is

6.1 Thermal Exploration Map 85

developed to generate more efficient exploratory trajectories for new thermals.

6.1.1 Probability of Covering a Location

To develop the thermal exploration map, the probability of a new thermal τ passing
over any xy-position in the environment ξ ∈ E ⊆ R2 is first addressed. A thermal has a
circular coverage footprint defined by the service radius rsvc, where the circumference
defines the return-trip gliding range first shown in Figure 4.2. As the thermal drifts
over time, a thermal coverage footprint probability cone, as shown in Figure 6.1,
determines the probability that the drifting thermal will pass over a particular location
ξ at any future time.

The thermal is assumed to drift at a speed equal to the prevailing wind speed W

and in the same direction as the wind. The wind direction Ψ is defined by a mean
and SD 〈µΨ, σΨ〉. The thermal is assumed to not undergo a random walk in the
wind direction, but travel constantly along an uncertain direction, which translates
to a positional uncertainty over time. For infinite time, this positional uncertainty
describes the coverage probability cone comprising the probabilities of passing over
locations ξ ∈ E , as shown in Figure 6.1.

To determine this cone, consider a location ξ = (x, y), which could be 1) not covered,
2) covered at, or 3) covered within the circumference of the coverage footprint. Since
the thermal drifts with directional uncertainty ±σΨ, the thermal can be imagined to
demerge into being at a set of possible positions; the two rays in Figure 6.2 illustrate
the positions along ±σΨ. Accordingly, any location ξ may be covered at distance rsvc
from the thermal centre, illustrated in Figure 6.3. The angle θ is the angular position
of ξ in global coordinates and φ is the angle corresponding to rsvc assuming the new
thermal initial position xτ0 is fixed at the global coordinates origin:

θ = tan−1
(
y

x

)
, (6.1)

φ = sin−1
(

rsvc√
x2 + y2

)
. (6.2)

6.1 Thermal Exploration Map 86

Single Thermal PDF

X (m)
Y (m)

P
ro

ba
bi

lit
y

-800

-600

-400

-200

0-800

-600

-400

-200

0
0

0.5

1

Figure 6.1 – Thermal coverage footprint probability cone for thermal initial position
xτ0 = (−700, −400)m, rsvc = 50m, µΨ = 0◦ and σΨ = 10◦. Note the coverage
probability is one everywhere in the footprint at the initial thermal position.

Figure 6.3 superimposes the two cases when a location ξ = (x, y) could be covered
by the thermal coverage footprint, when the thermal centre is at θ+ φ or θ− φ. The
coverage cone comprises a sequence of PDFs lying along arcs at increasing distances
from xτ0 , since the thermal is assumed to have non-zero velocity. Each PDF defines
the probability of the thermal covering E as it drifts in time. Each PDF c(θ, φ) is
constructed from two CDFs defined as C(θ + φ) and C(θ − φ):

c(θ, φ) = C(θ + φ)− C(θ − φ), (6.3a)

C(θ + φ) = 1
2

[
erf
(
θ + φ− µΨ

σΨ
√

2

)]
, (6.3b)

− C(θ − φ) = −1
2

[
erf
(
θ − φ− µΨ

σΨ
√

2

)]
. (6.3c)

An example of two PDF slices is depicted in Figure 6.4 for the corresponding cone

6.1 Thermal Exploration Map 87

Figure 6.2 – Evolution of possible thermal positions along ±σΨ directions over time
given the thermal initial position xτ0 is fixed at the global origin and µΨ = 0◦. The
thermal coverage footprint circumference is shown in red.

in Figure 6.1. The corresponding CDFs for these PDF slices are illustrated in Fig-
ure 6.5. Regarding implementation, Equation (6.3) assumes the new thermal initial
xy-position xτ0 is located at the global frame origin (0, 0). To place the new thermal
anywhere in E , the environment xy-coordinates are translated with respect to xτ0 in
Equation (6.4). Furthermore, the error function erf is ill-defined around µΨ = π given
µΨ ∈ (−π, π]. To rectify, µΨ in Equation (6.3b) and Equation (6.3c) is set to zero and
the translated environment E ′ is rotated into the direction of µΨ in Equation (6.5).

E ′ = E − xτ0 (6.4)

E ′ =

 cosµΨ sinµΨ

− sinµΨ cosµΨ

 E ′ (6.5)

In Equation (6.4), E is first transformed into an [n × 2] matrix for n cells in the
environment with (x, y) coordinates. The resulting (x, y) coordinates of E ′ are used
in Equation (6.1) and Equation (6.2).

6.1 Thermal Exploration Map 88

Figure 6.3 – The two possible scenarios when a location ξ = (x, y) is covered at
the circumference of the thermal coverage footprint. The angle φ is subtended
from the (x, y) vector, which determines its sign. The thermal initial position xτ0
corresponds to the global frame origin.

6.1.2 Thermal Exploration Map Generation

Given the coverage probability cone for a new thermal, the thermal exploration map
can be generated by superimposing cones at every ξ ∈ E with the belief map b and
integrating the product to compute an exploration value for each cell ξ. The thermal
exploration map e is a function defined for all ξ ∈ E as:

e(ξ) =
∫
ξ
c(θ, φ)b(ξ)dξ. (6.6)

An example of e is shown in Figure 6.6(b) given the belief map in Figure 6.6(a),
〈µΨ, σΨ〉 = 〈−150◦, 5◦〉 and rsvc = 50m.

Finally, note that the coverage probability of a new thermal is constant and equal to
one across the footprint area. However, the probability should vary from maximum
at the thermal centre to minimum at the circumference. This fact accounts for the
UAV’s ability to gather more information closer to the thermal centre. However, it
has little pragmatic effect on the thermal exploration map, and is simplified by using
a smaller rsvc than the true return-trip gliding range radius.

6.2 ITPs for Moving Thermals 89

Single Thermal PDF

X (m)
Y (m)

P
ro

ba
bi

lit
y

-800

-600

-400

-200

0-800

-600

-400

-200

0
0

0.5

1

Figure 6.4 – Two PDF slices of the cone in Figure 6.1 in time or distance from xτ0 .
The slices are 200m and 600m away in the X direction from xτ0 .

6.2 ITPs for Moving Thermals

Generating ITPs for moving thermals uses the same gradient-based method for sta-
tionary thermals described in Section 4.3. However, the additional boundary value
constraint (6.9) that the UAV end-state xy-position xk+N must coincide with the
target drifting thermal xy-position xτ is required.

maximise
vk

J(bk, sk, vk) (6.7)

subject to zk+N ≥ zmin, (6.8)

xk+N = xτ . (6.9)

To determine xτ at any time, known thermals are tracked by the UAV. A Kalman
filter is used to combine thermal position observations with a linear thermal motion
model to predict thermal drift. This thesis assumes a thermal detection module exists

6.2 ITPs for Moving Thermals 90

CDFs - Slice 200m away
er

f [
-0

.5
, 0

.5
]

-60 -40 -20 0 20 40 60
-0.5

0

0.5
F(θ+φ)

-F(θ-φ)

CDFs - Slice 600m away

Angle (deg)

er
f [

-0
.5

, 0
.5

]

-60 -40 -20 0 20 40 60
-0.5

0

0.5
F(θ+φ)

-F(θ-φ)

Figure 6.5 – Corresponding CDFs for each PDF slice in Figure 6.4.

that returns estimated thermal centre position observations when the UAV is nearby
the thermal. This type of detection has been studied and demonstrated by Allen
[6, 7], Allen and Lin [8], Edwards [45], Edwards and Silverberg [46].

6.2.1 Thermal Tracking

To predict xτ for any time, the thermal position and velocity Xτ is assumed to evolve
according to the linear motion model in Equation (6.10). The superscript τ will be
omitted for clarity in the subsequent equations of this subsection.

Xk+1 = Ak+1Xk + wk+1 (6.10)

6.2 ITPs for Moving Thermals 91

X
Y

(a) Belief map

Y
X

(b) Thermal exploration map

Figure 6.6 – The belief and corresponding thermal exploration map using Equa-
tion (6.6) for 〈µΨ, σΨ〉 = 〈−150◦, 5◦〉 and rsvc = 50m. The arrow indicates the
wind direction. Regions upwind of the belief clusters are marked as valuable tar-
gets for exploration. If a thermal were to be found there, it would provide a good
opportunity to eventually search a belief cluster.

In Equation (6.10), the state vector X = [xτ , yτ , uτ , vτ]T and the process noise
wk+1 ∼ N (0, Q). The state transition model is:

Ak+1 =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 . (6.11)

The process noise covariance Q is:

Q =

0 0 0 0
0 0 0 0
0 0 σ2

uτ 0
0 0 0 σ2

vτ

 . (6.12)

6.2 ITPs for Moving Thermals 92

At time k + 1, an observation zk+1 of the true state is made according to:

zk+1 = Hk+1Xk+1 + vk+1. (6.13)

The observation model Hk+1 maps the true state space into the observation state
space. In this thesis, the model directly measures the true thermal position:

Hk+1 =

1 0 0 0
0 1 0 0

 . (6.14)

The observation noise vk+1 ∼ N (0, R), and covariance R is:

R =

σ2
xτ 0
0 σ2

yτ

 . (6.15)

The standard Kalman prediction and update equations are subsequently used for
thermal tracking. The prediction equations are:

X̂k+1|k = Ak+1X̂k|k, (6.16a)

Pk+1|k = Ak+1Pk|kAT
k+1 + Qk. (6.16b)

The update equations are:

ỹk+1 = zk+1 −Hk+1X̂k+1|k, (6.17a)

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rk+1, (6.17b)

Kk+1 = Pk+1|kHT
k+1S−1

k+1, (6.17c)

X̂k+1|k+1 = X̂k+1|k + Kk+1ỹk+1, (6.17d)

Pk+1|k+1 = Pk+1|k+1 −Kk+1Sk+1KT
k+1. (6.17e)

In Equation (6.16) and Equation (6.17), the subscripts k+1|k and k+1|k+1 denote a

6.2 ITPs for Moving Thermals 93

priori and posterior (of an observation) estimates respectively. The thermal xy-
position xτk+1 at any time k+1 is taken from the estimated state X̂k+1|k+1. A thermal
is retained for path planning only if its uncertainty remains within a covariance limit
Pk+1|k+1 < Covlimit. This idea is integrated in Algorithm 7 in Section 6.4.

6.2.2 Boundary Value Constraint

With an estimate of the thermal xy-position xτk+1, the boundary value constraint
problem can be solved. This equality constraint states that the end point of an ITP
must intercept the thermal xy-position xτk+1 in space and time to allow the UAV
to replenish energy at the thermal. An example solution showing a set of ITPs
intercepting a drifting thermal is illustrated in Figure 6.7.

A set of waypoints vk linking a pair of thermals is first iteratively shifted in the target
thermal drift direction until constraint (6.9) is satisfied. This constraint can be solved
by ensuring the thermal drift time tτj equals the ITP travel time tITPk+N :

tτj = tITPk+N . (6.18)

Here, j is the iteration index. Initially when j = 1, the drift time is tτj = 0, and at
convergence, tτj > 0. The drift time tτj is iteratively updated by computing new ITP
travel times tITPk+N of the ITPs simulated through new waypoints vk+1. To compute
new waypoints vk+1, the drifted thermal xy-position xτj+1 is estimated at tτj+1 in Equa-
tion (6.16a) (and also updated using Equation (6.17d) if an observation is available).
From these two positions, the thermal drift displacement vector is acquired:

∆xτj+1 = xτj+1 − xτj . (6.19)

The waypoints vk excluding the first waypoint are iteratively shifted by a step size
vector equal to half this displacement vector until Equation (6.18) is satisfied.

Figure 6.7 exemplifies ITP generation for two drifting thermals. The UAV starts in
thermal A and ITPs are generated towards thermal B according to the optimisation

6.2 ITPs for Moving Thermals 94

A

B

Figure 6.7 – The set R of ITPs between thermals A and B drifting upwards illustrated
by the green lines (with blue overlaid). The three thin magenta lines linking two
initial waypoints depict the iterative updates according to Equation (6.18) and
Equation (6.19). The final solution waypoints become the first ITP shown as the
blue-dashed line. The subsequent set of ITPs is shown in red with yellow waypoints.
The relative gradient magnitudes and directions of the second ITP are shown as
cyan arrows. Darker regions represent higher information. For visual clarity, the
initial belief map is shown unaltered by information gain from the ITPs.

problem Equations (6.7)–(6.9). In this example, j = 1 to 3 and the iteratively-
updated initial (two) waypoints are shown connected with thin magenta lines. The
final solution with j = 3 is chosen as the initial drift-corrected waypoints; the start and
end waypoints are connected by the dashed blue line. From here, the gradient descent
method defined in Equation (4.4) is applied to yield the set R of i = 1 to 8 ITPs
shown as red lines. This optimisation process is modified by setting the final waypoint
of each ITP uik+N as thermal B’s estimated location xτj+i during optimisation:

uik+N = xτj+i. (6.20)

6.3 Cluster Schedule 95

6.3 Cluster Schedule

Unlike the stationary thermals case where thermals are statically associated with
clusters throughout the mission, drifting thermals are only associated with clusters
for a time window. These time windows complicate the problem of finding a cluster
visit order, and the problem is more closely related to the TW-TSP. However, since
clusters are visited via drifting thermal nodes, the problem is not exactly a TW-TSP;
instead, this thesis uses a BnB tree search approach to schedule the cluster visit order.
The schedule visits thermals within their time windows and services each cluster over
a processing time that captures a desired utility level from the cluster. This section
first describes the calculation of thermal time windows. Then, the BnB tree search
algorithm for scheduling is presented.

6.3.1 Thermal Time Windows

A thermal time window comprises the first and last time the thermal coverage foot-
print intersects a cluster, formally known as the release and due dates {tr, td}. Two
examples are provided in Figure 6.8. To determine these dates, the two times when the
thermal footprint circumference and the cluster perimeter intersect are computed. A
point on the thermal footprint circumference is defined by polar coordinates (rsvc, θτ).
In Cartesian coordinates for any time t, the circumferential point is defined from the
current thermal position xτ as:

pτ = xτ + vτ t+ rsvc

cos θτ

sin θτ

 . (6.21)

Here, vτ is the thermal xy-velocity (uτ , vτ) estimated from Equation (6.16a) and
Equation (6.17d).

A cluster is assumed to be Gaussian or elliptical in shape defined by a mean position

6.3 Cluster Schedule 96

A

1

2

(a) Starting outside cluster

A1

2

(b) Starting inside cluster

Figure 6.8 – Two examples showing the time window optimisation solution. The
release date tr corresponds to thermal A being at position 1, while the due date td
corresponds to position 2. The green ellipse represents the cluster perimeter using
nsd = 2, the red dashed circles are the thermal coverage footprint circumferences,
and the yellow dots are the intersection points.

and covariance 〈xcls, Qcls〉. A point on the perimeter of a cluster is defined as:

pcls = xcls + nsd chol(Qcls)

cosφcls

sinφcls

 , (6.22)

where chol is the Cholesky decomposition operator and φcls is the radial angle from
the cluster centre to a point on the ellipse. The angle φcls lies in (−π, π]. The number
of SDs nsd defines the size of the ellipse, typically ranging from one to three.

At tr and td, a thermal footprint point pτ must touch an ellipse point pcls. Deter-
mining tr and td can be cast as separate constrained optimisation problems. For tr,
the optimisation form is:

minimise
xTW

t (6.23)

6.3 Cluster Schedule 97

subject to g(xTW) = 0, (6.24)

0 ≤ t ≤ tm, (6.25)

−π ≤ {θτ , φcls} ≤ π. (6.26)

The time window optimisation variables are:

xTW = [θτ , φcls, t]T . (6.27)

The equality constraint (6.24) enforces the two perimeter points to touch:

g(xTW) =
∑

(pτ − pcls)2. (6.28)

In constraint (6.25), tm is the remaining mission time. For td, the objective changes
to minimising −t. A standard optimisation solver such as sequential quadratic pro-
gramming (SQP) or interior point method is used to solve for the release and due
dates {tr, td}. Two examples are demonstrated in Figure 6.8.

6.3.2 Branch and Bound for Cluster Scheduling

Each cluster with index i = 1, . . . , N has a list of M i ⊆ M , |T | viable thermals
that can service the cluster. To form a schedule, each cluster i is serviced for a
required processing time tp within the cluster’s release and due dates {tir, tid} found
from {tijr , t

ij
d } of every thermal indexed j = 1, . . . , M i:

tir = min
j=1, ...,M i

tijr , (6.29a)

tid = max
j=1, ...,M i

tijd . (6.29b)

The processing time tip of cluster i is computed by first specifying a desired mission
utility Jm ∈ (0, 1] typically between 0.5 and 0.9. The desired mission utility Jm

controls how much uncertainty should be removed from the belief map. The desired

6.3 Cluster Schedule 98

cluster utility fraction J im is directly proportional to the cluster belief volume as
a fraction of the total belief volume. Given J im, the cluster processing time tip is
determined by simulating greedy or maximum utility ITPs backward in time from tid

starting at thermal jlast:
jlast = arg max

j=1, ...,M i

tijd , (6.30)

until J im utility is gathered. While this procedure does not provide a time upper
bound (UB) for tip because the forward simulation plan may use non-maximum utility
ITPs and so inflate tip to achieve J im, this procedure more accurately captures the
expected value of tip. It was established in Chapter 4 that plans from LOMS and
nonmyopic planning are similar for a cluster where the majority of ITPs are maximum
utility paths. The second feature of this procedure is starting from the latest thermal
jlast and simulating backward in time. This ensures that during the forward simulation
planning phase, if tid− tir > tip, a plan can appropriately finish before tid; otherwise, tip
is set equal to tid − tir and thermal exploration planning ExplrThml(), described in
Section 6.4, is invoked.

With the release and due dates and processing times, a BnB tree search algorithm,
Algorithm 6, is employed to produce a cluster service schedule S. The set of minimum
release dates using Equation (6.29a) for all N clusters is stored as RN ∈ RN×1 and
the set of maximum release dates using Equation (6.29b) for all N clusters is stored
as DN ∈ RN×1. The set of processing times for all N clusters is stored as PN ∈ RN×1.
The entire set of release and due dates RM

N and DM
N for all M known thermals are

also inputs of Algorithm 6.

The general idea of Algorithm 6 is to schedule a list of clusters, also known as jobs,
such that the total unserviced time of jobs and the total travel time are minimised.
These two times are considered the BnB costs and the priority is to minimise un-
serviced time. To this end, a new job may take precedence to be serviced if the
preceding or parent job is due later than the new job. This event could occur when
the parent job is released before the new job as shown in Figure 6.9. The parent job is
now only serviced up to the job’s release date RN(job) and the job is serviced in full
SN(job) = PN(job). The remaining processing time of the parent job is reconsidered

6.3 Cluster Schedule 99

for servicing later. However, Algorithm 6 only considers each job’s processing times
PN as discrete blocks instead of being able to ideally consider PN as continuous.

In Algorithm 6, a root node v0 of the search tree defined by nodes V (line 8) is created
with fields described in lines 2–7. The two BnB costs: 1) total cluster unserviced time
and 2) total travel time are initialised in lines 9–10. At line 12, DFS is used with the
additional heuristic of minimum total travel time to select a new node v. Lines 13–23
check if all jobs in v have been completely serviced. If all jobs have been serviced,
the optimal schedule S is returned in line 15. Otherwise, if the total unserviced time

Algorithm 6 Cluster Schedule
Input: cluster release dates RN , cluster due dates DN , cluster processing times PN ,

thermal release dates for every cluster RM
N , thermals’ due dates for every cluster

DM
N

Output: schedule S
1: function ClsSch(RN , DN , PN , RM

N , DM
N)

2: create root node v0
3: v0.SN ← 0 . serviced times for clusters
4: v0.UN ← 0 . unserviced times for clusters (costs)
5: v0.travelTime ← 0 . travel time between thermal nodes (cost)
6: v0.t← 0 . current time in schedule
7: v0. job ← 0 . job/cluster index
8: V ← v0
9: cost.unservicedTime ←∞ . BnB costs
10: cost.travelTime ←∞
11: while within computational limit do . DFS
12: select deepest depth node v ∈ V with heuristic min(V.travelTime)
13: if ∑ v.SN +∑

v.UN = ∑PN then . if all jobs serviced
14: if ∑ v.UN = 0 then
15: return S ← v . get optimal schedule
16: else if ∑ v.UN < cost.unservicedTime then
17: S ← v . get suboptimal (potentially optimal) schedule
18: cost.unservicedTime ← ∑

v.UN . update BnB costs
19: cost.travelTime ← v.travelTime
20: end if
21: prune v and family line up to v0
22: continue
23: end if
24: parentJob ← v. job
25: for each job ∈ N not serviced do . if v.SN(job) + v.UN(job) < PN(job)

6.3 Cluster Schedule 100

26: create new node v′
27: if RN(job) ≤ v.t then . if job now released
28: v′.SN(job)← PN(job)
29: if DN(job) < v.t+ v′.SN(job) then . if job due before service
30: if DN(job) < DN(parentJob) then . if job due before parent
31: v′.SN(parentJob)← RN(job) − parent service start time
32: v.t← RN(job) . move time backwards
33: end if
34: v′.UN(job)← (v.t+ v′.SN(job))−DN(job)
35: v′.SN(job)← DN(job)− v.t . update job serviced time
36: end if
37: v′.t← v.t+ v′.SN(job)
38: v′. job ← job
39: Kjob ← RM

N (job, :) ≤ v.t+ (v′.t− v.t)/4 or DM
N (job, :) ≥ v′.t

40: . fly to thermals Kjob with time windows around time v′.t
41: for all j ∈ Kjob do . put on tree
42: create new node v′j with fields of v′
43: v′j.travelTime ← v.travelTime + travel time to thermal j
44: V ← V ∪ v′j
45: condition1 ← v′j.UN(job) > cost.unservicedTime
46: condition2 ← v′j.travelTime > cost.travelTime
47: if condition1 or condition2 then
48: close v′j and family line up to v0
49: end if
50: end for
51: else
52: v′.t← RN(job) . release job
53: V ← V ∪ v′
54: end if
55: end for
56: end while
57: end function

of v is less than the unserviced time cost bound (line 16), then S and the BnB costs
are updated.

Tree node expansion starts at lines 25–26 where a new node v′ is created for a job
that has not been completely serviced. If the job has been released at or after the
current schedule time v.t (line 27), the job is processed (line 28). However, if the job
is due before its required processing time PN(job) (line 29), then its serviced time

6.3 Cluster Schedule 101

SN(job) is updated to finish at its due date DN(job) in line 35 and the remaining
processing time is stored in UN(job) in line 34. Moreover, if the job is due before
its parent job (line 30), then the parent serviced time SN(parentJob) is updated in
line 31 and the current time v.t is moved backwards to the job release date RN(job)
in line 32 and illustrated in Figure 6.9.

At line 39, the indices of thermals that can service the job’s cluster around time v.t

(a) Current schedule before job is considered

(b) Pre-empt new job by reducing parentJob serviced time

Figure 6.9 – Example condition when parent job serviced time is reduced to service a
new job before its due date DN (job). This condition corresponds to lines 30–33 of
Algorithm 6. In 6.9(a), parentJob has been serviced its required processing time
SN (parentJob) = PN (parentJob) shown in light grey, and the current schedule
time v.t is shown as the red line. In 6.9(b), SN (parentJob) is reduced to service
the new job first SN (job) = PN (job) shown in dark grey to minimise its unserviced
time UN (job), which would exist if SN (parentJob) were not reduced. The current
schedule time v.t is moved backwards in time, and the new schedule time v′.t is
shown as the blue line.

6.4 CTS Drift 102

are found from RM
N and DM

N and stored in the list Kjob. The choice in line 39 of a
quarter range of v.t and v′.t selects thermals with time windows that have favourable
servicability. Then, new tree nodes v′j are created for each goal thermal, travel times
to each goal thermal from the current position (initial UAV position or position inside
a thermal) are computed and stored, and v′j is added to the tree V (lines 41–44). BnB
occurs in lines 45–49. If the job has yet to be released, it is released in line 52.

Example schedules are shown in Figure 6.10(a) and Figure 6.10(b). Figure 6.10(a)
shows an optimal schedule where all jobs are serviced, while Figure 6.10(b) depicts
a schedule with some unserviced jobs because their processing times exceed the time
windows; this schedule is still regarded optimal. Schedules computed using multiple
thermals are displayed in Section 6.5.1.

6.4 CTS Drift

CTS for drifting thermals, CTSDrift (Algorithm 7), follows the general idea of CTSSeq
(Algorithm 4) and CTSDP (Algorithm 5) from Section 4.5.3. However, CTSDrift can-
not trade search time among local cluster tree plans like CTSDP because drifting
thermals change position with time and so trading time would alter local plans. In-
stead, CTSDrift distributes mission time as the processing times PN using the greedy
simulation from Section 6.3.2. In general, PN are less than the proportionally dis-
tributed times for each cluster, which are used as ceiling values when any cluster time
in PN is greater. Another difference between CTSDrift and CTSDP is the tree search
method. CTSDrift employs iterative deepening depth first search (IDDFS) [107],
which performs DFS up to a limited depth, expanding all nodes in this subtree before
increasing the frontier depth to continue node expansion. IDDFS is further aug-
mented with BnB, which removes nodes if their utility rates are less than the fastest
utility rate found so far. This concept is valid for single clusters because information
gain montonically diminishes with search effort as seen in Figure 4.13. BnB was not
used in CTSDP to retain low energy ITPs for trading time among local cluster plans.

Once all searchable clusters have been serviced using known thermals, thermal explo-

6.4 CTS Drift 103

Time Windows and Schedule

Time (sec)

C
lu

st
er

 In
de

x

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

(a) Schedule given time windows

Time Windows and Schedule

Time (sec)

C
lu

st
er

 In
de

x

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

(b) Schedule with partially unserviced jobs due to increased required processing
time

Figure 6.10 – Two schedules for a scenario of five jobs (labelled Cluster Index 1 to
5) with time windows in green. In 6.10(a), all jobs’ processing times PN = 40sec.
Serviced times SN forming the schedule are shown in greyscale. The schedule is
Cluster Index = 0 and corresponding service blocks are shown under each job’s
time window. In 6.10(b), PN = 80sec causing jobs 2 and 4 to not be completely
serviced. Their unserviced times are shown in orange. Notice how serviced time of
job 3’s parent (job 4) was divided to minimise total unserviced time.

6.4 CTS Drift 104

ration loop trajectories are generated. If there are no clusters left to service, the UAV
flies home. Otherwise, a single best cluster is chosen so as to explore for thermals that
may intersect the cluster. Exploration loop trajectories are generated until either the
mission time is reached or the UAV is too far away from the search region; in either
case, the UAV flies home. However, if a new thermal is detected, replanning occurs
and incorporates the new thermal in deciding the set of serviceable clusters.

In Algorithm 7, a GMM is first used to find N information clusters in line 2. Then,
time windows for M (prior) known thermals (RM

N , DM
N) are computed in line 3 and

the cluster time windows (RN , DN) are determined in line 4 using Equations (6.29a)–
(6.29b). Cluster processing times PN are computed for clusters with non-zero time
windows, and a schedule S is formed using Algorithm 6 in line 7. For each job from
the schedule S, IDDFS tree search is used to generate local plans for each job’s cluster
(lines 9–13). Note that a cluster can be serviced multiple times if the cluster belongs

Algorithm 7 Cluster Tree Search Drift
Input: initial UAV state s0, mission time tm, finite horizon depth dfh, desired mission

utility Jm
Output: plan π
1: function CTSDrift(s0, tm, dfh, Jm)
2: create N clusters with system states {S1

0 , S
2
0 , . . . , S

N
0 }: beliefs

{b1, b2, . . . , bN} are represented as a GMM
3: 〈RM

N , DM
N 〉 ← compute time windows of M thermals for N clusters

4: 〈RN , DN〉 ← 〈minM(RM
N), maxM(RM

N)〉
5: if exist search clusters N ′ ⊆ N then
6: PN ← compute search cluster processing times, consider tm
7: S ← ClsSch(RN , DN , PN , RM

N , DM
N)

8: πsearch ← ∅
9: for j = 1 : numJob(S) do
10: i← cluster index of job j from schedule S
11: tisvc ← cluster service time of job j from schedule S
12: πsearch ← [πsearch, IDDFS(Si0, tisvc, dfh J im)]
13: end for
14: end if
15: πexplr ← ExplrThml({S0}N\N

′)
16: return π ← [πsearch, πexplr]
17: end function

6.4 CTS Drift 105

18: function IDDFS(S0, tsvc, dfh, Jm)
19: create root node v0 with state S0
20: V ← v0
21: BnB.utilRate ← 0
22: while v.t < tsvc do . select v0.t first
23: select deepest depth node v ∈ V up to dfh
24: vchildren ← expand v by generating ITPs for drifting thermals
25: V ← V ∪ vchildren
26: for all w ∈ vchildren do
27: if 0.9tsvc ≤ w.t ≤ tsvc and all w.PM < Covlimit and w.J > Jm then
28: return π ← w
29: else if w.t > tsvc then
30: mark w as leaf node
31: end if
32: if w.J

w.t
> BnB.utilRate then

33: BnB.utilRate ← w.J
w.t

34: else
35: mark w as leaf node
36: end if
37: update all thermals’ uncertainty covariance PM

38: if any w.PM ≥ Covlimit then
39: prune w
40: end if
41: end for
42: if no more nodes in subtree up to depth dfh then
43: Vfh ← leaf nodes with times ≤ tsvc
44: v∗dfh ← arg maxVdfh Vdfh .J . max utility leaf node
45: if v∗dfh .t ≥ tclsm then . cluster mission time computed from Jm
46: return π ← v∗dfh
47: end if
48: dfh ← dfh + 1
49: end if
50: end while
51: end function

to multiple jobs.

The function IDDFS (lines 12, 18) uses BnB on the utility rate of nodes (lines 21,
33). Furthermore, early termination is considered if a child node w ∈ vchildren satisfies
three conditions: 1) the plan time w.t is within 10 percent of the scheduled job service
time tsvc, 2) all known thermal covariances PM are bounded, and 3) the plan utility

6.4 CTS Drift 106

w.J is above the desired cluster utility J clsm . When nodes are marked as leaf nodes
(lines 30, 35), they are no longer expanded, but will be considered as candidates for
plan selection in lines 42–49.

The output plan of IDDFS for each job is concatenated to form the search plan πsearch
in line 12. Then, a thermal exploration plan πexplr is created by ExplrThml()
(lines 15, 52) and concatenated to πsearch in line 16. ExplrThml() takes the non-
serviceable clusters N \N ′ and selects the highest exploration utility cluster to explore
for thermals (lines 53–58). Exploration utility is computed by evaluating information
gain on the thermal exploration map described in Section 6.1 from a loop trajectory
from the current thermal; an example is illustrated in Figure 6.11. Figure 6.11(a)
depicts an explore direction selected from an elliptical spread of directions. The ellipse
accounts for thermal drift assuming the UAV tracks and soars with the thermal. The
best direction is approximated by evaluating information gain along each ray using a

52: function ExplrThml({S0}N\N
′)

53: for i = 1 : |N \N ′| do
54: find closest thermal to cluster i
55: generate linking sequence of ITPs to thermal . if required
56: generate one explore loop
57: end for
58: select cluster i with max. exploration utility
59: π ← ∅
60: if exist cluster to explore then
61: while t < tm do . plan explore loops up to tm
62: find closest thermal to cluster i
63: π ← π ∪ generate linking sequence of ITPs to thermal . if required
64: π ← π ∪ generate one explore loop
65: if UAV too far off search region then
66: break
67: end if
68: end while
69: end if
70: return π ← π ∪ path home
71: end function

6.5 Numerical Simulations 107

Gaussian disk sensor model:

p(zj = D | ξ, x) = 1
2π
√
|Σ|

exp
(
−1

2(E − x)TΣ−1(E − x)
)
. (6.31)

The determinant of the covariance |Σ| governs the sensing disk size. Each ray is
discretised into xy-points x and sensor detection likelihoods p(zj = D | ξ, x) given
a new thermal exists at ξ are combined similar to cumulative target detection using
Equations (3.24)–(3.28). Figure 6.11(a) shows the initial loop trajectory as the blue
line which follows the yellow circle waypoints. Figure 6.11(b) presents the updated
trajectory after performing gradient descent using the thermal exploration map and
Equations (4.4a)–(4.4c). Finally, cells in the thermal exploration map decay back to
their original values in time to ensure areas are revisited, since another thermal could
drift by at a later time. An exponential function models temporal decay:

e(ξ) = 1− (1− ec(ξ)) exp(−ktc), (6.32a)

where
k = − 1

tf
ln 1− e0(ξ)

1− ec(ξ)
. (6.32b)

Here, ec(ξ) ∈ [0, 1] is the current exploration probability at ξ, e(ξ) is the updated
probability after one time step, e0(ξ) is the initial probability, tc is the current time
and tf is the final or maximum delay time before e(ξ) = e0(ξ). Figure 6.12 illustrates
Equation (6.32) for tf = 300s, e0(ξ) = 0.9 and ec(ξ) = 0.1 at t0 after one sensor
observation made at t = 0s.

6.5 Numerical Simulations

The proposed algorithm CTSDrift is evaluated in simulation on the same PC machine
and with similar system state parameters as in Section 4.6. CTSDrift is evaluated
in 24 different conditions with various maps, wind directions and desired utilities.

6.5 Numerical Simulations 108

X (m)

Y
 (

m
)

A

1

2

3

-1000 -800 -600 -400 -200 0

-1000

-800

-600

-400

-200

0

200

(a) Initial explore loop selection

X (m)

Y
 (

m
)

A

1

2

3

-1000 -800 -600 -400 -200 0

-1000

-800

-600

-400

-200

0

200

(b) Refined explore loop using gradient descent

Figure 6.11 – Thermal exploration loop trajectory initial selection (6.11(a)) and gra-
dient descent-optimised (6.11(b)) for cluster-2. The initial position is indicated by
the blue square and trajectory waypoints are shown as yellow circles.

6.5 Numerical Simulations 109

Thermal Exploration Probability Decay

Time (sec)

T
he

rm
al

 E
xi

st
en

ce
 P

ro
ba

bi
lit

y
[0

,1
]

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Figure 6.12 – Thermal exploration probability decay function e(ξ) for each cell ξ ∈ E .
In this example, tf = 300s, e0(ξ) = 0.9 and ec(ξ) = 0.1 at t0 after one sensor
observation made at t = 0s.

Three maps (3, 5 and 7 clusters) are used; each map contains 10 thermals distributed
randomly and drifting at 3m/s. Two wind direction µΨ = {−170◦, 100◦} with σΨ = 5◦

and four desired utilities Jm = {0.5, 0.7, 0.8, 0.9} are evaluated. The UAV starts from
the home position (0, 0)m and thermals are labelled as known if they are less than
300m from home. The mission times are {15, 15, 25}mins for the {3, 5, 7}-cluster
maps.

CTSDrift is compared against Greedy search, which neither uses the thermal explo-
ration map nor performs cluster scheduling (Algorithm 6). Once the current cluster
is serviced, Greedy simply chooses the next closest serviceable cluster or continues
with thermal exploration. Both CTSDrift and Greedy are benchmarked against a
Full Knowledge method, which is a version of CTSDrift that has full knowledge of the
thermals’ states.

CTSDrift is shown to approach Full Knowledge when environmental conditions are
ideal, whereas Greedy performs poorly. An ideal situation occurs when new ther-
mals are detected in spatial locations that allow the UAV to hop to currently non-

6.5 Numerical Simulations 110

serviceable clusters. Empirical results are gathered from 100 Monte Carlo simulations
for each of the 24 conditions, totalling 2400 simulations. Thermals are randomly scat-
tered in the search region in 100 configurations for each map and each wind direction
(600 configurations). These simulations demonstrate that on average CTSDrift is
better than Greedy at approaching the performance of Full Knowledge, but remains
subject to environmental conditions.

6.5.1 Plan Trajectories

Plan trajectories for an example of the 3-cluster map and µΨ = −170◦ are first
illustrated for all three methods: 1) Full Knowledge, 2) Greedy and 3) CTSDrift in
Figures 6.13–6.15. In this example, environmental conditions are favourable such
that CTSDrift performs almost as well as Full Knowledge. Greedy performs worse
because it does not use the thermal exploration map but simply explores in random
directions and does not find any new thermals. The desired utility is Jm = 0.8 and
Full Knowledge, Greedy and CTSDrift achieve {0.8820, 0.5289, 0.8072} respectively.

The plan and schedule of Full Knowledge are shown in Figure 6.13. The plan is
colour-coded in time for visual clarity, starting from blue and transitioning to finish
at red. The UAV starts at home [0, 0]m indicated by the green circle. The truth
thermal trajectories are shown as green lines and thermals known by the planner have
overlaid blue trajectories. For Full Knowledge, all thermals are known. The planned
home trajectory is shown in magenta and the UAV finishes at the red diamond.
The simulation stops during the planned home path because the UAV altitude z <
zmin, but this is a minor issue. In the schedule plot Figure 6.13(b), thermal time
windows are colour-coded and all thermals that can service each cluster are grouped
in each cluster index block (on y-axis). The service times of the schedule are shown
in greyscale.

The plan of Greedy is depicted in Figure 6.14. A priori known thermals A, B and
D are indicated with overlaid blue lines on the thermals’ drift trajectories, while
unknown thermals only have green lines. Also notice the explore loop trajectories in

6.5 Numerical Simulations 111

X (m)

Y
 (

m
)

A

B

C

D

E

F

G

H

I

J

1

2

3

-1000 -500 0

-1200

-1000

-800

-600

-400

-200

0

200

400

(a) Full Knowledge plan

Time Windows and Schedule

Time (sec)

C
lu

st
er

 In
de

x

0 200 400 600 800
0

1

2

3

Thml A
Thml B
Thml C
Thml D
Thml E
Thml F
Thml G
Thml H
Thml I
Thml J

(b) Full Knowledge schedule

Figure 6.13 – Example of Full Knowledge for 3-cluster map with µΨ = −170◦. The
UAV starts at the green circle and finishes at the red diamond. The plan is colour-
coded in time, starting from blue and finishing at red. The planned home trajectory
is shown in magenta. The final utility of Full Knowledge is 0.8820.

6.5 Numerical Simulations 112

X (m)

Y
 (

m
)

A

B

C

D

E

F

G

H

I

J

1

2

3

-1000 -500 0

-1200

-1000

-800

-600

-400

-200

0

200

400

Figure 6.14 – Greedy plan for same scenario in Figure 6.13. Known thermals A, B
and D have blue lines along their drift trajectories. The final utility of Greedy is
0.5289.

random directions which do not detect any new thermals in this scenario.

The plan and schedule of CTSDrift are presented in Figure 6.15, showing the ini-
tial plan and two subsequent replans. The state after executing the initial plan in
Figure 6.15(a) illustrates how known thermals A, B and D have drifted to the left
(thermal A is off the picture) and thermal C has been detected. In the initial sched-
ule Figure 6.15(b), service times SN (greyscale bars) include travel times between
clusters, which is why some service times exceed the due dates DN . The first re-
plan Figure 6.15(c) only comprises thermal exploration because no thermals exist to
service the remaining cluster-2. Thermal H is detected and a second replan occurs,
shown in Figure 6.15(d) and Figure 6.15(e) where cluster-2 is serviced.

6.5 Numerical Simulations 113

X (m)

Y
 (

m
)

A

B

C

D

E

F

G

H

I

J

1

2

3

-1000 -500 0

-1200

-1000

-800

-600

-400

-200

0

200

400

(a) CTSDrift initial plan

Time Windows and Schedule

Time (sec)

C
lu

st
er

 In
de

x

0 200 400 600 800
0

1

2

3

Thml A

Thml B

Thml D

(b) CTSDrift initial schedule. Each service time (greyscale bar) also includes
travel time to the next cluster. Unserviced time is shown in orange.

Figure 6.15

6.5 Numerical Simulations 114

X (m)

Y
 (

m
)

A

B

C

D

E

F

G

H

I

J

1

2

3

1

2

3

-1000 -500 0

-1200

-1000

-800

-600

-400

-200

0

200

400

(c) CTSDrift first replan with thermal exploration only. The previous plan
has been coloured grey.

Figure 6.15

6.5.2 Monte Carlo Simulations

The Monte Carlo simulation data for each {3, 5, 7}-cluster map and two wind direc-
tions µΨ = {−170◦, 100◦} are laid out as boxplots in Figures 6.16–6.21. The Full
Knowledge method is abbreviated to FK, while the proposed algorithm CTSDrift is
renamed SaE for Search and Explore. For µΨ = −170◦, both utility and computa-
tional time are displayed for each of the desired utilities Jm = {0.5, 0.7, 0.8, 0.9}.
The average computational time for Greedy remains constant at approximately 40s
throughout the maps as expected, while computational time for CTSDrift increases
with number of clusters. Two reasons are 1) scheduling (Algorithm 6) and tree search
(Algorithm 7) take longer with more clusters and 2) replanning occurs. Nevertheless,
the computational times are less than the mission times (15min for 3- and 5-cluster
maps and 25min for 7-cluster map), so CTSDrift should be real-time applicable as
suggested by the experimental results in Chapter 5. Computational times are omitted

6.5 Numerical Simulations 115

X (m)

Y
 (

m
)

A

B

C

D

E

F

G

H

I

J

1

2

3

1

2

3

1

2

3

-1000 -500 0

-1200

-1000

-800

-600

-400

-200

0

200

400

(d) CTSDrift second replan with servicing of cluster-2

Time Windows and Schedule

Time (sec)

C
lu

st
er

 In
de

x

0 200 400 600 800
0

1

2

3

Thml A
Thml B
Thml D
Thml C
Thml H

(e) CTSDrift second replan schedule. The time shown is for the replan only and
does not include cumulative time from the previous replans.

Figure 6.15 – CTSDrift plan and replans for same scenario in Figure 6.13. The final
utility of CTSDrift is 0.8072.

6.5 Numerical Simulations 116

Mission Utility
P

ro
ba

bi
lit

y
of

 D
et

ec
tio

n
[0

, 1
]

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

(a) Utility

Computational Time

T
im

e
(s

ec
)

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

50

100

150

200

(b) Computational time

Figure 6.16 – Utility and computational time for 3-cluster map and wind direction
µΨ = −170◦.

for µΨ = 100◦ as they are identical to the data for µΨ = −170◦.

6.5 Numerical Simulations 117

The mission utility plot Figure 6.16(a) provides two insights. First, Full Knowledge
on average achieves and exceeds the desired utility Jm values {0.5, 0.7, 0.8} except
0.9, suggesting demanding too high a utility (0.9) causes some clusters to be too
thoroughly serviced and succeeding clusters on the schedule not well serviced because
thermals drift farther away from their centre sweet spot later in time. This trend is
present in all other utility plots except Figure 6.19; in this case, the three clusters are
spatially well-aligned with the wind direction. Second, CTSDrift performs on average
slightly better than Greedy, but neither method performs close to Full Knowledge.
The high variance, especially of CTSDrift, indicates the algorithms are highly depen-
dent on environmental conditions, performing well if thermals are detected that will
lead the UAV to unserviceable clusters.

In Figure 6.17(a) and Figure 6.18(a), mission utility drops for all three methods (Full
Knowledge, Greedy, CTSDrift) due to more clusters (5 and 7) but the same number of
thermals (10). The performance of Greedy and CTSDrift are almost identical because
it becomes more difficult to detect thermals to service each cluster. However, for the
second wind direction µΨ = 100◦ boxplots Figures 6.19–6.21, CTSDrift noticeably
performs better than Greedy, which suggests utilising scheduling (Algorithm 6) and
the thermal exploration map (from Section 6.1) is appropriate for IFS with drifting
thermals when environmental conditions are favourable. Clusters are spatially better
aligned with µΨ = 100◦ as seen in Figure 6.27 for the 7-cluster map.

Monte Carlo simulation statistics are summarised using a competition matrix (Fig-
ure 6.22) comparing performance of the methods. Figure 6.22 is computed for all 2400
simulations and summarises the percentage of scenarios the method on the row beat
the method on the column by acquiring at least 5% more utility. CTSDrift (SaE)
performed better than Greedy in one-third (32.54%) of simulations, while Greedy
was better in 11.71%. For the remaining 55.75% of simulations, the difference in
utility acquired between CTSDrift and Greedy was < 5%. The competition matrix
is decomposed in Figure 6.23 for each desired utility Jm = {0.5, 0.7, 0.8, 0.9}. From
the boxplots and decomposed matrices Figure 6.23, specifying Jm = 0.8 returned the
maximal acquired utility and performance from CTSDrift.

6.5 Numerical Simulations 118

Mission Utility
P

ro
ba

bi
lit

y
of

 D
et

ec
tio

n
[0

, 1
]

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

(a) Utility

Computational Time

T
im

e
(s

ec
)

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

100

200

300

400

500

600

(b) Computational time

Figure 6.17 – Utility and computational time for 5-cluster map and wind direction
µΨ = −170◦.

6.5 Numerical Simulations 119

Mission Utility
P

ro
ba

bi
lit

y
of

 D
et

ec
tio

n
[0

, 1
]

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

(a) Utility

Computational Time

T
im

e
(s

ec
)

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

500

1000

1500

2000

(b) Computational time

Figure 6.18 – Utility and computational time for 7-cluster map and wind direction
µΨ = −170◦.

6.5 Numerical Simulations 120

Mission Utility
P

ro
ba

bi
lit

y
of

 D
et

ec
tio

n
[0

, 1
]

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Figure 6.19 – Utility for 3-cluster map and wind direction µΨ = 100◦.

Mission Utility

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
, 1

]

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Figure 6.20 – Utility for 5-cluster map and wind direction µΨ = 100◦.

Furthermore, the average mission utility over all 2400 simulations for each method is
depicted in Figure 6.24. The averaged sum of target utilities is∑{{0.5, 0.7, 0.8, 0.9}/4 =
0.725. Full Knowledge acquires less utility than 0.725 due to poorer performance on

6.5 Numerical Simulations 121

Mission Utility
P

ro
ba

bi
lit

y
of

 D
et

ec
tio

n
[0

, 1
]

FK Greedy SaE
0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Figure 6.21 – Utility for 7-cluster map and wind direction µΨ = 100◦.

the 7-cluster map. CTSDrift is slightly better than Greedy, but neither is close to Full
Knowledge. In Figure 6.25, Greedy and CTSDrift detect almost an identical num-
ber of thermals (across 2400 simulations), corroborating the notion that the problem

0% 83.92% 78.58%

4.083% 0% 11.71%

7.333% 32.54% 0%

FK Greedy SaE

FK

Greedy

SaE

Figure 6.22 – Competition matrix for all simulation runs showing percentage of sce-
narios row method acquired 5% more utility than column method.

6.5 Numerical Simulations 122

0% 76.67% 71.17%

6.833% 0% 15.33%

10.33% 27% 0%

0.5

FK Greedy SaE

FK

Greedy

SaE

0% 86.67% 82%

3.667% 0% 10.67%

4.333% 32.83% 0%

0.7

FK Greedy SaE

FK

Greedy

SaE

0% 86.67% 80.5%

3.333% 0% 10.17%

6.667% 35% 0%

0.8

FK Greedy SaE

FK

Greedy

SaE

0% 85.67% 80.67%

2.5% 0% 10.67%

8% 35.33% 0%

0.9

FK Greedy SaE

FK

Greedy

SaE

Figure 6.23 – Decomposed competition matrices for each desired utility.

is environment dependent and demotes the value of the thermal exploration map.
However, using the thermal exploration map was shown to be beneficial for specific
scenarios (Figure 6.14 and Figure 6.15). Additionally, Figure 6.26 illustrates CTSDrift
services slightly more clusters than Greedy. Finally, an example of poor performance
is shown in Figure 6.27 for the 7-cluster map with µΨ = 100◦ and desired utility
Jm = 0.9. Full Knowledge performs poorly because the high desired utility narrows
service time to a few clusters, while Greedy and CTSDrift cannot service more clusters
due to a lack of new thermals detected.

6.5 Numerical Simulations 123

Average Utility

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

[0
, 1

]

Average sum of target utilities = 0.725

FK Greedy SaE
0

0.2

0.4

0.6

0.8

1

Figure 6.24 – Average utility for all simulation runs.

Average Number of Detected Thermls

N
um

be
r

of
 D

et
ec

te
d

T
he

rm
al

s

Greedy SaE
0

1

2

3

4

5

Figure 6.25 – Average number of detected thermals for all simulation runs. On average,
Greedy and CTSDrift detect a similar number of thermals, suggesting the problem
is highly governed by environmental conditions.

6.5 Numerical Simulations 124

Average Number of Clusters Serviced

N
um

be
r

of
 C

lu
st

er
s

Greedy SaE
0

1

2

3

(a) 3-cluster map

Figure 6.26

6.5 Numerical Simulations 125

Average Number of Clusters Serviced

N
um

be
r

of
 C

lu
st

er
s

Greedy SaE
0

1

2

3

4

5

(b) 5-cluster map

Average Number of Clusters Serviced

N
um

be
r

of
 C

lu
st

er
s

Greedy SaE
0

1

2

3

4

5

6

7

(c) 7-cluster map

Figure 6.26 – Average number of clusters serviced.

6.5
N
um

ericalSim
ulations

126

X (m)

Y
 (

m
)

A

B
C D

E

F

G

H I

J

1

2

3

4

5

6

7

-1000 -500 0

-1500

-1000

-500

0

500

(a) Full Knowledge

X (m)

Y
 (

m
)

A

B
C D

E

F

G

H I

J

1

2

3

4

5

6

7

-1000 -500 0

-1500

-1000

-500

0

500

(b) Greedy

X (m)

Y
 (

m
)

A

B
C D

E

F

G

H I

J

1

2

3

4

5

6

7

-1000 -500 0

-1500

-1000

-500

0

500

(c) CTSDrift (SaE)

Figure 6.27 – Plans of each method for an instance of the 7-cluster map with µΨ = 100◦ and Jm = 0.9. The respective acquired
utilities are J = {0.5426, 0.4443, 0.4657}. The poor performance of Full Knowledge comes from the high Jm = 0.9 causing
clusters to be too thoroughly serviced such that thermals drift away from other clusters making them no longer serviceable
in time. Greedy and CTSDrift experience this problem in addition to the inexistence of spatio-temporally favourable
thermals.

6.6 Summary 127

6.6 Summary

A UAV exploiting thermals for extended information gathering needs to consider
the realistic situation of detecting new thermals drifting with the wind in the search
region. This challenge was addressed by augmenting CTS from Chapter 4. Extensions
included: 1) designing a thermal exploration map to detect useful thermals that
would eventually intercept a cluster, 2) solving the boundary value problem for ITP
generation with moving thermals, 3) determining thermal time windows to service
clusters and forming a cluster visit schedule (Algorithm 6) and 4) using BnB tree
search for CTS which only considered high utility rate ITPs to maximise information
gain in each cluster given their finite service time windows.

Thermal position uncertainty was addressed using a Kalman filter and thermals with
covariances above a threshold were no longer recognised in tree search. Once the clus-
ters in the schedule were serviced, thermal exploration was triggered, involving flying
loop trajectories towards the closest unserviced cluster using the thermal exploration
map. A Gaussian disk sensor model updated the exploration map and cells exponen-
tially decayed back to their original probabilities of thermal non-detection over time.
These ideas collectively constituted the proposed algorithm CTSDrift (Algorithm 7).

In 2400 Monte Carlo simulations, CTSDrift was compared against a Greedy method
that was oblivious to the thermal exploration map and ignored cluster scheduling,
and a Full Knowledge method that embodied CTSDrift assuming all thermals were
known. Results suggested CTSDrift performance approached Full Knowledge un-
der favourable environmental conditions in cases where Greedy performed less im-
pressively. Favourable environmental conditions enabled timely thermal detection
to transport the UAV to unserviced clusters. However, the average performance of
CTSDrift was far from Full Knowledge, despite being better than Greedy in one-third
of trials.

This problem is difficult because good performance depends on finding thermals at
the correct time to move to unserviced clusters. There remains considerable scope
for closing the performance gap between CTSDrift and Full Knowledge.

Chapter 7

Conclusion

UAVs are typically deployed for information gathering because of their ability to cover
large areas quickly. However, long-term missions such as extended search or persistent
surveillance requires energy replenishment, which has typically involved landing for
refuelling and is time consuming. By utilising soaring flight instead, UAVs are able to
extend their flight duration, potentially indefinitely, to enhance mission effectiveness.

This thesis established and developed the informative soaring (IFS) problem. The
motivating scenario involved a gliding UAV searching for a lost ground target over
a prolonged time duration and periodically replenishing energy using thermals. The
first key observation was that any feasible long-term plan alternates between infor-
mation gathering between thermals and replenishing energy within thermals, which
established a graph search problem. Nodes are thermals in space and time and edges
are inter-thermal path segments (ITPs). This structure renders IFS an instance of
the NP-hard weight-constrained shortest path problem with replenishments.

A probabilistic search framework was adopted. Over the long-term, the probabilistic
belief map could be considered as a collection of information clusters. Tree search
was employed on each cluster to find local plans of ITPs that maximise information
gain while remaining energy feasible. A global plan was generated by linking the
best set of local plans together. This novel approach maintained high quality path
plans and reduced computational requirements to run in real time as demonstrated

7.1 Summary of Contributions 129

on hardware. Furthermore, trajectory loops for exploration of new thermals were
designed to allow the UAV to hop to unserviced clusters farther away.

Section 7.1 summarises the contributions made in this thesis and Section 7.2 provides
directions for future work.

7.1 Summary of Contributions

This thesis presents a number of novel contributions to the field of persistent infor-
mation gathering using autonomous soaring.

Formulating the Informative Soaring Framework

The first contribution is formulating a graph search framework for IFS. This frame-
work adopts the principles of probabilistic search for information gathering and ther-
mal soaring for energy replenishment. The solution approach is based on the key
observation that any feasible path must alternate between two modes: 1) visiting a
thermal to increase energy, and 2) performing information gathering in non-thermal
areas while expending energy. This approach drastic decreases the search state space
and makes long-term planning through tree search strategies feasible.

Cluster Tree Search Global Planning

The second contribution is a cluster tree search (CTS) algorithm for global planning,
developed after evaluating FHTS and MCTS on complex belief maps. CTS takes a
divide and conquer approach by considering a complex belief map as a collection of
information clusters and searching each cluster individually using near-greedy FHTS.
Results indicate near-greedy FHTS returns high quality path plans for single clusters
because all information is contained within the cluster and would be completely col-
lected in the limit. While the computational complexity of FHTS is O(nd), where d is

7.1 Summary of Contributions 130

the finite horizon depth, CTS is computationally efficient because it uses near-greedy
FHTS with a small value of d, around one to three.

The better version of CTS, called CTSDP , optimally combines local plans using DP.
A search tree is produced for each cluster, where each node on the tree represents a
sequence of ITPs with a utility and time cost. DP selects a node from each cluster tree
that together maximise utility for a given mission time budget. CTSDP is illustrated
to produced high quality nonmyopic plans similar to full MCTS over the whole belief
map, and runs five to 20 times faster. Real-time replanning is demonstrated onboard
a UAV platform.

Local Planning

The two key local planning elements that enable real-time planning are: 1) the lookup
table UAV motion model simulation, and 2) the generation of ITPs. A principled 6-
DoF dynamic model is used to accurately plan UAV trajectories. Since no closed-form
equations exist, numerical simulation is required, but is computationally expensive.
Instead, a lookup table precomputed via numerical simulation is employed to generate
ITPs.

Between thermals, there exist a range of ITPs with various utilities based on infor-
mation gain and energy expenditure. This thesis proposes selecting a discrete set of
ITPs for global path planning via tree search by starting at the minimum energy path
and using gradient descent to uniformly deform the path towards locally high utility
regions of the belief map. This technique provides control over the global planning
tree search branching factor.

Informative Soaring with Drifting Thermals

Three main contributions are provided to solve IFS with unknown drifting thermals.
The first is a thermal exploration map that directs exploration trajectories towards

7.2 Future Research 131

regions where detected thermals will eventually intercept information clusters, as-
suming thermals drift in the general wind direction. The exploration map minimises
wasted effort exploring in random directions. The second contribution is cluster
scheduling designed to optimise total utility gain by servicing each cluster a required
processing time in an optimal order. Cluster time windows are determined based on
time windows of thermals when they pass over the cluster, and processing times are
approximated with greedy search. Tree search with BnB finds the schedule. The
final contribution is identifying utility rate as a suitable BnB metric for tree search
in CTSDrift, since each cluster’s processing time is finite and the goal is to maximise
utility given a mission time. Pruning nodes based on utility rate reduces computa-
tional time; tree search on individual clusters finds nonmyopic global plans even with
short horizon FHTS (d = 1 to 3).

7.2 Future Research

As a relatively new research area, there is scope for further research in persistent in-
formation gathering with autonomous soaring. As has been outlined in Section 2.1.2,
much of the related work in this area has focused on persistent surveillance enabled
by static soaring. Complex persistent information gathering with thermal soaring is
addressed in this thesis as IFS, and there remains a number of important research
avenues to pursue.

As mentioned in Section 6.6, the first goal would be to close the performance gap
between CTSDrift and the Full Knowledge planning method for unknown drifting
thermals. The difficulty in achieving high final utility lies in finding new thermals
to hop towards unserviced clusters. Further domain knowledge of where thermals
are more likely to exist could be integrated into the thermal exploration map. It
is known that thermals form cumulus clouds on non-dry days and are more likely
to exist upwind of cumulus clouds, while hot ground features produce thermals that
should exist downwind of the hot ground features [101]. An advantage of CTSDrift is
its ability to exploit such knowledge.

7.2 Future Research 132

The simulation results from Chapter 6 suggest that more work is firstly needed to
model thermal behaviour before improving the planning method. It may be unlikely
that thermals exist randomly in space; instead, they may originate from specific
locations (hot ground features) that produce thermals periodically. Therefore, field
trial data should be collected and time series analysis applied to discover any trends.
With this knowledge, predictive modelling could be used during a mission to vary
the probability of thermal existence in time along certain spatial corridors. While
thermals detected using these cues may not intercept information clusters, they could
be used to hop towards clusters.

To improve planning performance, one technique could be to employ multiple UAVs.
Andersson et al. [9] conducted a simulation study illustrating an increased likeli-
hood of thermal detection with more UAVs. This would aid both searching clusters
more quickly and monitoring known thermals more accurately because multiple UAVs
could cover different regions and revisit thermals to keep their uncertainty bounded.
The challenges of cooperative flight would be handling the assignment of multiple
UAVs to clusters and to thermals, and deciding which UAV should explore for new
thermals. Well-known issues such as inter-vehicle collision avoidance, communication
constraints and selecting centralised or decentralised planning would also need to be
addressed. There is already a considerable body of work in the cooperative decision
making literature and ideas can be adopted for cooperative IFS.

An extension to CTSDrift could be to employ belief space planning regarding thermal
uncertainty. Belief space planning is a relatively new area of research that incorporates
predicted uncertainty of future states into the planning process [25, 102, 104]. For
IFS, instead of using a threshold on thermal state uncertainty to prune tree nodes,
thermal uncertainty could be incorporated into the value of each node as a secondary
objective to minimise. This may alleviate the time cost of thermal relocalisation while
ensuring high utility ITPs are sought.

Another extension to CTSDrift could be to include powered flight. Assuming the UAV
can recharge during thermalling using its motor as a generator, the planning problem
would also need to consider optimising recharging time and allocating powered flight

7.2 Future Research 133

periods throughout the mission to extend range for either information gathering or
thermal exploration.

Futhermore, forbidden regions (such as no-fly zones) may be considered. The pro-
posed framework is suited to address this extension whereby negative probability
density can be superimposed on the belief map over forbidden regions. Since the
belief function must be continuous and differentiable, a beta function can be used
(instead of a step change).

Regarding practical demonstration, a thermal detection and energy capture module,
and a target sensing module should be developed to realise the full UAS demonstra-
tion, as mentioned in Section 5.4. Thermal detection and energy capture by a UAV
in-situ has been demonstrated by Allen [6], Edwards and Silverberg [46] and this
would be the core method used because it requires the least amount of additional
sensors. However, additional detection devices to consider could include visual cam-
eras to detect cumulus cloud and IR cameras to detect hot ground features. Doppler
radar devices are also known to detect thermals and wind patterns [48] and would be
ideal if these resources are available. A target sensing module could comprise visual
cameras and computer vision software to identify features of the target.

List of References

[1] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero. Distributed approach for
coverage and patrolling missions with a team of heterogeneous aerial robots
under communication constraints. International Journal of Advanced Robotic
Systems, 10(28), 2013.

[2] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero. Cooperative large area
surveillance with a team of aerial mobile robots for long endurance missions.
Journal of Intelligent and Robotic Systems, 70:329–345, 2013.

[3] J. J. Acevedo, N. R. J. Lawrance, B. C. Arrue, S. Sukkarieh, and A. Ollero.
Persistent monitoring with a team of autonomous gliders using static soaring.
In Proceedings of IEEE/RSJ IROS, pages 4842–4848, 2014.

[4] H. Airy. The soaring of birds. Nature, 27(703):590–592, 19 April 1883.

[5] Z. Ákos, M. Nagy, S. Leven, and T. Vicsek. Thermal soaring flight of birds and
unmanned aerial vehicles. Bioinspiration & Biomimetics, 5(4):045003, 2010.

[6] M. J. Allen. Autonomous soaring for improved endurance of a small
uninhabited air vehicle. In Proceedings of AIAA ASM, 2005.

[7] M. J. Allen. Updraft model for development of autonomous soaring
uninhabited air vehicles. In Proceedings of AIAA ASM, 2006.

[8] M. J. Allen and V. Lin. Guidance and control of an autonomous soaring UAV.
Technical Memorandum NASA/TM-2007-214611, NASA Dryden Flight
Research Center, February 2007.

[9] K. Andersson, I. Kaminer, K. D. Jones, V. Dobrokhodov, and D. Lee.
Cooperating UAVs using thermal lift to extend endurance. In Proceedings of
AIAA Infotech Aerospace Conference, 2009.

[10] K. Andersson, K. Jones, V. Dobrokhodov, and I. Kaminer. Thermal highs and
pitfall lows-notes on the journey to the first cooperative autonomous soaring
flight. In Proceedings of IEEE CDC, pages 3392–3397, 2012.

List of References 135

[11] K. Andersson, I. Kaminer, V. Dobrokhodov, and V. Cichella. Thermal
centering control for autonomous soaring; stability analysis and flight test
results. Journal of Guidance, Control, and Dynamics, 35(3):963–975, 2012.

[12] D. L. Applegate. The Traveling Salesman Problem: A Computational Study.
Princeton University Press, 2006.

[13] R. Barate, S. Doncieux, and J. Meyer. Design of a bio-inspired controller for
dynamic soaring in a simulated unmanned aerial vehicle. Bioinspiration &
Biomimetics, 1(3):76–88, 2006.

[14] R. Bellman. Dynamic programming and Lagrange multipliers. Proceedings of
the National Academy of Sciences of the United States of America, 42(10):767,
1956.

[15] S. J. Benkoski, M. G. Monticino, and J. R. Weisinger. A survey of the search
theory literature. Naval Research Logistics, 38(4):469–494, 1991.

[16] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1.
Athena Scientific Belmont, MA, 1995.

[17] J. Binney, A. Krause, and G. S. Sukhatme. Optimizing waypoints for
monitoring spatiotemporal phenomena. The International Journal of Robotics
Research, 32(8):873–888, 2013.

[18] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2007.

[19] D. Bonnie, S. Candido, T. Bretl, and S. Hutchinson. Modelling search with a
binary sensor utilizing self-conjugacy of the exponential family. In Proceedings
of IEEE ICRA, pages 3975–3982, 2012.

[20] M. B. E. Boslough. Autonomous dynamic soaring platform for distributed
mobile sensor arrays. Technical Report SAND2002-1896, Sandia National
Laboratories, June 2002.

[21] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F.
Durrant-Whyte. Information based adaptive robotic exploration. In
Proceedings of IEEE/RSJ IROS, volume 1, pages 540–545, 2002.

[22] F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte. Coordinated
decentralized search for a lost target in a Bayesian world. In Proceedings of
IEEE/RSJ IROS, volume 1, pages 48–53, 2003.

[23] F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte. Optimal search for a
lost target in a Bayesian world. In Proceedings of FSR, pages 209–222, 2006.

List of References 136

[24] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A
survey of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[25] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. In Procedings of IEEE ICRA, pages 723–730, 2011.

[26] T. Cazenave. Multi-player go. In Proceedings of Computers and Games, pages
50–59. Springer, 2008.

[27] A. Chakrabarty and J. W. Langelaan. Energy maps for long-range path
planning for small- and micro- UAVs. In Proceedings of AIAA GNC, 2009.
Paper 2009-6113.

[28] A. Chakrabarty and J. W. Langelaan. Flight path planning for UAV
atmospheric energy harvesting using heuristic search. In Proceedings of AIAA
GNC, 2010. Paper 2010-8033.

[29] A. Chakrabarty and J. W. Langelaan. Energy-based long-range path planning
for soaring-capable unmanned aerial vehicles. Journal of Guidance, Control,
and Dynamics, 34(4):1002–1015, 2011.

[30] G. Chaslot, C. Fiter, J. Hoock, A. Rimmel, and O. Teytaud. Adding expert
knowledge and exploration in Monte-Carlo tree search. In Proceedings of
Advances in Computer Games, pages 1–13. Springer, 2010.

[31] G. M. J. B. Chaslot, S. De Jong, J. Saito, and J. W. H. M. Uiterwijk.
Monte-Carlo tree search in production management problems. In Proceedings
of BNAIC, pages 91–98. Citeseer, 2006.

[32] C. Chekuri and M. Pal. A recursive greedy algorithm for walks in directed
graphs. In Proceedings of IEEE FOCS, pages 245–253, 2005.

[33] Han-Lim Choi and Jonathan P How. Continuous trajectory planning of
mobile sensors for informative forecasting. Automatica, 46(8):1266–1275, 2010.

[34] T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in
mobile robotics. Autonomous Robots, 31(4):299–316, 2011.

[35] J. A. Cobano, D. Alejo, S. Sukkarieh, G. Heredia, and A. Ollero. Thermal
detection and generation of collision-free trajectories for cooperative soaring
UAVs. In Proceedings of IEEE/RSJ IROS, pages 2948–2954, 2013.

[36] J. A. Cobano, S. Alejo, D .and Vera, G. Heredia, and A. Ollero. Multiple
gliding UAV coordination for static soaring in real time applications. In
Proceedings of IEEE ICRA, pages 790–795, 2013.

List of References 137

[37] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree
search. In Proceedings of Computers and Games, pages 72–83. Springer, 2007.

[38] M. J. Cutler, T. M. McLain, R. W. Beard, and B. Capozzi. Energy harvesting
and mission effectiveness for small unmanned aircraft. In Proceedings of AIAA
GNC, 2010. Paper 2010-8037.

[39] N. T. Depenbusch and J. W. Langelaan. Receding horizon control for
atmospheric energy harvesting by small UAVs. In Proceedings of AIAA GNC,
2010.

[40] N. T. Depenbusch and J. W. Langelaan. Coordinated mapping and
exploration for autonomous soaring. In Proceedings of AIAA
InfotechAerospace Conference, March 2013.

[41] J. M. Dobbie. A survey of search theory. Operations Research, 16(3):525–537,
1968.

[42] I. Dumitrescu and N. Boland. Algorithms for the weight constrained shortest
path problem. International Transactions in Operational Research, 8(1):
15–29, 2001.

[43] H. F. Durrant-Whyte, M. Stevens, and E. Nettleton. Data fusion in
decentralised sensing networks. In Proceedings of ICIF, pages 302–307, 2001.

[44] J. N. Eagle and J. R. Yee. An optimal branch-and-bound procedure for the
constrained path, moving target search problem. Operations research, 38(1):
110–114, 1990.

[45] D. Edwards. Implementation details and flight test results of an autonomous
soaring controller. In Proceedings of AIAA GNC, 2008.

[46] D. Edwards and L. M. Silverberg. Autonomous soaring: The Montague
cross-country challenge. Journal of Aircraft, 47(5):1763 – 1769, 2010.

[47] E. W. Frew. Information-theoretic integration of sensing and communication
for active robot networks. Mobile Networks and Applications, 14(3):267–280,
jun 2009.

[48] E. W. Frew, J. Elston, B. Argrow, A. Houston, and E. Rasmussen. Sampling
severe local storms and related phenomena: Using unmanned aircraft systems.
Proceedings of IEEE RAM, 19(1):85–95, March 2012.

[49] S. K. Gan. Decentralized information gathering with spatial-temporal
constraints. PhD thesis, The University of Sydney, 2013.

List of References 138

[50] S. K. Gan, K. Yang, and S. Sukkarieh. 3D path planning for a rotary wing
UAV using a Gaussian process occupancy map. In Proceedings of ARAA
ACRA, 2009.

[51] S. K. Gan, R. Fitch, and S. Sukkarieh. Real-time decentralized search with
inter-agent collision avoidance. In Proceedings of IEEE ICRA, pages 504–510,
2012.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[53] S. Gelly and D. Silver. Monte-Carlo tree search and rapid action value
estimation in computer go. Artificial Intelligence, 175(11):1856–1875, 2011.

[54] C. Geyer. Active target search from UAVs in urban environments. In
Proceedings of IEEE ICRA, pages 2366–2371, 2008.

[55] G. A. Hollinger, B. Englot, F. Hover, U. Mitra, and G. S. Sukhatme.
Uncertainty-driven view planning for underwater inspection. In Proceedings of
IEEE ICRA, pages 4884–4891, 2012.

[56] P. Idrac. Experimental study of the “soaring” of albatrosses. Nature, 115
(2893):532–532, 1925.

[57] Y. Jin, A. A. Minai, and M. M. Polycarpou. Cooperative real-time search and
task allocation in UAV teams. In Proceedings of IEEE CDC, volume 1, pages
7–12, 2003.

[58] Z. Jin, T. Shima, and C. J. Schumacher. Optimal scheduling for refueling
multiple autonomous aerial vehicles. Robotics, IEEE Transactions on, 22(4):
682–693, 2006.

[59] S. Kaplan and G. Rabadi. Exact and heuristic algorithms for the aerial
refueling parallel machine scheduling problem with due date-to-deadline
window and ready times. Computers & Industrial Engineering, 62(1):276–285,
2012.

[60] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In
Proceedings of ECML, pages 282–293, 2006.

[61] L. Kocsis, C. Szepesvári, and J. Willemson. Improved Monte-Carlo search.
Univ. Tartu, Estonia, Tech. Rep, 1, 2006.

[62] B. O. Koopman. The theory of search. I. Kinematic bases. Operations
research, 4(3):324–346, 1956.

[63] B. O. Koopman. The theory of search. II. Target detection. Operations
research, 4(5):503–531, 1956.

List of References 139

[64] B. O. Koopman. The theory of search: III. The optimum distribution of
searching effort. Operations research, 5(5):613–626, 1957.

[65] F. Korner, R. Speck, A. H. Goktogan, and S. Sukkarieh. Autonomous
airborne wildlife tracking using radio signal strength. In Proceedings of
IEEE/RSJ IROS, pages 107–112, 2010.

[66] A. Krause and D. Golovin. Submodular function maximization. Tractability:
Practical Approaches to Hard Problems, 3:19, 2012.

[67] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor
placements: Maximizing information while minimizing communication cost.
In Proceedings of ACM IPSN, pages 2–10, 2006.

[68] C. M. Kreucher, A. O. Hero, K. D. Kastella, and M. R. Morelande. An
information-based approach to sensor management in large dynamic networks.
Proceedings of the IEEE, 95(5):978–999, 2007.

[69] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22, 1985.

[70] J. W. Langelaan. Gust energy extraction for mini and micro uninhabited
aerial vehicles. Journal of Guidance, Control, and Dynamics, 32(2):464–473,
2009.

[71] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[72] B. Lavis and T. Furukawa. Hype: hybrid particle-element approach for
recursive Bayesian searching-and-tracking. Proceedings of RSS, page 135, 2009.

[73] N. R. J. Lawrance. Autonomous Soaring Flight for Unmanned Aerial Vehicles.
PhD thesis, The University of Sydney, 2011.

[74] N. R. J. Lawrance and S. Sukkarieh. A guidance and control strategy for
dynamic soaring with a gliding UAV. In Proceedings of IEEE ICRA, pages
3632–3637, 2009.

[75] N. R. J. Lawrance and S. Sukkarieh. Simultaneous exploration and
exploitation of a wind field for a small gliding UAV. In Proceedings of AIAA
GNC, 2010.

[76] N. R. J. Lawrance and S. Sukkarieh. Path planning for autonomous soaring
flight in dynamic wind fields. In Proceedings of IEEE ICRA, pages 2499–2505,
2011.

[77] N. R. J. Lawrance and S. Sukkarieh. Autonomous exploration of a wind field
with a gliding aircraft. Journal of Guidance, Control, and Dynamics, 34(3):
719–733, 2011.

List of References 140

[78] N. R. J. Lawrance, J. J. Acevedo, J. J. Chung, J. L. Nguyen, D. Wilson, and
S. Sukkarieh. Long endurance autonomous flight for unmanned aerial vehicles.
Onera Aerospace Lab Journal, 2014.

[79] D. Levine, B. Luders, and J. P. How. Information-rich path planning with
general constraints using rapidly-exploring random trees. In Proceedings of
AIAA Infotech Aerospace Conference, 2010.

[80] M. Ling. Flying for free: exploiting the weather with unpowered aircraft. In
25th Chaos Communication Congress, 2008.

[81] P. Lissaman. Wind energy extraction by birds and flight vehicles. In
Proceedings of AIAA ASME, 2005.

[82] Y. Litus, P. Zebrowski, and R. T. Vaughan. A distributed heuristic for
energy-efficient multirobot multiplace rendezvous. Robotics, IEEE
Transactions on, 25(1):130–135, 2009.

[83] P. B. MacCready. Optimum airspeed selector. Soaring, 9:8, March 1954.

[84] P. B. MacCready. Optimum airspeed selector. Soaring, January-February:
10–11, 1958.

[85] A. Makarenko. A decentralized architecture for active sensor networks. PhD
thesis, The University of Sydney, 2004.

[86] N. Mathew, S. L. Smith, and S. L. Waslander. A graph-based approach to
multi-robot rendezvous for recharging in persistent tasks. In Proceedings of
IEEE ICRA, pages 3497–3502, 2013.

[87] N. Mathew, S. L. Smith, and S. L. Waslander. Multirobot rendezvous
planning for recharging in persistent tasks. Robotics, IEEE Transactions on,
31(1):128–142, 2015.

[88] Mathworks. MATLAB and simulink for technical computing (R2013b). 2013.

[89] A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein. Nonmyopic
informative path planning in spatio-temporal models. In Proceedings of AAAI,
number 4, pages 602–607, 2007.

[90] J. L. Nguyen. -34.594868, 150.055452. using Google Maps. 2015.

[91] J. L. Nguyen, N. R. J. Lawrance, R. Fitch, and S. Sukkarieh.
Energy-constrained motion planning for information gathering with
autonomous aerial soaring. In Proceedings of IEEE ICRA, pages 3825–3831,
2013.

List of References 141

[92] J. L. Nguyen, N. R. J. Lawrance, and S. Sukkarieh. Nonmyopic planning for
long-term information gathering with an aerial glider. In Proceedings of IEEE
ICRA, pages 6573–6578, 2014.

[93] J. L. Nguyen, N. R. J. Lawrance, R. Fitch, and S. Sukkarieh. Real-time path
planning for long-term information gathering with an aerial glider.
Autonomous Robots, 2015. doi:10.1007/s10514-015-9515-3.

[94] J. L. Nguyen, N. R. J. Lawrance, R. Fitch, and S. Sukkarieh. Informative
soaring with drifting thermals. In Proceedings of IEEE ICRA, pages
1522–1529, 2016.

[95] J. Nocedal and S. Wright. Numerical Optimization. Springer Science &
Business Media, 2006.

[96] A. W. Palmer, A. J. Hill, and S. J. Scheding. Stochastic collection and
replenishment (SCAR): Objective functions. In Proceedings of IEEE/RSJ
IROS, pages 3324–3331, 2013.

[97] S. E. Peal. Soaring of birds. Nature, 23(575):10–11, 4 November 1880.

[98] C. J. Pennycuick. Field observations of thermals and thermal streets, and the
theory of cross-country soaring flight. Journal of Avian Biology, 29(1):33–43,
1998.

[99] C. J. Pennycuick, T. Alerstam, and B. Larsson. Soaring migration of the
common crane Grus grus observed by radar and from an aircraft. Ornis
Scandinavica, 10(2):241–251, 1979.

[100] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis, P. I.
Cowling, and S. M. Lucas. Solving the physical traveling salesman problem:
Tree search and macro actions. Computational Intelligence and AI in Games,
IEEE Transactions on, 6(1):31–45, 2014.

[101] D. Piggott. Understanding Gliding: The Principles of Soaring Flight. Barnes
& Noble, fourth edition, 2002.

[102] Robert Platt Jr, Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-Perez.
Belief space planning assuming maximum likelihood observations. In
Procedings of RSS, 2010.

[103] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of
Dimensionality, volume 703. John Wiley & Sons, 2007.

[104] S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space
by factoring the covariance. The International Journal of Robotics Research,
28(11-12):1448–1465, 2009.

List of References 142

[105] Lord Rayleigh. The soaring of birds. Nature, 27(701):534–535, 5 April 1883.

[106] R. Rocha, J. Dias, and A. Carvalho. Cooperative multi-robot systems: A
study of vision-based 3D mapping using information theory. Robotics and
Autonomous Systems, 53(3):282–311, 2005.

[107] S. J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

[108] G. Sachs. Minimum shear wind strength required for dynamic soaring of
albatrosses. Ibis, 147(1):1–10, 2005.

[109] S. Samothrakis, D. Robles, and S. Lucas. Fast approximate max-n Monte
Carlo tree search for ms pac-man. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(2):142–154, 2011.

[110] H. Sato and J. O. Royset. Path optimization for the resource-constrained
searcher. Naval Research Logistics, 57(5):422–440, 2010.

[111] M. P. D. Schadd, M. H. M. Winands, H. J. Van Den Herik, G. M. J-B
Chaslot, and J. W. H. M. Uiterwijk. Single-player Monte-Carlo tree search. In
Proceedings of Computers and Games, pages 1–12. Springer, 2008.

[112] D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In
Proceedings of NIPS, pages 2164–2172, 2010.

[113] D. Silver, R. S. Sutton, and M. Müller. Sample-based learning and search
with permanent and transient memories. In Proceedings of ACM ICML, pages
968–975, 2008.

[114] G. D. Sirio. ChibiOS/RT. 2013.

[115] O. J. Smith, N. Boland, and H. Waterer. Solving shortest path problems with
a weight constraint and replenishment arcs. Computers & Operations
Research, 39(5):964 – 984, 2012.

[116] R. Spaar and B. Bruderer. Optimal flight behavior of soaring migrants: a case
study of migrating steppe buzzards, Buteo buteo vulpinus. Behavioral
Ecology, 8(3):288–297, 1997.

[117] L. D. Stone. Theory of Optimal Search. Academic Press New York, 1975.

[118] L. D. Stone, R. L. Streit, T. L. Corwin, and K. L. Bell. Bayesian Multiple
Target Tracking. Artech House, 2013.

[119] R. Stranders, A. Farinelli, A. Rogers, and N. Jennings. Decentralised
coordination of mobile sensors using the max-sum algorithm. In Proceedings
of IJCAI, pages 299–304, 2009.

List of References 143

[120] N. R. Sturtevant. An analysis of UCT in multi-player games. In Proceedings
of Computers and Games, pages 37–49. Springer, 2008.

[121] D. Tom and M. Müller. A study of UCT and its enhancements in an artificial
game. In Proceedings of Advances in Computer Games, pages 55–64. Springer,
2010.

[122] K. E. Trummel and J. R. Weisinger. Technical note—the complexity of the
optimal searcher path problem. Operations Research, 34(2):324–327, 1986.

[123] V. A. Tucker. Flight energetics in birds. American Zoologist, 11(1):115–124,
1971.

[124] S. L. Walkden. Experimental study of the “soaring” of albatrosses. Nature,
116(2908):132–134, 25 July 1925.

[125] A. R. Washburn. Branch and bound methods for a search problem. Naval
Research Logistics, 45, 1998.

[126] H. Weimerskirch, T. Guionnet, J. Martin, S. A. Shaffer, and D. P. Costa. Fast
and fuel efficient? Optimal use of wind by flying albatrosses. Proceedings of the
Royal Society of London - Biological Sciences, 267(1455):1869 – 1874, 2000.

[127] D. B. Wilson, A. H. Goktogan, and S. Sukkarieh. UAV rendezvous: From
concept to flight test. In Proceedings of ARAA ACRA, 2012.

[128] D. B. Wilson, A. H. Goktogan, and S. Sukkarieh. A vision based relative
navigation framework for formation flight. In Proceedings of IEEE ICRA,
pages 4988–4995, 2014.

[129] E. M. Wong, F. Bourgault, and T. Furukawa. Multi-vehicle Bayesian search
for multiple lost targets. In Proceedings of IEEE ICRA, pages 3169–3174,
2005.

[130] C. J. Wood. The flight of albatrosses (a computer simulation). Ibis, 115(2):
244–256, 1972.

[131] Y. Yang, M. M. Polycarpou, and A. A. Minai. Multi-UAV cooperative search
using an opportunistic learning method. Journal of Dynamic Systems,
Measurement, and Control, 129(5):716–728, 2007.

[132] J. Yu, M. Schwager, and D. Rus. Correlated orienteering problem and its
application to informative path planning for persistent monitoring tasks. In
Procedings of IEEE/RSJ IROS, pages 342–349, 2014.

[133] Y. J. Zhao. Optimal patterns of glider dynamic soaring. Optimal Control
Applications and Methods, 25(2):67–89, 2004.

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Approach
	1.4 Contributions
	1.5 Thesis Structure

	2 Related Work
	2.1 Soaring
	2.1.1 Autonomous Soaring
	2.1.2 Mission Planning with Autonomous Soaring
	2.1.3 Persistence Planning with Recharging

	2.2 Probabilistic Search
	2.2.1 Probabilistic Search in Robotics

	2.3 Budgeted Informative Path Planning (BIPP)
	2.4 Monte Carlo Tree Search (MCTS)

	3 Informative Soaring
	3.1 Computational Complexity
	3.2 Six Degree of Freedom Gliding
	3.2.1 Simplified Gliding Model

	3.3 Thermal Model and Energy Constraint
	3.3.1 Time Cost

	3.4 Probabilistic Search Framework
	3.4.1 Information Environment
	3.4.2 Sensor Agent
	3.4.3 Belief Representation
	3.4.4 Cost Function
	3.4.5 Decision-Making Policy
	3.4.6 Simplified Framework
	3.4.7 Finite Horizon Planning
	3.4.8 Sensor Model
	3.4.9 Utility Function Formulation

	3.5 Summary

	4 Informative Soaring Path Planning
	4.1 Tree Search Approach
	4.2 Motion Model Lookup Table
	4.3 Generation of Inter-thermal Path Segments
	4.4 Optimising Thermalling Time
	4.5 Global Path Planning
	4.5.1 Finite Horizon Tree Search (FHTS)
	4.5.2 Monte Carlo Tree Search (MCTS)
	4.5.3 Cluster Tree Search (CTS)

	4.6 Numerical Simulations
	4.6.1 Thermalling Time Optimisation Results
	4.6.2 Evaluation of FHTS
	4.6.3 Simple Scenario
	4.6.4 Complex Scenario
	4.6.5 MCTS and CTSSeq Exploration Weight Selection
	4.6.6 Comparison of Search Algorithms

	4.7 Summary

	5 Experiments
	5.1 Experimental Hardware and Software
	5.2 Experimental Setup
	5.3 Experimental Results
	5.4 Summary

	6 Informative Soaring with Drifting Thermals
	6.1 Thermal Exploration Map
	6.1.1 Probability of Covering a Location
	6.1.2 Thermal Exploration Map Generation

	6.2 ITPs for Moving Thermals
	6.2.1 Thermal Tracking
	6.2.2 Boundary Value Constraint

	6.3 Cluster Schedule
	6.3.1 Thermal Time Windows
	6.3.2 Branch and Bound for Cluster Scheduling

	6.4 CTS Drift
	6.5 Numerical Simulations
	6.5.1 Plan Trajectories
	6.5.2 Monte Carlo Simulations

	6.6 Summary

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Research

	Bibliography

