

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bose, Laurie N

Title:
Edge Based RGB-D SLAM and SLAM Based Navigation

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Edge Based RGB-D SLAM and
SLAM Based Navigation

Laurie Bose

A dissertation submitted to the University of Bristol in accordance with the
requirements for the degree of Doctor of Philosophy in the Faculty of Engineering

August 2016

circa 40000 words

Abstract

Visual Simultaneous Localisation and Mapping (SLAM) is a vital technology
for the advancement of autonomous robotics, providing a means of both
mapping and pose estimation from visual data. Many advances in visual and
RGB-D SLAM however have built upon established point feature and dense
reconstruction methodologies, leaving other approaches relatively uncharted
in comparison. This thesis instead explores semi-dense edge based approaches
for RGB-D SLAM, in addition to path planning approaches for SLAM based
indoor aerial robotics.

We first present an edge based RGB-D SLAM approach utilizing edges from
both depth and RGB channels, along with a method of depth edge detection
exploiting the temporal similarity between RGB-D video frames. Detected
edge pixels are back-projected to form semi-dense point clouds and a fast edge
based Iterative Closest Point (ICP) algorithm is utilized for sensor pose esti-
mation. Evaluation of the proposed SLAM system demonstrates compelling
results, achieving similar accuracy to a number of alternative systems while
having significantly lower computational cost, thus making it fit for real-time
application on small robotic platforms. An extension of this SLAM system
to use 3D line features is then presented, along with methods of extracting
and registering such line features from semi-dense edge point clouds.

Secondly we present a belief space planning approach for autonomous indoor
MAVs relying on bearing measurements to environmental landmarks for lo-
calisation in cluttered environments. This approach can produce trajectories
which minimize uncertainty in the vehicle’s state from such bearing mea-
surements, while reaching an end goal. The approach allows for a tunable
trade-off between minimizing trajectory length and state uncertainty, and
examples trajectories are given comparing these two extrema in various 3D
environments and landmark layouts.

Lastly a SLAM-aware path planning approach is presented for indoor MAVs,
utilizing the proposed edge based SLAM system for localisation. In addi-
tion to ensuring collision avoidance this approach ensures that SLAM lo-
calisation is maintained by producing trajectories along which the vehicle’s
RGB-D sensor always observes sufficient information from the existing SLAM
map. These trajectories are ”keyframe centric” consisting of many connected
”segment” trajectories, each defined within the reference frame of a spe-
cific keyframe, together forming a complete trajectory across the map. This
scheme allows the MAV to navigate across the SLAM map, even if it has
become globally inconsistent due to issues such as sensor drift accumulation.

Declaration

I declare that the work in this dissertation was carried out in accordance with the Reg-
ulations of the University of Bristol. The work is original, except where indicated by
special reference in the text, and no part of the dissertation has been submitted for any
other academic award.

Any views expressed in the dissertation are those of the author and in no way represent
those of the University of Bristol.

The dissertation has not been presented to any other University for examination either
in the United Kingdom or overseas.

SIGNED: DATE:

Acknowledgements

First I would like to thank my supervisor Arthur Richards for his all guidance and sage
advice over the years.

I would also like to thank all my friends and colleagues who I have been lucky enough
to know over the course of my PhD, both within Queens building and the Visual Infor-
mation Laboratory, Including Colin Greatwood, Tom Kent, Austin Greg Smith, Teesid
Leelasawassuk, Shuda Li, Thei Zaza, Analiza Abdilla, Toby Perrett, Davide Moltisanti,
Michael Wray, Eduardo Ruiz, Steve Bullock, Elham Asadi, Oliver Turnbull, Kieran Wood
and Ujjar Bhandari.

Finally I am very grateful for the funding and support I received from DSTL who made
this research possible.

To My Parents.

Contents

List of Figures iv

List of Tables ix

1 Introduction 4
1.1 Motivation . 4
1.2 SLAM and Robot Navigation . 5
1.3 Edge Based RGB-D SLAM . 8
1.4 SLAM Aware Path Planning . 9
1.5 Contributions, Outline and Publications 11

1.5.1 Contributions . 11
1.5.2 Thesis Outline . 12
1.5.3 Publications . 14

2 Edge Based RGB-D SLAM 15
2.1 Background . 15

2.1.1 Probabilistic SLAM Description 16
2.1.2 Keyframe Based SLAM . 18
2.1.3 Pose Graph Optimization . 19
2.1.4 Depth Sensor Calibration . 20

2.2 SLAM System and Sensor Requirements 20
2.2.1 Geometric Configuration Space Construction 21
2.2.2 Real-Time Performance Limitations 23

2.3 RGB-D Edge SLAM Overview . 24
2.3.1 Formulation . 25
2.3.2 RGB-D Edge Features . 26
2.3.3 Edge Point Clouds and ICP Registration 27
2.3.4 Relaxation Based Pose Graph Optimization and Loop Closure . . 27

2.4 Depth Edge Detection . 28
2.4.1 Occluding Depth Edge Detection 28
2.4.2 Sub Image Depth Edge Detection 31
2.4.3 Results . 35

2.5 RGB Edge Detection . 38

i

2.6 Edge Based ICP RGB-D Frame Registration 38
2.6.1 Advantages . 40
2.6.2 Disadvantages . 40
2.6.3 Evaluation . 41
2.6.4 Registration Strength Evaluation 51

2.7 Map Construction and Sensor Tracking 52
2.8 Map Optimization . 53

2.8.1 Loop Closure Detection . 55
2.8.2 Pose Graph Optimization . 56
2.8.3 Loop Closure Examples . 60

2.9 Results . 62
2.9.1 SLAM Evaluation . 62
2.9.2 Further Results . 65

2.10 Conclusions . 71

3 Line Based RGB-D SLAM 72
3.1 Incorporation of Line Features . 73
3.2 Line Segment Extraction from Edge Point Clouds 74

3.2.1 Grid Partitioning . 76
3.2.2 Collinear Subset Construction . 76
3.2.3 Set Merger . 77
3.2.4 Extraction Results . 79

3.3 Iterative Closest Line . 79
3.3.1 Nearest Line Feature Search . 81
3.3.2 Point to Line feature Pair Selection 87
3.3.3 Evaluation . 92

3.4 Results . 93
3.4.1 SLAM Evaluation . 93
3.4.2 Further Results . 98

3.5 Conclusions . 100

4 Belief Space Planning 101
4.1 Planner Overview . 103
4.2 Problem Formulation . 104
4.3 Graph Construction . 106

4.3.1 Determining Graph Vertices . 106
4.3.2 Determining Graph Edges . 107
4.3.3 Intersection Checks . 109

4.4 Belief Space Planner . 111
4.4.1 Algorithm . 111

4.5 Results . 114
4.6 Conclusions . 118

5 Path Planning 119
5.1 Background . 119

5.1.1 Overview . 119

ii

5.1.2 Graph Based Planning . 122
5.1.3 Stochastic Sampling Based Planners 123
5.1.4 Probabilistic Road-Maps (PRM) 124
5.1.5 Rapidly Exploring Random Trees (RRT) 124
5.1.6 Rapidly Exploring Random Tree Star (RRT*) 126
5.1.7 Informed RRT* . 126

5.2 SLAM Aware Path Planning . 128
5.2.1 Problem Overview . 128
5.2.2 Empty, Occupied and Unknown Space 129
5.2.3 Ensuring Sufficient Sensor Information for Localization 132
5.2.4 Configuration Space Generation using SLAM Map Data 134

5.3 Keyframe Centric Path Planning . 137
5.3.1 Overview . 137
5.3.2 Keyframe Navigation Graph Construction 138
5.3.3 Keyframe Planning . 154

5.4 Results . 155
5.4.1 Hand-held Results . 158
5.4.2 MAV Hardware and Software Set-up 158
5.4.3 MAV Results . 165

5.5 Conclusions . 167

6 Conclusions 172
6.1 Chapter Summary . 172
6.2 Contributions Summary . 175
6.3 Future Directions . 176

6.3.1 Omnidirectional Sensing . 176
6.3.2 Modern Small Form Factor Computer Hardware 176
6.3.3 Edge Cloud Refinement and Monocular Depth 176
6.3.4 Redundant keyframe Elimination 177
6.3.5 Tighter Integration Between SLAM and Edge Detection 177
6.3.6 Slam Based Exploration . 178

References 179

iii

List of Figures

1.1 Left, an example of point features extracted from a single video frame by
ORB-SLAM. Right, an example of a sparse feature based map created by
ORB-SLAM as presented in [78], estimated feature locations are shown
in red and keyframe poses in blue. 6

1.2 Examples of back-projecting occluding depth edges to form semi-dense
point clouds as shown in green. 8

1.3 Example of our proposed edge-based SLAM in operation. 10

2.1 A RGB-D cloud of a flat ceiling 2 meters from the sensor, before (top)
and after (bottom) distortion correct has been applied. 21

2.2 Left, a sparse point feature based map constructed by PTAM [58]. Right,
a dense map constructed by DTAM [79]. Note the difficulty in determining
the underlying environmental geometry from the sparse map. 23

2.3 Overview of the proposed SLAM system. 25
2.4 Examples of edges due to depth image discontinuities. Occluding edges are

drawn in green, occluded edges in blue and the sensor’s position indicated
by the yellow cylinder. 29

2.5 Examples of detected occluding depth edges (Red) and the associated
detection flag values for each image patch (Top, a grid consisting of 16×12
image patches. Bottom a grid of 32 × 24 image patches). Image patches
flagged for detection are highlighted in green, while those not flagged are
drawn in black. 32

2.6 Plots showing how various performance metrics of the occluding edge de-
tection vary with the number of image patches the original depth image
is divided up into (grid size). RGB-D sequences used, FR1 desk (Blue),
FR1 plant (Red) and FR1 room (Yellow). 35

2.7 Histograms illustrating how the errors associated with edge based ICP
registration change with the number of ICP iterations used (RCS = 1). 42

2.8 Accuracy and computation time of edge based ICP registration (Blue,
RCS=1) and raw point cloud registration(Red, Uniform downsampling x5). 43

iv

2.9 Graphs illustrating the effect of the Row Column Skip (RCS) parameter
on the accuracy and computation time of edge point based ICP registra-
tion. Increasing the value of the RCS parameter results in sparser edge
point clouds being used for registration, and hence dramatically decreases
computation time. 46

2.10 Graphs comparing how the accuracy and computation time of edge point
based registration varies with the number of ICP iterations, for various
RCS values. Blue (RCS = 1), Red (5), Green(10). 47

2.11 Plots comparing the performance of real-time edge cloud registration (Blue,
RCS = 5 and uniform down-sampled RGB-D point cloud registration
(×10 Red, ×20 Green) using the Freiburg FR1 room sequence. 48

2.12 Comparison of ICP registration quality when using raw RGB-D clouds
(middle) and edge clouds (bottom). When using raw RGB-D clouds,
there is obvious misalignment between the two clouds (shown in red and
blue) compared to the edge based registration. 49

2.13 Further comparisons of ICP registration quality when using raw RGB-
D clouds (middle) and edge clouds (bottom). Again raw RGB-D cloud
registration shows obvious misalignment between the two clouds (shown
in red and blue) compared edge based registration. 50

2.14 A damped spring mass system starting from any initial configuration
(Left) will come to rest in a local energy minima (Right) 57

2.15 An example of loop closures detected on the ”FR3 long office household”
RGB-D sequence provided by [96]. Keyframes axes are drawn in white,
with loop closures between keyframes drawn in blue. 61

2.16 Example mapping results with and without map optimization being en-
abled. Point clouds of the keyframes are drawn with occulding edge point
clouds in green and RGB edge point clouds in red. 61

2.17 Plots comparing results obtained by different SLAM systems on a number
of Freiburg datasets. Our proposed edge based SLAM is shown in Blue,
RGB-D SLAM [24] in red and occluding edge RGB-D SLAM [12] in green. 64

2.18 Map created by the proposed SLAM from the FR1 room dataset. Point
clouds of the keyframes are drawn with occulding edge point clouds in
green and RGB edge point clouds in red. 66

2.19 Map created by the proposed SLAM from the FR3 ”long office household”
RGB-D sequence. The ground truth trajectory of the sensor is drawn in
green, while that estimated by the SLAM system is shown in blue. . . . 67

2.20 Comparison of ground truth sensor trajectory (green) and SLAM’s esti-
mated sensor trajctory (blue) for the FR1 plant RGB-D sequence. . . . 67

2.21 Example map created by partially mapping a two story house. Point
clouds of the keyframes are drawn with occulding edge point clouds in
green and RGB edge point clouds in red. 68

2.22 Close views of the room featured in the map of Figure 2.21. Point clouds
of the keyframes are drawn with occulding edge point clouds in green and
RGB edge point clouds in red. 69

v

2.23 Example map created by mapping an office space. Point clouds of the
keyframes are drawn with occulding edge point clouds in green and RGB
edge point clouds in red. 70

3.1 An illustration of the steps involved in extracting linear segments from an
edge point cloud. The set of 5741 points are partitioned into 277 subsets
of collinear points which are then merged to form the final 43 collinear
point sets and line features. which the final line segments are extracted. 75

3.2 Examples of extracted 3D linear features. 80
3.3 A 2D illustration of point pair generation. Each point from the edge

point cloud (shown in red) is paired with its projection onto the nearest
line feature as indicated by the arrows. The transformation to minimize
the total distance between these pairs is then calculated as in standard ICP. 81

3.4 A 2D illustration of the process of generating grid cells used in determining
the closest line feature to a specific point. Left, the bounding box of all 3D
line features is determined. Middle, this bounding box is then expanded
by a fixed size in all directions. Right, finally the bounding box size is
increased such that it can be partition into a uniform grid of cells of each
of size CD. 83

3.5 Determining line features subset associated with grid cell bounding sphere. 84
3.6 Comparison of computational cost of point cloud to line feature registra-

tion when using brute force nearest line search (Red) or the partitioning
grid based approach (Blue) as described in Section 3.3.1 87

3.7 Comparison between Depth and RGB edge clouds and the line features
extracted from them. 88

3.8 Point to line feature registration accuracy using different standard devia-
tion pair culling values for the datasets FR1 desk(red), FR1 plant(green),
FR1 room(blue). 91

3.9 Line feature based ICP registration accuracy histograms 94
3.10 Line Based Registration (Red) VS Edge Point Based Registration (Blue)

with RCS = 5 . 95
3.11 Plots comparing results obtained from the line based SLAM extension of

this chapter to the previously proposed edge cloud based approach on a
number of Freiburg datasets. The edge based results are shown in red and
while line based are shown in green. 97

3.12 The resulting map from the FR1 room sequence using. 98
3.13 The resulting map from inside an office space. 99

4.1 Deepest nodes in a partitioning Octree showing how the splitting method
biases the node density about obstacle edges. 108

4.2 Example of a graph constructed by the process described in Section 4.3.
The partitioning Octree constructed with a low max node depth for clarity.108

4.3 Separating axis example cases . 110
4.4 Example of a separating axis formed from the cross product of edges ea

and eb . 111

vi

4.5 Top: a comparison of trajectories minimizing state uncertainty (orange)
and distance travelled (blue). Bottom : other views of the same uncer-
tainty minimizing trajectory. 115

4.6 Example comparison between robust and minimum distance paths. . . . 115
4.7 Further example comparison between robust and minimum distance paths. 116
4.8 Robust and minimum distance paths generated in space with limited vis-

ibilty to beacons. 116

5.1 RRT using a quad-tree structure to spatially partition the tree to allow
for fast nearest neighbour searches. 125

5.2 Examples of both RRT (top) and RRT* (bottom) solving the same path
planning problem, with both trees expanded to around 10000 branches.
It is clear that RRT* produces a superior path in terms of total length. 127

5.3 An example of informed RRT*, tree expansion has been restricted to
within the ellipsoid defined by the length of the current best path and
start and goal locations in the configuration space. 128

5.4 A example of a uniform voxel map created for path planning purposes.
Top shows the SLAM map from which the voxel map is generated. Mid-
dle shows both free and occupied space in Blue and green respectively.
Bottom shows only occupied space with height indicated by color ranging
from red (lowest) to green (highest). 131

5.5 2D Illustration of map changes due to loop closure. Areas highlighted in
green largely remaining unaffected while red areas have undergone signif-
icant change. 135

5.6 Multiple small scale navigation graphs (as indicated by color) generated
from keyframe RGB-D data connected together with edges determined by
keyframe loop closure detections illustrated by the dashed edges. 136

5.7 A 2D illustration of voxel generation from point cloud data. Top left
shows rays of know free space determined from each point in the cloud as
shown in red. Top right, all voxels traversed by free space rays are flagged
as free space (green). Bottom left, each voxel containing a point from
the cloud is flagged as occupied space (red). Bottom right, a shrinking
process is applied to free space voxels to ensure obstacle avoidance during
path finding. 141

5.8 An example of uniform voxel partitioning from a single dense RGB-D
point cloud, known empty space voxels are drawn in blue, occupied space
voxels in green. Unknown space voxels are not drawn. 142

5.9 Example of a SLAM map and the voxel maps associated with the various
keyframes.. Top shows all edge features drawn relative to their respective
keyframes. RGB edges are drawn in red and depth edges in green. Middle
illustrates in green the occupied space voxels from each keyframe’s voxel
map. Bottom shows both occupied voxels and free space voxels (in blue)
from each keyframe’s voxel map. 143

vii

5.10 Example of a voxel grid associated with a specific keyframe being updated
over time (from top to bottom) as additional sensor data is aqquired. The
left column shows the current observed RGB-D data and edge features of
the keyframe. Middle shows the current occupied voxels in green, right
shows both the occupied voxels and those voxels determined to be free
space in blue. 144

5.11 Examples of sensor frustum culling of edge cloud points. 146
5.12 Examples of safe vehicle poses generated from keyframe data. Safe poses

are shown in green. Tested poses at which insufficient features are ob-
served for reliable localisation are shown in red. Tested poses within
occupied or unknown space are not shown. Bottom right shows the oc-
cupied space voxel grid from a section of corridor in green, showing how
safe poses are restricted with the bounds of the observed corridor. 150

5.13 Intermediate poses are sampled along a potential edge trajectory and
checked to ensure each would result in SLAM localisation being main-
tained. 152

5.14 Examples of keyframe navigation graphs, with graph nodes representing
safe vehicle poses drawn in red and edges representing safe trajectories
between such nodes drawn in orange. 153

5.15 Combination of keyframe navigation graphs (each shown in a different
colour) from largely translational motion. Connecting edge between graphs
are shown in white. 155

5.16 Combination of keyframe navigation graphs (each shown in a different
colour) from largely rotational motion. Connecting edge between graphs
are shown in white. 156

5.17 Creation of a keyframe based navigation graph in a flying arena as de-
scribed in 5.4.2. Occupied space voxels are drawn in green, while graph
edges and nodes are drawn in white and pink. It can be seen that loop
closure occurs as the vehicle moves back to around its starting location. . 157

5.18 Planning between rooms of an apartment. 159
5.19 Further planning between rooms of an apartment. 160
5.20 Planning within an office space. 161
5.21 Planning across various maps. 162
5.22 AscTec Pelican. 163
5.23 Real-time visualizations of SLAM data received from the Pelican vehicle. 166
5.24 Examples of trajectories generated within an obstacle filled flying arena. 168
5.25 Examples of trajectories generated within a flying arena with obstacles

placed along the boundaries. 169
5.26 Comparison between trajectories with (top) and without (bottom) enforc-

ing SLAM localisation constraints. 170

viii

List of Tables

2.1 Depth edge detection results for Freiburg RGB-D sequences, showing how
computation time and detection accuracy vary with the number of image
patches the original depth image is split into. 36

2.2 Comparison of Occluding edge detection methods 37
2.3 Evaluation results of the SLAM system proposed in Section 2.3 on vari-

ous RGB-D video sequences along with comparisons to other SLAM sys-
tems. Reported results were obtained with the edge detection parameter
rowcol skip = 5. 63

2.4 Results detailing the effects of changing the rowcol skip parameter on
SLAM system performance (translational RMSE, rotational RMSE and
total runtime). 65

3.1 A comparison of the performance of the proposed line based SLAM ex-
tension to that of the purely edge cloud based system proposed previously
in Chaper 2 using various RGB-D sequences from the Freiburg dataset [96]. 96

4.1 Path computation times and properties 117

ix

Nomenclature

SLAM

K : SLAM map / set of keyframes

Ki : ith keyframe

KT : Current tracking keyframe, used for sensor pose estimation

XT : Estimated pose of sensor in tracking keframes reference frame

X : Estimated pose of sensor in world reference frame

F : Latest RGB-D frame of sensor

D : Depth edge point cloud associated with F

I : RGB intensity edge point clouds associated with F

Pi = (ti,qi) : Estimated pose of ith keframe

ti : Translation component of pose Pi as a 3-D vector

qi : Rotational component of pose Pi as a unit quaternion

R(q) : Rotation matrix equivalent of unit quaternion q

R(n̂, θ) : Rotation matrix equivalent of axis angle rotation (n̂, θ)

Fi : RGB-D frame of ith keframe

Di : Depth edge point cloud of ith keframe

Ii : RGB edge point cloud of ith keframe

Ki = {Pi, Fi, Di, Ii}

R : set of all keframe loop closure constraints

Ri,j = (ti,j,qi,j) : relative pose constraint between pose Pi and Pj

1

LIST OF TABLES 2

ti,j : Translation component of relative pose constraint Ri,j as a 3-D vector

qi,j : Rotational component of relative pose constraint Ri,j as a unit quaternion

Belief Space Planning

B : Set of bearing measurement beacons

O : Set of convex polygonal obstacles

Oi : ith obstacle

Vi : Vertices of Oi

Êi : Unit vector edge direction of Oi

F̂i : Unit vector face normals of Oi

Oi = {Vi, Êi, F̂i}

N : Set of navigation graph nodes

E : Set of navigation graph edges

P : Set of path nodes

Pi : ith path node

ni graph node associated with ith path node

Qi Parent of ith path node

mi Graph node associated with parent node Qi

li Total length of path associated with Pi

wi Weighting score assigned to path node Pi

keyframe Based Path Planning

G : Set of all keyframe navigation graphs

Gi : Navigation graph of keyframe Ki

Ni : Nodes of graph Gi

nj
i : jth node of Gi

LIST OF TABLES 3

Ei : Edges of graph Gi

ej
i : jth edge of Gi

EC : Set of connecting edges

ci : jth connecting edge

Chapter 1
Introduction

This thesis explores Simultaneous Localisation And Mapping (SLAM) and its relation

to autonomous navigation and path planning. Specifically, we target the problem of

SLAM based indoor Micro Air Vehicle (MAV) navigation and present both a semi-dense

RGB-D SLAM system and a SLAM-aware path planning approach (motivated by this

scenario).

This introduction provides an overview of the content covered by this thesis, beginning

with a motivation in 1.1 describing the problems relating to SLAM and navigation that

we seek to address. The areas of SLAM, robot navigation and path planning are then

discussed in Section 1.2. Sections 1.3 and 1.4 discuss the motivation behind our proposed

SLAM and path planning approaches respectively. Finally, Section 1.5 presents a thesis

outline along with a list of contributions and peer reviewed publications.

1.1 Motivation

The task of navigation requires one to possess both a map to decide upon the route

to take and a means to determine where one is currently located within said map.

Autonomous navigation by robots and vehicles is no different, requiring a representa-

tive map of the environment so that path planning can be conducted, in addition to a

means to localise within the environment itself. Despite the rapid increase in the use

of autonomous robots and vehicles over the last decade, navigation has often remained

restricted to environments which have pre-existing maps, and for which there exists a

means of reliable localisation by the presence of known environmental features or access

to external systems such as GPS.

4

1.2 SLAM and Robot Navigation 5

However in the most general navigation scenario, there may be no pre-existing map of

the environment in question, the environment may have no known structural elements

to exploit for localisation, and there may be no access to any external systems such as

GPS for localisation (due to being indoors, within an urban canyon etc). A robot in such

a scenario must instead conduct navigation with nothing but its on-board sensors, using

them to both map the observed environment and localise within it, that is to perform

SLAM. In this way SLAM is viewed as a key technology in enabling wide spread use of

autonomous robotics and is a highly active area of research.

There are however, many issues related to such SLAM based navigation. If for example,

the SLAM system was to lose localisation, the robot’s ability to navigate would be

severely impaired. To avoid this issue, it is vital to ensure that the robot’s on-board

sensors always obtain sufficient information for the SLAM system to maintain localisation

at all times. This sensor information constraint must thus be factored into the path

planning process to ensure safe navigation. Another issue is that of the map of the SLAM

system itself, which in some scenarios, may become distorted or even globally inconsistent

due to the accumulation of sensor drift and tracking errors, further complicating the path

planning process.

In addition to these issues regarding path planning, the robot’s SLAM system and on-

board sensors must themselves be suited to the task of autonomous navigation. Specif-

ically the SLAM must achieve consistent real-time performance upon the robot’s own

hardware, provide an accurate estimation of the robot’s pose (at least relative to a lo-

cal frame), and be capable of constructing a map which provides sufficient geometric

information regarding obstacles within the environment.

Further discussion of these issues, along with our proposed SLAM and path planning

approaches are now given in the following sections.

1.2 SLAM and Robot Navigation

Visual SLAM has seen significant advances over the last two decades with the develop-

ment of a range of systems and innovations, notably the point feature based systems,

Parallel tracking and mapping (PTAM) [58] and the recent Orb-SLAM [78] system in

2015, along with the dense reconstruction approaches of Kinetic Fusion [47] and the

Dense Tracking and Mapping system (DTAM) [79]. These have bought significant im-

provements in terms of accuracy, robustness, map size and detail.

1.2 SLAM and Robot Navigation 6

Figure 1.1: Left, an example of point features extracted from a single video
frame by ORB-SLAM. Right, an example of a sparse feature based map created
by ORB-SLAM as presented in [78], estimated feature locations are shown in red
and keyframe poses in blue.

In order to conduct robot navigation however, the SLAM system and sensors utilized

by the robot must be capable of providing a suitable representation of the environment,

specifically a representation that provides sufficient 3D geometric information to ensure

collision avoidance. Many such SLAM systems construct maps containing sufficient in-

formation to conduct sensor localisation, but which provide little explicit information

regarding the geometry of the environment itself. For example, many traditional vi-

sual SLAM approaches, both monocular ([20],[14],[78],[15],[58],[60],[94],[93]) and stereo

([95],[80],[44],[74],[73]) are based on the concept of identifying and tracking salient visual

point features, such as those produced by the well known SIFT [70], SURF [4], and ORB

[85] feature descriptors. This results in maps consisting of the estimated locations of

such features in 3D space as illustrated in Figure 1.3. These sparse 3D point feature

maps are sufficient for localisation, however extracting a representation of underlying

geometry of the environment from them is a challenging task. Indeed many areas of

the environment may feature no point features whatsoever, leading to them having no

representation within the SLAM map from which to estimate environmental geometry.

In such cases these areas must be entirely treated as if they were obstacles and avoided,

in-order to ensure safe navigation. Naturally these issues impose crippling restrictions

on a robot’s ability to navigate, and while indoor MAV navigation using point feature

based SLAM systems has been investigated typically involve the construction of artificial

point feature rich environments or severely constrains navigation to within a small vol-

ume of predetermined free space to ensure safety ([86],[88],[26],[5],[9],[105]), cases which

bear little resemblance to real world scenarios. Other visual features such as lines and

edges have also been utilized for indoor MAV navigation ([48],[55]) however once again

1.2 SLAM and Robot Navigation 7

the sparsity of such features is often such that they alone are insufficient to provide the

3D geometric information required for navigation.

On the opposite end of the spectrum dense monocular visual SLAM methods produce

highly detailed geometric maps, using every pixel of an image in estimating a highly

detailed 3D model of the environment ([79],[47],[112],[111],[75],[56],[110]). However, this

detailed representation is generally not required for navigation, where the scale at which

navigation is conducted (determined by the size of the robot itself) dictates the level of

geometric detail required. For example a quad-rotor navigating inside of an office space

would require approximate geometry of any desks or furniture present so that it may

navigate about such objects, and a detailed 3D reconstruction of other individual small

objects however is not required, as they would have no affect on the decision making

process used to navigate through the environment. Additionally the high computational

cost associated with such dense approaches commonly necessitates the use of powerful

parallel GPU hardware to achieve real-time performance, and the high memory require-

ments needed for such detailed mapping typically limits the size of the maps themselves.

These factors again make such an approach ill-suited to use on many autonomous robotic

platforms. Further, whatever the approach, camera based visual SLAM methods rely on

sufficient visual information being observed in order to estimate the pose of the sensor.

This can pose a problem in many environments with areas lacking in visual informa-

tion.

Because of the differing information requirements between SLAM and navigation it

makes intuitive sense to instead construct two maps forming different representations

of the environment, one used for localisation and another to conduct navigation and

obstacle avoidance. This still however, requires one to be able to accurately determine

environmental geometry, and the navigation related complexities involved with monoc-

ular camera based SLAM approaches have turned many to using alternative sensors

capable of observing environmental geometry directly. To this effect many autonomous

vehicles have utilized LIDAR and laser range finders to produce geometric maps suit-

able for navigation. This includes considerable work concerning indoor MAV navigation

([38],[3],[1],[34],[35]), however the majority of these adopt a 2D representation of the

environment, and the sensors involved are often highly costly limiting their potential

widespread application.

An alternative to such sensors came with the development of cheap camera based RGB-

D sensors such as the original Microsoft Kinect [115]. Using such RGB-D sensors, a

geometrical map for path planning and collision avoidance can be created alongside of

that of the SLAM system map used for localisation.

1.3 Edge Based RGB-D SLAM 8

Figure 1.2: Examples of back-projecting occluding depth edges to form semi-
dense point clouds as shown in green.

Similar to monocular SLAM, a wide array of RGB-D SLAM systems have been de-

veloped ([24],[47],[111],[112],[25],[39],[40],[109]) including both sparse point feature and

dense approaches; many of which face similar challenges to their monocular counterparts.

However there has been compelling work in the use of RGB-D SLAM for indoor MAV

navigation including Huang et al [46] in which pose estimation and RGB-D odometry was

performed on-board the vehicle while map optimization was performed from a grounds

based PC, and the later work of Valenti et al in 2014 [106] in which the entire SLAM sys-

tem ran on-board the vehicle. In this work we attempted to formulate a RGB-D SLAM

approach to address some of the issues regarding use on MAVs, along with investigating

how such a system should be utilized for navigation and path planning.

1.3 Edge Based RGB-D SLAM

The majority of SLAM systems have traditionally fallen into one of two approaches,

being either sparse point feature based and only making use of specific areas of an image

around which salient visual features are located, or taking a dense approach whereby

every pixel of each image is utilized. Recent developments in the field of SLAM have also

seen the emergence of so called ”semi-dense” approaches notably with the introduction of

the Large Scale Direct Monocular SLAM system LSD-SLAM [27] in 2014. The key idea

behind this semi-dense approach being that instead of utilizing the entire image as in

dense approaches, only pixels which are likely to provide useful localisation and tracking

information should be utilized. In practice this can vastly decrease the amount of visual

data that needs to be processed per frame, making such semi-dense approaches viable

on a wide range of robotic platforms not equipped with the powerful parallel processing

capabilities typically required for dense SLAM approaches.

1.4 SLAM Aware Path Planning 9

This thesis specifically investigates applying such a semi-dense edge based approach to

RGB-D SLAM by utilizing edges found in both the color and depth components of

the RGB-D image. Intuitively such edge pixels are highly sensitive to change in sensor

pose. Take for example a set of such edge pixels extracted from one RGB-D frame,

and compare the values of those same pixels locations in the subsequent RGB-D frame,

any small change in sensor pose between frames will likely cause a significant disparity

between these pixel values. This is in contrast to pixels belonging to bland or textureless

image regions (in either RGB or depth images), where the values of such pixels are

unlikely to exhibit significant change in value from one frame to the next. In this way

the use of only such edge pixels can be regarded as reducing the RGB-D image down

to a smaller subset of pixels which contain useful information for sensor tracking and

localisation. Additionally using such depth edges can allow such a system to maintain

localisation even if there is a lack of visual detail in the scene (assuming that there is

sufficient geometry detail), and similarly, vice versa for RGB color edges. A example of

such depth edges extracted from an RGB-D point cloud is shown in Figure 1.2. Thus use

of both RGB and depth edges allow such a SLAM system to operate in a wider range of

scenarios.

As we intend such a SLAM system to be viable for use in autonomous navigation for small

robotic platform it must naturally demonstrate real-time performance. The primary

computational factors to consider are those of edge detection and edge registration,

both of which need to be conducted for every RGB-D frame received. This thesis will

address the implementation of these processes in detail, presenting approaches capable

of achieving faster than real-time performance on a single CPU core.

1.4 SLAM Aware Path Planning

Let us again consider an autonomous robot using SLAM for mapping, localisation and

navigation. A safe trajectory for such a robot is both collision free and also ensures that

the SLAM system maintains localisation at all times. In an ideal hypothetical scenario

the SLAM system used both never loses localisation and is perfectly accurate, effectively

providing ground truth information with regards to localisation and environmental ge-

ometry needed for navigation. In such a scenario the SLAM system is effectively removed

from the path planning problem and does not need to be considered when determining

how the robot should move. In reality however, the SLAM system may lose localisation

due to the vehicle’s location (or motion) resulting in insufficient information for local-

isation being observed by the vehicle’s sensors. Such a loss of localisation could cause

1.4 SLAM Aware Path Planning 10

Figure 1.3: Example of our proposed edge-based SLAM in operation.

the vehicle to stray from the desired trajectory, potentially colliding with some obstacle

in the environment.

Thus in practice the path planning process must carefully consider the SLAM system’s

ability to maintain localisation when determining safe trajectories. This involves check-

ing that a potential trajectory always ensures that sufficient sensor information is avail-

able for the SLAM system to maintain localisation, based on the current constructed

map. The specific implementation of this process however depends upon the SLAM

system in question and what visual data is utilized for localisation.

Another relevant issue is that of changes to the SLAM map occurring during navigation

due to loop closures, and also the accumulation of global drift leading to a map which,

from a global reference frame is geometrically inconsistent. Such map changes may

invalidate both calculated trajectories and the entire geometric map used for collision

avoidance. To mitigate this path planning must be conducted in a manner that is

robust to such global inconsistency. With this in mind we present a keyframe centric

approach to path planning in Section 5, producing trajectories which consist of multiple

segments each defined within the reference frame of a specific keyframe, which allows

such trajectories to easily be warped in accordance with global changes to the SLAM

map.

1.5 Contributions, Outline and Publications 11

1.5 Contributions, Outline and Publications

1.5.1 Contributions

The work contained within this thesis describes a novel semi-dense RGB-D SLAM ap-

proach along with the associated methods of edge detection and point cloud registration.

Additionally we present a novel path planning approach which conducts planning across

multiple connected sub maps. This approach allows calculated paths to be robust to

changes in the global map produced by the SLAM algorithm.

Our proposed SLAM algorithm utilizes edges extracted from both the RGB and Depth

components of each RGB-D frame. The independent use of both color and depth features

allows the proposed system to maintain tracking in situations where relying solely upon

the depth or color components would result in tracking failure. At the time of writing

this to our knowledge is the first semi-dense system making simultaneous use of color and

depth from RGB-D data. Evaluation of this system shows that it compares favourably to

a number of alternative CPU based RGB-D SLAM systems, displaying significantly lower

computational cost, similar levels of accuracy, and consistent real-time performance at

30hz or higher.

We present a novel method of occluding depth edge detection which exploits the temporal

similarity between frames of an RGB-D sequence. The locations of edges detected in

the previous frame are used as a prior, to target edge detection to only image locations

where edges are likely to be present. We show that by exploiting prior information in

this manner our approach favourably compares to existing methods such as [12], having

a significantly smaller computational cost.

Our SLAM system makes use of a custom edge based ICP registration method. We

present extensive testing showing that compared to naive ICP registration our approach

is more robust to down-sampling, converges in fewer ICP iterations, has a significantly

lower computational cost per iteration, and can achieve greater accuracy within a given

time frame. This core ICP component allows our entire SLAM system to achieve greater

than real-time performance on standard CPU hardware.

Additionally we present a novel line based SLAM system. We propose methods of both

performing line extraction from point cloud data, and performing registration between

line segments and semi-dense edge point clouds. This line based SLAM is an extension

of our semi-dense SLAM system, with a lower computational cost but reduced accu-

racy.

1.5 Contributions, Outline and Publications 12

We present a method of belief space planning designed to navigate 3D environments while

ensuring that localisation is maintained from bearing measurements to fixed landmarks.

Finally we propose a keyframe sub map based method of path planning for use on

MAVs using the prosed edge based SLAM to navigate around indoor environments, both

ensuring obstacle avoidance and localisation via the SLAM system. We demonstrate the

use of both this keyframe centric planner and the proposed SLAM system in use on-board

of a quad-rotor MAV platform within an indoor flying arena.

1.5.2 Thesis Outline

A summary of the chapters within this thesis is as follows.

Chapter 2 : Edge Based RGB-D SLAM

This chapter presents our proposed Edge Based RGB-D SLAM approach, including our

motivation behind creating such a system, and implementation of the various compo-

nents. Our system uses a keyframe based approach in which both RGB and depth

edges are extracted from each RGB-D frame. These edges are back-projected forming

semi-dense ”edge clouds” used for sensor pose estimation via ICP. Our method of edge

based ICP registration is presented and evaluated along with our proposed method of

fast depth edge detection exploiting the temporal similarity between RGB-D frames,

and our proposed method of map optimization using an intuitive mass-spring system

inspired approach. Finally the proposed SLAM system is evaluated using publicly avail-

able RGB-D datasets and mapping results are presented. This evaluation reveals that

in comparison to a number of alternative systems, our proposed SLAM implementation

is able to achieve a similar level of mapping and localisation accuracy, while having a

significantly reduced computational cost many times smaller than that of other systems.

This system was implemented from scratch in C# allowing easy portability between

Linux and Windows, along with all other software described within this thesis.

Chapter 3 : Line Based RGB-D SLAM

This chapter presents an investigation into modifying the proposed edge based SLAM

to utilize high level 3D line features. A method of extracting straight linear segments

of semi-dense edge clouds is proposed, along with an ICP variant designed to perform

registration between a set of such 3D linear features and a semi-dense edge cloud. Similar

1.5 Contributions, Outline and Publications 13

evaluations are presented for this line feature based SLAM system as were for our edge

based approach.

Chapter 4 : Belief Space Planning

This chapter presents an investigation into the use of belief space planning for generating

trajectories for ensuring vehicle localisation based upon on-board sensor measurements.

A belief space planning method is presented generating trajectories through complex 3D

environments that aim to ensure localisation by measurement of various point landmarks

placed within the environment. Results are presented comparing trajectories attempting

to maintain localisation with those simply taking the shortest route between the desired

start and goal locations.

Chapter 5 : Path Planning

This chapter presents our employed method of path planning targeted towards RGB-D

SLAM based MAV navigation. A discussion of how to generate safe MAV trajecto-

ries is provided, laying out the necessity of not only collision avoidance but of ensuring

the vehicle’s RGB-D sensor always observes sufficient information for SLAM localisa-

tion to be maintained. A keyframe centric method of path planning is then proposed

whereby separate navigation graphs are generated for each keyframe, ensuring both col-

lision avoidance and sufficient RGB-D sensor data. These graphs are connected based

upon detected loop closures, forming a global navigation graph robust to the effects of

SLAM drift and global error. Trajectories generated by the proposed planning approach

are presented, both in scenarios where the RGB-D sensor was being carried by hand and

where it was mounted to a MAV navigating within an indoor flying arena.

Chapter 6 : Conclusions

Finally we summarize the results of the previous chapters, lay out contributions, and

discuss potential directions of future work and investigation.

1.5 Contributions, Outline and Publications 14

1.5.3 Publications

The work contained within this thesis has been peer-reviewed and published in the

following publications:

1. Laurie Bose, Arthur Richards. Determining Accurate visual Slam Trajectories

Using Sequential Monte Carlo Optimization. American Institute of Aeronautics

and Astronautics (AIAA) Guidance, Navigation, and Control Conference (GNC)

2013. [7]

2. Laurie Bose, Arthur Richards. Mav Belief Space Planning In 3d Environments

With Visual Bearing Observations. International Micro Air Vehicle Conference

(IMAV) 2013. [8]

3. Laurie Bose, Arthur Richards. Fast Depth Edge Detection and Edge Based RGB-

D SLAM. International Conference on Robotics and Automation (ICRA), 2016.

[8]

The work of publication 3. is fully described across Chapters 2 and 3, while publication

2. is discussed in Chapter 4.

Chapter 2
Edge Based RGB-D SLAM

In this chapter we present our edge based RGB-D SLAM approach, along with a discus-

sion of our motivation behind developing such a system and a brief background section.

Much of this work was originally presented in Bose and Richards [6] at ICRA 2016.

Our method extracts both RGB and depth edge pixels from each RGB-D frame, back-

projecting these to form two semi-dense clouds which are used as the basis of sensor

tracking and map construction.

2.1 Background

Consider the task of navigating a previously unseen environment. In order to keep track

of how you are moving through the world it is necessary to memorize the layout of the

environment and the locations of landmarks within it. This is the process of constructing

a mental map of the environment, updating and refining it as new information becomes

available. Simultaneously, this same mental map is also being used to track your location

within the environment and determine the best route to take to achieve your current goal.

The goal of SLAM (Simultaneous localisation and mapping) in robotics is to essentially

replicate this process.

15

2.1 Background 16

2.1.1 Probabilistic SLAM Description

Stated formally the SLAM problem is to determine the probability distribution,

P (xt,mt|z1,t, u1,t) (2.1)

for the current time t, where xt is the current state of the robot at time step t, mt is

the constructed map of the world, z1,t is the set of all sensor observations made up to

time t and u1,t the set of all movement commands executed by the robot up to t. This

probability distribution is referred to as the ”SLAM posterior”. This jointly describes

the belief of a robot’s current state and the constructed map of the world, given all

previous sensor observations and movement commands. The form of xt is dependant

upon the robot, for example a simple wheeled robot’s state may simply consist of a 2D

position and orientation, while a flying quad-rotor’s state would consist of a full 6DOF

pose. Additionally the map m can take many forms depending upon the sensors and

SLAM algorithm being used. For example m could take of the form of a occupancy grid,

or a list of 3D locations of salient features observed by a camera. Thus the complexity

of the SLAM posterior can vary significantly depending upon the SLAM problem in

question.

From Bayes’ rule it is possible to rewrite the SLAM posterior of Equation 2.1 in the

form.

P (xt,mt|z1,t, u1,t) = ηP (zt|xt,mt, z1,t−1, u1,t)× P (xt,mt|z1,t−1, u1,t) (2.2)

Where η is a normalizing constant ensuring the integral over the entire distribution

correctly sums to 1.

In practice a number of assumptions are made regarding the SLAM posterior in order

to greatly simplify the problem.

• Firstly the assumption is made that the robot’s state xt is only dependant upon

its previous state xt−1, and the movement command issued at the same time step

ut. That is xt follows a first order Markov process.

• It is assumed that the sensor measurements, and controls at each time step are

uncorrelated.

2.1 Background 17

• The environment is assumed to be static and not change over time, thus allowing

a single variable m to replace m0,m1,m2...mt.

These assumptions allow Equation 2.2 to be simplified.

P (xt,m|z1,t, u1,t) = ηP (zt|xt,m)× P (xt,m|z1,t−1, u1,t) (2.3)

Then using total probability theorem and these assumptions Equation 2.3 can be ma-

nipulated to the form.

P (xt,m|z1,t, u1,t) = ηP (zt|xt,m)×
∫
P (xt,m|xt−1, z1,t−1, u1,t)×P (xt−1|z1,t−1, u1,t−1)δxt−1

(2.4)

Finally it can be shown by using the definition of conditional probability the distributions

inside the integral can be rewritten in the form.

P (xt,m|z1,t, u1,t) = ηP (zt|xt,m)×
∫
P (xt|xt−1, u1,t)×P (xt−1,m|z1,t−1, u1,t−1)δxt−1 (2.5)

This form consists of three components, namely the ”observation model”.

P (zt|xt,m) (2.6)

The ”motion model” (or ”process model”).

P (xt|xt−1, u1,t) (2.7)

2.1 Background 18

And the previous SLAM posterior.

P (xt−1,m|z1,t−1, u1,t−1) (2.8)

In this form the SLAM problem is given as a recursive Bayes filter.

The ”motion model” as given by Equation 2.7 describes how belief of the robot’s state

evolves from one time step to the next. This distribution is of course dependant upon

the form of movement used by the robot. The robot’s motion will in practice never

perfectly follow the desired controls. This is due to issues such as wheel slippage, wind

or any number of other factors. Thus the uncertainty of the robot’s state will naturally

increase with each motion.

The ”observation model” as given by Equation 2.6 gives the likelihood of a specific

observation zt being made given a specific map and vehicle state. The form of this

distribution depends upon the type of sensor being used, along with it’s the accuracy

and noise characteristics.

In practice the continuous probability distributions of the SLAM posterior, motion

model, and observation model must either be approximated discretely or greatly simpli-

fied using a set of assumptions in order for the SLAM problem to become tractable.

Common approaches include assuming that all distributions are Gaussian, using a parti-

cle filter based approach to approximate the distribution, or simply not explicitly mod-

elling the entire distribution. Indeed EKF based SLAM approaches which model the

entire belief but operate under the assumption the belief is Gaussian, still quickly be-

come computationally intractable as the constructed map size increases.

2.1.2 Keyframe Based SLAM

Popularized by the work of Klein and Murray in [59],[58], the concept of keyframe based

SLAM has seen wide adoption over the last decade. In general, a keyframe typically

consists of a single set of sensor data, features extracted from said data, and an estimate

of the global sensor pose at which this sensor data was obtained. A keyframe based

system constructs a map consisting of a set of such keyframes, beginning with a single

keyframe using the data acquired upon the system’s initialization, with the addition of

more keyframes as new areas of the environment are observed. The initial keyframe is

typically taken to have its global pose fixed at the identity pose (at the origin), with

2.1 Background 19

the global poses of subsequent keyframes being estimated relative to this initial one.

Features are extracted from each new set of sensor data and registered with features

stored within the keyframes of the map, providing an estimate of the sensor’s current

pose.

Such a key-frame based approach can also be considered as effectively partitioning the

observed environment into a number of small sub maps, the locations of which are

each estimated within some global reference frame, forming a global SLAM map of

the environment. Such a partitioning into multiple independent submaps makes the

process of global map optimization as discussion in the following Section 2.1.3 far more

manageable and computationally tractable for large maps. Many works have used similar

submap approaches enabling them to construct and manage large scale maps in real-time

([113],[49],[68]). We adopt such a keyframe based approach in our edge based RGB-D

system presented in Section 2.3 onwards.

2.1.3 Pose Graph Optimization

The poses of such keyframes inevitably have some degree of error and uncertainty due

to the accumulation of tracking errors leading to global drift in the sensor’s estimated

position. These issues can be mitigated however, by the detection of loop closures and

map optimization.

Such loop closures define a set of relative pose constraints between various pairs of

keyframes. In-order to incorporate this information into the map, the estimated keyframe

poses need to be updated such that they comply with these constraints. This problem

can be visualized as a pose graph in which the nodes of the graph represent the cur-

rent estimated keyframe poses and the edges between nodes represent the relative pose

constraints between pairs of keyframes from detected loop closures. The problem of

finding the set of keyframe poses which best comply with these constraints can thus be

regarded as a pose graph optimization (PGO) problem as originally introduced by [72],

in which a set of poses are estimated from a set of noisy relative pose constraints. Solving

such graph optimization problems in a robust and efficient manner is itself a large area

of research, with many widely used solutions such as the well known ”g2o” framework

[61]. Such map optimization is also typically conducted continuously on a separate CPU

thread from that conducting sensor tracking and localisation, in order to ensure one does

not impede the performance of the other. In this work we investigated using an intuitive

relaxation based approach to PGO as presented Section 2.8.

2.2 SLAM System and Sensor Requirements 20

2.1.4 Depth Sensor Calibration

It should be noted that common consumer structured light based RGB-D sensors, such

as the Microsoft Kinect and Asus Xtion, suffer from significant noise, discretization and

distortion issues in regards to their depth measurements. These issue are proportional

to the depth itself as demonstrated by [57], becoming a significant problem for depth

measurements over 3 meters. Further such issues can adversely effect any SLAM or

sensor tracking applications that rely on RGB-D depth data.

However, the distortion issue can be largely alleviated by calibration and post-processing

of the raw depth data output by the sensor, as demonstrated in [42],[17],[100],[13]. As

a brief overview, the distortion present in the depth images produced by the RGB-D

sensor can be formulated on a per pixel basis. Let dx,y denote the distorted depth value

associated with the depth image pixel at (x, y), and similarly let tx,y denote the true

(undistorted) depth value associated with said pixel. The value of each pixel in the depth

image is then given by dx,y = fx,y(tx,y), where fx,y is the distortion function which when

applied to tx,y, produces the actual measured distorted depth value dx,y. Similarly the

true depth of each pixel is given by tx,y = f−1x,y(dx,y) where f−1x,y is the associated undistort

function. Note that each pixel has its own unique distortion functions fx,y, f
−1
x,y , and

further these distortion functions will vary between RGB-D sensors (even those of the

same type i.e. two different Xtion sensors). If we observe a known piece of geometry

(such as a flat planar surface) from a known sensor position, the true depth values tx,y

which should be associated with each pixel can be calculated and then compared to the

actual measured depth values dx,y. By obtaining multiple such pairs of true and measured

depth values for each pixel, a polynomial approximation of each pixel’s undistort function

f−1x,y (and fx,y) can be determined. We can then attempt to undistort each depth image

produced by the sensor by applying f−1x,y to each pixels measured depth dx,y, greatly

improving the quality of the produced RGB-D cloud at ranges above 3 meters. In our

work we determined these distortion patterns by simply acquiring depth images of large

flat surfaces at different distances from the sensor (with the sensor being approximately

normal to the surface in question), an example of the resulting improvement in depth

quality is shown in Figure 2.1.

2.2 SLAM System and Sensor Requirements

Since this work is primarily motivated towards SLAM based indoor autonomous vehicle

navigation, primarily on MAV platforms, there were a number of important factors and

2.2 SLAM System and Sensor Requirements 21

Figure 2.1: A RGB-D cloud of a flat ceiling 2 meters from the sensor, before
(top) and after (bottom) distortion correct has been applied.

requirements to consider when determining which sensors and form of SLAM system

were suited to the task at hand.

2.2.1 Geometric Configuration Space Construction

A typical indoor environment will consist of many obstacles and passageways, which

have to be carefully navigated in order to ensure the vehicle does not experience a

fatal collision during operation. Doing so requires some geometric representation or

map of the environment, expressing where such obstacles (and open free space) are

located, and where the vehicle may safely be positioned. This geometric map is then

used in calculating safe obstacle free paths which the vehicle can use to navigate its

surroundings.

In practice the larger the vehicle, the more approximate this geometric map of the

environment can be since geometric details significantly smaller than the vehicle itself

become largely irrelevant in terms of deciding how to navigate the environment. A

group of such small geometric obstacles can simply be approximated by a single large

obstacle with little effect on the final trajectories produced by the path planning process.

Thus during autonomous navigation operations, an approximate geometric map of the

environment is used to conduct path planning, while simultaneously a different feature

based map is used by the SLAM system for tracking and localization.

Naturally this geometric map of the environment must be constructed during operation

using information from the vehicle’s sensors and SLAM system. The difficulty of this

construction task varies greatly depending on the choice of sensor and SLAM system

methodology, with some approaches being better suited than others.

2.2 SLAM System and Sensor Requirements 22

2.2.1.1 Geometry From Monocular Methods

There is a rich history of literature tackling the problem of determining 3D geometry from

2D images. Methods such as space carving [62] and structure from motion (SFM) ([104],

[99], [16]) are able to reproduce highly detailed dense 3D models, however, typically

require accurate relative poses describing where each image was acquired. Estimates of

such poses could be provided by the SLAM system; however, such dense reconstruction

methods still remain computationally expensive and also provide a level of detail in

their reconstruction unnecessary for conducting path planning. An alternative to using

such a dedicated reconstruction approach is instead, to try and extract an approximate

geometrical map from the map constructed by the SLAM system itself.

There are many forms of Visual SLAM systems using a single monocular RGB camera,

with one of the most common approaches making use of sparse point features extracted

from the sensor images. The sparse maps constructed by such systems then consist of the

estimated locations of observed point features, such as that shown in Figure 2.2.

It is fairly obvious however, that such maps in general provide little information regarding

the geometry of the environment and an approximate geometric map reconstructed from

such a sparse set of points is highly unlikely to be fit for use in navigation and reliable

obstacle avoidance. In order to construct a geometric map of decent quality that does not

severely limit path planing and navigation, would require an abundance of point features

to be present across all surfaces of the environment. Works such as [86] constructed

arbitrary environments in which such an abundance of point features is present, and

while successful path planning is demonstrated within these environments such a scenario

is far removed from real-world application. Indeed, in a typical real-world environment,

point features are often completely absent in many areas due to a lack of texture and

poor lighting, and in such areas the SLAM system’s sparse map would provide no usable

geometric information at all.

For these reasons sparse point feature based approaches using a single monocular RGB

camera are typically ill suited for autonomous indoor navigation.

Alternatively, dense monocular SLAM approaches such as the dense mapping demon-

strated by DTAM [79], construct detailed geometric maps of the environment, from

which an approximate geometric map for navigation purposes can be easily extracted.

However such approaches require a high level of computing power typically unavailable

on on-board computers carried by such MAVs systems, and so would not be able to

achieve real-time performance. Additionally, the maps produced by such dense methods

again provide a high level of detail not required for path planning purposes and quickly

2.2 SLAM System and Sensor Requirements 23

Figure 2.2: Left, a sparse point feature based map constructed by PTAM [58].
Right, a dense map constructed by DTAM [79]. Note the difficulty in determining
the underlying environmental geometry from the sparse map.

consume a large amount of memory which greatly limits the maximum volume that can

be mapped, placing further limitations on the vehicle’s navigation capabilities.

2.2.1.2 Depth Sensor Geometry

As we have discussed previously, the task of constructing approximate 3D geometry using

a single RGB camera can be a highly challenging task to perform reliably in real-time,

especially on the limited on-board hardware typical of MAV systems. A currently far

more practical approach is thus to simply equip the MAV with RGB-D sensors which

can take direct measurements of the physical geometry of the environment. This greatly

simplifies the task of constructing a geometric map for path planning, reducing the

amount of computational work required and allowing more resources to be focused in

other areas. Additionally RGB-D sensors remove a great deal of ambiguity, such as the

physical scale of the constructed map, which otherwise would have to be estimated based

on inertial measurements if relying purely on a standard monocular camera.

2.2.2 Real-Time Performance Limitations

An additional requirement is that the SLAM system used must be capable of real-time

performance on the vehicle’s on-board hardware. Ideally the SLAM system should be

capable of running at least at the same rate at which data is acquired by the vehicle’s

primary sensor. In the case of standard RGB and RGB-D cameras this would require

the SLAM to run at a frame rate of 30Hz or higher.

Falling far below this update rate of 30Hz has several degrading effects. First, since

the SLAM is not able to keep up with the rate at which images are being produced

2.3 RGB-D Edge SLAM Overview 24

by the sensor, many images will be skipped over. This results in there being more

time between the images actually being used for tracking and localization. The further

apart two images are temporally, the more time there is between them in which camera

motion can take place, generally leading to there being less common information shared

between sequential images. Each of these factors increases the likelihood of tracking

failure occurring whenever the sensor is undergoing motion. A MAV operating with such

a low frame-rate SLAM system would be forced to greatly limit its rate of movement,

in order to minimize the probability of such tracking failures occurring. Additionally

lowering the frame rate of the SLAM system reduces the rate at which pose estimates are

being provided to the vehicles controller. This in turn limits the rate which the vehicle’s

controller can make adjustments in order to accurately follow a specific trajectory, which

must then be accounted for by taking wider paths about obstacles in order to ensure

safety.

A wide range of on-board computers have been demonstrated on MAVs platforms, how-

ever compared to desktop PCs all of them are naturally somewhat limited in terms of raw

computing power. Most notably, dedicated desktop GPUs are typically far too heavy,

large, and power hungry to be practical on such a small flying vehicle. There are several

computationally intensive dense SLAM approaches which typically require such GPUs

in order to achieve real-time performance, DTAM and Kinect Fusion being two such

examples. Both of these systems create dense geometric maps of the observed environ-

ment and both also perform tracking using all of the information in each camera image,

rather than using only certain features extracted from these images. These two aspects

are in general far too computationally intensive to be performed in real-time on such

on-board MAV hardware (our target MAV platforms specifically carries a single desktop

CPU only) and thus such dense methods are currently unsuitable for such autonomous

navigation purposes.

2.3 RGB-D Edge SLAM Overview

The requirement from previous sections were used as guidelines in the development of a

SLAM system, specifically with autonomous indoor navigation in mind.

Our proposed RGB-D SLAM system follows the standard keyframe based approach as

laid out in Section 2.1.2, where the SLAM system map consists of a set of keyframes

K = {K0, K1, ...}, each with an estimated pose and a set of observed features. The

sensor’s current pose is then estimated by registering features extracted from the current

2.3 RGB-D Edge SLAM Overview 25

Figure 2.3: Overview of the proposed SLAM system.

RGB-D frame with features stored by the keyframes of the map.

Specifically our system makes use of edge features extracted from both the RGB and

depth components of the RGB-D frames. The pixels of such edges are back-projected

to form semi-dense point clouds, which are then used in both ICP based sensor tracking

and loop closure detection.

An overview of the whole system is illustrated in Figure 2.3, Feature extraction and

localization is performed on one thread while a second thread improves the consistency

of the map by performing loop closure detection and pose graph optimization.

The remainder of this section introduces the adopted system formulation and discusses

the reasoning behind the use of edge features and ICP based registration using their

associated semi-dense point clouds. After which edge feature detection, edge based ICP

registration, Loop closure detection, Pose-graph optimization and system evaluation are

then given in the following sections.

2.3.1 Formulation

Each map keyframe has an associated estimated pose representing where the sensor

was located when the keyframe’s data and features were observed. We denote P =

{P0,P1, ...} to be the set of all estimated keyframe poses, with Pi ∈ P denoting the

2.3 RGB-D Edge SLAM Overview 26

pose of the ith keyframe Ki ∈ K. The sensor’s pose is assumed to have a full six degrees

of freedom and hence, each Pi = (ti,qi) ∈ P is also a 6DOF pose with ti and qi denoting

the translation and rotation components respectively. This translation component ti is

trivially represented as 3D vector and the rotational component qi as a unit quaternion.

Each of these estimated poses Pi ∈ P are in the same ”world” reference frame, the

origin of which we define as being located at the pose of the initial keyframe P0 where

the SLAM system was initialized. In this way the pose of the initial keyframe P0 is

defined to be fixed at the origin and each subsequent keyframe pose is estimated relative

to it. Similarly the current estimated pose of the sensor denoted X, is also given in the

”world” reference frame.

In addition to an estimated pose each keyframe Ki also stores a complete frame of RGB-

D data denoted Fi, along with two semi-dense point clouds formed from the features

detected in Fi. These are the clouds associated with detected depth edges Di and RGB

edges Ii respectively. Thus in summary each keyframe Ki = {Pi, Fi, Di, Ii} stores a

frame of RGB-D data Fi, an estimate of where that data was observed relative to where

the SLAM was initialized Pi, and depth and RGB edge point clouds Di, Ii formed from

the edges detected in Fi.

2.3.2 RGB-D Edge Features

In color images the majority of such edges are either due to the borders of foreground

objects contrasting against others located further from the camera, or due to sharp

changes in texture or material on a particular surface. Similarly in depth images, edges

due to local pixel value discontinuities are due to the geometric borders of foreground

objects obscuring other objects and surfaces located at a further distance from the cam-

era. Despite consisting only of a small fraction of the total pixels present in the original

image, these sets of edge pixels (for both color and depth images) still retain most of

the relevant information regarding the high level structure of the objects present in the

image. Additionally such edge pixels can naturally be considered those which are most

sensitive changes in camera pose; that is those pixels located upon the edges detected in

one image are likely to experience a significant change in value (and no longer lie upon

an edge) in the following image if the camera has undergone a change in pose. Contrast

this to pixels lying within a area of blank or low contrast texture, even if the camera’s

pose has changed between two subsequent images, many of these pixel’s values will not

experience any significant change in value and providing little or no useful information

for determining the change in camera pose.

2.3 RGB-D Edge SLAM Overview 27

Taking this into consideration, extracting an image’s edge pixels can be viewed as an

intelligent form of downsampling, producing a smaller subset of salient pixels which retain

the majority of useful information for camera tracking. This is the primary motivation

for choosing edges as the basis for the system’s tracking and localisation. Working with

such a reduced selective set of pixels substantially simplifies the task of registering and

determining the relative camera pose between two RGB-D frames, making such edge

points a strong feature choice for our requirements.

2.3.3 Edge Point Clouds and ICP Registration

The depth image component of an RGB-D frame provides an estimated depth for the

majority of the pixels in both the RGB image (and the depth image itself), which can

then be used to back-project these pixels forming a dense RGB-D point cloud typically

consisting of hundreds of thousands of points. However, instead of back-projecting all

pixels in this manner, we can instead only back-project the sets of edge pixels extracted

from each RGB-D frame. This forms two semi-dense point clouds corresponding to edge

pixels found in the RGB and depth image components respectively.

Under this set-up, the process of registering two RGB-D frames and thus estimating the

relative camera poses at which they were acquired can be achieved by using a combined

ICP process to estimate the transformation which best aligns their corresponding RGD

and depth edge point clouds. This ICP based edge point cloud registration is typically

multiple orders of magnitudes faster than using ICP to register the full RGB-D point

clouds, due to the vastly reduced number of points. Despite this vastly reduced compu-

tational cost, this edge registration typically provides a similar or even superior level of

accuracy in indoor scenarios as demonstrated in 2.6.3.

2.3.4 Relaxation Based Pose Graph Optimization and Loop

Closure

Sensor tracking will inevitably contain some degree of error which can accumulate leading

to substantial errors in the keyframes of the map P . Loop closure detection and pose

graph optimization are used to correct for such errors and improve the accuracy and

consistency of the map. These tasks are carried out in parallel on a separate thread to

that conducting sensor tracking. A relaxation based Pose Graph Optimization (PGO)

method is used to find the set of keyframe poses which best comply with the detected loop

closure constraints, and thus are also likely to provide the most accurate and consistent

2.4 Depth Edge Detection 28

map. This relaxation based method is analogous to an intuitive mass-spring based

system. Such a system will come to rest in an energy minima such that the positions of

the masses are compliant with the springs connecting them. A full description of this

system based on an intuitive mass-spring system analogy is given in Section 2.8.2.

2.4 Depth Edge Detection

The depth image component of an RGB-D video stream provides 3D geometric informa-

tion of the scene in view. In such an image physical objects occluding other further away

objects / surfaces from the camera’s view give rise to discontinuities between the values

of neighbouring pixels. Given any pair of such pixels, the pixel of smaller depth belongs

to the occluding object (being nearer to the camera), while the other pixel belongs to

the object (or surface) that is being occluded. Thus such depth image discontinuities

give rise to two types of edges. Occluding edges whose pixels belong to the occluding

foreground objects, and occluded edges whose pixels belong to objects and surfaces being

occluded.

Note that the two edge types always occur in pairs, for every occluding edge there is

an associated occluded edge. Further occluded edges do not physically represent ob-

jects in the scene and thus are not useful for SLAM or camera tracking purposes. This

is illustrated in Figure 2.4, where occluding edges are shown to actually represent the

boundaries of physical objects, while occluded edges are essentially the edges of ”shad-

ows” cast by those objects. The following proposed method of depth edge-detection,

searches depth images for discontinuities and thus inherently detect both these types of

edges, however, occluded edges are simply ignored.

2.4.1 Occluding Depth Edge Detection

We employ a two step search process to find pixels belonging to occluding edges within

a depth image. This involves examining the pixels of the depth image twice, first by

rows then by columns. In either case an identical process is used to locate local depth

discontinuities within a given line of pixels (be it a row or column). This pixel search

process, outlined in Algorithm 2.1, iterates over a given list of pixels, skipping over those

of invalid value (pixels with a zero depth value) while keeping track of the last found

valid pixel.

At each iteration the value of the current pixel (if valid) is compared to that of the last

2.4 Depth Edge Detection 29

Figure 2.4: Examples of edges due to depth image discontinuities. Occlud-
ing edges are drawn in green, occluded edges in blue and the sensor’s position
indicated by the yellow cylinder.

2.4 Depth Edge Detection 30

INPUT: P = {(Vn, Ln) : n ∈ {0...N}}
// P is a list of depth pixels along a line
// Vn value of nth pixel
// Ln image location of nth pixel
T // edge detection threshold ratio value

OUTPUT: E = {} // edge pixel locations

last valid = 0 // index of the last observed valid pixel
for n = 0 to N do

if Vn 6= 0 then // if current pixel value is valid
threshold = Min(Vn, Vlast valid)× T
// check for large differences between pixel values

if (Vlast valid − Vn) > threshold then
E = E ∪ Ln

else
if (Vn − Vlast valid) > threshold then

E = E ∪ Llast valid

end if
end if
last valid = n

end if
end for
return E

Algorithm 2.1: P Scan(P, T)
Detect large differences between the values of neighbouring pixels indicating the
presence of occluding edges

2.4 Depth Edge Detection 31

found valid pixel. If the difference between these two values is above a certain threshold

then this discontinuity in depth between nearby pixels is deemed large enough to indicate

the presence of an occluding edge. If this is the case the pixel with the smaller of the

two depth values (that being closer to the sensor) is identified as an occluding edge

pixel. The other pixel which corresponds to an occluded edge is ignored. The previously

mentioned threshold is given by d × T where d is the smaller of the two pixel values

and T is a sensitivity constant. Having such a proportional threshold is necessary due

to the nature of structured light RGB-D sensors where, both noise and spacing between

readable values is proportional to depth [57, 69]. The two steps of this search process

constitute scanning across the depth image in two orthogonal directions (by rows going

left to right and by columns going top to bottom). Note that it is possible that certain

pixels may be identified as belonging to an occluding edge in both of these steps (typically

due to lying upon diagonal edges). However rather than having certain pixels appearing

twice among the list of detected edge pixels, a final culling step is performed to remove

such duplicates. In practice the organised structure of the image is exploited to minimize

the computational time of this process.

2.4.2 Sub Image Depth Edge Detection

When working with a standard RGB-D video stream (30hz 640 × 480), each depth

image is highly likely to be similar to the previous one due to the relatively small camera

movements between video frames. Occluding edge pixels are thus also likely to occur in

similar locations from one depth image to the next due to this image similarity. This prior

knowledge of where edge pixels are likely to occur can be exploited to significantly speed

up the occluding edge-detection process. This is achieved by only searching for edge

pixels in specific areas of the depth image (around which edge pixels were previously

detected) instead of simply searching the entire image in a brute force manner. Our

implementation of this concept considers each depth image as consisting of an N ×M
grid of smaller equally sized images (referred to here as ”image patches”) rather than a

single image. For example a grid size of 4 × 3 would consider a 640 × 480 depth image

as consisting of 12 image patches, each 160× 160 pixels in size.

An N ×M array of boolean edge-detection flags F is also stored and used to determine

which image patches should be searched for occluding edge pixels. With each new depth

image from the RGB-D video stream, all image patches whose associated flag is set to

true are searched using the same occluding edge-detection process described in Section

2.4.1. The results of these searches are then used to update the edge-detection flags,

2.4 Depth Edge Detection 32

Figure 2.5: Examples of detected occluding depth edges (Red) and the associ-
ated detection flag values for each image patch (Top, a grid consisting of 16× 12
image patches. Bottom a grid of 32× 24 image patches). Image patches flagged
for detection are highlighted in green, while those not flagged are drawn in black.

2.4 Depth Edge Detection 33

// image patches P and their associated boolean flags F
INPUT: P = {Pxy : x ∈ {0...N}, y ∈ {0...M}}

F = {Fxy : x ∈ {0...N}, y ∈ {0...M}}
T // edge detection threshold value
R // number of patches to randomly search
K // row and column skip value

OUTPUT: E = {} // edge pixel locations

Set R randomly selected flags from F to True
for all Pij ∈ P do

if Fij then // if patch flagged for edge detection
row edges = {}
col edges = {}
for all Kth rows R of image patch Pij do

row edges = row edges ∪ P Scan(R, T)
end for
for all Kth columns C of image patch Pij do

col edges = col edges ∪ P Scan(C, T)
end for
if row edges 6= {} or col edges 6= {} then

E = E ∪ row edges ∪ col edges
Fij = True
Set flags of neighbouring image patches to True

else
Fij = False // reset patches flag

end if
end if

end for

Remove any duplicate pixels from E
return E,F

Algorithm 2.2: Occluding Edge Detection(P, F, T,R,K)
Detect occluding depth edge pixels within flagged image patches and update
edge detection flags

2.4 Depth Edge Detection 34

deciding which regions of the next depth image will be searched for edges. Figure 2.5

shows examples of such edge detection flag arrays. Image patches in which edge pixels

are detected have both their own flag and those of their neighbouring patches set to

true. All other patches which are not affected by this have their own flag reset to false.

By setting the edge-detection flags in this manner, the next image will only be searched

for edges in those image patches located around where edge pixels were detected in the

current image. While this is sufficient for detecting edge pixels belonging to edges that

were also present and detected in the previous image, this flagging scheme may fail to

detect pixels belonging to new edges unique to the latest depth image (or edges that

were present but not detected previously). To address this, with each new depth image

a certain number edge-detection flags are randomly selected and set to true to facilitate

the detection of new edges. The number of flags randomly selected in this manner (R)

is determined by Equation 2.9 below.

R = Max(1, Round(N ×M × rand search)) (2.9)

N×M is the number of image patches and rand search ∈ [0, 1] is a specified value relat-

ing to what percent of each depth image we wish to be randomly selected and searched

for edges. Thus atleast one image patch is always randomly searched, increasing up to

all image patches (and thus the entire image) being searched as rand search approaches

1. In this scheme the detection of a new edge may be delayed a number of frames until

the flag associated with the image patch it resides in is randomly selected and set to

true. This potential detection delay is one of the trade-offs for the reduced computation

this approach provides. Using higher values of rand search ∈ [0, 1] will decrease the

average number of frames of this detection delay but increase the average computational

cost of the whole occluding edge detection process. The value of rand search = 0.05

was found to provide sufficiently small detection delay and is used as the default value

adopted throughout the rest of this document. Algorithm 2.2 outlines this entire edge-

detection process taking a set of image patches P , edge-detection flags F and number

of patches to randomly search R as inputs and returning a list of edge pixel locations

E and updated boolean flags F . This algorithm can also take an additional param-

eter K determining which rows and columns of each image patch should be skipped

over instead of being searched for edge pixels. For greater clarity we will refer to this

parameter as rowcol skip from now on. The default value rowcol skip = 1 results in

no rows/columns being skipped, with rowcol skip = 2 only every other row/column is

searched, rowcol skip = 3 only every 3rd row/column is searched and so on. This pa-

rameter can be viewed as allowing downscaled edge detection search to be conducted,

2.4 Depth Edge Detection 35

Figure 2.6: Plots showing how various performance metrics of the occluding
edge detection vary with the number of image patches the original depth image
is divided up into (grid size). RGB-D sequences used, FR1 desk (Blue), FR1
plant (Red) and FR1 room (Yellow).

resulting in fewer edge pixels being returned (and thus sparser edge point clouds being

created from these pixels). Examples of this approach illustrating the image patches grid

and corresponding edge-detection flag values are shown in Figure 2.5. Detailed results

of running this proposed occluding edge detection on a number of RGB-D sequences are

given in the following section.

2.4.3 Results

This section presents a sample of results from various experiments conducted to evaluate

the performance of the edge-detection proposed in Section 2.4. We use the publicly

2.4 Depth Edge Detection 36

Table 2.1: Depth edge detection results for Freiburg RGB-D sequences, showing
how computation time and detection accuracy vary with the number of image
patches the original depth image is split into.

Sequence : FR1 desk
Image Patches

Grid Size
Occluding

Edges
Pixel

%
avg % image

searched
Whole Image 8.9±2.25ms 100 100

4x3 8.31±2.57ms 99.7 96.65
8x6 7.65±2.25ms 99.1 92.13

16x12 6.74±2.26ms 97.8 74.85
32x24 4.91±1.95ms 96.0 52.29
64x48 3.13±1.32ms 91.8 34.28
128x96 2.41±1.04ms 80.7 22.38

Sequence : FR1 plant
Image Patches

Grid Size
Occluding

Edges
Pixel

%
avg % image

searched
Whole Image 9.83±2.50ms 100 100

4x3 8.9±2.07ms 99.8 98.18
8x6 8.69±2.31ms 99.5 95.80

16x12 7.92±2.02ms 98.9 86.92
32x24 6.41±1.92ms 97.6 66.67
64x48 5.35±1.79ms 96.3 51.49
128x96 4.09±1.44 ms 84.5 30.62

Sequence : FR1 room
Image Patches

Grid Size
Occluding

Edges
Pixel

%
avg % image

searched
Whole Image 10.91±1.97ms 100 100

4x3 8.75±2.03ms 99.8 98.98
8x6 8.15±2.11ms 99.2 93.74

16x12 7.98±2.22ms 98.4 78.11
32x24 5.11±1.68ms 96.6 55.34
64x48 4.08±1.7ms 90.7 36.43
128x96 2.56±1.03ms 77.2 23.92

2.4 Depth Edge Detection 37

Table 2.2: Comparison of Occluding edge detection methods

Sequence Choi et al[12]
Proposed
(32× 24)

Proposed
(16× 12)

FR1 desk 24.06 ± 1.22 ms 4.91 ± 1.95 ms 6.74 ± 2.26 ms
FR1 desk2 24.71 ± 0.79 ms 4.88 ± 1.91 ms 6.64 ± 1.93 ms
FR1 room 23.86 ± 1.47 ms 5.11 ± 1.68 ms 7.98 ± 2.22 ms
FR1 plant 24.61 ± 1.71 ms 6.41 ± 1.92 ms 7.92 ± 2.02 ms
FR1 rpy 23.89 ± 0.99 ms 5.35 ± 1.83 ms 6.18 ± 1.94 ms
FR1 xyz 24.45 ± 1.36 ms 4.16 ± 1.30 ms 5.19 ± 1.03 ms

available Freiburg RGB-D datasets [97] to conduct this evaluation. These consist of a

number of 640× 480 RGB-D video sequences of various environments along with sensor

ground truth trajectories obtained from motion capture. The results were obtained from

a 2.60GHz Intel Core i5-3230M (2013), 4GB RAM laptop running Ubuntu 14.10.

We evaluated the image patch based occluding depth edge-detection described in Section

2.4.2 on a number of datasets and with various image patch grid sizes. In each case the

total number of edge pixels detected across the entire sequence was recorded. This total

was then compared to the total number of edge pixels obtained when using brute force

occluding edge detection, which searches the entirety of each depth image by examining

each pixel and its eight surrounding neighbours. From this comparison, the percentage

of total edge pixels detected (compared to brute force) was calculated. The percentage of

each depth image that was examined for edge pixels was also recorded in each case.

A detailed sample of these results is given in Tables 2.1, showing the average computation

time of the edge detection process, percentage of total edge pixels detected and what

percentage of each depth image was examined on average. These results are illustrated

in the plots of Figure 2.6. As expected, the average computation time and percentage

of the depth image examined generally decreases as the image patch grid size increases.

This is due to the smaller image patches flagged for edge-detection more tightly fitting

about the edges detected in the previous image. This tighter fitting then results in edge-

detection being performed upon a smaller percentage of the entire depth image. The

downside of larger grid sizes however, is an increased likelihood of edges failing to be

re-detected from one image to the next due to changes in their locations between images

(and thus moving into image patches not flagged for edge detection). This issue occurs

most often when the sensor is undergoing a rapid change in orientation.

It can be seen however that using an image patch grid size such as 32x24 can provide

up to a 50% saving in computation time while still detecting over 95% of the edge pixel

2.5 RGB Edge Detection 38

in the sequence. The average computation time when using such a grid size is also well

within the 33ms required to process a standard 640× 480 30Hz RGB-D video stream in

real-time and leaves plenty of frame time remaining in which other processes can take

place.

Table 2.2 shows a comparison between the computation times of our proposed occluding

edge detection and that introduced in [12] across a number of Freiburg sequences. The

use of prior knowledge to selectively only search certain areas of the depth image gives

the proposed method a far lower computation time compared to the whole image search

method conducted by [12]. All results in this section were obtained using the parameter

value rowcol skip = 1.

2.5 RGB Edge Detection

Our RGB edge detection follows a similar design approach to the previously described

depth edge detection, searching the image for sudden jumps in intensity value. It did

not however, exploit any temporal similarity between RGB images, simply searching the

entire image in around 9ms. It should be noted however, that due to such visual intensity

edges being far more ambiguous in nature than occluding depth edges, this approach is

not well suited and performs poorly compared to other methods such as the well known

canny edge detector [19], however, for our purposes it was sufficient.

It is important to note that we reject all RGB edge pixels located in close proximity

to occluding depth edges in the corresponding depth image. The back-projected points

from such pixels can often be highly unreliable due to poor alignment and synchronisation

between the depth and RGB data provided by the RGB-D sensor. Additionally, it is

highly likely that such RGB edge pixels are the result of an occluding foreground object,

in which case an occluding depth edge will already be present in the same location. The

occluding depth edge detection flags described in Section 2.4.2 are used to enable fast

rejection of such unwanted RGB edge pixels.

2.6 Edge Based ICP RGB-D Frame Registration

Section 2.4 and 2.5 described the process of extracting depth and RGB edge pixels from

RGB-D frames. The depth component of an RGB-D frame can then be used to back-

project such edge pixels into 3D space, generating a semi-dense point clouds referred

2.6 Edge Based ICP RGB-D Frame Registration 39

to hereon as edge clouds. The edge pixels of any image typically only make-up a tiny

fraction of the image’s total pixels. Similarly such edge clouds contain far fewer points

than their raw RGB-D point cloud counterpart, typically being around two orders of

magnitude smaller.

The well known Iterative Closest Point algorithm (ICP) can be used to register two

point clouds, resulting in an estimate of the relative transformation between the sensor

poses at which they were observed. The point clouds are referred to as the ”source” and

”target” clouds denoted here by S and T . ICP operates iteratively by first determining

pairs of points between the two clouds. Let P denote the set of all determined pairs,

with each point pair of the form p = (pS ∈ T,pT ∈ S) ∈ P . ICP then determines

the transformation to minimize the sum of the distances between these paired points as

given by
∑

p∈P |pS − pT |.

This transformation is applied to the source cloud and then the entire process is repeated

until convergence or a maximum number of iterations have been performed. The final

estimate of the transformation to align the two original clouds is simply the combination

of all transformation applied to the source cloud. The proposed edge based SLAM system

also uses such ICP registration for tracking the pose of the sensor and detecting loop

closures between keyframes. However instead of using the raw RGB-D point clouds, ICP

registration is performed using the semi-dense edge clouds previously mentioned.

Since the RGB edge pixels located within close proximity to occluding edge pixels are

rejected during the RGB edge detection process as described in Section 2.5, the depth

and RGB edge clouds generated from an RGB-D frame can be viewed as representing two

types of non overlapping information. Utilizing both types of edge cloud simultaneously

for registration requires a slight variation on the standard ICP algorithm. Instead of a

single point cloud, the algorithm’s ”target” T = (TD, TI) now consists of a pair of point

clouds, a depth edge point cloud TD and a RGB edge cloud TI . In a similar manner,

the ”source” now also consists of a pair of edge clouds S = (SD, SI). Each ICP iteration

then involves two point pairing processes, one between the source and target depth edge

clouds SD, TD, and similarly one between the sources and target RGB edge clouds SI , TI .

All resulting pairs from both of these point pairing process are then used to update the

estimated registration transformation, the remainder of the algorithm is by and large

identical to standard ICP. This ICP process can then be used to register the edge point

clouds generated from the latest sensor data S = {D, I}, with the edge point clouds of

the current tracking keyframe KT , i.e. T = {DT , IT}.

2.6 Edge Based ICP RGB-D Frame Registration 40

2.6.1 Advantages

There are several major advantages that such edge based ICP registration exhibits over

full RGB-D point cloud ICP registration, especially with regards to real-time sensor

tracking in which registration must be completed within a limited time period before the

next RGB-D frame is acquired.

2.6.1.1 Convergence Speed and Robustness

ICP registration requires an initial guess at the relative transformation between the

clouds and convergence to the correct transformation can be highly sensitive on this

initial guess. The further this guess is from the actual correct registration transformation,

the more likely it is that the ICP will produce an incorrect transformation due to it

becoming trapped and converging to an incorrect local minima. However due to edge

clouds consisting of a selective subset of the raw RGB-D cloud, they will typically feature

far fewer incorrect ICP local minima. Additionally due to their semi-dense nature, the

local minima of such edge clouds are typically far more sharply defined than those of

raw RGB-D clouds. This means that in the majority of scenarios, given sufficient edges

were present in the RGB-D frames being registered, edge point based ICP exhibits both

a faster convergence rate (requiring fewer ICP iterations) and fewer convergences to

incorrect local minima in comparison to ICP using entire RGB-D point clouds.

2.6.1.2 Reduced Computational Cost Per Iteration

Additionally, edge cloud based ICP is significantly cheaper computationally compared

to ICP registration using raw RGB-D point clouds. This is due to the dominating

computational factor in each ICP iteration being that of the nearest neighbour searches

conducted to pair points between the source and target clouds. The computational cost

of each of these searches (and the number of searches required) increases with the size

of the point cloud being registered. Since edge clouds are typically multiple order of

magnitude, smaller in size compared to their associated raw RGB-D cloud counter part,

so too is their computational cost per ICP iteration.

2.6.2 Disadvantages

There are of course scenarios/environments in which there may be insufficient edges

present in the RGB-D frames to conduct edge point based ICP registration, and in which

2.6 Edge Based ICP RGB-D Frame Registration 41

full RGB-D cloud registration would thus produce more accurate results. However in

man made indoor environments such as those we are interested in operating in such a

lack of present edges is unlikely, as the vast majority of man-made objects feature well

defined edges both in their geometry and surface texture.

2.6.3 Evaluation

This subsection now presents a sample of results and evaluation of the proposed edge

cloud based ICP registration, conducted using the indoor RGB-D sequences provided by

the Freiburg RGB-D dataset [96] featuring a number of indoor environments.

We are primarily interested in evaluating this registration for use in tracking the pose

of the RGB-D sensor, which typically involves registering two highly similar subsequent

frames of RGB-D sensor data. Our evaluations thus consisted of attempting to register

every frame from a given Freiburg sequence with a randomly transformed copy of itself.

A different random transformation was used for each RGB-D frame. Naturally these

random transformations are also the transformations that would perfectly align the orig-

inal RGB-D frames with the transformed copy and is thus the transformation we wish

the ICP registration to produce. The magnitude of these random transformations was

constrained to reflect the typically limited degree of sensor movement that can occur in

the 33ms between RGB-D frames for a 30hz sensor. Specifically each random transfor-

mation consisted of a translation of random direction and length between 0-25cm, and

a random rotation up to 15 degrees (0.26 radians) about a randomly selected axis. The

sensor undergoing transformations significantly greater in magnitude than these limita-

tions in the space of 33ms would most likely cause extreme motion blur in the RGB-D

frame rendering it of little use for registration. Additionally, during typical operation it is

highly unlikely that the sensor will experience a transformation between two subsequent

RGB-D frames exceeding these limits.

A Sample of the edge cloud registration evaluations obtained from the Freiburg ”FR1

room” sequence is presented in Figures 2.7 and 2.8. The registration process was evalu-

ated on the sequence multiple times, using different numbers of ICP iterations in order

to observe how this parameter effects the accuracy and computation time. Each one of

these evaluations made use of all 1467 frames in the FR1 room sequence, attempting

registration between each frame and a randomly transformed duplicate. The transla-

tional and rotational errors from each attempted registration were recorded in order to

generate the histograms as shown in Figure 2.7.

2.6 Edge Based ICP RGB-D Frame Registration 42

Figure 2.7: Histograms illustrating how the errors associated with edge based
ICP registration change with the number of ICP iterations used (RCS = 1).

2.6 Edge Based ICP RGB-D Frame Registration 43

Figure 2.8: Accuracy and computation time of edge based ICP registration
(Blue, RCS=1) and raw point cloud registration(Red, Uniform downsampling
x5).

2.6 Edge Based ICP RGB-D Frame Registration 44

As is to be expected a decrease in both translational and rotational error occurs as the

number of ICP iterations used for registration increases. This can seen in the shift of

the distributions of Figure 2.7, and is further illustrated in the graphs of Figure 2.8

where a sharp decrease in registration error can be seen with increasing ICP iterations,

plateauing around 10-14 iterations. The computation time of the registration process is

also seen to increase linearly with the number of ICP iterations as expected.

We also conducted the same evaluations on raw RGB-D point cloud based ICP registra-

tion in order to compare to our edge cloud based approach. As seen in Figure 2.8 raw

RGB-D cloud registration demonstrated significantly poorer accuracy for any given num-

ber of ICP iterations. The rate at which registration accuracy improves with increasing

the number ICP iterations is also far slower than that of edge cloud based registration,

and levels off at far higher values of translation and rotational error by comparison.

Additionally edge cloud registration demonstrates a vast reduction in the amount of

computation time required in comparison to raw point cloud registration.

The computation times of these edge cloud registrations however is still well above the

required 33ms limit required to achieve real-time registration needed to conduct SLAM.

In order to reduce the computation required each ICP iteration the Row Column Skip

parameter (RCS) used in edge detection as described in Section 2.4 can be increased (i.e.

RCS > 1). This has the effect of reducing the number of edge pixels produced by the

edge detection by skipping over certain rows and columns of the RGB-D image and hence,

also in turn reducing the size of the edge cloud being used for registration. In general this

RCS parameter can be viewed as controlling the degree of uniform downsampling applied

to the edge clouds (RCS = 5 will result in clouds five times smaller than RCS = 1 etc).

We hence conducted the same edge cloud registration evaluation multiple times using

various values for the RCS edge detection parameter.

Figure 2.9 illustrates a sample of the results showing the effects of this RCS parameter

on the accuracy and computation time of the registration process, again obtained using

all frames of the FR1 room sequence. It is immediately apparent that increasing the

RCS value results in a dramatic decrease in computation time. Specifically for any

value of RCS > 1 the computation time required is approximately
t

RCS
where t is

the time required by the edge cloud registration taking RCS = 1. This is as to be

expected since the size of the edge clouds used for registration is inversely proportional

to the RCS value. For registration involving 20 ICP iterations it can be seen that using

any RCS value between 1 and 10 results in near identical registration accuracy in both

rotational and translational error. When decreasing the number of ICP iterations to 10

we see slight increases in both translational and rotational registration error. This is

2.6 Edge Based ICP RGB-D Frame Registration 45

to be expected since in many sceneries this will be an insufficient number of iterations

for the ICP registration to fully converge. Additionally it can be seen that the smaller

edge clouds (associated with higher RCS values) demonstrate smaller translational error

due to the fact that in general the rate of ICP convergence increases with smaller cloud

size. This is illustrated further in Figure 2.10, showing how the errors in the estimated

transformation and computation time of registration for various RCS values varies with

the number of ICP iterations. For ICP iterations lower than 14, registration using RCS

values of 5 and 10 is seen to provide slightly improved accuracy compared to when

using an RCS value of 1, due to the faster rate of ICP convergence for smaller edge

clouds.

From these evaluations it is clear that the RCS parameter can be increased to any value

between 5-10 in order to save a significant amount of computation (both in the ICP

registration and edge detection processes) while sacrificing little in terms of registration

accuracy. Thus using such higher RCS values, accurate RGB-D frame registration can

be achieved well within the required 33ms limit for real-time registration.

In order to draw a meaningful comparison between this real time edge cloud registration

and the standard RGB-D point cloud based ICP registration, the latter must also be

made to conduct real-time registration. This is achieved by simply uniformly downsam-

pling the raw RGB-D point clouds in order to decreases the computation cost of the

ICP registration as required. The same evaluation processes were then conducted for

this down-sampled RGB-D point cloud ICP registration and the results compared to the

real-time edge cloud registration using higher RCS values.

2.6 Edge Based ICP RGB-D Frame Registration 46

Figure 2.9: Graphs illustrating the effect of the Row Column Skip (RCS)
parameter on the accuracy and computation time of edge point based ICP regis-
tration. Increasing the value of the RCS parameter results in sparser edge point
clouds being used for registration, and hence dramatically decreases computation
time.

2.6 Edge Based ICP RGB-D Frame Registration 47

Figure 2.10: Graphs comparing how the accuracy and computation time of edge
point based registration varies with the number of ICP iterations, for various RCS
values. Blue (RCS = 1), Red (5), Green(10).

2.6 Edge Based ICP RGB-D Frame Registration 48

Figure 2.11: Plots comparing the performance of real-time edge cloud registra-
tion (Blue, RCS = 5 and uniform down-sampled RGB-D point cloud registration
(×10 Red, ×20 Green) using the Freiburg FR1 room sequence.

2.6 Edge Based ICP RGB-D Frame Registration 49

Figure 2.12: Comparison of ICP registration quality when using raw RGB-
D clouds (middle) and edge clouds (bottom). When using raw RGB-D clouds,
there is obvious misalignment between the two clouds (shown in red and blue)
compared to the edge based registration.

2.6 Edge Based ICP RGB-D Frame Registration 50

Figure 2.13: Further comparisons of ICP registration quality when using raw
RGB-D clouds (middle) and edge clouds (bottom). Again raw RGB-D cloud
registration shows obvious misalignment between the two clouds (shown in red
and blue) compared edge based registration.

2.6 Edge Based ICP RGB-D Frame Registration 51

Figure 2.11 illustrates how the accuracy and computation time of both edge cloud reg-

istration (RCS = 5) and raw RGB-D cloud registration varies with the number of ICP

iterations used, from 1 to 20. In every instance it is clear that edge cloud registration

is able to provide superior accuracy in terms of both translational and rotational error.

By comparison the RGB-D cloud registration using 10x uniform downsampling demon-

strates poor registration accuracy and requires significantly more computation per ICP

iteration making it unfit for real-time registration. The RGB-D cloud registration using

20x uniform downsampling achieves a slightly lower computational cost than the edge

cloud registration, however its registration accuracy remains poor by comparison. This

is largely due to the selective nature of the edge point clouds, which result in there being

distinct local minima for the ICP registration of such clouds, which in turn results in a

faster rate of ICP convergence towards such minima. By comparison the local minima of

raw RGB-D cloud based ICP are nowhere near as distinct, as a result, requiring far more

ICP iterations for the estimated transformation to convergence to such minima. This is

illustrated in Figures 2.12 and 2.13 showing results from both edge cloud and RGB-D

cloud based ICP (for the same registration problem). Clearly edge cloud ICP has con-

verged to the correct transformation, where as raw RGB-D cloud ICP has only succeeded

in aligning the major surfaces of the two clouds. Once these surfaces have been aligned

it would require many further ICP iterations to ”slide” the estimated transformation

parallel to these surfaces and converge to a local minima.

Thus in summary, in the tested sequences edge point based ICP significantly outperforms

raw point cloud ICP for any given number of ICP iterations both in terms of registration

accuracy and computation time. Given the limited time window of 33ms between 30Hz

RGB-D frames in which to conduct ICP registration (and leave sufficient time remaining

for other processes) edge based registration is clearly the preferable registration approach

so long as the environments being operated in feature sufficient geometric and or surface

texture edges.

2.6.4 Registration Strength Evaluation

This edge based ICP registration is utilized by the SLAM system for a number of tasks

such as sensor tracking. For such tasks it is necessary to have some measure of the

strength and reliability of the resulting registration between the source and target edge

point clouds.

Note how if the source and target clouds are identical and the ICP has produced the

correct alignment transformation, then naturally every point in the source cloud will

2.7 Map Construction and Sensor Tracking 52

end up being located in close proximity to some other point in the target cloud. On

the other hand, if the ICP either failed to converge in the given number of iterations

or converges to an incorrect transformation, then a significant proportion of the source

cloud points will not be located in close proximity to any target cloud point. We refer

to such source cloud points which end up in close proximity to some target cloud point

as being ”matched”. Thus in such a scenario with identical source and target clouds,

the strength of the ICP registration can be evaluated by determining the proportion of

matched source cloud points.

In practice the source and target clouds utilized for sensor tracking will not be identical,

and thus the correct alignment between them will not result in every source cloud point

being matched. However despite this, the proportion of matched source cloud points still

provides a useful metric for evaluating the strength of a particular ICP registration.

Let us denote the source and target point clouds by S and T respectively, then the

proportion of matched source cloud points is given below in Equation 2.10.

1

|S|
∑
p∈S

f(p) =

1, if |p−NearestNeighbour(p, T)| < δ

0, if |p−NearestNeighbour(p, T)| > δ
(2.10)

The value of δ ∈ R in this equation gives the threshold distance used to determine if a

point is considered successfully matched or not. Ideally a very small value of δ would

be used, however, in practise, structured light RGB-D sensors which have considerable

noise and spacing of readable depths [57]. These properties must therefore be accounted

for in deciding the value of δ such that they are not a dominant factor. For example if

the value of δ used is far smaller than the sensor’s inherent noise then it will become a

significant factor in determining if each source cloud point is considered matched or not,

clearly an unwanted scenario.

2.7 Map Construction and Sensor Tracking

The SLAM system performs sensor tracking by using each new frame of RGB-D data

F to update the estimated sensor pose. Depth and RGB edges are extracted from the

sensor’s latest data and the associated depth and RGB edge point clouds D and I are

generated. These edge point clouds are used to estimate the pose of the sensor relative to

the pose of the tracking keyframe KT ∈ K by making use of the edge based ICP process

2.8 Map Optimization 53

described in the previous section. IPC registration is performed between the latest edge

point clouds of the sensor D, I, and the edge point clouds DT , IT associated with the

tracking keyframe KT . The resulting transformation from this ICP registration then

gives an estimate of the sensors pose XT relative to the pose of the tracking keyframe

PT . The estimate of the sensors pose in the world reference frame X is then generated

by simply transforming this relative pose estimate XT by PT .

Naturally it is necessary to switch between different tracking keyframes as the sensor

moves through the environment. If the sensors estimated pose X is extremely different

from that of a keyframe’s pose Pi, then it is unlikely that any common information

exists between the RGB-D frames F and Fi that could be used to perform registration.

Also in general, the further the estimated sensor pose X is from a specific keyframe pose

Pi, the less common information will exist between their associated RGB-D frames F

and Fi. Intuitively the less common information between such RGB-D frames the more

unlikely it is that the ICP registration will produce the correct alignment transformation,

simply as there is less information between which correct registration can occur and more

information that can contribute to incorrect registration occurring. Thus in order to

attempt to ensure that sufficient common information always exists between the RGB-D

frames F and FT , the tracking keyframe KT is always taken to simply be the keyframe

Ki ∈ K whose estimated pose Pi is closest to that of the sensor’s estimated pose X.

However, this alone is insufficient to ensure sensor tracking is maintained as the sensor

may simply be located so far from any keyframe pose Ki, that no keyframes RGB-D

data Fi has sufficient information in common with F to perform registration. In order to

avoid encountering such a scenario, new keyframes are added to the map whenever either

when the sensor’s estimated pose X is significantly different from that of every keyframe

of the map, or when registration with the current tracking keyframe is determined to be

insufficiently strong.

Any such new keyframe Ki is initialized at current estimated sensor pose (Pi = X) and

with the sensor’s latest RGB-D data and associated edge features.

2.8 Map Optimization

The RGB-D registration process described in Section 2.6 is used for estimating the sen-

sor’s pose XT relative to the current tracking keyframe KT . However, this registration

process is never perfectly exact and factors such as sensor noise and incomplete ICP

convergence will negatively effect the registration process, resulting in errors being in-

2.8 Map Optimization 54

troduced into the estimated sensor pose XT . X the estimated pose of the sensor in the

world reference frame is formed by combining this relative pose estimate XT with the

estimated pose of the tracking keyframe PT . Thus the sensor pose X inherits errors from

two different sources, the first being errors from the RGB-D frame registration process

used to estimate the relative sensor pose XT and second being errors in the estimated

pose of the current tracking keyframe PT . The global pose of the initial keyframe P0 is

taken to be fixed at the identity pose of the world reference frame and hence will contain

no error by definition. The initial pose of subsequent keyframes however, are determined

by the estimated sensor pose and hence will also be prone to exactly the same sources

of error. Let us denote the true pose of the sensor relative to PT by True(XT), and the

error in the estimated pose XT by 4XT . Similarly let True(PT) and 4PT denote the

true pose of the tracking keyframe and the error in its estimated pose PT . The initial

pose of a new keyframe Pi determined by the current sensor pose X can then be written

as shown below.

Pi = True(XT) +4XT + True(PT) +4PT (2.11)

From the above it is obvious how the small errors from the RGB-D frame registration

process can accumulate since each keyframe’s initial pose is dependent upon that of

another keyframe. This can lead to significant errors in keyframe poses P resulting in

a globally inaccurate and potentially inconsistent map. This is well demonstrated by

extensively exploring an environment with the sensor and then returning back to around

the location of the initial keyframe P0. Despite actually being around the same location,

the estimated pose of the sensor XT will likely be significantly different from P0 due to

the accumulation of registration errors in poses of the map keyframe P . However since

the sensor is located close to the initial keyframe pose P0, it maybe possible to recognize

common areas of the environment present in both in the current RGB-D sensor data and

the RGB-D data of the initial keyframe F0, and use this to determine how to correct the

sensor’s estimated pose X and improve the accuracy of the keyframe pose P .

In general terms, if two frames of RGB-D sensor data both contain some common area

of the environment, then it may be possible to identify this common information and

use it to estimate the pose at which one of these RGB-D frames was obtained relative

to the other. This process of recognizing when some part of the environment is present

in two different sets of sensor data, is referred to as loop closure detection, and the

estimated relative pose between them, based on this common data is know as a loop

2.8 Map Optimization 55

closure constraint.

For our system in particular, we wish to find loop closures between the various keyframes

K of the map inorder to improve the estimated poses of the map keyframe P . It should

be noted that the poses of certain keyframes may have become highly inaccurate due to

error accumulation, and thus may not provide reliable a priori information to aid in loop

closure detection with certain other keyframes.

Let the pose Ri,j = (ti,j,qi,j) denote a relative pose constraint between the keyframes Ki

and Kj arising from a detected loop closure. Specifically Ri,j gives the pose at which Pj

should be located relative to Pi (i.e. in the co-ordinate reference frame of Ki) in order

for these poses to be consistent with the associated loop closure. When considered from

the world reference frame this constraint is fulfilled if Kj is located at Pj = PiRi,j, or

alternatively if Pi = PjRi,j.

2.8.1 Loop Closure Detection

To detect a loop closure between two keyframes is to find a strong registration between

their associated features or sensor data. In our edge based system this would mean

finding a transformation that would align the edge clouds of two different keyframes,

specifically such that a large proportion of the two clouds are overlapping giving us high

confidence that both edge clouds were generated from observations of the same edge

features. ICP registration as described previously in 2.6 can be used to produce an

estimate of the transformation to align two edge clouds given an initial guess. This same

process is used to find loop closures between the edge clouds of different keyframes. Once

the ICP has produced an estimated alignment transformation the alignment strength is

evaluated as described in Subsection 2.6.4. If this alignment is deemed strong enough, the

estimated alignment transformation between the pair of keyframes is compared against

all other existing loop closure constraints to the keyframes to determine if the new

constraint from the estimated alignment is an outlier by comparison. If the alignment

passes these tests it is used to generate a new loop closure constraint between the two

keyframes. In all cases an initial ICP registration is attempted using highly down-

sampled versions of the edge clouds to quickly gauge whether a loop closure may exist

before performing a full edge cloud ICP registration.

Whenever a new keyframe is added to the SLAM map, loop closure detection is at-

tempted between it and the previous n keyframes of the map. The estimated poses

of both the new keyframe and keyframe with which loop closure is being detected are

2.8 Map Optimization 56

used to form the initial alignment transformation estimate used for the ICP registration

process. In most cases there should not have been significant sensor drift between the

acquisition of two such keyframes and thus this initial transformation estimate generated

from the estimated keyframe poses should be reasonably accurate to the true alignment

transformation.

In addition to this sequential form of loop closure, a randomized search is performed for

loop closures between all other pairs of keyframes. For each pair of keyframes this process

first examines the composition of each keyframe’s edge clouds, only then performing ICP

registration between keyframes whose edge clouds (for both depth and RGB edges) have

a similar number of points and similar bounding sphere size. This prevents attempting

to conduct ICP between significantly different edge clouds which are unlikely to be

observations of the same edge features. The initial transformation for ICP is again based

on the estimated relative pose between said keyframes, calculated from their estimated

poses, a random transformation is then also applied to this based upon the indexes

of each keyframe. The maximum magnitude of this random transformation (for both

rotational and translational components) is taken to be proportional to the difference

between the indices of the keyframes. The justification for this is that in general the

amount of camera motion that has occurred between two keyframes Ki and Kj, will be

proportional to the difference between their indexes | i − j |. Greater camera motion

increases the potential error in the estimated relative pose between the keyframes Ki and

Kj due to the accumulation of drift, and hence the magnitude of transformation needed

to correct said drift. The application of the aforementioned random transformation

seeks to correct for such drift (even if by random chance), and thus is of magnitude

proportional to | i− j |.

2.8.2 Pose Graph Optimization

Let R denote the set of all detected loop closures Ri,j ∈ R, each of which imposes a

constraint on the relative pose between a pair of keyframes Ki, Kj. This set R can

be visualized in the form of a (pose) graph, in which each graph node represents the

estimated pose of a certain keyframe Pi ∈ P , and each edge connecting a pair of nodes

represents a specific constraint Ri,j ∈ R between their associated poses. Pose graph

optimization (PGO) is the task of finding a set of poses P complying with the set of

relative poses constraints R. Such a set of poses would then be consistent with the

detected loop closures and in general will provide a far more accurate and consistent

map compared to a different set of poses which contradict these detected loop closure

2.8 Map Optimization 57

Figure 2.14: A damped spring mass system starting from any initial configu-
ration (Left) will come to rest in a local energy minima (Right)

constraints.

2.8.2.1 Spring-Mass System Equivalence

Consider a constraint Ri,j ∈ R as representing a damped spring connecting two point

masses with poses Pi and Pj. This spring is defined such that it is at rest with zero

stored energy, if the point mass poses Pi, Pj comply with the relative pose constraint

of Ri,j. If instead the masses are closer or further apart than as dictated by Ri,j, then

the system is in a non zero energy state with the spring being either compressed or

stretched. Similarly if the masses are such that their relative orientation does not match

that of Ri,j, then the spring is being bent or twisted, again storing potential energy. It

is intuitive that given any two initial poses for Pi and Pj, such a simple spring mass

system would over time come to rest at its lowest energy configuration i.e. at some pair

of poses Pi,Pj which comply with the constraint Ri,j. This same principle as illustrated

in Figure 2.14 applies to any potential spring mass system though convergence to the

global local energy minima is not guaranteed for many systems.

Extending this concept beyond a single pair of keyframes the entire pose graph can be

considered as a spring mass system, with point masses located at the node poses P

which are in turn connected by springs in accordance with the graph edges R. Given

any set of initial poses P , such a spring mass system would come to rest at a lower

energy configuration than it initially started at, resulting in a set of poses P more

compliant with the constraints of R. It should be noted however that many potential

spring mass set-ups are not guaranteed to come to rest at the global minimum in terms

of lowest stored energy. Such a system may instead become trapped in an local minima,

especially if the initial set of poses used for P deviate greatly from the required relative

pose constraints.

2.8 Map Optimization 58

2.8.2.2 Relaxation Based PGO

We developed a simple graph relaxation PGO algorithm, inspired by this spring mass

analogy. As an overview, each iteration of this PGO algorithm makes adjustments to the

poses of P (pose graph nodes) in accordance with the set of relative pose constraints R

(the pose graph edges). These adjustments are such that the set of pose P becomes more

compliant with constraints R, and thus over multiple iterations, the set P converges to

minima in terms of disparity with the constraints of R. This is somewhat analogous to

simulating a damped spring mass system, where the system will come to rest in an energy

local minima as described at the beginning of this section and is a similar approach to

that introduced by [45] but extended from 2-D positions to full 6DOF poses.

The pose adjustments made at each each iteration of this algorithm are determined by

iterating through the constraints of R, for each Ri,j ∈ R making small alterations to

both of its associated poses Pi and Pj such that they become more compliant with Ri,j.

These small per constraint pose alterations are split into translational and rotational

components. The process of determining such pose alteration components for a certain

constraint Ri,j are described in the remainder of this section.

2.8.2.3 Pose Alteration : Translational

The translational component of a constraint Ri,j = (ti,j,qi,j) is fulfilled if the graph node

pose Pj = (tj,qj) is located at position ti,j in the co-ordinate reference frame of Pj as

laid out in equation 2.12 below.

R(qi)
T(tj − ti) = ti,j (2.12)

This can trivially be rearranged to express where the node Pj should be positioned

relative to Pi (or vice versa) in the world reference frame. This then gives rise to the

criteria given in equations 2.13 and 2.14, both of which would fulfil the translational

component of the constraint Ri,j.

tj = ti + R(qi)ti,j (2.13)

2.8 Map Optimization 59

ti = tj −R(qi)ti,j (2.14)

In order to come closer to fulfilling the constraint Ri,j both the positions tj and ti can

be linearly interpolated towards their associated criteria 2.13 and 2.14 by some smaller

factor ε ∈ R as shown below.

tj = tj + ε(ti + R(qi)ti,j − tj) (2.15)

ti = ti + ε(tj −R(qi)ti,j − tj) (2.16)

2.8.2.4 Pose Alteration : Rotational

The rotational component of a constraint Ri,j = (ti,j,qi,j) is fulfilled if the node Pj is

at an orientation of qi,j relative to the co-ordinate frame of the node Pi as shown in

equation 2.17 below.

q−1i qj = qi,j (2.17)

In a similar fashion to the translational component, this rotation component of the

constraint can be fulfilled by either of the criteria given by equations 2.18 or 2.19.

qj = qiqi,j (2.18)

qi = qjq
−1
i,j (2.19)

And again by altering both of the node orientations qj and qi to be slightly closer to those

above, the constraint Ri,j comes closer to being fulfilled. Such alteration are performed

2.8 Map Optimization 60

by spherical linear interpolation (Slerp [90]), shifting both of the quaternions qj and qi

by some small interpolation factor γ ∈ R towards 2.18 and 2.19 respectively.

2.8.2.5 PGO Algorithm Outline

Each iteration of the PGO algorithm performs the previously described pose alterations

for each of the relative pose constraints of R. A complete iteration is outlined in Al-

gorithm 2.3. Convergence of this algorithm can be determined simply by checking that

all constraints of R are being complied with using a threshold based metric, however

in practice this PGO algorithm is run continuously on a separate thread to the sensor

tracking and thus convergence detection is not required. The values of γ = 0.01 and

ε = 0.03 were used in all scenarios.

INPUT:
P // estimated keyframe poses
R // relative pose constraints from detected loop closures

OUTPUT: P // Adjusted keyframe poses

for all Ri,j ∈ R do

// alter the translation component of poses Pi,Pj ∈ P
tj = tj + ε(ti + R(qi)ti,j − tj)
ti = ti + ε(tj −R(qi)ti,j − tj)

// alter the rotation component of pose Pi,Pj ∈ P
qj = Slerp(qj,qiqi,j, γ)
qi = Slerp(qi,qjq

−1
i,j , γ)

end for
return P

Algorithm 2.3: Relaxation Based Pose Graph Optimization

2.8.3 Loop Closure Examples

This section briefly illustrates a sample of results relating to map optimization. Figure

2.15 illustrates detected loop closure constraints between keyframes, while Figure 2.16

compares the mapping results of SLAM with and without the use of map optimiza-

tion.

2.8 Map Optimization 61

Figure 2.15: An example of loop closures detected on the ”FR3 long office
household” RGB-D sequence provided by [96]. Keyframes axes are drawn in
white, with loop closures between keyframes drawn in blue.

Figure 2.16: Example mapping results with and without map optimization
being enabled. Point clouds of the keyframes are drawn with occulding edge
point clouds in green and RGB edge point clouds in red.

2.9 Results 62

2.9 Results

2.9.1 SLAM Evaluation

This section presents a sample of results from various experiments conducted to evaluate

the performance of the edge based SLAM from Section 2.3. Again as in Section 2.4.3,

we use the Freiburg RGB-D dataset [97] for this evaluation and the same 2.60GHz Intel

Core i5-3230M(2013), 4GB RAM system running Ubuntu 14.10.

The estimated sensor trajectories produced were compared to the recorded ground truth

trajectories using the evaluation tools provided by [97]. All results were obtained using

an image patch grid size of 32× 24 as discussed in Section 2.4.2.

Table 2.4 gives an evaluation of our proposed SLAM system on a number of datasets and

also details the effects of altering the row/column skipping parameter rowcol skip given

to the depth edge detection process. Increasing the value of rowcol skip results in fewer

edge pixels being returned by the edge detection process and thus smaller down-sampled

edge point clouds being used by the SLAM system. We observed that the system’s

accuracy displayed a surprising level of robustness to this form of downsampling. With

rowcol skip = 10, only every 10th row and column of each image patch is searched for

edge pixels. On average this results in 10 times fewer edge pixels being detected (and

thus 10 times smaller edge point clouds) compared to when rowcol skip = 1. Despite

using such smaller point clouds the resulting sensor trajectories are still comparable in

accuracy to those obtained when using no downsampling (rowcol skip = 1). Using larger

values of rowcol skip also greatly decreased the total runtime on each data set largely

due to the smaller edge point clouds resulting in much faster ICP registration. Because

of this robustness to downsampling and the desire of real time performance on limited

hardware, the parameter value of rowcol skip = 5 was chosen to be the default for the

proposed SLAM system.

Table 2.3 shows a comparison between results from the proposed SLAM system and

other RGB-D SLAM systems on the same Freiburg datasets. These systems are the well

known SIFT feature based RGB-D SLAM [24] (running on a ”quad-core CPU with 8

GB of memory”) and the occluding edge based SLAM system presented by [12] (running

on a Intel Core i7 CPU, 8GB memory). The edge based SLAM system of [12] uses

occluding depth edges in a similar manner to our own system but does not make use of

RGB edges and utilizes a different method of occluding edge detection with significantly

higher run times (as illustrated Table 2.2). We see that in general our system provides

a comparable levels of accuracy while having far shorter total run-times, being able to

2.9 Results 63

Table 2.3: Evaluation results of the SLAM system proposed in Section 2.3 on
various RGB-D video sequences along with comparisons to other SLAM systems.
Reported results were obtained with the edge detection parameter rowcol skip =
5.

Translational RMSE

Sequence (length)
SIFT based

RGB-D
SLAM

Occluding
edge based

SLAM

Proposed
RGB-D

edge SLAM
FR1 desk (23 s) 0.049 m 0.153 m 0.075 m
FR1 desk2 (25 s) 0.102 m 0.115 m 0.098 m
FR1 plant (42 s) 0.142 m 0.078 m 0.076 m
FR1 room (49 s) 0.219 m 0.198 m 0.210 m
FR1 rpy (28 s) 0.042 m 0.059 m 0.055 m
FR1 xyz (30 s) 0.021 m 0.021 m 0.038 m

Rotational RMSE

Sequence (length)
SIFT based

RGB-D
SLAM

Occluding
edge based

SLAM

Proposed
RGB-D

edge SLAM
FR1 desk (23 s) 2.42 deg 7.47 deg 3.43 deg
FR1 desk2 (25 s) 3.81 deg 5.87 deg 3.75 deg
FR1 plant (42 s) 6.34 deg 5.01 deg 4.09 deg
FR1 room (49 s) 9.04 deg 6.55 deg 5.66 deg
FR1 rpy (28 s) 2.50 deg 8.79 deg 4.20 deg
FR1 xyz (30 s) 0.90 deg 1.62 deg 1.92 deg

Total Runtime

Sequence (length)
SIFT based

RGB-D
SLAM

Occluding
edge based

SLAM

Proposed
RGB-D

edge SLAM
FR1 desk (23 s) 199 s 65 s 14 s
FR1 desk2 (25 s) 176 s 92 s 16 s
FR1 plant (42 s) 424 s 187 s 29 s
FR1 room (49 s) 423 s 172 s 30 s
FR1 rpy (28 s) 243 s 95 s 16 s
FR1 xyz (30 s) 365 s 111 s 17 s

2.9 Results 64

Figure 2.17: Plots comparing results obtained by different SLAM systems on a
number of Freiburg datasets. Our proposed edge based SLAM is shown in Blue,
RGB-D SLAM [24] in red and occluding edge RGB-D SLAM [12] in green.

2.9 Results 65

Table 2.4: Results detailing the effects of changing the rowcol skip parameter
on SLAM system performance (translational RMSE, rotational RMSE and total
runtime).

Row Col
Skip Value

FR1 desk
23 s

FR1 desk2
25 s

FR1 plant
49s

FR1 rpy
28 s

1
0.081 m 0.101 m 0.078 m 0.061 m
3.65 deg 3.69 deg 4.22 deg 4.39 deg

79 s 93 s 149 s 101 s

5
0.075 m 0.098 m 0.076 m 0.055 m
3.43 deg 3.75 deg 4.09 deg 4.20 deg

14 s 16 s 29 s 16 s

10
0.085 m 0.111 m 0.098 m 0.056 m
3.76 deg 3.88 deg 5.19 deg 4.25 deg

7 s 8s 15 s 8 s

20
0.103 m 0.122 m 0.098 m 0.056 m
4.13 deg 4.21 deg 4.10 deg 4.24 deg

4 s 5 s 10 s 4 s

process the 30Hz sequences in real-time.

2.9.2 Further Results

In addition to the Freiburg RGB-D sequences, the proposed SLAM system was also

tested live in a number of different environments. Although these tests have no ground

truth from which to conduct a complete system accuracy evaluation, the resulting maps

are still useful indicators of the system’s capabilities. This section presents a number of

such maps along with brief analysis.

Figures 2.21 and 2.23 were obtained from partially mapping the interior of a two storey

house. Starting from the kitchen on the ground floor three other rooms were explored

before returning back to the initial starting location. From Figure 2.21 it can be seen

that some degree of drift has occurred during mapping as the rooms on the upper floor

do not perfectly align with the rooms below and since such rooms are not observable

simultaneously no loop closures may be detected to correct such errors. Despite this

however it is clear that a reasonable level of accuracy has been achieved. In this particular

environment at no point was there insufficient depth or rgb edge features present to

cause a loss of slam tracking. Figure 2.23 shows close up views of some of the rooms

present.

2.9 Results 66

Figure 2.18: Map created by the proposed SLAM from the FR1 room dataset.
Point clouds of the keyframes are drawn with occulding edge point clouds in
green and RGB edge point clouds in red.

2.9 Results 67

Figure 2.19: Map created by the proposed SLAM from the FR3 ”long office
household” RGB-D sequence. The ground truth trajectory of the sensor is drawn
in green, while that estimated by the SLAM system is shown in blue.

Figure 2.20: Comparison of ground truth sensor trajectory (green) and SLAM’s
estimated sensor trajctory (blue) for the FR1 plant RGB-D sequence.

2.9 Results 68

Figure 2.21: Example map created by partially mapping a two story house.
Point clouds of the keyframes are drawn with occulding edge point clouds in
green and RGB edge point clouds in red.

2.9 Results 69

Figure 2.22: Close views of the room featured in the map of Figure 2.21. Point
clouds of the keyframes are drawn with occulding edge point clouds in green and
RGB edge point clouds in red.

2.9 Results 70

Figure 2.23: Example map created by mapping an office space. Point clouds
of the keyframes are drawn with occulding edge point clouds in green and RGB
edge point clouds in red.

2.10 Conclusions 71

2.10 Conclusions

In this chapter an edge based RGB-D SLAM system was proposed. Both RGB and

occluding depth edges are utilized, being extracted from each RGB-D frame and back-

projected to form semi-dense edge point clouds. Our occluding depth edge detection

method exploits the temporal similarities between RGB-D frames to direct the search

process to only specific image regions where edges are likely to reside, saving significant

computation time compared to the edge detection employed by other works. A keyframe

set-up is used and the sensor pose is estimated by registering the latest edge clouds with

those of the map’s keyframes. It is demonstrated how this edge based ICP may provide

both significantly faster and more accurate registration compared to using uniformly

down-sampled RGB-D cloud data, and how its performance does not significantly de-

grade with downsampling.

As demonstrated in the evaluation, the proposed system is competitive with similar sys-

tems at the time of writing, achieving similar levels of accuracy while having a compu-

tational overhead many times smaller, making it fit for real-time navigation applications

on small robotic platforms as discussed in 2.2 at the start of this chapter.

Chapter 3
Line Based RGB-D SLAM

The depth and RGB edge point clouds discussed previously in Chapter 2 are far smaller

in size compared to their raw RGB-D cloud counterparts. Despite this reduction edge

point clouds may still contain various high level features within them. One such type

of high level feature is that of straight 3D line segments represented by large subsets

of collinear points in the edge point cloud. This chapter presents an investigation in

extending the previously proposed edge cloud based SLAM system to utilize such high

level linear features.

The majority of man-made objects such as monitors, desks and posters all feature many

such straight lines and edges, either in their physical geometry or their surface texture.

Since we are primarily interested in operating in such man-made environments we in-

vestigated the use of such features for SLAM, modifying the SLAM system described in

the previous section to utilize such line features.

One of the major benefits of using such high level 3D line features is that of compactness.

Edge point clouds are typically around two orders of magnitude smaller than their full

RGB-D cloud counterpart. The process of extracting 3D line features from such edge

point clouds typically involves hundreds of points being merged to form a single line

feature. Thus the total number of line features is again around two orders of magnitude

fewer than the number of points in the edge cloud they were extracted from. Because of

this great reduction in the number of features, SLAM tracking and registration can be

performed at a further reduced computational cost. Thus if the edge based SLAM system

of the previous chapter is unable to achieve consistent 30Hz real-time performance on

a certain platform, the line and edge cloud based system proposed here may provide a

preferable alternative.

72

3.1 Incorporation of Line Features 73

However, there are downsides of making use of such high level features. Many envi-

ronments contain geometric objects and textured surfaces featuring curved or irregular

edges. Naturally 3D lines cannot fully represent these curved edges, instead multiple

lines must be used to form an approximate representation. Additionally extraction of

these 3D line features adds yet another layer of post processing, further abstracting away

from the original RGB-D data. Accurate, reliable and repeatable 3D line detection can

be a challenging task in many scenarios. Certain detected line features may be inaccu-

rate, and in some cases certain line features may fail to be detected entirely. As such,

SLAM using such 3D line features for mapping is in general less accurate in compar-

ison to SLAM using edge point clouds. This is the trade-off made for the decreased

computational cost such features provide.

We denote such 3D line features with a pair of 3D vectors i.e. L = (l1, l2) where l1 and

l2 represent the start and end locations of the line respectively.

3.1 Incorporation of Line Features

As discussed previously line features provide a very compact description of a scene and

thus can be used to obtain fast registration and sensor tracking. However, the com-

putational cost of extracting such line features from edge clouds is not insignificant,

and performing such extraction with every new frame of RGB-D data would have a

significant performance impact dramatically increasing the average frame time. Thus

instead of switching to a completely line feature based SLAM system, we adopt a hybrid

approach creating a system that makes use of both edge clouds and line features.

This hybrid system is largely identical to the edge point cloud based system introduced

in the previous sections, however, each map keyframe Ki now stores two sets of 3D line

features in addition to the two edge point clouds Di and Ii. These sets of line features

are again associated with the depth and RGB components of the keyframes RGB-D data

respectively. Registration and sensor tracking is achieved by extracting depth and RGB

edges from the latest RGB-D frame F , generating the associated depth edge cloud D

and RGB edge cloud I; and then finally registering said point clouds D and I with the

depth and RGB line features stored by the current tracking keyframe KT . Despite still

involving edge point clouds (rather than purely sets of line features) such registration

can still be performed at a significantly reduced computational cost compared to purely

edge cloud based registration.

In this way the proposed hybrid system utilizes line feature to reduce the computational

3.2 Line Segment Extraction from Edge Point Clouds 74

cost of sensor tracking, while also keeping the total computational cost involved in line

feature extraction low by only having to extract such line features once per map keyframe

Ki ∈ K (using each keyframe associated RGB-D frame Fi), rather than extracting line

features from every RGB-D frame.

The following subsections now introduce the method used to extract such line features

from edge point clouds, the method used to perform registration between such line

features and edge point clouds, and finally results and evaluation of the hybrid SLAM

system utilizing both of these types of features.

3.2 Line Segment Extraction from Edge Point Clouds

Given an edge point cloud E we wish to be able to identify all 3D line features present

within it. These line features are to be used as features for the SLAM map keyframes

themselves, and thus an accurate and robust method of extraction is required. There

are numerous possible approaches to such a task with varying degrees of robustness and

computational cost.

Our implemented method of 3D line segment extraction employs a split and merge

based approach, partitioning the original edge point cloud up into multiple small subsets

c ⊂ E. This partitioning is conducted such that each c ⊂ E consists of an approximately

collinear set of points, and the set of all such subsets collinear is denoted C. A merging

process is then performed, which iterates through possible pairs of these sets (ci ∈ C, cj ∈
C)|ci 6= cj, merging any pairs into a single set provided that their union of points is also

approximately collinear i.e C = {ci ∪ cj} ∪ S − {ci, cj}. This criteria of collinearity is

checked by simply fitting a 3D line to the set of points in question and then determining

the average distance from said line. This process is repeated until no further mergers

can be made, resulting in the creation of the final sets of approximately collinear points.

The final set of 3D line features is then formed by the lines of best fit to each of these

collinear point sets c ∈ C.

The steps of this extraction process are illustrated in Figure 3.1.

3.2 Line Segment Extraction from Edge Point Clouds 75

Figure 3.1: An illustration of the steps involved in extracting linear segments
from an edge point cloud. The set of 5741 points are partitioned into 277 subsets
of collinear points which are then merged to form the final 43 collinear point sets
and line features. which the final line segments are extracted.

3.2 Line Segment Extraction from Edge Point Clouds 76

3.2.1 Grid Partitioning

The first step of this extraction process is to partition the edge point cloud E into

multiple smaller sets, primarily to reduce the computational cost of nearest neighbour

searches required in the following steps. This involves calculating the bounding box of

the point cloud E comprised of the two vectors Bmin and Bmax, which are then in turn

used to determine a 3D grid partitioning the cloud. Let Bdim denote the size of each

grid cell (i.e. each cell is of dimensions Bdim × Bdim × Bdim), and bijk ⊂ E denote the

subset associated with the cell at grid co-ordinates (i, j, k), consisting of all points of E

contained within that grid cell. Naturally such a subset bijk must contain at least two

points for a line feature to be present, however, it is of course always possible to draw a

perfect line between two points and in general far more collinear points are required to

be sufficient certainty that a line feature is present. We denote this minimum number

of points that a line feature must be associated with by Z, and thus in turn we are only

interested in those bijk which contain at least Z points. For simplicity we denote the set

B as consisting of all such grid cell subsets, i.e.

B = {bijk : |bijk| ≥ Z} (3.1)

3.2.2 Collinear Subset Construction

The next step is to split each grid cell’s subset of points b ∈ B into multiple subsets

denoted c0, c1, c2...cn. Each of these subsets c ⊂ b consist of a small cluster of points,

such that each point p ∈ c is within a minimum distance µ of at least one other point

q ∈ c as given in Equation 3.2 below.

∀(p ∈ c)∃(q ∈ c) : p 6= q ∧ |p− q| 6 µ (3.2)

Due to the nature of edge point clouds, such clusters of points predominately consist of

short strands of points lying upon a common edge. By limiting the size of such clusters

to a small number of points K ∈ N (such that |c| 6 K) , it is likely that the majority of

them will be sets of approximately collinear points which can be reasonably represented

by 3D line features.

Algorithm 3.1 outlines the process of generating each such collinear subset c ⊂ b. This

process begins by initializing a subset c by removing a randomly selected point from b

3.2 Line Segment Extraction from Edge Point Clouds 77

and adding it to c, after which this subset is iteratively grown in size by again removing

points from the set b and adding them to c. The points used to grow c in this manner

are selected by finding the current closest point in b to the latest point added to the

set c. Nearest neighbour searches have to be conducted to find such closest points.

However, since b typically does not contain a great number of points such searches can

be conducted using brute force approach while still not becoming a major performance

bottleneck. After a set c has been grown in size to the desired number of points K, the

line of best fit of c is calculated and used to evaluate if the set is deemed to be sufficiently

collinear as to represent a 3D line feature. This evaluation simply consists of calculating

the average distance between each point from the subset p ∈ c and the line of best fit

consisting of start and end points l1 and l2 as shown in Equation 3.3.

Rc,(l1,l2) =
1

| c |
∑
p∈c

| (p− l1)− (p− l1) ·
(l2 − l1)

| l2 − l1 |
| (3.3)

If this error Rc,(l1,l2) is below a threshold value ε then the generated subset c is added to

the set C containing all generated collinear subsets. Otherwise it is rejected as it is not

deemed to represent a reliable 3D line segment.

3.2.3 Set Merger

The final step in this 3D line extraction process involves attempting to merge together

pairs of collinear points sets from C, in an attempt to create larger collinear sets. This

involves iterating through each possible pair of sets (a ∈ C, b ∈ C) : a 6= b and deter-

mining if the set consisting of their union a ∪ b is also a set of approximately collinear

points. This is done by calculating the line of best fit to the points of a ∪ b and then

evaluating how well this line fits said points. If deemed adequate, then the sets a, b are

removed from C and replaced by the set consisting of their union c = a∪ b. This process

is repeated until no further mergers occur. A full outline of this merger step is given

below in Algorithm 3.2.

The steps of this merging process are illustrated in Figure 3.1, along with the output

linear segments drawn on top of the raw RGB-D point cloud.

3.2 Line Segment Extraction from Edge Point Clouds 78

for all b ∈ B do
while | b |> 0 do

p ∈ b // select a random point from b
q = p // store last used point
c = {} // initialize new empty subset
while | p− q |< µ and | c |< K do

c = c ∪ {p} // add point to subset
b = b− {p} // remove point from b
q = p // store last used point
p = Closest(b,q) // find the closest point to q

end while
if | c |== K then

(l1, l2) = LineOfBestF it(c) // calculate best fit line
if Rc,(l1,l2) < ε then // evaluate line fitting

C = C ∪ {c} // add to set of collinear subsets
end if

end if
end while

end for
return P

Algorithm 3.1: Collinear subset generation .

Merged :
for all (a ∈ C, b ∈ C) : a 6= b do // iterate through all possible set pairs

d = a ∪ b
(l1, l2) = LineOfBestF it(d) // calculate best fit line
if Rd,(l1,l2) < ε then // evaluate line fitting

C = C − {a, b}
C = C ∪ {d} // add merged set to C
Goto Merged

end if
end for

Algorithm 3.2: Collinear set merger

3.3 Iterative Closest Line 79

3.2.4 Extraction Results

A sample of results from this 3D linear feature extraction process are shown in Figure

3.2. Though some linear features that are obvious to the human eye have been missed in

many cases the process typically produces sufficient features to conduct tracking. The

computational of the the extraction process varies depending upon the input semi-dense

edge cloud, however, is never seen to exceed 10ms.

3.3 Iterative Closest Line

The ICP process described previously in Section 2.6 was used to perform registration

between two sets of input point clouds. Namely, the source clouds S = (SD, SI) and

target clouds T = (TD, TI), where SD, TD are depth edge clouds and SI , TI are RGB

edge clouds. Each iteration of this ICP process then determines pairs of points between

these source and target clouds, specifically pairs between the two depth edge clouds

SD, TD, and the two RGB edge clouds SI and TI . The calculation to best align all

determined point pairs is then calculated and used to update the estimated alignment

transformation. Over multiple iterations, this process causes the estimated alignment

transformation to converge, producing a final estimate.

However, now that the keyframe features being used have been changed to sets of 3D line

features a new registration process is required, one that can register edge point-clouds

with sets of 3D line features. This subsection introduces a variant of the standard ICP

algorithm which we used to achieve such registration.

Similar to ICP used for edge cloud registration, this variant takes two sets of features

extracted from two different RGB-D frames, referred to as the ”source” and target inputs.

The source input S = (SD, SI) again consists of a pair of depth and RGB edge clouds,

however, the target T now consists of a pair of line feature sets. That is T = (TD, TI)

where TD is a set of line features extracted from a depth edge cloud, and TI is a set of line

features extracted from a RGB edge cloud. As such each element of TD is a line feature

of the form described previously (l = (la, lb) ∈ TD), and similarly so is each element of

TI .

Each iteration then involves projecting each point from the depth edge cloud pi ∈ SD

onto its nearest depth edge line feature L ∈ TD, to form a projected point qi. Each point

is then paired with its associated projected point (i.e. pairs of the form (pi,qi)), and

added to a list of all point pairings generated in the current ICP iteration. An identical

3.3 Iterative Closest Line 80

Figure 3.2: Examples of extracted 3D linear features.

3.3 Iterative Closest Line 81

Figure 3.3: A 2D illustration of point pair generation. Each point from the
edge point cloud (shown in red) is paired with its projection onto the nearest
line feature as indicated by the arrows. The transformation to minimize the total
distance between these pairs is then calculated as in standard ICP.

projection/pairing process is also conducted for the RGB edge cloud SI and set of RGB

edge line features TI , generating additional point pairings. This process of determining

point pairings by projection onto nearest line features is illustrated in 3.3.

After these point pairings have been determined the algorithm proceeds in an identical

manner as standard ICP. The transformation to best align all determined pairs of points

is calculated and used to update the estimated alignment transformation. Thus the core

difference between this ICP registration process and that of Section 2.6 is simply in

how the point pairings used to update the estimated transformation are generated each

iteration.

3.3.1 Nearest Line Feature Search

As described above this point pairing generation involves the process of having to deter-

mine which line feature (from a set) is closest to a specific point. A naive approach to

this would simply involve calculating the distance between the point and each of the line

features in question. However the computational cost of this process would increases pro-

portionally with the number of line features present. To avoid having to search an entire

set of line features in this manner we make use of two spatially partitioning 3D grids,

one associated with the target set of depth line features TD, and a second associated

with the target set of RGB line features TI .

Such a partitioning grid G for a set of line features L, is constructed such that each grid

cell C stores a specific subset of line features (either depth or RGB associated) denoted

3.3 Iterative Closest Line 82

CL ⊆ L. This subset CL is such that given any point p inside of the cell’s bounding box

volume, the closest line feature to said point must belong to CL. Thus under this set-up,

the process of finding the closest line feature to a point p consists of determining the

grid cell C whose volume p resides in, and then examining the line features of CL, to

find that closest to p. Since CL is a subset of L this process avoids having to examine

the entire set of line features, saving significant computational time. This is somewhat

analogous to how K-D trees are used in standard ICP to improve the efficiency of nearest

neighbour searches. Though the cost of calculating such grids may be too significant for

real-time computation, in practice they only need be calculated once for each keyframe,

the computation of which can be conducted on a separate thread from that conducting

sensor tracking. The grid is uniform and hence each grid cell is the same size denoted

CD (so that each cell has volume C3
D), this parameter is both tuned experimentally and

by accounting for the computer hardware being used. Smaller values of CD mean the

grid cells have smaller volumes and thus in general the subsets CL of possible closest line

features will contain fewer elements increasing nearest line feature search performance,

however this also leads to a greater number of grid cells requiring additional memory and

thus the selection of the CD value involves a trade-off between these two factors.

The construction of such a partitioning grid G involves a number of different steps,

the first of which is to determine the volume of space which the grid should occupy

in the form of a bounding box BG = (BG
min,B

G
max). This involves trivially calculating

the bounding box of the set of line features L, expanding this bounding box equally

in all directions by some fixed length Gexpand, and finally decreasing and increasing the

bounding box’s minimum and maximum points such that it may encompass a whole

number of C3
D volume grid cells. The step expanding the bounding of the box by Gexpand

is to allow the grid to still be used to find the closest line feature to points lying somewhat

outside of the minimum bounding box of the set of line features L. Larger values of

Gexpand result in more grids cells requiring additional memory but allow for more robust

registration, typically a value of Gexpand = 1m is sufficient, however, beyond this there is

little observable benefit. This bounding box construction process is illustrated in Figure

3.4.

The volume of the grid’s bounding box BG is then uniformly split into multiple cubic

bounding boxes, each of which represents the volume of a specific grid cell. The next

step is to then calculate the subsets of line features associated with each cell of the grid.

Let the bounding box of a specific grid cell C be denoted BC = (BC
min,B

C
max), and its

associated subset of line features be denoted by CL ⊆ L. Ideally CL should consist of

the smallest possible subset of L such for every point p inside of the cell’s bounding box

3.3 Iterative Closest Line 83

Figure 3.4: A 2D illustration of the process of generating grid cells used in
determining the closest line feature to a specific point. Left, the bounding box of
all 3D line features is determined. Middle, this bounding box is then expanded
by a fixed size in all directions. Right, finally the bounding box size is increased
such that it can be partition into a uniform grid of cells of each of size CD.

volume BC , the closest line feature to p belong to the subset CL as is outlined below in

Equation 3.4, where NearestLine(p, L) denotes the closest line features to p from the

set L.

CL = {l | NearestLine(p ∈ BC , L) = l} (3.4)

However, the process of determining such a subset for a cubic volume of space requires

significant computation which can significantly delay the addition of vital keyframes,

causing temporary periods of tracking loss or poor quality tracking. Instead we settle

for determining a similarly defined subset for the minimum bounding sphere of the

cell’s cubic bounding box BC . The simplified geometry of this volume allows for an

approximate solution to be quickly computed.

The minimum bounding sphere for a grid cell’s bounding box BC is simply located at

position x in the center of the box, and has a radius r determined by the dimensions of

the box itself as given in Equations 3.5 and 3.6.

x = BC
min + 0.5× (BC

max −BC
min) (3.5)

r = 0.5× |BC
max −BC

min| (3.6)

3.3 Iterative Closest Line 84

Figure 3.5: Determining line features subset associated with grid cell bounding
sphere.

The process of determining the subset of line features for this bounding sphere first

involves finding the line feature l1 ∈ L closest to the center of the bounding sphere x.

Let d denote the minimum distance between this line feature l1 and the point x, and

let xl denote the closest point to x on line feature l1 (i.e. the projection of x onto l1).

Additionally, let xs denote the point within the bounding sphere furthest from the line

feature l1, this point lies both upon the surface of the bounding sphere and along the

line which passes through the points x and xl as illustrated in Figure 3.5. Specifically

xs lies at a distance of d+ r from the line feature l1, and is located at the position given

by Equation 3.7 below.

xs = x− r xl − x

|xl − x|
(3.7)

For any other line feature l2 ∈ L to possibly be the closer to the point xs than the line

feature l1, the minimum distance between l2 and xs must be smaller than d + r. Since

xs is the furthest point from the line feature l1 this same criteria hold for all points in

the bounding sphere. That is for any point p within the bounding sphere and a line

feature l2 ∈ L, the minimum distance between l2 and p must be smaller than or equal

to d + r for l2 to possibly be the closest line feature to p (otherwise l1 would be the

closer feature). From the above statement it is clear that for a line feature l2 to possibly

3.3 Iterative Closest Line 85

be the closest line feature to any point within the bounding sphere at all, l2 must come

within a minimum distance of d+r of the bounding sphere itself. In other words l2 must

intersect the volume of the sphere which centred about x and has radius r + (d + r) as

illustrated in Figure 3.5.

Thus for any point p in the minimum bounding sphere of the cell C, the closest line

feature to p will too belong to the subset of line features CL consisting of those line

features which intersect the sphere centred about x with radius r + (d + r) as given by

Equation 3.8.

CL = {l = (la, lb) ∈ L |
∣∣∣∣(lb − la)× (x− la)

(lb − la)

∣∣∣∣ ≤ 2r + d} (3.8)

This subset is somewhat conservative in that it may possibly contain line features which

are not in fact the closest feature to any point in the bounding sphere as illustrated by

the green line feature in Figure 3.5. However in practice it will still only consist of a

fraction of the total line features of L in the majority of scenarios and additionally is

computationally cheap to determine.

Thus the process of determining the subset of line features CL for a grid cell C consists

of determining the line feature l1 ∈ L which comes within some closest distance d to

the center of the cell’s bounding box x, and then calculating the subset of line features

which intersect the sphere centred at x and of radius 2r + d.

Once fully constructed, such a grid can then be utilized in finding nearest line feature

l1 ∈ L to a specific point p, by simply determining the grid cell C the point resides in

and then calculating which of the line features l1 ∈ CL is closest to p. p can then be

projected onto it’s closest line feature to form the point q and the point pair (p,q) used

in updating the estimated transformation as laid out in Algorithm 3.3.

In order to examine how this partitioning grid based approach to the nearest line search

compares with performing a simple brute force search, registration evaluations were

carried out again using the Freiburg RGB-D datasets [97], and conducted in a similar

manner to the evaluations of Section 2.6.3. As would be expected no differences in terms

of translational and rotational accuracy were observed between brute force search and

the partitioning grid based approach, however there was a significant difference in terms

of computational cost. As shown in Figure 3.6 the grid based approach approximately

halves the computational cost of each ICP iteration providing a substantial benefit over

the brute force approach.

3.3 Iterative Closest Line 86

P = {} // initialize set of point pairings
for all p ∈ E do // iterate over all points in source point cloud

// find the grid cell containing p
C = Grid Cell Containing Point p
L = Line Features Stored by Cell C
d = ε
q = p
for all l = (l1, l2) ∈ L do // iterate over line features of grid cell

t = (p− l1) ·
(

l2−l1
|l2−l1|

)
t = min(max(t, 0), | l2 − l1 |)
p2 = l1 + t

(
l2−l1
|l2−l1|

)
// project point p onto line feature l

d2 =| p2 − p | // calculate distance from line feature
if d2 < d then

d = d2 // update nearest line feature distance
q = p2 // update projected pairing point

end if
end for
if p 6= q then

P = P ∪ {(p,q)} // add point pairing (p,q) to P
end if

end for
Return P

Algorithm 3.3: ICP point pairing generation with line features

3.3 Iterative Closest Line 87

Figure 3.6: Comparison of computational cost of point cloud to line feature
registration when using brute force nearest line search (Red) or the partitioning
grid based approach (Blue) as described in Section 3.3.1

3.3.2 Point to Line feature Pair Selection

Consider a set of line features L extracted from an edge cloud D, it is important to note

that in many scenarios the line features of L will not be fully representative of the entire

edge cloud. There may be many areas of the cloud from which no accurate line features

could be determined, and the points belonging to such areas will in no way be represented

in the set of line feature L. Thus the environment/scene from any RGB-D sequence may

have many features and objects which are represented in the depth and RGB edge point

clouds extracted from the sequence, but which may have no representation in the sets

of RGB and depth line features extracted from these edge clouds. We will refer to

such edge cloud points as being unrepresented points. Figure 3.7 illustrates this issue

of unrepresented points by overlaying extracted line features over the associated edge

clouds (both depth and RGB), it is clear that the line features do not encompass all

points of the clouds and many features of the scene have no line feature to represent

them.

The ICP registration process described in this section estimates the alignment transfor-

mation from a set of point pairs. These are generated by projecting each edge cloud

point onto its nearest line feature, and then pairing each edge cloud point with its pro-

jection. In many situations a significant number of such pairs may involve unrepresented

3.3 Iterative Closest Line 88

Figure 3.7: Comparison between Depth and RGB edge clouds and the line
features extracted from them.

3.3 Iterative Closest Line 89

points, whose associated edge is not represented in the set of line features being used to

generate the pairs. Such point pairs are of course incorrect as they are pairing together

points which belong to completely different edges in the environment.

As such at any given iteration of the registration process even if the estimated trans-

formation is in fact in accordance with the true registration transformation, incorrect

pairings may still be present and cause the estimated transformation to converge to an

incorrect solution. Thus these incorrect pairings only serve to corrupt the registration

process, introducing error into the estimated transformation. One method to attempt

to alleviate this issue is to be selective in deciding which point pairs should be used to

update the estimated transformation each iteration, opposed to simply always using all

determined pairings.

Given a pairing (p,q) between a point p and its projection onto its closest line feature

q, let us refer to distance between said points | p−q | as the pairing distance D(p,q). If

current estimated transformation is in accordance with the true alignment transforma-

tion, then points from the source edge cloud whose associated edge is also represented by

some line feature will likely be located in close proximity to said line feature. The pairs

involving these points will thus in general be associated with small pairing distances.

On the other hand, unrepresented edge cloud points will be located at a relatively far

distance from any line feature by comparison. The point to line pairings involving these

unrepresented points will thus in general also have greater pairing distances associated

with them in comparison to the points whose edges are represented in the target set of

line features. In general whenever the estimated alignment transformation is comparable

to the true alignment transformation, point to line pairings which have a high pairing

distance are significantly more likely to be pairings involving unrepresented points, which

will introduce error into the estimated transformation.

Thus by examining the distribution of pairing distances for all determined point pair-

ings, and removing those outliers whose pairing distance is significantly greater than

the average, it is likely that the majority of pairings involving unrepresented points

will be removed. Only using the remaining pairings to update the estimated alignment

transformation, will then result in a more accurate final transformation estimation in

the majority of circumstances compared to simply using all determined pairings. The

practical implementation and evaluation of this concept is now discussed.

Let P denote the set of point pairs determined at any given iteration of the point to

line ICP registration. Each element (p,q) ∈ P then has an associated pairing distance

(simply the euclidean distance between the paired points) denoted D(p,q). In order to

3.3 Iterative Closest Line 90

be selective in which pairings are used to update the estimated transformation, the mean

µ and standard deviation σ of the pairing distances are calculated as given by Equations

3.9 and 3.10 as shown below.

µ =
1

|P |
∑

(p,l)∈P

D(p, l) (3.9)

σ =

√√√√ 1

|P |
∑

(p,l)∈P

(D(p, l)− µ)2 (3.10)

As described previously, point pairings whose associated pairing distance lies significantly

above the average are more likely to be pairings involving unrepresented points. Thus all

point pairings whose pairing distances are above a threshold Ψ distance give by Equation

3.11 are discarded, and the remainder used to update the estimated transformation as

per usual.

Ψ = µ+ ασ (3.11)

The exact value of α used for this threshold was determined experimentally. Figure

3.8 shows an evaluation of the registration process described in this section (utilizing

the same evaluation approach used in Section 2.6) using various values of α in order to

determine which value to use during standard operation.

Examining these graphs we see that the extreme values of α = −0.5 to 0 result in

very high registration transformation error (both in the translational and rotational

components). This is due to the very large proportion of point pairings rejected each ICP

iteration under these values. Such high levels of rejection often results in the remaining

point pairs not being sufficient to accurately update the estimated transformation, often

resulting in convergence to an incorrect transformation. This issue can be addressed by

simply increasing the value of α and hence the number of point pairs used each iteration

to update the estimated transformation. This effect can be seen in the sharp decrease

in transformation error between the α values of −0.5 to 0.

On the opposite end of the spectrum are the values of α > 0.5 in which far fewer

3.3 Iterative Closest Line 91

Figure 3.8: Point to line feature registration accuracy using different standard
deviation pair culling values for the datasets FR1 desk(red), FR1 plant(green),
FR1 room(blue).

3.3 Iterative Closest Line 92

point pairs are rejected. Thus many of the point pairs used to update the estimated

transformation are associated with the unrepresented points previously described, which

only serve to introduce error into the process of updating the estimated transformation

each ICP iteration. As the value of α continues to increase from 0.5 to 2, a greater

proportion of the point pairs used to conduct registration involve such unrepresented

points, resulting in an increase in translational and rotational error.

Thus the optimal value of α resulting in the lowest rotational and translational error is

seen to lie between these two extremes in the 0 to 0.5 interval. Such values of α provide

the best trade-off in rejecting point pairs likely to involve unrepresented points, while

at the same time leaving sufficient point pairs remaining such that accurate registration

can be achieved in the majority of scenarios. Thus we adopted α = 0.3 as the standard

parameter value used for this point to line feature based registration.

3.3.3 Evaluation

The same approach used for evaluating the edge cloud registration (as described in

Section 2.6.3) was again used in evaluating this proposed point to line ICP registration.

This consisted of attempting to register frames of RGB-D data from the Freiburg RGB-D

data sequences with transformed copies of themselves, and them evaluating the accuracy

and computation time resulting from each such registration. Figure 3.9 shows a sample

of evaluation results generated from the FR1 room RGB-D sequence, using a varying

number of ICP iterations. Figure 3.10 also provides a comparison between the point to

line based ICP registration and the edge cloud ICP registration described previously in

Section 2.6.

Once again it can be seen that the average translation and rotational error decreases

with the number of ICP iterations, with the rate of improvement in accuracy being

greatest at low ICP iteration counts and then steadily decreasing before plateauing at

around 10 to 12 ICP iterations. It is clear that the point to line registration approach

has a significantly smaller computational cost per ICP iteration than the edge cloud

registration approach. When comparing the two registration methods using the same

number of ICP iterations for each, point to line registration consistently requires less

than half the computation time of the comparative edge cloud registration. However,

this significant reduction in computational cost comes at the price of reducing the average

registration accuracy. From the plots of Figure 3.10 it can be seen that point to line

registration demonstrates a similar level of improvement in registration accuracy per

ICP iteration as that shown by edge cloud registration. This improvement in accuracy

3.4 Results 93

continues until the 10-12 ICP iteration mark at which the translation and rotational error

of both types of registration levels off with little further improvement with additional

ICP iterations. The level of registration error at which these two registration methods

plateau at however is significantly different, with point to line ICP registration averaging

out with 5cm greater translational error, and two degrees more rotational.

3.4 Results

We now present both an evaluation of this proposed SLAM system along with a set of ex-

ample result obtained from real-time mapping with a hand held sensor and laptop.

3.4.1 SLAM Evaluation

In this section we present an evaluation of this line based extension to the proposed SLAM

systems as laid out in Chapter 2. Once again we use the same hardware, datasets, and

evaluation methodology as described previously in 2.9.1.

Table 3.1 compares the results obtained by the line based SLAM of this chapter, to the

edge purely edge cloud based approach as presented in Chapter 2, plot of these results

are also illustrated in Figure 3.11 . It can be seen that on all datasets the line based

approach demonstrated inferior accuracy. This is somewhat to be expected as the linear

features used in the line approach are an approximation of the underlying edge clouds.

On the positive side, the line based approach demonstrates lower total run times on

every RGB-D sequence in comparison to the edge cloud based approach. Again this is

to be expected due to the lower computational cost of the edge cloud to line segment

registration process that is being utilized as presented in Section 3.3.

In summary the use of such linear features results in a decrease in computational cost,

compared to the edge cloud based approach of the previous chapter. However this comes

at the price of a significant loss in accuracy. Thus this approach should only be considered

in circumstances in which the purely edge cloud based SLAM approach of the previous

chapter is to computationally expensive to achieve real-time performance on the target

hardware platform.

3.4 Results 94

Figure 3.9: Line feature based ICP registration accuracy histograms

3.4 Results 95

Figure 3.10: Line Based Registration (Red) VS Edge Point Based Registration
(Blue) with RCS = 5

3.4 Results 96

Table 3.1: A comparison of the performance of the proposed line based SLAM
extension to that of the purely edge cloud based system proposed previously in
Chaper 2 using various RGB-D sequences from the Freiburg dataset [96].

Translational RMSE

Sequence (length)
Proposed RGB-D

Edge SLAM
Proposed RGB-D

Line SLAM
FR1 desk (23 s) 0.075 m 0.094 m
FR1 desk2 (25 s) 0.098 m 0.106 m
FR1 plant (42 s) 0.076 m 0.090 m
FR1 room (49 s) 0.210 m 0.232 m
FR1 rpy (28 s) 0.055 m 0.063 m
FR1 xyz (30 s) 0.038 m 0.048 m

Rotational RMSE

Sequence (length)
Proposed RGB-D

Edge SLAM
Proposed RGB-D

Line SLAM
FR1 desk (23 s) 3.43 deg 4.63 deg
FR1 desk2 (25 s) 3.75 deg 4.09 deg
FR1 plant (42 s) 4.09 deg 5.52 deg
FR1 room (49 s) 5.66 deg 7.07 deg
FR1 rpy (28 s) 4.20 deg 4.54 deg
FR1 xyz (30 s) 1.92 deg 2.23 deg

Total Runtime

Sequence (length)
Proposed RGB-D

Edge SLAM
Proposed RGB-D

Line SLAM
FR1 desk (23 s) 14 s 10 s
FR1 desk2 (25 s) 16 s 11 s
FR1 plant (42 s) 29 s 20 s
FR1 room (49 s) 30 s 21 s
FR1 rpy (28 s) 16 s 11 s
FR1 xyz (30 s) 17 s 11 s

3.4 Results 97

Figure 3.11: Plots comparing results obtained from the line based SLAM ex-
tension of this chapter to the previously proposed edge cloud based approach
on a number of Freiburg datasets. The edge based results are shown in red and
while line based are shown in green.

3.4 Results 98

Figure 3.12: The resulting map from the FR1 room sequence using.

3.4.2 Further Results

The proposed line based SLAM system was also tested live and recorded dataset without

ground-truth for evaluation. This sections presents a selection of maps produced in such

scenarios. Again though there is no ground-truth to conduct formal evaluation, visual

inspection can give some indication of the system’s mapping performance.

3.4 Results 99

Figure 3.13: The resulting map from inside an office space.

3.5 Conclusions 100

3.5 Conclusions

This chapter presented an extension of the edge based SLAM approach presented in

Chapter 2, utilizing high level linear features. The motivation behind the use of such

features is that they provide a far more compact representation of the semi-dense edge

clouds used previously, and in doing so allow for more computationally efficient regis-

tration. We presented a split and merge based approach for extracting such features

from semi-dense edge clouds, along with our adopted ICP based method of registration

between edge clouds and linear feature sets. This was shown to have a lower computa-

tional cost to the edge cloud to edge cloud registration proposed in Section 2.6, but also

demonstrated an overall decrease in registration accuracy. When evaluated in the same

manner as the edge based system of Chapter 2, this line based approach demonstrated

a total computational cost around 30% (6.5ms) lower than that of the purely edge cloud

based system of the previous chapter. However this came at the cost of translational

and rotational accuracy being decreased on average by around 30% (2.5cm) and 20%

(0.8 degrees) respectively.

Chapter 4
Belief Space Planning

This chapter investigates how Belief-Space planning could be applied to autonomous

navigation for MAVs in cluttered environments, specifically relying on bearing measure-

ments to landmark beacons in the environment for localisation. The following work was

originally presented in Bose and Richards [8] at IMAV 2013.

Consider a MAV such as a quad-rotor based platform navigating a pre-mapped indoor

environment, utilizing point feature based monocular visual SLAM for localisation. Ac-

curate navigation in such a scenario relies upon the vehicle maintaining localisation. A

loss of localisation would result in the vehicle being unable to account for any deviation

from the desired trajectory. This would result in the vehicle drifting further away from

the desired trajectory over time, potentially colliding with some obstacle within the en-

vironment. Such drift can be represented by an increase in uncertainty in the vehicle’s

estimated state, that is the longer the vehicle has remained without localisation, the

further it has potentially drifted from its desired state and hence the greater the uncer-

tainty in its estimated state. In contrast the process of acquiring sensor measurements

used to localise and update the vehicle’s estimated state correspond to a decrease in

state uncertainty.

The set-up presented in the following work is designed to be somewhat analogous to

this scenario, with a simulated MAV conducting localisation via bearing measurements

to fixed beacons within a cluttered environment. In order to navigate the environment

the vehicle must ensure that localisation is maintained at all times if possible. This

involves incorporating the concept of state uncertainty into the path planning process,

in order to generate vehicle trajectories which attempt to minimize state uncertainty

(i.e. maintain localisation) by ensuring that sufficient beacon bearing measurements can

101

102

be obtained. Such trajectories are somewhat analogous to those for a vehicle relying

on visual point feature SLAM, which ensures that sufficient visual features are always

observed for localisation, by both accounting for the location of such visual features

within the map and accounting for the pose of the vehicle’s sensor itself.

The process of generating trajectories accounting for an agent’s state uncertainty (typi-

cally attempting to minimize such uncertainty) is commonly referred to as belief space

planning. There are many examples of such belief space planning implementations. The

Belief Road Map [81] (inspired by the standard Probabilistic Road Map [54]) was used

to produce simulated results in which a robot minimizes its state uncertainty during

navigation by travelling within close proximity to ”beacons” providing information for

localization. The Rapidly-exploring Random Belief Trees algorithm [10] iteratively con-

structs a graph in belief space to determine safe trajectories for the vehicle. Simulated

results showed the vehicle’s trajectory deviates in order to pass through state measure-

ment areas, reducing the state uncertainty to enable the vehicle to safely pass through

narrow passageways that require precise manoeuvring. The Particle RRT algorithm [76]

accounts for uncertainty by simulating each tree expansion multiple times with process

noise, adding multiple new branches per expansion.

Note that trajectories which minimize the vehicle’s state uncertainty typically do not

provide the quickest route between the two state, however, they are in a sense the most

reliable as are they likely ensure that localization is maintained at all times. Such an

uncertainty minimizing trajectory in the proposed set-up may take a long indirect route

through the environment in order to ensure sufficient beacon bearing measurements are

obtained to keep state uncertainty low. By comparison the fastest direct route may

involve the vehicle traversing through areas sparse in measurement beacons, greatly

increasing the risk of losing localisation, putting the vehicle at risk. If given a complete

or partial map of an environment, what trajectory should the vehicle take between two

states in order keep the uncertainty relating to the vehicle’s state to a minimum? (or

to provide some desired trade-off between minimizing state uncertainty and travel time)

This is the question which motivated the remaining work of this chapter.

It should be noted that such belief space planning methods aim to minimize the state

uncertainty of the vehicle within a global coordinate frame. For visual SLAM based

navigation problems however this aim is often not of much practical use. This is due to

the fact that such visual SLAM systems typically estimate the current pose of the sensor

relative to the pose of some key-frame or sub map. While the estimated global pose of

such key-frames (and hence the sensor) may be highly inaccurate due to accumulated

drift, the estimated pose of the sensor relative to the key-frame currently being used for

4.1 Planner Overview 103

tracking (and other nearby key-frames) can remain highly accurate. Thus the SLAM

system may provide sufficient information to successfully navigate about obstacles within

a given proximity to the vehicle’s current location, while not necessarily providing an

accurate global estimate of the vehicle’s pose. Thus high uncertainty in the vehicle’s

state in a global reference frame does not pose an issue to conducting safe navigation

when using such a SLAM system, and thus the trajectories produced by such belief

space planning methods do not provide any major benefit. Additionally such belief

space planning approaches are typically of very high computational cost compared to

analogous standard planning methods. For an autonomous flying vehicle with limited on-

board computational power, such belief space methods may take an unacceptable length

of time to produce valid trajectories for the vehicle, severely hampering navigation. For

these reason the work described in this chapter was not used in practical experiments

and was purely conducted in simulation. However this investigation into the viability

of such methods prompted the work presented in the following Chapter 5, in which we

propose a planning approach accounting for the formerly described issues, and which

effectively supersede the work of this chapter.

4.1 Planner Overview

The belief space planning algorithm presented in this chapter operates within a sim-

ulation set-up designed to approximate that of a MAV, navigating though a mapped

environment with sparse visual features akin to using a monocular visual SLAM system.

These environments consist of a set of obstacles in the form of polygon meshes, and a

set of so called ”beacons” taken to represent visual landmark or regions rich in salient

visual features. The vehicle is able to take relative bearing measurements to any such

beacon, provided it is both within the field of view of the vehicle’s camera sensor, and

not occluded by any obstacle. Naturally the vehicle must avoid collision with any of the

obstacles present.

An Octree is used to specially partition the environment based upon the position of the

obstacles present. The leaf nodes of this Octree are then used to determine the nodes

of a navigation graph. Edges are then added to this graph connecting any two nodes

that are within line of sight of one another, and whose associated Octree nodes are also

adjacent. This step involves determining if two points are in direct line of sight of one

another by checking that the line segment connecting them does not intersect any of

the polygonal obstacles. The computational cost of this step is reduced by using the

partitioning Octree to quickly determine a subset of obstacles with which a connecting

4.2 Problem Formulation 104

line segment could potentially collide, and then only conducting the intersection tests

against this subset of obstacles.

The planner itself recursively explores this navigation graph from a starting node, in-

crementally constructing different paths across the graph. The evolution of the vehicle’s

estimated state will vary across each of these paths, and determines which paths are

preferable over others according to the desired trade off between minimizing distance

travelled and state uncertainty. For each trajectory, a set of particles (each represent-

ing a potential vehicle state) is used to represent an approximation of the probability

distribution for the vehicle’s state. This set of particles is determined from the beacon

measurements that the vehicle would observe along that specific trajectory, in a similar

way to how particle filter localization is typically performed (as described in [29], [101],

[102]). This set of particles captures the growth of uncertainty in the vehicle’s state

as it moves through the environment, and the subsequent uncertainty reduction due

to localization from bearing measurements obtained from beacons. Each trajectory is

evaluated based upon both its length and the associated evolution of the vehicle’s esti-

mated state. Trajectories that display the desirable trade-off between minimizing length

and uncertainty are extended to generate further trajectories through the graph. Other

trajectories with undesirable characteristics are discarded to avoid wasting computation

time.

The adopted formulation of this belief space planning problem is presented in the fol-

lowing section.

4.2 Problem Formulation

Let the simulated environment consist of a set of obstacles O and measurement beacon

positions B ⊂ R3. Each obstacle in Oi ∈ O is in the form of a convex polygonal body

such that Oi = {Vi, Êi, F̂i}, where Vi is the set of vertices of the body’s mesh, Êi the

set of unit vectors aligned with each of the body’s edges, and F̂i the set of unit vector

normals for each of the bodies faces. Note that non-convex obstacles are represented in

this set-up by simply decomposing them into multiple convex obstacles. Each bi ∈ B is

the position of a measurement beacon.

The simulated MAV is taken to be equipped with a forward facing sensor which can take

bearing measurements to a beacon bi ∈ B provided that bi is both within direct line of

sight, and within the sensor’s field of view. It is assumed that the MAV has a complete

map of the environment (i.e. both O and B), and that there is no data association

4.2 Problem Formulation 105

ambiguity for any bearing measurements taken. Thus the vehicle can conduct belief

space planning account for where the beacons of B are observably, and the location of

the obstacles O within the map.

A navigation graph across the environment is constructed as described in Section 4.3

consisting of a set of nodes N , and a set of undirected edges E dictating how these nodes

are connected (of the form ei = (ni,nj) ∈ E). A graph node is also placed at the initial

position of the vehicle denoted nstart, and at the desired goal location ngoal.

A set of ”path nodes” P is used to store different paths generated through this graph,

with each Pi ∈ P consisting of a graph node ni ∈ N , a parent path node Qi ∈ P , and

estimation or ”belief” of the vehicles state xi. For simplicity we use mi ∈ N to denote

the graph node associated with the parent path node Qi (i.e. mi = nQi
).

Each such path node Pi represents a short path between the nodes ni and mi of the

navigation graph, with xi representing an estimation of the vehicle’s state upon traversing

said path. Specifically xi consists of a set of particles, each a potential state for the

vehicle, together which form a discrete approximation of the probability distribution for

the vehicle’s estimated state. Such a representation of vehicle belief is standard in Monte

Carlo (particle filtering) localisation methods as seen in [101], [29], [102]. Further as will

be shown xi is generated from the estimated vehicle state associated with the parent

path node Qi. Finally each path node Pi also stores a ”total path length” li, and a

weighting score wi used in evaluating how desirable a path segment is relative to others.

Thus a path node Pi consists of the components shown in 4.1.

Pi = {ni,mi, Qi,xi, li, wi} (4.1)

Initially P contains a single parent-less path node Pstart located at the nstart graph node,

and with a belief reflecting the initial belief of the vehicle’s state. This node is then used

in the generation of additional path nodes, expanding to different nodes of the navigation

graph. This process is then repeated iteratively, taking existing path nodes of P and

using them to generate additional path nodes. Note that every path node Pi can be

traced back to Pstart by recursively iterating through the parents of Pi, and thus in this

way each Pi represents some path through the navigation graph between the nodes nstart

and ni. The path length li represents the length of this path between nstart and ni. Thus

this process of iteratively generating path nodes can be viewed as expanding a tree of

paths through the navigation graph, rooted at nstart.

4.3 Graph Construction 106

The weighting wi of a path node Pi is based both off its total path length li, and measure

of the uncertainty related to its estimation of the vehicle’s state xi calculated from the

sample variance of the set of particles. These two factors can be weighted differently

based on the desired type of path (for example minimum distance paths would have zero

weighting on uncertainty).

4.3 Graph Construction

This section describes the algorithm used to construct the navigation graph on which

the belief space planner operates.

4.3.1 Determining Graph Vertices

The space of environment is first partitioned via the construction of an Octree, initialized

so that the root node encompasses the entire volume in which planning is to be conducted.

Each Octree node is then recursively subdivided into eight equally sized octants provided

the node fulfils a specific splitting criteria listed in Algorithm 4.1. This produces a

partition as shown in Figure 4.1 in which Octree nodes are densely placed about object

edges, but sparse near flat surfaces. During construction it is also determined which of

the obstacles from O each Octree node intersects. This intersection information is stored

for each node for later use in determining the edges of the navigation graph.

After the construction of this partitioning Octree is complete, navigation graph nodes

are placed at the center positions of all Octree nodes (provided this center point does not

lie within one of the obstacles of O). Similar to the navigation graph construction ap-

proaches desribed in [43], [50], [63], [41], this process results in an efficient node layout for

path planning, with sparse nodes in large open areas and dense nodes close to obstacles

edges, allowing more precise navigation about said obstacles. Note that the maximum

node depth of the Octree in Algorithm 4.1 determines the density at which graph nodes

V are placed about the edges of obstacles, and important shortcuts past certain obstacles

(such as narrow passageways) may not be represented in the final navigation graph if

this maximum node depth is too low.

Additional graph nodes are then placed at the start and goal positions of the specific

4.3 Graph Construction 107

path planning problem that needs to be solved.

N = N ∪ {nstart,ngoal} (4.2)

if node depth < max node depth then
for each oi ∈ O do

if node intersects an edge of oi then
Return True

end if
end for

end if
Return False

Algorithm 4.1: Splitting Criteria for an Octree node

4.3.2 Determining Graph Edges

It is assumed that if any two graph nodes nA,nB ∈ N are within direct line of sight,

then a direct collision free trajectory between them exists along the line connecting

them. This can be represented in the graph by the addition of an edge (nA,nB) ∈ E,

however simply connecting every possible pair of graph nodes in this way would lead to

a vast amount of edges, many of which provide no great benefit to navigation but would

substantially increase the computational cost of the planning process. Due to this edges

are only added between pairs of graph nodes nA,nB ∈ N , if they are both within line of

sight of one another, and their associated Octree nodes are adjacent. This results in a

graph of the form as shown in Figure 4.2.

Determining if two positions nA,nB are within line of sight involves checking that the

line segment connecting the two does not intersect any obstacle in O. A naive approach

to performing this check would simply involve checking for intersection between this

line and each obstacle of O sequentially until an intersection is detected or all obstacles

been checked. However this method results in the number of intersection checks required

being proportional to the number of obstacles present, potentially becoming a limiting

factor in computation time if a large number of obstacles are present.

As mentioned previously each Octree node stores which obstacles of O intersect with

its associate cubic volume. It is a simple task to determine the set of leaf Octree nodes

4.3 Graph Construction 108

Figure 4.1: Deepest nodes in a partitioning Octree showing how the splitting
method biases the node density about obstacle edges.

Figure 4.2: Example of a graph constructed by the process described in Section
4.3. The partitioning Octree constructed with a low max node depth for clarity.

4.3 Graph Construction 109

that a line segment intersects. Naturally such a line segment can only possibly intersect

those obstacles of O which also intersect with atleast one of said Octree nodes. This

allows us to quickly determine a subset of obstacles which a line segment may potentially

collide with and avoid the need to check for intersection with every obstacles in O, saving

significant computational work.

4.3.3 Intersection Checks

When constructing the partitioning Octree as described in Section 4.3.1 it is necessary

to check for intersection between the convex cuboid nodes of the Octree and the convex

obstacles of O. The method used to conduct intersection checks between convex bodies

makes use of the separating axis theorem [33], which simply states that if a plane can be

placed between two convex objects such that each is fully contained on a different side of

that plane then the objects are not intersecting. A unit vector n̂ for which there exists

some separating plane of normal n̂, is called a separating axis. The process used here to

determine if two convex obstacles are intersecting involves checking a specific set of unit

vectors (dependent on the geometry of the obstacles) to see if atleast one is a separating

axis.

In order to determine if a specific unit vector n̂ is a separating axis for two convex objects

A and B, the projection of each of the convex objects onto the axis n̂ is calculated.

This forms two projection intervals, one for each object denoted IA = [A0, A1] and

IB = [B0, B1]. If these two intervals do not overlap then it can be seen that n̂ is a

separating axis for the objects, and hence they do not intersect. The analogous 2D

equivalent of this concept is Illustrated in Figure 4.3. The case in which the intervals

[A0, A1] and [B0, B1] do not intersect, indicating direction n̂ is a separating axis for

objects A and B is shown in Figure 4.3a, and conversely Figure 4.3b shows the case

where n̂ is found not to be a separating axis.

The interval formed from projecting a convex polygon mesh oi ∈ O onto a direction n̂ is

determined by calculating the dot product of n̂ with each of the mesh’s vertices v ∈ Vi.
This then forms the set D = {v • n̂ | v ∈ Vi} and the interval formed by the projection

is simply [min(D),max(D)]. If the convex mesh consists of a single edge (the object is

a line segment) between two points p1 and p2 then D = {n̂ • p1, n̂ • p2}.

In order to fully determine if two convex meshes intersect, a number of directions must

be checked to see if any would provide a valid separating axis. Let oi and oj be two

convex polygon meshes in the same formats as the obstacles of O. The set of unit vector

4.3 Graph Construction 110

(a) (b)

Figure 4.3: Separating axis example cases

directions D̂ that need to be checked are thus given in Equation 4.3.

D̂ = {F̂i ∪ F̂j ∪ {â× b̂ | â ∈ Êi, b̂ ∈ Êj}} (4.3)

D̂ is comprised of the face normals for both meshes, along with all possible directions

formed by the cross product between elements of Êi and Êj the edge unit vector directions

of the meshes. Without checking directions formed by such cross products, separating

axes such as those shown in Figure 4.4 would not be accounted for. Each unit vector of

D̂ can be checked in turn to see if provides a separating axis. As soon as any separating

axis is found, the meshes have been determined to not be intersecting, and thus it is not

necessary to check any other directions.

Note if a specific direction n̂ has been checked to determine whether or not it is a sepa-

rating axis, it is unnecessary to check any other direction parallel to n̂. For meshes such

as those of the cuboid Octree nodes there will be faces whose normal direction is parallel

to that of another face and edges parallel to others edges. It is important therefore to

keep track of what directions have already been checked in order to avoid unnecessarily

checking a direction parallel to one previous, potentially wasting computation time.

4.4 Belief Space Planner 111

Figure 4.4: Example of a separating axis formed from the cross product of
edges ea and eb

4.4 Belief Space Planner

Trajectories that feature high levels of uncertainty in the vehicle’s estimated state are

generally undesirable as the vehicle may stray off the desired trajectory, potentially

colliding with some obstacle. However trajectories that minimize the uncertainty related

to the vehicle’s estimated state may also be undesirably lengthy in comparison. The belief

space planning problem thus involves finding a trajectory between an initial position

nstart and destination ngoal which provides some desired trade-off between minimizing

distance travelled and maintaining low state uncertainty. The belief space planning

method described in this section searches for paths through the previously constructed

navigation graph which provide such a desired trade-off.

4.4.1 Algorithm

The planner searches for paths through the visibility graph constructed in Section 4.3,

using a set of path nodes P (as described in section 4.2) to store the different paths

generated thus far. This set of path nodes P is initialized by setting P = {Pstart}. The

initial path node Pstart is located at the starting node of the navigation graph nstart, and

has a set of particles xstart approximating the initial belief of the vehicle’s state. Being

the path node from which all others will originate from, the parent of this initial path

node is set to Qstart = Pstart.

The planner works in an iterative manner, using path nodes from a subset of nodes to

4.4 Belief Space Planner 112

update U ⊆ P to generate new path nodes. Such generation of a new path node Pnew

involves taking an existing path node Pi ∈ U , and extending its existing path along some

edge e ∈ E which is connected to ni, that is e = (nnew ∈ N,ni ∈ N) or e = (ni,nnew).

This new path node will then have nnew as its associated navigation graph node, and

Qnew = Pi as its parent path node. In order to determine the set of particles for this new

node Pnew (representing its estimation of the vehicle’s state upon reaching the graph node

nnew), a numerical particle filter localization simulation is conducted. This examines the

sensor measurements the vehicle would observe while travelling from ni to nnew along the

edge e, and uses the set of particles of the parent path node xi as the initial estimation

of the vehicle’s state. The simulation in question follows the standard steps involved in

particle filter localization. Each iteration of the simulation process noise is applied to

the set of particles (in accordance with the latest control inputs for the vehicle to follow

the desired path), measurements to the beacons of B are then determined, and particle

re-sampling is conducted based on how each particle’s expected sensor measurements

deviate from those that would actually be obtained. The resulting set of particles from

this simulation upon reaching nnew is then used for xnew the new path node estimation

of the vehicle’s state. This new node Pnew is then assigned a weighting score wnew based

on the total path length of its complete path, and a measure of uncertainty related to

xnew. Each of these two factors can be weighted differently depending on the desired

type of path.

A full outline of the planning algorithm is listed in Algorithm 4.2. The algorithm at-

tempts to creates new paths through the graph by taking a path node Pi ∈ U , and

then attempting to extend Pi’s complete path from ni to an additional navigation graph

vertex nnew which is connected to ni by some edge (nnew,ni) ∈ E or (ni,nnew) ∈ E. If

this new path node is deemed to provide an acceptable trade-off between path length

and vehicle state uncertainty, and is not inferior in both respects to some other existing

path node, it is added to the set of path nodes P , and the set of path nodes used for

further path generation U . This process of attempting to generate a new path node from

ni ∈ U is attempted for each navigation graph node connected to ni by some edge e,

after which Pi is removed from U as all possible extensions of its associated path have

been attempted. Once U no longer contains any path nodes there are no more potential

paths to investigate and the algorithm terminates.

The outline Algorithm 4.2 involves a number of functions described in the following.

4.4 Belief Space Planner 113

while
do
Pi =minimum scoring element of U

for each nnew ∈ N | (ni,nnew) ∈ E ∨ (nnew,ni) ∈ E do
Pnew = Propagate(Pi,nnew)
wnew = Assignweighting(Pnew)
if !(∃Pj ∈ P | (wj < wnew ∧ nj = nnew)) then

P = P ∪ Pnew

Insert(Pnew)
end if

end for
U = U \ Pi

end while

Algorithm 4.2: Planning method

4.4.1.1 Propagate(Pi,nj)

The Propagate(Pi,n) function takes a path node Pi ∈ P and a graph vertex nj ∈ N

and returns a new path node Pnew such that nnew = nj. The function carries out a

numerical simulation of the vehicle travelling along a straight path between ni and nj

using a particle filter for localisation, taking xi as the initial set of particles. At each

iteration in this simulation, the subset of beacons in B that are both within line of sight

of the MAV, and which can be brought within the MAV’s limited field of view sensor are

determined. These beacons are then examined to evaluate which would provide a bearing

measurement resulting in the greatest decrease in state uncertainty. This is dependent

both on the beacon’s location, distance from the vehicle, and also the distribution of

the current set of particles. The MAV is then made to face this beacon of greatest

uncertainty reductions. The set of particles resulting from this simulation represent the

belief of the vehicle’s state after following the complete path of q, and are thus used for

the new nodes belief xnew.

4.4.1.2 Assignweighting(Pi)

This function assigns a weighting to a path node Pi based on both its path length li, and

on evaluating the uncertainty associated of its set of particle states xi. This uncertainty

evaluation simply sums the x,y,z sample variances in the positions of the particle of xi,

the result of which we denote by ui ∈ R. The path nodes weighting is then assigned as

4.5 Results 114

wi = liα + uiσ (4.4)

where α ∈ R and σ ∈ R are constants that can be adjusted depending upon the desired

type of path. For example setting σ = 0 would assign weightings based purely on

path length, resulting in the planner attempting to produce minimum distance paths.

On the other hand, setting σ to a value much greater than α results in the planner

producing paths which attempt to maintain much lower state uncertainty by ensuring

many informative measurements are taken to the localisation beacons of B.

4.4.1.3 Insert(Pi)

The function Insert(Pi) inserts a path node Pi ∈ P into the list of path nodes to update

U . The position at which Pi is added to U is determined by its assigned weighting wi such

that U maintains a list of path nodes ordered by their weightings. By simply choosing

the last element of U for expansion low weighted path nodes are expanded first. If we

were instead not to order U , or simply select which path node to expand at random, it

would lead to an extremely large number of paths being generated, all of which, are far

inferior to the best existing paths which will at some point be identified later. This would

result in a great amount of wasted computation creating and examining path which are

extremely unlikely to provide the best desired trade-off.

4.5 Results

A number of trajectories produced by the planner in different environments are now

presented (each environment is fully enclosed, however, the roof of each is not drawn).

The uncertainty of the MAV’s estimated state is visualized by error ellipsoids formed

from the set of particle states of the path nodes as discussed in Section 4.2. In each set-

up, robust paths produced by the planner when attempting to maintain low uncertainty

(drawn in orange using weighting constants α = 0.01, σ = 1) are compared with the

paths produced when only minimizing distance (drawn in blue using weighting constants

α = 1, σ = 0). Localisation beacons are drawn as red markers and measurements taken

of them at points along a path are indicated by lines and vision cones.

4.5 Results 115

Figure 4.5: Top: a comparison of trajectories minimizing state uncertainty
(orange) and distance travelled (blue). Bottom : other views of the same uncer-
tainty minimizing trajectory.

Figure 4.6: Example comparison between robust and minimum distance paths.

4.5 Results 116

Figure 4.7: Further example comparison between robust and minimum distance
paths.

Figure 4.8: Robust and minimum distance paths generated in space with lim-
ited visibilty to beacons.

4.5 Results 117

Table 4.1: Path computation times and properties

Robust Minimum Distance

Figure Time
Path

Length
End State

Uncertainty
Time

Path
Length

End State
Uncertainty

4.5 6.14 s 687 18.8 0.93 s 321 125.4
4.6 2.88 s 656 32.2 0.45 s 325 173.9
4.7 5.41 s 707 21.3 1.13 s 356 267.4
4.8 1.18 s 418 46.7 0.22 s 271 63.8

An example of a path generated by the planning algorithm between two points in a

complex environment is shown Figure 4.5. The minimum uncertainty path is seen to

take a route which enables it to obtain numerous beacon measurements, resulting in

better localisation by the internal particle filter compared to the minimum distance

path.

Examples of the planner operating in simpler environments are shown in Figures 4.6,

4.7, 4.8.

Figures 4.6 shows a path produced by the planner which attempts to maintain good

localisation by choosing a long winding corridor with beacons rather than a direct route

through empty space. Right by comparison shows minimum distance path.

Figure 4.7 highlights how the minimum distance path may risk collisions, as its un-

certainty ellipsoid cuts deep into the wall near the destination. The robust path by

comparison takes a long indirect route to the destination, but which always keeps the

MAV in line of sight of a measurement beacon keeping its state uncertainty low.

In Figure 4.8 the environment features several localisation beacons are placed at the end

of a narrow corridor. The MAV is thus only able to observe them when it aligns itself

with the corridor, bringing them within clear line of sight of its sensor. The robust path

is seen to remain in line with the corridor as long as possible before moving towards

the destination target, thus minimizing the time in which no beacon measurements are

available for localisation.

Table 4.1 shows the computation times and properties of the robust paths and shortest

distance paths. As is to be expected the uncertainty measure of the robust path is seen

to always be significantly lower than that of the shortest distance path. This indicates

that in every scenario the MAV is more likely to successfully follow the robust path over

the shortest distance path.

4.6 Conclusions 118

4.6 Conclusions

This section presented a belief space planning algorithm targeted towards navigation for

indoor MAVs using monocular SLAM / localisation approaches. The planner generates

trajectories for a simulated vehicle which is able to take bearing measurements to fixed

beacons in the environment, used for localisation and estimation of the vehicle’s own

state. A navigation graph is constructed based on an Octree partitioning of the environ-

ment, followed by the generation of a tree of trajectories through said graph. The vehicle

is simulated traversing said trajectories while also attempting to localise from bearing

measurements to the beacons within the environment, this allows the evolution of the

uncertainty of the vehicle’s estimated state to be evaluated for each such trajectory. The

tree generation process culls trajectories that either do not provide the desired trade-off

between minimizing state uncertainty and trajectory length, or that are deemed inferior

by these measures to other existing trajectories. The planner is demonstrated in a num-

ber of scenarios, and for each results from the planner are compared with the minimum

distance trajectories through the constructed navigation graphs. As expected the plan-

ner is able to produce paths which involve greatly reduced state estimation uncertainty

compared to minimum distance paths. Such ”robust” low uncertainty paths are far safer

for the vehicle as localisation is required to ensure obstacle avoidance.

Chapter 5
Path Planning

This Chapter presents our proposed path planning approach for indoor MAV systems

utilizing the edge based SLAM presented previously in Chapter 2 to conduct navigation.

A background overview of path planning methods is given before the outline of our

keyframe centric planning approach, accounting for both collision avoidance and sensor

information constraints to produce safe trajectories for the vehicle in question.

5.1 Background

5.1.1 Overview

Path planning problems regard determining how to transition between two states or

”configurations”[65] for a given system. Depending upon the problem in question, such

configurations may represent anything from the joint angles of a robotic manipulator to

the 6DOF pose of a rigid flying vehicle. In the majority of such path planning problems

however, many such configurations will be invalid or unreachable. Take for example

a robot attempting to navigate a cluttered environment. In such a scenario the robot

cannot simply pass through obstacles, and thus configurations resulting in the robot

colliding with obstacles in the environment are deemed invalid. By then restricting

robot navigation to only valid configurations such obstacle collisions are avoided.

This subset of valid configurations for a given path planning problem is referred to as the

”configuration space” C. The solution to a path planning problem is then a continuous

path (or ”trajectory”) across C which connects two desired valid configurations, typically

referred to as ”start” cS ∈ C and ”goal” cG ∈ C. Formally such a trajectory t =

119

5.1 Background 120

{cS, c1, c2, c3, ...cG|ci ∈ C} is simply a sequence of configurations that the system (be it

a robotic manipulator, wheeled vehicle etc) passes through in order to reach the desired

goal configuration cG.

Classes of path planning problems can vary widely in terms of a number of factors

such as configuration space dimensionality, obstacle field complexity, differential con-

straints/vehicle dynamics, and the quality of trajectories required. As such a great

range of path planning algorithms and approaches have been developed, typically each

targeted towards a specific class of planning problem exhibiting certain factors. Thus

such problem factors must be carefully considered when determining what form of plan-

ning algorithm would best fit a specific planning problem. Some common concepts

regarding such algorithms are now briefly discussed.

5.1.1.1 Completeness

One of the major concepts concerning path planning algorithms is that of completeness,

which refers to a planning algorithm’s ability to guarantee that a trajectory between

cS ∈ C and cG ∈ C will be found given that one actually exists. Many algorithms are

not in fact complete, instead employing various assumptions and approximations that

in the majority of scenarios will result in a valid trajectory being found more quickly, at

the cost of sacrificing completeness.

5.1.1.2 Optimality

Another major concept is that of trajectory optimality, that is that some possible tra-

jectories are deemed preferable, or of higher quality than others, and whether or not

a specific planning algorithm is able to determine the best possible trajectory between

cS ∈ C and cG ∈ C. Commonly this notion of trajectory quality is evaluated using

a cost function Fcost to assign a cost to each potential trajectory, that is the cost of a

trajectory t is given by Fcost(t) ∈ R.

An optimal trajectory topt is one which minimizes (or maximizes depending on the cost

function definition) said cost function i.e.

topt ∈ {t : argmin
t

(Fcost(t))} (5.1)

5.1 Background 121

In many scenarios this cost function Fcost is simply the total trajectory length, with opti-

mal trajectories then simply being the shortest possible trajectory between the start and

goal configurations. However, many other problem specific variables such as fuel burn,

sensor observations and information gain can be incorporated into the cost function, in

order to tailor optimal trajectories to the specific planning problem.

5.1.1.3 Single-Query vs Multi-Query Algorithms

Path planning algorithms can for the most part be split into two categories, multi-query

and single-query planners. Multi-query planners are able to re-use previous computation

to aid in determining trajectories between a new set of start and goal configurations

cS ∈ C, cG ∈ C.

Many multi-query planning algorithms initially compute an approximate representation

of the configuration space C, which can then be used to determine trajectories between

many different start and goal configurations cS, cG. The well known visibility graph

algorithm [71] is a good example of one such planner, in that the navigation graph it

initially constructs can be used multiple times for solving different planning problems

across the same configuration space C. However multi-query planners that follow this

approach typically operate under the assumption that the configuration space C remains

fixed, which in many situations is not true (such as moving obstacles being present)

restricting such planners to only certain planning problems.

On the other hand single-query planners such as the RRT algorithm discussed in Section

5.1.5, do not leverage any previous computation instead having to solve each planning

problem separately from scratch.

5.1.1.4 Holonomic Vs Non-Holonomic Agents

Any vehicle / robot can be categorized as either being Holonomic and Non-Holonomic

depending upon what movements it may make, and what degree of direct control it has

upon its own configuration. If the number of directly controllable degrees of freedom is

equal to the total number of degrees of freedom, then the robot has complete control

over its configuration and thus is described as Holonomic. An example of this would

be a robotic manipulator arm, formed of a set of motor controlled joints, where each

joint angle can be controlled independently of the others. Conversely if not all degrees of

freedom are controllable then the robot is described as being Non-Holonomic. One Non-

Holonomic example would be a car like robot whose configuration consists three degrees

5.1 Background 122

of freedom (its 2D coordinates and yaw angle) but which only has direct control of two

degree of freedom (that being its acceleration and the angle of its front wheels).

Non-Holonomic robots require that such constraints are accounted for during path plan-

ning such that the trajectories produced may actually be followed by the robot in ques-

tion. For our purposes regarding indoor MAV planning described later in Sections 5.2

and 5.3, similar to [35] we make the assumption that the vehicle only ever experiences

small roll and pitch angles and that it has no direct control over such angles. These

assumptions reduce the vehicle’s configuration to 4D consisting of x,y,z,yaw. Each of

these degrees of freedom are directly controllable and thus the vehicle maybe described

as Holonomic under these assumptions.

5.1.2 Graph Based Planning

One of the most common path planning approaches involves generating a graph within

the configuration space C, whose nodes consist of valid configurations and whose edges

consist of direct trajectories between such nodes (i.e. trajectories that simply interpolate

from one configuration to another). Once such a graph has been constructed a graph

search algorithm such as A* [37] can be used to find the shortest path through the

graph between two connected nodes. Note algorithms employing such an approach are

considered multi-query as the constructed graph can be reused multiple times to find

different trajectories across C.

The widely used visibility graph algorithm [71],[108] is one example of such an approach,

typically requiring that the obstacles of C are in the form of a set of polygons (polyhe-

drons in a three dimensional C). This is due to the method of graph generation used,

which places nodes at obstacle vertices and connects those which are in direct line of

sight; resulting in a graph containing the shortest path in C between any two of its

nodes (hence the visibility graph algorithm is optimal). The cost of generating such a

graph however can increase exponentially with the number (and complexity) of obsta-

cles present in C, this combined with the polygonal requirements, rule out the use of

visibility graphs in many scenarios.

Grid based graph construction is a common alternative in such situations where there

exists a large number of obstacles, or where strictly optimal paths are not required. This

involves simply overlaying a uniform grid over the configuration space C, examining the

configuration lying at the center of each grid cell, and placing nodes at those which are

not lying within any obstacle. Finally edges are placed connecting nodes of adjacent

5.1 Background 123

grid cells completing the graph. This approach has the benefit of being agnostic to what

form the obstacles of C take, simply requiring the ability to check if a specific point

(configuration) is contained within an obstacles. As resolution of the uniform grid used

increases so too does the density of nodes in the constructed graph. This in turn increases

the quality of the paths through the graph itself and the existence of paths within narrow

obstacle fields. Intuitively as the size of the grid cells tends toward being infinitesimally

small path through the graph tend towards optimality and the nodes of the graph tends

towards being a direct copy of C itself. In this way such approaches are described as

resolution complete and resolution optimal, however such high grid resolution are in

practice not viable.

5.1.3 Stochastic Sampling Based Planners

Many planning algorithms scale very poorly to problems involving high dimension con-

figuration spaces, particularly those algorithms which require the construction of an

explicit (if approximate) representation of the entire configuration space C. A config-

uration space’s size explodes with increasing dimensionality and as such, so does both

the time and memory needed to compute and store such an explicit representation of C.

This is most clearly demonstrated by grid based planning methods, where the number

of grid cells needed to represent a space increases exponentially with dimensionality,

making such algorithms unsuitable for problem of dimension 4 or above.

One way to deal with the issues caused by higher dimensionality is to simply do away

with the notion of explicitly representing the configuration space C all together. This is

the approach adopted by so called stochastic sampling based planning methods as cata-

logued in [52],[32],[54],[66]. Such methods instead work by iteratively sampling random

configurations, rejecting those not within the configuration space C, and constructing

some form of navigation graph from the remaining valid samples. This graph is then

typically augmented with nodes and edges for the desired start and goal configurations

cS ∈ C and cG ∈ C.

Note however, it is not guaranteed that the constructed graph will contain a valid tra-

jectory between cS ∈ C and cG ∈ C, and thus such algorithms cannot be described

as being complete. However, the proportion of the configuration space C spanned by

the constructed graph increases with the number of randomly sampled configurations.

Intuitively this means that the probability that a trajectory is found between cS ∈ C

and cG ∈ C increases with the number of sampled configurations. Further it can be

proven that the probability of finding a trajectory (given one exists) approaches one, as

5.1 Background 124

the number of samples taken approaches infinity. Thus such sampling based planning

algorithms are often described as being ”probabilistically complete”.

A number of such stochastic sampling based algorithms are now briefly described in the

following sub sections.

5.1.4 Probabilistic Road-Maps (PRM)

Probabilistic road maps or PRMs [54], [92] are one form of stochastic sampling based

planning, which function in a similar way to the visibility graph algorithm [71],[108].

Randomly sampled valid configurations from C are used to form the nodes of a navigation

graph. Edges are added between pairs of nodes that are both within close proximity to

one another, and which can be connected by a straight line across the configuration space

C. The resulting navigation graph is then augmented by adding nodes (and appropriate

edges) at start and goal configurations cS and cG. A standard graph search algorithm

such as A* [37] can then be used to determine trajectories between the nodes of this

navigation graph.

The proportion of the configuration space covered by the PRM’s navigation graph in-

creases with the number configurations sampled, meaning that the algorithm is prob-

abilistically complete. Additionally the quality of trajectories that can be found also

increases with the number of configurations sampled in the graph’s creation, as this

leads to an increased density of nodes in the navigation graph. In this way the PRM

algorithm is described as probabilistically optimal, that is, as the number of configu-

rations sampled approaches infinity, the paths through that graph trend towards being

optimal. The PRM is also a multi query algorithm due to the fact that the constructed

navigation graph can be reused to solve multiple different planning problems.

5.1.5 Rapidly Exploring Random Trees (RRT)

Another common stochastic sampling based planning algorithm, the RRT algorithm

[66],[67] iteratively generates a tree across the configuration space C beginning with a

root node located at cS. Each such tree node holds a specific configuration from C,

and has a single parent tree node representing the previous configuration from which

that node originated. Additionally, every tree node may have multiple child nodes, each

representing a potential configuration that may be reached from the current node in

question. Due to the fact that every tree node can be traced back to the root node (cS)

5.1 Background 125

Figure 5.1: RRT using a quad-tree structure to spatially partition the tree to
allow for fast nearest neighbour searches.

via the parent nodes, each tree node itself can be considered as representing a trajectory

between its own configuration and cS.

The tree expansion across C operates in an iterative manner, randomly sampling an ex-

pansion target configuration x ∈ C, finding the tree node n ∈ C closest to this sampled

configuration x, and then generating a new tree node by ”steering” the configuration of

n towards x in an attempt to expand the tree towards x. This new node generation is

performed using a so called ”steering function” which attempts to guide one configura-

tion towards another in compliance with the dynamics of the system/vehicle for which

planning is being conducted. This allows RRT to be applied to a wide range of problems

with various differential constraints [67], [53], [64], [30], however in the simplest case the

steering function simply directly interpolates between two configuration vectors.

In scenarios where the constructed tree has grown to thousands of nodes, the process

of merely determining the closest node to the expansion target becomes the dominant

limiting factor in terms of performance. Thus a common RRT optimization is the use of

spacial partitioning methods to achieve fast nearest neighbour searches. An example of

a 2D RRT tree using a quadtree structure to achieve such fast NN searches is illustrated

in Figure 5.1.

RRT demonstrates probabilistic completeness and scales well with higher dimensional

planning problems. However, unlike the PRM it does not demonstrate probabilistic op-

5.1 Background 126

timality. Thus despite being an excellent choice for high dimensional planning problems,

RRT produced trajectories often require post processing in order to improve their quality

to an acceptable level. The standard RRT algorithm is also single query due to the fact

the tree is rooted at the starting configuration cS, and as such if the desired starting

configuration cS is changed the tree must be either altered to connect to this updated

cS or recreated from scratch.

5.1.6 Rapidly Exploring Random Tree Star (RRT*)

The RRT* algorithm [51] is one of the most widely used variations on the standard RRT

algorithm largely due to it having the property of probabilistic optimality, resulting in it

producing far superior trajectories to standard RRT. The tree expansion process is very

similar to RRT, but an additional rewiring step takes place with the addition of each

new node. This consists of examining all nodes in close proximity to the new node, and

determining for each if the new node should replace their current parent node, due to

the resulting trajectory being superior than their current trajectory. It is this rewiring

step which guarantees probabilistic optimality, however, it does come at the price of a

significant computational cost compared to standard RRT, largely due to the additional

nearest neighbour searches being required. Figure 5.2 shows an example of the output

from RRT* on a 2D path planning problem, demonstrating a path that is almost identical

to the optimal in terms of minimum length. The same figure also clearly illustrates the

differences between the tree structures produced by RRT* and standard RRT.

5.1.7 Informed RRT*

An additional improvement to RRT* for finding shortest length trajectories, informed

RRT* as introduced by Gammell et al [31] uses the current best trajectory to restrict

tree expansion to a subset of C. Specifically tree expansion is restricted to within a

bounding ellipsoid in C, whose focal points located at cS and cG, and whose major axis

length is equal to the total length of the current best trajectory. It can be proven that

any trajectory of shorter path length that may exist must be fully contained within this

volume, and hence it is a waste of computation to conduct tree expansion outside of it.

This restriction greatly improves the rate of convergence towards the optimal path (in

terms of total path length). Figure 5.3 shows an example of this optimization in action

on a 2D problem, note how a large amount of the configuration space which cannot

possibly contain a better path remains unexplored.

5.1 Background 127

Figure 5.2: Examples of both RRT (top) and RRT* (bottom) solving the same
path planning problem, with both trees expanded to around 10000 branches. It
is clear that RRT* produces a superior path in terms of total length.

5.2 SLAM Aware Path Planning 128

Figure 5.3: An example of informed RRT*, tree expansion has been restricted
to within the ellipsoid defined by the length of the current best path and start
and goal locations in the configuration space.

5.2 SLAM Aware Path Planning

This section provides and overview of the concepts and issues involved with SLAM based

path planning. We then formally present our proposed approach in the follow Section

5.3.

5.2.1 Problem Overview

Our particular interest is in autonomous indoor navigation for Micro Air Vehicles (MAVs)

using SLAM. We do make the assumption that the environment itself is static, however

there is no guarantee that a complete map of the environment is available. Instead path

planning must be conducted using the latest (typically incomplete) map constructed

by the SLAM system. This SLAM map may expand as new areas are observed, or

undergo significant global alterations due to the detection of new loop closures and map

optimization as discussed in Section 2.8. Many of the planning methods described in

Section 5.1 rely on the assumption that a complete and globally accurate map of the

environment is always available, an assumption that no longer holds in SLAM based

navigation scenarios.

Naturally great care must be taken to avoid collision with obstacles present in the en-

5.2 SLAM Aware Path Planning 129

vironment. However, with no complete map of the environment itself there will exist

regions of unknown space in which obstacles may or may not be present. Thus in order

to ensure obstacle avoidance these potentially dangerous regions of unknown space must

also be avoided during path planning in addition to known obstacles.

Additionally it is necessary to ensure that the SLAM system is able to maintain locali-

sation throughout the course of navigation. This requires that sufficient information is

observed by the vehicle’s on-board sensors to maintain SLAM tracking at all times.

Thus at any one point in time, the SLAM system’s current map along with a combination

of constraints for obstacle avoidance and sensor information must be used to determine

a configuration space C for the vehicle, in which safe path planning may be conducted.

Note the SLAM map itself may be globally inaccurate and regularly undergo changes

due to new loop closure detections, which then directly affect the configuration space C.

Despite this, SLAM maps are typically accurate at a local level. That is to say that any

small sub-map consisting of a subset of key-frames between which loop closures exist is

likely to be accurate and consistent, even if its global location within the greater SLAM

map is not, a fact that will be exploited in the proposed path planning approach. These

concepts are now further expanded upon.

5.2.2 Empty, Occupied and Unknown Space

In any situation in which we do not have a complete map of the surrounding environment

(or no map at all), we must consider the environment as being divided into known and

unknown regions of space. Let E ∈ R3 denote the set of all points within the environment

in question. Similarly let U ⊂ E denote the set of all points inside currently unknown

space, and K ⊂ E all points within known space. There is no overlap between known and

unknown space (U∩K = ∅) and their union consists of all points within the environment

itself (E = K ∪ U).

Known space is that for which sufficient information via sensor observations has been

obtained in order to accurately determine its contents. A specific point located within

known space may either be occupied by some obstacle (such a wall, floor or other physical

object), or be empty space which may be utilized for navigation. We refer to the set of all

known space points occupied by physical obstacles as simply ”occupied space” denoted

by Koccupied ⊂ K, and similarly the set of all known empty space points as ”empty space”

denoted Kempty ⊂ K, with K = Kempty ∪Koccupied.

On the other hand unknown space is that whose contents are currently unknown. As such

5.2 SLAM Aware Path Planning 130

each point x ∈ U could be revealed to be either within occupied space (x ∈ Koccupied)

or empty space (x ∈ Kempty) upon acquiring additional sensor information. Naturally in

order to conduct safe navigation it cannot be assumed that any region of unknown space

R ⊂ U is in fact a region of empty space, as there may exist within it some currently

unobserved obstacle with which the vehicle may collide. Thus path planning must be

restricted to within known empty space Kempty.

In practice it is neither practical nor necessary to determine an exact partitioning of the

environment into empty, occupied and unknown space. As discussed in Section 2.2.1

the level of detail required of the configuration space used for path planning is relative

to the size of the vehicle itself. Thus rather than determining and storing the exact

nature of each point x ∈ E in the environment, the environment is partitioned into a

number of discrete volumes of space, each taken to represent a region of empty(Kempty),

occupied(Koccupied) or unknown(U) space depending upon the belief of its content. Specif-

ically a region must be considered occupied space if any obstacle is detected within it,

on the other hand a region should only be considered as empty space if there is high

certainty that it contains no such obstacles i.e. the entire region has been observed to

consist of empty space. Such a conservative approach is required to safe navigation,

This partitioning based approach was first introduced with the use of Occupancy Grids to

2D mapping and navigation problems [22],[21],[103] partitioning the environment using a

uniform 2D grid, with each cell holding a belief of its content (either empty, occupied or

unknown space). Initially all cells begin representing unknown space, and as additional

sensor measurements are obtained the beliefs of the observed cells are updated to reflect

the new information.

This concept was extended to 3D mapping and navigation problems with the use of

voxel grids [77],[84], partitioning the environment into a grid of uniform cubic volumes

(”voxels”) as illustrated in 5.7. We adopt such a voxel based approach, with each voxel’s

content (either empty, occupied or unknown space) determined by the SLAM system’s

map, sensor measurements and possibly other external information. An example of such

a voxel based representation constructed from a map created by our edge based SLAM

system from Section 2.3 is shown in Figure 5.4.

Decreasing the size of the voxels results in a more detailed approximation of the en-

vironment in question, but also results in a dramatic increase in the number of voxels

required. Additionally the number of voxels needed to approximate said environment is

simply proportional to the total volume of the environment itself. It is clear that such a

uniform voxel approximation poorly represents large uniform volumes of empty, occupied

5.2 SLAM Aware Path Planning 131

Figure 5.4: A example of a uniform voxel map created for path planning pur-
poses. Top shows the SLAM map from which the voxel map is generated. Middle
shows both free and occupied space in Blue and green respectively. Bottom shows
only occupied space with height indicated by color ranging from red (lowest) to
green (highest).

5.2 SLAM Aware Path Planning 132

or unknown space in terms of memory consumption. For example, a large cubic region

of empty space R ⊂ Kempty would need to be represented using a large number of small

volume voxels. This leads to many situations in which approximating an environment

to the desired level of detail using a uniform voxel grid involves an extremely large num-

ber of voxels, resulting in significant computation and memory resources being required.

However, for our navigational requirements a detailed representation of the environment

is not necessary as geometric features smaller than the vehicle itself will not have an

effect on the path planning decision making process, and thus these issue do not pose a

problem.

If a finely detailed representation of Kempty, Koccupied and U was required, then Octree

based mapping approaches such as those demonstrated by [114] and [23] provides a viable

alternative, addressing many of the issues inherent in a purely voxel grid based approach

by providing a far more efficient partitioning.

5.2.3 Ensuring Sufficient Sensor Information for Localization

The path planning approaches discussed previously such as those of Sections 5.1.4, 5.1.5

and 5.1.6, have worked under the assumption that the agent conducting path planning (a

MAV vehicle in our scenario) is always able to accurately measure its own configuration

at all times (be that a 6DOF pose, joint angles or any other combination of variables).

Since the agent can measure its own state it is able to follow any valid collision free

trajectory.

However this assumption frequently does not apply in real world scenarios, such as

those in which a vehicle must rely upon measurements from its on-board sensors to

estimate its own configuration (i.e. localisation). In such a scenario there may exist

many collision free trajectories through the environment along which the vehicle is likely

to lose localisation due to poor sensor information. Once localisation is lost there is no

guarantee the vehicle will be able to accurately follow a desired trajectory, and may stray

off course colliding with some obstacle in the environment.

In the context of a vehicle relying upon a SLAM system for localisation, there may exist

many locations within the environment at which the vehicle’s sensors will not observe

sufficient information for the SLAM system to maintain localisation. This may lead to

the SLAM system only producing a partial estimation of the vehicle’s configuration, or

even non at all.

The configurations (i.e. vehicle poses) within the environment that will result in such

5.2 SLAM Aware Path Planning 133

localisation failure depend on multiple factors such as the environment itself, the nature

of the vehicle’s on-board sensors, and what types of features extracted from the sensor

data are used by the SLAM system. For example in the case of a vehicle using a

monocular vision based SLAM system, sufficient visual information must be observed by

the camera to maintain SLAM tracking and localisation. Thus a configuration resulting

in the vehicle’s camera observing nothing but a blank featureless surface is one example of

a configuration that would result in SLAM localisation and tracking being lost completely

due to the camera sensor providing no useful information.

Thus for a vehicle conducting autonomous SLAM based navigation, not only must path

planning be restricted to known empty space Kempty, but it must also be ensured that the

vehicle’s sensors observe sufficient information for SLAM localisation to be maintained

at all times. Let us use Kinfo to denote the set of all known space configurations at which

the vehicle’s sensors will observe sufficient information to maintain SLAM tracking based

on the current map of the SLAM system. Kinfo can be viewed as an additional constraint

on the vehicle’s navigation to ensure SLAM localisation is maintained, much in the same

way as how Kempty defines a constraint to ensure obstacle avoidance. The configuration

space in which to conduct safe navigation ensuring both collision avoidance and SLAM

localisation is thus given by.

C = Kempty ∩Kinfo (5.2)

Naturally when determining Kempty the difference between the vehicle’s frame of refer-

ence, and the frame of reference of each of its sensor must be accounted for. Typically

these sensors are rigidly attached to the vehicle such that there is simply a fixed transfor-

mation between vehicle and sensor reference frames. In our application the MAV vehicle

carries a single RGB-D sensor, whose reference frame is at a fixed transformation s from

that of the vehicle. The sensor’s pose in a given reference frame can thus be determined

at any point by simple transforming the vehicle’s pose (in the same reference frame) by

s. The vehicle’s 6DOF pose is simply derived from its configuration (x,y,z,yaw), roll and

pitch angles which control the vehicles translational velocities are taken to be 0 under

the assumption that they are always of small magnitude.

5.2 SLAM Aware Path Planning 134

5.2.4 Configuration Space Generation using SLAM Map Data

Without a complete prior map of the environment, the configuration space used for path

planning must be generated from the map constructed by the SLAM itself. This requires

that the configuration space be regularly updated as new information is incorporated into

the SLAM map, resulting in the configuration space being expanded during the course of

navigation. Additionally the SLAM map may also undergo large scale structural changes

due to loop closures being detected between globally distant regions, which would then

require the configuration space to be updated in order to reflect such changes and avoid

becoming invalid.

In this way the configuration space may need to be regularly updated and revised during

navigation to reflect any changes to the SLAM system map. However it is important

to note again that any small sub-map, consisting of a subset of key-frames between

which loop closures exist is likely to be accurate and consistent, and thus unlikely to

be affected by such map changes. Thus while changes to the SLAM map may alter

the configuration space associated with the entire global SLAM map, the configuration

spaces associated with various sub-maps may not be affected. This fact can be exploited

by thus avoiding the use of a single global configuration space, and instead utilizing

multiple small configuration spaces resistant to such SLAM map alterations. We refer to

a region of the map as being locally unchanged if it experiences either no change, or that

the entire map region has simply undergone a rigid transformation, that is the global

location of the region has changed, but the content and structure of the region has not

itself been altered as illustrated in Figure 5.5.

Intuitively it is wasteful to recreate the configuration space for such locally unchanged

regions, and instead it would be far more efficient to only recalculate the configuration

space associated with regions of the SLAM map that actually have undergone local

change. This however requires the ability to selectively update only certain parts of the

configuration space in question. To achieve this we take a partitioning based approach,

using many small configuration spaces denoted C0, C1, C2..., each for a different region

of the SLAM map. Thus when a change occurs to the SLAM map only those Ci locally

affected by the change need be regenerated.

Our proposed SLAM system employs a keyframe based approach as described in Section

2.1.2, where each keyframe Ki holds a small subset of the whole SLAM map along

with an estimated global pose Pi of where it is located. These keyframes themselves

present a natural way to conduct the partitioning of the global configuration space into

5.2 SLAM Aware Path Planning 135

Figure 5.5: 2D Illustration of map changes due to loop closure. Areas high-
lighted in green largely remaining unaffected while red areas have undergone
significant change.

multiple smaller sub spaces C0, C1, C2.... We make use of a set of keyframe configuration

spaces C0, C1, C2..., with each keyframe configuration space Ci associated with a specific

keyframe Ki, and located at that keyframes estimated pose Pi. As the SLAM map

data of each keyframe Ki is static, each keyframe configuration space Ci need only be

computed once (at the keyframe’s creation).

In order to conduct full navigation however path planning cannot be restricted to a sin-

gle keyframe configuration space Ci. Instead we must be able to determine trajectories

passing through multiple such keyframe configuration spaces, which requires determining

connections between said configuration spaces dictating where planning can transition

from one such Ci to another Cj. Intuitively safe transition between two different config-

uration space Ci and Cj may occur wherever there is overlap between them. However

determining such overlap requires an estimate of the relative pose between the locations

of Ci and Cj. This relative pose could be determined from the estimated global keyframe

poses Pi, Pj however these are highly prone to error and drift, which could lead to invalid

connections between configuration spaces. Alternatively loop closures between pairs of

keyframes give an estimate of their relative pose that is generally far more reliable being

based upon matching the common features within each keyframes sensor data. Thus

loop closures are far more preferable as a means to determining keyframe configuration

space connections, however they do have the downside that such loop closures must be

detected before connections can be made.

This scheme of having many configuration spaces C0, C1, C2... (one for each keyframe)

5.2 SLAM Aware Path Planning 136

Figure 5.6: Multiple small scale navigation graphs (as indicated by color) gen-
erated from keyframe RGB-D data connected together with edges determined by
keyframe loop closure detections illustrated by the dashed edges.

and with connections determined by detected SLAM loop closures, is illustrated in Figure

5.6. The overall resulting configuration space can be viewed as topological in nature,

due to the fact the connections determining where it is possible to transition between

two configuration spaces Ci and Cj are not determined by where they are currently

estimated to be located (and instead by the relative pose estimates produced by loop

closures).

In addition to providing a simple way to avoid having to recompute the entire configura-

tion space whenever the SLAM system map changes, this approach is far more robust to

inconsistency in the SLAM map caused by accumulating errors and drift. Path planning

for conducting safe navigation can typically still be performed even if the SLAM map

itself has become extremely inconsistent since the connection between the configurations

space C0, C1, C2... are determined by loop closures alone. Another advantage is that an

existing trajectory across some set of keyframe configurations spaces {Ci, Cj, Ck, ...} will

not be invalidated by changes to the SLAM map (in the form of changes to any of the

associated keyframe poses {Pi,Pj,Pk, ...}). Instead such trajectories remain inherently

unchanged. These concepts are formalised in the following sections.

5.3 Keyframe Centric Path Planning 137

5.3 Keyframe Centric Path Planning

5.3.1 Overview

This section now formalizes the construction process of the keyframe navigation graphs

used for path planning, adhering to the required collision avoidance and sensor informa-

tion / SLAM localization constraints discussed previously.

Let us denote the set of m keyframes making up the current SLAM system map by

K = {K0, K1, ..., Km}. Each keyframe Ki ∈ K then has an associated navigation graph

Gi = (Ni, Ei), consisting of a set of nodes Ni representing possible vehicle poses (each

relative to the pose of Ki itself), and a set of edges Ei, each of which represents a

safe (collision free and sufficient sensor information) trajectory between a pair of poses

from Ni. In practice these vehicle poses are taken to have roll and pitch angles of zero,

thus ensuring that each represents a valid configuration which the vehicle may take,

working under the assumption that the vehicle is 4D Holonomic with respect to x,y,z

and yaw. From here on will continue to refer to such n ∈ Ni as vehicle poses rather than

configurations.

Each pose n ∈ Ni is collision free such that the vehicle may be located at such a pose

n without being in collision with any obstacle in the environment or intersecting any

region of unknown space. Additionally each n ∈ Ni ensure that the vehicle’s on-board

sensors would observe sufficient features from the keyframe Ki in order to maintain

SLAM localisation. Thus it is safe for the vehicle to assume any of the poses n ∈ Ni

from such a navigation graph Gi, since they are both obstacle free and ensure SLAM

localisation.

Each of the navigation graph edges e = (na,nb) ∈ Ei, represents safe trajectories for

the vehicle, interpolating between two different poses na,nb ∈ Ni. Each such trajectory

has been determined to be both collision free, and ensures that SLAM localisation is

maintained using features from the keyframe Ki. These keyframe navigation graphs

provide a way for the vehicle to travel between a small network of poses, while ensuring

that both the obstacle avoidance and sensor information constraints discussed in the

previous section are met. Further since each edge e = (na,nb) ∈ Ei can be navigated

using observations to the common set of features (the edge clouds Di and Ii), and the

relative poses between the nodes of na and na is fixed (as is the known collision free

space between said nodes), the safety of the edge’s trajectory is not affected by global

map errors, loop closures or long term drift within the SLAM map. Structural changes

in the map can change only the relative location of other keyframes relative to Ki.

5.3 Keyframe Centric Path Planning 138

In order to conduct navigation on a larger scale, an additional set of connecting edge

C is determined, connecting together pairs of nodes from different keyframe navigation

graphs, with each edge of the form e = (na ∈ Ni,nb ∈ Nj)|i 6= j. Similar to the

edges of the keyframe navigation graphs, each of these connecting edges also represent

safe interpolating trajectories between two different poses. However such edges are only

generated between pairs of keyframes between which a loop closure has occurred. The

local loop closure constraint between a pair of key-frames is unlikely to be affected by

global structural changes to the SLAM map, and thus these connecting trajectories

display a similar invariance to global structural map changes as the former keyframe

navigation graph edges.

These connecting edges can then be used in forming a graph Gmap, combining the nodes

and edges of each of the keyframe navigation graphs.

Gmap = ({N0 ∪N1 ∪ ..., Nm}, {C ∪ E0 ∪ E1 ∪ ..., Em}).

Standard graph based path planning methods can then be used to determine routes

through Gmap allowing the vehicle to navigate across the map through multiple keyframe

navigation graphs. If the edges of C are such that the graph Gmap is connected, then

path planning can be conducted across the entire SLAM map.

The process of constructing a keyframe navigation graph Gi is now described in the

following section.

5.3.2 Keyframe Navigation Graph Construction

Each keyframe Ki stores a single frame of RGB-D data Fi, along with the associated

depth and RGB edge point clouds Di and Ii, as discussed in Section 2.3.3. The construc-

tion of a keyframe navigation graph Gi consists of a number of steps, using these edge

point clouds and RGB-D frame data to determine a set of safe poses and trajectories,

forming the nodes and edges of the graph.

5.3.2.1 Keyframe Voxel Maps

To construct the navigation graphGi associated with the keyframeKi, it is first necessary

to construct a representation of the known empty space associated with Ki. This known

empty space is determined from both the RGB-D data of the keyframe itself (Fi) and any

subsequent frames of RGB-D data acquired by the sensor whenever the SLAM system

is using Ki as the current tracking keyframe (KT) for sensor tracking/localisation.

5.3 Keyframe Centric Path Planning 139

Specifically a uniform voxel grid is used to represent the known empty space associated

with Ki (and simultaneously the known occupied, and unknown space). Once the initial

content of this voxel grid has been determined a set of safe obstacle free poses for the

vehicle X = {x0,x1, ...} can be determined by examining the grid’s contents (note that

poses are relative to the keyframe’s pose Pi). These safe poses can then be used in

determining the location of nodes in the keyframe’s navigation graph Gi.

In summary voxel maps are generated for each keyframe and utilized in the construction

of each keyframe’s navigation graph (and the connections between these graphs as will

be described later in Section 5.3.2.7). Naturally each such map is given in the reference

frame of its associated keyframe. The generation of these voxel maps is now described

in further detail.

5.3.2.2 Voxel Map Initialization

The initial contents of a keyframe Ki’s voxel map are determined using its associated

frame of RGB-D data Fi. Initially all voxel cells are flagged as representing volumes of

unknown space. The pixels of the keyframe’s RGB-D frame Fi are then back-projected,

forming the associated dense RGB-D point cloud in which each point lies upon the

surface of some physical obstacle in the environment. Each point in this cloud implies

the existence of a ray of empty space between the location of the sensor and the point

itself. That is for each point xj from the RGB-D cloud, there must exist a finite ray of

empty space rj between said point xj and the sensor’s location, which in this initialization

case is located at the origin (since by definition the sensor acquired the keyframe Ki’s

associated RGB-D frame Fi at the keyframe’s pose Pi) Each point xj and its associated

ray of empty space rj is then used to determine the initial contents of the voxel grid as

shown in Figure 5.7.

This process first involves examining each finite ray of known empty space rj, determining

which voxels the said ray intersect, and flagging these voxels as representing known empty

space. This involes the well studies problem of voxel ray tracing and we implement a

standard method of fast voxel tracing as introduced in [2] to perform this step. The next

step then examines each point xj from the RGB-D cloud, determines the voxel the point

resides in, and flags that voxel as being known occupied space. In this way all voxels

occupied by any environmental obstacle represented in the RGB-D cloud are flagged as

known occupied space. An example of the results from this process are illustrated in

Figure 5.7.

After the contents of the voxel grid have been updated in this manner, a shrinking process

5.3 Keyframe Centric Path Planning 140

is performed on the volume of known empty space approximated by the map. This simply

involves finding those empty space voxels that are neighbours to at least one non-empty

space voxel, and changing their value from empty space to unknown space. This shrinking

process is performed recursively a number of times, determined by the dimensions of the

vehicle, with the intent that the remaining empty space voxels are those in which the

vehicle may be located anywhere within (and at any orientation), and still always be

ensured of not colliding with any obstacle. Thus the center positions of all remaining

empty space voxels are known safe positions at which the vehicle can be positioned with

any orientation, we denote the set of these positions by X = {x0,x1, ...}.

It is important to note that as was shown in [57], the accuracy of depth data from

standard RGB-D sensors greatly degrades with increasing depth value due to increasing

distortion, spacing of readable depth values, and noise. Thus the content of voxels

located at a far distance from the RGB-D sensor cannot be accurately determined. As

such we restrict the uniform voxel grid to only cover a volume of 5 meters cubed.

Figure 5.9 shows an example of a small SLAM map along with the associated voxel maps

for each keyframe, with occupied space voxels drawn in green and empty space voxels in

blue.

5.3.2.3 Voxel Map Updates

The voxel maps associated with each keyframe may also be updated using the latest frame

of RGB-D data F produced by the RGB-D sensor. Whenever a keyframe Ki is being

used by the SLAM system as the current tracking keyframe KT (as described in Section

2.7), the latest sensor RGB-D data F is used to update its voxel map. This update

process is largely identical to the voxel map initialization process described previously in

Section 5.3.2.2. First the estimated pose of the sensor is transformed into the reference

frame of the keyframe Ki (by simply determining the relative pose between the sensor

and Pi), after which the sensors RGB-D frame F is back-projected to form a point

clouds which is then used to determine voxel content in the same manner as the voxel

map initialization process. However it should be noted due to the large amount of data

continuously produced by the sensor, and the fact that much of the space involved in

these updates has already been observed prior, only a down-sampled selection of pixels

from F are infact back-projected in order to reduce computational cost (typically x10

down-sampling).

This updating procedure allows the volume of empty space associated with each keyframe’s

voxel map to be expanded with additional sensor measurements, which is instrumentive

5.3 Keyframe Centric Path Planning 141

Figure 5.7: A 2D illustration of voxel generation from point cloud data. Top
left shows rays of know free space determined from each point in the cloud as
shown in red. Top right, all voxels traversed by free space rays are flagged as
free space (green). Bottom left, each voxel containing a point from the cloud is
flagged as occupied space (red). Bottom right, a shrinking process is applied to
free space voxels to ensure obstacle avoidance during path finding.

5.3 Keyframe Centric Path Planning 142

Figure 5.8: An example of uniform voxel partitioning from a single dense RGB-
D point cloud, known empty space voxels are drawn in blue, occupied space voxels
in green. Unknown space voxels are not drawn.

5.3 Keyframe Centric Path Planning 143

Figure 5.9: Example of a SLAM map and the voxel maps associated with the
various keyframes.. Top shows all edge features drawn relative to their respective
keyframes. RGB edges are drawn in red and depth edges in green. Middle
illustrates in green the occupied space voxels from each keyframe’s voxel map.
Bottom shows both occupied voxels and free space voxels (in blue) from each
keyframe’s voxel map.

5.3 Keyframe Centric Path Planning 144

Figure 5.10: Example of a voxel grid associated with a specific keyframe being
updated over time (from top to bottom) as additional sensor data is aqquired.
The left column shows the current observed RGB-D data and edge features of
the keyframe. Middle shows the current occupied voxels in green, right shows
both the occupied voxels and those voxels determined to be free space in blue.

in allowing connecting between the keyframe navigation graphs to be formed as described

later in Section 5.3.2.7. Examples of such keyframe voxel maps being updated are il-

lustrated in Figures 5.10, again empty and occupied space are drawn in blue and green

respectively.

5.3.2.4 Trackable Poses

As described previously in Section 5.3.2.2 a set of collision free vehicle positions X =

{x0,x1, ...} associated with a keyframe Ki can be determined from its associated voxel

map. However in addition to simply avoiding obstacles, the vehicle’s RGB-D sensor must

observe sufficient features to maintain localisation. Thus for each position x ∈ X a set

of associated vehicle orientations need to be determined which ensure that localisation

can be maintained from the features of the keyframe Ki (i.e. the edge clouds Di and Ii).

These vehicle orientations and their associated vehicle positions then describe a set of

vehicle poses which ensure SLAM tracking is maintain from Ki.

Determining such orientations first requires being able to determine what subset of fea-

tures from a keyframe Ki would be observable from a specific sensor pose p (relative to

5.3 Keyframe Centric Path Planning 145

the pose Pi), and also determining if such a subset of features is sufficient to maintain

localisation.

As stated, the first step requires determining what subset of keyframe Ki’s features are

reliably observable from a pose p. In our proposed SLAM system, a keyframe Ki’s stored

features are in the form of an RGB edge point cloud Ii, and a depth edge point cloud

Di as discussed in Section 2.3.3.

Let f ∈ {Ii ∪Di} denote some point from either one of these edge point clouds. For it

to be possible to observe the point f from a candidate sensor pose p (and hence use it in

localisation), it must both lie within the sensor’s field of view, and be within a reasonable

distance from the sensor in order to ensure an accurate depth measurement.

Thus two checks must be performed. The first examines the expected depth value δ

associated with the point f , when observed by the sensor at pose p. Let the position and

forward facing direction of the sensor at pose p be denoted by the vector xp, and unit

vector n̂f respectively. The expected observed depth value associated with f is given

by

δ = (f − xp) · n̂f

For the point to be observable, δ must be greater than the sensors minimum readable

depth (around 0.8m for structured light RGB-D). Additionally since structured light

sensor depth estimation greatly degrades with increasing distance, we also require that

δ be smaller than a threshold depth δmax = 4m, for an observation of f to be considered

sufficiently accurate for tracking, i.e. that 0.8 < (x− xp) · n̂f < δmax.

If the point f passes this first depth check, a second is performed to determine if the

point lies within the sensor’s field of view. This involves checking if the point is inside

the RGB-D sensor’s view frustum. This consists of a pyramidal volume bounded by

four planes whose geometry is dependent upon the sensor’s horizontal and vertical field

of view (in addition to the sensor’s own pose p). These planes are defined such that

their normals point inwards, into the frustum volume itself. Using the standard point-

normal form to define a plane in R3, let the four bounding planes of the frustum be

defined (relative to the keyframe’s pose Pi) by the point and unit normal pairs (xj, n̂j),

j ∈ [0, ..3]. Determining if f lies within the frustum volume then involves checking that

x is on the ”inner” side of each of the four frustum planes, i.e. that

∀j ∈ [0, ..3] : (f − xj) · n̂j > 0

If f passes both these checks it is assumed to be observable. Thus by performing the

same observability check on each of the points in the clouds Ii and Di, the subsets of

5.3 Keyframe Centric Path Planning 146

Figure 5.11: Examples of sensor frustum culling of edge cloud points.

5.3 Keyframe Centric Path Planning 147

edge points observable from sensor pose p can be calculated. Let us denote these subsets

of edge points Ipi and Dp
i respectively.

Having established sets of observable edge points Ipi and Dp
i , it is finally necessary to test

if they provide sufficient information to maintain SLAM localization. This test involves

evaluating if reliable registration can be achieved between the original keyframe edge

clouds Ii and Di, and the observable edge clouds Ipi and Dp
i given a set various initial

transformations T . The ICP registration process described in Section 2.6 is used to

perform these registration tests. Given that Ipi and Dp
i were transformed by a transfor-

mation t ∈ T , correct registration should always result in an estimated transformation

close to the inverse t−1 such that t−1t is the identity pose.

Let the set of initial transforms T which are tested consist of a set of uniformly spaced

transformation (both in terms of translation and orientation) about the identity pose.

Each transformation t ∈ T has a translational magnitude smaller than ε = 0.5m and

rotational component with angle magnitude smaller than θ = 0.3 radians when expressed

in axis angle form. Transformations of greater magnitude are unlikely to be encountered

due to the limited rate of movement the sensor typically experiences and thus do not

need to be evaluated.

The set of transformations T is then used as a set of initial ICP transformations used to

evaluate registration. Registration between (Ipi , D
p
i) and (Ii, Di) is attempted for each

initial transformation t ∈ T . If for any t ∈ T , ICP registration results in an incorrect

alignment transform significantly different from the inverse t−1, it is likely due to the

edge clouds (Ipi , D
p
i) not being sufficient for reliable registration. In such a case it follows

that the sensor pose p would not ensure reliable SLAM tracking and localisation from the

features of keyframe Ki. Conversely any pose p which results in successful registration

for all initial transforms t ∈ T is deemed to ensure such SLAM tracking.

5.3.2.5 Node Placement

To form the navigation graph Gi (for a keyframe Ki) we need to determine a set of safe

vehicle poses to form the nodes of the navigation graph, i.e. a set of poses Ni which are

both collision free and ensure the vehicle’s sensor observes sufficient features from the

key-frame Ki to maintain SLAM localisation. Previously Section 5.3.2.2 demonstrated

how a voxel grid could be generated for each keyframe Ki, from which a set of collision

free vehicle positions X = {x0,x1, ...} relative to the pose Pi could be determined.

Section 5.3.2.4 then described the process by which a potential sensor pose p (relative to

some keyframe pose Pi) can be tested to determine if sufficient features from Ki would

5.3 Keyframe Centric Path Planning 148

be observed to maintain SLAM localisation. These two elements, the set of collision free

vehicle positions X and the test to determine if a potential sensor pose maintains SLAM

localisation, can now be used together in order to determine a set of safe vehicle poses

Ni, which are both collision free and maintain SLAM tracking from Ki. This involves

using X to generate a set of collision free poses P , and then determining the subset of

these poses Ni ⊂ P which maintain SLAM tracking from the features of Ki. This set of

poses Ni can then be used to form the nodes of the Ki’s navigation graph Gi.

Let Θ = {q0,q1, ...} ⊂ SO(3) denote a set of orientations relative to that of the keyframe

pose Pi. The set of poses P is then generated by taking all possible combinations of

positions from X ⊂ R3 and orientations from Θ, that is P = {(xi,qj)|xi ∈ X,qj ∈
Θ}.

What set of orientations Θ to use for generating this set of poses P is dependant on the

dynamics of the vehicle itself. A quad-rotor MAV platform cannot arbitrarily change its

roll or pitch while holding its position constant, typically such a vehicle can only control

the yaw component of its orientation independent of its position. As described previously,

because of the lack independent control over yaw and pitch angles we restricted the

vehicle’s configuration space the 4D x,y,z,yaw configuration space in which the vehicle is

Holonomic. This restriction is made under the assumption of small roll and yaw angles,

and thus we restrict the set of orientations Θ to consist only of those corresponding to

the vehicle varying its yaw component.

Intuitively orientations which result in the majority of Ki’s edge feature lying outside

of the sensor field of view are unlikely to ensure SLAM tracking can be maintained (at

least from the features of Ki). Thus to avoid such useless orientations, Θ should consist

of yaw only rotations lying within an interval [−θ, θ] : θ ∈ <+, where the magnitude of θ

is derived from the field of view of the sensor. Additionally a fine degree of orientation

granularity is typically not required in order to construct a navigation graph sufficient

for navigation. Thus we take Θ to be a set of three yaw only rotations of magnitude

{−θ, 0, θ}.

A set of obstacle free vehicle poses P is thus formed from all combinations of positions of

X and orientations corresponding to the yaw rotations of magnitudes {−θ, 0, θ}. P also

represents the set of potential navigation graph nodes, however each pose from P must

be tested to ensure the vehicle’s sensor would observe sufficient features to maintain

SLAM tracking. This involves transforming each vehicle pose from P into a sensor pose

(by simply applying s the rigid transformation between the sensor and vehicle reference

frames), and then performing the test described previously in Section 5.3.2.4. Poses

5.3 Keyframe Centric Path Planning 149

which successfully pass said test are then used to form the set of nodes Ni for the

navigation graph Gi.

Examples of such a set of poses is illustrated in Figure 5.12, with edge point features

drawn in white, poses drawn in green, and the sensor view frustum at the keyframe’s

pose Pi in pink. Rejected poses that did not pass the test to ensure SLAM localisation

is maintained are shown in red. In the top left example it can be observed how the

distribution of features has restricted the set of poses to face to the right, while by

comparison the top right example set of features is such that they impose no such

restriction. The bottom left example shows the poses generated for a keyframe facing

down a narrow blank walled corridor, poses have been restricted to both face down the

corridor to observe sufficient features in the distance, in addition to being restricted by

the physical bounds of the corridor itself as shown by the associated occupied space voxel

grid shown in the bottom right.

5.3.2.6 Generating Graph Edges

Once the set of safe vehicle poses Ni has been generated, the final step in creating

the complete navigation graph Gi is to determine a set of edges Ei, representing safe

trajectories between the poses of Ni. Since our target Quad-Rotor platforms taken to be

Holonomic with respect to x,y,z and yaw (under the assumption of small roll and pitch

angles), we take an edge e = (na,nb) ∈ Ei to represent a direct interpolating trajectory

between the poses na,nb ∈ Ni. That is a trajectory which takes the vehicle in a straight

line linearly interpolating between the positions of na and nb, while also changing the

vehicle’s yaw at a fixed rate to linearly interpolate between the orientations of na and

nb. Such trajectories are reversible and as such Gi is an undirected graph.

Let us denote the position and orientation components of the pose na by the vector xna

and rotation matrix Rna such that na = (xna ,Rna), and similarly let nb = (xnb
,Rnb

).

The set of positions e passes through is thus simply given by

{xna + t(xnb
− xna)|t ∈ [0, 1]}

The orientation of nb relative to orientation na is given by the rotation matrix R =

Rnb
RT

na
. Any rotation matrix can be expressed in axis angle form (n̂, θ), consisting of a

specific axis of rotation n̂ and an angle giving the magnitude and direction of rotation

about the said axis. Let M(n̂, θ) denote the rotation matrix associated with an axis

angle rotation (n̂, θ), and let the axis angle representation of R be denoted by (n̂R, θR).

All the intermediate orientations between Rnb
and Rna along the trajectory e are then

5.3 Keyframe Centric Path Planning 150

Figure 5.12: Examples of safe vehicle poses generated from keyframe data.
Safe poses are shown in green. Tested poses at which insufficient features are
observed for reliable localisation are shown in red. Tested poses within occupied
or unknown space are not shown. Bottom right shows the occupied space voxel
grid from a section of corridor in green, showing how safe poses are restricted
with the bounds of the observed corridor.

5.3 Keyframe Centric Path Planning 151

of the form

M(n̂R, tθR)Rna |t ∈ [0, 1]

Thus the trajectory e passes through the set of poses given by

{((xna + t(xnb
− xna),M(n̂R, tθR)Rna)|t ∈ [0, 1]}

For such an interpolating trajectory between two poses e = (na,nb) to be safe, it must

both ensure collision avoidance and that the SLAM system is able to maintain tracking,

from the features of Ki observed during the course of the trajectory. These are precisely

the same criteria required of the set of safe vehicle poses Ni which form the nodes of the

navigation graph being constructed Gi. Thus the same processes used to determine if a

certain vehicle pose is collision free and can maintain SLAM tracking, can be adapted

for determining the same criteria for specific a interpolating trajectory e.

The uniform voxel grid associated with Ki described earlier was constructed to determine

safe collision free regions of space for the vehicle. Thus determining if a trajectory e is

collision free simply involves checking that the trajectory only passes through voxels

flagged as known empty space. Since a direct interpolating trajectory simply involves

moving in a straight line between the positions of two poses na and nb, the voxels which

the trajectory passes through can quickly be determined using voxel ray tracing. After

which all that remains is to check that each of the traced voxels has been flagged as

known empty space.

If a trajectory e has been found to be collision free using the check described above, the

next step to determine if e is safe is to ensure that the vehicle’s sensor would always

observe sufficient features from Ki to maintain SLAM tracking. In general it is sufficient

to simply sample a subset of m poses from along the trajectory e, and check that each

one of these poses would in-fact maintain SLAM tracking. This set of m poses spaced

out along the trajectory is defined as

{(xna + τ(xnb
− xna),M(n̂R, τθR)Rna)|τ ∈ { 1

m
,

2

m
, ...

m− 1

m
, 1}} (5.3)

Naturally the greater the difference between the nodes na and nb connected by the

trajectory of e, the greater the number of intermediate poses along the trajectory which

need to be checked to ensure the trajectory is safe, i.e. the larger the value of m required

in Equation 5.3. In practise we calculate this value based on the distance between

nodes | xnb
− xna |, and the difference between their orientations as given by | θR | the

5.3 Keyframe Centric Path Planning 152

Figure 5.13: Intermediate poses are sampled along a potential edge trajectory
and checked to ensure each would result in SLAM localisation being maintained.

magnitude of the angle component from the axis angle rotation (n̂R, θR) between their

orientations. The value of m used in Equation 5.3 is then simply given Equation 5.4,

where the values of the constants were typically taken as µ = 0.2 meters and γ = 0.35

radians derived experimentally and from the horizontal field of view of the Xtion RGB-D

sensor used.

m = RoundUp

(
| xnb

− xna |
µ

+
| θR |
γ

)
(5.4)

The SLAM tracking checking process described previously in Section 5.3.2.4 which was

used for determining the set of safe vehicle poses Ni, can be used once again for checking

each of these poses along the trajectory in question. If each such pose does in fact pass

this test then e has been determined to be a safe trajectory for the vehicle.

To generate the set of edge Ei, interpolating trajectories are tested between all pairs

of nodes from Ni which are within some threshold distance from one another, typically

taken to be 0.5 meters. All trajectories which pass both the collision and SLAM tracking

checks described in the previous subsections are then added into Ei completing the

creation of the navigation graph Gi for the keyframe Ki. Figure 5.14 shows examples

of such navigation graphs created for keyframe data acquired during SLAM system

operation.

5.3 Keyframe Centric Path Planning 153

Figure 5.14: Examples of keyframe navigation graphs, with graph nodes rep-
resenting safe vehicle poses drawn in red and edges representing safe trajectories
between such nodes drawn in orange.

5.3.2.7 Graph Connecting Edges

Each keyframe navigation graph Gi ∈ G provides a framework for safe path planning

within a limited volume of empty space. Path planning on a larger scale however requires

knowledge of how to safely transition between different keyframe navigation graphs dur-

ing navigation. Switching between two navigation graphs Gi and Gj, requires that the

vehicle follows some trajectory beginning at the pose of a node na ∈ Ni from one graph,

and ending a different pose nb ∈ Nj in another graph. Naturally such a trajectory must

be contained within the overlap of known empty space for the keyframes Ki and Kj in

order to ensure that it is collision free.

Such trajectories can be viewed as additional graph edges, connecting together the nodes

belonging to different navigation graphs. This allows the various keyframe navigation

graphs Gi ∈ G to be combined into a single larger graph, allowing path planning to be

conducted across multiple navigation graphs in a keyframe to keyframe based manner.

We thus seek to determine a set of such ”connecting edges” EC connecting the nodes of

different navigation graphs, and use Gmap to denote the graph formed by the combination

of these edges and the existing navigation graphs of G.

Gmap = ({N0 ∪N1 ∪ ..., Nm}, {EC ∪ E0 ∪ E1 ∪ ..., Em})

Each connecting edge c ∈ EC represents a simple interpolating trajectory between two

graph node poses na ∈ Ni and nb ∈ Nj where i 6= j. These interpolating trajectories

are defined in exactly the same manner as those of the edges of the keyframe navigation

graphs described previously.

As discussed in Section 5.2.4 the estimated global poses of the SLAM map keyframes may

5.3 Keyframe Centric Path Planning 154

be highly inaccurate, and thus are not a reliable source of information for determining

valid connections between keyframe navigation graphs. In contrast loop closures between

any pair of keyframes generally provide a far more reliable estimate of the relative pose

between those keyframes. Thus connecting edges are only added between navigation

graphs where there exists a loop closure between their associated keyframes providing a

reliable estimation of their relative pose to one another.

Specifically whenever a new loop closure is detected between two keyframes Ki and Kj

it provides an estimate of the relative pose Ri,j between said keyframes. This relative

pose is then used in generating interpolating trajectories between all pairs of nodes

(na ∈ Ni,nb ∈ Nj) within a threshold distance of one another (typically taken to be 0.5

meters).

Each such generated trajectory is then a potential connecting edge c = (na ∈ Ni,nb ∈
Nj) between the two navigation graphs Gi and Gj. However this trajectory first needs

to be tested to ensure it is both collision free and guarantees SLAM tracking and local-

isation. This can be achieved by using the same testing procedures used previously in

Section 5.3.2.6 for testing the trajectory of a potential navigation graph edge. However

for such a connecting edge trajectory c = (na ∈ Ni,nb ∈ Nj), the test to ensure c

is collision free must to be conducted twice for both of the navigation graphs Gi and

Gj, and similarly the test ensure SLAM localisation has to be conducted for both the

key-frames Ki and Kj. This is to ensure that the edge can be used to transition from

either keyframe to the other, as the edge when used for path planning is assumed to

undirected.

All connecting edges c = (na ∈ Ni,nb ∈ Nj) which pass these tests are then added to the

set of connecting edges EC , expanding the graph Gmap and providing a means to traverse

between the navigation graphs Gi and Gj. Figures 5.15 and 5.16 show examples of such

a Gmap navigation graph, with each keyframe navigation graph drawn in a separate color

for clarity, and the connecting edges of EC drawn in white. Another example of such a

graph along with the associated SLAM map is shown in Figure 5.16, in this instance the

RGB-D sensor is rotated 360 degrees within an office environment with the generated

graphs branching down the corridors while avoiding the obstacle boundaries.

5.3.3 Keyframe Planning

The steps laid out in the previous sections lay out the process of constructing navigation

graphs for each keyframe of the SLAM map, and also the generation of connecting edges

5.4 Results 155

Figure 5.15: Combination of keyframe navigation graphs (each shown in a
different colour) from largely translational motion. Connecting edge between
graphs are shown in white.

providing a means to conduct navigation across these graphs. At any point in time

the current graph used for path planning in navigation denoted Gmap is formed by the

combination of all nodes and edges from all navigation graphs Gi ∈ G.

As both additional keyframes and loop closures are added to the SLAM map new naviga-

tion graphs and connecting edges are generated as illustrated in Figure 5.17. In practice

these tasks are performed on a separate threads from the two others conducting SLAM

tracking and map optimization respectively (brining the total number of threads to three)

in order to ensure that the SLAM system’s performance is not compromised.

With the formation of the navigation graph Gmap, all that remains is the problem of

determining paths through Gmap between any two connected nodes. Such a task can be

performed using any standard graph search algorithm such as Dijkstra’s [18] or the A*

Algorithm [37].

5.4 Results

This section presents and evaluates a sample of the trajectories generated by the proposed

path planning approach in different scenarios. The trajectories themselves are illustrated

in blue, with the poses associated with the graph nodes visited along the trajectory

drawn in red. Where shown, the occupied space voxels associated with each keyframe

navigation graph are drawn in green.

5.4 Results 156

Figure 5.16: Combination of keyframe navigation graphs (each shown in a
different colour) from largely rotational motion. Connecting edge between graphs
are shown in white.

5.4 Results 157

Figure 5.17: Creation of a keyframe based navigation graph in a flying arena
as described in 5.4.2. Occupied space voxels are drawn in green, while graph
edges and nodes are drawn in white and pink. It can be seen that loop closure
occurs as the vehicle moves back to around its starting location.

5.4 Results 158

In practice the proposed path planning is implemented on a separate thread from the

sensor tracking and map optimization threads of the SLAM system, in order to ensure

the performance of one system does not adversely affect the other. The generation

of trajectories consists of performing a simple A* graph search through the connected

keyframe navigation graphs. The computational cost of such searches may vary greatly

depending upon the graph and the start and goal node locations in addition to the graph

itself, however typically the computation time of such a search is far below 100ms. This

is significantly less time than is required to traverse such a trajectory, and further such

trajectory searches do not need to be frequently conducted.

5.4.1 Hand-held Results

This subsection present a sample of trajectories generated in environments which were

mapped by hand using a standard laptop (2.60GHz Intel Core i5-3230M (2013), 4GB

RAM, running Ubuntu 14.10) and Asus Xtion RGB-D sensor. Once mapped a destina-

tion was selected for the planners goal, and the generated trajectories were followed by

hand in order to test the planner’s ability to ensure SLAM localisation.

Figures 5.18 and 5.19 illustrate different trajectories generated to navigate between the

different rooms of a house. Within the rooms themselves there is an abundance of detail

such that there is seldom any sensor pose that would not receive sufficient information

for SLAM localisation to be maintained, and thus there is effectively no sensor informa-

tion constraint throughout many of these rooms. The hallways connecting these rooms

however largely feature blank textureless walls, and as a result, the sensor is constrained

to face down such hallways in order to avoid facing such blank surfaces and potentially

losing SLAM localisation. Further trajectory examples are given in Figures 5.20 and

5.21.

5.4.2 MAV Hardware and Software Set-up

In addition to testing the proposed path planning approach by hand, we also performed

experiments using a quad-rotor MAV equipped with an Asus Xtion RGB-D sensor. The

vehicle also carried an on-board computer used to run both the proposed path planning

software and edge based RGB-D SLAM system presented in Chapter 2. However this

high payload (around 1.6kg take off weight) made vehicle highly unstable and difficult

to control. Combined with severe latency issues we encountered in communication be-

tween the on-board computer and flight controller, we were not confident in conducting

5.4 Results 159

Figure 5.18: Planning between rooms of an apartment.

5.4 Results 160

Figure 5.19: Further planning between rooms of an apartment.

5.4 Results 161

Figure 5.20: Planning within an office space.

5.4 Results 162

Figure 5.21: Planning across various maps.

prolonged flight relying on the SLAM system (running upon the on-board computer)

for stabilisation. We thus instead made use of a simple ground based PID controller,

using motion capture for control feedback to transmit commands to the vehicle’s flight

controller. The path planning and SLAM software running on-board the vehicle however

had no access to this motion capture data, our path planning software simply transmit-

ted commands in the form of 6DOF poses relative to the vehicle’s reference frame to the

ground based pc running the PID control. The PC then converted these poses from the

vehicle’s body frame to the global frame of the motion capture system before feeding

them into the PID controller. Using this set-up with communication between a ground

based PC and the on-board computer of the MAV we could command the vehicle navi-

gate to a pose within its constructed SLAM map. The vehicle would then calculate and

follow a valid trajectory avoiding obstacles and ensuring SLAM tracking.

We now briefly describe the components of this set-up in greater detail.

5.4.2.1 Vehicle

Two Asctec Pelican quad-rotor platforms as shown in Figure 5.22 were available to con-

duct flying experiments, both carrying an on-board computer, flight control computer,

and a single ASUS Xtion RGB-D sensor. The on-board computers of these vehicles

consisted of standard PC hardware in a compact form factor motherboard. One Pelican

vehicle was equipped with a 1.86GHz Intel Core2Duo SL9400 (2008), while the other

5.4 Results 163

Figure 5.22: AscTec Pelican.

was equipped with a 2.10GHz Intel i7-3612QE (2012), our software was seen to achieve

real-time 30Hz performance on both these platforms making them largely identical for

our testing purposes. Both on-board computers were also equipped with 8GB ram and

a solid state drive (SSD). A stripped down version of the Ubuntu Linux distribution was

installed on these SSDs, allowing us easily port over our SLAM and navigation software

which was developed on a desktop environment.

5.4.2.2 Motion Tracking

We make use of a commercial Vicon optical motion capture system, to provide reliable

ground-truth measurements of the vehicle’s full 6DOF pose. Such optical tracking sys-

tems make use of a set of cameras at known relative poses to one another. Rigid bodies

that are to be tracked, typically must be visible from two or more camera’s at once

in order to get reliable measurements. The tracking volume is defined as the volume

of space where such reliable tracking is available, and is determined by the overlap be-

tween the view frustums of multiple cameras. However obstacles in the environment will

also occlude certain volumes of space from certain cameras, reducing the total tracking

volume.

Vicon specifically is a passive marker based system using infra-red cameras, in which

simple retro reflective markers are attached in a known configuration to the rigid bodies

that are to be tracked. These markers are then illuminated with infra-red light, showing

up in the camera images as bright points, from which it trivial to distinguish such makers

from the rest of the scene by simply applying an intensity threshold to the images. These

images are sent back to a desktop computer and processed in order to determine the 3D

positions of the observed markers via triangulation, resulting in a sparse point cloud of

marker positions. The 6DOF poses of a body being tracked can then be determined by

5.4 Results 164

identifying a body’s marker configuration within this sparse point cloud. Typically a

method such as RANSAC [28] is used to perform this task, using the body’s previous

estimated pose to initialize the search for it marker configuration. It is important to

avoid any sort of spacial symmetry when deciding upon a bodies marker placement, as

such symmetries obviously will introduce ambiguities into the process of calculating the

bodies 6DOF pose from the sparse cloud of marker positions. This motion tracking set-

up is able to provide millimetre accuracy level tracking at 100Hz provided the body is

within the reliable tracking volume.

5.4.2.3 Robot Operating System ROS

The Robot Operating System (ROS)[83] is an collection of open source software that aims

to make development on robotic systems both more efficient and accessible, through a

set of frameworks and tools that can be used to carry out many common functions and

tasks such as interprocess communication, visualization, data logging, debugging and

diagnostics. API facilities are also included making it simple to incorporate your own

software into ROS, allowing it communicate with other software packages with ROS

functionality, or make use of the set of core tools ROS provides.

5.4.2.4 ROS Communication

One of the most central aspects to ROS is the messaging passing system used for com-

municating between different ROS processes, running across various hardware platforms

and computers. A ROS process can be any piece of software which uses the ROS API to

enable such communication. Communication between such processes is performed using

so called ROS topics. Each topic is identified by a specific name and may represent

any type of information, such as data from an IMU sensor, or a camera’s estimated

pose from a SLAM system. ROS processes may then both publish data under a topic

name, or subscribe to said topic to receive any data published under that topic name

by other ROS processes. In this way various sensors and software processes running

within the ROS framework may send and receive information from one another. The

core ROS framework handles the task of actually ensuring data published on each topic

is communicated to the relevant subscribing processes, even if such information has to

be transmitted over wired or wireless local network connection to different machines.

This communication set-up can be visualized as a graph structure, in which each ROS

process is a node, and directed edges between nodes represent instances where one node

has subscribed to a specific ROS topic, which the other node is publishing data for.

5.4 Results 165

Such communication allowed us to transmit and receive data to and from the Pelican’s on-

board computer and a ground based PC. This enabled us to both command the pelican

to path to a specific location in the SLAM map, and also visualize the SLAM and path

planning software on the ground based PC while they were running on the Pelican’s on-

board computer. Examples of this are shown in Figure 5.23, where the SLAM system’s

map, estimated sensor pose, and estimated sensor trajectory are visualized in real-time

from data being transmitted from the Pelican and using the ROS RVIZ tool.

5.4.3 MAV Results

MAV experiments were conducted within an indoor flying arena as can be seen in Figure

5.23, SLAM was initialized once the vehicle was in flight. The vehicle was then flown

manually to acquire a map of the arena, while the path planning software simultaneously

constructed the keyframe based navigation graph to be used for navigation. Once this

step was complete the vehicle was switched over to being controlled by the ground

based PID controller, whose setpoint was being controlled by the path planning software

running on-board of the MAV.

Using the visualization of the vehicle’s SLAM map displayed on the ground based PC

we could select a desired pose for the vehicle within the map, this was then sent to the

path planning software on-board the vehicle via ROS communication. The planner then

determined a trajectory between the vehicle’s current estimated pose, to the graph node

closest to the desired pose. The path planning software would then use the SLAM sys-

tem’s current estimated vehicle pose to continuously calculate a pose which advance the

vehicle slightly further along this desired trajectory. This pose was then communicated

back to the ground based PC and used to update the setpoint of the PID controller,

resulting in the vehicle advancing along the desired trajectory.

Figure 5.24 show a map created on-board of the MAV during flight along with some

example trajectories. In this scenario obstacles were placed in the center of the flying

space and the generated trajectories constrain the orientation of the vehicle to face

towards nearby obstacles in order to ensure the RGB-D sensor is providing sufficient

data to the SLAM system for localisation. Figure 5.25 shows the same flying arena but

enclosed with obstacles along the boundaries of the motion capture system’s tracking

volume. It can be seen that generated trajectories avoid making the vehicle face directly

across the empty arena from one side to the other as obstacles on the other side are

deemed to far to provide reliable depth measurements. Instead trajectories skirt around

the arenas edge where the vehicle can always be within range of obstacles to acquire

5.4 Results 166

Figure 5.23: Real-time visualizations of SLAM data received from the Pelican
vehicle.

5.5 Conclusions 167

accurate depth measurements.

The effect of the constraint on generated trajectories to ensure SLAM localisation is

maintained was also examined for the enclosed flying arena. Figure 5.26 shows a com-

parison of two trajectories illustrating the result of removing this constraint. With the

constraint active the trajectory generated across the arena forces the vehicle to both face

and stay within a reasonable distance to the enclosing obstacles, thus ensuring that the

vehicle’s RGB-D sensor always acquires a large amount of visual and geometric informa-

tion which the SLAM system can utilize. By comparison with this information constraint

removed the generated trajectory takes a far more direct route across the arena but in

doing so faces the vehicle’s RGB-D sensor directly across the arena, resulting poor qual-

ity geometric information being produced by the sensor due to the far distance between

it and the observed obstacles due to the nature of the sensor [57]. Using such data

resulted in considerable noise being introduced into the SLAM system’s estimated pose

and even loss of tracking at certain points, significantly degrading the vehicle’s ability

to perform navigation.

5.5 Conclusions

This section proposed a keyframe centric path planning approach for RGB-D SLAM

based navigation, specifically the system outline previously in Chapter 2. The approach

is ”SLAM aware” in that produced trajectories do not only ensure obstacle avoidance,

but also that the vehicle’s RGB-D sensor observes sufficient information when following

said trajectory to maintain SLAM tracking and localisation. The approach constructs

many small configuration spaces, each associated with a different keyframe of the SLAM

map. Navigation graphs are generated for each keyframe’s configuration space, providing

collision free trajectories which also ensure SLAM localisation from the features of the

associated keyframe. Safe connections between these graphs are determined from de-

tected loop-closure constraints between keyframes, and provide a means for the planning

process to transition between the different keyframe configuration spaces. In this way

the many connected keyframe configurations space, form a larger configuration space

which may be used to conduct navigation across the SLAM map. Further changes to

the SLAM map only affect the connections between such graphs, avoiding the need to

recalculate the entire configuration space. Results of generating various trajectories in

different mapped environments are presented demonstrating the behaviour of the plan-

ner. These include trajectories generated for an AscTec Pelican quad-rotor to navigate

within an indoor flying arena. In this scenario both path planning and SLAM were con-

5.5 Conclusions 168

Figure 5.24: Examples of trajectories generated within an obstacle filled flying
arena.

5.5 Conclusions 169

Figure 5.25: Examples of trajectories generated within a flying arena with
obstacles placed along the boundaries.

5.5 Conclusions 170

Figure 5.26: Comparison between trajectories with (top) and without (bottom)
enforcing SLAM localisation constraints.

5.5 Conclusions 171

duct on-board the vehicle itself using its on-board computer. The path planning software

generated a stream of pose setpoints based on the desired trajectory and estimated ve-

hicle pose provided by SLAM. These setpoints were communicated to a ground based

PC and fed into a PID controller which directly controlled the vehicle by transmitting

commands to its flight controller.

Chapter 6
Conclusions

6.1 Chapter Summary

• Chapter 2 presented a novel edge based RGB-D SLAM system. This system simul-

taneously makes use of edges extracted from both the Depth and RGB components

of the RGB-D video stream. This allows the system to continue to operate in many

situation with either no visual information (such as from a lack of illumination), or

a lack of geometric features (such as a scene of flat textured surfaces). The system

back-projects detected edge pixels to form semi-dense point clouds, which are then

used to achieve fast registration between RGB-D frames via ICP as described in

Section 2.6. The evaluation of this edge cloud based ICP registration in Section

2.6.3 demonstrated that such an approach is highly robust to uniform downsam-

pling, with no loss of registration accuracy even when x10 uniform downsampling

is applied. It was also shown that this edge cloud based registration significantly

outperforms naive RGB-D cloud IPC, having both a lower computational cost per

ICP iteration and requiring fewer iterations to converge. The proposed SLAM

system itself was evaluated in Section 2.9.1 and demonstrated compelling results.

Compared to the similar CPU based RGB-D SLAM systems at the time of writing

([12], [24]), our proposed approach was seen to have a significantly lower compu-

tational cost, being able to process RGB-D video sequences well within real-time.

Despite this our system was also still able to achieve a accuracy comparable to or

exceeding these most costly SLAM approaches, thus making it viable for use in

autonomous navigation on robotic platforms.

• Section 2.4 presented our proposed method of occluding depth edge detection,

172

6.1 Chapter Summary 173

exploiting the temporal similarity between sequential RGB-D frames. This method

limits the search for edge pixels in the depth image to areas around which such

pixels were detected in the previous frame. The intuition behind this being that the

location of edges will not have significantly changed in the time between frames.

Additional random regions are also searched to facilitate the detection of new

edges not present in the previous depth image. To the best of our knowledge this

was the first instance of such temporal similarity being exploited specifically for

occluding depth edge, and at the time of writing is significantly faster than other

demonstrated approaches such as [12].

• Chapter 3 developed an extension to the proposed edge cloud based SLAM system

of Chapter 2, making use of 3D linear features extracted from the semi-dense

edge clouds. The intuition behind this was that linear features could be used to

form a reasonable approximation of such semi-dense edge clouds in the majority

of situations, and in doing so greatly reduced the amount of data involved in

registration (down from thousands of points to tens of lines). We presented both

a method of 3D linear feature extraction from semi-dense edge points in Section

3.2, and an ICP based method of registration between semi-dense edge clouds and

said 3D linear features in Section 3.3. Evaluation this proposed edge cloud and

line feature hybrid SLAM system was conducted using the same approach used

previously in Section 2.9. Results showed that this hybrid system was significantly

faster than the purely edge cloud based system proposed in Chapter 2, reducing

the total runtime on each RGB-D sequence by around 30 %. However, this came

at the expense of accuracy due to the linear feature merely being approximations

of the underlying edge clouds, with the purely edge cloud based SLAM system

displaying superior accuracy in each sequence.

• Chapter 4 introduced a belief space planner, motivated by the notation that for

any autonomous vehicle to accurately follow a desired path it must have access to

an accurate estimate of its own state at all times i.e. it must maintain localisation.

The planner was evaluated in generation of paths for simulated MAV relying upon

bearing measurements to static landmarks (or ”beacons”) within the environment

for localisation, in a scenario somewhat analogous to point feature based monocular

visual slam. Section 4.5 demonstrated results obtained for various scenarios, each

demonstrating how robust paths produced by the planner would deviate signifi-

cantly from the shortest path where necessary, in-order to ensure that localisation

was maintained via bearing measurements to the beacons within the environment.

By comparison in many of these scenarios the shortest path would result in high

6.1 Chapter Summary 174

vehicle state uncertainty (i.e. loss of localisation) greatly increasing the risk of the

vehicle colliding with the environment, and thus demonstrating how the proposed

planner would be the preferable method of navigation.

• Chapter 5 presented our keyframe centric path planning approach, for vehicles mak-

ing use of the previously proposed edge based SLAM system for localisation and

obstacle avoidance, specifically MAVs platforms. For each keyframe the planner

constructs a navigation graph of collision free trajectories which also ensure that

the vehicle’s RGB-D sensor observes sufficient features from said keyframe for the

SLAM system to localisation. This sensor information constraint is vital to ensure

the vehicle can follow the desired trajectory. Connections between these keyframe

navigation graphs are then determined using the detected loop closures between

keyframe pairs (as opposed to using the estimated global poses of them keyframes

themselves), resulting in the construction of a navigation graph spanning the entire

SLAM map. Such a navigation graph may still be constructed even in sceneries

where the SLAM map has become globally inaccurate or inconsistent due to sensor

drift and tracking error since it is based upon the consistent local connections be-

tween keyframes. The planner then generates trajectories through this navigation

graph, passing through various keyframe reference frames. The vehicle follows such

trajectories by navigating across different keyframe navigation graphs, at each nav-

igating within the reference frame of the associated keyframe and thus never using

its estimated global pose for navigation. Section 5.4 demonstrated results from this

planner across various environments, for both maps constructed with a hand-held

RGB-d sensor and with an RGB-D sensor carried on-board of a quad-rotor MAV

platform inside of an indoor flying arena. For MAV experiments all computation

(i.e. both SLAM system and path planning) was conducted in real-time upon its

on-board computer. A computer on the ground was then used to command the

MAV to move to a known position within the environment, with the MAV itself

generating the trajectory. We observed that the MAV could successful navigate

the arena in this manner, additionally when the sensor information constraint was

removed from the trajectory generation process the MAV would encounter scenar-

ios in which SLAM localisation was lost due to poor sensor information, indicating

the importance of this aspect of the planner. Significant loop closures and map

changes also did not adversely affect the vehicle during navigation, this is due

to the nature of the planner which generates trajectories spanning across various

keyframe reference frames, instead of a single global reference frame within which

the SLAM map is subject to change.

6.2 Contributions Summary 175

6.2 Contributions Summary

This section summarizes the contributions of the work presented within this thesis.

• A novel edge based RGB-D SLAM system, making simultaneous use of both depth

and RGB edge features. By back-projecting such edge pixels to form semi-dense

point cloud fast registration between RGB-D frames can be achieved using ICP. An

evaluation of the edge cloud based ICP registration utilized demonstrated that such

an approach is both highly robust to uniform downsampling, and also significantly

outperforms naive RGB-D cloud based registration in terms of both accuracy and

computation time. An evaluation of the proposed edge based RGB-D SLAM sys-

tem itself showed that it is able to achieve similar or better levels of accuracy than

a number of comparable systems, while also having a significantly lower computa-

tional overhead, processing RGB-D sequences faster than real-time on a standard

CPU core.

• A method of occluding depth edge detection exploiting temporal similarity between

sequential RGB-D frames, to the best of our knowledge the first such method to

do this, and at time of writing is significantly cheaper computationally compared

to other published depth edge detection methods.

• A map optimization approach based on iterative relaxation in accordance to the

relative pose constraints given by detected loop closures.

• A hybrid SLAM system making use of both 3D linear features and edge point

clouds, along with methods of linear feature extraction from semi-dense edge

clouds, and an ICP based method of registration between edge clouds and line

features.

• A belief space planning algorithm, generating robust paths for simulated MAVs

which attempt to ensure localisation can be maintained at all times from bearing

measurements to fixed landmarks in the environment.

• A SLAM aware path planning method for MAVs, generating trajectories that are

both collision free and also ensure the vehicle’s RGB-D sensor observes sufficient

information for SLAM to maintain operation at all times. This method is demon-

strated both generating trajectories in environments where a RGB-D sensor was

carried by hand to perform mapping, and where the sensor was mounted to a

quad-rotor platform which was commanded from a ground based pc to navigate to

known locations in the environment using this path planning approach.

6.3 Future Directions 176

6.3 Future Directions

6.3.1 Omnidirectional Sensing

For both SLAM and autonomous navigation, the use of a single limited field of view

RGB-D camera sensor can be viewed as being a major limiting factor. In many envi-

ronment great care must be taken to ensure the sensor is never positioned such that

insufficient visual information is observed for localisation and sensor tracking. This

problem can be addressed by obtaining a greater amount of visual information from the

surrounding environment, across a wider field of view, either by using multiple sensors or

an omnidirectional sensor as has been demonstrated in [11],[87],[98],[91],[36]. This would

both greatly increases the robustness of the SLAM system, and significantly decrease the

constraints imposed on the path planning process regarding the acquisition of sufficient

sensor information.

6.3.2 Modern Small Form Factor Computer Hardware

The MAV used in our indoor flying experiments was equipped with an on-board computer

consisting of standard desktop PC hardware. Despite this hardware being packaged into

a small form factor it contributed significant weight and size to the vehicle, impacting

its stability, agility and maximum flight time. Advances in small form factor computing,

primarily driven by the smartphone market have since produced devices significantly

smaller in size and weight, which have been shown to still have sufficient computing power

to conduct SLAM among other computer vision tasks ([89],[82],[107]). Additionally such

devices typically include GPU hardware, the parallel processing abilities of which could

be used to accelerate many processes including the edge detection and ICP registration

employed by our proposed SLAM system. In summary, using such a device for on-

board computation would allow a smaller and more agile MAV platform to be used, the

device’s parallel processing capabilities would also open up a new avenue of potential

visual processing methods.

6.3.3 Edge Cloud Refinement and Monocular Depth

Our current proposed SLAM systems are heavily reliant upon depth data as provided by

an RGB-D sensor. However, as shown in [57] the accuracy of the depth data produced

by many current RGB-D sensors (such as the Asus Xtion) is prone to noise, distortion,

6.3 Future Directions 177

discretization proportional to depth itself. As a result many keyframes may store semi-

dense edge clouds generated from highly inaccurate low quality depth data, which in turn

will result in poor registration and sensor pose estimation. This issue may be addressed

by instead storing a semi-dense edge cloud for each key-frame, the estimated depth of

each point of which is refined over many frames of RGB-D data (i.e. over multiple

observations). Additionally stereo comparisons of pixels between RGB images may also

be used in the estimation of pixel depths in a similar manner as employed by LSD SLAM

[27], allowing the system to function in situations where the RGB-D sensor is unable to

provide depth data.

6.3.4 Redundant keyframe Elimination

One issue with both proposed RGB-D SLAM systems is that of redundant keyframes

that may accumulate during the course of mapping. By this we refer to keyframes

which are highly similar to others present within the map, both in terms of estimated

pose and associated features. These keyframes thus provide no useful contribution to the

system’s tracking and localisation capabilities, and cause the SLAM map to continuously

grow in size even when re-visiting the same areas, increasing complexity and consuming

additional memory and computational resources. It would thus be desirable to implement

a method to detect and cull such keyframes from the map to address this issue, this would

also decrease the complexity of the navigation graph used for navigation.

6.3.5 Tighter Integration Between SLAM and Edge Detection

Typically the majority of edge detection methods are designed to process single static

images, with no use of external or a priori information. However for SLAM based

applications, edge detection is performed on sequential video frames. We have already

demonstrated how the temporal similarity between depth images from RGB-D video can

be exploited to significantly accelerate up depth edge detection. A similar exploitation

of temporal similarity should also be possible for edge detection regarding the RGB

component. Additionally the motion of the RGB-D sensor itself as estimated by either

the SLAM system or IMU sensors could be exploited in the edge detection process to

further reduce computational cost. Specifically, estimated sensor motion could be used

to better determine where edges from the previous RGB-D frame are likely to be located

in the current image, and from what sides of the image are new edges likely to come into

frame.

6.3 Future Directions 178

6.3.6 Slam Based Exploration

Our proposed keyframe based path planning approach in Chapter 5 was envisioned to

allow a vehicle to safely navigate within an environment mapped by the SLAM system

presented in 2. One possible avenue for future work is to introduce an exploration

scheme based on this planning approach. Since the goal of this exploration would be

allow the SLAM system to produce an accurate SLAM map of the environment it would

be important to integrate exploration with the SLAM system itself. For example it

would be important for the exploration scheme to navigate the environment in such a

way to facilitate the detection of loop closures, ensuring that an accurate map of the

environment is constructed.

References

[1] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy. Autonomous navigation
and exploration of a quadrotor helicopter in gps-denied indoor environments. In
First Symposium on Indoor Flight, number 2009. Citeseer, 2009. 7

[2] J. Amanatides, A. Woo, et al. A fast voxel traversal algorithm for ray tracing. In
Eurographics, volume 87, page 10, 1987. 139

[3] A. Bachrach, R. He, and N. Roy. Autonomous flight in unknown indoor environ-
ments. International Journal of Micro Air Vehicles, 1(4):217–228, 2009. 7

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer, 2006. 6

[5] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based mav navigation
in unknown and unstructured environments. In Robotics and automation (ICRA),
2010 IEEE international conference on, pages 21–28. IEEE, 2010. 6

[6] L. Bose and A. Richards. Fast depth edge detection and edge based rgb-d slam. In
2016 IEEE International Conference on Robotics and Automation (ICRA), pages
1323–1330. IEEE, 2016. 15

[7] L. N. Bose and A. G. Richards. Determining accurate visual slam trajectories using
sequential monte carlo optimization. In AIAA Guidance, Navigation, and Control
(GNC) Conference, page 4553, 2013. 14

[8] L. N. Bose and A. G. Richards. Mav belief space planning in 3d environments
with visual bearing observations. In International Micro Air Vehicle Conference
and Flight Competition (IMAV2013), 2013. 14, 101

[9] R. Brockers, S. Susca, D. Zhu, and L. Matthies. Fully self-contained vision-aided
navigation and landing of a micro air vehicle independent from external sensor
inputs. In SPIE Defense, Security, and Sensing, pages 83870Q–83870Q. Interna-
tional Society for Optics and Photonics, 2012. 6

[10] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 723–730. IEEE, 2011. 102

179

REFERENCES 180

[11] D. Caruso, J. Engel, and D. Cremers. Large-scale direct slam for omnidirectional
cameras. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 141–148. IEEE, 2015. 176

[12] C. Choi, A. J. B. Trevor, and H. I. Christensen. RGB-D edge detection and
edge-based registration. IEEE International Conference on Intelligent Robots and
Systems, pages 1568–1575, 2013. ISSN 21530858. doi: 10.1109/IROS.2013.6696558.
v, 11, 37, 38, 62, 64, 172, 173

[13] S. Clarkson, J. Wheat, B. Heller, J. Webster, and S. Choppin. Distortion correction
of depth data from consumer depth cameras. Hometrica Consulting (Ed.) D, 3:
426–437, 2013. 20

[14] A. J. Davison. Real-time simultaneous localisation and mapping with a single cam-
era. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference
on, pages 1403–1410. IEEE, 2003. 6

[15] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time single
camera slam. IEEE transactions on pattern analysis and machine intelligence, 29
(6):1052–1067, 2007. 6

[16] F. Dellaert, S. M. Seitz, C. E. Thorpe, and S. Thrun. Structure from motion
without correspondence. In Computer Vision and Pattern Recognition, 2000. Pro-
ceedings. IEEE Conference on, volume 2, pages 557–564. IEEE, 2000. 22

[17] M. Di Cicco, L. Iocchi, and G. Grisetti. Non-parametric calibration for depth
sensors. Robotics and Autonomous Systems, 74:309–317, 2015. 20

[18] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959. 155

[19] L. Ding and A. Goshtasby. On the canny edge detector. Pattern Recognition, 34
(3):721–725, 2001. 38

[20] E. Eade and T. Drummond. Scalable monocular slam. In 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol-
ume 1, pages 469–476. IEEE, 2006. 6

[21] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Com-
puter, 22(6):46–57, 1989. 130

[22] A. Elfes. Occupancy grids: A stochastic spatial representation for active robot
perception. arXiv preprint arXiv:1304.1098, 2013. 130

[23] J. Elseberg, D. Borrmann, and A. Nüchter. One billion points in the cloud–an
octree for efficient processing of 3d laser scans. ISPRS Journal of Photogrammetry
and Remote Sensing, 76:76–88, 2013. 132

[24] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An
evaluation of the rgb-d slam system. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 1691–1696. IEEE, 2012. v, 8, 62, 64, 172

REFERENCES 181

[25] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-d mapping with an
rgb-d camera. IEEE Transactions on Robotics, 30(1):177–187, 2014. 8

[26] J. Engel, J. Sturm, and D. Cremers. Accurate figure flying with a quadrocopter
using onboard visual and inertial sensing. IMU, 320:240, 2012. 6

[27] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam.
In European Conference on Computer Vision, pages 834–849. Springer, 2014. 8,
177

[28] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981. 164

[29] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for mobile robot lo-
calization. In Sequential Monte Carlo methods in practice, pages 401–428. Springer,
2001. 104, 105

[30] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. Journal of Guidance, Control, and Dynamics, 25(1):116–
129, 2002. 125

[31] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic. arXiv preprint arXiv:1404.2334, 2014. 126

[32] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (bit*):
Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 3067–3074. IEEE, 2015. 123

[33] S. Gottschalk. Separating axis theorem. Technical report, Technical Report TR96-
024, Department of Computer Science, UNC Chapel Hill, 1996. 109

[34] S. Grzonka, G. Grisetti, and W. Burgard. Towards a navigation system for au-
tonomous indoor flying. In Robotics and Automation, 2009. ICRA’09. IEEE In-
ternational Conference on, pages 2878–2883. IEEE, 2009. 7

[35] S. Grzonka, G. Grisetti, and W. Burgard. A fully autonomous indoor quadrotor.
IEEE Transactions on Robotics, 28(1):90–100, 2012. 7, 122

[36] D. Gutierrez, A. Rituerto, J. Montiel, and J. J. Guerrero. Adapting a real-time
monocular visual slam from conventional to omnidirectional cameras. In Computer
Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on,
pages 343–350. IEEE, 2011. 176

[37] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. Systems Science and Cybernetics, IEEE Trans-
actions on, 4(2):100–107, 1968. 122, 124, 155

REFERENCES 182

[38] R. He, S. Prentice, and N. Roy. Planning in information space for a quadrotor
helicopter in a gps-denied environment. In Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, pages 1814–1820. IEEE, 2008. 7

[39] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using
kinect-style depth cameras for dense 3d modeling of indoor environments. The
International Journal of Robotics Research, 31(5):647–663, 2012. 8

[40] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using
depth cameras for dense 3d modeling of indoor environments. In Experimental
robotics, pages 477–491. Springer, 2014. 8

[41] M. Herman. Fast, three-dimensional, collision-free motion planning. In Robotics
and Automation. Proceedings. 1986 IEEE International Conference on, volume 3,
pages 1056–1063. IEEE, 1986. 106

[42] D. Herrera, J. Kannala, and J. Heikkilä. Joint depth and color camera calibration
with distortion correction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(10):2058–2064, 2012. 20

[43] J. Hirt, D. Gauggel, J. Hensler, M. Blaich, and O. Bittel. Using quadtrees for real-
time pathfinding in indoor environments. In Research and Education in Robotics-
EUROBOT 2010, pages 72–78. Springer, 2010. 106

[44] A. Howard. Real-time stereo visual odometry for autonomous ground vehicles.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3946–3952. IEEE, 2008. 6

[45] A. Howard, M. J. Matarić, and G. Sukhatme. Relaxation on a mesh: a formalism
for generalized localization. In Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, volume 2, pages 1055–1060. IEEE,
2001. 58

[46] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy.
Visual odometry and mapping for autonomous flight using an rgb-d camera. In
International Symposium on Robotics Research (ISRR), volume 2, 2011. 8

[47] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, et al. Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 559–568. ACM,
2011. 5, 7, 8

[48] N. G. Johnson. Vision-assisted control of a hovering air vehicle in an indoor setting.
2008. 6

[49] S. J. Julier and J. K. Uhlmann. Building a million beacon map. In Intelligent Sys-
tems and Advanced Manufacturing, pages 10–21. International Society for Optics
and Photonics, 2001. 19

REFERENCES 183

[50] S. Kambhampati and L. Davis. Multiresolution path planning for mobile robots.
volume 2, issue: 3. Journal of Robotics and Automation, IEEE, 1986. 106

[51] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal
motion planning. In Robotics: Science and Systems (RSS), Zaragoza, Spain, June
2010. 126

[52] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The International Journal of Robotics Research, 30(7):846–894, 2011. 123

[53] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime mo-
tion planning using the rrt*. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1478–1483. IEEE, 2011. 125

[54] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. Robotics
and Automation, IEEE Transactions on, 12(4):566–580, 1996. 102, 123, 124

[55] C. Kemp. Visual control of a miniature quad-rotor helicopter. PhD thesis, Citeseer,
2006. 6

[56] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2100–2106. IEEE, 2013. 7

[57] K. Khoshelham and S. O. Elberink. Accuracy and resolution of kinect depth data
for indoor mapping applications. Sensors, 12(2):1437–1454, 2012. 20, 31, 52, 140,
167, 176

[58] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces.
In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM Inter-
national Symposium on, pages 225–234. IEEE, 2007. iv, 5, 6, 18, 23

[59] G. Klein and D. Murray. Improving the agility of keyframe-based slam. In European
Conference on Computer Vision, pages 802–815. Springer, 2008. 18

[60] K. Konolige and M. Agrawal. Frameslam: From bundle adjustment to real-time
visual mapping. IEEE Transactions on Robotics, 24(5):1066–1077, 2008. 6

[61] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g 2 o: A
general framework for graph optimization. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 3607–3613. IEEE, 2011. 19

[62] K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving. International
Journal of Computer Vision, 38(3):199–218, 2000. 22

[63] Y. Kuwata and J. How. Three dimensional receding horizon control for uavs. In
AIAA Guidance, Navigation, and Control Conference and Exhibit, volume 3, pages
2100–2113, 2004. 106

REFERENCES 184

[64] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How. Motion planning
for urban driving using rrt. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 1681–1686. IEEE, 2008. 125

[65] J.-C. Latombe. Robot motion planning, volume 124. Springer Science & Business
Media, 2012. 119

[66] S. M. LaValle. Rapidly-exploring random trees a ew tool for path planning. 1998.
123, 124

[67] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The Inter-
national Journal of Robotics Research, 20(5):378–400, 2001. 124, 125

[68] J. J. Leonard and H. J. S. Feder. A computationally efficient method for
large-scale concurrent mapping and localization. In ROBOTICS RESEARCH-
INTERNATIONAL SYMPOSIUM-, volume 9, pages 169–178. Citeseer, 2000. 19

[69] K. Litomisky. Consumer rgb-d cameras and their applications. Rapport technique,
University of California, page 20, 2012. 31

[70] D. G. Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on,
volume 2, pages 1150–1157. Ieee, 1999. 6

[71] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.
121, 122, 124

[72] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous robots, 4(4):333–349, 1997. 19

[73] C. Mei, G. Sibley, M. Cummins, P. M. Newman, and I. D. Reid. A constant-time
efficient stereo slam system. In BMVC, pages 1–11, 2009. 6

[74] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. Rslam: A system
for large-scale mapping in constant-time using stereo. International journal of
computer vision, 94(2):198–214, 2011. 6

[75] M. Meilland and A. I. Comport. On unifying key-frame and voxel-based dense
visual slam at large scales. In 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 3677–3683. IEEE, 2013. 7

[76] N. A. Melchior and R. Simmons. Particle rrt for path planning with uncertainty.
In Robotics and Automation, 2007 IEEE International Conference on, pages 1617–
1624. IEEE, 2007. 102

[77] H. P. Moravec. Robot spatial perceptionby stereoscopic vision and 3d evidence
grids. Perception, 1996. 130

REFERENCES 185

[78] R. Mur-Artal, J. Montiel, and J. D. Tardós. Orb-slam: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.
iv, 5, 6

[79] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking and
mapping in real-time. In 2011 international conference on computer vision, pages
2320–2327. IEEE, 2011. iv, 5, 7, 22, 23

[80] L. M. Paz, P. Piniés, J. D. Tardós, and J. Neira. Large-scale 6-dof slam with
stereo-in-hand. IEEE transactions on robotics, 24(5):946–957, 2008. 6

[81] S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space by
factoring the covariance. The International Journal of Robotics Research, 2009.
102

[82] V. A. Prisacariu, O. Kähler, D. W. Murray, and I. D. Reid. Simultaneous 3d
tracking and reconstruction on a mobile phone. In Mixed and Augmented Reality
(ISMAR), 2013 IEEE International Symposium on, pages 89–98. IEEE, 2013. 176

[83] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. Ros: an open-source robot operating system. In ICRA workshop on
open source software, volume 3, page 5, 2009. 164

[84] Y. Roth-Tabak and R. Jain. Building an environment model using depth informa-
tion. Computer, 22(6):85–90, 1989. 130

[85] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. In 2011 International conference on computer vision, pages 2564–
2571. IEEE, 2011. 6

[86] S. A. Sadat, K. Chutskoff, D. Jungic, J. Wawerla, and R. Vaughan. Feature-
rich path planning for robust navigation of mavs with mono-slam. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 3870–3875.
IEEE, 2014. 6, 22

[87] D. Scaramuzza and R. Siegwart. Appearance-guided monocular omnidirectional
visual odometry for outdoor ground vehicles. IEEE transactions on robotics, 24
(5):1015–1026, 2008. 176

[88] K. Schauwecker and A. Zell. On-board dual-stereo-vision for the navigation of an
autonomous mav. Journal of Intelligent & Robotic Systems, 74(1-2):1–16, 2014. 6

[89] T. Schöps, J. Engel, and D. Cremers. Semi-dense visual odometry for ar on a
smartphone. In Mixed and Augmented Reality (ISMAR), 2014 IEEE International
Symposium on, pages 145–150. IEEE, 2014. 176

[90] K. Shoemake. Animating rotation with quaternion curves. In ACM SIGGRAPH
computer graphics, volume 19, pages 245–254. ACM, 1985. 60

REFERENCES 186

[91] C. Silpa-Anan, R. Hartley, et al. Visual localization and loop-back detection with a
high resolution omnidirectional camera. In Workshop on Omnidirectional Vision.
Citeseer, 2005. 176

[92] T. Siméon, J.-P. Laumond, and C. Nissoux. Visibility-based probabilistic roadmaps
for motion planning. Advanced Robotics, 14(6):477–493, 2000. 124

[93] H. Strasdat, J. Montiel, and A. J. Davison. Real-time monocular slam: Why
filter? In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 2657–2664. IEEE, 2010. 6

[94] H. Strasdat, J. Montiel, and A. J. Davison. Scale drift-aware large scale monocular
slam. Robotics: Science and Systems VI, 2010. 6

[95] H. Strasdat, A. J. Davison, J. Montiel, and K. Konolige. Double window optimisa-
tion for constant time visual slam. In 2011 International Conference on Computer
Vision, pages 2352–2359. IEEE, 2011. 6

[96] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of rgb-d slam systems. In Proc. of the International Conference
on Intelligent Robot Systems (IROS), Oct. 2012. v, ix, 41, 61, 96

[97] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of rgb-d slam systems. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 573–580. IEEE, 2012. 37, 62,
85

[98] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual odometry in urban
environments using an omnidirectional camera. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2531–2538. IEEE, 2008. 176

[99] C. J. Taylor and D. J. Kriegman. Structure and motion from line segments in
multiple images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(11):1021–1032, 1995. 22

[100] A. Teichman, S. Miller, and S. Thrun. Unsupervised intrinsic calibration of depth
sensors via slam. In Robotics: Science and Systems, volume 248, 2013. 20

[101] S. Thrun. Particle filters in robotics. In Proceedings of the Eighteenth conference on
Uncertainty in artificial intelligence, pages 511–518. Morgan Kaufmann Publishers
Inc., 2002. 104, 105

[102] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization
for mobile robots. Artificial intelligence, 128(1):99–141, 2001. 104, 105

[103] S. Thrun et al. Robotic mapping: A survey. Exploring artificial intelligence in the
new millennium, 1:1–35, 2002. 130

[104] P. H. Torr and A. Zisserman. Feature based methods for structure and motion esti-
mation. In International workshop on vision algorithms, pages 278–294. Springer,
1999. 22

REFERENCES 187

[105] G. P. Tournier, M. Valenti, J. P. How, and E. Feron. Estimation and control of a
quadrotor vehicle using monocular vision and moire patterns. In AIAA Guidance,
Navigation and Control Conference and Exhibit, pages 21–24, 2006. 6

[106] R. G. Valenti, I. Dryanovski, C. Jaramillo, D. P. Ström, and J. Xiao. Autonomous
quadrotor flight using onboard rgb-d visual odometry. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 5233–5238. IEEE, 2014. 8

[107] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global localization from
monocular slam on a mobile phone. IEEE transactions on visualization and com-
puter graphics, 20(4):531–539, 2014. 176

[108] E. Welzl. Constructing the visibility graph for n-line segments in o (n 2) time.
Information Processing Letters, 20(4):167–171, 1985. 122, 124

[109] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald.
Kintinuous: Spatially extended kinectfusion. 2012. 8

[110] T. Whelan, M. Kaess, J. J. Leonard, and J. McDonald. Deformation-based loop
closure for large scale dense rgb-d slam. In 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 548–555. IEEE, 2013. 7

[111] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald.
Real-time large-scale dense rgb-d slam with volumetric fusion. The International
Journal of Robotics Research, 34(4-5):598–626, 2015. 7, 8

[112] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison.
Elasticfusion: Dense slam without a pose graph. Proc. Robotics: Science and
Systems, Rome, Italy, 2015. 7, 8

[113] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte. Efficient simultaneous
localisation and mapping using local submaps. In Proceedings of the Australian
Conference on Robotics and Automation, pages 128–134, 2001. 19

[114] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Octomap:
A probabilistic, flexible, and compact 3d map representation for robotic systems.
In Proc. of the ICRA 2010 workshop on best practice in 3D perception and modeling
for mobile manipulation, volume 2, 2010. 132

[115] Z. Zhang. Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10,
2012. 7

	Preliminaries
	Title
	Abstract
	Declaration
	Acknowledgement
	Dedication

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 SLAM and Robot Navigation
	1.3 Edge Based RGB-D SLAM
	1.4 SLAM Aware Path Planning
	1.5 Contributions, Outline and Publications
	1.5.1 Contributions
	1.5.2 Thesis Outline
	1.5.3 Publications

	2 Edge Based RGB-D SLAM
	2.1 Background
	2.1.1 Probabilistic SLAM Description
	2.1.2 Keyframe Based SLAM
	2.1.3 Pose Graph Optimization
	2.1.4 Depth Sensor Calibration

	2.2 SLAM System and Sensor Requirements
	2.2.1 Geometric Configuration Space Construction
	2.2.2 Real-Time Performance Limitations

	2.3 RGB-D Edge SLAM Overview
	2.3.1 Formulation
	2.3.2 RGB-D Edge Features
	2.3.3 Edge Point Clouds and ICP Registration
	2.3.4 Relaxation Based Pose Graph Optimization and Loop Closure

	2.4 Depth Edge Detection
	2.4.1 Occluding Depth Edge Detection
	2.4.2 Sub Image Depth Edge Detection
	2.4.3 Results

	2.5 RGB Edge Detection
	2.6 Edge Based ICP RGB-D Frame Registration
	2.6.1 Advantages
	2.6.2 Disadvantages
	2.6.3 Evaluation
	2.6.4 Registration Strength Evaluation

	2.7 Map Construction and Sensor Tracking
	2.8 Map Optimization
	2.8.1 Loop Closure Detection
	2.8.2 Pose Graph Optimization
	2.8.3 Loop Closure Examples

	2.9 Results
	2.9.1 SLAM Evaluation
	2.9.2 Further Results

	2.10 Conclusions

	3 Line Based RGB-D SLAM
	3.1 Incorporation of Line Features
	3.2 Line Segment Extraction from Edge Point Clouds
	3.2.1 Grid Partitioning
	3.2.2 Collinear Subset Construction
	3.2.3 Set Merger
	3.2.4 Extraction Results

	3.3 Iterative Closest Line
	3.3.1 Nearest Line Feature Search
	3.3.2 Point to Line feature Pair Selection
	3.3.3 Evaluation

	3.4 Results
	3.4.1 SLAM Evaluation
	3.4.2 Further Results

	3.5 Conclusions

	4 Belief Space Planning
	4.1 Planner Overview
	4.2 Problem Formulation
	4.3 Graph Construction
	4.3.1 Determining Graph Vertices
	4.3.2 Determining Graph Edges
	4.3.3 Intersection Checks

	4.4 Belief Space Planner
	4.4.1 Algorithm

	4.5 Results
	4.6 Conclusions

	5 Path Planning
	5.1 Background
	5.1.1 Overview
	5.1.2 Graph Based Planning
	5.1.3 Stochastic Sampling Based Planners
	5.1.4 Probabilistic Road-Maps (PRM)
	5.1.5 Rapidly Exploring Random Trees (RRT)
	5.1.6 Rapidly Exploring Random Tree Star (RRT*)
	5.1.7 Informed RRT*

	5.2 SLAM Aware Path Planning
	5.2.1 Problem Overview
	5.2.2 Empty, Occupied and Unknown Space
	5.2.3 Ensuring Sufficient Sensor Information for Localization
	5.2.4 Configuration Space Generation using SLAM Map Data

	5.3 Keyframe Centric Path Planning
	5.3.1 Overview
	5.3.2 Keyframe Navigation Graph Construction
	5.3.3 Keyframe Planning

	5.4 Results
	5.4.1 Hand-held Results
	5.4.2 MAV Hardware and Software Set-up
	5.4.3 MAV Results

	5.5 Conclusions

	6 Conclusions
	6.1 Chapter Summary
	6.2 Contributions Summary
	6.3 Future Directions
	6.3.1 Omnidirectional Sensing
	6.3.2 Modern Small Form Factor Computer Hardware
	6.3.3 Edge Cloud Refinement and Monocular Depth
	6.3.4 Redundant keyframe Elimination
	6.3.5 Tighter Integration Between SLAM and Edge Detection
	6.3.6 Slam Based Exploration

	References

