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Motion Planning For Micro Aerial Vehicles

Abstract
A Micro Aerial Vehicle (MAV) is capable of agile motion in 3D making it an ideal platform for developments
of planning and control algorithms. For fully autonomous MAV systems, it is essential to plan motions that are
both dynamically feasible and collision-free in cluttered environments. Recent work demonstrates precise
control of MAVs using time-parameterized trajectories that satisfy feasibility and safety requirements.
However, planning such trajectories is non-trivial, especially when considering constraints, such as optimality
and completeness. For navigating in unknown environments, the capability for fast re-planning is also critical.
Considering all of these requirements, motion planning for MAVs is a challenging problem. In this thesis, we
examine trajectory planning algorithms for MAVs and present methodologies that solve a wide range of
planning problems. We first introduce path planning and geometric control methods, which produce spatial
paths that are inadequate for high speed flight, but can be used to guide trajectory optimization. We then
describe optimization-based trajectory planning and demonstrate this method for solving navigation
problems in complex 3D environments. When the initial state is not fixed, an optimization-based method is
prone to generate sub-optimal trajectories. To address this challenge, we propose a search-based approach
using motion primitives to plan resolution complete and sub-optimal trajectories. This algorithm can also be
used to solve planning problems with constraints such as motion uncertainty, limited field-of-view and
moving obstacles. The proposed methods can run in real time and are applicable for real-world autonomous
navigation, even with limited on-board computational resources. This thesis includes a carefully analysis of the
strengths and weaknesses of our planning paradigm and algorithms, and demonstration of their performance
through simulation and experiments.
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ABSTRACT

MOTION PLANNING FOR MICRO AERIAL VEHICLES

Sikang Liu

Vijay Kumar

A Micro Aerial Vehicle (MAV) is capable of agile motion in 3D making it an ideal

platform for developments of planning and control algorithms. For fully autonomous MAV

systems, it is essential to plan motions that are both dynamically feasible and collision-

free in cluttered environments. Recent work demonstrates precise control of MAVs using

time-parameterized trajectories that satisfy feasibility and safety requirements. However,

planning such trajectories is non-trivial, especially when considering constraints, such as

optimality and completeness. For navigating in unknown environments, the capability for

fast re-planning is also critical. Considering all of these requirements, motion planning for

MAVs is a challenging problem. In this thesis, we examine trajectory planning algorithms

for MAVs and present methodologies that solve a wide range of planning problems. We

first introduce path planning and geometric control methods, which produce spatial paths

that are inadequate for high speed flight, but can be used to guide trajectory optimization.

We then describe optimization-based trajectory planning and demonstrate this method for

solving navigation problems in complex 3D environments. When the initial state is not fixed,

an optimization-based method is prone to generate sub-optimal trajectories. To address this

challenge, we propose a search-based approach using motion primitives to plan resolution

complete and sub-optimal trajectories. This algorithm can also be used to solve planning

problems with constraints such as motion uncertainty, limited field-of-view and moving

obstacles. The proposed methods can run in real time and are applicable for real-world

autonomous navigation, even with limited on-board computational resources. This thesis

includes a carefully analysis of the strengths and weaknesses of our planning paradigm and

algorithms, and demonstration of their performance through simulation and experiments.
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Chapter 1

Introduction

Micro Aerial Vehicles (MAVs) are small multi-rotor helicopters that are able to vertically

take-off and land (VTOL) and freely fly in complex 3D environments. Compared to fixed-

wing aircrafts and traditional helicopters, multi-rotor MAVs have higher system robustness

and are easier to control due to their simple mechanical structure. Additionally, an MAV’s

powerful rotors and relatively light body weight provide a high thrust-to-weight ratio such

that the MAV is able to achieve high acceleration and move agilely. Through recent break-

throughs in technology, computers and sensors have become smaller and lighter such that

an MAV is now able to carry sufficient computational and sensing resources to complete

complicated tasks. All of these factors make the multi-rotor MAV an ideal platform for

both research and practical applications. Existing commercial drones are well-known for

video streaming and photo shooting. However, there is more potential for drones than

just digital entertainment. For example, autonomous MAVs are extremely useful in appli-

cations such as exploration, search and rescue, target tracking, cargo delivery, and many

others [8, 10, 52, 64, 66, 92]. Thus, exploration and advances in the field of MAVs could

impact our community in many positive ways in the future.

As a fundamental component of an autonomous MAV system, motion planning has at-

tracted much more attention in the past decade. A key part of motion planning is navigating

a robot from one place to another. Considering system dynamics and collision avoidance, it
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is challenging to plan motion of an MAV. In this dissertation, we focus on this problem and

discuss the challenges and solutions for many practical planning problems.

1.1 Related Work

In general, motion planning methods can be categorized into two classes according to the

optimality of the planning results: (1) randomized approaches such as PRM [23, 38] and

RRT, [36, 41] and (2) deterministic approaches such as graph search algorithms [39, 42,

48]. Randomized approaches aim to find feasible solutions while deterministic methods

solve for optimal solutions. In many applications, including robotic manipulation and non-

holonomic systems, it is almost impossible to find the optimal result in high dimensional

spaces within a reasonable time. For those scenarios where calculating the optimal solution

is computationally intractable, the randomized approach is more popular. However, the

deterministic approach is always preferable if computation time allows, since it can grant

optimality of minimum distance, control effort, traveling time, and also prevents unexpected

motions.

The goal of motion planning is to find control sequences for the robot to follow that

are dynamically feasible and collision-free. Traditional path planning techniques are not

sufficient to satisfy the requirement of feasibility, since the path generated relies only on

spatial information, and cannot actually be performed due to the dynamics of the robot.

Consequently, an additional path following layer [31, 70, 78, 90] is needed to extract control

commands from the geometric path. There are many drawbacks of this two-step process,

including the lack of optimality and decreased safety and agility. Optimal control can in-

stead provide much better trajectories. A trajectory is a time parameterized function of

robot states that contains both spatial and temporal information. Trajectories recover the

full states of a dynamic system such that they are adequate to guarantee the system’s feasi-

bility and safety. Since the system dynamics and time-varying states are taken into account,

trajectory generation is more complicated than path planning. Traditionally, we try to solve

for trajectories with certain optimality criteria, e.g., using minimum time [7, 101] or mini-
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mum efforts [61, 68]. In these works, trajectory generation is formulated as an optimization

problem. In has been shown in [61, 68, 82], a minimum jerk/snap trajectory can be solved

for from an unconstrained quadratic optimization problem (QP). To account for dynam-

ical and collision constraints, additional inequality constraints are necessary. To plan for

collision-free trajectories, [61, 82] intermediate waypoints are used, which can not guarantee

the safety. The mixed integer programming (MIP) approach proposed in [13, 15, 62] guar-

antee trajectories’ safety, but their integer constraints are hard to create, and solving a MIP

is usually time-consuming. Other approaches try to overcome the problem of computational

time with short trajectories [56, 71, 96, 105], but these local planners are not suitable to solve

planning problems in complicated environments due to their lack of optimality and com-

pleteness. As a contrast, a search-based method solves similar optimization problems based

on motion primitives [16, 24, 47]. Due to the ’curse of dimensionality’, the search-based

method is considered to be computationally inefficient and intractable for dynamic systems

such as MAVs. As a compromise, planning with kinodynamics primitives have been used

for MAVs in [59, 75, 76]. A properly tuned primitive library and discretized state space are

critical to obtain successful plans. The search process is extremely slow when higher order

dynamics are considered, such that the existing related works are limited only to kinematic

systems. In this thesis, we will present more detailed discussions of this and other related

work in individual chapters.

Throughout this thesis, we analyze the performance of a planner with respect to theo-

retical and practical challenges by addressing the following five properties:

1. Feasibility : whether the planning results are executable or not for MAVs?

2. Safety : whether the planning results are collision-free or not?

3. Optimality : whether the planning result is optimal or sub-optimal?

4. Completeness: if there exists a solution, whether the planner is able to find it?

5. Run time: how much time it takes to find the planning result?
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For example, we use the following table to show the evaluation of the described state-of-

the-art techniques:

Method Feasibility Safety Optimality Completeness Run time
Path

Planning Not feasible Collision free
Globally
optimal

Resolution
complete Very fast

Unconstrained
QP [61, 82]

May violate
constraints

Not
guaranteed Sub-optimal Not complete Very fast

MIP [15, 62]
Dynamically

feasible Collision free Sub-optimal Complete Very slow

Short Trajec-
tories [56, 71]

Dynamically
feasible Collision free

Locally
optimal Not complete Very fast

Table 1.1: Evaluation of state-of-the-art techniques using the five properties. Red blocks indicate
the drawbacks of the corresponding algorithm.

In general cases, the planner that conditionally satisfies the proposed requirements is

acceptable for solving certain planning problems. For example, path planning quickly finds

paths that are collision-free. Even through the path is not dynamically feasible, we can still

use it to guide a mobile robot to reach goals with a certain control strategy, at relatively

low speeds. For fast and agile flight of MAVs however, dynamically feasible trajectories are

required. Therefore, the path planner is not suitable for navigating MAVs at high speed.

We are interested in designing an ultimate planner that satisfies all five requirements

and generates trajectories that are dynamically feasible, collision-free, globally optimal and

complete in real-time. In this thesis, we will show how difficult it is to propose such an

ultimate planner and propose our approaches that are near-ultimate, which are suitable to

solve real-world motion planning problems for MAVs.

1.2 Motivation and Outline

In this thesis, we mainly consider the planning problems in three scenarios: (1) a known

static map, (2) an unknown static map and (3) a dynamic map. Planning in a known static

map is the prerequisite for the other two scenarios. For planning in unknown environments,

we use the receding horizon planning framework that is similar to [54, 85, 105] to re-plan

new trajectories that avoid newly detected obstacles. In dynamic environments, we need

to consider the time as a state variable in order to predict collisions of future trajectories.
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We consider multi-robot planning as a special case of planning in dynamic environments,

in which each robot is treated as an obstacle that follows a trajectory. This work is largely

inspired by the DARPA Fast Light-weight Autonomy (FLA) project [1] in which a fully

autonomous MAV is developed to navigate in unknown obstacle-cluttered environments. [65,

67, 91] introduces more details about the FLA project. In this thesis, we are specifically

interested in designing planners for the MAV to explore unknown environments and re-plan

new trajectories.

The thesis follows the flow of development of motion planning algorithms for solving pro-

posed planning problems in three scenarios. In Chapter 2, we briefly introduce background

information about the MAV’s dynamics and control, path planning and path following al-

gorithms that are widely used to navigate mobile robots. In Chapter 3, we explain the

optimization-based trajectory generation and its applications in both 2D and 3D obstacle-

cluttered environments. In Chapter 4, we propose our search-based planner that uses motion

primitives for solving deterministic shortest trajectory problems. Chapter 5 is a complimen-

tary chapter that shows extensions of the proposed search-based planner for real world

planning problems where sensors have limited range and field-of-view (FOV), the robot has

motion uncertainty, and the attitude constraints need to be taken into account to fly through

narrow gaps. In Chapter 6, we show another novel extension of the search-based planner

for solving the planning problem in dynamically changing environments. Our planner is

able to plan collision-free trajectories for dynamically moving obstacles, such that we are

able to further apply this technique for a team of robots. We demonstrate and analyze the

performance of our planner for navigating both centralized and decentralized multi-robot

systems. Chapter 7 is a conclusion chapter and proposes future work. A list of Open-sourced

repositories and relevant publications can be found in Appendix A.
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Chapter 2

Preliminary

In this chapter, we introduce state-of-the-art techniques for geometric control and path plan-

ning. Section 2.1 introduces the motion and control model for a simple MAV. Section 2.2

describes path planning based on Dijkstra algorithm. Section 2.3 illustrates the path follow-

ing and receding horizon control framework for navigation in unknown environments.

2.1 Quadrotor Model and Geometric Control

The MAV platform, in particular, the quadrotor, is a dynamical system with six degree-of-

freedom (DOF), including both position and orientation in R3. In this thesis, we use the

notation of SE(3) to address the 3D rigid transformation, which combines both translation

in R3 and rotation in SO(3). The SO(3) and SE(3) groups and their associated Lie algebra

are commonly used in computer vision and robotics to represent spatial transformation.

2.1.1 Model

Following [61], we define the state of an MAV as the position and velocity of its center of

mass and orientation of Euler angles in the world frame:

x := [ x, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r ]T. (2.1)

The rotation matrix from the body frame to the world frame RW
B can be derived from
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roll φ, pitch θ and yaw ψ angles. The control input to the quadrotor system is denoted as

u = [ u1, u2, u3, u4 ]T which contains four components corresponding to thrust and torques

in the body frame. To be specific, given L is the arm length, the control input u for the

system in Figure 2.1 can be expressed as:

u1 = F1 + F2 + F3 + F4,

u2 = F2L− F4L,

u3 = −F1L+ F3L,

u4 = M1 −M2 +M3 −M4.

(2.2)

F3

F2

F4

F1 M3

M2

M4

M1

yB

xB

zB

yC

xC

zW = zC

yW

xW

−gzW

Figure 2.1: A simple quadrotor model.

The presented model is the simplest quadrotor model that is symmetric and rigid. In the

following sections, we assume that the general MAV platform has a similar configuration.

Please note that in Figure 2.2, the generated force from the motors is perpendicular to the

robot body’s x-y plane. Denote a as the quadrotor’s acceleration in the world frame and m

as the quadrotor’s mass. The mass-normalized equation of the dynamics is

a = −gzW +
u1

m
zB. (2.3)
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u4

u3

u2

u1

yC

xC

zW = zC

yW

xW

−gzW

Figure 2.2: Control input u = [ u1, u2, u3, u4 ]T of a simple quadrotor model.

2.1.2 Differential Flatness

It has been shown in [61] that the quadrotor dynamics are differentially flat with the fol-

lowing flat outputs:

σ = [ x, y, z, ψ ]T. (2.4)

This means that the system state x and control input u can be represented in terms of σ

and its derivatives. The translation part of the system state can be easily derived from the

first three elements of σ. To see that the rotation RW
B is a function of σ, we consider the

previous dynamics equation (2.3). The body z-axis zB is parallel to the thrust vector, or

i.e., acceleration plus gravity, such that

zB =
a + gzW

‖a + gzW‖
. (2.5)

The acceleration a is the second derivative of the first three elements in σ as a = [ ẍ, ÿ, z̈ ]T.

Thus, the body z-axis zB is a function of σ.

The body’s x-axis and y-axis can be derived using an intermediate virtual vector de-

scribed in [44, 61]. The intermediate vector is a function of the robot’s yaw ψ, the fourth

element of σ, as

xC = [ cosψ, sinψ, 0 ]T. (2.6)
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Thus, the body’s axes, xB and yB, can be determined as

xB = yB × zB, yB =
zB × xC

‖zB × xC‖
. (2.7)

Since the rotation matrix is constructed as RW
B = [ xB | yB | zB ], we conclude that

the rotation part of the system state is also a function of σ. Thus, as the position and

orientation are both functions of flat outputs σ, their derivatives are also functions of σ and

its derivatives. In fact, the system’s full state x is non-linear and is usually hard to directly

compute. This property of the differential flatness is very important in motion planning

and control as it implies that x can be represented by the flat outputs σ.

2.1.3 Geometric Control

A controller maps the robot’s current and desired states to the robot’s control input. The

robot’s current state x(t) at time t can be found using state estimation. The corresponding

desired state xd(t) can be extracted from a specified trajectory at time t [44, 60]. Here we

denote xd as the flat outputs [ xd, yd, zd, ψd ]T. According to Section 2.1.2, the true system

state in form of (2.1) can be expressed by the flat outputs. Denote the translation part of

the robot’s state as r = [ x, y, z ]T, then the desired force fd can be computed as

fd = kp(rd − r) + kd(ṙd − ṙ) +mr̈d +mgzW, (2.8)

where kp, kd are constant control gains.

According to (2.3) and (2.5), the desired thrust u1 and desired body z-axis zB,d can be

expressed as

u1 = fd · zB, zB,d =
fd
‖fd‖

. (2.9)

Therefore, the rest of the desired rotation RW
B,d can be derived from (2.7) with xC,d =

[ cosψd, sinψd, 0 ]T:

xB,d = yB,d × zB,d, yB,d =
zB,d × xC,d

‖zB,d × xC,d‖
. (2.10)
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The desired torques can be calculated using the tracking error for orientation and angular

velocity [44]. Since it is a solved problem and not the research focus of our work, we omit

the derivation of the low level attitude controller. The important insight from the controller

design is that using the flat outputs, we are able to control the whole quadrotor system

using geometric control with asymptotic stability.

2.2 Path Planning

In the well-established problem of path planning, the goal is to find a sequence of collision-

free waypoints connecting start and goal in a given configuration space. In this section, we

review the basic search-based algorithms for path planning using Dijkstra and A* search

algorithm. In addition, we introduce the Jump Point Search [27] and propose its 3D variation

in Section 2.2.3, which is an efficient path planner that we used in many of our projects. The

paths from these planners are normally close to obstacles, which are potentially dangerous

for the robot to track due to uncertainty in its motion. To address this problem, we propose

a simple but effective technique based on artificial potential fields (APFs) to find a safer

path given a nominal shortest path in Section 2.2.4. The raw path from the planner must

then be smoothed into piece-wise linear segments. This simplification is explained in the

last section of this chapter.

2.2.1 Problem Formulation

A path in Rm is defined as a sequence of waypoints P := 〈 p0 → p1 → . . .→ pN 〉 with the

waypoint pi ∈ Rn. In fact, path planning is an optimization problem with a cost function

J(·) and constraints F (·), which can be formulated as:

arg min
P

J(P )

s.t F (P ).
(2.11)

The objective of a typical path planning problem is to find the shortest path, whose

cost is equal to the total distance. In addition, such problems have collision constraints on

the start and goal states. Hence, given a configuration space X ∈ Rm which contains the
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collision-free subspace X free, the constraints F (P ) for finding a path from the start ps to

goal pg can be written as

ps, pg ∈ P, P ∈ X free. (2.12)

There are many graph search algorithms that solve a deterministic shortest path problem

from one vertex to another. In robotic navigation, the planning problem can be converted

into a graph search problem, in which the objective is to find a path connecting the start

and goal in the configuration space. If the configuration space is represented as a graph

G(V, E), where V is the set of vertices and E is the set of edges connecting vertices in V, the

deterministic shortest path problem can be expressed as

arg min
P

N−1∑
i=0
‖pi+1 − pi‖p

s.t p0 = ps, pN = pg,

pi ∈ V, i = 0, . . . N,

e(pi,pi+1) ∈ E , i = 0 . . . N − 1.

(2.13)

where ‖ · ‖p indicates the p-norm. When planning in the Euclidean space, L-2 norm is

often used to determine the Euclidean distance. The function e(·, ·) indicates the directional

edge from one state to the other, the last constraint in (2.13) ensures that any waypoint in

P connects to its neighbors. To find a collision-free path, we only consider the graph in the

collision-free space such that G(V, E) ∈ X free (Figure 2.3).

2.2.2 Graph Search Algorithms

We use graph search algorithms based on Dijkstra algorithm to solve the problem in (2.13).

Dijkstra algorithm is a dynamic programming (DP) approach that deterministically finds

the optimal solution. A* is the informed Dijkstra, which biases the search using a heuristic

function. The heuristic function is a preliminary estimation of the cost-to-goal value. The use

of the heuristic can potentially reduce the number of vertices to be expanded during the A*

search as compared to the uninformed Dijkstra algorithm search. It is a critical evaluation

of the output’s optimality and computational efficiency. To enable these improvements, the
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(a) Configuration space.

  

(b) Graph in free space.

  

(c) Path from start to goal.

Figure 2.3: An example of the configuration space and the corresponding graph. The graph consists
of vertices and edges in free space. The path connects the start ps and the goal pg.

heuristic must have the following two properties:

Admissible The heuristic function never overestimates the minimal cost-to-goal.

Consistent(monotonic) Let c(·, ·) be the edge cost between two vertices, h(·) denotes

the heuristic value, h satisfies

h(ui) ≤ c(ui, uj) + h(uj), and h(ug) = 0, (2.14)

where ug is the goal.

The admissible heuristic guarantees the optimality of the search result. A consistent

heuristic is also admissible. In general, the closer a heuristic is towards the true cost-to-

goal value, the faster the algorithm finds the optimal result since it tends to expand fewer

vertices.

Notation

We use following notations in the pseudo-code. For each vertex in the graph, namely u ∈ V,

we define following attributes:
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g(u) total cost to reach u from the start state

h(u) heuristic value of u

Succ(u) one-step successors

Pred(u) one-step predecessors

A priority queue Q is used to store the open set of V. The following functions are used

to manage Q:

Top() return the state with the smallest priority

Pop() delete the state with the smallest priority

Remove(u) remove the state u from Q

Insert(u, f) insert the state u with priority f

Pseudo-code

The pseudo-code for Dijkstra and A* algorithms is illustrated in Algorithm 1. In the plan

procedure, we first initialize the state space V by setting the start-to-state value for all the

vertices to infinity. The start state us is assigned with an initial g-value (we select 0, but it

takes arbitrary finite value) and is pushed onto the priority queue, which is initially empty.

The loop in lines 16 to 32 shows the key steps of the algorithm. The list of predecessors for

every vertex that has been expanded is maintained, so that the optimal path can be recovered

from the final state by recursively selecting the best predecessors. To avoid internal loops,

the edge cost c(u, s) must be positive.

ε is the weight of heuristic and can be adjusted for different purposes. For example,

Dijkstra algorithm is a special case of A* with ε = 0. In some cases, set ε > 1 is able to

achieve fast computation, even though the heuristic value becomes inadmissible [48, 108].

Graph Representation

As shown in Figure 2.3, the graph is a representation of the configuration space. A con-

figuration space, or C-space, is the space of all configurations of the robot. For a robot

with certain geometry in Rm, it is represented as a single dot in the corresponding C-space.

The actual world where the robot is moving is called the workspace, in which the collision
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Algorithm 1 Dijkstra’s and A* algorithms. Given the start and goal vertices us, ug, the
algorithm finds the optimal path for problem (2.13). The heuristic weight ε is equal to 0 for
Dijkstra and 1 for A*.
1: function RecoverPath(u)
2: P ← ∅;
3: while Pred(u) 6= ∅ do
4: p← argminp′∈Pred(u)(g(p′) + c(p′, u));
5: P ← 〈p, P 〉;
6: u← p;
7: end while
8: return P ;
9: end function

10: procedure Plan(us, ug, ε)
11: for all u ∈ V do
12: g(u)←∞;
13: end for
14: g(us)← 0, Q.Insert(us, 0);
15:
16: while Q 6= ∅ do
17: u← Q.Top();
18: Q.Pop();
19: for all s ∈ Succ(u) do
20: if u 6∈ Pred(s) then
21: Pred(s)← {u} ∪ Pred(s);
22: end if
23: gtmp ← g(u) + c(u, s);
24: if gtmp < g(s) then
25: g(s)← gtmp;
26: Q.Insert(s, g(s) + ε · h(s));
27: end if
28: end for
29: if u = ug then
30: return RecoverPath(u);
31: end if
32: end while
33: return Failure;
34: end procedure
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checking between robot’s geometry and obstacles can be non-intuitive. Therefore, we plan

in C-space to acquire the optimal and safe path in the workspace. It is straightforward

to convert a workspace in Rm into the corresponding C-space in Rm through Minkowski

dilation which is the sum of two sets of position vectors:

A⊕B = {a+ b | a ∈ A, b ∈ B}, A,B ⊂ Rm. (2.15)

An example in R2 is shown in Figure 2.4, in which the robot and obstacles are represented as

polygons. In Figure 2.4b, the robot is collision-free anywhere in the white space within the

bounding box. The visibility graph [57] is one technique where a graph connects start and

goal is constructed in a polygonal map and a shortest path can be found using Algorithm 1.

(a) Workspace. (b) Configuration space. (c) Visibility graph.

Figure 2.4: An example of the workspace and the configuration space. As shown in (a), the geometry
of the robot is a triangle in 2D. In (b), we dilate the obstacle using Minkowski addition to get the
corresponding configurationn space. The visibility graph in (c) can be easily computed based on
polygonal map in (b).

Another example is shown in Figure 2.5, in which the robot is treated as a disk and

the map is represented as an occupancy grid. An occupancy grid can be constructed from

real sensor data, such as scans from laser range finder or depth point clouds from stereo or

RGB-D cameras. Compared to the polygonal map in Figure 2.4a, the map in Figure 2.5a

is easier to acquire for the real robot. In addition, the grid implicitly indicates a graph

in which each cell is connected to its neighboring cells such that we do not need another

mechanism like visibility graph. Also, it is straightforward to convert the occupancy grid
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into a voxel grid in R3. Thus, the occupancy grid map is often used in robotics for path

planning in both 2D and 3D environments.

(a) Workspace. (b) Configuration space. (c) Free cells.

Figure 2.5: An example of the workspace and the configuration space. As shown in (a), the geometry
of the robot is a disk. In (b), we dilate the obstacle using Minkowski addition to get the corresponding
configurationn space. The free space is consist of cells colored in green in (c).

The map and the graph are two independent representations of the configuration space.

Thus, in order to to apply Algorithm 1, a graph in Figure 2.4c or 2.5c is the prerequisite.

Deterministic Shortest Path

Once the graph G(V, E) is given, we are able to apply Algorithm 1 to find the shortest path.

To plan using the visibility graph in Figure 2.4c, we first connect the start and goal to the

graph. The planned path in the C-space is also safe in the original workspace in Figure 2.6

In the occupancy grid map, we can find the corresponding cells for start and goal coor-

dinates and further search the shortest path between those two cells using Algorithm 1. Fig-

ure 2.7b indicates that the output path guarantees the safety in work space, thus planning

in the C-space is equivalent to planning in the original work space.

So far, we have introduced the A* graph search algorithm and described its applica-

tion to find the shortest path in a graph. In the following paragraphs, we discuss several

performance-enhancing variations.

2.2.3 Jump Point Search

If the graph consists of a uniform-cost grid (e.g., occupancy grid), Dijkstra and A* search can

be optimized through a technique called Jump Point Search (JPS) [27]. Using JPS results
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(a) Shortest path. (b) Robot follows path.

Figure 2.6: By connecting start and goal states in the graph, we find the shortest path (highlighted
in magenta) through Algorithm 1 for a triangle-shaped robot. (b) shows that the robot’s planned
path is collision-free in the original workspace.

in a large reduction in computational time for the problem of finding the shortest path.

This is achieved through pruning the neighbors of the vertex being searched. Therefore, the

total number of expanded vertices during JPS is much smaller than during the standard

A* search. In Figure 2.8, the number of expanded cells is 244 for JPS and 6658 for A*

while the computational time is 7 ms for JPS and 98 ms for A*. The pruning process in JPS

significantly reduces the number of cells that must be expanded, but it can be extremely

complicated to check in Rm where m > 2. Thus, JPS has only been used widely in R2 and

it is hard to adapt for graphs in higher dimensional spaces.

In order to use JPS with 3D voxel maps, we extend the 2D algorithm with different

pruning rules for 3D voxel grids as presented in Figure 2.9 and 2.10. As defined in [27], the

natural neighbors refer to the set of vertices that remain after pruning. For those neighbors

which cannot be pruned due to obstacles, we call them forced neighbors.

The details of the recursive pruning and jump processes can be found in [27]. The

proposed pruning in Figure 2.10 is a compromise between checking all the situations and

maintaining the simplicity of the algorithm: we add more neighbors than required (three

forced neighbors case) but it is easier to check (i.e., more efficient). JPS provides the

17



(a) Shortest path. (b) Robot follows path.

Figure 2.7: By connecting start and goal states in the graph, we find the shortest path (highlighted
in magenta) through Algorithm 1 for a disk-shaped robot. (b) shows that the robot’s planned path
is collision-free in the original workspace.

same completeness and optimality guarantees as A* [27], with the only limitation being

the assumption of uniform-cost grid, which holds for our case. Our 3D JPS significantly

speeds up the run time of planning (100 times or more in obstacle-sparse maps).

2.2.4 Path Perturbation

The path resulting from A* or JPS is normally close to obstacles in order to be “shortest”

(e.g., Figure 2.8). In the real world, when the robot gets close to obstacles, the control error

due to disturbances and state estimation drifts could easily result in a crash into nearby

obstacles. Hence, the resulting shortest paths are hard to follow due to their proximity

to obstacles. A common solution for real world navigation is to plan in the C-space with

over-inflated obstacles. Over-inflating can easily block small gaps such as doors, windows

and narrow corridors. Thus, this solution is not complete, especially in an obstacle-cluttered

indoor environment.

We propose a path perturbation technique to sacrifice path length for safety, resulting

in increased clearance of obstacles, while avoiding unnecessary detours [106]. We model

the collision cost using an artificial potential field (APF). The traditional APF method
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(a) A*. (b) JPS.

Figure 2.8: The search for the shortest path using A* (left) and JPS (right). The output paths have
the same lengths. Cells in red show the expanded vertices in the close-set.

in [2, 19, 25, 46, 104] only works for simple convex obstacles and is prone to get stuck in

local minima, which makes it hard to use in complex environments. In our proposed method,

we perturb a nominal shortest path into an optimal path using a graph search algorithm

that considers collision costs and regional constraints. A similar approach demonstrated

in [80] uses an iterative method to optimize the optimal safe path. In contrast, our method

is more efficient due to its formulation. Our pipeline consists of three steps: first, find the

shortest path from the start to the goal using the A* algorithm; second, inflate the path

to get a tunnel for perturbation; third, generate the APF and search for the optimal path

inside the tunnel.

Figure 2.11 illustrates the effect and importance of this perturbation process in naviga-

tion, in which the map is partially unknown. To penalize the path approaching obstacles too

closely, we generate a local APF around nearby obstacles (indicated by the colored dots).

There are three different paths from the robot’s current position to the goal inside the room:

the blue path is the shortest path derived from A*; the green path is the path that avoids

both the potential field and obstacles; the magenta path is the optimal path planned using

the proposed method. The magenta path goes through the middle of the door without any
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-1 0 +1 

Case	1: 

Case	2: 

Case	3: 

Figure 2.9: Neighbor Pruning. We draw a 3 × 3 × 3 voxel grid as three 3 × 3 2D layers – bottom
(-1), middle (0), top (+1). The center node indicated by the blue arrow is currently being expanded.
The natural neighbors of the current node are marked in white. The pruned neighbors are marked
in grey. The blue arrow also shows the direction of travel from its parent which includes three cases:
(1) straight, (2) 2D diagonal, and (3) 3D diagonal.

detours and is better than other two paths considering both travel distance and collision

cost.

The first step in the proposed pipeline is to find the shortest path, which has already

been described in previous sections. In the following paragraphs, we introduce the last two

steps.

Tunnel Around Path

A tunnel in configuration space around the given path bounds the perturbation. Let D(r)

be the disk with radius r, P be the given path, the tunnel T (D,P ) is the Minkowski sum
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Case	1: 

Case	2: 

Case	3: 

-1 0 +1 

Figure 2.10: Forced Neighbors. When the current node is adjacent to an obstacle (black), the
highlighted forced neighbors (light red) cannot be pruned. The red arrow indicates the pair of an
obstacle and its corresponding forced neighbor : if the tail voxel is occupied, its head voxel is a forced
neighbor. For example, in Case 1, if the voxel (0, 1, 0) is occupied, (1, 1, 0) is a forced neighbor. In
Case 2, the occupied voxel (0, 0, 1) results in three forced neighbors and similarly in Case 3. We omit
drawing the symmetric situations with respect to the blue arrow.

of P and D:

T (D,P ) = P ⊕D. (2.16)

Figure 2.12 shows three examples of tunnels generated using different D(r) from the

same path. In general, the tunnel is non-convex. To implement the tunnel constraint in the

pseudo-code, we simply augment each cell state with a flag to indicate whether it is inside

the tunnel or not.
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start

goal

Figure 2.11: When planning a path from the robot’s current position to a goal inside the room, we
examine three possible paths: the blue one is the shortest path derived from A*; the green one is
the safest path that does not intersect with potential field (colored dots) or obstacles; the magenta
one is the optimal path planned using our method.

Artificial Potential Fields

In our implementation on a grid map, the APF is discretized and truncated. Denote the

truncated potential value of cell u as U(u), it is defined as:

U(u) =

 0, d(u) ≥ dthr

F (d(u)), dthr > d(u) ≥ 0
(2.17)

where d(u) is the distance of cell u to the closest obstacle. The potential function F (d)

should be a scalar, positive, and monotonically decreasing function of distance d with domain

[0, dthr). One choice that we use in Figure 2.11 is an exponential function of order k:

F (d) = Fmax(1− d/dthr)
k (2.18)
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(a) r = 0.5m. (b) r = 1.0m. (c) r = 1.5m.

Figure 2.12: Our proposed method with different size tunnels, indicated in yellow. Left to right, the
tunnel is created using the nominal shortest path (blue) with an increasing radius r. The perturbed
path (magenta) is away from obstacles and is much safer to follow than the nominal path.

with Fmax, k > 0. The parameter dthr determines the maximum distance that is affected

by the APF. To improve algorithm efficiency, we only generate the APF for the local map

around the robot’s current location in Figure 2.11.

Perturbation

To perturb the path, we need to change the optimization problem in (2.11) to account for

a different cost function and a new set of constraints as compared to (2.13). Denote the

us, ug as start and goal vertices, wU as the weight of potential value, T (D,Pprior) as the

tunnel around the given path Pprior, the path perturbation is to solve the optimal P ∗ for

the following problem:

arg min
P

∮
P

1 + wU · U(s) ds

s.t us, ug ∈ P,

P ⊂ T (D,Pprior) ∩ X free.

(2.19)

The line integration in (2.19) is equivalent to the sum of the path length and the weighted

value of the potential along the path. Therefore, the modified edge cost is simply the sum

of edge length and weighted values of the potentials at the two vertices:

c(u, s) = d(u, s) +
1

2
wU (U(u) + U(s)). (2.20)

The tunnel constraint requires that the path should be located inside the tunnel and is
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collision-free. In the corresponding pseudo-code of Algorithm 1, we only need to modify the

edge cost c(u, s) in line 23 and forbid the successors of the vertex u from going outside of

the tunnel. The heuristic function of Euclidean distance is still admissible for wU ·U(u) ≥ 0,

such that we are able to guarantee the optimality of the planned path. Given the tunnel

and APF, we can search for the optimal path using the modified Algorithm 1 to observe the

results shown in Figure 2.12.

Please note the following two propositions:

1. The perturbed path converges to the local minimum within the tunnel.

2. The computational time increases as tunnel size increases.

We briefly describe these two propositions below. By setting the size of tunnel to infinity,

we can get the globally optimal path, but there is a trade-off between the path’s sub-

optimality and the algorithm’s run time. In addition, as illustrated in Figure 2.11, it is

not desirable to use the globally optimal path to navigate the robot in partially unknown

environments.

For our application, we naively choose the tunnel radius r to be an arbitrary constant.

An outer loop for iterative path optimization (2.19) can be used to ensure that the result

converges to a locally optimal path. As shown in Figure 2.13, after 3 iterations, the optimal

path converges to Figure 2.13c. We also extend this approach for anytime re-planning [48],

which requires extremely fast computation.

2.2.5 Path Simplification

The raw path that comes from grid search consists of many consecutive cells. Path simplifi-

cation removes redundant cells along the raw path and shortens the total path distance as

much as possible. The simplified path contains long linear segments, which are easy to use

for further control or trajectory generation.

The pseudo-code is illustrated in Algorithm 2. The shortening process skips the inter-

mediate cells along the path such that the output path has as few cells as possible. The

condition in line 7 guarantees the new path P ′ has a lower cost as compared to the cost of
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(a) Iteration 1. (b) Iteration 2. (c) Iteration 3.

Figure 2.13: Iterative perturbation of the robot’s path. The blue path is the output from previous
iteration. The magenta path is the optimized path from the current iteration. The path cost
converges in (c) after 3 iterations.

the unsimplified path. The edge cost c(u, v) is infinity if the line segment u→ v is blocked

by obstacles, and otherwise, it will stay the same as its cost during the graph search pro-

cess. Thus, the new path P ′ will also be collision-free. Figure 2.14 compares the raw and

shortened paths. Clearly, the simplified path is smoother than the raw path. For simplicity,

the path refers to the simplified path in this thesis.

Algorithm 2 Path shortening. Given an initial path P , the function returns a shortened
path P ′ by skipping intermediate waypoints on P . P [i] refers to the i-th waypoint of P . |P |
means the number of P ’s waypoints. c(·, ·) is the edge cost.

1: function Shortening(P )
2: pref ← P [1];
3: P ′ ← 〈pref〉;
4: i← 2;
5: for i < |P | do
6: p1 ← P [i], p2 ← P [i+ 1];
7: if c(pref, p2) ≥ c(pref, p1) + c(p1, p2) then
8: pref ← p1;
9: P ′ ← 〈P ′, pref〉;

10: end if
11: i← i+ 1;
12: end for
13: P ′ ← 〈P ′, P [|P |]〉;
14: return P ′;
15: end function
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(a) Raw path. (b) Shortened path.

Figure 2.14: Path simplification. The raw path contains many consecutive cells (green dots), many
of which can be removed without affecting the path’s safety.

2.3 Navigating MAVs in Unknown Environments

In this section, we describe a simple but effective navigation pipeline combining the proposed

planner and controller. A typical framework is plotted in Figure 2.15: the ‘System’ block

stands for the robot, equipped with sensors that stream measurements m for mapping and

ym for localization; the ‘State Estimation’ estimates the robot’s current state x at certain

frequency using the sensor measurements ym; the ‘Mapper’ fuses the robot’s state and sensor

measurements to generate the map M for planning; the ‘Planner’ finds a path using the up-

to-date map M for a given start state us and a goal state ug; the ‘Controller’ uses the

robot’s current state x and desired path P to generate a control command u. Thus, we have

a closed-loop control paradigm for safely navigating a robot to a given destination.

We assume that the state estimation problem is solved using a vision-based approach [91]

or laser-based scan matching [86], and a high-level state machine determines the goal co-

ordinate. We mainly focus on the blocks inside the bounding box in Figure 2.15. In a

non-trivial planning task, the environment is usually unknown and the path needs to be

updated frequently when new map information is available.
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State Estimation Planner
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Figure 2.15: Navigation system diagram. In this section, we only consider the blocks inside the
bounding box.

2.3.1 Mapper

There are many map representations commonly used in robotics, such as polygonal map,

point cloud, occupancy grid map and octomap [33]. We choose to use the occupancy grid

map because it can be updated efficiently. Each cell in the occupancy grid map has a state

indicated by one of three possible values: {free, occupied, unknown}. Denote M as the

occupancy grid map, M has three parts asMfree,Moccupied,Munknown corresponding to the

sets of cells which are currently free, occupied and unknown.

In our application, we start with a map that is partially unknown. In order to find a

feasible path from start to goal, we treat unknown cells as free. This is a greedy assumption,

since the unknown space can contain obstacles. Thus, in order to ensure safety, we need to

keep updating the map and the desired path as new information becomes available. The

frequency of map updates is determined by the sensor frequency, which is normally between

5 and 20 Hz

2.3.2 Planner

To begin with, we first review the concept of Receding Horizon Control (RHP) [85], which is

a re-planning framework that we use to handle the navigation task in unknown environments

(Figure 2.16). For path planning, we define the planning horizon in travel distance instead of
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(a) Planning epoch 0. (b) Planning epoch 1.

Figure 2.16: Re-planning using receding horizon control. The yellow disk indicates the robot’s
sensing rangeRs and the execution horizon Re (red dashed circle) must be smaller than this sensing
range. The red line indicates the portion of the planned path (magenta) that will be executed. The
robot detects the bottom right obstacle during the latter planning epoch, and the new path P avoids
the potential collision.

time, as is typically done in Model Predictive Control (MPC). Since we are able to efficiently

compute the path from start to goal, we assume a planning horizon Rh to be unlimited as

Rh →∞. The execution horizon Re depends on the computational time t and sensing range

Rs. To guarantee the safety, we must make sure that Re is smaller than the sensing range

Rs. Denote tmax as the maximum time for the execution of path planning, vmax as the

nominal maximum velocity. Re should satisfy following inequality constraint:

vmax · tmax < Re < Rs. (2.21)

Since our path planning algorithm is fast and complete, we do not need a long range

planner and short range planner as described in [105]. Following the paradigm as illustrated

in Figure 2.16, we are able to incrementally move the robot towards the goal.

Deterministic vs Randomized Path Planning

The comparison between search-based and sampling-based methods has a long history.

Sampling-based approaches like the rapidly-exploring random tree approach (RRT) and its

variations [37, 41, 43] find paths in a confined environment within a short computation du-

ration. Sampling-based methods can solve certain problems that are hard or impossible to
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solve using graph search. For example, for robot manipulation and locomotion, the state

space is extremely large thus it is unrealistic to solve the planning problem in a determin-

istic way. However, planning in the configuration space R2 or R3 is tractable as shown

in Section 2.2.

On the other hand, randomized approaches are not suitable for re-planning due to their

unpredictable behaviors: paths from two consecutive re-planning epochs using a sample-

based method can be drastically different. For example, two robots are moving from the

same starting location to the same destination in Figure 2.17 using A* and RRT*, assuming

the map is static and known to simplify the problem. The robot using A* deterministically

follows the optimal path after every re-planning epoch. The other robot using RRT* (here

we use OMPL’s implementation [89]) frequently changes its heading and follows detours.

As a result, the robot using RRT* reaches the goal much more slowly than the robot using

A* search. We draw the conclusion that deterministic planning approaches provide higher

quality paths than randomized approaches do. Thus, if computation time allows, we always

prefer to use the deterministic approach for planning rather than the randomized approach.

2.3.3 Controller

The basic control paradigm is introduced in Section 2.1 for MAVs. However, the geometric

controller takes input as the desired flat output xd, not the path P . Thus, we need to extract

the desired controller input from the planned path to fill this gap. There are many methods

for path following [4, 11, 31, 70, 78, 90]. However, these methods can hardly guarantee

dynamically feasibility and safety. For navigation at low speed (1 < m/s), path following is

an acceptable strategy since actuators are not prone to be saturated. But when it comes to

flight at high speeds and agile maneuvers, path following is not adequate for precise control.

Thus, the control paradigm in Figure 2.15 based on path following works for low speed

navigation.

In this section, we describe a simple reference governor method in which we use the 1st

order governor system to guide the MAV system. The state of governor robot is defined in

form of the desired flat outputs as xd(t) = [pTd (t), ψd(t)]
T, where pd is the desired position
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(a) Planning epoch 0. (b) Planning epoch 1. (c) Planning epoch 2.

(d) Planning epoch 3. (e) Planning epoch 4. (f) Planning epoch 5.

Figure 2.17: A comparison of re-planning using search-based and sample-based methods. The blue
path is planned by A* while the red path is planned by RRT*. Each robot’s motion is plotted with
red circles (A*) and blue circles (RRT*). Both robot re-plans after traveling 1 m along its previously
planned path.

in Rm and ψd is the desired yaw. We update its state as

pd(t+ dt) = pd(t) + vd(t)dt,

ψd(t+ dt) = ψd(t) + wd(t)dt.

(2.22)

vd(t), wd(t) are the linear and angular governor velocities which are determined by the

current governor state.

Determine vd

The linear governor velocity vd is determined through a collision-free sphere B. Denote the

current robot position as pc, the collision-free sphere is defined as

B(pc, r) = { p | ‖p− pc‖ < r, p ∈Mfree } (2.23)
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(a) Control epoch 0. (b) Control epoch 100.

(c) Control epoch 200. (d) Control epoch 300.

Figure 2.18: Path following with the reference gorvernor method. The magenta sphere indicates the
Bmax at each control planning epoch. The red dot on Bmax indicates the corresponding pb.

The maximum collision-free sphere Bmax is the largest collision-free sphere that satisfies

that constraint r < r̄max where r̄max is an user-defined parameter. Denote pb(t) as the

intersection point of Bmax with the desired path P at current time stamp, the governor

velocity vd(t) is defined as

vd(t) =
pb(t)− pc(t)

r̄max
vmax, pb(t) = Bmax ∩ P. (2.24)

Where vmax is the maximum speed.

The definition of the intersection point pb in (2.24) is not comprehensive. In particular,

Bmax can potentially intersect with P at multiple places. In order to prevent the robot

going backward, we always choose pb to be the point that is on the line segment of P that

has the largest index.

Determine wd

In the general case, the sensor for mapping has limited field-of-view (FOV). For example, the

RGB-D sensor used in Figure 2.18 has 90◦ horizontal FOV (indicated by the red triangle).
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Thus, when the robot follows the path, we align its yaw with respect to the direction of its

desired linear velocity vd which is defined in (2.24). We adopt the bang-bang control with a

small dead-zone [−ψthr, ψthr] to set the angular velocity:

wd(t) =


−wmax, ψ(t) > ψd(t) + ψthr,

0, |ψ(t)− ψd(t)| ≤ ψthr,

wmax, ψ(t) < ψd(t)− ψthr.

(2.25)

Where wmax is the maximum angular velocity for yawing.

The proposed control paradigm is able to navigate the robot with small values of

vmax, wmax, but there is no guarantee for the high control authority since the control inputs

are discontinuous and unbounded in acceleration. For precise and aggressive control of the

MAV system, we need smoother control inputs which are available from time-parameterized

trajectories. In the latter chapters, we propose trajectory planning methods that are able

to properly solve the navigation problem as described in this chapter.

32



Chapter 3

Optimization-based Trajectory

Planning

A trajectory can be expressed as a time-parameterized function that indicates a robot’s

desired states over time. This formulation has been widely used in combination with high

frequency controllers for accurate and dynamic flight maneuvers [7, 29, 63, 68, 82]. Following

the approach of these works, we formulate the robot’s trajectory as a piece-wise polynomial

function with respect to the flat outputs defined in Section 2.1.2. In this chapter, we intro-

duce the state-of-the-art trajectory generation methods based on convex optimization.

3.1 Problem Formulation

Denote a trajectory Φ(t) as a piece-wise function which has N segments as:

Φ(t) =



Φ0(t− t0), t0 ≤ t < t1

Φ1(t− t1), t1 ≤ t < t2
...

ΦN−1(t− tN−1), tN−1 ≤ t ≤ tN .

(3.1)

Define the knot between segments Φi and Φi+1 as ui. A typical trajectory is drawn in Fig-

ure 3.1. Each of the segment Φi starts from the global time ti to ti+1 and continuous with
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its consecutive segments at the corresponding knot. The end states u0, uN for the whole

trajectory can be arbitrary constants.

u0

Φ0

u1
Φ1

u2

uN−1

ΦN−1

uN

Figure 3.1: A piece-wise polynomial trajectory that has N segments.

As described in [63] and many other related works, the differential flatness of quadrotor

systems allows us to construct control inputs from 1D time-parameterized polynomial tra-

jectories specified independently in axis of each flat output of σ = [ x, y, z, ψ ]T. Thus, a

trajectory Φ has four dimensions which are respectively denoted as Φx,Φy,Φz and Φψ. For

a quadrotor system, the yaw is normally irrelevant to either collision checking or dynamic

constraints. Hence, we ignore Φψ in the optimization formulation and assume ψ is constant.

The general formula of an n-th order polynomial is denoted as:

p(t) :=

n∑
n=0

ant
n = ant

n + . . .+ a1t+ a0, (3.2)

where ai, i = 0, . . . , n is constant. The polynomial state in one axis can be written in terms

of p(t) and its derivatives as

v(t) = ṗ(t) = nant
n−1 + . . .+ a1,

a(t) = p̈(t) = n(n− 1)ant
n−2 + . . .+ 2a2, (3.3)

j(t) =
...
p (t) = n(n− 1)(n− 2)ant

n−3 + . . .+ 6a3.

The full state of system’s dynamics in R3 can be easily expressed by individual poly-

nomials in three axes. For example, the trajectory segment Φi can be written as Φi(t) =

[ pix(t), piy(t), p
i
z(t) ]T where pij , j = x, y, z indicates the polynomial (3.2) of x, y, z-axis for

the i-th segment.
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3.1.1 Minimum Effort Trajectories

A minimum effort trajectory is the optimal solution of the following optimization problem:

arg min
Φ

J(Φ)

s.t F (Φ)
(3.4)

where the cost function J(Φ) is a function relates to control efforts of the system. It can be

expressed explicitly as:

J(Φ) =
N−1∑
i=0

∆ti∫
0

||Φ(q)
i (t)||2dt (3.5)

where the derivative order q = 1, 2, 3, 4 respectively applies for min-velocity, min-acceleration,

min-jerk and min-snap trajectory. It should be noticed that the time for each segment

∆ti = ti+1 − ti is given as a prior in (3.5). It has been shown in [68] that the highest order

of polynomial (3.2) n has an fixed relation with the derivative q:

n = 2q − 1. (3.6)

Given the highest polynomial order n and the time for each segment ∆ti, the prob-

lem (3.4) is solvable in polynomial time for a variety of constraint functions corresponding to

different applications. We will introduce two applications in this chapter to find collision-free

trajectories using two types of constraints: waypoint constraints and Safe Flight Corridor

constraints.

3.2 Waypoint Constraints

Waypoint constraints are specified by predefined waypoints ui in Figure 3.1, in which the

waypoint refers to either the robot’s partial state or full state, including velocity, acceleration,

etc. The trajectory is constrained to reach the each state ui at a corresponding time ti. For

partially defined ui, we need to guarantee the continuity of the unconstrained derivatives.

As shown in [82], this problem can be formulated as an unconstrained Quadratic Program
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(QP) which has a closed-form solution. In this section, we briefly review the technique to

formulate and solve this unconstrained QP.

3.2.1 Cost Function in Matrix Form

For a single polynomial segment p(t) from one state to another starting at time t = 0 with

duration ∆t, the cost function (3.5) w.r.t. q-th derivative can be written in the matrix form

as:

Jq(p) =

∆t∫
0

‖p(q)(t)‖2dt = aTQq(∆t)a (3.7)

where a = [an, . . . , a0]T is the vector of coefficients andQ is the is the cost matrix constructed

by the weighted sum of the Hessian matrix of polynomial derivatives. As shown in [82], the

element in i-th row and j-th column of the Hessian matrix Qij can be calculated as:

Qqij =


(
q−1∏
m=0

(i−m)(j −m)

)
∆ti+j−2q+1

i+ j − 2q + 1
, i ≥ q and j ≥ q,

0, i < q or j < q.

(3.8)

Thus, we compute the matrices for minimum-velocity, minimum-acceleration and minimum-

jerk trajectories, respectively, as:

Q1(∆t) =

0 0

0 ∆t

 , (3.9)

Q2(∆t) =


02×2 02×2

02×2

4∆t 6∆t2

6∆t2 12∆t3

 , (3.10)

Q3(∆t) =



03×3 03×3

03×3

36∆t 72∆t2 120∆t3

72∆t2 192∆t3 360∆t4

120∆t3 360∆t4 720∆t5


. (3.11)
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The Hessian cost matrix for trajectory in (3.1) Qq can be constructed as:

Qq =



Qq0(∆t0) 0 · · · 0

0 Qq1(∆t1) · · · 0

...
...

. . .
...

0 0 · · · QqN−1(∆tN−1)


. (3.12)

3.2.2 Equality Constraints

As mentioned earlier, the constraints on the the endpoints of a trajectory segment p(t) are

specified by the given waypoints ui which can be expressed as linear equality constraints of

the coefficients:

A(0) · a = b(0), A(∆t) · a = b(∆t). (3.13)

Similar to the cost matrix Qq defined in (3.8), A is a constant matrix w.r.t. time t as:

Aij(t) =


tj−i

i−1∏
m=0

(i−m), i ≥ j

0, i < j

(3.14)

Thus, we get the explicit matrices for minimum-velocity, minimum-acceleration and

minimum-jerk trajectories, respectively, as:

A1(0) =

[
1 0

]
, A1(∆t) =

[
1 ∆t

]
, (3.15)

A2(0) =

1 0 0 0

0 1 0 0

 , A2(∆t) =

1 ∆t ∆t2 ∆t3

0 1 2∆t 3∆t2

 , (3.16)

A3(0) =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

 , A3(∆t) =


1 ∆t ∆t2 ∆t3 ∆t4 ∆t5

0 1 2∆t 3∆t2 4∆t3 5∆t4

0 0 2 6∆t 12∆t2 20∆t4

 . (3.17)

37



The big A matrix for trajectory in (3.1) can be concatenated as:

A =



A0(0) 0 · · · 0 0

0 A0(∆t0) · · · 0 0

...
...

. . .
...

...

0 0 · · · AN−1(0) 0

0 0 · · · 0 AN−1(∆tN−1)


. (3.18)

The matrix b(t) on the right side of (3.13) is defined by the fixed value of waypoints and

free derivatives. The free derivatives determine the total cost of the trajectory J(Φ). In

the next section, we will compute the optimal values of the free derivatives as part of the

optimal solution.

3.2.3 Reformulation as Unconstrained Quadratic Programming

According to previous two sections, we can formulate the optimization problem (3.4) as:

arg min
a

aTQa

s.t Aa = b
(3.19)

where a = [ aT0 , a
T
0 , . . . , a

T
N−1 ]T is the vector of coefficients of all the trajectory segments

and A,Q are calculated in (3.18) and (3.12).

The A matrix can be used to convert the endpoint derivatives b to polynomial coefficients

as:

a = A−1b. (3.20)

b is not fully defined because of the free derivatives. We can use a permutation matrix

M to re-formulate b as two parts: fixed derivatives DF and free derivatives DP :

b = M

DF

DP

 . (3.21)
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Thus, the cost function in (3.19) is equivalent to

J =

DF

DP


T

MTA−TQA−1M︸ ︷︷ ︸
R

DF

DP

 (3.22)

where R = MTA−TQA−1M can be expressed using four components:

R =

RFF RFP

RPF RPP

 . (3.23)

Thus we get

J = DT
FRFFDF +DT

FRFPDP +DT
PRPFDF +DT

PRPPDP . (3.24)

It is not hard to prove that RTFP = RPF . Let ∂J
∂D∗P

= 0, we can calculate the optimal

free derivatives as

D∗P = −R−1
PPR

T
FPDF . (3.25)

Substitute (3.21) into (3.20), the optimal polynomial coefficients are

a∗ = A−1M

DF

D∗P

 = A−1M

 I

−R−1
PPR

T
FP

DF . (3.26)

3.2.4 Output Trajectories

The derivation for the minimum effort trajectories assumes that (3.6) holds. Thus the

resulting trajectory will be continuous up to the order of 2(q − 1). Figure 3.2 compares

min-velocity, min-acceleration, and min-jerk trajectories given the same time allocation and

waypoint constraints. For intermediate waypoints u1 , u2, we fix only their positions. The

endpoints u0, u3 are static. The time allocation is the same for all three trajectories, ∆t0 =

1, ∆t1 = 1, ∆t2 = 3. The min-velocity trajectory is only continuous in position, while the

min-acceleration trajectory has continuous acceleration. The min-jerk trajectory has smooth
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acceleration and jerk in addition to continuous snap.

  

(a) Min-velocity.

  

(b) Min-acceleration.

  

(c) Min-jerk.

Figure 3.2: Output trajectories with the same time allocation and waypoints. We plot the velocity
(blue), acceleration (green) at its corresponding position and rotate 90◦ for visualization. For the
min-velocity trajectory, we omit the acceleration since the polynomial is first-order.

Though the computational time of the closed-form solution of the unconstrained QP (3.19)

is negligible, the collision and dynamic constraints still need to be encoded. The dy-

namic constraints can be formulated as inequality constraints for the flat outputs: let

vmax, amax, jmax denote the max velocity, acceleration and jerk of polynomial p

vmax = max{ṗx, ṗy, ṗz}, amax = max{p̈x, p̈y, p̈z}, jmax = max{
...
p x,

...
p y,

...
p z} (3.27)

and denote the maximum bound of velocity, acceleration and jerk as scalars v̄max, āmax and

j̄max, the dynamic constraints are simply

vmax ≤ v̄max, amax ≤ āmax, jmax ≤ j̄max. (3.28)

It has been shown in [68] that if the ∆t for a segment is large enough, the derivatives of

its flat outputs including velocity, acceleration, and etc.will be bounded. Thus, we can scale

the time profile to approximate the dynamic constraints. With ∆t as the original time for

the polynomial trajectory, we estimate the new polynomial time ∆t′ through scaling.

∆t′ = max{1, (vmax

v̄max
), (

amax

āmax
)
1
2 , (

jmax

j̄max
)
1
3 }∆t. (3.29)
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(a) Min-velocity.

  

(b) Min-acceleration.

  

(c) Min-jerk.

Figure 3.3: Scaled trajectories from Figure 3.2.

For example, in Figure 3.3 we scale the ∆t for an individual trajectory segment w.r.t.

the original trajectories in Figure 3.2 using the velocity bound v̄max = 1. In Figure 3.3a,

the time allocation does not change compared to Figure 3.2a since the vmax = 1 for all

the segments. In Figure 3.3b, the time for each segment is increased from ∆t0 = 1, ∆t1 =

1, ∆t2 = 3 (Figure 3.2b) to ∆t′0 = 1.36, ∆t′1 = 1.24, ∆t′2 = 4.0 and therefore the maximum

velocity decreases from vmax,0 = 1.36, vmax,1 = 1.24, vmax,2 = 1.33 (Figure 3.2b) to v′max,0 =

1.0, v′max,1 = 0.94, v′max,2 = 1.0. Similarly, in Figure 3.3c, the time for each segment is

increased from ∆t0 = 1, ∆t1 = 1, ∆t2 = 3 (Figure 3.2c) to ∆t′0 = 1.60, ∆t′1 = 1.60, ∆t′2 =

3.54 therefore the maximum velocity decreases from vmax,0 = 1.60, vmax,1 = 1.60, vmax, 2 =

1.18 (Figure 3.2c) to v′max,0 = 0.94, v′max,1 = 0.94, v′max,2 = 1.32. Thus, the scaling of time

allocation can reduce the maximum dynamics of the optimized trajectory, but it does not

ensure the dynamic constraints (3.28) can be strictly satisfied.

In conclusion, the unconstrained QP is able to quickly optimize minimum effort tra-

jectories w.r.t. the given waypoints and time allocation constraints. However, it fails to

ensure that the generated trajectory is collision-free and obeys the dynamics constraints

(Table 1.1). In the next section, we introduce our method to handle these two constraints

without dramatically increasing the run time.
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3.3 Safe Flight Corridor Constraints

The method proposed in Section 3.2 only works for unconstrained problems with equality

constraints. To generate collision-free trajectories in cluttered environments, one can add

collision-free intermediate waypoints accordingly as described in [63, 82]. However, this

method is not able to guarantee safety of the final trajectory and can easily result in unde-

sirable velocity profiling (Figure 3.4). Thus, this method is not appropriate for navigation

in cluttered, obstacle-dense environments.

(a) Original trajectory.

new waypoints

(b) New trajectory.

Figure 3.4: To avoid collision, an easy solution is to add collision-free intermediate waypoint con-
straints and re-optimize the original trajectory. As shown in (b), the new trajectory obstains an
oscillating velocity profile (blue line strips) which is not desirable.

Generating a collision-free trajectory has been attempted with Mixed Integer methods

in [12, 15, 62]. However, solving a MILP/MIQP problem is generally slow, so other ap-

proaches have been developed to remove the integer variables and solve the QP instead,

which is much faster [9, 54, 81]. [9] requires an OctoMap [33] representation and produces

sequences of axes-aligned cubes in free space to generate trajectories. This formulation of

convex free space is not generic and is efficient only when obstacles are rectangular paral-

lelepipeds. In this section, we propose a method that uses a linear piece-wise path produced

by a fast graph search algorithm to guide the convex decomposition of the map to find a
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Safe Flight Corridor (SFC). The SFC is a collection of convex connected polyhedra, which

model the free space in the map and can be treated as linear inequality constraints in the

QP for trajectory optimization. Inspired by [14], we developed a novel convex decomposi-

tion method to construct the SFC using ellipsoids. The total time for trajectory generation

using this pipeline is sufficiently small such that we use it with a Receding Horizon Control

framework as described in Section 2.3 to build our navigation system.

The overall architecture of our algorithm is shown in Figure 3.5. Since the path planning

is solved in Section 2.2, we mainly discuss the SFC Construction and Trajectory Optimization

in this section.

Path Planner SFC Construction Trajectory Optimization
us, ug P SFC Φ

Figure 3.5: Block diagram of our algorithm that generates a trajectory from start us to goal ug. We
first find a valid path in a grid map towards the goal, based on which we construct the Safe Flight
Corridor (SFC) through convex decomposition. The trajectory Φ inside the SFC is achieved from
solving a optimization problem.

3.3.1 Safe Flight Corridor Construction

The set of points that constitute the obstacles (the occupied voxels in the map representation

of the environment) are represented as O. A piece-wise linear path P from start to goal in

the free space is denoted as P = 〈p0 → p1 → . . . → pN 〉, where pi are points in the free

space and pi → pi+1 are directed line segments in the free space. We generate a convex

polyhedron around each line segment in P to construct a valid SFC. The i-th line segment is

represented as Li = 〈pi → pi+1〉. Denote the generated convex polyhedron from each Li as

Ci. The space covered by these convex polyhedra forms the Safe Flight Corridor. We denote

the collection of these convex polyhedra as SFC(P ) = {Ci | i = 0, 1, . . . , N − 1}. Figure 3.6

shows an example of a path P and the corresponding SFC(P ).

One criterion for the construction of the SFC is that two consecutive polyhedra, Ci and

Ci+1, need to intersect in a non-empty set containing pi+1. This ensures continuity in the

SFC.

To generate the convex polyhedron Ci from Li, we describe two procedures: (1) “Find
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Figure 3.6: Generate a Safe flight corridor (blue region) from a given path P = 〈p0 → . . . → p4〉.
Left: find the collision-free ellipsoid for each line segment. Right: inflate each individual ellipsoid to
find a convex polyhedron.

Ellipsoid", that first fits an ellipsoid around Li, and, (2) “Find Polyhedron", that constructs

the polyhedron Ci from tangent planes to a sequence of dilated ellipsoids. In order to reduce

the computation time, we add a bounding box to confine the space around Li in which we

consider obstacles. In addition, we propose a shrinking process to guarantee that a non-

point robot is collision-free. In the following subsections we introduce the details on these

procedures. For simplicity, we remove the subscripts “i” and simply use L,C to denote the

corresponding line segment and polyhedron.

Step 1 – Find Ellipsoid

In this step we find an ellipsoid which includes the line segment L and does not contain any

obstacle points from O. An ellipsoid is described as

ξ(E,d) = {p = Ep̄ + d | ‖p̄‖ ≤ 1}. (3.30)

For an ellipsoid in Rn, E is a n × n symmetric positive definite matrix that represents

a deformation of a sphere (‖p̄‖ ≤ 1). Considering 3D case, E can be decomposed as

E = RTSR where R is the rotation matrix aligning the ellipsoid axes with map axes
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and S = diag(a, b, c) is the diagonal scale matrix whose diagonal elements stand for the

corresponding lengths of ellipsoid semi-axes. d indicates the center of the ellipsoid. Without

loss of generality, we assume a ≥ b, a ≥ c. Our goal is to find E,d given the line segment

L and obstacles O.

This ellipsoid is computed in two steps: first, we shrink an initial sphere to derive the

maximal spheroid (an ellipsoid with two axes of equal length); second, we “stretch” this

spheroid along the third axis to obtain the final ellipsoid. In the first step, the initial

ellipsoid is a sphere centered at the mid point of L and with diameter equals to the length of

L. Assume the length of ellipsoid’s x̃-axis is fixed and aligned with L, we reduce the length

of other two axes until the spheroid contains no obstacles. This is done by searching for the

closest obstacle in O from the center of ξ. Figure 3.7 shows the shrinking process from a 2D

perspective.

p?

p?

Figure 3.7: Shrink ellipsoid ξ. The bold line segment is L, gray region indicates obstacle while the
white region is free space. Left: start with a sphere, we find the closest point p? to the center of L
and adjust the length of short axes such that the dashed ellipsoid touches this p?. Middle: repeat
the same procedure, find a new closest point p? and the new ellipsoid. Right: no obstacle is inside
the ellipsoid, current ellipsoid is the max spheroid. Several iterations are required to ensure the final
spheroid excludes all the obstacles.

The maximal spheroid touches an obstacle at p? which, along with the line segment L,

defines the plane of x̃-ỹ axes of the spheroid. Following that, we stretch the length of the

z̃-axis of the spheroid to make it equal to a to form a new initial ellipsoid. The actual value

of c can be determined through finding another closest point using the similar process as

shown in Figure 3.7.
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Step 2 – Find Polyhedron

Denote the ellipsoid found in the previous step as ξ0, which touches an obstacle point

at pc0 = p∗. The tangent plane to the ellipsoid at this point creates a half space H0 =

{p | aT0 p < b0}, containing the ellipsoid. After computing H0, we remove all the obstacles

in O that lie outside H0 (call this the set of remaining obstacles, Oremain), and “dilate”

the ellipsoid (keeping its aspect ratio constant) until it is in contact with another obstacle

point, pc1, at which point the new ellipsoid is called ξ1 and the new tangent hyper-plane

creates a new half-space H1. This process is continued to obtain a sequence of half-spaces,

H0, H1, · · · , Hm. The intersection of these m + 1 half-spaces gives the convex polyhedron,

C =
⋂m
j=0Hj = {p | ATp < b}, where aj and bj are the j-th column of matrix A and

element of vector b respectively.

Figure 3.8 shows an example of ellipsoid dilation. In each dilate iteration, the ellipsoid

ξj touches an obstacle at a point pcj . Algorithm 3 shows the pseudo-code. The hyper-plane

defining the j-th half-space, Hj , is the tangent to ξj at pcj , and is computed as

aj =
dξr
dp

∣∣∣∣
p=pcj

= 2E−1E−T (pcj − d),

bj = aTj p
c
j .

(3.31)

pc
0

pc
1

Figure 3.8: Dilate ellipsoid ξ0 to find halfspaces. Left: find the first intersection point pc0 for
ξ0 and hyperplane (red line), the obstacle points outside corresponding halfspace H0 are removed
(shadowed). Middle: find the next intersection point pc1 (dashed ellipsoid shows the original ellipsoid
ξ0 and the solid ellipoid shows the new ellipsoid ξ1), keep removing obstacle points from the map
that are outside the new halfspace. Right: keep dilating until no obstacle remains in the current
map, the convex space C (blue region) is defined by the intersection of the halfplanes.
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Algorithm 3 Given ξ0(E,d), find the C(A,b). The set of obstacle points is denoted as O.

1: function FindPolyhedron(ξ0, O)
2: Oremain ← O;
3: j ← 0;
4: while Oremain 6= ∅ do
5: pcj ← ClosestPoint(ξ0, Oremain);
6: ξj ← DilateEllipsoid(ξ0,pcj);
7: aj ← 2E−1E−T (pcj − d);
8: bj ← aTj p

c
j ;

9: Oremain ← RemovePoints(aj , bj , Oremain);
10: j = j + 1;
11: end while

12: C : AT ←

a
T
0

aT1
...

 , b←
b0b1
...

;
13: return C(A,b);
14: end function

So far, we are able to generate the polyhedron C for L, given the obstacles O. We apply

this method on each individual line segment of the path P to get the Safe Flight Corridor

as SFC(P ) = {Ci | i = 0, 1, . . . , n− 1} (Figure 3.6). Since the original ellipsoid is inside the

corresponding polyhedron, we have a guarantee that the line segment L is also inside the

polyhedron. Thus the whole path P is guaranteed to be inside SFC(P ).

Bounding Box

The algorithm, as presented, needs to search through all the points in O at least twice to

check for the intersection with the inflated ellipsoid when constructing the polyhedron C for

each line segment L. This is an expensive process. We decrease the number of points to be

checked for by adding a bounding box around L, and thus only searching for the obstacle

points inside it. This process saves a large amount of computation time and also prevents

the trajectory from going too far away from the original path. The bounding box for L is

composed of 6 rectangles such that the axis of the bounding box is aligned with L and the

minimum distance from each face to L is rs. If the maximum speed and acceleration of the

MAV is vmax, amax, the condition imposed on the safety radius is rs ≥ v2max
2amax

. Figure 3.9
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shows the typical result from applying the bounding box. The generated SFC contains

similar halfspaces as shown in Figure 3.6.

p0

p1 p2

p3

p4

rs

p0

p1 p2

p3

p4

Figure 3.9: Left: apply bounding box on each line segment with safety radius rs. Right: inflate
individual line segment to find the convex polyhedron. We only process the obstacles inside corre-
sponding bounding box comparing to Figure 3.6.

Shrink

We model the robot as a sphere with radius rr and expand occupied voxels in the original

map M to generate the configuration space Me such that we are able to treat the robot as a

single point for planning. When constructing the SFC for path P planned in Me, using Me

could generate narrow ellipsoids and polyhera (Figure 3.10a – 3.10b). In order to avoid such

kind of bad SFC, we use the original map M to generate the SFC and shrink the SFC by

the robot radius rr in order to guarantee safety. The shrinking process is applied by pushing

every support hyper-plane along its normal by rr. This process ensures the safety of the

shrunken SFC as we increase the distance between obstacles and each hyper-plane by rr, but

may also exclude some portion of the path (Figure 3.10d) which may cause discontinuity

of the Safe Flight Corridor. To guarantee the continuity, we have to make sure the line

segment L is inside the shrunken polyhedron C ′. For this, we modify Algorithm 3: for any

half-space Hj ∈ C (C is the raw polyhedron), we check the minimum distance d(L,Hj) from

L to the hyper-plane of Hj . If d(L,Hj) < rr, we adjust the normal of the hyper-plane such
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that d(L,H ′j) = rr (H ′j is the adjusted half-space). The hyper-plane of the new half-space

H ′j also passes through the intersection point of Hj with the dilated ellipsoid (Figure 3.10e).

p1 p2

(a)

p1 p2

(b)

p1 p2

(c)

p1 p2

(d)

p1 p2

(e)

Figure 3.10: Constructing the SFC through the shrinking process. For clarity, we draw the contour
of the expanded map Me using black bold lines. The contours of the SFC are indicated by blue
boundaries while the shrunken SFCs are drawn as blue regions inside. The SFC in (a) and (b)
is derived using Me without shrinking. Several ellipsoids and corresponding polyhedra are quite
narrow. In (c) and (d), the SFC is generated using the original map M such that the corridor is
“wider” compared to (a) and (b). Since this SFC also penetrates obstalces in the expanded map, we
shrink it by the robot radius rr to derive the “safe” SFC. However, this shrinking process may cause
discontinuities in the SFC, for example p2 (circled) is outside of the shrunken polyhedron generated
from line segment p1 → p2 in (d). In (e), the green hyperplane is adjusted such that p2 is still
inside the shrunken polyhedron.

3.3.2 Trajectory Convex Optimization

Given the SFC, we could modify the original optimization (3.4) with collision constraints to

generate minimum effort trajectories. A trajectory is defined as the piece-wise polynomial

in (3.1). The cost function is the same as (3.5):

Jq(Φ) =
N−1∑
i=0

∆ti∫
0

‖Φ(q)
i (t)‖2dt (3.32)
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where q = 1 . . . 4 correspond to min-velocity, min-acceleration, min-jerk and min-snap tra-

jectories. For the intermediate waypoints, we enforce the continuity constraints similar

to (3.19) as:

Φ
(k)
i (∆ti) = Φ

(k)
i+1(0), k = 0 . . . q and i = 1 . . . N − 2. (3.33)

The endpoints of the trajectory is specified as input:

Φ
(k)
0 (0) = u(k)

s , Φ
(k)
N−1(∆tN−1) = u(k)

g , k = 0 . . . q. (3.34)

Different from Section 3.2, we do not need to encode the specific position constraint for

the intermediate waypoint – it is free to be inside the overlapped space between the two

connected polyhedra.

Assume the SFC contains N convex polyhedra, the whole trajectory is composed of N

polynomials and the i-th polynomial is inside the i-th polyhedron Ci. Thus, the explicit

expression of the optimization for minimum effort trajectories can be formed as a convex

optimization as

arg min
Φ

Jq =
n−1∑
i=0

∆ti∫
0

||Φ(q)
i (t)||2dt

s.t Φ
(k)
i (∆ti) = Φ

(k)
i+1(0), k = 0 . . . q and i = 1 . . . N − 2,

Φ
(k)
0 (0) = u

(k)
s , Φ

(k)
N−1(∆tN−1) = u

(k)
g , k = 0 . . . q,

AT
i Φi(t) < bi, i = 0 . . . N − 1.

(3.35)

Here the matrices Ai, bi correspond to the i-th polyhedron Ci. Figure 3.11 shows an

example of the optimized trajectory by solving (3.35) that is confined by the certain SFC.

Similar to Section 3.2.4, we approximate the dynamic constraints using Time Alloca-

tion. This is mainly for saving computational time by reducing the number of inequality

constraints in the proposed convex optimization. Time Allocation significantly affects the

resulting trajectories. As every SFC contains a path P , the naive Time Allocation method

is to map this P into time domain using trapezoid velocity profile ( Figure 3.12). We assume
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Figure 3.11: Example trajectory has three polyhedra Ci and each segment Φi is confined to be inside
its corresponding polyhedron. The red start and end points are confined to be at those locations
and the yellow knot points are only constrained to be continuous and are allowed to vary within the
intersection of adjacent pairs of polyhedra.

the robot is a particle that moves in 1D as a second order system. The time ∆t for each

segment is a function of the path segment length and the robot speed. In a more delicate

model, when the initial state of the real robot is non-static, the initial and end speeds for

the particle are not necessarily to be zero.

time(s)

V
(m

/s
) Ve

Vi

Vmax

tf

Figure 3.12: Time Allocation for a given path, denote robot initial speed as vi, max speed as vmax
and end speed as ve.

Solving (3.35) with the naive Time Allocation will result in trajectories with large veloc-

ity, acceleration or jerk that exceed the maximum thresholds of the MAV. We modify ∆ti
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according to (3.29) to adjust the Time Allocation and re-optimize (3.35) to solve the final

trajectory using ∆t′i. These two-step approach will generate the trajectory that does not

violate the dynamic constraints during most of the traversing time.

It is important to note that we use a sample-based method to confine each polynomial

when solving (3.35). We omit the details which can be found in [61]. Also, we always assume

a stopping policy for a static end state with zero velocity, acceleration and jerk to ensure

the flight safety.

3.3.3 Evaluation of Output Trajectories

In this part, we evaluate the proposed algorithm.

Comparison with IRIS

The existing algorithms for generating the collision-free convex region [14, 15] requires a

proper selection of seeds and a geometric representation of obstacles which is hard to get

from real sensor data. In their process (called IRIS), solving the maximum ellipsoid through

convex optimization takes a long time. For the map shown in Figure 3.13, the IRIS algorithm

takes around 110 ms while our algorithm only requires 4.8 ms. In fact, the selection of seeds

for growing ellipsoids in IRIS is non-trivial, which also makes it harder to run IRIS for

decomposition in real-time applications.

(a) IRIS. (b) SFC.

Figure 3.13: Comparing our convex decomposition approach with IRIS. Red stars point out the start
and goal. The generated trajectories are very similar, even though using two different Safe Flight
Corridors. The light blue short lines that are perpendicular to the trajectory show the speeds at
corresponding positions.
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Run Time Analysis

We use four different maps to test the run time of our algorithm by generating hundreds of

trajectories through them. The four maps are named as ‘Random Blocks’, ‘Multiple Floors’,

‘The Forest’ and ‘Outdoor Buildings’. We sample goals at a certain density in each map and

manually select a start. Figure 3.14 shows these maps and generated results. These maps

are selected because they are typical for different environments encountered in the real world

(namely 2.5D, fully 3D, randomly scattered complex obstacles, and real-world data).

(a) Random Blocks. (b) Multiple Floors.

(c) The Forest. (d) Outdoor Buildings.

Figure 3.14: Generate trajectories from a start (big red ball) to sampled goals (small red balls) in
different maps. The blue curves are generated trajectories, cyan region is the overlapped SFC.

To evaluate the computational expense of our algorithm, we split the whole trajectory

generation into three parts: path planning, convex decomposition and trajectory optimiza-

tion. Table 3.1 indicates the time cost for each component when generating trajectories as
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shown in Figure 3.14 on an i7-4800MQ processor. For path planning, we compared two dif-

ferent methods: A* and JPS to show the impact on run time by using JPS. As can be seen

from the results, we are able to generate trajectories in under a few hundred milliseconds,

which is sufficient fast for re-planning at 3 Hz.

Map Size # of Cells # of Trajs Time (s) Path Planning Convex Decomp Traj Opt Replan (JPS)A* JPS

Random Blocks 40× 40× 1 1.4× 106 130

Avg 0.57 0.034 0.0021 0.028 0.065
Std 1.26 0.034 0.0028 0.022 0.051
Max 9.98 0.19 0.020 0.099 0.27

Multiple Floors 10× 10× 6 5.9× 105 147

Avg 6.12 0.039 0.0064 0.082 0.13
Std 15.77 0.046 0.0038 0.041 0.081
Max 84.56 0.22 0.021 0.23 0.45

The Forest 50× 50× 6 1.8× 106 89

Avg 0.65 0.033 0.0039 0.055 0.094
Std 1.57 0.044 0.0024 0.031 0.068
Max 7.78 0.20 0.010 0.12 0.30

Outdoor Buildings 100× 110× 7 6.2× 105 127

Avg 0.54 0.028 0.0066 0.099 0.14
Std 1.46 0.045 0.0053 0.064 0.10
Max 10.96 0.27 0.027 0.24 0.47

Table 3.1: Trajectory Generation Run Time Analysis (sec).

Completeness

Here, we discuss the algorithmic completeness within the local map: whether a trajectory

will be found if one exists up to the resolution of the map. Since construction of SFC starts

with line segments, it will at least produce a set of convex regions that includes those line

segments. In this case, the feasible set of the optimization always contains the solution

where the trajectory Φ is polynomial with static starting and ending states. For other cases

where the initial non-static dynamics cause the failure of the trajectory optimization, the

vehicle will either follow the existing collision-free trajectory or execute a stopping policy.

Eventually, the vehicle will stop in a hover mode and from that static state we can always

generate a trajectory if there exists a path to the final goal. In sum, our navigation pipeline

is complete since the path planning algorithm we use is complete and we can always stop

and re-plan. However, the trajectory generation method is not globally complete since it is

constrained by the SFC.

As a conclusion, our algorithm solves the optimal trajectory inside the given SFC w.r.t.

the given time allocation, thus the generated trajectory is not globally optimal. To guarantee

feasibility, we re-optimize the trajectory using a adjusted time allocation. Practically, this
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method almost ensures that the resulting trajectory obeys the dynamic constraints if we set

the maximum velocity, acceleration and jerk to be conservative in (3.29).

Method Feasibility Safety Optimality Completeness Run time

SFC
Dynamically

feasible Collision free Sub-optimal Complete Fast

Table 3.2: Evaluation of the proposed SFC method. Red blocks indicate the drawbacks of the
corresponding algorithm.

3.3.4 Experimental Results

In this section, we demonstrate capability of the proposed algorithm for navigation in com-

plex and real word environments.

Flight Speed

Here, we analyze the speed of the autonomous flight through non-dimensional parameters.

We describe an MAV model by the maximum acceleration āmax (constrained by the vehicle

thrust to weight ratio) and the maximum velocity v̄max (bounded by air drag). These two

parameters reflect how fast an quadrotor can travel. For different platforms, we usually have

different v̄max, āmax values due to their differing hardware configurations. The planning

u⌧

l l
Figure 3.15: Non-dimensional analysis for 3 different quadrotors while keeping te fixed at 0.1 and
changing l: for robot 1, v̄max = 20m/s, āmax = 10m/s2; for robot 2, v̄max = 10m/s, āmax = 5m/s2;
for robot 3, v̄max = 5m/s, āmax = 5m/s2. The total time for reaching the goal τ and the maximum
speed u goes to 1.1 with increasing l (due to sample-based method we use for trajectory optimization,
the maximum speed will exceed the actual bound by a small amount), which means the longer
planning horizon leads to a faster flight.
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horizon dr (limited by the sensing range) and execution horizon Te (limited by the on-

board computation power) are two independent variables that affect the flight speed of the

vehicle in Receding Horizon Control (Section 2.3). They can be non-dimensionalized through

normalization as:

l =
2āmax

v̄2
max

dr, τe =
āmax

v̄max
Te (3.36)

The flight speed can be evaluated using two parameters: total time for reaching a goal

T and the max speed vmax. Suppose the total distance is dgoal, we are able to evaluate the

nominal flight time and maximum speed using the notation as:

τ =
v̄max

dgoal
T, u =

vmax

v̄max
(3.37)

We plot the test results from using three different robots in simulation using these non-

dimensional parameters (Figure 3.15). We can conclude that fast flight can be achieved

through setting a large planning horizon. However, in the actual experiments, the planning

horizon is limited by the sensing range and will not increase the flight speed after a certain

threshold. The execution horizon is also limited by the on-board computation, for example

in Table 3.1 the max time cost for re-plan takes up to 0.47 s which places a lower bound on

Te.

To test high speed obstacle avoidance, we simulate environments by randomly scattering

N convex obstacles inside a region. A typical environment is shown in Figure 3.16. With a

simulated Velodyne Puck VLP-16 of 40 m sensing range, the robot is able to achieve a max

speed of 19.2 m/s in this forest and reach the goal 200 m away in 14.3 s.

FLA Test

In the FLA project, we apply the proposed navigation pipeline on the quadrotor platform

shown in Figure 3.17. We use a stereo version of the MSCKF algorthm [91] with Unscented

Kalman Filter [103] for state estimation and a Velodyne VLP-16 to build a local map. All the

computation is performed on an on-board Intel NUC computer (dual-core i7). Figure 3.19

shows several experiments in the outdoor scenario where the robot has zero prior knowledge
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Figure 3.16: 400 trees are randomly placed onto a 200 × 40m square. The RHP planning horizon
is 50 m, execution horizon is 1 s. Blue curves show the robot trajectory from one end to the other.
Green dot show the start position of each re-plan.

Figure 3.17: Quadrotor platform used in the FLA project.
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Figure 3.18: State estimation vs desired command for test 1. The actual robot state is marked in
blue, while the desired command is shown in black.

about the environment. Given a goal with respect to initial robot position, our system can

successfully reach the goal and come back without hitting any obstacle. The vehicle travels

at speeds up to 5 m/s for the runs shown in Figure 3.19. In test 1, the robot successfully

avoids trees and bushes with complicated 3D geometries. In test 2, since the forest is

dense the robot decides to fly around it instead of flying through it. In test 3, the robot

avoids trees, forests and buildings, the total distance traveled by the robot is around 1 km.

Our trajectories are smooth and constrained by thresholds on velocity, acceleration and

jerk which helps to decrease the error in vision-based state estimation: the general drift in

position after coming back to the start position is less than 1 %.

As we set the maximum acceleration to be relatively small (3 m/s2), the robot is able to

closely track the generated trajectories. Figure 3.18 shows the performance of the controller

during test 1 and we can see that the errors are smaller than 0.2 m in position.
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(a) Test 1: Goal (−155, 39).
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(b) Test 2: Goal (46,−184).
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(c) Test 3: Goal (23, 384).

Figure 3.19: Outdoor experiments. The grid cell size is 10m× 10m. The maximum speed is set to
be 5 m/s while we also limit the maximum acceleration as 3 m/s2. The 2D axes shows the direction
of x− y axes, the origin is located at the start point marked as a red star denoted by S.
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Chapter 4

Search-based Trajectory Planning

As introduced in Chapter 3, smooth trajectories obtained by minimizing jerk or snap have

been widely used to control differentially flat dynamical systems such as quadrotors. These

trajectories are represented via time-parameterized polynomials, which convert the trajec-

tory generation problem into one of finding polynomial coefficients that satisfy certain con-

straints. Recent work exploring time-optimal trajectory generation includes [7, 35]. If addi-

tionally, obstacle avoidance is added as a consideration, the trajectory generation problem

becomes more challenging. Recent work in [9, 54, 82] demonstrate practical applications of

quadratic programming to derive collision-free trajectories in real-time, including the ap-

proach proposed in Section 3.3. These methods separate the trajectory generation problem

in two parts: (i) planning a collision-free geometric path and (ii) optimizing it locally to

obtain a dynamically-feasible time-parameterized trajectory. In this way, one can solve for

a locally optimal trajectory with respect to a given time allocation. However, the prior

geometric path restricts the generated trajectory to be inside a given homology class which

may not contain a globally optimal (or even feasible) trajectory (Figure 4.1).

In this chapter, we propose an approach for global trajectory optimization that obtains

collision-free, dynamically-feasible, minimum-time, smooth trajectories in real time. Instead

of using a geometric path as a prior, our approach explores the space of trajectories using a

set of short-duration motion primitives generated by solving an optimal control problem. We
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Figure 4.1: Taking the quadrotor dynamics into account is important for obtaining a smooth trajec-
tory (magenta) while flying at non-zero velocity towards a goal (red triangle). In contrast, existing
methods generate a trajectory (red dashed curve) from a shortest path that ignores the system
dynamics. Instead of relying on a prior shortest path, the approach proposed in this paper plans
globally-optimal trajectories based on time and control efforts.

prove that the primitives induce a finite lattice discretization on the state space, which can in

turn be explored using a graph-search algorithm. It is well-known that graph search in high-

dimensional state spaces is not computationally efficient because there are many states to be

explored. However, with the help of a tight lower bound (heuristic) on the optimal cost we

can inform and significantly accelerate the search. The main contribution of this paper is the

design of a heuristic function based on the explicit solution of a Linear Quadratic Minimum

Time problem. In contrast with previous works based on motion primitives like [47, 59,

76], our approach does not require a large pre-computed look-up table to find connections

between different graph nodes. To reduce the run time, we propose to plan a trajectory in

a lower dimension state space and refine a final trajectory that is executable by quadrotors

through an unconstrained quadratic program. We also show that our method generates

better trajectories compared to the traditional path-based trajectory generation approaches.

We demonstrate that our approach can be used for online re-planning during fast quadrotor

navigation in various cluttered environments.
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4.1 Problem Formulation

Let x(t) ∈ X ⊂ R3×q be a dynamical system state, consisting of position and its (q − 1)

derivatives (velocity, acceleration, jerk, etc.) in 3D. Let X free ⊂ X denote free region of

the state space that, in addition to capturing the obstacle-free positions Pfree, also specifies

constraints Dfree on the system’s dynamics, i.e., maximum velocity v̄max, acceleration āmax,

jerk j̄max and higher order derivatives in each axis. Note that Pfree is bounded by the size

of the map that we are planning in. Thus,

X free = Pfree ×Dfree, (4.1)

Dfree = [−v̄max, v̄max]3 × [−āmax, āmax]3 × [−j̄max, j̄max]3. (4.2)

And we denote the obstacle region as X obs = X \ X free.

As described in [63] and many other related works, the differential flatness of quadro-

tor systems allow us to construct control inputs from 1D time-parameterized polynomial

trajectories specified independently in each of the three position axes. Thus, we consider

polynomial state trajectories x(t) := [pD(t)T, ṗD(t)T, . . . , p
(q−1)
D (t)T]T, where

pD(t) =
n∑
i=0

di
ti

i!
= dn

tn

n!
+ . . .+ d1t+ d0 ∈ R3 (4.3)

and D = [d0 . . . dn] ∈ R3×(n+1). To simplify the notation, we denote the system’s velocity

by v(t) = ṗTD(t), acceleration by a(t) = p̈TD(t), jerk by j(t) =
...
p T
D(t), etc., and drop the

subscript D where convenient. Polynomial trajectories of the form (4.3) can be generated

by considering a linear time-invariant dynamical system p
(q)
D (t) = u(t), where the control
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input is u(t) ∈ U = [−umax, umax]3 ⊂ R3. In state space form, we obtain a system as

ẋ = Ax+Bu

A =



0 I3 0 · · · 0

0 0 I3 · · · 0

...
. . . . . . . . .

...

0 · · · · · · 0 I3

0 · · · · · · 0 0


, B =



0

0

...

0

I3


(4.4)

We are interested in planning state trajectories that are collision-free, respect the constraints

on the dynamics, and are minimum-time and smooth. We define the smoothness or effort

of a trajectory as the square L2-norm of the control input u(t):

J(D) =

T∫
0

‖u(t)‖2 dt =

T∫
0

∥∥∥p(q)
D (t)

∥∥∥2
dt (4.5)

and consider the following problem.

Problem 1. Given an initial state x0 ∈ X free and a goal region X goal ⊂ X free, find a

polynomial trajectory parametrization D ∈ R3×(n+1) and a time T ≥ 0 such that:

arg min
D,T

J(D) + ρT

s.t. ẋ(t) = Ax(t) +Bu(t), ∀ t ∈ [0, T ]

x(0) = x0, x(T ) ∈ X goal

x(t) ∈ X free, u(t) ∈ U , ∀ t ∈ [0, T ]

(4.6)

where the parameter ρ ≥ 0 determines the relative importance of the trajectory duration T

versus its smoothness J .

We denote the optimal cost from an initial state x0 to a goal region X goal by C∗
(
x0,X goal

)
.

The reason for choosing such an objective function is illustrated in Figure 4.2. This problem

is a Linear Quadratic Minimum-Time problem [102] with state constraints, x(t) ∈ X free,
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(a) T = 4, J = 19. (b) T = 4, J = 48. (c) T = 7, J = 5.

Figure 4.2: Three trajectories start from x(0) to x(T ). Blue and green rays indicate the magnitude
of velocity and acceleration along trajectories respectively. If the effort J is disregarded, i.e., ρ→∞
in (4.6), trajectories (a) and (b) have equivalent cost of T = 4. If the time T is not considered, i.e.,
ρ = 0, trajectory (c) become optimal. Since we are interested in low-effort trajectories, ρ should
not be infinite (so that (a) is preferable to (b)) but it should still be large enough to prioritize fast
trajectories. Thus, in this comparison, (a) is preferable to both (b) and (c).

and input constraints, u(t) ∈ U . As the derivation in Section 4.3.1 shows, if we drop the

constraints x(t) ∈ X free, u(t) ∈ U , the optimal solution can be obtained via Pontryagin’s

minimum principle [45, 102] and the optimal choice of polynomial degree is n = 2q − 1.

The main challenge is the introduction of the constraints x(t) ∈ X free, u(t) ∈ U . In this

chapter, we show that these safety constraints can be handled by converting the problem

to a deterministic shortest path problem [5, Ch.2] with a 3 × q dimensional state space X

and a 3 dimensional control space U . Since the control space U is always 3 dimensional,

a search-based planning algorithm such as A∗ [48] that discretizes U using motion primi-

tives is efficient and resolution-complete (i.e., , it can compute the optimal trajectory in the

discretized space in finite-time, unlike sampling-based planners such as RRT [36, 41]).

4.2 Motion Primitives and Induced Graph

4.2.1 Motion Primitives

First, we discuss the construction of motion primitives for the system in (4.4) that will allow

us to convert Problem 1 from an optimal control problem to a graph-search problem. Instead

of using the control set U , we consider a lattice discretization [75] UM = {u1, . . . , uM} ⊂ U ,

where each control um ∈ R3 vector will define a motion of short duration for the system. One

way to obtain the discretization UM is to choose a number of samples z ∈ Z+ along each axis
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[0, umax], which defines a discretization step du = umax
z and results inM = (2z+1)3 motion

primitives. Given an initial state x0 = [pT0 , v
T
0 , a

T
0 , . . .]

T, we generate a motion primitive of

duration τ > 0 that applies a constant control input u(t) ≡ um ∈ UM for t ∈ [0, τ ] so that:

u(t) = p
(q)
D (t) =

n−q∑
i=0

dq+i
ti

i!
≡ um. (4.7)

The control input being constant implies that all coefficients that involve time need to

be identically zero, i.e.,

d(q+1):n = 0 =⇒ um = dn. (4.8)

Integrating the control expression u(t) = um with an initial condition x0 results in

pD(t) = um
tq

q!
+ . . .+ a0

t2

2
+ v0t+ p0. (4.9)

Or, equivalently, the resulting trajectory of the linear time-invariant system in (4.4) is:

x(t) = eAt︸︷︷︸
F (t)

x0 +

 t∫
0

eA(t−σ)Bdσ


︸ ︷︷ ︸

G(t)

um. (4.10)

An example of the resulting system trajectories is given in Figure 4.3. Since both the

(a) Discretized Acceleration. (b) Discretized Jerk.

Figure 4.3: Example of 9 planar motion primitives from initial state x0 for an acceleration-controlled
(n = 2) system (left) and a jerk-controlled (n = 3) system (right). The black arrow indicates
correpsonding control input. The red boundary shows the feasible region for the end states (red
squares), which is induced by the control limit umax. The initial velocity and acceleration are
v0 = [1, 0, 0]T and a0 = [0, 1, 0]T (only for the right figure).
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duration τ and the control input um are fixed, the cost of the motion primitive according

to (4.6) is (
‖um‖2 + ρ

)
τ. (4.11)

4.2.2 Graph Construction

Starting at an initial state x0, we can apply all primitives in UM to obtain the M possible

states after the duration τ (Figure 4.3). Repeating this process iteratively, we can build

a graph, denoted as G(S, E), where S is the discrete set of reachable system states and E

is the set of edges that connect states in the graph, each defined by a motion primitive

e := (um, τ). Let s0 be the state corresponding to x0.

Algorithm 4 shows the pseudo-code for state propagation and can be used to explore the

free state space X free and build the connected graph: in line 4, the primitive is calculated

using the fully defined state s and a control input um given the constant time τ ; line 5

checks the feasibility of the primitive, this step will be further discussed in Section 4.3.2;

in line 6, we evaluate the end state of a valid primitive and add it to the set of successors

of the current node; in the meanwhile, we estimate the edge cost from the corresponding

primitive. After checking through all the primitives in the finite control input set, we add

the nodes in successor set R(s) to the graph, and we continue expanding until we reach the

goal region.

Proposition 1. The motion primitive uij ∈ UM which connects two consecutive states

si, sj ∈ S with sj = F (τ)si +G(τ)uij is optimal according to the cost function in (4.6).

Proof of Proposition 1. Since the trajectory connecting si and sj is collision-free by con-

struction of the graph G (see Algorithm 4), the optimal control from si to sj according to

the cost function in (4.6) has the form prescribed by Proposition 3. In detail

δτ = sj − F (τ)si = G(τ)uij , (4.12)
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Algorithm 4 Given s ∈ S and a motion primitive set UM with duration τ , find the states
R(s) that are reachable from s in one step and their associated costs C(s).
1: function GetSuccessors(s,UM , τ)
2: R(s)← ∅;
3: C(s)← ∅;
4: for all um ∈ UM do
5: em(t)← F (t)s+G(t)um, t ∈ [0, τ ];
6: if em(t) ⊂ X free then
7: sm ← em(τ);
8: R(s)← R(s) ∪ {sm};
9: C(s)← C(s) ∪ {

(
‖um‖2 + ρ

)
τ};

10: end if
11: end for
12: return R(s), C(s);
13: end function

and the optimal control is:

u∗(t) = BTeA
T(τ−t)Wτδτ

= BT eA
T(τ−t)

 τ∫
0

eAsBBTeA
Tsds

−1 τ∫
0

eAsds

︸ ︷︷ ︸
C

Buij (4.13)

Since only the bottom 3×3 block of B is non-zero and the matrix C has its bottom-right

3× 3 block equal to I3×3, we get:

BTeA
T(τ−t)

 τ∫
0

eAsBBTeA
Tsds

−1 τ∫
0

eAsdsB = I3×3 (4.14)

which implies that u∗(t) ≡ uij .

4.2.3 Induced Space Discretization

The motion primitives generated using (4.9) will build a state space that is discretized.

Before solving Problem 1, we look into some propertied of the induced state space.

Proposition 2. The motion primitives defined as (4.9) induce a discretization on the state

space X .
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Proof of Proposition 2. Since all the flat outputs are independent from each other, we can

equivalently consider 1D case with out loss of generality. Given an initial state x0 and a

sequence of k inputs, u1, . . . , uk, are applied each for time τ . The final state up to (q−1)-th

derivative after applying the k inputs is given by,

x(k · τ) = F k(τ)x0 +
k−1∑
i=0

F i(τ)G(τ)uk−i,

F k(τ) =



1 kτ · · · (kτ)q−1

(q−1)!

0 1 · · · (kτ)q−2

(q−2)!

...
...

. . .
...

0 0 · · · 1


,

F i(τ)G(τ) =



[(i+ 1)q − iq] τqq![
(i+ 1)q−1 − iq−1

]
τq−1

(q−1)!

...

τ


.

(4.15)

Our discretized inputs are of the form ui = κi · du where κi ∈ Z leading to x(kτ) being

of the form

x(k · τ) = F k(τ)x0 +



τq

q!

k−1∑
i=0

[(i+1)q−iq ]κk−i

τq−1

(q−1)!

k−1∑
i=0

[(i+1)q−1−iq−1]κk−i

...
τ
k−1∑
i=0

κk−i

du (4.16)

Thus we can see that each term in the expression for x(kτ) is a variable integer times

a constant which means that our state space is discretized due to discretization of the

inputs.

Consider an second-order system in 1D for which q = 2. Apply the control sequence
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u1, . . . , uk, from (4.15) we get the system’s end state:

x(k · τ) =

1 kτ

0 1

x0 +

1
2τ

2

τ

uk +

3
2τ

2

τ

uk−1 + . . .+

2k+1
2 τ2

τ

u1. (4.17)

Let the initial state be x0 = [ p0, v0 ]T, consider two arbitrary states x(k1τ), x(k2τ)

which are derived from the control sequence u1
1, . . . , u

1
k1

and u2
1, . . . , u

2
k2

from x0:

x(k1τ) =

p0 + k1τv0

v0

+

1
2τ

2

τ

u1
k1 +

3
2τ

2

τ

u1
k1−1 + . . .+

2k1+1
2 τ2

τ

u1
1,

x(k2τ) =

p0 + k2τv0

v0

+

1
2τ

2

τ

u2
k2 +

3
2τ

2

τ

u2
k2−1 + . . .+

2k2+1
2 τ2

τ

u2
1.

(4.18)

The difference between these two states is:

dx = x(k1τ)− x(k2τ). (4.19)

Let du be the discretization step in control, it is obvious that the velocity is discretized

with resolution τ · du from its analytic formulation:

dx(1) = τ
[
(u1

1 + . . .+ u1
k1)− (u2

1 + . . .+ u2
k2)
]

= τdu ·
[
(κ1

1 + . . .+ κ1
k1)− (κ2

1 + . . .+ κ2
k2)
]︸ ︷︷ ︸

κv

(4.20)

where κv ∈ Z can be any integer according to the arbitrary select of control inputs.

The position discretization is more complicated, we look into the analytic expression for
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difference in position at first:

dx(0) = (k1 − k2)τv0 + (
1

2
τ2u1

k1 + . . .+
2k1 + 1

2
τ2u1

1)− (
1

2
τ2u1

k2 + . . .+
2k2 + 1

2
τ2u2

1)

= (k1 − k2)τv0 +
τ2

2
du ·

[
(κ1
k1 + . . .+ (2k1 + 1)κ1

1)− (κ1
k2 + . . .+ (2k2 + 1)κ2

1)
]︸ ︷︷ ︸

κp

(4.21)

where κp ∈ Z can be also any integer similar to κv except that its value is related to κv.

Substitute (4.20) into (4.21) we get

dx(0) = (k1−k2)τv0 +
τ

2
dx(1)+τ2du

[
(κk1−1 + . . .+ k1κ

1
1)− (κk2−1 + . . .+ k2κ

2
1)
]︸ ︷︷ ︸

κ′p

. (4.22)

where κ′p ∈ Z is independent from κv. Thus, we can see that the position discretization is

formed from three objects:

1. initial velocity term (k1 − k2)τv0 which refers to resolution of τv0;

2. velocity discretization term τ
2dx(1) which refers to resolution of 1

2τ
2du;

3. term relates to κ′p which refers to resolution of τ2du.

Each of these three terms will create an uniformed grid with associate resolution, but the

overall position grid is not simply the overlapped version of these three grids: the minimum

distance between any two states in the grid is not the minimum value of {τv0,
1
2τ

2du, τ2du},

but it is the minimum value of the permutation and combination of those values. We show

two 2D examples with the same time and control discretizations as τ = 1, du = 1 but

different initial velocity in Figure 4.4 and 4.5. When the initial velocity is zero (v0 = [0, 0]T),

the position discretization only relates to τ and du according to (4.22). The minimum

distance of the overall grid in Figure 4.4a is 1
2τ

2du = 0.5. We are also interested in the

position discretization considering the velocity constraints. Denote dv as the difference

between state’s velocity and the initial velocity v0, we only plot the states that have the
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same velocity as v0 in Figure 4.4b (zero velocity). In this case, it is equivalent to set dx(1) = 0

in (4.22) as, and the resolution of the grid is simply decided by the third term as τ2du = 1.

(a) Overall Discretization. (b) Discretization with dv = 0.

Figure 4.4: An example of position discretization in 2D of a second-order system. The red dot
indicates the initial position p0. Grey dots are the positions of the induced grid. The grid is
generated from x0 = [ 0, 0, 0, 0 ]T.

(a) Overall Discretization. (b) Discretization with dv = 0.

Figure 4.5: An example of position discretization in 2D of a second-order system generated from
x0 = [ 0, 0, 0.4, 0.3 ]T. The bottom right rectangle shows the zoomed-in grid and the direction of
ds1, ds2.

In Figure 4.5, the initial state has non-zero velocity as v0 = [0.4, 0.3]T. Figure 4.5a shows

the overall grid, of which the difference ds between two closest points is ds1 = [ 0.1, 0.2 ]T

and ds2 = [0.2, − 0.1]T. ds can be described by τv0 = [ 0.4, 0.3 ]T, 1
2τ

2du = 0.5 and

τ2du = 1 as:

ds1 = −v0 +
1

2
τ2[du, du]T, ds2 = 3v0 − τ2[du, du]T. (4.23)
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Figure 4.5b only plots the states with velocity equal to v0 = [ 0.4, 0.3 ]T. Thus the

dx(1) term in (4.22) is zero, and the minimum difference in position depends on τv0 =

[ 0.4, 0.3 ]T and τ2du = 1. The discretization in Figure 4.5b are ds1 = [ 0.2, 0.4 ]T and

ds2 = [ 0.2, − 0.1 ]T which can be derived from:

ds1 = −2v0 + τ2[ du, du ]T, ds2 = 3v0 − τ2[ du, du ]T. (4.24)

From the above two examples, we can conclude that the induced state lattices are dis-

cretized in position, velocity and higher order derivatives. The general grid in position is

not uniformed (e.g., Figure 4.5) except the special case where the initial state is static. We

are able to estimate the discretization using (4.22). We can estimate the induced grid for

higher order system with q > 2 using the same approach, which is omitted in this paper. In

addition, since the space X and dynamics are bounded and the induced state is discretized,

the induced graph is finite.

4.3 Deterministic Shortest Trajectory

Given the set of control inputs UM and the induced space discretization discussed in the

previous section, we can re-formulate Problem 1 as a graph-search problem. This can be

done by introducing additional constraints that stipulate that the control input u(t) in (4.6)

is piece-wise constant over intervals of duration τ . More precisely, we introduce an additional

variable N ∈ Z+, such that T = Nτ , and uk ∈ UM for k = 0, . . . , N − 1 and a constraint

in (4.6):

u(t) =

N−1∑
k=0

uk1{t∈[kτ,(k+1)τ)}

that forces the control trajectory to be a composition of the motion primitives in UM . This

leads to the following deterministic shortest path problem [5, Ch.2].

Problem 2. Given an initial state x0 ∈ X free, a goal region X goal ⊂ X free, and a finite set

of motion primitives UM with duration τ > 0, choose a sequence of control inputs u0:N−1 of
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length N such that:

min
N,u0:N−1

(
N−1∑
k=0

‖uk‖2 + ρN

)
τ

s.t. xk(t̃) = F (t̃)sk +H(t̃)uk ⊂ X free, t̃ ∈ [0, τ ]

xk(t̃) ⊂ X free ∀ k ∈ {0, . . . , N − 1}, t̃ ∈ [0, τ ]

sk+1 = xk(τ), ∀ k ∈ {0, . . . , N − 1}

s0 = x0, sN ∈ X goal

uk ∈ UM , ∀ k ∈ {0, . . . , N − 1}

(4.25)

The optimal cost of Problem 2 is an upper bound to the optimal cost of Problem 1

because Problem 2 is just a constrained version of Problem 1. However, this re-formulation

to discrete control and state-spaces enables an efficient solution. Such problems can be

solved via search-based [28, 48] or sampling-based [3, 36, 41] motion planning algorithms.

Since only the former guarantees finite-time (sub-)optimality, we use an A∗ method and

focus on the design of an accurate, consistent heuristic and efficient, guaranteed collision

checking methods in following subsections.

4.3.1 Heuristic Function Design

Devising an efficient graph search for solving Problem 2 requires an approximation of the

optimal cost function, i.e., a heuristic function, that is admissible1, informative (i.e., provides

a tight approximation of the optimal cost), and consistent2 (i.e., can be inflated in order to

obtain solutions with bounded suboptimality very efficiently [48]). Since by construction,

the optimal cost of Problem 2 is bounded below by the optimal cost of Problem 1, we can

obtain a good heuristic function by solving a relaxed version of Problem 1. Our idea is to

replace constraints in (4.6) that are difficult to satisfy, namely, x(t) ∈ X free and u(t) ∈ U ,

with a constraint on the time T . In this section, we show that such a relaxation of Problem 1
1A heuristic function h is admissible if it underestimates the optimal cost-to-go from x0, i.e., 0 ≤ h(x0) ≤

C∗
(
x0,X goal

)
, ∀x0 ∈ X .

2A heuristic function h is consistent if it satisfies the triangle inequality, i.e., h(x0) ≤ C∗(x0, {x1}) +
h(x1), ∀x0, x1 ∈ X .
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can be solved optimally and efficiently.

Minimum Time Heuristic

Intuitively, the constraints on maximum velocity, acceleration, jerk, etc. due to X obs and

U induce a lower bound T̄ on the minimum achievable time in (4.6). For example, since

the system’s maximum velocity is bounded by vmax along each axis, the minimum time for

reaching the closest state xf in the goal region X goal is bounded below by T̄v :=
‖pf−p0‖∞
vmax

.

Similarly, since the system’s maximum acceleration is bounded by amax, the state xf :=

[pTf , v
T
f ]T cannot be reached faster than:

min
T̄a,a(t)

T̄a

s.t. ‖a(t)‖ ≤ amax, ∀ t ∈ [0, T ]

p(0) = p0, v(0) = v0

p(T̄a) = pf , v(T̄a) = vf

The above is a minimum-time (Brachistochrone) optimal control problem with input con-

straints, which may be difficult to solve directly in 3D [18] but can be solved in closed-form

along individual axes [45, Ch.5] to obtain lower bounds T̄ xa , T̄
y
a , T̄ za . This procedure can

be continued for the constraint on jerk jmax and those on higher-order derivatives but the

problems become more complicated to solve and the computed times are less likely to pro-

vide better bounds the previous ones. Hence, we can define a lower bound on the minimum

achievable time via T̄ := max{T̄v, T̄ xa , T̄
y
a , T̄ za , T̄j , . . .} but for simplicity we use the easily

computable but less tight bound T̄ = T̄v.

Hence, to find a heuristic function, we relax Problem 1 by replacing the state and input
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constraints, x(t) ∈ X free and u(t) ∈ U , with the lower bound T ≥ T̄v:

min
D,T

J(D) + ρT

s.t. ẋ(t) = Ax(t) +Bu(t), ∀t ∈ [0, T ]

x(0) = x0, x(T ) ∈ X goal

T ≥ T̄

(4.26)

Since J(D) ≥ 0, a straight-forward way to obtain a lower-bound on the optimal cost is:

C∗
(
x0,X goal

)
= J(D∗) + ρT ∗ ≥ ρT̄v

Hence, given nodes s0, sf ∈ S in the discretized space, the following is an admissible heuristic

function:

h1(s0) = ρT̄v =
ρ‖pf − p0‖∞

vmax
(4.27)

for Problem 2. It is easy to see that it is also consistent due to the triangle inequality for

distances.

Linear Quadratic Minimum Time

While the minimum-time heuristic is very easy to compute and takes velocity constraints

into account, it is not a very tight lower bound on the optimal cost in (4.25) because

it disregards the control effort. The reason is that instead of solving (4.26), we simply

found a lower bound in the previous subsection. An important observation is that after

removing the constraints x(t) ∈ X free and u(t) ∈ U , the relaxed problem (4.26) is in fact

the classical Linear Quadratic Minimum-Time Problem [102]. The optimal solution to (4.26)

can be obtained from [102, Thm.2.1] with a minor modification introducing the additional

constraint on time T ≥ T̄ .

Proposition 3. Let xf ∈ X goal be a fixed final state and define δT := xf − eATx0 and the

controllability Gramian WT :=
∫ T

0 eAtBBTeA
Ttdt. Then, the optimal time T in (4.26) is
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either the lower bound T̄ or the solution of following equation:

− d

dT

{
δTTW

−1
T δT

}
= 2xTfA

TW−1
T δT + δTTW

−1
T BBTW−1

T δT = ρ (4.28)

The optimal control is:

u∗(t) := BTeA
T(T−t)W−1

T δT (4.29)

While the optimal cost is:

h2(x0) = δTTW
−1
T δT + ρT (4.30)

The polynomial coefficients D ∈ R3×(2n) in (4.3) are:

d0:(n−1) = x0, dn:(2n−1) = δTTW
−T
T eATHT

where H ∈ R(3n)×(3n) with Hij =


(−1)j , i = j

0, i 6= j

.

Thus, the optimal cost h2(x0) obtained in Proposition 3 is a better heuristic for Prob-

lem 2 than h1 because h2 takes the control efforts into account. It is also admissible by

construction because the optimal cost of Problem 2 is lower bounded by the optimal cost

of Problem 1, which in turn is lower bounded by h2(x0). Below, we give examples of the

results in Proposition 3 for several practical cases with a fixed value of T .

Velocity Control Let n = 1 so that X ⊂ R3 is position space and U is velocity space.

Then, the optimal solution to (4.26) according to Proposition 3 is:

d1 =
1

T
(xf − x0),

x∗(t) = d1t+ x0, u
∗(t) = d1,

C∗ =
1

T
‖xf − x0‖2 + ρT.

76



Acceleration Control Let n = 2 so that X ⊂ R6 is position-velocity space and U is

acceleration space. Then, the optimal solution to (4.26) according to Proposition 3 is:

d2

d3

 =

 6
T 2 − 2

T

− 12
T 3

6
T 2


pf − p0 − v0T

vf − v0

 ,
x∗(t) =

d36 t3 + d2
2 t

2 + v0t+ x0

d3
2 t

2 + d2t+ v0

 , u∗(t) = d3t+ d2,

C∗ =
12‖pf − p0‖2

T 3
−

12(v0 + vf ) · (pf − p0)

T 2
+

4(‖v0‖2 + v0 · v1 + ‖v1‖2)

T
+ ρT.

4.3.2 Collision Checking

For a calculated edge e(t) = [p(t)T, v(t)T, a(t)T, . . .]T in Algorithm 4, we need to check if

e(t) ⊂ X free for t ∈ [0, τ ]. We check collisions in the geometric space Pfree ⊂ R3 separately

from enforcing the dynamic constraints Dfree ⊂ R3(n−1). The edge e(t) is valid only if its

geometric shape p(t) ⊂ Pfree and derivatives (v(t), a(t), ...) ⊂ Dfree, i.e., ,

(v, a, ...) ⊂ Dfree ⇔

‖v‖∞ ≤ vmax, ∀t ∈ [0, τ ]

‖a‖∞ ≤ amax, ∀t ∈ [0, τ ]

...

(4.31)

Since the derivatives v, a, ... are polynomials, we calculate their extrema within the time

period [0, τ ] to compare with maximum bounds on velocity, acceleration, etc. For n ≤ 3, the

order of these polynomials is less than 5, which means we can easily solve for the extrema

in closed-form.

The more challenging part is checking collisions in Pfree. In this work, we model P as

an Occupancy Grid Map. Other representations such as a Polyhedral Map are also possible

but these are usually hard to obtain from real-world sensor data [14, 54] and out of the

scope of the discussion in this paper. Let P := {p(ti) | ti ∈ [0, τ ], i = 0, . . . , I} be a set
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of positions that the system traverses along the trajectory p(t). To ensure a collision-free

trajectory, we just need to show that p(ti) ∈ Pfree for all i ∈ {0, . . . , I}. Given a polynomial

p(t), t ∈ [0, τ ], the positions p(ti) are sampled by defining:

ti :=
i

I
τ such that

τ

I
vmax ≥ R. (4.32)

Here R is the occupancy grid resolution and is needed to guarantee safety. The condition

ensures that the maximum distance between two consecutive samples will not exceed the

map resolution. It is an approximation, since it can miss cells that are traversed by p(t)

with a portion of the curve within the cell shorter than R, but it prevents the trajectory

from penetrating or hitting obstacles.

4.4 Trajectory Smoothing

In the proposed planning approach, the dimension of the state space increases with increasing

requirements on the continuity of the final trajectory. More precisely, if C2 continuity is

required for the final trajectory, jerk should be used as a control input and the state space of

the associated second order system would be R9 (position, velocity acceleration). Generally,

planning in higher dimensional spaces (e.g., , snap input) requires more time and memory

to explore and store lattices/states. In this section, we discuss two approaches to reduce

the computational cost to find a Cn continuous trajectory from a Cm continuous trajectory

where m < n. The first approach is called “trajectory refinement” which is more or less

the same as the traditional method in [61, 82] and Section 3.2 that generates the minimum

snap trajectory from a geometric path. The second is a hierarchical approach to planning a

feasible trajectory in high dimensional space by utilizing guidance from a trajectory planned

in lower dimensional space. We show that the overall computation time of this hierarchical

planning is shorter than the total time it takes to plan a optimal trajectory directly. Due to

the fact that the final trajectory is calculated from a trajectory in lower dimensional space,

we call this process as trajectory smoothing.
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4.4.1 Trajectories Planned in Different Control Spaces

Before introducing the refinement, we look into the property of trajectories for different

systems. Denote the trajectories planned using velocity, acceleration or jerk inputs as Φq, q =

1, 2, 3 respectively. Given the same start and goal, dynamics constraints and discretization,

examples of the optimal trajectories in each case are plotted in Figure 4.6, where the control

effort Jq, q = 1, 2, 3 of the whole trajectory is measured as

Jq =

T∫
0

‖x(q)‖2dt. (4.33)

Denote the execution and computation time of the trajectory as T q and tq, q = 1, 2, 3

accordingly. From the planning results in 4.6, two conclusions can be drawn with increasing

q:

1. The execution time increases, i.e., T 1 < T 2 < T 3;

2. The computation time increases, i.e., t1 < t2 < t3.

Note that the computation time increases dramatically as q increases.

4.4.2 Trajectory Refinement

As described in Section 3.2.4, a trapezoid velocity profile is commonly used to describe the

robot following a path, in which the robot is assumed to move as a particle that exactly

tracks the path with defined velocity function. The velocity is treated as a linear piecewise

continuous function while the acceleration is a step function. This model gives the so-

called time allocation for a large group of trajectory optimization approaches described

in [54, 61, 82] and [9]. However, this approximation is naive and the resulting trajectory

significantly deforms from the given path that a robot aims to follow since the modeled

particle is not obeying the expected dynamics.

In this chapter, we proposed the complete solution for planning a trajectory that is valid

in control space. The resulting trajectory gives not only the collision-free path, but also the
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(a) Φ1 : T 1 = 32s, J1 = 42, t1 = 2ms

(b) Φ2 : T 2 = 33s, J2 = 2.25, t2 = 60ms

(c) Φ3 : T 3 = 34s, J3 = 3.75, t3 = 1646ms

Figure 4.6: Optimal trajectories planned using piecewise constant (a) velocity, (b) acceleration, (c)
jerk from a start (blue dot) to a goal (red dot) state. Grey dots indicates explored states.
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time for reaching individual waypoints. Generally, planning in higher dimension is slower

than in lower dimension as the number of states grows. We propose to plan a trajectory in

lower dimension and use the result as the time allocation for a refined trajectory in higher

dimension to reduce the time for calculating. The refined trajectory x∗(t) is derived from

solving following unconstrained QP:

min
D

N−1∑
k=0

τk∫
0

∥∥∥p(n)
Dk(t)

∥∥∥2
dt

s.t. x0(0) = s0, xN−1(τN−1) = sg

xk+1(0) = xk(τk), k ∈ {0, . . . , N − 2}

pDk(τk) = pk, k ∈ {0, . . . , N − 1}

(4.34)

where the initial, end state s0, sg and the intermediate waypoints pk, k ∈ {0, . . . , N − 1} are

given. The time for each trajectory segment τk is also given from the prior trajectory. The

solution for (4.34) is proposed in [61]. We ignore the mathematical details in this section

and only show the trajectory refinement results in Figure 4.7.

Even though the deformation of the refined trajectory from the prior trajectory is small as

shown in above figure, to guarantee the safety, we still need to check if the new trajectory hits

any obstacle. One solution is to follow the planning in adaptive dimensionality as proposed

in [24]. The other simpler algorithm is to rectify the final trajectory by adding intermediate

waypoints on the original collision-free trajectory for the time when the trajectory contacts

obstacles.

4.4.3 Using Trajectories as Heuristics

The fact that searching a optimal trajectory in the lower dimensional space is much faster

than in a higher dimensional space leads to the approach described in this subsection to

speed up the planning speed for the actual MAV system.

Denote the prior trajectory in lower dimensional space as Φp, we are searching for a

trajectory in higher dimensional space Φq (q > p). Assume the duration of each primitive
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(a) T = 8.5.

  

(b) T = 8.5, J = 296.6.

  

(c) T = 10, J = 14.0.

  

(d) T = 10, J = 21.3.

  

(e) T = 12, J = 11.3.

  

(f) T = 12, J = 13.6.

Figure 4.7: Trajectories planned from start s to goal g with initial velocity (4m/s). The blue/green
lines show the speed/acceleration along trajectories respectively and the red points are the inter-
mediate waypoints. (a) shows the shortest path. The time is allocated using the trapezoid velocity
profile for generating min-jerk trajectory in (b). The resulting trajectory has a large cost for efforts
J . (c), (e) show the trajectory planned using acceleration-controlled and jerk-controlled system. In
(d) and (f), we show the corresponding refined trajectories.
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in Φq is τ , each lattice sqn in the graph is associated with a time Tn which is the minimum

time it takes from the start to the current lattice. Tn is an integer multiplication of τ .

Instead of calculating the heuristic H(sqn) from current state sqn to the goal sg directly as

described in Section 4.3.1, we propose to use the intermediate goal spn = Φp(Tn) evaluated

from trajectory Φp at Tn such that the heuristic value is calculated as below:

H(sqn,Φ
p) = H1(sqn, s

p
n) +H2(spn, sg). (4.35)

The first term H1(·) on the RHS of (4.35) is proposed in the following subsection where sqn

is fully defined but spn has undefined states.

The second term H2(·) is given directly as the cost from spn to the goal by following Φp,

to be more specific:

H2(spn, sg) = Jq(spn, sg) + ρ(T p − Tn) (4.36)

where T p is execution time of Φp and Jq(spn, sg) is the control effort from spn to sg along Φp

as expressed in (4.33). This formulation is consistent with the cost function defined before

in (4.30). As the prior trajectory is in the lower dimensional space, Jq for Φp is always zero

(e.g. for planning a optimal trajectory Φ2 that uses acceleration input, the corresponding

control efforts of Φ1 is zero as there is no acceleration along Φ1). Thus H2(·) turns out to

be only the execution time between spn and goal:

H2(spn, sg) = ρ(T p − Tn). (4.37)

4.8 shows an example of applying (4.35) to search a trajectory Φ2 using acceleration

with a prior trajectory Φ1 planned using velocity. The new trajectory Φ2 tends to stick

with the prior trajectory Φ1 due to the effect of H1(·). H2(·) will push the searching moving

forward towards the goal. In fact, the heuristic function defined in (4.35) is not admissible

since it may not necessarily be the under-estimation of the actual cost-to-goal. However,

we are able to search for trajectories in higher dimensional space in a much faster speed
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by searching the neighboring regions of the given trajectory instead of exploring the whole

state space with the same priority.

  

(a) x− y plot

  

(b) t− x plot

Figure 4.8: Search Φ2 (magenta) using Φ1 (blue) as the heurisric. Left figure plots the trajectories
in x − y plane, the black arrows indicate the H1. Right figure shows the corresponding x position
with respect to time t along each trajectory, for states with the same subscript, they are at the same
time Tn.

The results of applying (4.35) for the same planning tasks in Figure 4.6 are shown in Fig-

ure 4.9, in which Φ1 is used to plan for both trajectory Φ2 and Φ3. Comparing Figure 4.9

to 4.6, the total cost of control effort and execution time, namely Jq+ρT q, of the new trajec-

tories Φq in Figure 4.9 are greater than the optimal trajectories in 4.6, but the computation

time tq and the number of expanded nodes are much less.

Linear Quadratic Minimum Time for Jerk Control

The heuristic function H(s, sg) for graph search is an under-estimation of actual cost from

the state s to the goal sg by relaxing the dynamics and obstacles constraints. We try to

find a state-to-state optimal trajectory of Problem 3, whose cost serves as the heuristic H.

The explicit solution for the optimal cost for velocity, acceleration control has been shown

in previous section, here we show the explicit solution for jerk control.

Problem 3. Given a current state s, the goal state sg, find the optimal trajectory according

to the cost function

min
j,T

T∫
0

‖j‖2dt+ ρT (4.38)

Assume the initial state is given as s = [pT
0 ,v

T
0 ,a

T
0 ]T, the formulation of position of the
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(a) Φ2 : T 2 = 35s, J2 = 3.0, t2 = 11ms

(b) Φ3 : T 3 = 36s, J3 = 4.25, t3 = 98ms

Figure 4.9: Trajectories (magenta) planned using Φ1 (black) as the heuristic. The computation time
tq and the number of expanded nodes are much less than the searching results in 4.6.

optimal trajectory for (4.38) is given from the Pontryagin’s minimum principle [68] as

p =
d5

120
t5 +

d4

24
t4 +

d3

6
t3 +

a0

2
t2 + v0t+ p0 (4.39)

The coefficients {d5,d4,d3} are defined in [68] by s, sg and T . As a result, the total cost

of (4.38) can be written as a function of time T as

C(T ) =

∫ T

0
(
d5

2
t2 + d4t+ d3)2dt+ ρT

=
d2

5

20
T 5 +

dT
4 d5

4
T 4 + (

dT
4 d4

3
+

dT
3 d5

3
)T 3 (4.40)

+ dT
3 d4T

2 + d2
3T + ρT

The minimum of C(T ) can be derived by taking the derivative with respect to T and

finding the root T ∗ of

dC
dT

= c0 + . . .+ c6T
−6 = 0, T ∈ [0,∞) (4.41)
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Therefore, H(s, sg) = C(T ∗). The coefficients in (4.41) are derived as follows:

(1) Fully Defined sg = [pT
1 ,v

T
1 ,a

T
1 ]T

c0 = ρ, c1 = 0, c2 = −9a2
0 + 6aT0 a1 − 9a2

1,

c3 = − 144aT0 v0 − 96aT0 v1 + 96aT1 v0 + 144aT1 v1,

c4 = 360(a0 − a1)T(p0 − p1)− 576v2
0 − 1008vT

0 v1 − 576v2
1, (4.42)

c5 = 2880(v0 + v1)T(p0 − p1),

c6 = − 3600(p0 − p1)2.

(2) Partially Defined sg = [pT
1 ,v

T
1 ]T

c0 = ρ, c1 = 0, c2 = −8a2
0,

c3 = − 112aT0 v0 − 48aT0 v1, (4.43)

c4 = 240aT0 (p0 − p1)− 384v2
0 − 432vT

0 v1 − 144v2
1,

c5 = (1600v0 + 960v1)T(p0 − p1),

c6 = − 1600(p0 − p1)2.

(3) Partially Defined sg = p1

c0 = ρ, c1 = 0, c2 = −5a2
0,

c3 = − 40aT0 v0, (4.44)

c4 = 60aT0 (p0 − p1)− 60v2
0,

c5 = 160vT
0 (p0 − p1),

c6 = − 100(p0 − p1)2.
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4.5 Analysis and Experimental Results

4.5.1 Heuristic Function

We proposed two different heuristic functions for planning the trajectory with graph search

algorithms in Section 4.3.1: the first one estimates the minimum time using the max speed

constraint as shown in (4.27), denoted as h1; the other one estimates the minimum cost

function using the dynamic constraints as shown in (4.30), denoted as h2. The former

heuristic h1 is fast to compute, but it fails to take in to account of the system’s dynamics;

the latter heuristic h2 requires to solve for the real roots of a polynomial, but it reveals the

lower bound of the cost regarding system’s dynamics and thus it is a tighter underestimation

of the actual cost. Here we compare the performance of the algorithm with respect to the

two heuristics h1, h2. As a reference, by setting the heuristic function to zero changes the

algorithm into Dijkstra search. Figure 4.10 visualizes the expanded nodes while searching

towards the goal from a state with initial velocity 3m/s in positive vertical direction.

(a) Dijkstra. (b) A∗ with h1. (c) A∗ with h2.

Figure 4.10: Generated trajectories using different heuristic functions. The expanded nodes (small
dots) are colored by the corresponding cost value of the heuristic function. Grey nodes have zero
heuristic cost, high cost nodes are colored red while low cost nodes are colored green.

Table 4.1: Comparison of Heuristic Functions

Time(s) # of Expanded Nodes
Dijkstra 0.16 2707
A∗ with h1 0.064 1282
A∗ with h2 0.016 376
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The run time analysis for the two heuristic functions is shown in Table 4.1. We can see

that the Minimum Cost Heuristic h2 makes the searching faster as it expands less nodes

without loss of optimality. However, when it comes to the system with higher dimension,

calculating h2 becomes harder as one can not analytically find the roots of a polynomial

with order greater than 4. As claimed in Section 4.3.1, when the maximum velocity is low,

h1 is efficient enough for any dynamic system.

4.5.2 Run Time Analysis

To evaluate the computational efficiency of the algorithm, we record the run time of gen-

erating hundreds of trajectories (Figure 4.11) using either acceleration-controlled or jerk-

controlled system in both 2D and 3D environments. Table 4.2 shows the time it takes for

each system. We can see that planning in 3D takes more time than in 2D; also, planning in

jerk space is much slower (10 times) than in acceleration space.

(a) 2D Planning. (b) 3D Planning.

Figure 4.11: Trajectories generated to sampled goals (small red balls). For the 2D case, we use 9
primitives while for the 3D case, the number is 27.

4.5.3 Re-planning and Comparisons

In this section, we show results of our navigation system that builds on the Receding Horizon

Control (RHC) framework as described in Section 2.3 with the proposed trajectory gener-
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Table 4.2: Trajectory Generation Run Time

Map Time(s) Accel-controlled Jerk-controlled

2D
Avg 0.016 0.147
Std 0.015 0.282
Max 0.086 2.13

3D
Avg 0.094 2.98
Std 0.155 3.78
Max 0.515 9.50

ation method. As a comparison, we also set up the system that utilizes the prior planned

path as the guide for trajectory generation. To demonstrate the fully autonomous collision

avoidance on a quadrotor, we use the AscTec Pelican platform with a Hokuyo laser range-

finder. We run state estimation and obstacle detection (mapping) based on Hokuyo lidar

on an onboard Intel NUC-i7 computer. Figure 4.12 shows the performance of using these

two approaches to avoid an obstacle by re-planning at the circle position where the desired

speed is non-zero. The traditional path-based approach in Figure 4.12b leads to a sharp

turn while our approach generates a smoother trajectory shown in Figure 4.12c.

Figure 4.13 shows the results in simulation where we set up a longer obstacle-cluttered

corridor for testing. The re-planning is triggered constantly at 3 Hz and the maximum

speed is set to be 3 m/s. Our method generates a better overall trajectory compared to the

traditional method as it avoids sharp turns when avoiding obstacles.

As a conclusion, the proposed search-based motion planning method is able to generate

trajectories that are dynamically feasible, collision-free, resolution optimal and complete in

real time. As shown in Table 4.3, we will further use this near-ultimate method to solve

various practical planning problems in the latter chapters.

Method Feasibility Safety Optimality Completeness Run time

SMP
Dynamically

feasible Collision free
Resolution
optimal

Globally
complete Fast

Table 4.3: Evaluation of search-based motion planning (SMP) method. Red blocks indicate the
drawbacks of the corresponding algorithm.

89



(a) Experimental environment

(b) Re-plan with path-based approach.

  

(c) Re-plan with our method.

Figure 4.12: Pelican experiments using different trajectory generation pipelines. The robot is initially
following a trajectory (blue curve) and needs to re-plan at the end of this prior trajectory (circled)
to go to the goal (red triangle). The state from which the robot re-plans is non-static and the
speed is 2m/s in positive vertical direction. (b) shows the result of using traditional path-based
trajectory generation method, the shortest path (purple line segments in the left figure) leads to
the final trajectory (yellow curve in the right figure); (c) shows the result of using our trajectory
generation method, the shortest trajectory (purple curve in the left figure) leads to the smoother
final trajectory (yellow curve in the right figure).
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(a) Simulation Environment.

  

(b) Path-based approach.

  

(c) Our method.

Figure 4.13: Re-planning with RHC in simulation using different trajectory generation pipelines.
The robot starts from the left (circled) and the goal is at the right side of the map (red triangle).
Blue curves show the traversed trajectory. (b) shows the re-planning processes using traditional path-
based trajectory generation method. (c) shows the re-planning processes using proposed method in
this paper. We can see that the overall trajectories in (c) is smoother than in (b).
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Chapter 5

Extensions of Search-based

Trajectory Planning

The search-based motion planning framework based on Chapter 4 can be extended to many

applications. In this chapter, we explore its potential to solve three practical planning

problems in real-world navigation tasks:

1. Planning with Motion Uncertainty : The robot is not able to perfectly track the nominal

trajectory in the presence of disturbances. We consider how to plan a safer trajectory

that is less likely to crash the robot in an obstacle-cluttered environment.

2. Planning with Limited FOV : Vision-based state estimation and the limited FOV of

sensors to detect obstacles require the robot to travel with constraints on the yaw

angle. We propose a way to find the desired yaw profile along the trajectory that

obeys this constraint.

3. Planning in SE(3): An MAV can be treated as ellipsoid instead of sphere such that

we are able to fully exploit its agility to plan trajectories in narrow environments.

We show that these problems are variations of Problem 1 in Chapter 4, in which we solve

an optimal trajectory that is defined as (3.1). As a quick reminder, an optimal trajectory
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(not guaranteed to be unique) that respects the dynamical and collision constraints, and is

minimum-time and smooth can be obtained from:

Problem 4. Given an initial state x0 ∈ X free and a goal region X goal ⊂ X free, find a

polynomial trajectory Φ(t) such that:

arg min
Φ

Jq(Φ) + ρTT

s.t. ẋ(t) = Ax(t) +Bu(t),

x(0) = x0, x(T ) ∈ X goal,

x(t) ∈ X free, u(t) ∈ U .

(5.1)

where the parameter ρT ≥ 0 determines the relative importance of the trajectory duration T

versus its smoothness Jq.

In the latter sections, we modify the above problem for individual case, all of which

is able to be solved using the graph search technique with motion primitives as described

in Chapter 4.

5.1 Planning with Motion Uncertainty

Existing work in trajectory planning assumes the availability of high control authority al-

lowing robots to perfectly track the generated trajectories. However, this assumption is

impractical in the real world since unpredictable environmental factors such as wind, air

drag, wall effects can easily disturb the robot from the nominal trajectory. Thus, even

though a nominal trajectory is in free space, it can easily lead to a collision when the robot

gets close to obstacles. To reduce this risk, a trajectory that stays away from obstacles

is desired. Traditionally, this is worked around by inflating the obstacle by a radius that

is much larger than the actual robot size. However, this over-inflation strategy is not a

complete solution for motion planning in obstacle-cluttered environments since it is prone

to block small gaps such as doors, windows, and narrow corridors.

The reachable set (funnel) [94] is used to model motion uncertainty for a robot follow-
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ing a time-varying trajectory. Assuming bounded and time-invariant disturbances leads

to bounded funnels. It is straightforward to show that the funnel of a linear system, as

in (4.4), controlled by a PD-controller [44] is bounded by a certain radius with respect to

the control gains. However, the planning strategy in [94] treats the motion uncertainty as a

hard constraint for collision checking which is an over conservative strategy that discards all

the trajectories close to obstacles. Besides, it is computationally expensive to search using

funnels.

Alternatively, Artificial Potential Fields (APFs) are used to plan paths that are away

from obstacles efficiently [2, 46, 104]. APFs have been used to model collision costs in

trajectory generation through line integrals [22, 71, 77, 96] in which the safe trajectory is

refined from an initial nominal trajectory through gradient descent. However, this gradient-

based approach strongly relies on the initial guess of time allocation and the sampling of

end derivatives for fast convergence and it ignores the dynamical constraints during the

re-optimization. Moreover, the result is easily trapped in undesired local minima. Thus, it

is not an appropriate method to solve the safe planning problem in complex environments.

In this section, we propose a novel approach that models the motion uncertainty as a

soft constraint and plans for trajectories that are as safe as possible with respect to the

collision cost through the line integral of the APF. The resulting trajectory is constrained

to be within a tunnel from the initial trajectory, such that it is suitable for planning in

unknown environments. The proposed approach does not require the Jacobian and Hessian

of the cost functions and hence is computationally efficient.

5.1.1 Problem Formulation

We call the trajectory derived from solving Problem 4 that ignores the collision cost as the

nominal trajectory Φ0. We treat trajectory planning with motion uncertainty as a problem

of finding a locally optimal trajectory around the nominal Φ0 that takes into account the

collision cost. It can be formulated as a variation of Problem 4 where we add a collision cost

Jc in the objective function and a search region (tunnel) T (Φ0) around Φ0 in the constraints:

Problem 5. Given an initial state x0 ∈ X free, a goal region X goal ⊂ X free and a search
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region T (Φ0) around the nominal trajectory Φ0, find a polynomial trajectory Φ such that:

arg min
Φ

Jq + ρTT + ρcJc

s.t. ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, x(T ) ∈ X goal

x(t) ∈ T (Φ0) ∩ X free, u(t) ∈ U

(5.2)

where the weights ρT , ρc ≥ 0 determines the relative importance of the trajectory duration

T and collision cost Jc versus its smoothness Jq.

In this section, we show that Problem 5 can be converted into a search problem and

solved using motion primitives.

Collision Cost Jc

We define the collision cost in Problem 5 as the line integral:

Jc(Φ) =

∫
Φ
U(s) ds. (5.3)

where U(s) is the potential value of position s ∈ Rm that is defined as:

U(s) =

 0, d(s) ≥ dthr

F (d(s)), dthr > d(s) ≥ 0
(5.4)

where d(s) is the distance of position s from the the closest obstacle. In addition, for positions

that are away from obstacles more than a distance dthr, we consider their collision cost to be

negligible. Thus, the potential function U(s) should be a non-negative and monotonically

decreasing function in domain [0, dthr) and equal to zero when d ≥ dthr. One choice for F (·)

is an polynomial function with order k > 0:

F (d) = Fmax

(
1− d

dthr

)k
. (5.5)
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The analytic expression of the line integral in (5.3) is hard to compute, instead we sample

the trajectory at I points with uniform time step dt for approximation:

∫
Φ
U(s)ds ≈

I−1∑
i=0

U(pi)‖vi‖dt (5.6)

where dt = T
I−1 and pi, vi are corresponding position and velocity at time i · dt. This

approximation can be easily calculated when the obstacle and potential field are represented

as a grid as shown in Figure 5.1.

The proposed collision cost evaluates the “danger level” of a trajectory with respect to its

relative position to obstacles. Jc can be more general than spatial penalty. For example, we

can consider the velocity penalty by using the gradient of APF to slow down the trajectory

when it is moving toward obstacles:

Jc(Φ) =

∮
Φ
U(s) + ρvU̇(s) · ṡ ds. (5.7)

Tunnel Constraint T

A tunnel is a configuration space around the nominal trajectory Φ0 that is used to bound

the perturbation. Let D(r) be the disk with radius r, the tunnel T (Φ0, r) is the Minkowski

sum of D and Φ as:

T (Φ0, r) = Φ0 ⊕D(r). (5.8)

Note that T could overlap with obstacles. Thus, we enforce the valid state to be inside

the intersection of T and free space X free to guarantee safety. When r →∞, Problem 5 is

equivalent to computing a globally optimal trajectory.

5.1.2 Solution

Given the set of motion primitives UM and the induced space discretization, we can refor-

mulate Problem 5 as a graph-search problem similar to Chapter 4 which is solvable through

dynamic programming algorithms such as Dijkstra and A*. For each primitive Φn, we
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start

goal

(a) Global plans.

start

goal

(b) Local plans.

Figure 5.1: Planning in an occupancy grid map. Rainbow dots indicate the truncated Artificial
Potential Field (APF) generated from (5.4). In the left figure, the blue trajectory is the shortest
trajectory that ignores collision cost; the green trajectory is the shortest trajectory that treats the
APF as obstacles. In the right figure, the magenta trajectory is the planned trajectory using the
proposed method that takes into account the collision cost. It is locally optimal within the tunnel
(blue region) around the nominal shortest trajectory from (a).

sample In points to calculate its collision cost according to (5.6). In the grid map, the In

should be dense enough to cover all the cells that Φn traverses. One choice of automatically

selecting In is

In =
v̄max ·∆tn

rM
, v̄max = max{vx, vy, vz}. (5.9)

where rM is the grid resolution.

5.1.3 Experimental Results

In Figure 5.2, a quadrotor tries to reach the goal position using the proposed planner in

an office environment. The environment is shown as a 2D colored schematic, but the robot

initially has no information about the environment. Therefore, it needs to constantly re-plan

at certain frequency to avoid new obstacles that appear in the updated map. Figure 5.2a

shows the results using traditional method in Chapter 4 that doesn’t consider collision costs,

in which the quadrotor occasionally touches the wall inside the circled region. Figure 5.2b
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(a) Traditional method.

  

(b) Our method with APF.

Figure 5.2: MAV with limited sensing navigating in an office environment. The left and right figures
show the results from using two different planners: (a) original search-based method that does not
consider collision cost; (b) the proposed method that plans for optimal trajectories with respect to
collision cost. In (a), the robot touches the wall multiple times in the circled region. The trajectory
in (b) is much safer.

shows the results from using the proposed method, in which the robot stays away from walls

and safely goes in and out of rooms through the middle of open doors. The re-planning time

using our method is fast in this 2D scenario, the run time of which is below 10 ms for a 2nd

order dynamic model.

5.2 Planning with Limited FOV

Due to the fact that the yaw of an MAV system does not affect the system dynamics, this flat

output is frequently ignored in existing planning works. Except when using omni-directional

sensors, a fully autonomous MAV system is usually directional. In order to guarantee safety

while navigating in an unknown environment, an MAV prefers to move in the direction that

can be seen by a range sensor such as RGB-D or time-of-flight (TOF) camera which has

limited FOV. Thus, its yaw ψ(t) should constatnly change as the robot moves to different lo-

cations. Specifically, the desired yaw ψ is related to the velocity direction: ξ = arctan vy/vx.

This constraint is non-linear and couples the flat outputs x and y, thus it is hard to model

it in the optimization framework as proposed in [14, 82]. In this section, we develop a

search-based method that resolves this constraint properly by splitting it into two parts: a

soft constraint that minimizes the difference between ψ and ξ and a hard constraint that

enforces the moving direction ξ to be inside the FOV of the range sensor.
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5.2.1 Problem Formulation

We define an additional cost term representing a soft FOV constraint as the integral of the

square of angular difference between velocity direction and desired yaw:

Jψ(Φ) =

T∫
0

[ψ(t)− ξ(t)]2dt, (5.10)

while the hard constraint can be formulated by the absolute angular difference and the

sensor’s horizontal FOV θ:

|ψ(t)− ξ(t)| ≤ θ

2
, (5.11)

We modify Problem 4 to add these constraints as:

Problem 6. Given an initial state x0 ∈ X free, a goal region X goal ⊂ X free and a sensor

FOV θ, find a polynomial trajectory Φ such that:

arg min
Φ

Jq + ρTT + ρψJψ

s.t. ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, x(T ) ∈ X goal

x(t) ∈ X free, u(t) ∈ U

|ψ(t)− ξ(t)| ≤ θ

2

(5.12)

where the weights ρT , ρψ ≥ 0 determine the relative importance of the trajectory duration

T , the yaw cost Jψ, and its smoothness Jq.

5.2.2 Solution

Since both of the additional constraints contain ξ which is an arctan function, it is difficult

to get their analytic expressions. We use a sampling method similar to the one in (5.6) to

approximate the FOV constraint. The control uψ ∈ u for yaw can be applied in a different

control space compared to the other flat outputs. To be specific, we set uψ as the angular

velocity assuming the robot does not need to aggressively change the heading.
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start

goal

(a) ρψ = 0, θ = 2π.

start

goal

(b) ρψ = 1, θ = 2π.

start

goal

(c) ρψ = 0, θ = π/2.

start

goal

(d) ρψ = 1, θ = π/2.

Figure 5.3: Planning from a start that faces towards right to a goal with a non-zero initial velocity
(black arrow), with yaw constraint. We draw the desired yaw as a small triangle at the corresponding
position. As we adjust the parameters ρψ and θ, the desired yaw along the planned trajectory follows
different profiles.

Figure 5.3 shows the planning results from solving Problem 6 with different parameters

ρψ, θ: in (a), we ignore the FOV constraint; in (b), we ignore the hard FOV constraint by

setting θ = 2π; in (c), we ignore the soft FOV constraint on Jψ; and in (d), we consider

both soft and hard constraints. Obviously, trajectories in (a) and (b) are not safe to follow

since the robot is not always moving in the direction that the obstacle is visible within the

sensor’s FOV. The trajectory in Figure 5.3d is desirable as its yaw is always following the

velocity direction. Besides, even though the shapes of all the trajectories in Figure 5.3 look

the same, the trajectories in (c) and (d) have longer duration since the robot needs to rotate

to align the yaw along the trajectory at the beginning.

5.2.3 Experimental Results

The yaw constraints can be used with the APF constraint described in Section 5.1 by adding

Jc in the cost function of Problem 6 as

Jq + ρTT + ρψJψ + ρcJc. (5.13)

The solution to this modified problem satisfies the requirements of directional movement

and safety. Similar to Section 5.1.3, we use this planner to generate and re-plan trajectories

from start to goal in both 2D and 3D environments (Figure 5.4). The environment is initially

unknown, and the robot uses its onboard depth sensor with a horizontal FOV θ to detect
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(a) Sensor model.
  

(b) 2D Navigation. (c) 3D Navigation.

Figure 5.4: Navigation of a quadrotor equipped with an RGB-D camera in an office environment.
The red triangle in the left image indicates the sensor’s FOV θ and sensing range d. The red cells in
(a) stand for the points detected by the sensor. The trajectory in (b) and (c) shows the quadrotor
approaching the goal with changing yaw using the proposed method.

obstacles. To be able to plan trajectories reaching the goal, the unexplored space is treated

as the free space. This greedy assumption introduces the risk that the trajectory could

potentially crash the robot into hidden obstacles that are outside of the sensor’s FOV. Our

planner is able to generate yaw movements along the trajectory such that the robot is always

moving into the region within the sensor’s FOV. Therefore, the robot is able to avoid hitting

hidden obstacles and reach the goal safely.

5.3 Planning in SE(3)

Existing planning approaches usually model the MAV as a sphere or prism, which allows

obtaining a simple configuration space (C-space) by inflating the obtacles with the robot

size (Section 2.2.1). As a result, the robot can be treated as a single point in C-space and

the collision-checking even for trajectories that take dynamics into account is simplified.

Even though this spherical model assumption is widely used in motion planing, it is very

conservative since it invalidates many trajectories whose feasbility depends on the robot

attitude (Figure 5.5). Several prior works have demonstrated aggressive maneuvers for

quadrotors that pass through narrow gaps [17, 30, 55] but, instead of solving the planning

problem, those works focus on trajectory generation with given attitude constraints. Those

constraints are often hand-picked beforehand or obtained using gap detection algorithms
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Figure 5.5: By taking the shape and dynamics of a quadrotor into account, our planner is able
to generate a trajectory that allows the quadrotor to pass through a door, narrower than robot’s
diameter. In contrast, existing methods that conservatively model the quadrotor as a sphere (red
circle) would not be able to find a feasible path in this environment.

which only works for specific cases.

We are interested in designing a planner that considers the robot’s actual shape and

dynamics in order to obtain aggressive trajectories in cluttered environments (Figure 5.5).

Since quadrotors are under-actuated systems, they cannot translate and rotate indepen-

dently. In this section, we extend our search-based motion planning by explicitly computing

the robot attitude along the motion primitives and using it to enforce collision constraints.

5.3.1 System Dynamics in Planning

Before introducing the planning approach, we inspect the relation between polynomial tra-

jectories and system dynamics. The position x = [ x, y, z ]T in R3 of the quadrotor can be

defined as a differentially flat output as described in [61]. The associated velocity v, accel-

eration a and jerk j can be obtained by taking derivatives with respect to time as ẋ, ẍ,
...
x

respectively. The desired trajectory for the geometric SE(3) controller as described in [44]

can be written as Φ(t) = [ xT
d , vT

d , aTd , jTd ]T. According to [29], we assume the force and

angular velocity are our control inputs to the quadrotor. From Section 2.1.3, ignoring feed-

back control errors, the desired mass-normalized force in the inertial frame can be obtained

as

fd = ad + gzW. (5.14)
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where g is the gravitational acceleration and zW = [0, 0, 1]T is the z-axis of the inertial world

frame. Similar to [44], given a specific yaw ψ, the desired orientation in SO(3) can be written

as Rd = [ r1 | r2 | r3 ] where

r3 = fd/‖fd‖, r1 =
r2c × r3

‖r2c × r3‖
, r2 = r3 × r1 (5.15)

and

r2c = [ − sinψ, cosψ, 0 ]T. (5.16)

which is assumed to be not parallel to r3. The associated angular velocity in the inertial

frame, Ṙd = [ ṙ1 | ṙ2 | ṙ3 ], can be calculated as

ṙ3 = r3 ×
ḟd
‖fd‖

× r3,

ṙ1 = r1 ×
ṙ2c × r3 + r2c × ṙ3

‖r2c × r3‖
× r1, (5.17)

ṙ2 = ṙ3 × r1 + r3 × ṙ1

where

ṙ2c = [ − cosψ, − sinψ, 0 ]Tψ̇, ḟd = jTd . (5.18)

Therefore, the desired angular velocity wd in body frame is obtained as:

[wd]× = RT
d Ṙd. (5.19)

Once the desired force fd, orientation Rd and angular velocity wd are defined, it is

straightforward to compute the desired control inputs for the quadrotor system. Notice

that: 1) orientation is algebraically related to the desired acceleration and gravity and 2)

angular velocity is algebraically related to the desired jerk.
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5.3.2 Collision Free Primitives

As indicated before, traditional collision checking though inflating obstacles is over-conservative

and not suitable for planning agile trajectories in cluttered environments since it fails to take

the actual robot shape and attitude into account. In this section, we model the quadrotor as

an ellipsoid ξ in R3 with radius r and height h and the obstacle map as a point cloud O ⊂ R3

(Figure 5.6). Given a quadrotor state s, its body configuration ξ at s can be obtained as

ξ(s) := { p = Ep̃ + d | ‖p̃‖ ≤ 1 } (5.20)

where

d = x(t), E = R


r 0 0

0 r 0

0 0 h

RT (5.21)

and the orientation R can be calculated from ẍ(t) and gravity as shown in (5.15).

  

Figure 5.6: A quadrotor can be modeled as an ellipsoid with radius r and height h. Its position
and attitude can be estimated from the desired trajectory. A point cloud O is used to represent
obstacles.

Checking whether the quadrotor hits obstacles while following a trajectory is equivalent

to checking if there is any obstacle inside the ellipsoid along the trajectory. In other words,

we need to verify that the intersection between ξ and the point cloud O is empty:

O ∩ ξ = { o | ‖E−1(o− d)‖ ≤ 1, ∀o ∈ O } = ∅ (5.22)

Instead of checking through every point in O, it is more efficient to use KD-tree [84] to crop
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a subset Or,d of O at first and then check the intersection between ξ and obstacles inside

Or,d. The subset Or,d is created by looking for neighbor points around d within radius r,

assuming r ≥ h.

Since the contour of an ellipsoid following a primitive is not convex, it is difficult to get

an analytic approximation for the union of the contour of the ellipsoids along the primitive.

Instead, as shown in Figure 5.7, we sample I states in time along a primitive Fn and consider

the primitive Fn collision-free if

O ∩ ξ(si,n) = ∅, ∀i = {0, 1, . . . , I − 1} (5.23)

where si,n is the i-th sampled state on Fn.

(a) Min-acceleration primitive. (b) Min-jerk primitive. (c) Min-snap primitive.

Figure 5.7: Sampe ellipsoids along different primitives.

In sum, the explicit formulation of the feasibility constraints Fn(t) ⊂ X free in Problem 1

is written as:

Fn(t) � [ vT
max, a

T
max, j

T
max ]T, (5.24)

O ∩ ξ(si,n) = ∅, ∀i = {0, 1, . . . , I}.

5.3.3 Evaluation

We apply the proposed algorithms over several typical maps to evaluate planner’s capability.
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2D Planning 2D planning is efficient and useful in 2.5D environments where the obstacles

are vertical to the floor. We start by showing 2D planning tasks of flying though gaps with

different widths. In Figure 5.8, we show how planned trajectories using jerk as a control

input vary as the gap in a wall is shrinking (left wall moves closer to the right wall from

(a) to (f)). Accordingly, the angle of the desired roll at the gap φgap increases. Assume the

robot has radius r = 0.35m, height h = 0.1m, and the maximum acceleration in each axis is

amax = g. Denoting the roll along trajectory as φ, according to (5.14) and (5.15), we have

− arctan
amax
g
≤ φ ≤ arctan

amax
g

(5.25)

since the desired acceleration in z-axis is zero. In other words, the smallest gap that the

robot can pass through using 2D planning is approximately equal to 2r cos θ (which is

approximately equal to 0.525m).

3D Planning By adding control in the z-axis, we are able to plan in 3D space and relax

the constraint in (5.25) as follows:

− arctan
amax

g − amax
≤ φ ≤ arctan

amax
g − amax

. (5.26)

When amax ≥ g, φ ∈ (−π
2 ,

π
2 ] can be arbitrary. Letting amax = g, we are able to reduce the

gap width even more as shown in the following Figure 5.8.

Another example of 3D planning using a window with a rectangular hole in the middle is

considered. By modifying the window’s inclination φwin, we are able to verify the planner’s

capability to generate trajectories as shown in Figure 5.9.

Parameters There are a few parameters that significantly affect the planning performance

including computation time, resolution completeness, continuity and dynamics constraints.

In this section, we analyze these relationships and provide a rough guidance on how to set

the parameters in our planner. In the above examples of 2D and 3D planning, we used the

following settings (here the control input is defined as jerk such that umax = jmax):
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(a) φgap = 0◦ (b) φgap = 27◦ (c) φgap = 45◦

(d) φgap = 46◦ (e) φgap = 73◦ (f) φgap = 90◦

Figure 5.8: Trajectories through gaps with different widths: 0.75, 0.65, 0.55m from (a) to (c) (2D
planning) and 0.55, 0.45, 0.35m from (d) to (f) (3D planning). φgap indicates the maximum roll at
the gap. Red dots show the start and goal.

107



(a) φwin = 30◦ (b) φwin = 45◦ (c) φwin = 60◦

Figure 5.9: Trajectories generated through a rectangular hole of size 0.4× 0.8m oriented at different
angles. A robot with radius r = 0.35m needs to fly through the hole with certain non-zero roll and
pitch angles. The colored dots represent walls in the map that invalidate trajectories that go around
the window.

ρ τ vmax amax umax du

10000 0.2s 7m/s 10m/s2 50m/s3 12.5m/s3

A larger ρ results in faster trajectories. The scale of ρ should be comparable to the scale

of the associated control effort. Here we use ρ ≈ 4u2
max. The motion primitive duration τ

decided the density of the lattices and computation time, for moderate flight speed (< 10

m/s), we find τ = 0.2s to be a reasonable choice. A small τ makes the graph dense and

requires more explorations to reach the goal, while a large τ may easily result in searching

failure since the graph may be too sparse to cover the feasible region. The discretization in

the control space UM also affects the density of the graph as shown in Figure 5.10. Its effect

is similar to τ – finer discretization in UM leads to a slower but more complete search and

smoother trajectories and vice versa. The maximum velocity and acceleration are limited

by the system’s dynamics including thrust-to-weight ratio, max angular speed and air drag

etc, but in many cases, we also want to limit the agility due to the space, state estimation

and control limitations.

108



(a) τ = 0.5, |UM | = 9. (b) τ = 0.5, |UM | = 25.

Figure 5.10: Graph G(S, E) generated by applying BFS for a finite planning horizon over a set of
motion primitives UM with 9 elements (a) and 25 elements (b). Red dots represent states in S and
magenta splines represent edges in E .

5.3.4 Experimental Results

Simulation Results

The proposed planner is used to generate trajectories in complicated environments as shown

in Figure 5.11. A geometric model of the environment is converted into a point cloud and

used to construct an obstacle KD-tree with 5cm resolution.

(a) Office environment. (b) Unstructured environment.

Figure 5.11: Generated trajectories in two different environments. The robot radius is r = 0.5m,
making its diameter much larger than the door width in (a). If the obstacles in these environments
are inflated by r, no feasible paths exist.

In general, finding the optimal trajectories in complicated environments like Figure 5.11

is slow (Table 5.1 gives the computation time of trajectory planning on a moderate fast

computer with an Intel i7 processor with clock rate of 3.4GHz). As proposed in Section 4.4.2,

we plan trajectories Φ2 using acceleration control at first, based on which we plan the

trajectory Φ3
∗ using jerk control. As shown in Table 5.1, the computation time for hierarchical
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planning is much less than that for planning in the original 9 dimensional space with jerk

input. We can also see in Figure 5.12 that the refinement process tends to explore fewer

states. As expected, the refined trajectory Φ3
∗ has a higher cost compared to the optimal

trajectory Φ3. While use trajectories planned in the lower dimensional space as heuristics

for searching in the higher dimensional space will make the trajectories sub-optimal, the

algorithm guarantees safety and completeness.

Office Unstructured 3D

t(s) J(×103) T (s) t(s) J(×103) T (s)

Φ3 89.42 8.9 4.6 129.58 5.6 3.0

Φ2 9.34 0 4.4 21.64 0 3.6

Φ3
∗ 2.03 11.1 5.0 24.02 15.1 4.8

Table 5.1: Evaluation: t refers to the computation time, J is the total control (jerk) effort and T is
the total trajectory execution time.

Figure 5.12: Comparison between the optimal method (left) and refinement (right). The prior
trajectory Φ2 is plotted in blue, while the white dots indicate explored states. It is clear that the
refinement explores fewer irrelevant regions but the generated trajectory is suboptimal.

5.3.5 Real World Experiments

The experiments is aiming to demonstrate the feasibility of planned trajectories on a real

robot. We use AscTec Hummingbird as our quadrotor platform, we also use VICON motion

capture system to localize the quadrotor and the obstacle map is obtained by depth sensor in

advance to generate trajectories. The robot is able to avoid hitting obstacles by following the
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control commands extracted from the planned trajectory, received via wireless. Figure 5.13

shows a flight when the quadrotor needs to roll aggressively in order to pass through the

gap between white boards.

      

Figure 5.13: Quadrotor tracks the planned trajectory to fly through a narrow gap. Top figures are
the snapshots of the video, bottom figures are corresponding visualizations in ROS. Maximum roll
angle at the gap is 40◦ as drawn in the top right figure.

The control errors in velocity and roll are plotted in Figure 5.14. The commanded roll

includes the feedback attitude errors such that it is not as smooth as the desired roll from the

planned trajectory. The existed lag in the attitude is due to the fact that the actual robot

is not able to achieve specified angular velocity instantly, however for a moderate angular

speed, this assumption still holds valid. A more accurate model for the quadrotor should

use snap as the control input instead of the jerk. The trajectory planned using the snap as

the control input is straightforward to solve following the same pipeline as proposed in this

thesis, which has also been implemented in our open-sourced planner.
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Figure 5.14: Plots of control errors, the blue curve is the command value while the green curve
shows the actual robot state. The top figure shows vx − t, and the bottom figure shows φ− t.
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Chapter 6

Search-based Trajectory Planning in

Dynamic Environments

All planning problems addressed so far involved a static map. Ensuring optimality and

completeness in environments with mobile obstacles is much harder [79]. Existing planning

methods based on fast re-planning including [21, 34, 39, 87] or safe interval [69, 74] are

neither complete nor optimal. Reactive collision avoidance using the concept of velocity

obstacle (VO) [20, 83, 97, 98, 107] discards trajectories’ global optimality and completeness

to gain the guarantee of flight safety and real-time computation. However, these VO based

frameworks assume a simple straight line path with constant velocity and cannot be used to

follow a dynamically feasible trajectory for systems with second or higher order dynamics.

In this chapter, we directly solve the planning problem in a dynamic environment using

our search-based framework which is resolution optimal and complete. To ensure the flight

safety, the robot needs to re-plan since the information of surrounding moving obstacles is

being constantly updated. We will model a moving obstacle as the linear velocity polyhedron

(LVP) in Rm whose position and velocity are observable as explained later in Figure 6.1.

In fact, a linear model for a moving obstacle is only an approximation of its motion in the

general case. To increase the success of future re-plans, we inflate the LVP with respect to

time. In the meanwhile, to avoid wasting time searching over the same region repeatedly, we
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use an incremental trajectory planning approach based on Lifelong Planning A* (LPA*) [40].

The proposed planner can further be developed for planning for multi-robot systems, in

which the inter-robot collision avoidance is guaranteed.

6.1 Planning with Moving Obstacles

As shown in Figure 6.1, a single translating obstacle can be represented by a linear velocity

polyhedron c in Rm with velocity vc (no rotation). We first show that the collision between

a polynomial trajectory Φ and c can be checked by solving for roots of a polynomial. We

then describe our model of motion uncertainty using the concept of the LVP, and show its

use in re-planning.

c

vca

Figure 6.1: A 2D example of a linear velocity polyhedron (LVP) which is a convex polyhedron with
velocity vc. a indicates the outward normal of the attached half-space.

6.1.1 Collision Checking against LVPs

Denote a half-space in Rm as h = { p | aTp ≤ b, p ∈ Rm }. The intersection of M half-

spaces gives a convex polyhedron, c =
⋂M−1
j=0 hj = { p | ATp ≤ b, p ∈ Rm }, where aj

corresponding to hj is the j-th column of matrix A and bj is the j-th element of vector b.

The LVP is described as a polyhedron c with a velocity vc, thus bj is time-varying if vc is

non-zero. Denote h0
j = { p | aTj,0 · p ≤ bj,0 } as the initial half-space h0

j = hj(t = 0), we can

mathematically define the LVP by:

aj(t) = aj,0, bj(t) = bj,0 + aTj,0 · vct. (6.1)

If a polynomial trajectory Φ defined by (3.1) collides with a polyhedron c, we must have

one of its trajectory segments Φi intersect c in the time interval [ ti, ti+1 ]. It can be verified

by finding roots of the polynomial function of time aTj Φi(t) = bj(t): if there exists a root tc
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located in the interval [ 0, ti+1− ti ] and the intersecting point Φi(tc) (i.e., Φ(ti + tc)) is on

the boundary of c, we claim that Φ collides with c.

Proposition 4. A trajectory segment Φi(t) intersects a polyhedron c that is composed of

half-spaces described by A and b if and only if

∃ tc ∈ [ 0, ∆ti ] s.t. ATΦi(tc) ≤ b (6.2)

Since we assume that vc is constant for each planning interval, bj(t) is a time-parameterized

polynomial function. Therefore, we are still able to solve roots from the polynomial function

in (6.2). Figure 6.2 shows the planning results in two configurations with LVPs. For better vi-

sualization, the animation of robot following planned trajectories in corresponding dynamic

environments is shown in the video at https://www.youtube.com/watch?v=2uO8T3j3iwg.

start goal

(a) Configuration 1.

start goal

(b) Configuration 2.

Figure 6.2: Planning with linearly moving obstacles. We use different transparencies to represent
positions of moving obstacles and robot at different time stamps. The moving obstacles in configu-
ration 2 is wider than configuration 1, thus the planned trajectory in configuration 2 lets the robot
wait for the first obstacle passing through the tunnel instead of entering the tunnel in parallel.

6.1.2 Uncertainty of Linear Polyhedra

Since the movement of a moving obstacle is unpredictable, our LVP model in (6.1) is only

a prediction for the purposes of re-planning. To address this problem, we use a simple

but effective strategy similar to [100] that grows the obstacle’s geometry: shift all the half-

spaces in the direction of the outward normal with certain speed ve > 0. As a result, (6.1)
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is modified as:

aj(t) = aj,0, bj(t) = bj,0 + (aTj,0 · vc + ‖aj,0‖ve)t. (6.3)

Substituting (6.3) into (6.2), we can still get a polynomial function to check for collision.

An example of growing obstacles is illustrated in Figure 6.3 where the robot constantly

re-plans at 1 Hz. The robot is able to avoid the non-linearly moving obstacles with the

proposed linear model in (6.3) with a properly selected ve.

(a) Plan epoch 0. (b) Plan epoch 12.

(c) Plan epoch 15. (d) Plan epoch 20.

Figure 6.3: Re-planning in a map with 2 moving obstacles. The blue splines show the future
trajectories of moving obstacles which are unobservable. The stacked transparent rectangles indicate
the evolution of the moving obstacles as predicted by (6.3), which are used in re-planning.

6.1.3 Problem Formulation

For a general planning problem in the environment that has both static and moving obstacles,

we separate the collision checking in two workspaces: a static workspace Xs and a dynamic

workspace Xd(t). Xs can be represented by a standard map which contains a collision-free

subset X frees and an occupied subset X obss = Xs \ X frees . Xd(t) is a time-varying set whose
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occupied subset consists ofK moving obstacles X obsd (t) =
⋃K−1
k=0 ck(t). Denote the free subset

as X freed (t) = Xd(t) \ X obsd (t), the original collision constraint x(t) ∈ X free in Problem 4 is

re-written as:

x(t) ∈ X frees , and x(t) ∈ X freed (t). (6.4)

Since the collision checking is a function of time, the lattice state in Problem 4 should be

augmented by the corresponding time stamp. In such case, a maximum planning horizon

Tmax is the criterion to determine if the search should be terminated or not. Otherwise, if

the goal is occupied permanently by moving obstacles, the planner will keep expanding the

same state at different time stamps.

6.2 Incremental Trajectory Planning

A planned trajectory needs to be updated when new information of moving obstacles is

updated in order to guarantee safety and optimality. Re-planning from scratch every time is

not efficient since we may waste time searching places that were already explored in previous

planning epochs. To leverage incremental search techniques for dynamic systems, we replace

the A* with Lifelong Planning A* (LPA*) [40]. For searching with motion primitives, an

additional graph pruning process is necessary to maintain the correctness and optimality of

the planning results. By combining LPA* and graph pruning, we can efficiently solve the

re-planning problem in a dynamic environment.

D* [88], D* Lite [39] and LPA* [40] are the most popular incremental graph search

algorithms used in practice. Even though they are more popular than LPA*, the D* and

D* Lite algorithms are not suitable for incremental graph search in the state lattice graph

described in the previous section. This is due to the input discretization leading to a state

lattice where it is almost impossible to find a trajectory that exactly reaches the goal state.

Thus, the trajectory planned from the goal state to start (as done in D* and D* Lite) will

not be able to exactly reach the start state. We cannot have discontinuities in the trajectory

for it to be dynamically feasible for the quadrotor. Considering this, we decided to use LPA*

for the incremental graph search. Similar to A*, LPA* always determines a shortest path
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from a given start state to a goal state, given the graph and edge costs.

When using graph search for trajectory planning, it is usually not easy to construct

the graph. Most of the computation time during planning is spent in finding successors

for the nodes in the graph and checking for collisions along the edges. Thus, if we are

able to keep the graph from a previous plan and update its edge costs as the map changes,

we should be able to save a significant amount of computation time in the new planning

query. LPA* is designed to solve this exact problem. In LPA*, once the graph has local

inconsistency due to a map update, the algorithm will re-expand only the affected states

until all the locally inconsistent states become consistent. Section 6.2.2 provides an overview

of the LPA* algorithm for those who are not familiar with it. In the following subsections,

we discuss the two places in our algorithm that are different from the original LPA*.

6.2.1 Notation

Before describing the algorithms, we introduce the notation used in the following pseudocode.

A graph is composed of state lattices and directional edges [75]. Denote the set of state

lattices as U , a state lattice u ∈ U is defined as the combination of position, velocity and

acceleration in R3 as u := {p,v,a} (Section 4.2.1).

Two states are equal if their coordinates of position, velocity and acceleration are equal.

In the pseudocode, we use the symbol “≈” to indicate that the two states u1, u2 are close to

each other.

We use the following attributes for state u ∈ U :

g(u) total cost to reach u from the start state

rhs(u) one-step look-ahead value based on g(u)

Succ(u) one-step successors

Pred(u) one-step predecessors

Let e(u, v) be the directional edge connects the state u to its successor v, denote its

cost as c(u, v) which should be positive. We set c(u, v) to infinity if the corresponding

edge collides with any obstacle, otherwise it should be a finite cost as the weighted sum of

duration and control effort.
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Similar to the original LPA*, a priority queue Q is used to store states in the open set

of U . The following functions are used to manage Q:

Top() returns a state with the smallest priority

TopKey() returns the smallest priority value

Pop() deletes the state with the smallest priority

Remove(u) removes the state u from Q

Insert(u, f) inserts the state u with priority f

6.2.2 LPA* with motion primitives

The pseudocode of LPA* with motion primitive is presented in Algorithm 5. The Main

procedure is the same as the original LPA*, our graph is initialized as empty in procedure

InitializeGraph and is incrementally constructed in function ComputeTrajectory. In func-

tion ComputeTrajectory, since the arbitrary goal state g is almost impossible to be exactly

connected in the state lattice graph, we use an intermediate goal state ug to indicate the

termination of the search and recover a trajectory. We initialize ug at first with arbitrarily

coordinates but infinite g and rhs values. The loop starts from line 3 and won’t stop until

the condition at line 18 is satisfied. This condition set ug as the current state u if u is close

to the goal g. We process UpdateState procedure for the current state u before updating its

successors. The successors of u are expanded at line 9 through the function GetSuccessors,

in which we propagate u using motion primitives as described in Section 4.2.1. We only keep

the successor s if the edge e(u, s) obeys the dynamic constraints. If e(u, s) hits obstacles,

we append s in Succ(u) but with an infinite edge cost. In addition, since the predecessor of

s is not given, we need to append u into Pred(s) at line 14.

The functions used in Algorithm 5 are detailed as followings:

These procedures are almost the same as the original LPA*. The function CalculateKey

returns the priority value for sorting the priority queue Q. For each state u, we calculate its

heuristic according to Section 4.3.1 once and store it to avoid additional computation in the

future. The function ComputeTrajectory returns the trajectory Φ which is simply recovered

from tracing back along the shortest trajectory from ug in the function RecoverTrajectory.
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Algorithm 5 LPA* with motion primitives. Given the start us and goal g, it finds the
optimal trajectory Φ.
1: function ComputeTrajectory()
2: InitializeState(ug);
3: while Q.TopKey() < CalculateKey(ug) or g(ug) 6= rhs(ug) do
4: u← Q.Pop();
5: if g(u) > rhs(u) then g(u)← rhs(u);
6: else g(u)←∞, UpdateState(u);
7: end if
8: Succ(u)← GetSuccessors(u);
9: for all s ∈ Succ(u) do

10: if s 6∈ U then InitializeState(s);
11: end if
12: if u 6∈ Pred(s) then
13: Pred(s)← {u} ∪ Pred(s);
14: end if
15: UpdateState(s);
16: end for
17: if u ≈ g then
18: ug ← u;
19: end if
20: end while
21: return RecoverTrajectory(ug);
22: end function

23: procedure Main()
24: InitializeGraph();
25: while us 6≈ g do
26: Φ← ComputeTrajectory();
27: Wait for changes in edge costs or goal;
28: for all e(u, v) that has changed cost do
29: UpdateState(v);
30: end for
31: end while
32: end procedure

1: procedure InitializeGraph()
2: Q, U ← ∅;
3: InitializeState(us);
4: rhs(us)← 0, Q.Insert(us,CalculateKey(us));
5: end procedure

120



1: procedure InitializeState(u)
2: if u 6∈ U then
3: U ← {u} ∪ U ;
4: end if
5: g(u)←∞, rhs(u)←∞;
6: Succ(u)← ∅, Pred(u)← ∅;
7: end procedure

1: function CalculateKey(u)
2: return min(g(u), rhs(u)) + CalculateHeuristic(u, g);
3: end function

1: procedure UpdateState(u)
2: if rhs(u) 6= 0 then
3: p← argminp′∈Pred(u)(g(p′) + c(p′, u));
4: rhs(u)← g(p) + c(p, u);
5: end if
6: if u ∈ Q then
7: Q.Remove(u);
8: end if
9: if g(u) 6= rhs(u) then

10: Q.Insert(u,CalculateKey(u));
11: end if
12: end procedure

function RecoverTrajectory(u)
Φ← ∅;
while Pred(u) 6= ∅ do

p← argminp′∈Pred(u)(g(p′) + c(p′, u));
Φ← {e(p, u), Φ};
u← p;

end while
return Φ;

end function

6.2.3 Graph Pruning

When the robot starts following the planned trajectory, the start state for the new planning

moves to the successor of the previous start state along the planned trajectory. Now, since

the start state for the graph has been changed, the start-to-state cost (namely, the g and rhs

values, see Section 6.2.1) of all the nodes needs to be updated. Since our graph is directional

(edges are irreversible), a large portion of the existing graph that originated from the old
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start state becomes unreachable. In addition, the states which remain in the new graph can

be affected by the existing graph. Hence, it is important to prune an existing graph and

update the start-to-state cost of the remaining states according to the new start state. In

this step, we do not need to explore new states, check for collision against map or calculate

any heuristic values, thus it is very fast.

  

Original Start

New Start

(a) Original Graph
  

New Start

(b) Pruned Graph

Figure 6.4: An example of graph pruning. Green, magenta and red dots indicate the states that are
closed, in the open set and created.

In an existing graph, a node u can be in one of three modes: 1) in the open set, 2) has

been closed or 3) created, but neither opened nor closed. The third status indicates that

the node is blocked by obstacles while being created. We don’t insert these nodes in the

open set in order to save memory and computation time. We show an example of the result

from pruning a existing graph in following Figure 6.4, in which we indicate the status of

each node using different colors.

The graph pruning process works by going through all the states in the graph that have

been closed. By reopening these states, we update their and their successors’ g and rhs

values. The pseudocode of graph pruning is presented in Algorithm 6.

We run the procedure ResetGraph at first to reset all the attributes except successors of

all the states in the existing graph. Succ(u) is kept to re-expand the relevant parts later.

At line 6, we initialize g and rhs value of the new start state u′s as zero. To build the new

graph, we create a temporary set of states Utmp and a priority queue Qtmp. Utmp stores
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Algorithm 6 Graph Pruning. Prune the existing graph and update start-to-state costs
according to the new start state u′s.

1: procedure ResetGraph()
2: for all u ∈ U do
3: g(u)←∞, rhs(u)←∞;
4: Pred(u)← ∅;
5: end for
6: g(u′s)← 0, rhs(u′s)← 0;
7: end procedure

8: procedure PruneGraph()
9: ResetGraph();

10: Utmp ← {u′s};
11: Qtmp ← ∅, Qtmp.Insert(u′s, rhs(u′s));
12: while Qtmp 6= ∅ do
13: u← Qtmp.Pop();
14: for all s ∈ Succ(u) do
15: if s 6∈ Utmp then Utmp ← {s} ∪ Utmp;
16: end if
17: Pred(s)← {u} ∪ Pred(s);
18: if rhs(u) + c(u, s) < rhs(s) then
19: rhs(s)← rhs(u) + c(u, s);
20: if closed(s) then
21: g(s)← rhs(s);
22: Qtmp.Insert(s, rhs(s));
23: end if
24: end if
25: end for
26: end while
27: Q ← ∅;
28: for all u ∈ Utmp do
29: if opened(u) and not closed(u) then
30: Q.Insert(u,CalculateKey(u));
31: end if
32: end for
33: U ← Utmp;
34: end procedure

the states of the new graph, Qtmp is used to sort the states to expand. As described in

previous paragraph, a state u ∈ U can have one of three status. We record the status of

u in the existing graph by two labels: opened(u) and closed(u) and we have the following

relationship between status and label:
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Status opened(u) closed(u)

in open set True False

closed True True

neither False False

The construction of Utmp from line 12 to 26 is a variation of the Dijkstra algorithm where

we only expand the state that has been closed in the existing graph. From line 27 to 32,

after expanding all the closed states on the branch of u′s, we recreate the priority queue for

the new graph. We use the same function CalculateKey in Algorithm 5 to get the priority

value. Replace the existing U with the new Utmp at line 33, we have built the new graph

that is valid for future plan.

6.2.4 Map Association

In our application, the state lattice graph for trajectory planning is independent from the

map that is used for collision checking. Hence, we need to associate the state lattice graph

with the map in order to correctly update edge costs.

Occupancy Grid Map

The occupancy grid map is commonly used in robot navigation, since it is easily constructed

from the sensor data. Each cell in an occupancy grid map has a binary state of either being

free or occupied. Along each edge in the graph, we sample cells that the edge goes through

and for each cell in the map we create a list to store the associated edges. As a result,

whenever a cell changes its state, we are able to retrieve the list of affected edges and

update the graph accordingly. In Figure 6.5 we show an example of this process. The figure

illustrates two facts: (1) a cell may be associated with multiple edges and (2) we only update

the end states of edges when the map changes.

There are two types of edge cost changes: either increasing from the previous cost to ∞

due to new obstacles blocking the edge or decreasing from∞ to some finite cost due to a new

cleared cell. It is straightforward to increase cost by checking if the edge has been blocked

by newly occupied cells but for decreasing the cost, we need to be careful and examine all
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the cells along each edge in order to make sure it is collision-free.

Figure 6.5: Associating cells in the occupancy grid map to the edges of the graph. Left: edges in
the graph. Note that they are directional from left to right; Middle: sampled cells that the edges
covers (grey cells); Right: if a cell is occupied (black cell in the middle), we change the costs of the
related edges (red edges) and update the corresponding end states (green dots).

Polygonal Map

As illustrated in Section 6.1, we can use polyhedron to represent the obstacle that is either

static or dynamic. Thus, in a polygonal map where obstacles are represented as polyhedra,

we can check collision against given primitive using (6.2). This collision checking is verified

in closed-form. However, keep track of the edge cost changes in the polygonal map is not

easy. In order to guarantee the correctness, we use a naive method that iterates through all

the edges to update their costs whenever the map is updated.

6.2.5 Incremental Trajectory Re-planning

In the framework of Receding Horizon Control, the robot only executes a small portion of

each planned trajectory between two planning iterations. In our re-planning framework,

this small portion corresponds to the first edge in the planned trajectory. Generally, the

sensor rate is much higher than re-planning rate. Hence in-between two planning iterations,

there might be multiple map changes. We modify the Main procedure in Algorithm 5 to

formulate the replan with incremental trajectory planning as shown in Algorithm 7.

At line 6, we set the new start state for the next planning iteration as the successor of

the current start state along the planned trajectory Φ where τ is the traversing time of the

edge. First, we prune the graph according to this new start state and while the robot is

approaching the new start state, we keep on updating the edge costs based on the pruned
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Algorithm 7 Incremental Trajectory Planning.
1: procedure Main()
2: InitializeGraph();
3: ug ← g, InitializeState(ug);
4: while us 6≈ g do
5: ug,Φ← ComputeTrajectory(ug);
6: us ← Φ(τ);
7: process Graph Pruning with the new us;
8: while robot approaching us do
9: for all e(u, v) that has changed cost do

10: UpdateState(v);
11: end for
12: end while
13: end while
14: end procedure

graph.

In Figure 6.6, we show an example of running the whole incremental trajectory planning

framework. The robot starts from the left side of the map (left red ball) and plans to the

goal on the right side (right red ball). We show the planning results from three planning

iterations, each iteration (except iteration 0) uses the graph from previous iteration. The

left column shows the results after running ComputeTrajectory in Algorithm 7, the right

column shows the graph that has been pruned and updated according to the new start and

map changes. For example, at iteration 0, the robot follows the planned trajectory till the

new start state u1
s (in (b)). As the robot is moving, we add a new obstacle that blocks the

original trajectory, thus the pruned graph that starts from the new start state, u1
s, has local

inconsistency. The affected edges are indicated by the red splines. The inconsistent graph

in (b) is used for planning in the next iteration as shown in (c). We can repeat this process

until the robot reaches the goal.

6.2.6 Evaluations

In this section, we discuss the efficiency of incremental trajectory planning and present

results of running ITP for navigating a quadrotor in the simulated environment.
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(a) Planning iteration 0

  

New Obstacle

(b) Prune and update graph

  

(c) Planning iteration 1

  

New ObstacleCleared Obstacle

(d) Prune and update graph

  

(e) Planning iteration 2

  

(f) Prune and update graph

Figure 6.6: Example of 3 iterations in incremental trajectory planning. Planned trajectory is indi-
cated by magenta spline at every planning iteration. The graph consists of all the edges in blue.
Between two planning iterations, the map is updated according to the new sensor measurements.
For example, after iteration 0, there is a new obstacle that blocks the planned trajectory; at iteration
2, this obstacle goes away and a new obstacle appears on the right side of the map. We use red
splines to highlight the affected edges due to map updates.

Efficiency of Incremental Graph Search

We evaluate the efficiency of the proposed incremental graph search based on LPA* by

comparing its planning time and number of expansions to running A* from scratch in an

incrementally changing map. The expansion in A* and LPA* refers to the step where we

open a state and update the attributes of itself and its successors, this is equivalent to the

part from line 19 to 28 in Algorithm 5. The number of expansions relates directly to the

planning time, but since the implementation of A* and LPA* are a little different, it may
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(a) ρ = 0.05 (b) ρ = 0.10

(c) ρ = 0.15 (d) ρ = 0.20

Figure 6.7: Snapshots in a test sequence of incremental graph search. From (a) to (d), the ostacles
are randomly added into the previous map. Left and right red dots indicate the start and goal state,
magenta spline is the planned trajectory.

take more time to process the same number of expansions for LPA* compared to A*. Thus,

in the evaluation plots, we show both the planning time and the number of expansions. We

denote the planning time of A* and LPA* as t(A*) and t(LPA*), the number of expansions

as n(A*) and n(LPA*), and plot the ratio instead of their actual values for the purpose of

clarity.

We run a sequence of planning from a start state to the goal state using both A* and

LPA* with the same parameters. The map is initialized as empty, and obstacle density ρ

is increased from 0 to 0.2 by a constant rate dρ by randomly adding new occupied cells in

each iteration. The obstacle density ρ is defined as:

ρ =
# of occupied cells
# of cells in the map

Figure 6.7 shows snapshots of maps and planned trajectories from start to end in a

sequential test. We run 50 independent sequences and collect the data for plotting. In Fig-

ure 6.8, the rate of adding obstacles dρ from row 1 to 3 is 0.01, 0.02 and 0.03. In each plot

figure, the median of the ratio of planning time versus the obstacle density is shown as the
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green line segment, while the x-axis shows the increasing obstacle density (in percentage

%). We can see that the LPA* significantly reduces the amount of time and number of

expansions when dρ = 0.01. When dρ > 0.01, the improvements are small. The initial plans

of A* and LPA* take almost the same amount of time since they both plan from scratch in

the first iteration.
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Figure 6.8: Comparing LPA* with A* in 50 independent sequential test with increasing obstacle
density. Left columns shows the plot of ratio of planning time versus the obstacle density; right
column shows the plot of ratio of number of expanded states versus the obstacle density. From row
1 to 3, we set the incremental obstacle density as 0.01, 0.02 and 0.03.

Similarly, Figure 6.9 shows the evaluation when removing obstacles. The map is initial-
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Figure 6.9: Comparing LPA* with A* in 50 independent sequential test with decreasing obstacle
density. Left columns shows the plot of ratio of planning time versus the obstacle density; right
column shows the plot of ratio of number of expanded states versus the obstacle density. From row
1 to 3, we set the incremental obstacle density as 0.01, 0.02 and 0.03.

ized with randomly sampled obstacles of density ρ = 0.2 and we randomly remove occupied

cells to get a new map for planning in the next iteration. We also run 50 independent

sequences and collect the data for plotting. We change the rate of removing obstacles dρ

from row 1 to 3 as 0.01, 0.02 and 0.03. In this case, LPA* significantly reduces the amount

of time and number of expansions for any dρ. The initial plans of A* and LPA* have the

same amount of number of expansions but the planning times are different, this is because
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LPA* takes more time to process each expansion and the overhead for maintaining the data

structures is significant when the number of states in the graph is large.

Even though the random map changes in this test is not realistic, it helps to understand

the limitation and performance of the proposed algorithm in extremely challenging planning

tasks. In conclusion, LPA* is more efficient than planning from scratch specially for small

incremental changes in the map.

3D Planning

The proposed planner can be easily extended to 3D by adding control inputs along the

third axis (z-axis) when applying motion primitives. We show an example in Figure 6.10 for

re-planning in a 3D voxel map. Here we illustrate the planning results from two iterations,

between which the robot detects a new obstacle. We run both LPA* and A* for the same

planning queries. The two images on the right side plot the expanded states from running

LPA* and normal A* planning from scratch in the planning iteration 1. LPA* expands

much fewer states and is more than 10 times faster than A*.

  

Detect New Wall 

Expansions from LPA* 

Expansions from A* 
Planning iteration 0 Planning iteration 1

Figure 6.10: Incremental trajectory planning in 3D. We run both LPA* and normal A* for these
two planning iterations. For the iteration 1, LPA* takes 43ms and expands 567 states to find the
new optimal trajectory while A* takes 527ms and expands 5826 states to find the same trajectory.
The expanded states from these two algorithms are plotted in images on the right side.
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Navigation Test

In the physical world, the map is incrementally updated based on the sensor inputs and

obstacles are not randomly generated or removed like in Figure 6.7. We set up a sim-

ulated environment in Gazebo to evaluate the performance of the proposed algorithm in

the practical navigation task. The simulated quadrotor is sensing the environment using

a laser rangefinder and keeps re-planning at a constant frequency. We run two planners

independently in the same test: A* that plans from scratch at every planning iteration and

incremental trajectory planning that reuses the previous graph based on LPA*. We use the

same parameters for setting up both planners and the planning horizon is set to 7.5 s.

  

Planning iteration 21, A*

  

Planning iteration 21, LPA*

  

Planning iteration 25, A*

  

Planning iteration 25, LPA*

Figure 6.11: Simulation example. Left and right columns show the results from planning from
scratch and from incremental planning respectively. The blue and green dots indicate the expanded
states, which shows that the incremental planner expands much fewer states than A*. Note that
the planned trajectories from both are the same.

Figure 6.11 shows several snapshots while the robot is flying towards the goal at planning

iteration 21 and 25. Obviously, two planners find the same trajectory but A* explores more

states. We show the planning time and number of expansions of two planners in Figure 6.12,

from which we can clearly see that LPA* is more efficient than A* since it takes less planning

time and requires fewer number of expansions over the whole mission.
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Figure 6.12: Comparison of efficiency between LPA* and A* in the navigation task. Left column
shows the absolute values of corresponding number of expansions and planning time, right column
shows the corresponding ratios between LPA* and A*.

6.3 Multi-robot Planning

We consider a scenario where a team of homogeneous robots operates in a environment at

the same time. We assume that some mission control algorithm such as exploration assigns

a target to each of the robots. Thus, it is a decoupled problem in which individual robot

plans its own trajectory. Different from existing works such as [32, 58, 93, 95, 99], we

mainly focus on finding the optimal trajectory for robot without colliding with other robots.

We show that the proposed framework can be used to plan trajectories for each robot by

treating other robots as moving obstacles. Thus, we are able to perform either sequential or

decentralized planning for multiple robots in the same workspace.

6.3.1 Collision Checking between Robots

In Section 6.1, we modeled the obstacle as a linearly moving polyhedron in Rm, which can be

generalized for non-linear moving obstacles that follow piece-wise polynomial trajectories.
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Denote ci(t) as the i-th robot configuration which is a non-linearly moving polyhedron (NMP)

in Rm, it is represented as the robot geometry ci,0 = {p | AT
i p ≤ bi} that centered at robot’s

center of mass following a trajectory iΦ(t). Thus, it can be represented as:

ci(t) = {p | AT
i (p− iΦ(t)) ≤ bi}. (6.5)

For robot i and j, they are not colliding with each other if and only if

iΦ(t) ∩ [ci,0 ⊕ cj(t)] = ∅, (6.6)

where “⊕” denotes the Minkowski addition. Constraint (6.6) can be verified by solving for

roots of a polynomial equation similar to (6.2). For a team of robots, we can verify whether

the i-th robot’s trajectory is collision-free by checking (6.6) against all the other robots.

6.3.2 Sequential Planning

For a team of Z robots, we can sequentially plan trajectory for robots from 0 to Z − 1 by

assigning priorities to the robots. When planning for i-th robot, we only consider collision

checking with robots that have higher priority than i. Equivalently, we need to verify the

following equation for the i-th robot:

iΦ(t) ∩
i−1⋃
j=0

[ci,0 ⊕ cj(t)] = ∅. (6.7)

Sequential planning is able to guarantee inter-robot collision-free and find the optimal

trajectory for each robot with respect to the priority. The planning results for two navigation

tasks are shown in Figure 6.13. Its computational complexity is polynomial, thus we are

able to quickly plan the trajectories for the whole team.

6.3.3 Decentralized Planning

In the decentralized case, each robot re-plans at their own clock rate and there is no priority.

It is practical to assume that the robot is able to share information about its current tra-
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(a) Tunnel configuration. (b) Star configuration.

Figure 6.13: Example planning tasks for a multi-robot system. Blue rectangles represent the ob-
stacles and robots’ geometries. Magenta trajectories are the planning results from the sequential
planning.

jectory with other robots. For accurate collision checking, we also assume there is a global

time frame and a local time frame for each robot representing its trajectory start time. Use

τ and t to represent the time in global time frame and local time frame respectively. The

conversion between this two frames is simply t = τ − τ s where τ s is the start time in global

time frame of the trajectory. Thus, we formulate the collision checking for Z robots in the

decentralized manner as:

iΦ(τ − τ si ) ∩
Z−1⋃
j=0

[ci,0 ⊕ cj(τ − τ sj )] = ∅, (6.8)

or in local time frame as:

iΦ(t) ∩
Z−1⋃
j=0

[ci,0 ⊕ cj(t+ τ si − τ sj )] = ∅. (6.9)

Here τ si − τ sj is a constant for the given trajectory pair iΦ and jΦ. Since we plan for robot

i with the presence of robot j, τ si − τ sj ≥ 0 should always be true.

Denote jT as the duration of trajectory jΦ. Ideally, we use the whole trajectory jΦ(t)
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from t = 0 to jT for collision checking when plan for robot i. However, we know that robot j

is also constantly re-planning, such that the future trajectory of j can be meaningless to be

considered in collision checking. We are able to improve the efficiency of collision checking

in (6.9) by setting a cutoff time Tc. Namely, we ignore the part of trajectory jΦ(t) of other

robot j for the domain t > jTc. Consequently, as Tc gets smaller, the computational time

for inter-robot collision checking is also smaller. The smallest Tc for a complete solution is

determined by the system’s dynamic constraints. For example, for a second order system

that is constrained by maximum velocity v̄max and acceleration āmax, the smallest value of

Tc is the minimum time it takes to stop the robot from the maximum velocity. Thus, we

set the value of Tc for trajectory Φj as

jTc = min{v̄max/āmax, jT}. (6.10)

To make the algorithm complete, we need to ignore robot j for t > jTc when planning

for robot i instead of treating it as a static obstacle. Figure 6.14 shows the results of two

planning tasks using the decentralized planning with Tc.

(a) Tunnel configuration. (b) Star configuration.

Figure 6.14: Example planning tasks for a multi-robot system. Blue rectangles represent the obsta-
cles and robots’ geometries. Blue trajectories are the traversed trajectories of the team guided by
the proposed decentralized planning.
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Chapter 7

Concluding Remarks

7.1 Contributions

In this thesis, we consider motion planning problems for micro aerial vehicles (MAVs) in real

world applications. We systematically analyze the planning and control problems of MAVs

and propose our solutions: (1) optimization-based approach based on safe flight corridors

(SFC) that is adequate for aggressive flight in complex 3D environments (Chapter 3) and

(2) search-based motion planning (SMP) with motion primitives that is resolution complete

and optimal considering non-static initial states (Chapter 4). As a conclusion, we compare

our proposed methodologies with several state-of-the-art techniques as shown in Table 7.1:

Method Feasibility Safety Optimality Completeness Run time
Path

Planning Not feasible Collision free
Globally
optimal

Resolution
complete Very fast

Unconstrained
QP [61, 82]

May violate
constraints

Not
guaranteed Sub-optimal Not complete Very fast

MIP [15, 62]
Dynamically

feasible Collision free Sub-optimal Complete Very slow

Short Trajec-
tories [56, 71]

Dynamically
feasible Collision free

Locally
optimal Not complete Very fast

SFC
Dynamically

feasible Collision free Sub-optimal Complete Fast

SMP
Dynamically

feasible Collision free
Resolution
optimal

Globally
complete Fast

Table 7.1: Evaluation of state-of-the-art and proposed (SFC and SMP) techniques using the five
properties. Red blocks indicate the drawbacks of the corresponding algorithm.
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Table 7.1 concludes that our approaches outperform the widely-used planning methods

for navigating MAVs in unknown environments. In Chapter 5, we show that the SMP can

be extended to solve more general planning problems with different constraints such as

motion uncertainty, limited sensor’s field-of-view (FOV) and attitude constraints. To plan

in dynamic environments with both moving obstacles and multiple robots, we show that

SMP is also applicable to fast find complete solutions in Chapter 6.

7.2 Future Work

The flexibility of the proposed search-based motion planning (SMP) method in this thesis

indicates several interesting and promising research directions. Our framework provides

a novel way to address these existing problems, which could also be a powerful tool for

navigating general mobile robots.

Target Tracking Target tracking is desired in many practical applications. Traditional

methods to plan trajectories that follow moving targets are based on path planning and

constrained optimization. Instead, we can apply SMP to generate such trajectories by

modifying the cost function and constraints accordingly.

Anytime Motion Planning Anytime planning is quite useful in real world applications

where the run time is limited and the optimality of generated trajectories is not critical. It

has been shown in Section 6.2 that the back-end of SMP is interchangeable between different

graph search algorithms. We successfully applied LPA* that solves the re-plan problem,

which indicates the possibility of the usage of other graph search algorithms including ARA*,

RRT* and etc. To obtain anytime motion planning, the only work required is to implement

these different algorithms.

Information-based Motion Planning To avoid potential dangers caused by motion

uncertainty, we use the artificial potential field to perturb the nominal trajectory that is close

to obstacles in Section 5.1. When the uncertainty of state estimation or obstacle detection is

taken into account, motion planning is more challenging. Existing works including POMDP-

based and probabilistic planning are extremely slow to find an optimal solution. The SMP
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can be potentially developed to properly model these uncertainties and quickly solve optimal

trajectories.

Centralized Multi-robot Planning The planning problem of multi-robot system has

recently attracted much attention. We proposed the solution for multi-robot planning in

both sequential and decentralized manners in Section 6.3. For centralized motion planning,

the global cost such as total traveling distance and time and completeness of different con-

figurations are important to address. The SMP has the potential to efficiently solve such a

centralized optimal planning problem.
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Appendix A

Open-sourced Resources

A.1 Publications

The work presented in this thesis has been progressively developed during past few years.

Our previous publications on the related subject are listed as following:

1. Chapter 3 – Planning dynamically feasible trajectories for quadrotors using safe flight

corridors in 3D complex environments [53];

2. Chapter 4 – Search-based motion planning for quadrotors using linear quadratic min-

imum time control [49];

3. Chapter 5 – Search-Based Motion Planning for Aggressive Flight in SE (3) [50].

4. Chapter 5 – Towards Search-Based Motion Planning for Micro Aerial Vehicles [51].

A.2 Code

We open-sourced almost all the planning code in C++ on Github. In this section, we list

some of them and briefly introduce their usage.

1. MRSL Quadrotor Simulator: https://github.com/KumarRobotics/mrsl_quadrotor

2. JPS3D: https://github.com/KumarRobotics/jps3d
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3. DecompUtil: https://github.com/sikang/DecompUtil

4. DecompROS: https://github.com/sikang/DecompROS

5. Motion Primitive Library: https://github.com/sikang/motion_primitive_library

6. MPL ROS: https://github.com/sikang/mpl_ros

A.2.1 MRSL Quadrotor Simulator

This package is the simulation for testing planning with quadrotors in Gazebo environ-

ment [72]. MRSL stands for Multi-Robot System Lab at University of Pennsylvania. This

package depends on quadrotor_control repository which can be found on KumarRobotics:

https://github.com/KumarRobotics/quadrotor_control, which is currently unpublished.

But it is not hard to build up the geometric controller from scratch.

To set up an simulation environment, we need two things: (1) a raw 3D model of the

world environment in the format of .dae (Collada) and (2) a configuration file in the format

of .world. The .dae file can be exported from models in SketchUp [26] or Blender [6].

We recommend to use SketchUp to draw the 3D models with good-looking textures. The

.world file is a script in .sdf format [73]. There are several examples of .world file in the

folder mrsl_quadrotor_descriptions/world. Figure A.1 shows three built-in environment

models.

Figure A.1: Three built-in environments in MRSL Quadrotor Simulator.

To set up a simulated quadrotor, we can use the existing quadrotor model and sensors

in mrsl_quadrotor_descriptions/urdf. We can mount different sensors such as RGB-D

and laser rangefinder on different platforms. Figure A.2 shows three models. The robots

subscribe and response to quadrotor_msgs which is part of quadrotor_control packages.
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Figure A.2: Three built-in quadrotor models in MRSL Quadrotor Simulator.

A.2.2 JPS3D

In this package, we implement Jump Point Search (JPS) in both 2D and 3D maps. The test

nodes are presented in test folder. A 2D example of the comparison between A* and JPS

is shown in Figure A.3.

Figure A.3: A 2D planning example of using A* and JPS.

A.2.3 DecompUtil and DecompROS

The DecompUtil is the back-end of convex decomposition as proposed in Section 3.3. The

DecompROS is the associated ROS package. In DecompUtil, we provide four different tools

to do regional inflation in a point cloud (Figure A.4). These tools work for both 2D and 3D

environments.

A.2.4 Motion Primitive Library and MPL ROS

The Motion Primitive Library (MPL) is the implementation of search-based motion plan-

ning. The mpl_ros is the ROS wrapper of MPL.
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Figure A.4: A 2D example of convex decomposition.

Figure A.5: Trajectory planned using MPL in a given map.
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