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Autonomous Navigation in Complex Indoor and Outdoor Environments
with Micro Aerial Vehicles

Abstract
Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor
and outdoor environments due to their small size, superior mobility, and hover capability. In such missions, it
is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent
successes in commercialization of GPS-based autonomous MAVs, autonomous navigation in complex and
possibly GPS-denied environments gives rise to challenging engineering problems that require an integrated
approach to perception, estimation, planning, control, and high level situational awareness. Among these, state
estimation is the first and most critical component for autonomous flight, especially because of the inherently
fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present
methodologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf
quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only
onboard sensing and computation. We start by developing laser and vision-based state estimation
methodologies for indoor autonomous flight. We then investigate fusion from heterogeneous sensors to
improve robustness and enable operations in complex indoor and outdoor environments. We further propose
estimation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning,
control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online
experimental results are presented throughout the thesis. We conclude by proposing future research
opportunities.
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ABSTRACT

AUTONOMOUS NAVIGATION IN COMPLEX INDOOR AND OUTDOOR

ENVIRONMENTS WITH MICRO AERIAL VEHICLES

Shaojie Shen

Vijay Kumar

Nathan Michael

Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue

in confined indoor and outdoor environments due to their small size, superior mobil-

ity, and hover capability. In such missions, it is essential that the MAV is capable of

autonomous flight to minimize operator workload. Despite recent successes in commer-

cialization of GPS-based autonomous MAVs, autonomous navigation in complex and

possibly GPS-denied environments gives rise to challenging engineering problems that

require an integrated approach to perception, estimation, planning, control, and high level

situational awareness. Among these, state estimation is the first and most critical compo-

nent for autonomous flight, especially because of the inherently fast dynamics of MAVs

and the possibly unknown environmental conditions. In this thesis, we present method-

ologies and system designs, with a focus on state estimation, that enable a light-weight

off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and

outdoor environments using only onboard sensing and computation. We start by de-

veloping laser and vision-based state estimation methodologies for indoor autonomous

flight. We then investigate fusion from heterogeneous sensors to improve robustness and

enable operations in complex indoor and outdoor environments. We further propose es-

timation algorithms for on-the-fly initialization and online failure recovery. Finally, we

present planning, control, and environment coverage strategies for integrated high-level

autonomy behaviors. Extensive online experimental results are presented throughout the

thesis. We conclude by proposing future research opportunities.
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Chapter 1

Introduction

Micro aerial vehicles (MAVs) are ideal platforms for a wide range of applications in

indoor and outdoor environments due to their small size, superior mobility, and hover

capability. In such missions, it is essential that the MAV is capable of autonomous flight

to minimize operator workload. Thanks to the Global Positioning System (GPS) tech-

nology, we have seen successful commercialization of autonomous MAVs in outdoor ap-

plications such as aerial photography [2], transportation [1], and intelligent farming [3].

However, we see great potential of using MAVs in surveillance and search and rescue

missions in confined and complex indoor and outdoor environments that are inaccessi-

ble or dangerous for human and ground vehicles. Key challenges while operating such

environments are the lack of GPS signal, limited or no external infrastructure, existence

of unknown obstacles in close proximity, as well as the necessity of full autonomy with

minimum human interaction. It is also desirable to have small and fast moving MAVs in

such scenarios due to the time critical nature of search and rescue missions. Up to date,

building a MAV that satisfies all the size, weight, and power (SWaP) constraints and is

capable of fast autonomous navigation in such environments still gives rise to challenging

engineering problems that requires knowledge and integration of perception, estimation,

planning, control, and high level situational awareness. Among these, state estimation is

the foremost critical component for autonomous flight especially because of the inher-
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ently fast dynamics of MAVs and the possibly unknown environmental conditions.

In this thesis, we present methodologies and system designs, with a focus on state es-

timation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navi-

gate complex unknown indoor and outdoor environments using only onboard sensing and

computation. We look into different sensing options and propose algorithms to achieve

the desired estimation capabilities. We propose laser- and vision-based state estimation

methodologies for indoor autonomous flight. We then investigate into fusing information

from heterogeneous sensors to increase capable operational environments. We further

propose algorithms to enable on-the-fly initialization and online failure recovery for sys-

tems with minimum sensing capability. Finally, we present planning, trajectory genera-

tion, and environment coverage strategies for integrated high-level autonomy behaviors.

Extensive online experimental results are presented throughout the thesis.

1.1 Research Problems

We begin by reviewing a number of research problems that arise during the develop-

ment of autonomous MAVs. We will review literatures on each problem, as well as

its relevant fields, in the next chapter (Ch. 2). The topic of autonomous aerial nav-

igation has been studied extensively over the past few years. Due to cost and pay-

load constraints, most MAVs are equipped with low cost proprioceptive sensors such

as micro-electro-mechanical (MEMS) inertial measurement units (IMUs) that are inca-

pable for long term state estimation. As such, exteroceptive sensors, such as GPS, laser

scanners, and cameras are usually fused with proprioceptive sensors to improve estima-

tion accuracy. While GPS-based navigation is well-developed by the aerospace com-

munity [38, 70], autonomous navigation in GPS-denied environments has only gained

popularity recently.
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1.1.1 Autonomous Flight in GPS-denied Environments

In general, challenges in autonomous flight in GPS-denied environments using onboard

sensors include state estimation with limited sensing and computation capabilities, as

well as handling the inherently fast dynamics of MAVs. Two most popular types of on-

board exteroceptive sensors are laser scanners and cameras. Laser-based autonomous

flight approaches are popular in earlier stages of research due to its relatively low pro-

cessing demand [5, 20, 30]. Vision-based approaches enable simultaneous six degree-

of-freedom (6-DOF) state estimation and 3D reconstruction. Popular approaches involve

the use of monocular camera [114, 115], stereo cameras [27, 89], or RGB-D sensors [32].

Cameras offer much better information to weight ratio comparing to laser scanners, but

at the expense of high computation demands for processing image data. However, re-

cent advancements in embedded computing, especially in multi-core and GPU-equipped

mobile processors, already push the computation power to a level that real-time onbaord

vision-based state estimation is feasible.

1.1.2 Multi-Sensor Fusion for Autonomous Flight

However, all approaches that rely on a single exteroceptive sensing modality are only

functional in certain environments. For example, laser-based approaches require struc-

tured environments, vision-based approaches demand sufficient lighting and features, and

GPS only works outdoors. This makes them prone to failure in large-scale missions that

involve indoor-outdoor transitions, during which the environment may change signifi-

cantly. In some environments, information from multiple heterogeneous sensors may

be available, and fusing all available measurements may yield improved estimator accu-

racy and robustness. However, this extra information is often either ignored or used as

switching between sensor suites [110].
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1.1.3 Estimator Initialization and Failure Recovery

In practice, even the most reliable estimator is prone to fail due to the lack of infor-

mation in the environment. It may also be desirable to launch the MAV from another

moving object with unknown velocity and attitude (handheld, truck, ship, or another air-

craft). This motivates us to develop initialization and failure recovery mechanisms that

(re)initialize the estimator from an unknown state with significant velocity and accel-

eration. This (re)initialization should be done as soon as enough information has been

gathered by onboard sensors. This is a challenging problem since quadrotor MAVs are

highly nonlinear systems that operate in full three dimensional environments, and almost

all state-of-the-art nonlinear state estimation algorithms are inoperable without a good

initialization point. This problem is largely overlooked by the community, however, it

is a crucial step towards fail-safe navigation systems. The problem is even more bother-

some for the extreme case of monocular visual-inertial systems (VINS), which consists

of only a camera and an IMU, due to the lack of direct scale measurements.

1.1.4 Planning and Control

Given onboard state estimates, we are able to use a variety of existing control strategies to

stabilize the MAV. For MAVs operating at low speeds with small changes in acceleration,

a linear controller that assumes near hover state can be used [71]. For more aggressive

motions that involve large attitude changes, a controller with nonlinear error metric is

a more appropriate choice [51]. Autonomous navigation requires collision-free paths

through the incrementally built environment model, this can be done by employing state-

of-the-art motion planning algorithms [40]. Bridging the gap between position tracking

control and high level planning is trajectory generation, which aims to provide feasible

time-parameterized trajectories for the MAV [69]. All these are necessary components to

enable autonomous navigation and each contains a broad collection of literatures. How-

ever, in this thesis, we focus on state estimation and only adapt relevant approaches in
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planning and control for system integration.

1.1.5 Autonomous Environment Coverage

Surveillance and search and rescue missions are important applications of MAVs in con-

fined spaces. This kind of missions demand the MAV to return a complete map of the

environment of interest with minimal or hopefully no human interaction. This problem

is call exploration and it is a well-known problem in the field of mobile robotics. In this

thesis, we review challenges when applying existing exploration approaches on MAV

platforms and propose solutions to enable efficient exploration in unknown and unstruc-

tured 3D environments.

1.2 Thesis Overview

Based on previous discussions, we require a state estimator that is suitable for MAV

applications to exhibit following attributes:

• Power-on-and-go: Initialize from an arbitrary unknown state (Ch. 6);

• Autonomy: Estimate its own state in a wide range of environments (Ch. 3, 4, 5);

• Fault-tolerant: Deal with failure of one or more of its onboard sensors (Ch. 5);

• Fail-safe: Recover from total failure of all sensors (Ch. 6);

We focus on developing an estimator that meets all these requirements, and thus provid-

ing reliable state feedback for autonomous flight. Each of these requirements related to

different chapters in this thesis.

Building on top this estimator, we further consider autonomous navigation and envi-

ronment coverage as the the integrated functionality of a MAV to perform the following

iterative process:

• Estimate its state and map the environment (Ch. 3, 4, 5, 6);
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• Generate waypoints that improves environment coverage (Ch. 8);

• Generate collision-free paths to these waypoints (Ch. 7);

• Generate time parameterized trajectories from this path (Ch. 7);

• Autonomously fly through this trajectory to desired waypoints (Ch. 7);

There are a large number of building blocks in a fully functional autonomous navigation

system. Although we have developed the majority of these building blocks over the past

few years, not all of them involves novel scientific contributions. However, the integration

of these building blocks requires careful selection and evaluation of algorithms, as well

as rigorous testing. This does represent significant technical contributions.

In particular, based on state estimation approach that we developed, we adapt ap-

proaches in planning, trajectory generation, and control for our applications. This forms

a system that is capable of guiding the MAV to fly to user-specified waypoints in complex

indoor and outdoor environments. Built on top of such system, we propose an algorithm

that eliminates the need of human operator and enables fully autonomous environment

coverage. The flow of topics of this thesis, which is also the typical flow of a navigation

system, is shown in Fig. 1.1.

Chapter 3 [72, 73, 93, 96] considers the problem of autonomous navigation with a MAV

in confined indoor environments with multiple floors using a laser scanner as the main

sensor. To ensure that the MAV is fully autonomous, we require all computation to occur

onboard the MAV without need for external infrastructure, communication, or human in-

teraction beyond high-level commands. We also highlight field experiments in multiple

environments.

Chapter 4 [97, 98, 99] addresses the development of a light-weight autonomous quadro-

tor that uses two cameras and an inexpensive IMU as its only sensors and onboard pro-
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Figure 1.1: A graphical illustration of the flow of topics and connections between dif-
ferent chapters. It also represents the information flow of our autonomous navigation
system. External information (sensor or human) is shown as dashed lines. Internal infor-
mation flow is shown in solid lines. Boxes with curved edges represent sensors. Rectan-
gular boxes represent technical chapters.

cessors for estimation and control. We describe a fully-functional, integrated system with

a focus on fast visual-inertial state estimation, and demonstrate the quadrotor’s ability to

autonomously travel in indoor environments at high speed.

Chapter 5 [92, 100] merges results from the previous two chapters by presenting a modu-

lar and extensible approach to integrate noisy measurements from multiple heterogeneous

sensors that yield either absolute or relative observations at different and varying time in-

tervals, and to provide smooth and globally consistent pose estimates in real time for

autonomous flight. We illustrate the robustness of our framework in large-scale, indoor-

outdoor autonomous aerial navigation experiments.

Chapter 6 [101] studies on-the-fly initialization and failure recovery for MAV onboard

estimators, with focus on a monocular VINS setting. We present an a linear formulation

that is capable of estimating all critical states without any initial knowledge of the system.

Based on this linear initialization, we further propose a nonlinear optimization approach

that leads to highly accurate state estimates. We also present a special marginalization

scheme that preserve scale observability even during degenerate motions. We demon-
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strate that our approach forms a reliable VINS system that is capable of non-stationary

launching and is suitable for high speed autonomous flight.

Chapter 7 presents common building blocks related to planning and control that relies

on our estimation methodologies and are used in almost all online experiments. These

building blocks are adaptations from existing results to match the unique need of au-

tonomous aerial navigation.

Chapter 8 [94, 95] considers the problem of automatically generating waypoints in the

incrementally built 3D environment, such that, if these waypoints are visited by the MAV,

full coverage of the environment can be achieved. This is built on top of all previous

chapters to enable operations without any human interaction. This problem is called

exploration in robotics. We study the failure modes of directly applying existing 2D ex-

ploration strategies in a 3D setting. We then propose a stochastic algorithm that utilize

sparse free space representation of the 3D environment to efficiently generate desirable

waypoints.

Note that except Ch. 7 which rely on results from previous chapters, all other chapters

are self-contained and may be read independently. Each chapter presents both explana-

tions of advancements in a specific area related to autonomous flight and corresponding

experimental results.

1.3 Overview of Experimental Platforms

A crucial part of our research is experimental validation of of all proposed algorithms

and systems. To this end, we develop different generations of MAV platforms that are

suitable for experimental purposes. All our MAV platforms (Fig. 1.2) are built using off-

the-shelf components. The base platforms are either the Hummingbird (Fig. 1.2(b)) or the
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Pelican (Figs. 1.2(a), 1.2(c), 1.2(d)) quadrotors purchased from Ascending Technologies,

GmbH1. All base platforms are natively equipped with an AutoPilot board consisting of

an IMU, a magnetometer, a barometer, and a user-programmable ARM7 microcontroller.

We use this microcontroller for low level attitude stabilization of the quadrotor. As shown

in Table. 1.1, we outfit base platforms with a variety of sensing and computation units,

resulting in fully equipped MAVs that weights from 0.74 kg to 1.9 kg.

Specifically, the sensors we used (Table. 1.1) include u-blox LEA-6T GPS modules2,

Hokuyo UTM-30LX laser range finders3 that run at 30 Hz, and mvBlueFOX-MLC200w

grayscale HDR cameras4 that capture VGA resolution images at 25 Hz. We fine tune

the camera auto exposure controller to enable fast adaption during rapid light condition

changes. Hardware triggering is used for synchronization between sensors.

Our earlier platforms (Figs. 1.2(a), 1.2(b)) are equipped with an embedded computer

with an Intel Atom 1.6 GHz processor and with 1 GB RAM and 8 GB SD card. Although

it is fastest available processor at that time, the Atom have very limited computation

power and thus motivates and forces us to develop efficient estimation methodologies for

autonomous navigation. In later platforms (Figs. 1.2(c), 1.2(d)), a powerful Intel NUC

computer with Intel Core i3 1.8 GHz processors, up to 16 GB RAM and 120 GB SSD

enables the development of more sophisticated algorithms. All methodologies discussed

in this thesis are implemented in C++ using the Robot Operating System (ROS)5 as the

interfacing robotics middleware.

1http://www.asctec.de
2http://www.u-blox.com
3http://www.hokuyo-aut.jp
4http://www.matrix-vision.com
5http://www.ros.org
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(a) Chapter 3 (b) Chapter 4

(c) Chapter 5 (d) Chapter 6

Figure 1.2: List of platforms with different size, weight, and different sensing and com-
putation capabilities. Each platform is developed specifically for the desired estimator
performance described in its corresponding chapter.

Robot Chapter Sensing Computation Mass

Fig. 1.2(a) 2 IMU, Laser, RGB-D Intel Atom 1.9 kg

1.6 GHz

Fig. 1.2(b) 3 IMU, Cameras Intel Atom 0.74 kg

1.6 GHz

Fig. 1.2(c) 4 IMU, Cameras, GPS Intel Core i3 1.9 kg

Magnetometer, etc 1.8 GHz

Fig. 1.2(d) 5 IMU, Camera Intel Core i3 1.3 kg

1.8 GHz

Table 1.1: Comparison of different experimental platforms.
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1.4 Thesis Contributions

While there are continuous advancements in all areas related to MAVs, we put our focus

on perception and state estimation for autonomous flight, which is the foremost crucial

component for any autonomous MAV. Building on top of this, we adapt existing plan-

ning and control approaches and propose environment coverage strategies to form fully

autonomous systems.

Ch. 3 and 4 focus on the development of real-time navigation systems using onboard

sensing and very limited onboard processing. While there are much less limitations re-

garding onboard computation power nowadays, methodologies and results presented in

these chapters represent significant advancements of system capabilities given the avail-

able onboard computation at the time of development. They were commonly considered

a baseline for MAV navigation research.

Ch. 5 considers fusing heterogeneous sensors in a globally consistent manner. A

core feature of our approach is a modular derivative-free design that allows easy addi-

tion/removal of sensors with minimum calculation and coding. We give special focus on

the fusion of global pose measurements to ensure smoothness in the state estimates. This

is novel to existing approaches [62] in terms of both system capability and readiness for

practical applications.

Ch. 6 proposes a novel linear formulation that properly take the noise characteristic

of onboard sensors to enable estimation of significant but unknown initial values using

a sequence of sensor readings. This reduces the sensitivity to sensor noise as in previ-

ous approaches [17, 45, 56, 66, 67] and enable real-world deployment with very noisy

sensors. Based on the linear initialization, we further propose a nonlinear optimization

to improve estimation accuracy. The two subsystems works interactively to enable fast

maneuvers and failure recovery. We present high speed autonomous flight experiments

to demonstrate system capability.

Ch. 7 adapts existing planning and control approaches to meet the need of autonomous

navigation with onboard sensing. Specifically, we propose control in local frame to en-
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sure smooth flight and minimum jerk trajectory generation to minimize motion blur.

Ch 8 presents a novel algorithm for generating 3D waypoints for achieving full en-

vironment coverage. This work aims to resolve difficulties when applying classic strate-

gies originally designed for 2D environments. It outperforms other 3D exploration al-

gorithms [18, 28, 90, 91, 111] in terms of speed. It is the first algorithm that achieves

real-time operation in 3D environments using only embedded processors.
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Chapter 2

Scientific Background and Literature

Review

2.1 Autonomous Flight in GPS-denied Environments

The literature on autonomous flight in GPS-denied environments is recent but extensive.

A survey in [42] provides a thorough review of ongoing research in the domain of au-

tonomous navigation approaches for rotorcraft platforms.

Earlier work on laser-based autonomous flight MAVs frequently require a partially-

structured environment to enable incremental motion calculations. Particularly relevant

to our approach is the work in [5], and [30], where laser scanners serve as the primary

source of sensory information. Similarly [20] presents an open-source implementation

of a laser-based localization system for a MAV. Mechanized panning laser-scanners that

add considerable payload mass [49] may also be used to improve the 3D sensing ca-

pability. With a known map, it is also possible to fly in general 3D environments by

combining measurements from laser and IMU [8]. However, the main issue of laser-

based approaches is the weight of the sensor, which significantly constrains the agility of

the platform in confined environments.

Cameras are able to generate a large amount of data with very small footprint, and
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therefore are very attractive for MAVs with limited payloads. Approsches are proposed

to utilize a optical flow-based velocity estimator [114], or a monocular SLAM frame-

work [87, 113, 115], as the main vision processing pipeline. In conjunction with a loosely

coupled filtering framework, these approaches successfully enable autonomous quadrotor

flight via a downward-facing camera. However, due to the unavaibility of direct distance

measurement of monocular vision system, these approaches relies on the assumption

of slowly-varying or good initialization of the visual scale. This can be difficult to en-

force during fast motions at low-altitudes in unknown environments with potentially rapid

changes in the observed features. On the other hand, stereo vision-based state estimation

approaches for autonomous MAVs such as those proposed in [27, 89] have the advantage

of direct scale observation. RGB-D sensors [32] have even higher depth measurement

accuracy than stereo-based systems, but RGB-D sensors are inoperable in outdoor envi-

ronment with strong sunlight. On the other end of the spectrum, Bills et al. [7] propose

a map-less navigation algorithm for use with a MAV to circumvent this challenge, but at

the cost of not building a global representation of the environment.

In the next few sections, we expand our discussion to technical fields that are most

relevant to state estimation and autonomous navigation of MAVs.

2.2 Incremental Motion Estimation

Incremental motion estimation with laser scanners or cameras, or commonly known as

laser/visual odometry, is a key component almost all autonomous MAV approaches. Pair-

wise sensor measurements, such as consecutive laser scans or images, are usually used to

estimate the differential motion of the platform.

For the laser-based setting, the iterative closest point (ICP) algorithm and its vari-

ations [85] are popular methods for incremental motion estimation. However, ICP is

an iterative optimization approach without explicit data association and it has poor con-

vergence property when there exist large differences in sensor data. Multi-resolution
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correlative scan matching [80, 81] reports surprising robust results even with large scan

displacement. Corner or line features may also be extracted for data association between

scans [5, 109]. With such data association, scans may be directly matched to obtain the

transformation between them.

Vision-based approaches usually involve detection and matching/tracking of salient

features in the image, such as corners [102], or blobs [6], and estimate the motion given

2D-2D [78] or 2D-3D [23] feature correspondences. Feature-based visual odometry ap-

proaches require that the environment is feature-rich. Recently, approaches that are based

on dense image alignment using intensity values [43, 77] demonstrate promising results

in terms of robustness in featureless environments and against motion blur. However,

such approaches requires tremendous amount of computation that is currently not avail-

able onboard MAV platforms. A semi-dense approach [24] that combine the advantages

of direct image alignment and feature-based approaches demonstrates promising results

in terms of both speed and robustness.

Incremental motion estimates are usually fast to compute, which is beneficial for

MAVs equipped with limited onboard computation, but it has the disadvantage of drifting

over time. Usually, additional mapping and correction steps are required to make the

system globally or at least locally drift-free.

2.3 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is a problem formulation that requires

the robot to construct a map of the observed environment, while at the same time lo-

calize within this map. In SLAM, the environment is often assumed to be previously

unknown but contain sufficient salient features. The central idea of SLAM is to obtain a

maximum likelihood estimate of both robot states and environment features given obser-

vations from a variety of sensors such as laser scanner [29], monocular camera [44], or

stereo cameras [54].
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Pioneering work in SLAM adapts the extended Kalman filter (EKF) framework by in-

cluding the current robot pose and the locations of all features in a large state vector [53].

EKF SLAM needs to maintain and inverse a dense covariance matrix that has quadratic

size with respect to the size of the state vector, thus EKF-based approaches become very

slow as the observed environment grows.

Particle filter-based SLAM approaches are also popular due to their linear complexity

with respect to the number of particles [29]. Methods have been proposed to reduce the

required number of particles to accurately represent the joint probabilistic distribution

of poses and features [29]. However, even for the simplest 2D problem and with very

accurate sensor measurements, particle filter-based approaches cannot guarantee com-

pleteness with a limited number of particles.

Recently, graph-based optimization techniques, which also called bundle adjustment

in the computer vision community, have gained popularity [16, 44, 48]. In such set-

ting, both robot states and environment features are considered as vertices in the graph,

where observations between vertices are considered as factor node in a factor graph

formulation [16], or as edges in a Markov random field formulation [48]. These are

generic formulations that allow modeling of observations from multiple sources, such as

wheel/laser/visual odometry, feature observations, loop closures, and GPS. Despite their

large size, the graphs resulting from all observations are typically sparse, allowing fast

solution with sparse matrix solvers.

A simplify version of the full SLAM problem is pose-only SLAM, This formulation

considers only robot states in the graph. Global consistency is achieved by detecting loop

closures between current and past poses [21]. Pose-only SLAM is considerably faster in

terms of processing speed, but at the expense of suboptimal results due to the ignorance

of feature observation constraints across multiple poses.

However, batch SLAM can still become unacceptably slow as the size of the envi-

ronment grows. Incremental update methods [39] have been proposed to speed up the

computation. The sliding window formulation that only keep a limited amount of robot
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states and features is also a popular way to bound the computation complexity. Condi-

tioning [44] and marginalization [103] are two methods to propagate information from

removed states into the current estimate. A comparison of incremental motion estimation,

SLAM, and sliding window approaches are shown in Fig. 2.1.

As MAVs typically come with tight constraints on onboard computation, it is there-

fore critical to choose appropriate SLAM formulations and carefully implement the SLAM

system in a way that possible latency in SLAM does not breakdown the whole system.

2.4 Multi-Sensor Fusion

When information from multiple sensors is available, it is often desirable to fuse all of is

to improve the system robustness, since all sensors are subject to fail in certain environ-

ments (Sect. 1.1.2). It is straightforward perform multi-sensor fusion in a graph-based

SLAM framework as each measurement simply adds another edge or factor node to the

graph [11, 34, 88]. Graph-based approaches have the advantage of being able to han-

dle delayed and out of sequence measurements as past states are stored. However, in

autonomous MAVs, state estimates from sensor fusion are often directly used for stabi-

lizing the vehicle, thus requiring high rate and low latency state estimates. In such case,

computationally expensive graph-based approaches may not be appropriate.

On the other hand, Kalman filtering-based approaches are able to fuse multiple sen-

sors simply by using multiple measurement models, resulting in significant speed up in

computation. However, naive Kalman filters implementations only keep the most recent

robot state. As such, while it is straightforward to fuse multiple absolute measurements

such as GPS, pressure/laser altimeter in a recursive filtering formulation, the fusion of

multiple relative measurements obtained from laser or visual odometry is more involved.

It is common to accumulate the relative measurements with the previous state estimates

fuse them as pseudo-absolute measurements [114]. However, such fusion is sub-optimal

since the resulting global position and yaw covariance is inconsistently small compared to
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the actual estimation error. This violates the observability properties [46], which suggests

that such global quantities should be unobservable. To resolve this issue, state augmen-

tation techniques [84], which include reference states of all relative measurements in the

state vector, properly account for the state uncertainty when applying multiple relative

measurements from multiple sensors.

Considering MAV applications, [62] recently proposed a open source EKF-based

multi-sensor fusion framework. However, this framework does not support fusion of

multiple heterogeneous relative measurements in a modular and extensible fashion.

2.5 Monocular Visual-Inertial State Estimation

Despite the fact that fusing multiple sensors lead to improved robustness, we also have

cases that a platform with the smallest size is desirable. In such case, monocular visual-

inertial systems (VINS) that consists of a camera and a low cost IMU are very attractive

to MAVs with limited payload budget due to their small footprint, low cost, and low

maintenance.

It is obvious that monocular VINS is unsolvable using only pairwise images due

to the lack of direct scale measurements. Using measurements from multiple time in-

stants, solutions to monocular VINS has been proposed in a filtering setting [37, 41, 46,

47, 55, 76, 114, 115] and in a graph-based optimization/bundle adjustment setting [35,

54, 103]. Filtering-based approaches have the advantage of relatively fast processing

due to its continuous marginalization of past states, but their performance can be sub-

optimal due to early fix of linearization points. Graph-based approaches benefit from

iterative re-linearization of states but it requires more computation power. With proper

marginalization, a constant complexity sliding window graph-based framework can be

obtained [103]. Conditioning is also a popular method among the computation vision

community to achieve constant computation complexity [44]. A comparison between

filtering and graph-based approaches is presented in [50]. The authors reported nearly
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identical results of two types of approaches. However, the platform for verification is

only equipped with an optical flow sensor that is unable to perform long term feature

tracking. This limits the power of graph-based approach, as a sufficiently connected

graph is never constructed.

We can also categorize VINS solutions as loosely coupled [114] or tightly cou-

pled [35, 37, 41, 46, 47, 54, 55, 76]. Loosely coupled approaches usually utilize an

independent vision processing module such as PTAM [44] for up-to-scale pose estima-

tion, and integrating the vision pose with IMU using a filter for scale estimation. Tightly

coupled approaches usually lead to better estimation results (up to linearization error)

because they integrate camera measurement and noise models in a systematic manner.

Another challenge with monocular VINS is the scale ambiguity due to degenerate

motion. It is well known that in order to render the scale observable, accelerations in

at least two axes are required [37, 41, 66]. However, for a MAV, degenerate motions

such as hovering and constant velocity motions are unavoidable. The hover case can be

addressed via conditioning in a keyframe-based loosely coupled approach [44], or with a

last-in-first-out (LIFO) scheme in a tightly-coupled sliding window approach [47].

In fact, VINS is very closely related to SLAM in the sense that most VINS approaches

operates in unknown environments which requires simultaneous estimation of both the

trajectory of the sensor suite as well as environments. However, VINS estimators esti-

mators usually use a sliding window and consider a limited number of vehicle states and

environment features in order to bound the computation cost. They often do not consider

loop closures or global mapping.

2.6 Estimator Initialization and Failure Recovery

All state-of-the-art nonlinear solvers requires good initial values that are close to the

global optimal in order to converge properly. In practice, initialization is usually handled

in the following ways. First, there are cases that full state observation is available. The
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Figure 2.1: Comparision between different state estimation approaches, characterized by
the number of robot poses/states and/or environment features kept in the system.

most typical example in this case is GPS-based navigation, where the first GPS position

and velocity reading can be used to initialize the estimator [38, 70]. Second, if all unob-

servable states are known to be stationary at the time that the estimator starts, they can be

initialized as zero. In SLAM with ground robots, the initial pose of the robot can be set

in this way. Finally, other sources may be helpful to obtain a good approximation of the

initialization value. This approach is commonly used in MAV applications, especially for

the monocular VINS case. For example, [114] uses the average scene depth to initialize

the scale filter, [115] uses readings from the pressure altimeter for scale initialization. If

direct scale observation is available as in the stereo setup, initial velocity of the platform

can be approximated by numerically differentiate first two poses. The initial attitude of

the platform can be obtained from the readings from the accelerometer by assuming the

linear acceleration of the platform is small.

However, none of these approaches have in principle solved the initialization prob-

lem. Consider the case that a MAV equipped with a monocular VINS sensor suite be

launch from a moving object (human or another moving ground or aerial vehicles) with

unknown velocity and significant acceleration, since the visual scale is not directly ob-
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servable, and the platform is not launched from a stationary condition, all previously in-

troduced initialization assumptions are invalid. Even worse, if the estimator fails during

operation due to the lack of features in the environments, existing nonlinear solvers will

fail completely since no controlled initialization procedure can be performed. However,

it is desirable to have the estimator recover from failure if later sufficient information is

gathered. In fact, initialization and failure recovery are equivalent since both of them

require that the estimator to (re)initialize from an unknown state.

Pioneering work on state estimation without initialization is proposed in [60, 61],

where the authors proposed to perform the estimation in the body frame of the first pose

in the sliding window. An IMU pre-integration technique is proposed to handle multi-

rate sensor measurements. The authors show that the nonlinearity of the system mainly

arises only from rotation drift. Recent results suggests that by assuming the orientation

is known, VINS may be solved in a linear closed-form [17, 45, 56, 66, 67]. It has been

shown that both the initial gravity vector and the body frame velocity can be estimated

linearly. These results have significant implications that a good initialization of the VINS

problem may be actually not necessary. In particular, [66, 67] analytically show condi-

tions from which initial values are solvable. However, [45] is limited to use a fixed small

number of IMU measurements, which makes it very sensitive to IMU noise. Approaches

that utilize multiple IMU measurements in a sliding window [17, 56, 66, 67] do not scale

well to a large number of IMU measurements since they relies on double integration of

accelerometer output over an extended period of time. Moreover, these closed-form ap-

proaches do not take the noise characteristic of the system into account, which lead to

sub-optimal results.

2.7 Autonomous Environment Coverage

Exploration is a well-known problem in the field of mobile robotics. A traditional ex-

ploration approaches is frontier-based exploration that define locations in the map that,
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if visited, reduce environment uncertainty and lead to full environment coverage. Tradi-

tional 2D approaches rely upon a dense occupancy grid representation of the world and

knowledge of both the known (occupied and unoccupied) and unknown cells in the map.

Frontier-based exploration approaches generally compute exploration frontiers as the

discrete boundary between the unoccupied and unknown regions of the current environ-

ment estimate. Since the introduction of frontier-based exploration [116], several algo-

rithmic variations have been proposed to improve the exploration performance [9, 26,

112] with an evaluation of several different methods in [31]. These variations focus on

improving the expected observation area as compared to the path execution cost. Exten-

sions enabling cooperative multi-robot frontier-based exploration extend this notion by

optimizing this cost across multiple vehicles [64, 105]. Variations on this theme improve

performance by considering energy efficiency [68], localization accuracy [63], frontier

clustering [74], and map segmentation [13].

Extensions of frontier-based exploration methods to 3D are proposed in the litera-

ture through the integration of elevation or octree map structures [25, 36] and simplified

polygonal approximations [79]. In [22], 3D volumetric data is projected to a 2D infor-

mation grid to generate candidate points for exploration. While these methods consider

3D environments, the approaches are focused on exploration for ground vehicles and

ultimately determine candidate frontier locations assuming a planar mobility model.

The direct 3D extension of frontier-based exploration given a dense voxel grid rep-

resentation of the environment and the integration of frontier voids are proposed in [28]

and [18], respectively. In [91], 3D frontiers are integrated with a vector field-based ap-

proach to obtain shorter exploration trajectories. The 3D exploration problem is also

considered by the vision community in the context of 3D surface exploration. Explo-

ration goals are identified by detecting range discontinuities or openings in the observed

surface which guide the exploration process [90, 111]. However, these methods require

considerable computational and memory resources as evidenced by the analysis in each

of these works and are unable to operate in real-time on a computationally-constrained
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MAV.

Autonomous indoor exploration with MAVs using 2D frontier-based exploration ap-

proaches is presented in [4, 82]. In these works, the MAV operates in 3D but navigates

with respect to a 2D occupancy grid map. The naive extension of such methods to three

dimensions introduces several challenges when considering systems with payload con-

straints. The primary challenge is the inability of onboard sensors to faithfully provide

information about known and unknown environment regions in three dimensions. Due

to limited available power, our MAV is only able to carry a restricted set of sensors

such as lasers and cameras (mono, stereo, or RGB-D) that fit within the payload ca-

pacity of the vehicle. However, scanning lasers provide only partial information about

the three-dimensional structure of the surrounding environment. The fact that any three-

dimensional information is available from a laser rigidly mounted to a MAV is a conse-

quence of the motion of the MAV during flight. Cameras suffer from similar limitations

because of limited field of view. Another challenge resulting from payload constraints is

limited onboard processing. Even though processors and memory are getting faster and

less expensive, we are still limited by the lack of low-power, low-mass onboard compu-

tation for the processing of sensory information.
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Chapter 3

Laser-Based Autonomous Indoor

Navigation

This chapter presents our first successful attempt in developing a self-contained au-

tonomous indoor MAV using a laser scanner as the main sensor. We are interested in

real-time autonomous navigation in multi-floor indoor environments using an aerial ve-

hicle with pragmatic constraints on available computational resources (speed and mem-

ory). Therefore, we address the problems of mapping, localization, planning, and control

given these system requirements.

We note that this topic is addressed by others in the community with some similarities

in approach and methodology with results toward online autonomous navigation and ex-

ploration with an aerial vehicle [5, 20, 30]. The major point of differentiation between our

work and existing results is that our system is capable of autonomous navigation without

need of external infrastructure. We ensure that the system is able to robustly operate in

challenging multi-floor environments where reliance on external processing or sustained

communication with the vehicle is infeasible. We present results from field experiments

in multiple environments and a live demonstration that required that the system operate

without failure over an extended period of time.

In this chapter, we focus on the discuss on perception, state estimation, and mapping
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Figure 3.1: Diagram of laser-based state estimation. Dotted box shows the estimator
module that provides relative measurement in Ch. 5.

methodologies (Fig. 3.1) used in the system. We present autonomous navigation results

from systems powered by these approaches. We note that autonomous navigation in-

volves careful integration of other important components such as planning, control, and

user interface. However, we would like to defer the discuss of these components and

the integration to Ch. 7 as most of them are adaptations of existing results in their spe-

cific areas. These components are also used as common building blocks to support and

demonstrate methodologies to be presented in the next few chapters (Ch. 4, 5, 6).

3.1 Pose Estimation

Central to our work is a reliable estimation module that outputs 6-DOF pose using a 2D

laser scanner and an low cost IMU and without any prior knowledge of the environment.

We note that a 2D laser scanner is insufficient to estimate all parameters in 6-DOF, as

such, we propose a decoupled estimator design by utilizing certain assumptions of the

environment.

We define vectors in the world and body frames as (·)w and (·)b respectively. We

are interested in the 6-DOF pose of the MAV in the world frame, which is defined as:

[xw, yw, zw, ψw, θw, φw]. where ψw, θw, and φw are yaw, pitch, and roll Euler angles

representing the rotation from the body frame to the world frame following a ZYX Euler

25



angle conversion. Accordingly, we have the rotation matrix representation:

Rw
b = R(ψw) ·R(θw) ·R(φw)

We use a 2D laser-based pose estimation approach to estimate the 2D position and

yaw (ψw). A Kalman filter (KF) with state augmentation fuses IMU data with redirected

laser scans to provide altitude estimates (zw). The remaining state variables, φw and θw,

are output directly from the onboard IMU.

3.1.1 Assumption

As the domain of interest is indoor environments and periphery, we assume 2.5D envi-

ronment models formed by collections of vertical walls and horizontal ground planes, all

assumed to be piecewise constant. Let
[
sxb, syb, 0

]
T be the laser scan endpoints in the

body frame. We can project the laser scans to a horizontal plane that is perpendicular to

the gravity vector (gw = [0, 0, g]T) by:
sxg

syg

szg

 = R(θw) ·R(φw) ·


sxb

syb

0


We eliminate the scans that hit the floor or ceiling, which are generally not useful for scan

matching, by comparing szg with the redirected laser scans pointing upward and down-

ward. Although this approach largely simplifies the challenges of full 3D scan matching

using only 2D laser range finders, the 2.5D environment assumption is violated in clut-

tered and outdoor environments with natural structure. In our experiments we see that

partial structure in the environment satisfies this assumption and the overall performance

is acceptable.

3.1.2 2D Pose Estimation

A horizontally mounted scanning serves as a primary source of information for 2D posi-

tion and yaw estimation. We evaluated several laser-based methods for pose estimation
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such as exhaustive search [80] and feature-based approaches [109]. However, as the vehi-

cle dynamics require pose estimates with update rates of 20 Hz and our limited onboard

computational resources, we chose the Iterative Closest Point (ICP) algorithm, which

yields a robust and inexpensive continuous pose estimate. We make use of a grid-based

search [12] to speed up the computationally expensive closest point search in ICP.

3.1.3 Altitude Estimation

We retrofit the laser with mirrors for beam redirection to the floor and ceiling for altitude

measurement (Fig. 3.2(a)). A KF with altitude and vertical velocity as state is used for

fusing IMU laser readings and detect surface discontinuities (Fig. 3.2(b)). We measure

the variation in altitude with scans pointing to the floor and use this value to approximate

the variance used in the measurement update of the KF. If the variation is too high, gen-

erally due to uneven surfaces or during a floor level change, we discard the current laser

measurement and defer the measurement update until a stable measurement is obtained.

An additional mirror deflects scans vertically upward toward the ceiling. These measure-

ments provide additional robustness should there be no stable downward measurements

available. When no upward or downward laser measurements are available, we use an

onboard pressure sensor for short term measurement updates and force the MAV to lower

its height.

A more principled way of fusing laser and pressure measurement together with other

nonlinear measurements that also provides height estimates (e.g. visual odometry) will be

presented in Ch. 5. Corrections of accumulated errors caused by frequent floor transitions

are resolved through loop closure.
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(a) (b)

Figure 3.2: Laser mount with mirrors for beam redirection to the floor and ceiling for
laser-based altitude estimation with a KF (Fig. 3.2(a)). Surface discontinuity is de-
tected by the differences between process (dotted) and measurement (solid) updates
(Fig. 3.2(b)).

3.2 EKF-based Sensor Fusion for Control

To ensure high-rate, accurate, and drift-free pose estimates for feedback control, we use

an Extended Kalman Filters (EKF) to fuse and boost the pose estimate to 100 Hz. The

EKF combines the 20 Hz pose estimate from scan matching and the altitude estimator and

the 100 Hz IMU data to provide 100 Hz pose and linear velocity estimates in the world

frame. The final estimation output has an average delay of 0.01 s and feeds directly into

the feedback control loop of the robot for position and velocity control.

The state vector of this EKF is defined as:

xt =
[
pwt , Φw

t , ṗbt ,
abbt ,

ωbbt
]

T

where pwt = [xwt , y
w
t , z

w
t ] T and Φw

t = [ψwt , θ
w
t , φ

w
t ] T are position and orientation in

the world frame at time t. Note that pwt can also be interpreted as the position of the

body frame at time t with respect to the world frame (·)w, other parameters also follow

similar interpretation. abbt and ωbbt are the bias of the accelerometer and gyroscope, both
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expressed in the body frame. We consider an IMU-based state propagation model:

ut =
[
abt , ω

b
t

]
T

vt =
[
avt,

ωvt,
bvt
]

T

xt+1 = f(xt, ut, vt)

where ut is the measurement of linear accelerations and angular velocities from the IMU

in the body frame. vt ∼ N (0,Dt) ∈ R12 is the process noise. avt and ωvt represent addi-

tive noise associated with the gyroscope and the accelerometer. bvt models the Gaussian

random walk of the gyroscope, accelerometer bias. The function f(·) is a discretized

version of the continuous time dynamical equation [46].

The pose estimate from the laser-based pose estimator is first transformed to the IMU

frame before being used for the measurement update. The measurement model is linear

and can be written as:

zt = Hxt + nt

where H extracts the 6-DOF pose in the state and nt is additive Gaussian noise. Since

the measurement model is linear and the measurement update can be performed via a KF

update step.

Note that this EKF is later developed into a UKF-based multi-sensor fusion frame-

work to combine information from not only laser, but also multiple heterogeneous sen-

sors, in a consistent way (Ch. 5).

3.3 Simultaneous Localization and Mapping

We address the problems of mapping and drift compensation via an incremental simul-

taneous localization and mapping (SLAM) algorithm. Given the incremental motion of

the platform provided by ICP-based scan matching and the IMU, we correct the error in

{x, y, ψ} by aligning incoming laser scans against the existing map using a windowed

exhaustive grid search. The cost-map generated from the obstacles in the existing map
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are approximated by an image distance transform. If a stable floor transition is detected

by the pose estimator, we create a new layer in a multi-layered occupancy grid. The in-

cremental SLAM algorithm runs at 10 Hz and consumes less than 30% of the total CPU

time.

To correct the global inconsistency caused by incremental SLAM, we employ vision-

based techniques to enable robust loop closure detection that does not depend on the

actual pose estimation error [14]. A fixed-size visual vocabulary is constructed offline by

clustering a large number of SURF features collected from different environments [6].

The detected SURF features of each incoming image are converted into the vocabulary

format and matched against previous images via histogram voting. Any matched loop

closure candidates are further verified by scan matching. Loop closures add constraints

to a pose graph, where each node in the graph is a sparse sample of the vehicle poses and

their associated sensor data. We apply batch graph optimization [16] to create a globally

consistent multi-floor map and pose graph. The optimization occurs in the full 6-DOF

pose space with the assumption that closure only happens at the same floor level.

Note that as shown in Fig. 3.1, the SLAM module runs in a separate process at a much

lower frequency. This way, any latency in the SLAM module will not break the overall

feedback control loop.

3.3.1 Environment Representation

Given the estimated global pose of the MAV, we can transform laser scans accordingly

and produce a dense 3D environment representation for planning and obstacle avoidance.

However, the amount of onboard memory is limited in mobile processors like ours. As

we are primarily interested in indoor environments, the majority of obstacles take the

form of vertical walls. Therefore, we use a modified multi-volume occupancy grid map,

similar to [19], to create a compact occupied space representation by merging contigu-

ous occupied cells into common vertical regions. For general indoor environments, the

resulting map typically has a memory cost on the same order as a 2D occupancy grid
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map.

3.4 Experimental Results

Three experiments are presented: (1) a study of the estimator performance compared

to ground truth data; (2) navigation in confined multi-floor indoor environments; (3)

large scale mapping across multiple floors; The motivation for each study is stated in the

respective discussions. The configuration of the experimental platform is discussed in

Sect. 1.3 and shown in Fig. 1.2(a). Planning, trajectory generation and control method-

ologies are presented in Ch. 7.

3.4.1 Evaluating Estimator Performance

We wish to study the performance of the onboard estimator as compared to ground truth,

where ground truth is defined by a sub-millimeter accurate Vicon motion tracking sys-

tem1. Two studies are presented. The first study considers the accuracy of the onboard

estimate compared to the Vicon estimate while the MAV flies along a specified trajectory

(Fig. 3.3). In this case, the Vicon and onboard estimate compare well with a standard

deviation of {σx, σy, σz} = {2.47, 3.23, 0.70} and σψ = 0.55 (units in cm and deg,

respectively). The second study compares feedback control to maintain a single position

using the pose and velocity feedback from the onboard estimator (Fig. 3.4). The standard

deviations of the hover performance are {σx, σy, σz} = {4.42, 2.79, 1.76} (units in cm).

3.4.2 Navigation in Confined Multi-Floor Indoor Environments

We now consider autonomous navigation in confined indoor environments with single or

multiple floors. To verify map consistency, environments with small loops are consid-

1http://www.vicon.com
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Figure 3.3: Error between estimates from Vicon and our laser-based onboard esti-
mator (Figs. 3.3(a)–3.3(b)) while the MAV autonomously tracks a specified trajectory
(Fig. 3.3(c)).
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Figure 3.4: The MAV is commanded to hover based on feedback from the onboard esti-
mator. The resulting regulation error from the closed-loop system and its distribution are
shown.

ered. While the quadrotor is autonomous, the planned trajectory is determined by a user

specifying goal locations with respect to the map.

In Fig. 3.5(a), we see the map generated by the MAV navigating through an indoor

two-floor environment. The vehicle starts on the first floor and transitions to the second

floor via a stairwell (Fig. 3.6(a)). The vehicle returns to the starting location on the first

floor by flying through a window into an open lobby (Fig. 3.6(b)). The vehicle side

clearance when passing through the window is approximately 5 cm. While we do not

have ground truth for this environment, we observe that there is minimal error or drift in

the map. The MAV is commanded to return and hover at its starting location. The error

was observed to be on the order of a couple of centimeters.

To evaluate loop closure, we consider the two buildings in Figs. 3.5(b)-3.5(c). In both

environments, the vehicle starts outside and navigates through doorways, hallways, and

windows, to generate 3D maps. We see in Figs. 3.6(e)-3.6(f)) that the vehicle success-

fully navigates through multiple doorways and around furniture and other environmental

clutter. In both cases, loops in the final maps are successfully recovered and empirically

appear to be consistent. The trajectory length and duration for each experiment is noted
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(a) Trajectory length: 65.9m, duration: 273 s

(b) Trajectory length: 99.7m, duration: 340 s

(c) Trajectory length: 52.1m, duration: 200 s

Figure 3.5: Maps generated during autonomous navigation across multiple floors
(Fig. 3.5(a)) and through confined environments with small loops (Fig. 3.5(b)-3.5(c)).
The vehicle and its trajectory are depicted as a red mesh and line, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Images of the vehicle autonomously navigating between multiple floors
(Figs. 3.6(a)-3.6(b)) and in confined indoor environments (Figs. 3.6(c)-3.6(f)).
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(a) (b)

(c) (d)

Figure 3.7: Map generation across three floors of an indoor environment.

in Fig. 3.5.

3.4.3 Large Scale Mapping Across Multiple Floors

We now consider the performance of the onboard SLAM and loop-closure algorithms

when mapping across several floors. To pursue a large scale experiment with a length

that exceeds feasible flight time, we carry the vehicle such that it emulates flight. Note

that the map is consistent throughout the experiment and the robot is able to close the

loop when it returns to its starting location after mapping a three-story building with

appearance the same as Figs. 3.6(c)- 3.6(d). Maps at multiple stages of the experiment

are shown in Fig. 3.7.
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3.4.4 Public Demonstration

As a final discussion on the performance of our laser-based autonomous navigation sys-

tem, we briefly report results from a live demonstration held at the 27th Army Science

Conference in Orlando, FL, USA, Nov. 29 - Dec. 2, 2010. We report these results to

highlight the repeatable performance of the system.

The demonstration considered autonomous navigation through a maze-like indoor en-

vironment following the size and layout shown in Fig. 3.8(e). During each demonstration

run, the vehicle began with no prior information and concurrently built a 3D map while

navigating through the maze-like environment. Dynamic obstacles (people) were intro-

duced into the environment with the intention of disrupting the planned trajectories of the

vehicle. The goal of the demonstration was to show that the autonomous system was able

to effectively navigate the environment while avoiding collisions with static and dynamic

obstacles (Fig. 3.8). The trajectory of the vehicle was defined by waypoints provided by

an external operator.

Over fifty trials occurred during the live demonstration without any system failures.

The vehicle successfully navigated the environment without issue and avoided all obsta-

cles (static and dynamic).

3.5 Discussion

In this chapter, we show that it is possible to have a computationally-constrained MAV

to fly indoor fully autonomously using a laser range finder as the main sensor. The key

idea behind this is to assume that the environment is 2.5D and project all laser scans

into a common ground pland for scan matching. We also carefully decouple system

components that require low latency performance and components that aim to provide

global consistency but with possibly large delays. This way, the fast dynamics of the

MAV can always be stabilized with fast but less accurate state feedback.
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(a) (b)

(c) (d)

(e)

Figure 3.8: The demonstration environment with windows, walls, and various types of
clutter. A 3D map of the demonstration site generated during an autonomous flight is
shown in Fig. 3.8(e).
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We note that all experimental results are obtained in environments that in general

satisfy the 2.5D assumption (Sect. 3.1.1). When the environment is complex, we see fre-

quent failure of the laser-based approach (Sect. 5.5.2), which motivates and justifies the

development of vision-based approaches (Ch. 4), and multi-sensor fusion methodologies

(Ch. 5).
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Chapter 4

Vision-Based State Estimation and

Autonomous Flight

In this chapter, we study how can we relax the 2.5D assumption (Sect. 3.1.1) in laser-

based approaches by using cameras as the main sensor for state estimation. MAVs can, in

principle, navigate quickly through 3D unstructured environments, enter and exit build-

ings through windows, and fly through collapsed buildings. However, it has proved to be

challenging to develop small (less than 1 meter characteristic length, less than 1 kg mass)

aerial vehicles that can navigate autonomously without GPS. In this work, we take a sig-

nificant step in this direction by developing a quadrotor that uses a pair of cameras and an

IMU for sensing and a netbook class processor for state estimation and control. The MAV

weights only 740 grams and is able to reach speeds of over 10 body lengths/second. In

this chapter, we detail our vision-based state estimation approach and combine it with tra-

jectory generation and control methodologies (Sect. 7) to conduct experiments to verify

the performance of the system.

The key component technology in our system is a visual-inertial state estimator that

accurately tracks the pose and velocity of the quadrotor in 3D environments. We equip

our quadrotor platform with two forward-facing cameras (Fig. 1.2(b) and Table. 1.1) and

develop a loosely-coupled, combined monocular-stereo approach. A primary forward
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Figure 4.1: Diagram of the proposed vision-based state estimator. Note how the de-
coupled and asynchronous formulation saves computation power. Dotted box shows the
estimator module that provides relative measurement in Ch. 5.

facing wide-angle camera operates at a high rate and supports pose estimation and lo-

cal mapping, while a secondary camera operates at a low-rate and compensates for the

limitations of monocular vision-based approaches. A key idea of our approach is the de-

coupling of different components in a visual-based estimator to achieve fast processing,

as shown in Fig. 4.1. We require that visual pose estimation and map update be done

at frame rate (20 Hz) in order to maximize robustness to rapid changes in observable

features during fast maneuvers.

The pose estimate derived from the vision system is fused with IMU information

to enable feedback control. This fusion is done with a unscented Kalman filter (UKF),

which is a preliminary version of the one to be presented in Ch. 5. The vision-based

estimator alone does not enforce global consistency as in visual SLAM [15, 106] due to

computational constraints. However, we implement a offboard global SLAM module to

generate maps from low frequency stereo data and for planning and obstacle avoidance

purposes.

41



Primary Camera (20Hz) 

World Frame 

Secondary Camera (1Hz) 

𝐩𝑗
𝑤  

𝐑𝑗
𝑤 

𝐮𝑖
𝑗
 

𝐟𝑖
𝑤 

Figure 4.2: Camera geometry notation. pwj and Rw
j represent the j th primary camera pose

in the world frame and fwi is the position vector of the ith feature in the world frame. uji
is unit length feature vectors in the body frame of the primary camera.

4.1 Feature Detection and Tracking

Both cameras in the system are modeled as spherical cameras and calibrated using the

Omnidirection Calibration Toolbox [86]. For the primary camera that runs at 20 Hz, we

detect Shi-Tomasi corners [102] and track them using the KLT tracker [59]. Due to the

limited motion between image frames, We are able to perform the feature detection and

tracking calculations on the distorted wide-angle image, reducing the overall computa-

tional burden. All features are transformed into unit length feature observation vectors

uji using calibration parameters. Here we denote uji as an observation of the ith feature in

the j th image in the camera body frame.

Following the method in [114], we remove tracking outliers by using the the esti-

mated rotation (from short term integration of gyroscopic measurements) between two

consecutive frames and unrotate the feature observation prior to applying the epipolar

constraint:

(uj−1
i ×Rj−1

j uji )t = 0

where Rj−1
j is the rotation between two consecutive images estimated by integrating
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gyroscope measurements, and t is the translation vector with unknown scale. Only two

correspondences are required to solve an arbitrary scaled t, thus a 2-point RANSAC can

be used to reject outliers. This approach reaches a consensus with much fewer hypotheses

compared to the traditional 5-point algorithm [78].

For the low rate stereo subsystem, candidate correspondences can be found using

the KLT tracker. With calibrated stereo cameras, outlier rejection of these candidates is

possible via applying epipolar geometry constraint.

4.2 Pose Estimation

In general, and especially for a monocular system, the number of features with good 3D

position estimates is much smaller than the number of tracked features. Even in a stereo

setting, a large number of features cannot be triangulated due to scene ambiguity. Al-

though these “low quality” features cannot be used for position estimation, they do carry

information about the orientation. Therefore, similar to [10], we decouple the orientation

and position estimation subproblems.

4.2.1 Orientation Estimation

Orientation estimation is traditionally computed via the essential matrix between two

consecutive images and compounding incremental rotation [108]. However, we wish to

minimize rotation drift, especially for the case of hovering when the same set of features

can be observed over an extended period of time. We store the index of each frame k

in which feature i is observed in the set Ji ⊂ Z≥0 and record its observation, uki , and

the corresponding camera orientation Rw
k . Mi denotes the frame of the index of the first

observation of i and j is the current frame index. Note that Mi may be different for each

feature. We maintain all features in an ascending order according to Mi (Fig. 4.3).

We pick all features that have at least Tj observations for orientation estimation. Tj
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is determined by:

Tj = Tj−1 + 1−Dj

where the integer Dj ∈ [0, Tj−1] is the minimum number of observation reduction that

makes the estimated essential matrix well-posed. In other words, we require the singular

values of the essential matrix to be close to [
√

2,
√

2, 0]. Dj is found in a brute force

manner. However, if the MAV is hovering, Dj is likely to be zero as there are no large

changes in the distribution of feature observations. On the other hand, fast motions can

result in Dj = Tj−1 and only consecutive frames can be used for orientation estimation

due to rapid changes in the feature distribution. As Tj−1 is likely to be one in this case,

the computation overhead of this brute force search is limited.

We denote the index of the last feature that has at least Tj observations as n. The

image index Mn and its corresponding camera orientation Rw
Mn

are used as a reference,

via the 5-point algorithm [78], to estimate the essential matrixEMn,j and then the rotation

RMn
j between the M th

n image and the current image j. Therefore the current orientation

can be written as:

Rw
j = Rw

Mn
RMn
j .

We require that the onboard attitude estimate be aligned with the inertial frame and

therefore employ a common IMU design strategy where drift in the vision-based attitude

estimate (roll and pitch) is eliminated via fusion with accelerometer measurements. This

approach assumes that the vehicle state is near hover or at a constant velocity. However,

fast vehicle motions can invalidate these assumptions. In this work, we find that apply-

ing small weights to accelerometer measurements yields a reasonable estimate (Fig. 4.6)

given small drift in the vision-based attitude estimate.

4.2.2 Position Estimation

We begin by assuming a known 3D local feature map and describe the maintenance of

this map in the next subsection. Given observations of a local map consisting of known
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Figure 4.3: Data structure for feature storage. Features are managed in a linked list and
newly added features are added to the end of the list. For every feature, all observations
are recorded in pre-allocated memory. Feature deletion, addition, as well as the lookup
of observations of a given feature can be performed in constant time.

3D features, and assuming that this local map is noiseless, the 3D position of the camera

can be estimated by minimizing the sum-of-square sine of angle error of the observed

features:

pwj = argmin
pwj

∑
i∈I

∥∥∥∥ pwj − fwi
‖pwj − fwi ‖

×Rw
j uji

∥∥∥∥2

(4.1)

where, as shown in Fig. 4.2, pwj is the 3D position of primary camera in the world frame

when the j th image is captured, I represents the set of features observed in the j th im-

age, and fwi is the 3D position of the ith feature in the world frame. Rw
j , which is the

estimated rotation of the primary camera, is treated as a known quantity while doing

position estimation. Note that (4.1) is nonlinear. However, since the change of feature

distance between two consecutive images is small, we can approximate (4.1) and solve

the camera position pwj via the following linear system:(∑
i∈I

I3 − uwi uwi
T

‖pwj−1 − fwi ‖2

)
pwj =

∑
i∈I

I3 − uwi uwi
T

‖pwj−1 − fwi ‖2
fwi (4.2)

where uwi
∆
= Rw

j uji . Equation (4.2) always represents three equations in three unknowns,

regardless of the number of observed features. Therefore, the position estimation problem

can be solved efficiently in constant time.
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Figure 4.4: The 3D distribution of eij and the ellipsoid of the best fit Gaussian distribution

(Fig. 4.4(a)). The error distribution histogram for each axis is shown in Fig. 4.4(b)).

In our formulation, position estimation is essentially an intersection of multiple rays.

We can therefore represent the localization error via the statistical distribution of the ray-

to-robot distance. We experimentally verify that this distribution can be be approximate

by a 3D Gaussian distribution (Fig. 4.4). The covariance for position estimation at the j th

frame is obtained as:

Σpwj
=

1

|I|
∑
i∈I

eijeij
T

eij =
(
pwj − fwi

)
× uwi × uwi .

We apply a second RANSAC to further remove outliers that cannot be removed from

the epipolar constraint check (Sect. 4.1). A minimum of two feature correspondences

are required to solve this linear system. As such, an efficient 2-point RANSAC can be

applied for outlier rejection.

4.3 Mapping

As a iterative process, we update the local map and recovery its metric scale given pose

estimates. To assist the navigation system to perform path planning and obstacle avoid-
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ance, similar to Sect. 3.3, we also implement a SLAM module with a number of modifi-

cations to accommodate the characteristic of cameras.

4.3.1 Local Map Update

As stated in Sect. 4.2.2, a map consisting of 3D features is required to estimate the po-

sition of the camera. We approach the local mapping problem as an iterative procedure

where the pose of the camera (pwj and Rw
j ) is assumed to be a noiseless quantity. We do

not perform optimizations for the position of both the camera and the features at the same

time (like traditional SLAM approaches) due to CPU limitations.

We define the local map as the set of currently tracked features and cull features with

lost tracking. New features are introduced into the local map when the current number

of tracked features falls below a pre-defined threshold. Given Ji, the set of observations

of the ith feature up to the j th frame, we can formulate the 3D feature location fwi via

triangulation as:

fwi = argmin
fwi

∑
k∈Ji

∥∥(fwi − pwk )×Rw
k uki

∥∥2

The feature position fwi up to the j th frame can be solved via the following linear system:

Aijf
w
i = bij (4.3)

where

Aij =
∑
k∈Ji

(
I3 − uwi uwi

T
)

bij =
∑
k∈Ji

(
I3 − uwi uwi

T
)
pwk

Again, it can be seen that regardless of the number of observations of a specific feature,

the dimensionality of (4.3) is always three. This enables multi-view triangulation with

constant computation complexity. Also, this system is memoryless, meaning that for the

ith feature up to the j th frame, only Aij and bij need to be stored, removing the need

of repeated summation of observations. Moreover, the condition number or the ratio
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between the maximum and minimum eigenvalues of the matrix Aij gives us information

about the quality of the estimate of fwi . We evaluate every feature based on the condition

number and reject those features with high condition numbers as unsuitable for position

estimation.

4.3.2 Scale Recovery

One drawback of the above pose estimation approach is the drifting of scale due to accu-

mulated error in the monocular-based triangulation. Here we propose a methodology that

makes use of the low-rate stereo measurement to compensate scale drift. Using current

observations from the primary and secondary cameras only, we can perform stereo trian-

gulation and obtain a set of 3D points f̆ jk in the reference frame of the primary camera,

where k ∈ K is the set of features that gives valid stereo correspondences in the current

image. The ratio:

γ̃ =
1

|K|
∑
k∈K

‖fwk − pwj ‖
‖f̆ jk‖

(4.4)

measures the drift in scale (from γ = 1). Scaling all features according to the inverse

of this ratio preserves scale consistency. However, as this measurement can be noisy, we

apply a complementary filter to estimate the scale drift:

γ = (1− α)γ + αγ̃ (4.5)

where 0 < α � 1. Hence, the proposed approach assumes that the scale drifts slowly.

This is a major differentiation between our approach and [114], which requires that the

scale changes slowly. As such, our approach is able to accommodate variations in the

visual scene and resulting scale changes that can arise during fast indoor flight with a

forward-facing camera.

Fig. 4.5 shows changes in γ and γ̃ during the flight of a figure eight pattern (Sect. 4.5.1).

The new position of the feature fwi can be updated by modifying bij as (4.6) and solve

the linear system (4.3) again.

b+
ij =

1

γ
bij −

1

γ
Aijp

w
j + Aijp

w
j (4.6)
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Figure 4.5: Scale changes during the flight of a trajectory in Sect. 4.5.1.

4.3.3 Global Mapping

We implement a visual SLAM module to eliminate the drift in the vision-based estima-

tor. In our system, due to the limited onboard computation resources, limited wireless

transmission bandwidth, and the accuracy of the onboard estimator, a high rate visual

SLAM is both unnecessary and infeasible. Therefore, our visual SLAM module runs

offboard with a maximum rate of 1 Hz. A pose graph-based SLAM back-end, together

with a front-end that utilize SURF features [6] for wide baseline loop closure detection,

yield robust performance at such low rates. We sparsely sample the estimated trajectory

to generate nodes for the pose graph. For each node, we compute sparse 3D points by de-

tecting and matching SURF features between the stereo images. Dense disparity images

and dense point clouds are also computed.

We detect loop closures by checking nodes that fall inside the uncertainty ellipsoid of

the current node. We check a constant number of nodes, starting from the earliest can-

didate, for possible loop closures. SURF features are used to test the similarity between

two scenes. We compute the relative transform between the current node and the loop

closure candidate using RANSAC PnP [23]. A rigidity test, proposed in (Sect. 3.4, [80]),

is performed to verify the geometric consistency of the loop closure transform. Candi-

date transforms that pass the geometric verification are added to the pose graph. Graph

optimization [16] is used to find the globally consistent configuration of the graph. Once

an optimized pose graph is found, we can construct a 3D voxel grid map by projecting

the dense point cloud to the global frame. This map is used for the high level planning
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and to enable the human operator to monitor the progress of the experiment.

4.4 UKF-Based Sensor Fusion

The 20 Hz pose estimate from the vision system alone is not sufficient to control the

robot. We therefore employ a UKF (Unscented Kalman filter) framework with delayed

measurement compensation to estimate the pose and velocity of the robot at 100 Hz [70].

We switch from EKF as in Sect. 3.2 to UKF because of the fact that UKF gives better

approximatation of the nonlinear dynamics comparing to EKF. The system state, as well

as process and measurement models are identical to those in Sect. 3.2. However, for the

sake of completeness of this chapter, we present the content again here:

The state vector of this UKF is defined as:

xt =
[
pwt , Φw

t , ṗbt ,
abbt ,

ωbbt
]

T

where pwt = [xwt , y
w
t , z

w
t ] T and Φw

t = [ψwt , θ
w
t , φ

w
t ] T are position and orientation in

the world frame at time t. Note that pwt can also be interpreted as the position of the

body frame at time t with respect to the world frame (·)w, other parameters also follow

similar interpretation. abbt and ωbbt are the bias of the accelerometer and gyroscope, both

expressed in the body frame. We consider an IMU-based state propagation model:

ut =
[
abt , ω

b
t

]
T

vt =
[
avt,

ωvt,
bvt
]

T

xt+1 = f(xt, ut, vt)

where ut is the measurement of linear accelerations and angular velocities from the IMU

in the body frame. vt ∼ N (0,Dt) ∈ R12 is the process noise. avt and ωvt represent addi-

tive noise associated with the gyroscope and the accelerometer. bvt models the Gaussian

random walk of the gyroscope, accelerometer bias. The function f(·) is a discretized

version of the continuous time dynamical equation [46]. We avoid the need to estimate
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the metric scale in the filter (as in [114]) through the stereo-based scale recovery noted

above.

The pose estimate from the vision-based pose estimator is first transformed to the

IMU frame before being used for the measurement update. The measurement model is

linear and can be written as:

zt = Hxt + nt

where H extracts the 6-DOF pose in the state and nt is additive Gaussian noise. Since

the measurement model is linear and the measurement update can be performed via a KF

update step.

This UKF is later developed into a multi-sensor fusion framework to combine infor-

mation from vision, as well as other sensors, into consistent state estimates (Ch. 5).

4.5 Experimental Results

The experiment environment includes a laboratory space with ground truth motion track-

ing system, indoor environments with large loops, and complex but feature-rich outdoor

environments. In all experiments, the MAV is autonomously controlled through the on-

board generated trajectories (Ch. 7) using its onboard state estimate as feedback. The

experimental platform that weights only 740 grams is discussed in Sect. 1.3 and shown in

Fig. 1.2(b). The platform is based on the Hummingbird quadrotor from Ascending Tech-

nologies. This off-the-shelf platform comes with an AutoPilot board that is equipped with

an IMU and an user-programmable ARM7 microcontroller. The high level computer on-

board includes an Intel Atom 1.6GHz processor and 1GB RAM. The only new additions

to this platform are two grayscale mvBlueFOX-MLC200w cameras with fisheye lenses.

We use one camera to capture images at 20 Hz as the primary camera. The secondary

camera captures images at 1Hz. All camera images are at 376 × 240 resolution. The

synchronization between cameras is ensured via hardware triggering. The total mass of

the platform is 740 g. All algorithm development is in C++ using ROS as the interfacing
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robotics middleware. We utilize the OpenCV library for corner extraction and tracking.

The maximum number of features is set to be 300.

4.5.1 Autonomous Trajectory Tracking with Ground Truth

In this experiment, the MAV is programmed to fly through a figure eight pattern in which

each circle in the pattern is 0.9 m in radius. The maximum speed of this flight is ap-

proximately 2 m/s. Performance is evaluated against the ground truth from Vicon. The

estimated, actual, and desired values of the trajectory, position, and velocity are shown in

Fig. 4.6. Large and frequent attitude changes can be seen in the figure, as well as in the

snapshots (Fig. 4.7).

Our focus is on generating state estimates that are suitable for high-speed flight,

rather than generating globally consistent maps. Therefore, it makes less sense to dis-

cuss the drift in absolute position. The onboard velocity estimate, on the other hand,

compares well with the Vicon estimates with standard deviation of {σvx , σvy , σvz} =

{0.1105, 0.1261, 0.0947} (m/s). We can also see that the velocity profile matches well

with the desired velocity. Note that the Vicon velocity estimate is obtained by a one-step

numerical derivative of the position and in fact nosier than the onboard velocity estimate.

It is likely that the actual velocity estimation errors are smaller than the values reported

above. It should also be pointed out that the tracking error is the result of a combination

of the noise of the estimator and the tracking error of the controller.

4.5.2 High Speed Straight Line Tracking

This experiment represents the highest speed that our system is able to handle. The

vehicle is commanded to follow an approximately 15 m long straight line trajectory with

a maximum speed of 4 m/s in a environment shown in Fig 4.9(c). The estimated and

desired trajectory, position, and velocity are shown in Fig. 4.8. It can be seen that the
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Figure 4.6: The MAV autonomously follow a figure eight pattern at high speed.
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(a) (b)

Figure 4.7: Snapshots taken from different cameras of the quadrotor autonomously track-
ing a figure eight pattern at 2m/s . Note the large rotation of the vehicle.

estimated covariance scales with respect to the speed of the vehicle. Although we do

not have ground truth for this experiment, we measure estimator performance by initially

placing the vehicle in the middle of the hallway and visually verifying the drift after the

trajectory is completed. The rough measurement of the drift is {0.5, 0.1, 0.3} (m) in X,

Y, and Z axes, respectively.

4.5.3 Navigation of Indoor Environments with Large Loops

We now consider a case where the robot autonomously navigates through a large-scale

environment with loops. Due to the size of the loop (approximately 190 m), and the

short battery life cycle (less than 5 min), we must achieve smooth and fast navigation in

order to complete the task. The experiment is conducted with a maximum speed of over

1.5 m/s and an average speed of 1 m/s. This is a challenging environment due to the lack

of featureless (Fig. 4.10). A major loop closure is detect at 257 s (Fig. 4.9(c)), during

which both the SLAM pose and the 3D map change significantly (Figs. 4.9(a)-4.9(b)).
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Figure 4.8: The MAV is commanded to track a straight line at high speed. A estimated
position error standard deviation is presented in Fig. 4.8(a). Note that we do not have
ground truth in this figure. The plot of the estimated covariance (multiplied by 200)
shows that the covariance scales with the speed of the vehicle.
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(a) 3D map before loop closure (b) 3D map after loop closure
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(c) Position estimates during loop closure

Figure 4.9: Maps and estimated positions during the indoor navigation experiment. Note
the siginficant corrections in the pose estimates obtained via SLAM after the loop closure
(Fig. 4.9(c)).
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(a) Snapshot (b) Onboard image

Figure 4.10: A snapshot of the indoor environment (Fig. 4.10(a)), together with the image
captured by the onboard camera (Fig. 4.10(b)).

4.5.4 Autonomous Navigation in Complex Outdoor Environments

This experiment demonstrates the performance of the proposed system in outdoor en-

vironments. The experiment is conducted in a typical winter day at Philadelphia, PA,

where the wind speed goes up to 20 km/hr. The total travel distance is approximately

170 m with a total duration of 166 s (Fig. 4.11). Representative images captured by the

onboard camera are shown in Fig. 4.12. Note that the outdoor environment is largely un-

structured, consisting of trees and vegetation, demonstrating the ability of the system to

also operate in unstructured environments. However, we do note that this particular out-

door environment is very righ in texture, which is favorable for vision-based approaches.

In practice, we may run into featureless environments that lead to failure the proposed

algorithm. In addition, GPS signal with varying quality may be available in outdoor en-

vironmentswhich gives additional information for state estimation. This motivates the

Ch. 5, which focuses on the development of fusing multiple heterogeneous sensors in a

consistent way to improve system robustness in a wide variety of environments.
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Figure 4.11: 3D map generated in outdoor experiment after loop closure

(a) (b)

Figure 4.12: Images from the onboard camera during autonomous navigation of complex
outdoor environments.
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4.6 Discussion

In this chapter, we propose a loosely-coupled, combined monocular-stereo approach that

is able to accurately track the state of the MAV in real-time with 20 Hz visual update

rate, and 100 Hz update rate after fusion with IMU. We decouple different components

in the system to reduce computation load, and show that such decoupling leads to a

fast algorithm that is able to run on mobile processors with limited computation. Our

approach is sufficient for feedback control with speed up to 4 m/s.

However, we note that our vision-based approach fails in featureless environments

such as rooms with only white walls. However, these kind of environments can be ideal

for laser-based approaches as they perfectly satisfy the 2.5D assumption. This motivates

and the development of multi-sensor fusion methodologies (Ch. 5) that are able to opti-

mally fuse vision and laser, as well as other measurements, in a consistent manner.
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Chapter 5

Multi-Sensor Fusion for Indoor and

Outdoor Operations

This chapter describes a methodology for fusing information from multiple sensors, in-

cluding those presented in previous chapters (Ch. 3 and 4) to improve system robostness

in a large variety of environments. The main goal of this work is to develop a modular

and extensible approach to integrate noisy measurements from multiple heterogeneous

sensors that yield either absolute or relative observations at different and varying time

intervals, and to provide smooth and globally consistent state estimates in real time for

autonomous flight. The first key contribution, that is central to our work, is a principled

approach, building on [84], to fusing relative measurements by augmenting the vehi-

cle state with copies of previous states to create an augmented state vector for which

consistent estimates are obtained and maintained using a filtering framework. A sec-

ond significant contribution is our UKF formulation in which the propagation and update

steps circumvent the difficulties that result from the semi-definiteness of the covariance

matrix for the augmented state. Finally, we demonstrate results with our experimental

platform (Sect. 1.3 and Fig. 1.2(c)) to illustrate the robustness of our framework in large-

scale, indoor-outdoor autonomous aerial navigation experiments involving traversals of

over 440 meters at average speeds of 1.5 m/s with winds around 10 mph while entering
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and exiting two buildings.

We aim to develop a modular framework that allows easy addition and removal of

sensors with minimum coding and mathematical derivation. We note that in the popular

EKF-based formulation [89, 114], the computation of Jacobians can be problematic for

complex systems like MAVs. As such, we employ a loosely coupled, derivative-free

Unscented Kalman Filter (UKF) framework [38]. Switching from EKF to UKF poses

several challenges, which will be detailed and addressed in Sect. 5.2.1.

5.1 Multi-Sensor System Model

We define vectors in the world and body frames as (·)w and (·)b respectively. For the sake

of brevity, we assume that all onboard sensors are calibrated and are attached to the body

frame. The main states of the MAV is defined as:

xt =
[
pwt , Φw

t , ṗbt ,
abbt ,

ωbbt ,
zbwt

]
T

where pwt = [xwt , y
w
t , z

w
t ] T is the 3D position in the world frame at time t. Note that pwt

can also be interpreted as the position of the body frame at time twith respect to the world

frame (·)w, other parameters also follow similar interpretation. Φw
t = [ψwt , θ

w
t , φ

w
t ] T is

the yaw, pitch, and roll Euler angles that represent the 3-D orientation of the body in the

world frame 1, from which a matrix Rw
t that represent the rotation of a vector from the

body frame at time t to the world frame can be obtained. ṗbt is the 3D velocity in the body

frame. abbt and ωbbt are the bias of the accelerometer and gyroscope, both expressed in

the body frame. zbwt models the bias of the pressure altimeter in the world frame.

We consider an IMU-based state propagation model:

ut =
[
abt , ω

b
t

]
T

vt =
[
avt,

ωvt,
bvt
]

T

xt+1 = f(xt, ut, vt)

(5.1)

1It is straightforward to formulate the filter with quaternion-based rotation representation [62, 89], We

present the direct formulation for the brevity of presentation in Sect. 5.2.
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where ut is the measurement of linear accelerations and angular velocities from the IMU

in the body frame. vt ∼ N (0,Dt) ∈ R13 is the process noise. avt and ωvt represent

additive noise associated with the gyroscope and the accelerometer. bvt model the Gaus-

sian random walk of the gyroscope, accelerometer and altimeter bias. The function f(·)

is a discretized version of the continuous time dynamical equation [46].

Exteroceptive sensors are usually used to correct the errors in the state propagation.

Following [84], we consider measurements as either being absolute or relative, depend-

ing on the nature of the underlying sensor. We allow an arbitrary number of either abso-

lute or relative measurement models.

5.1.1 Absolute Measurements

All absolute measurements can be modeled in the form:

zt+m = ha(xt+m,nt+m) (5.2)

where nt+m ∼ N (0,Qt) ∈ Rp is the measurement noise that can be either additive or

not. ha(·) is in general a nonlinear function. An absolute measurement connects the

current state with the sensor output. Examples are shown in in Sect. 5.4.1.

5.1.2 Relative Measurements

A relative measurement connects the current and the past states with the sensor output,

which can be written as:

zt+m = hr(xt+m,xt,nt+m) (5.3)

The formulation accurately models the nature of odometry-like algorithms (Sect. 5.4.2

and Sect. 5.4.3) as odometry measures the incremental changes between two time instants

of the state. We also note that, in order to avoid temporal drifting, most state-of-the-art

laser/visual odometry algorithms are keyframe based. As such, we allow multiple future

measurement (m ∈M, |M| > 1) that corresponds to the same past state xt.
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5.2 UKF-based Multi-Sensor Fusion

We wish to design a modular sensor-fusion filter that is easily extensible even for inex-

perienced users. This means that amount of coding and mathematical deviation for the

addition/removal of sensors should be minimal. One disadvantage of the popular EKF-

based filtering framework is the requirement of computing the Jacobian matrices, which

is proven to be difficult and time consuming for a complex MAV system. As such, we

employ the derivative-free UKF-based approach [38]. The key of UKF is the approxi-

mation of the propagation of Gaussian random vectors through nonlinear functions via

the propagation of sigma points. Let x ∼ N (x̂,Pxx) ∈ Rn and consider the nonlinear

function:

y = g(x), (5.4)

and let:

X =
[
x̂, x̂±

(√
(n+ λ)Pxx

)
i

]
for i = 1, ..., n

Yi = g(Xi),
(5.5)

where g(·) is a nonlinear function, λ is a UKF parameter.
(√

(n+ λ)Pxx
)
i

is the ith

column of the square root covariance matrix, which is usually computed via Cholesky

decomposition. And X are called the sigma points. The mean, covariance of the random

vector y, and the cross-covariance between x and y, can be approximated as:

ŷ =
2n∑
i=0

wmi Yi

Pyy =
2n∑
i=0

wci (Yi − ŷ)(Yi − ŷ)T

Pyx =
2n∑
i=0

wci (Yi − ŷ)(Xi − x̂)T

(5.6)

where wmi and wci are weights for the sigma points. This unscented transform can be used

to keep track of the covariance in both the state propagation and measurement update,

thus avoiding the need of a Jacobian-based covariance approximation.
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5.2.1 State Augmentation for Multiple Relative Measurements

Since a relative measurement depends both the current and past states, it is a violation

of the fundamental assumption in the Kalman filter that the measurement should only

depend on the current state. One way to deal with this is through state augmentation [84],

where a copy of the past state is maintained in the filter. Here we present an extension

of [84] to handle arbitrary number of relative measurement models with the possiblity that

multiple measurements correspond to the same augmented state. Our generic filtering

framework allows convenient setup, and facilitates addition and removal of absolute and

relative measurement models.

Note that a measurement may not affect all components in the state x. For example,

a visual odometry only affects the 6-DOF pose, not the velocity or the bias terms. We

define the ith augmented state as xi ∈ Rni , ni ≤ n. xi is an arbitrary subset of x. We

define a binary selection matrix Bi of size ni × n, such that xi = Bix. Consider a time

instant, there are I augmented states in the filter, along with the covariance:

x̌ = [x̂, x̂1, ..., x̂I ]
T

P̌ =


Pxx Pxx1 · · · PxxI

Px1x Px1x1 · · · Px1xI

...
... . . . ...

PxIx PxIx1 · · · PxIxI

 .
(5.7)

The addition of a new augmented state xI+1 can be done by:

x̌+ = M+x̌, M+ =

In+
∑
I ni

BI+1

 (5.8)

Similarly, the removal of an augmented state xj is given as:

x̌− = M−x̌, M− =

 Ia 0a×nj 0a×b

0b×n 0b×nj Ib

 ,
where a = n +

∑j−1
i=1 ni and b =

∑I
i=j+1 ni. The updated augmented state covariance is
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given as:

P̌± = M±P̌M±T.

The change of keyframes in an odometry-like measurement model is simply the removal

of an augmented state xi followed by the addition of another augmented state with the

same Bi. Since we allow multiple relative measurements that correspond to the same

augmented state, contrast to [84], augmented states are not deleted after measurement

updates (Sect. 5.2.4).

This state augmentation formulation works well in an EKF setting, however, it poses

issues when we try to apply it to the UKF. Since the addition of a new augmented

state (5.8) is essentially a copy of the main state. The resulting covariance matrix P̌+

will not be positive definite, and the Cholesky decomposition (5.5) for state propagation

will fail (non-unique). We now wish to have something that is similar to the Jacobian

matrices for EKF, but without explicitly computing the Jacobians.

5.2.2 Statistical Linearization for UKF

In [52], the authors present a new interpretation of the UKF as a Linear Regression

Kalman Filter (LRKF). In LRKF, we seek to find the optimal linear approximation y =

Ax+b+e of the nonlinear function (5.4) given a weighted discrete (or sigma points (5.6))

representation of the distribution N (x̂,Pxx). The objective is to find the regression ma-

trix A and vector b that minimize the linearizion error e:

min
A,b

2n∑
i=0

wi(Yi −AXi − b)(Yi −AXi − b)T.

As shown in [52], the optimal linear regression is given by:

A = PyxPxx−1

, b = ŷ −Ax̂ (5.9)

The linear regression matrix A in (5.9) serves as the linear approximation of the nonlin-

ear fuction (5.4). This statistical linearization matrix can be used similar to the Jacobian

in the EKF formulation. As such, the propagation and update steps in UKF can be per-

formed in a similar fashion as EKF.
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5.2.3 State Propagation

Observing the fact that during state propagation only the main state changes, we start off

by partitioning the augmented state and the covariance (5.7) into:

x̌t|t =

 x̂t|t

x̂It|t

 , P̌t|t =

Pxx
t|t PxxI

t|t

PxIx
t|t PxIxI

t|t

 .
The linear approximation of the nonlinear state propagation (5.1), applied on the aug-

mented state (5.7), is:

x̌t+1|t = f(x̌t|t, ut, vt)

=

Ft 0

0 I|I|

 x̌t|t +

Jt Gt

0 0

ut

vt

+ bt + et,
(5.10)

from which we can see that the propagation of the full augmented state is actually unnec-

essary since the only nontrivial regression matrix corresponds to the main state. We can

propagate only the main state x via sigma points generated from Pxx
t|t and use the UKF

linearization matrix Ft to update the cross-covariance PxxI
t|t . Since the covariance matrix

of the main state Pxx
t|t is always positive definite, we avoid the Cholesky decomposition

failure problem.

Since the process noise is not additive, we augment the main state with the process

noise and generate sigma points from:

x̄t|t =

x̂t|t

0

 , P̄t|t =

Pxx
t|t 0

0 Dt

 . (5.11)

The state is then propagated forward by substituting (5.11) into (5.1), (5.5) and (5.6). We

obtain x̂t+1|t, the estimated value of x at time t + 1 given the measurements up to t, as

well as Pxx
t+1|t and Pxx̄

t+1|t. Following (5.9), we know that:

Pxx̄
t+1|tP̄

−1
t|t = [Ft, Gt] .

The propagated augmented state and its covariance is updated according to (5.10):

x̌t+1|t =

x̂t+1|t

x̂It|t

 , P̌t+1|t =

 Pxx
t+1|t FtP

xxI
t|t

PxIx
t|t Ft

T PxIxI
t|t

 . (5.12)
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5.2.4 Measurement Update

Let there be m state propagations between two measurements, and we maintain x̌t+m|t

and P̌t+m|t as the newest measurement arrives. Consider a relative measurement (5.3) that

depends on the jth augmented state, the measurement prediction and its linear regression

approximation can be written as:

ẑt+m|t = hr(x̂t+m|t, Bj
Tx̂jt+m|t , nt+m)

= Ht+m|tx̌t+m|t + Lt+mnt+m + bt+m + et+m

Ht+m|t =
[
Hx
t+m|t, 0, H

xj
t+m|t, 0

]
.

Again, since only the main state and one augmented state are involved in each mea-

surement update, we can construct another augmented state together with the possibly

non-additive measurement noise:

x̀t+m|t =


x̂t+m|t

x̂jt+m|t

0

 , P̀t+m|t =


Pxx
t+m|t P

xxj
t+m|t 0

P
xjx

t+m|t P
xjxj
t+m|t 0

0 0 Qt+m

 .
After the state propagation (5.12), P̀t+m|t is guaranteed to be positive definite, thus it is

safe to perform sigma point propagation as in (5.5) and (5.6). We obtain ẑt+m|t, Pzz
t+m|t,

Pzx̀
t+m|t, and:

Pzx̀
t+m|tP̀

−1
t+m|t =

[
Hx
t+m|t, H

xj
t+m|t, Lt+m

]
.

We can apply the measurement update similar to an EKF:

Ǩt+m = P̌t+m|tHt+m|t
TPzz−1

t+m|t

x̌t+m|t+m = x̌t+m|t + Ǩt+m

(
zt+m − ẑt+m|t

)
P̌t+m|t+m = P̌t+m|t − Ǩt+mHt+m|tP̌t+m|t,

where zt+m is the actual sensor measurement. Both the main and augmented states will

be corrected during measurement update. We note that entries in Ht+m|t that correspond

to inactive augmented states are zero. This can be utilized to speed up the matrix multi-

plication.
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The fusion of absolute measurements can simply be done by setting x̂jt+m|t = ø and

applying the corresponding absolute measurement model (5.2).

As shown in Fig. 5.9, fusion of multiple relative measurements results in slow grow-

ing, but unbounded covariance in the global position. This is consistent with results

in [46] that these global quantities are unobservable.

5.2.5 Delayed and Out-of-Order Measurement Update

When fusing multiple measurements, it is possible that the measurements arrive out-of-

order to the filter, that is, a measurement that corresponds to an earlier state arrives after

the measurement that corresponds to a later state. This violates the Markov assumption

of the Kalman filter. Also, due to the sensor processing delay, measurements may lag

behind the state propagation.

We address these two issues by storing measurements in a priority queue, where the

top of the queue corresponds to the oldest measurement. A pre-defined a maximum al-

lowable sensor delay td of 100 ms was set for our MAV platform. Newly arrived measure-

ments that correspond to a state older than td from the current state (generated by state

propagation) are directly discarded. After each state propagation, we check the queue

and process all measurements in the queue that are older than td. The priority queue es-

sentially serves as a measurement reordering mechanism (Fig. 5.1) for all measurements

that are not older than td from the current state. In the filter, we always utilize the most

recent IMU measurement to propagate the state forward. We, however, only propagate

the covariance on demand. As illustrated in Fig. 5.1, the covariance is only propagated

from the time of the last measurement to the current measurement.
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Figure 5.1: Delayed and out-of-order measurement update with priority queue. While
z4 arrives before z2, z2 is first applied to the filter. z4 is temporary stored in the queue.
z1 is discarded since it is older than td from the current state. The covariance is only
propagated up to time where the most recent measurement is applied to the filter. The
state is propagated till the most recent IMU input.

5.3 Handling Global Pose Measurements

As the vehicle moves through the environment, global pose measurements from GPS

and magnetometer may be available. It is straightforward to fuse the GPS as a global

pose measurement and generate the optimal state estimate. However, this may not be the

best for real-world applications. A vehicle that operates in a GPS-denied environment

may suffer from accumulated drift. When the vehicle gains GPS signal, as illustrated

in Fig. 5.2(a), there maybe large discrepancies between the GPS measurement and the

estimated state (z5 − s5). Directly applying GPS as global measurements will result

in undesirable behaviors in both estimation (large linearizion error) and control (sudden

pose change).

This is not a new problem and it has been studied for ground vehicles [75] under the

term of local frame-based navigation. However, [75] assumes that a reasonably accurate

local estimate of the vehicle is always available (e.g. wheel odometry). This is not the

case for MAVs since the state estimates with only the onboard IMUs drifts away vastly

within a few seconds. The major difference between dead reckoning with IMU and wheel

odometry is that the former drifts temporally, while the latter only drifts spatially. How-

ever, we have relative exteroceptive sensors that are able to produce temporally drift-free

estimates. As such, we only need to deal with the case that all relative exteroceptive

sensors have failed. Therefore, our goal is to properly transform the global GPS mea-
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surement into the local frame to bridge the gap between relative sensor failures.

Consider a pose-only graph SLAM formulation with sk = [xwk , y
w
k , ψ

w
k ] T ∈ Θ be-

ing 2D poses. The SLAM module may run at a much lower rate than the UKF-based

estimator. We optimize the pose graph given incremental motion constraints dk from the

multi-sensor UKF with only relative measurements (laser/visual odometry), spatial loop

closure constraints lk, and absolute pose constraints zk from GPS:

min
Θ

{
M∑
k=1

‖hi(sk−1,dk)− sk‖Pd
k

+
L∑
k=1

∥∥hl(sk, lk)− sl(k)

∥∥
Pl
k

+
N∑
k=1

‖zk − sk‖Pz
k

}
.

Similar to previous chapters (Ch. 3 and 4), The optimal pose graph configuration can

be found with available solvers [16, 48], as shown in Fig. 5.2(b). The pose graph is

disconnected if there are no relative exteroceptive measurements between two nodes. Let

two pose graphs be disconnected between k − 1 and k.

The pose graph SLAM provides the transformation between the non-optimized sk−1

and the SLAM-optimized s+
k−1 state. This transform can be utilized to transform the

global GPS measurement to be aligned with sk−1:

∆t−1 = sk−1 	 s+
k−1

z−k−1 = ∆t−1 ⊕ zk−1,

where ⊕ and 	 are pose compound operations as defined in [104]. The covariance P∆
t−1

of ∆t−1 and subsequently the covariance Pz−
t−1 of z−k−1 can be computed following [104].

This formulation minimizes the discrepancies between z−k−1 and sk−1, and thus main-

tains smoothness in the state estimate. The transformed GPS z−k−1, is still applied as an

absolute measurement to the UKF (Fig. 5.3(a)).
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Figure 5.2: In Fig. 5.2(a), GPS signal is regained at k = 5, resulting in large discrepancies
between the measurement z5 and the state s5. Pose graph SLAM produces a globally
consistent graph (Fig. 5.2(b)).
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Figure 5.3: Fig. 5.3(a) illustrates the alternative GPS fusion, the discrepancy between
transformed GPS measurement z−5 and the non-optimized state s5 is reduced. Fusion of
such indirect GPS measurement will lead to smooth state estimate (green dashed line).
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5.4 Implementation Details

To verify the proposed sensor fusion algorithm, we develop a quadrotor MAV platform

equipped with multiple sensors and sufficient computation power. The platform is dis-

cussed in Sect. 1.3 and shown in Fig. 1.2(c). The experimental platform is based on

the Pelican quadrotor from Ascending Technologies, GmbH. This platform is natively

equipped with an AutoPilot board consisting of an IMU and a user-programmable ARM7

microcontroller. The main computation unit onboard is an Intel NUC with a 1.8 GHz

Core i3 processor with 8 GB of RAM and a 120 GB SSD. The sensor suite includes

a u-blox LEA-6T GPS module, a Hokuyo UTM-30LX LiDAR and two mvBlueFOX-

MLC200w grayscale HDR cameras with fisheye lenses that capture 752× 480 images at

25 Hz. We use hardware triggering for frame synchronization. The onboard auto expo-

sure controller is fine tuned to enable fast adaption during rapid light condition changes.

A 3-D printed laser housing redirects some of the laser beams for altitude measurement.

The total mass of the platform is 1.87kg. The entire algorithm is developed in C++ using

ROS as the interfacing robotics middleware.

Fig. 5.4 shows the typical sensor setup of the platform. Note that depending on mis-

sion requirement and available payload, sensors can be added and/or removed by simply

write down the state space model in scripting language. We now describes the measure-

ment models of some typical sensors.

5.4.1 Absolute Measurements

Some onboard sensors are capable of producing absolute measurements (Sect. 5.1.1),

here are their details:
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Figure 5.4: Setup of the multi-sensor MAV platform. Absolute sensors are grouped by
dashed box, while relative sensors are grouped by dotted box. Laser- and vision-based
state estimation that provide relative measurements are discussed in Ch. 3 (Fig. 3.1) and
Ch. 4 (Fig. 4.1), respectively. Also note the special handling of GPS position measure-
ment to ensure smoothness of the state estimate.
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GPS And Magnetometer

zt =



xwt
ywt


Rw
t

ẋbt
ẏbt


ψwt


+ nt.

Pressure Altimeter

zt = zwt + bwzt + nt.

Pseudo Gravity Vector

If the MAVs is near hover or moving at approximately constant speed, we may say that

the accelerometer output provides a pseudo measurement of the gravity vector. Let gw =

[0, 0, g] T, we have:

zt = Rw
t

Tgw + bbat + nt.

5.4.2 Relative Measurement - Laser Odometry

We utilize the laser-based pose estimator described in Ch. 3. Observing that man-made

indoor environments mostly contains vertical walls, we can make a 2.5-D environment

assumption. With this assumption, we can make use of the onboard roll and pitch es-

timates to project the laser scanner onto a common ground plane. As such, 2D scan

matching can be utilized to estimate the incremental horizontal motion of the vehicle.

We keep a local map to avoid drifting while hovering. While our previous EKF-based

sensor fusion (Sect. 3.2 treat laser odometry as absolute measurements, here we do the
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measurement update in a principled way by treating them as relative measurements.

zt+m = 	2d


xwt

ywt

ψwt

⊕2d


xwt+m

ywt+m

ψwt+m

+ nt+m,

where p2dt = [xwt , y
w
t , ψ

w
t ] T, ⊕2d and 	2d are the 2-D pose compound operations as

defined in [104].

5.4.3 Relative Measurement - Visual Odometry

We test both our vision-based state estimation approach (Ch. 4) and a classic keyframe-

based stereo visual odometry algorithm. For latter case, we choose to use light-weight

corner features but run the algorithm at a high-rate (25 Hz). Features are tracked across

images via KLT tracker. Given a keyframe with a set of triangulated feature points,

we run a robust iterative 2D-3D pose estimation [89] to estimate the 6-DOF motion of

the vehicle with respect to the keyframe. New keyframes are inserted depending on the

distance traveled and the current number of valid 3D points. Similar to laser odometry, we

convert the absolute measurement update approach as in Sect 4.4 into a more principled

relative measurement model.

zt+m = 	

pwt

Φw
t

⊕
pwt+m

Φw
t+m

+ nt+m

5.5 Experimental Results

Multiple experiments are conducted to demonstrate the robustness of our system. We

begin with an quantitative evaluation in a lab environment equipped with a motion cap-

ture systems. We then test our system in two real-world autonomous flight experiments,

including an industrial complex and a tree-lined campus.
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Figure 5.5: The MAV maneuvers aggressively with a maximum speed of 3.5 m/s
(Fig. 5.5(b)). The horizontal position also compares well with the ground truth with
slight drift (Fig. 5.5(a)).

5.5.1 Evaluation of Estimator Performance

We would like to push the limits of our onboard estimator. Therefore, we have a pro-

fessional pilot to aggressively fly the quadrotor with a 3.5 m/s maximum speed and large

attitude of up to 40◦. The onboard state estimates are compared the ground truth from

the motion capture system. Since there is no GPS measurement indoor, our system relies

on a fusion of relative measurements from laser and vision. We do observe occasional

laser failure due to large attitude violating the 2.5-D assumption (Sect. 5.4.2). How-

ever, the multi-sensor filter still tracks the vehicle state throughout (Fig. 5.5). We do

not quantify the absolute pose error since it is unbounded. However, the body frame

velocity (Fig. 5.5(b)) compares well with the ground truth with standard deviations of

{0.1021, 0.1185, 0.0755} T (m/s) in x, y, and z, respectively.

5.5.2 Autonomous Flight in Indoor and Outdoor Environments

We tested our system in a challenging industrial complex. The testing site spans a variety

of environments, including outdoor open space, densely filled trees, cluttered building
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area, and indoor environments (Fig. 5.6). The MAV is autonomously controlled using

the onboard state estimates. However, a human operator always has the option of send-

ing high level waypoints or velocity commands to the vehicle. The total flight time is

approximately 8 minutes, and the vehicle travels 445 meters with an average speed of

1.5 m/s. As shown in the map-aligned trajectory (Fig. 5.7), during the experiment, fre-

quent sensor failures occurred (Fig. 5.8), indicating the necessity of multi-sensor fusion.

Fig. 5.9 shows the evolution of covariance as the vehicle flies through a GPS shadowing

area. The global x, y and yaw error is bounded by GPS measurement, without which the

error will grow unbounded. This matches the observability analysis results. It should be

noted that the error on body frame velocity does not grow, regardless of the availability

of GPS. The spike in velocity covariance in Fig. 5.9 is due to the camera facing direct

sunlight. Fig. 5.10 shows a more throughout plot of the impact of sensor availability on

the state estimation uncertainty.

5.5.3 Autonomous Flight in Tree-Lined Campus

We also conduct experiments in a tree-lined campus environment, as shown in Fig. 5.12

and 5.11. Autonomous flight in this environment is challenging due to nontrivial light

condition changes as the vehicle moves in and out of tree shadows. The risk of GPS

failure is also very high due to the trees above the vehicle. Laser-based odometry only

works when close to buildings. The total trajectory length is 281 meters.
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Figure 5.6: Images from the onboard camera (left column) and corresponding images
from an external camera (right column). Note the vast variety of environments, including
open space, trees, complex building structures, and indoor environments. We highlight
the position of the MAV with a red circle.
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Figure 5.7: Vehicle trajectory aligned with satellite imagery. Different colors indicate
different combinations of sensing modalities. G=GPS, V=Vision, and L=Laser.
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Figure 5.8: Sensor availability over time. Note that failures occurred to all sensors. This
shows that multi-sensor fusion is a must for this kind of indoor-outdoor missions.
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Figure 5.9: Covariance changes as the vehicle flies through a dense building area (be-
tween 200s - 300s, top of Fig. 5.7, green line). The GPS comes in and out due to building
shadowing. The covariance of x, y, and yaw increases as GPS fails and decreases as
GPS resumes. Note that the body frame velocity are observable regardless of GPS mea-
surements, and thus its covariance remains small. The spike in the velocity covariance
is due to the vehicle directly facing the sun. The X-Y covariance is calculated from the
Frobenius norm of the covariance submatrix.

5.6 Benefits and Limitations

We note that the filtering framework is not the only way to fuse heterogeneous sensor

measurements. As discussed in Sect. 2.4, it is straightforward perform multi-sensor fu-

sion in a graph-based SLAM framework as each measurement simply adds another edge

or factor node to the graph [11, 34, 88]. However, as results of sensor fusion are used

directly for feedback control of the MAV, the large latency and computation complexity

of graph-based approaches making them inappropriate for our application.

On the other hand, our modular filtering-based multi-sensor fusion framework is a

loosely-coupled approach. We benefit from the the plug-and-ply feature of the methodol-

ogy, which enables easy reconfigurations of sensors. The loosely-coupled approach also

makes the sensor fusion framework computationally lightweight, which is essential for

MAV feedback stabilization purposes.

However, our method relies on external modules to process raw sensor readings and
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Figure 5.10: Impact of sensor availability on state estimation uncertainty. Around 65 sec,
only GPS is available, resulting in high but bounded uncertainty in position, rotation,
and velocity. Around 160 sec, the unavailability of both GPS and laser causes significant
worse estimation performance. Between 200 − 250 sec, the lack of GPS measurements
causes unbounded increase in position and yaw.

Figure 5.11: Onboard (left) and external (right) camera images as the MAV autonomously
flies through a tree-lined campus environment. Note the nontrivial light condition.
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Figure 5.12: Vehicle trajectory overlaid on a satellite map. The vehicle operates in a
tree-lined campus environment, where there is high risk of GPS failure during operation.

convert them into state estimates with associated covariance matrices. We also require

external modules to report failures of sensors. The quality and consistency of those exter-

nal modules are crucial to the overall fusion performance. Our sensor fusion framework

ignores the cross-coupling between measurements, which may lead to suboptimal fu-

sion results comparing to tightly coupled approaches [34]. Nonetheless, we stress that

in applications such as MAV feedback control, processing speed is more important than

overall accuracy. For these applications, our approach still provides a viable and easy-to-

use solution to the complex sensor fusion problem.

5.7 Discussion

In this chapter, we present a modular and extensible approach to integrate noisy mea-

surements from multiple heterogeneous sensors that yield either absolute or relative ob-

servations at different and varying time intervals. Our approach generates high rate state

estimates in real-time for autonomous flight. The proposed approach runs onboard our
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new 1.9 kg MAV platform equipped with multiple heterogeneous sensors. We demon-

strate the robustness of our framework in large-scale, indoor and outdoor autonomous

flight experiments that involves traversal through a industrial complex and a tree-lined

campus.

However, we note in all experiments, we have to have the MAV start from stationary

in order to initialize the filter. Also, our filter will still breakdown (or diverge) if all

sensors fail, and once the filter breakdown, it may not be able to recover even if some or

all sensors resumes operation. This motivates us to investigate into online initialization

and failure recovery methodologies in the next Chapter (Ch. 6).
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Chapter 6

Initialization and Failure Recovery for

Monocular Visual-Inertial Systems

In this chapter, we focus on the initialization and failure recovery of estimators that are

used for MAVs. In particular, we consider a monocular visual-inertial system (VINS)

that consists of only an IMU and a camera. We are interested in this case because of

two reasons. First, as we would like operate agile autonomous MAVs in confined envi-

ronments, the platforms we use typically have very tight constrains on size, weight, and

power (SWaP). Up to some point, a monocular VINS is the only viable setup due to its

ultra light weight and small footprint. Second, this is a intellectually challenging prob-

lem in which initialization is of great importance. For platforms with comprehensive set

of sensors such as the one we used in Ch. 5, almost all states are directly observable by

onboard sensors, and initialization can simply be done with the first sensor reading. How-

ever, for monocular VINS, most of the critical navigation states such as initial velocity,

attitude, as well as the metric scale are not directly observable, Providing a reasonable

initial value of these states can be challenging without additional sensors or assumptions

about the environments.

While there does exists closed-form initialization approaches for monocular VINS [17,

45, 56, 66, 67], as discussed in Sect. 2.6, most of them require either global orientation
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to be known or are inoperable with noisy sensors due to the lack of good probabilistic

models characterizing sensor behavior.

Another issue of monocular VINS is the scale ambiguity due to degenerate motion.

It is well known that in order to have the scale be observable, accelerations in at least two

axes are required [37, 41, 66]. However, for a MAV, degenerate motions such as hovering

or constant velocity motions are unavoidable and have to be handled properly.

Based on the idea of reducing nonlinearity via frame transform in [61], this chapter

addresses the development of a monocular VINS estimator that is capable of on-the-fly

initialization and failure recovery. We first propose a linear sliding window formula-

tion for monocular VINS that is able to estimate necessary navigation states (velocity

and attitude) without any prior initial information (Sect. 6.1). We present a nonlinear

optimization-based monocular VINS estimation that operates on the tangent space of the

rotation group to refine the initial solution (Sect. 6.2). We combine both the linear and

nonlinear formulations to form a complete system that is capable of recovery from fail-

ures (Sect. 6.4). Inspired by the observability condition analysis in [67], we address the

issues of degenerate motion and scale unobservability by proposing a two-way marginal-

ization scheme (Sect. 6.3). Finally, by combining with planning and control method-

ologies (Ch 7), we experimentally show that the proposed approach enables metric state

estimation without initialization. We also show that our system is able to handle degen-

erate motion cases (Sect. 6.6). A diagram of the proposed monocular VINS approach is

shown in Fig. 6.2.

6.1 Linear Sliding Window VINS Estimator

The key idea behind on-the-fly initialization and failure recovery for monocular VINS is

the development of a linear sliding window estimator that turns all information from both

the IMU and camera, in a fixed time interval, into estimates of initial velocity, gravity

vector, and depth of features. We start by defining notations. We consider (·)w as the
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earth’s inertial frame, (·)b as the current IMU body frame, (·)k as the camera frame while

taking the kth image, Note that IMU usually runs at a higher rate than the camera, and

that multiple IMU measurements may exist in the interval [k, k + 1]. We assume that

the camera and the IMU is pre-calibrated such that the camera optical axis is aligned

with the z-axis of the IMU. pXY , vXY , and RX
Y are 3D position , velocity, and rotation of

frame Y with respect to frame X . In particular, pXt represents the position of the body

frame at time t with respect to frame X . Similar conversion follows for other parameters.

gw = [0, 0, g]T is the gravity vector in the world frame, and gk is the earth’s gravity

vector expressed in the body frame of the kth image.

6.1.1 Formulation

Given two time instants (corresponding to two image frames), the IMU propagation

model for position and velocity, expressed in the world frame, can be written as:

pwk+1 = pwk + vwk ∆t+

∫∫
t∈[k,k+1]

(
Rw
t abt − gw

)
dt2

vwk+1 = vwk +

∫
t∈[k,k+1]

(
Rw
t abt − gw

)
dt

(6.1)

where abt is the linear acceleration in the body frame, ∆t is the time difference between k

and k+ 1. It can be seen that the rotation between the world frame and the body frame is

required in order to propagate the states with IMU measurements. This rotation can only

be determined if the initial attitude of the vehicle is known, which is not the case when

the vehicle is dynamically launched or recovering from estimator failure. However, as

suggested in [61], if the reference frame of the IMU propagation model is attached to the

first pose of the system (i.e. the first pose that we are trying to estimate), (6.1) can be

rewritten as:

p0
k+1 = p0

k + R0
kv

k
k∆t−R0

kg
k∆t2/2 + R0

kα
k
k+1

vk+1
k+1 = Rk+1

k vkk −Rk+1
k gk∆t+ Rk+1

k βkk+1

gk+1 = Rk+1
k gk

(6.2)
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where

αkk+1 =

∫∫
t∈[k,k+1]

Rk
t a

b
tdt

2

βkk+1 =

∫
t∈[k,k+1]

Rk
t a

b
tdt

where R0
k is the change in rotation since the first pose (or since the 0th image), and Rk

k+1

is the incremental rotation between two images. Both can be obtained by combing the

integral gyroscope measurements and relative epipolar constraints (Sect. 6.1.2). αkk+1

and βkk+1 can be obtained solely with IMU measurements within [k, k + 1]. We can

see that the update equations for all the key quantities (p0
k, vkk , gk) are now linear. It

is thus expected that VINS system may be solved in a linear fashion, even without any

knowledge of the initial condition.

6.1.2 Linear Rotation Estimation

The IMU propagation model in (6.2) can only be linear if good rotation estimates are

provided. Although integrating gyroscope measurements will lead to reasonable rotation

estimates, they still drift over time. Therefore, we utilize additional epipolar constraints

to eliminate rotation drift. We wish to estimate R0
k, k = 0, · · · , N , subject to following

conditions:

R0
0 = I3, R0

j = R̂i
j ·R0

i

where R̂i
j is a rotation that is obtained by either integrating gyroscope measurements

between two consecutive images, or by finding the essential matrices between the current

image and past images. For each incoming image, we try to compute the essential matrix

between it and all other images within the sliding window.

As in [65], the above system can be solved linearly by relaxing orthonormality con-

straints of the rotations. Specifically, for a pair of rotation matrices R0
i , R0

j , and their

relative constraint R̂i
j , we have:[

I3, −R̂i
j

]rki

rkj

 = 0 k = 1, 2, 3 (6.3)
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where rki is the kth column of R0
i . The solution of the relaxed approximate rotation matri-

ces can be found as the last three columns of the right singular matrix of the system (6.3),

which forms approximate rotation matrices R̄0
i . Given the singular value decomposition

of the approximate matrix R̄0
i = USVT, The true rotation matrices can then be obtained

by enforcing unit singular values, which gives: R0
i = UVT. After this point, we assume

that the rotation components within the sliding window is known and noise-free.

6.1.3 Linear Sliding Window Estimator

We apply a tightly-coupled, sliding window graph-based [103] formulation due to its

constant computation complexity and its ability to incorporate constrains from multiple

observations to refine its solution. The full state vector can be expressed as (the transpose

is ignored for the simplicity of presentation):

X =
[
x0

0, x0
1, · · · x0

N , λ0, λ1, · · · λM
]

x0
k =

[
p0
k, vkk, gk

]
for k = 1, ..., N

p0
0 = [0, 0, 0]

where x0
k is the kth camera state, N is the number of camera states in the sliding window,

M is the number of all features that have been observed for at least twice and have

sufficient parallax within the sliding window. λl is the depth of the lth point feature from

its first observation. We are able to use a one-dimensional representation for features

due to the nature of the underlying image processing pipeline (Sect. 6.6.1). This saves

significant amount of computation power.

Since the rotation is fixed as in Sect. 6.1.2, we can formulate the linear VINS by

gathering all measurements from both the IMU and the monocular camera and solve for

the maximum likelihood estimate by minimizing the sum of the Mahalanobis norm of all

measurement errors:

min
X

(bp −ΛpX ) +
∑
k∈D

∥∥ẑkk+1 −Hk
k+1X

∥∥2

Pkk+1

+
∑

(l,j)∈C

∥∥ẑjl −Hj
lX
∥∥2

Pjl

 (6.4)
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where the measurement triplets {ẑkk+1, Hk
k+1, Pk

k+1} and {ẑjl , Hj
l , Pj

l } are defined in

Sect. 6.1.4 and Sect. 6.1.5 respectively. D is the set of all IMU measurements. C is

the set of all observations between any features and any camera states within the sliding

window. {bp, Λp} is the optional prior for the system. This system can be solved by

reorganizing in the following form:

(Λp + ΛD + ΛC)X = (bp + bD + bC) (6.5)

where {ΛD, bD} and {ΛC, bC} are information matrices and vectors for IMU and cam-

era measurements respectively.

It should be noted that since the cost is linear with respect to the states, the system

in (6.5) can have unique solution without the prior (initial condition):

(ΛD + ΛC)X = (bD + bC) (6.6)

This is the key to enable dynamic launching and failure recovery of MAVs. However, as

will be shown in Sect. 6.3, there are degenerate motions for the monocular VINS setup,

which will render the scale unobservable using only measurements within the sliding

window. In such case, it is desirable to marginalize out states that are about to be removed

from the window and convert them a prior to (implicitly) propagate the scale.

6.1.4 IMU Measurement Model

Given the locally drift-free rotation, we can rewrite (6.2) as a linear function of the state

X :

ẑkk+1 =


α̂kk+1

β̂
k

k+1

0̂

 =


Rk

0

(
p0
k+1 − p0

k

)
− vkk∆t+ gk∆t2

2

Rk
k+1v

k+1
k+1 − vkk + gk∆t

Rk
k+1g

k+1 − gk

 = Hk
k+1X + nkk+1 (6.7)

where nkk+1 is the additive measurement noise. We estimate the gravity vector for each

pose. The last block line in (6.7) represents prediction of the gravity vector. All variables
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except the position component are independent of the accumulated rotation R0
k, making

them insensitive to rotation error. The linear IMU measurement covariance has the form:

Pk
k+1 =

αβPk
k+1 0

0 gPk
k+1


Note that the terms α̂kk+1 and β̂

k

k+1 and correlated since they both come from IMU mea-

surements within [k, k+1]. Their joint covariance matrix αβPk
k+1 can be calculated using

the pre-integration technique proposed in [61].

6.1.5 Camera Measurement Model

Let the lth feature be first detected in the ith frame. The observation of this feature in the

jth normalized image plane [ûjl , v̂
j
l ]

T can be expressed as:

λjl


ûjl

v̂jl

1

 = Rj
0

p0
i − p0

j + λlR
0
i


uil

vil

1


 (6.8)

where λjl is the depth of the feature in the jth frame. We use tracking, instead of a

descriptor-based method, as the tool for data association (Sect 6.6.1). As such, the first

observation defines the direction of a feature, and [uil, v
i
l ] is noiseless. Note that (6.8) is

now linear with respect to the state, but nonlinear to the image measurement since the

depth is initially unknown. The unknown depth transforms into a unknown weighting

factor to the measurement covariance. Still, we can rewrite (6.8) as:

ẑjl = 0̂ =

−1 0 ûjl

0 −1 v̂jl

Rj
0

p0
i − p0

j + λlR
0
i


uil

vil

1


 = Hj

lX + njl

where njl is the additive measurement noise. and the camera measurement covariance

has the form:

Pj
l = λj

2

l P̄j
l
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where P̄j
l is the feature observation noise in the normalized image plane. Note that

although λjl is initially unknown, we can initialize it as the average depth of the scene. In

practice, we found the solution very insensitive to the initial value of λjl as long as it is

set to be larger than the actual depth.

6.2 Nonlinear Optimization

As the monocular VINS is initialized with the linear sliding window approach described

Sect. 6.1, we are able to use a nonlinear optimization framework to jointly optimize both

the translation and rotation components of the system to obtain more accurate results. Our

nonlinear solver operates on the tangent space of the rotation group to avoid singularities

and to better approximate rotation errors.

Note since a large number of parameters in the nonlinear optimization shares the

same physical meaning as those in the linear formulation (Sect. 6.1), here we introduce

slight a abuse of notations by reusing the symbols for the state vector and measurement

matrices/jacobians.

6.2.1 Formulation

Similar to the linear formulation, we still use a tightly-coupled, sliding window graph-

based [103] formulation for nonlinear optimization Here we do minor changes to the full

state vector as (the transpose is again ignored for the simplicity of presentation):

X =
[
x0

0, x0
1, · · · x0

N , λ0, λ1, · · · λM
]

x0
k =

[
p0
k, vkk, q0

k

]
for k = 1, ..., N

p0
0 = [0, 0, 0] , q0

0 = [0, 0, 0, 1]

where the definition of x0
k, vkk , and λl remains the same. However, we change the gravity

vector into the rotation quaternion (q = [qx, qy, qz, qw]) of the camera with respect to

the first camera state. The use of quaternion avoids singularities in rotation, as oppose to
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Euler angle-based representations. We use the Hamilton notation for quaternions. Note

now the dimension of the state vector is not the same as the dimension of the degree of

freedom of the system as rotation, which has only 3-DOF, is over-parameterized by the

four dimension quaternion.

Similar to (6.4), we aim to find a configuration of the state parameters that produce

the maximum a priori estimates by minimizing the sum of the Mahalanobis norm of all

measurement errors:

min
X

(bp −ΛpX ) +
∑
k∈D

∥∥rD(ẑkk+1, X )
∥∥2

Pkk+1

+
∑

(l,j)∈C

∥∥rC(ẑjl , X )
∥∥2

Pjl

 (6.9)

where rD(ẑkk+1, X ) and rC(ẑ
j
l , X ) are residuals of IMU and camera measurements, which

will be presented in Sect. 6.2.2 and Sect. 6.2.3 respectively.

Although the residuals for position, velocity, and feature depth can be easily defined:

p = p̂ + δp

v = v̂ + δv

λ = λ̂+ δλ

(6.10)

The residual of rotation is more involved. To this end, we use the perturbation of the

tangent space of the rotation manifold as the minimum dimension representation of ro-

tation residual. We first define the error quaternion term δq as the different between the

estimated and true quaternions:

q = q̂⊗ δq (6.11)

where ⊗ is the quaternion multiplication operator Since the error quaternion term is usu-

ally small, we can approximate it as:

δq ≈

1
2
δθ

1

 (6.12)

from which we can use the three dimension error vector δθ as the representation of rota-

tion residual. Similarly, we can write the error term in the form of rotation matrix:

R ≈ R̂ · (I + bδθ×c) (6.13)
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where bδθ×c is the skew-symmetric matrix from δθ.

Following this definition, we operate on the error state representation during the op-

timization:

δX =
[
δx0

0, δx
0
1, · · · δx0

N , δλ0, δλ1, · · · δλM
]

δx0
k =

[
δp0

k, δv
k
k, δθ

0
k

]
for k = 1, ..., N

We linearize the cost function (6.9) with respect to δX , and iteratively minimize the

cost of the resulting linear system. Given the current best estimates the state X̂ , we have:

min
δX

{(
bp −ΛpX̂

)
+
∑
k∈D

∥∥∥rD(ẑkk+1, X̂ ) + Hk
k+1δX

∥∥∥2

Pkk+1

+
∑

(l,j)∈C

∥∥∥rC(ẑjl , X̂ ) + Hj
l δX

∥∥∥2

Pjl


(6.14)

where Hk
k+1 and Hj

l , which will also be defined in Sect. 6.2.2 and Sect. 6.2.3, are the jaco-

bians of rD(ẑkk+1, X̂ ) and rC(ẑ
j
l , X̂ ) with respect to δX , respectively. The system (6.14)

can be rewritten and solved as:

(Λp + ΛD + ΛC) δX = (bp + bD + bC) (6.15)

after which the state estimates can be updated as:

X̂ = X̂ ⊕ δX (6.16)

where ⊕ is the compound operator that has the form of simple addition for position,

velocity, and feature depth as in (6.10), but is formulated as quaternion multiplication for

rotations as in (6.11) and (6.12).

6.2.2 IMU Measurement Model

We now present the formulation for the IMU measurement ẑkk+1, the measurement co-

variance matrix Pk
k+1, the residual rD(ẑkk+1, X ), and the measurement jacobian Hk

k+1.
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It should be first noted that since there are multiple accelerometer and gyroscope mea-

surements between two images, the IMU measurement ẑkk+1 is a composition of multiple

IMU readings.

ẑkk+1 =


α̂kk+1

β̂
k

k+1

q̂kk+1

 =


∫∫

t∈[k,k+1]
R̂k
t â

b
tdt

2∫
t∈[k,k+1]

R̂k
t â

b
tdt∫

t∈[k,k+1]
Ω(ω̂bt)q̂

k
t dt

 (6.17)

where

âbt = abt + ant

ω̂bt = ωbt + ωnt

are accelerometer and gyroscope measurements that are corrupted with additive noise,

and

Ω(ω̂bt) =
1

2

−bω̂bt×c ω̂bt

−ω̂btT 0


R̂k
t can be derived from q̂kt . Again, while error terms for α̂kk+1 and β̂

k

k+1 are still additive,

since q̂kk+1 is over-parameterized, we define its error terms as the perturbation from the

true value:

qkk+1 ≈ q̂kk+1 ⊗

1
2
δθkk+1

1

 (6.18)

With the approximated rotation matrix composition of the error term (6.13), we can derive

the continuous-time linearized dynamics of the error terms from (6.17) and (6.18):
δα̇

δβ̇

δθ̇

 =


0 I 0

0 0 −R̂k
t bâbt×c

0 0 −bω̂bt×c



δαkt

δβkt

δθkt

+


0 0

−R̂k
t 0

0 −I


ant
ωnt

 = Ftδz
k
t + Gtnt

from which we can derived the first-order discrete-time covariance update equation in

order to recursively compute Pk
k+1 with the initial covariance Pk

k = I:

Pk
t+δt = (I + Ftδt) ·Pk

t · (I + Ftδt)
T + (Gtδt) ·Qt · (Gtδt)

T, t ∈ [k, k + 1] (6.19)

where δt is the time between two IMU measurements, and Qt is the diagonal covariance

matrix for IMU measurements.
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We can now define the measurement residual rD(ẑkk+1, X ) with respect to the final er-

ror terms of the IMU measurement
[
δαkk+1, δβ

k
k+1, δθ

k
k+1

]
T. Following (6.2) and (6.18),

we have:

rD(ẑkk+1, X ) =


δαkk+1

δβkk+1

δθkk+1

 =


Rk

0

(
p0
k+1 − p0

k + g0 ∆t2

2

)
− vkk∆t− α̂

k
k+1

Rk
0

(
R0
k+1v

k+1
k+1 + g0∆t

)
− vkk − β̂

k

k+1

2
[
q̂k
−1

k+1 ⊗ q0−1

k ⊗ q0
k+1

]
xyz

 (6.20)

where the gravity vector of the first camera state g0 is solved by linear formulation

(Sect. 6.1), and (·)xyz extracts the vector part of a quaternion.

Using (6.13) and the fact that R0
k+1 = R0

k ·Rk
k+1, we can write:

R̂0
k+1 ·

(
I + bδθ0

k+1×c
)
≈ R̂0

k ·
(
I + bδθ0

k×c
)
· R̂k

k+1 ·
(
I + bδθkk+1×c

)
which can be converted into the following by ignoring higher order terms:

δθ0
k+1 = R̂k+1

0 · R̂0
k · δθ0

k + δθkk+1

which provides a simple linearized form of the propagation of rotation error terms. As

such, the jacobian of the IMU measurement residual with respect to the error state can be

obtained as:

Hk
k+1 =

[
∂rD
∂δxk

∂rD
∂δxk+1

]

∂rD
∂δxk

=


−Rk

0 −∆tI bRk
0 · (p0

k+1 − p0
k + g0 ∆t2

2
)×c

0 −I bRk
0 · (R0

k+1v
k+1
k+1 + g0∆t)×c

0 0 −Rk+1
0 ·R0

k


∂rD

∂δxk+1

=


Rk

0 0 0

0 Rk
0 ·R0

k+1 −Rk
0 ·R0

k+1bvk+1
k+1×c

0 0 I



(6.21)

Equations (6.17), (6.19), (6.20), and (6.21) define all required quantities to specify the

IMU measurement model.
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6.2.3 Camera Measurement Model

The formulation of the camera measurement model is straightforward. The feature mea-

surement is the observation of the feature in the normalized image plane:

ẑjl =

ûjl
v̂jl

 (6.22)

The residual term is the reprojection error, which is defined as:

rC(ẑ
j
l , X ) =

 fxjl
f zjl
− ûjl

fyjl
f zjl
− v̂jl



f jl =


fxjl
fyjl
fzjl

 = Rj
0

(
p0
i − p0

j + λlR
0
iu

i
l

) (6.23)

where uil = [uil, v
i
l , 1]T. The residual covariance is the diagonal feature measurement

noise matrix Pj
l .

The jacobian can be obtained by utilizing (6.13) and apply chain rule on (6.23):

Hj
l =

 1
f zjl

0 −
fxjl
f zj

2

l

0 1
f zjl

−
fyjl
f zj

2

l

[ ∂f jl
∂δxi

∂f jl
∂δxj

∂f jl
∂δλl

]

∂f jl
∂δxi

=
[
Rj

0 0 Rj
0 ·R0

i

⌊
λlu

i
l×
⌋]

∂f jl
∂δxj

=
[
−Rj

0 0
⌊
Rj

0

(
p0
i − p0

j + λlR
0
iu

i
l

)
×
⌋]

∂f jl
∂δλl

= Rj
0 ·R0

iu
i
l

(6.24)

Equations (6.22), (6.23), and (6.24) define all required quantities to specify the camera

measurement model.
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6.3 Handling Scale Ambiguity via Two-Way Marginal-

ization

It is well known that in order to have the scale of a monocular VINS be observable,

the IMU has to excite nonzero accelerations in at least two axes [37, 41, 66]. When

the vehicle is undergoing degenerate motions, such as constant velocity or hovering, and

without any prior information, it can be verified that the position and velocity components

of the solution of (6.6) in this situation can be scaled arbitrary without violating any

constraints. Unfortunately, zero acceleration motion is unavoidable for a hover-capable

MAV and it must be handled properly.

If the vehicle first undergoes generic motions with sufficient excitation in acceleration

with the time interval [0, n], and then enters constant velocity motion during the interval

[n+1, n+N ], the scale can only be observable if the camera states correspond to generic

motion are included in the sliding window. This is unrealistic if available computation

only allows N camera states in the sliding window. However, if we can provide an initial

estimate of x0
n+1, we will be able to propagate (not observe) the scale from n to n + 1.

Naturally, this can be done by proper marginalization of x0
n as it is removed from the

window at the (n+N)th step.

For hovering, as proved in [47], if the vehicle first undergoes generic motions with

sufficient acceleration excitation during [0, N − 1], and then enters a hover start from the

N th image, the scale observability can be preserved by using a last-in-first-out (LIFO)

sliding window scheme. [47] performs state-only measurement update during hovering,

and covariance is updated only once as the vehicle exits hovering. This is due to the

fact that features are not kept in the state, but instead marginalized out as the covari-

ance update is performed. However, this approach will lead to pessimistic covariance as

observations obtained during hovering is not used to update the covariance.

Based on the previous discussions, we propose a novel two-way marginalization

scheme to handle both constant velocity and hovering cases. The pseudo code is shown
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Figure 6.1: Fig 6.1(a) shows the structure of the full state before, during, and after
marginalizing a recent camera state (x5) after a newer camera state x6 is added. Sim-
ilar marginalization process of the oldest camera state is shown in Fig. 6.1(b).

in Algorithm 1. Consider the full state vector X = [x0
0, · · · x0

N−1 |λL], where λL is the

set of all features have been added into the sliding window. We add the next camera state

(x0
N ) to the sliding window if any of the following two criteria are satisfied:

1. The time between two images ∆t is larger than δ.

2. After compensating the relative rotation, the average parallax of all common fea-

tures between the most recent two images is larger than ε.

The first condition ensures that the error in the integrated IMU measurement between

two camera states is bounded, while second condition ensures that the new camera state

is added when translation motion of the vehicle with respect to the scene is significant.

We require that all newly added features λL+ to have at least two observations and with

sufficient parallax to ensure successful triangulation (Line 1). The system is then solved

with all available measurements within the sliding window plus any available prior (Line

2).

We keep a variable s = float/fix to indicate whether we should marginalize out the

second newest camera state (x0
N−1) or the oldest one (x0

0). To marginalize a chosen cam-

era state x0
k, we first remove the camera state and all features λL− that are first observed
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by it (Lines 5 and 13). We then construct a new prior based on all measurements related

to the removed states (Lines 4 and 12):

Λp = Λp +
∑
k∈D−

HkT

k+1P
k−1

k+1H
k
k+1 +

∑
(l,j)∈C−

HjT

l Pj−1

l Hj
l (6.25)

where D− and C− are sets of removed IMU and camera measurements respectively. The

marginalization can the be carried out via Schur Complement [103].

The value of s is reevaluated after the marginalization based solely on the paral-

lax between two most recent remaining images (Lines 6-9 and 14-17). Intuitively, our

approach will keep removing the recent camera states if the vehicle has small or no mo-

tion. Keeping older camera states in this case will preserve acceleration information

that is necessary to recover the scale, while still storing all information provided by the

marginalized states as prior. On the other hand, if the vehicle is under fast constant speed

motion, older camera states will be removed and converted into priors for the subsequent

estimates. We do note that the scale in this case is subject to drifting. However, without

global loop closure, marginalization is the best that can be done to propagate the scale

information forward, while still maintaining constant computation complexity. Fig. 6.1

illustrates different working scenarios of the proposed marginalization approach.

6.4 Initialization and Failure Recovery

Our linear VINS formulation (Sect. 6.1) naturally allows on-the-fly initialization and

failure recovery. In fact, these two tasks are identical as both involve solving the linear

system (6.5) with no priors.

After initialization with the linear formulation, we use the nonlinear optimization

approach (Sect. 6.2) to achieve better accuracy. We maintain two subsystems, which

corresponds to two arrays of image/IMU measurements and camera/feature states. The

first subsystem is solved by the nonlinear solver and two-way marginalization is used to
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Algorithm 1 Two-Way Marginalization
Require:

X ←
[
x0

0, · · · x0
N−1 |λL

]
s← float or fix

{Λp, bp} ← Prior Information

Ensure: ∆t > δ or Parallax(x0
N−1 , x0

N) > ε

1: X ← X ∪ [x0
N |λL+ ]

2: Solve X using (6.14) and (6.15)

3: if s = float then

4: {Λp, bp} ← Marginalization(x0
N−1, λL−)

5: X ← X \ [x0
N−1 |λL− ]

6: if Parallax(x0
N−2 , x0

N) < ε then

7: s← float

8: else

9: s← fix

10: end if

11: else

12: {Λp, bp} ← Marginalization(x0
0, λL−)

13: X ← X \ [x0
0 |λL− ]

14: if Parallax(x0
N−1 , x0

N) < ε then

15: s← float

16: else

17: s← fix

18: end if

19: end if

20: return {X , Λp, bp, s}
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Nonlinear Solver             
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IMU Propagation             

(100Hz) 

Remove 

Figure 6.2: Block diagram of the proposed failure recovery approach. Note the switching
mechanism for two-way marginalization and the failure detector. After initialization, the
nonlinear optimizer is used to provide state estimates for navigation.

avoid scale ambiguity. In this subsystem, the newest two camera states may be separated

arbitrarily far in time if the vehicle is hovering. On the other hand, the second subsystem

refreshes independent of the vehicle motion. It always maintains a queue structure where

the oldest camera state and its corresponding measurements are removed as a new image

comes in. This way, we make sure that the IMU measurements in the queue always have

bounded error.

When the system is in normal operation, only the first subsystem is solved and the

second subsystem only collects data. When failure occurs, the first array, as well as all

prior information, are discarded. Instead, we repeatedly try to find a valid solution us-

ing measurements within the second subsystem using the linear approach. Once a valid

solution is found, we put all measurements back to the first array and resume normal op-

eration with the nonlinear solver. The block diagram of this failure recovery mechanism

is shown in Fig. 6.2. We detect failure/validate solution by looking into the convergent

property of the nonlinear solver. These failure modes can be the result of bad data associ-

ation or insufficient feature observations, both are major source of failures in featureless

environments.
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6.5 Simulation Results

The proposed linear initialization approach is first verified in simulations. We imple-

mented a comprehensive simulator that consists of both realistic VINS sensor data sim-

ulation and quadrotor dynamics simulation. The quadrotor dynamics matches with the

actual experimental platform as shown in Fig. 1.2(d). The simulated environment is ran-

domly populated with 100 features. The simulated camera that runs at 10 Hz has VGA

resolution and 90 degrees field of view without lens distortion. Feature observations are

corrupted with Gaussian noise with 1 pixel standard deviation. No outliers are presented

in the simulation. The simulated IMU runs at 100 Hz. The additive accelerometer and gy-

roscope noise has 0.1 m/s2 and 0.1 rad/s standard deviation, respectively, which matches

the noise characteristics of a realistic IMU. We use 15 camera states in the sliding win-

dow estimator. In the simulation, the linear rotation estimation (Sect. 6.1.2) is disabled

to illustrate the case of insufficient features in the environment.

The goal of the simulation is to verify that the initial values given by the linear ap-

proach is close to the global minimum, and such that the nonlinear optimization is able

to converge to the correct solution. We run multiple trials. In each trial, features and

waypoints are randomly generated. The simulated platform then tracks minimum jerk

trajectories (Sect. 7.3) generated from those waypoints using the ground truth states for

feedback control. A screenshot of a typical simulation trial is shown in Fig 6.3.

We are interested in the changes to the cost of the nonlinear VINS system (6.9). We

examine the cost function by performing a dense sampling (more than 106 samples for

λ ∈ [0, 1]) of the convex combination of the linear initial estimates and the ground truth.

Fig. 6.4 shows the linear initialization is very close to the global optimal in the sense that

that the cost variation is convex between the linear initial estimates and the ground truth.

Due to the convexity, it can be verified that the global minimum of the system, which lies

very close to the ground truth, can be obtained via classic iterative nonlinear optimization

techniques such as the Gauss-Newton algorithm.
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Figure 6.3: 2D and 3D screenshots of the VINS simulation environment. Features are
shown in color. Estimated features are shown as large black dots.
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Figure 6.4: Changes in the nonlinear VINS cost function (6.9) within the region between
the linear initial estimates (λ = 0) and the ground truth (λ = 1). The cost of each curve is
offset by the cost of the ground truth. The globally minimum cost are indicated by dashed
lines. Note that due to noisy sensor data, the state parameters that lead to the minimum
cost are close to, but not equal to the ground truth. Differences in cost are caused by
differences in the number of observed features.
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6.6 Experimental Results

The configuration of the experimental platform is discussed in Sect. 1.3 and shown in

Fig. 1.2(d). Planning, trajectory generation and control methodologies are presented in

Ch. 7. The platform is based on the Pelican quadrotor from Ascending Technologies,

GmbH. This platform is natively equipped with an AutoPilot board consisting of an IMU

and a user-programmable ARM7 microcontroller. The main computation unit onboard is

an Intel NUC with a 1.8 GHz Core i3 processor with 8 GB of RAM and a 120 GB SSD.

The only additions to onboard sensing are a mvBlueFOX-MLC200w grayscale HDR

camera with standard lens that capture 752 × 480 images at 25 Hz, and a Microstrain

3DM-GX2 IMU. The use of an additional IMU is not for getting better IMU measure-

ments, but for assembling a sensor suite that is rigidly configured and with good time

synchronization. The total mass of the platform is 1.28kg, which leads to a thrust to

weight ratio of approximately two. The entire algorithm is developed in C++ using ROS

as the interfacing robotics middleware.

6.6.1 Real-Time Implementation

Although the onboard camera captures images at 25 Hz, it is both computationally in-

feasible and unnecessary to perform the optimization (Sect. 6.1 and 6.2) at such a high

rate. The system starts with one camera state in the sliding window, and a fixed number

of corner features detected in that camera image. Features are tracked in the high-rate

image sequence until the next camera state is added to the sliding window (Sect. 6.3).

The pre-integrated IMU measurement (Sect. 6.1.4) is also computed as new camera state

is added.

We utilize multi-thread implementation to achieve real-time operation. Three threads

run concurrently. The first thread is the image processing front end that we just described.

The second thread is the main VINS optimizer (Sect. 6.1 or 6.2) and the marginaliza-

tion module (Sect. 6.3). Finally, due to computation constraint, our VINS system runs
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Module Time (ms) Rate (Hz) Thread

Feature Tracking 5 25 1

Add New Camera State and Features 9 10 1

Linear Sliding Window Estimator 12 10 2

Nonlinear Sliding Window Estimator 35 10 2

Marginalization 17 10 2

IMU Forward Propagation 1 100 3

Table 6.1: Computation breakdown of the system with 30 camera states and 200 features.

at 10 Hz with approximate processing latency of 35 ms. This is not sufficient for au-

tonomous control of MAVs. We therefore implement a third thread to propagate the

latest solution from the optimizer forward using the high-rate IMU measurements. The

output of this thread is used directly as the feedback for the trajectory tracking controller.

A breakdown of computation time of each components in our system is shown in Ta-

ble. 6.1. It suggests that our algorithm is able to run stably onboard.

6.6.2 Implementation Details and Choice of Parameters

We maintain N = 30 camera states and M = 200 features in the sliding window. These

choices reflects maximum utilization of the available computation power. For each in-

coming image, we try to detect 400 features with a minimum separation of 30 pixels using

Shi-Tomasi corners [102] and track them using the KLT tracker [59]. The enforcement of

feature separation is to avoid numerical issues due to poorly distributed features. At this

point, we apply RANSAC with epipolar constraints for outlier rejection with a threshold

of 1 pixel.

All tracked features are used for rotation estimation (Sect. 6.1.2) during the linear

initialization phase. However, we enforce each tracked feature to reach a parallax of at

least 30 pixels (distance in the image frame after rotation compensation) before its added
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into the sliding window for depth estimation. The choice of the minimum parallax is for

avoiding numerical issues in triangulation of noisy feature observations with small base-

line. During the two-way marginalization (Sect. 6.3), all features that are first observed

in the marginalized frame are also marginalized and removed. All features measurements

that are made in the removed frame are also marginalized. We marginalize and remove

additional feature if the total number of features goes beyond 200.

We determine the addition of frames to the sliding window based on δ = 0.1s (Al-

gorithm 1), which implies that the sliding window estimator runs at 10 Hz. We decide

whether a frame/camera state is float/fix based on a parallax threshold of ε = 30 pixels.

This threshold is set to satisfy two requirements: 1) There is sufficient parallax to ensure

feature triangulation between frames; and 2) There is sufficient overlap between images

to ensure feature matching. To deal with motions that is mostly rotation, we additionally

force setting a frame to fix if the total number of matched features drops below 50.

In the nonlinear optimization, we propagate camera states using pre-integrated IMU

measurements and triangulate the depth of each newly added features using current pose

estimates. Although we assume all measurements are corrupted by Gaussian noise, we

use the Huber kernel [33] for increased robustness against feature measurement outliers.

The cutoff threshold for the Huber kernel is set to be 2 pixels. In practice, since gross

outliers will result in very low weights due to the Huber kernel, which may lead to sin-

gularities in dimensions correspond to poorly observed features. In this case, we remove

features from the optimization if their conditional information, which correspond to di-

agonal terms in the information matrix (ΛC in (6.15)), drops below 1. In practice, this

threshold mainly depends on the stability of the underlying matrix solver, it can be set to

some small positive number as far as numerical issues are avoided.

In the linear estimator, biases of the IMU is considered as zero. In the nonlinear opti-

mization, it is straightforward to include bias parameters for each camera state. However,

we experimentally found that the bias for our IMU is almost always zero. For the sake of

saving computation power, we do not include bias terms in the optimization.

106



6.6.3 Initialization Performance

We present two experiments to validate the proposed linear initialization approach as well

as the performance of the overall system in a lab space equipped with motion capture

system.

In the first experiment, the MAV takes off from stationary, but without any knowledge

of the environment. Due to the lack of direct scale measurement of monocular VINS, the

initialization of the estimator can only be performed after the MAV takes off. In this case,

since we know that the MAV starts from stationary (although the MAV does not know

this information), and the oldest pose in the sliding window is still on the ground when

the estimator initialized, we are able to align the ground truth pose with the onboard pose

estimates. As shown in Fig. 6.5, the linear initialization approach successfully generates

an initial estimate that is close to the ground truth, after which the nonlinear optimization

takes over and the proposed system is able to track the pose and velocity of the MAV

accurately with minimum drift.

In the second experiment, we highlight the ability of the proposed approach to per-

form on-the-fly initialization. The estimator start when the MAV is already flying at

high-speed. As shown in Fig. 6.6, we are able to recover the body frame velocity as well

as the gravity vector, which is represented by roll and pitch angles in the plot. Note that

these are actually the critical navigation states to enable stabilization of the MAV. We

do not show comparisons of position and yaw since we have no alignment between the

ground truth and the onboard pose estimation. Since in this case the MAV is already in

rapid motion, the linear estimator immediately obtains a good solution and then pass the

task to the nonlinear optimizer. Table. 6.2 shows the refinement of the nonlinear opti-

mizer towards to the ground truth, which matches the simulation results in Fig. 6.4. For

the same case, Fig. 6.7 shows the convergence of the nonlinear estimator in each iteration.
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Figure 6.5: The MAV takes off from stationary but without any knowledge of the environ-
ment. The linear initialization can only be performed when the MAV starts flying, after
which the nonlinear optimizer takes over and perform accurate tracking of the vehicle
motion.
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Figure 6.6: On-the-fly initialization from nontrivial velocity and attitude. Since the MAV
is already in rapid motion when the estimator starts, the linear estimator immediately
obtain a good initial estimate and then hands off to the nonlinear optimizer. Note the
accurate tracking performance even with significant acceleration and angular velocity.
The convergence of the nonlinear optimizer towards the ground truth given the linear
estimate (triangle in the plot) is show in Fig. 6.7 and Table 6.2.
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Figure 6.7: Convergence of the nonlinear optimizer towards the ground truth in three
iterations given linear initial estimates during the experiment in Fig. 6.6.

109



vx (m/s) vy (m/s) vz (m/s) Pitch (deg) Roll (deg)

Vicon -1.601 0.234 0.455 5.069 10.87

Nonlinear -1.532 0.222 0.408 5.515 10.40

Linear -1.270 0.147 0.389 5.559 10.34

Table 6.2: Convergence of the nonlinear optimizer towards the ground truth given linear

initialization results.

6.6.4 Autonomous Hovering

One major issue of using a monocular VINS sensor suite for autonomous MAVs is the

lack of direct measurement of metric scale. We use this experiment to highlight the

effectiveness of our two-way marginalization (Sect. 6.3) scheme. After the on-the-fly

initialization is completed, the MAV is commanded to hover using its onboard state es-

timates for feedback control. As shown in Fig 6.8, since the two-way marginalization

always removes newer camera states while hovering, previous feature observations that

have sufficient parallax, as well as IMU measurements that have sufficient accelerations

are kept. As such, almost-drift-free estimates in full 6 degree-of-freedom is obtained.

Very minor drift can be found in the error plot. This is due to small drifts in the KLT

tracker, which may be avoided with descriptor-based feature matching. However, we de-

fer this implementation as future work. During hovering, the onboard position estimate

compares well with the ground truth with standard deviation of {0.0099, 0.0124, 0.0081}

meters. The precision of hovering using such onboard estimates for feedback control has

the standard deviation of {0.0282, 0.0307, 0.0161}.

Recently, [58], presents a system that utilize the state estimates from the Google

Tango1 for feedback control of a quadrotor. Their data shows that the Tango state es-

timates has the standard deviation of {0.0165, 0.0320, 0.0274} meters in position. This

suggests that our approach is comparable or even better than the Tango while the platform

1http://www.google.com/atap/projecttango
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is hovering, despite the fact that the Tango has the advantage of having a RGB-D camera

for direct scale observation. We suspect this is due to the fact that the Tango is aimed for

handheld application and does not take the mechanical vibrations from the quadrotor into

account.

We also compare the methodology as proposed in [47] with our two-way marginal-

ization scheme. Since the source code of [47] is not available, we compare the theoret-

ical equivalent by making a slight change in our sliding window formulation. During

marginalization of a float frame, we do not convert image measurement made in that

frame into prior, but rather just drop them. This is equivalent to the state-only measure-

ment update during hovering as image measurements do not contribute to the update to

the covariance matrix (or information matrix in our case). While the position and orienta-

tion estimates remain close for both approaches, as shown in Fig. 6.9, this approach will

result in pessimistic covariance/information, which reflects as fluctuation the velocity due

to weaker “bound” from the initial guess.

6.6.5 Autonomous Trajectory Tracking

In this experiment, we test the performance of autonomous trajectory tracking while us-

ing the onboard state estimate for feedback control. The MAV is commanded to track a

figure eight pattern with each circle being 0.9 meters in radius, as shown in Fig. 6.10(d).

Trajectory generation and control methodologies are introduced in Sect. 7. We conduct

multiple trials of the same desired path but with different velocities. The desired velocity

is given as a parameter for the minimum jerk trajectory generator (Sect. 7.3), although

the actual velocity problem varies during the flight. Important performance metrics are

shown in Table. 6.3. With different desired velocity, the maximum roll and pitch an-

gles increases due to higher linear acceleration. The time required to complete the path

is shortened accordingly. Meanwhile, we observe almost no difference in position and

yaw drifting, which suggests that our approach is able to handle fast motions without
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Figure 6.8: Hover performance of the MAV using onboard state estimates for feedback
control comparing with ground truth. Note that there is almost no drift in all directions.
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Figure 6.9: Comparison of velocity estimation during hovering with two-way marginal-
ization and the method proposed in [47]. The state-only measurement update produces
pessimistic covariance, which results in fluctuation in velocity estimates.

degeneration of performance. We do observe a slight increase in the standard deviations

in velocity and roll and pitch, however, we do not observe any downgrade in terms of

flight performance. The onboard velocity estimates are also comparable to those from

the Google Tango powered flying robot [58], which reports a velocity standard deviation

of {0.0651, 0.0533, 0.0788} m/s. In Fig. 6.10, we highlight the fastest trial with a max-

imum velocity of 2 m/s and maximum roll/pitch angles close to 30 degrees. Error plots

of the same trial is shown in Fig. 6.11. We note that due to numerical differentiation, the

Vicon ground truth is actually noisier than the onboard state estimate as shown at 12 sec

and 21 sec in Fig. 6.10(c). As such, the velocity error is expected to be smaller than the

values reported on the plot.
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Figure 6.10: Performance of autonomous trajectory tracking using onboard monocular
VINS estimates for feedback control. The maximum speed is 2 m/s, while the maxi-
mum roll/pitch angle is 28 degrees. The onboard velocity and attitude estimates track the
ground truth accurately. Small drifts position and yaw, which are known to be unobserv-
able, are observed.
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Figure 6.11: Error plots of trajectory tracking as in Fig. 6.10, illustrating slow drifts in
position and yaw, but no drift in velocity and roll and pitch.
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Trial 1 2 3 4 5 6 7

Duration (sec) 35.88 27.20 25.50 25.19 20.77 18.14 17.84

Max Velocity (m/s) 1.035 1.271 1.391 1.397 1.694 1.953 1.955

Max Roll/Pitch (deg) 6.047 9.089 11.51 13.34 20.71 26.19 28.04

Position Drift (m) 0.073 0.141 0.039 0.091 0.127 0.078 0.162

Yaw Drift (deg) 0.140 1.227 0.622 0.825 1.756 0.901 1.174

Velocity StdDev (m/s) 0.055 0.053 0.062 0.066 0.068 0.067 0.063

Roll/Pitch StdDev (deg) 0.160 0.190 0.251 0.204 0.311 0.332 0.262

Table 6.3: Performance metrics of autonomous trajectory tracking with varying speeds.

Note that the position and yaw drifts are shown in magnitude only. The velocity and

roll/pitch standard deviations are shown as maximum values between all dimensions (3

dimensions for velocity, 2 dimensions for roll/pitch).

6.6.6 Autonomous Flight in Indoor Environments

In this experiment, we show autonomous flight in the hallway of a typical office build-

ing using the proposed monocular VINS state estimates for feedback control. Fig. 6.12

shows images from the onboard camera during the experiment. Since no ground truth is

available, we run multiple trials to verify the accuracy, consistency, and repeatability of

the proposed approach. As shown in Fig. 6.14, we conduct two autonomous flight and

one handheld experiments. Statistics of each trial is shown in Table. 6.4.

During autonomous flight experiments, the MAV is stabilized using onboard state

estimates. The operator have the freedom of sending waypoints to the MAV, from which

a minimum jerk trajectory will be generated and tracked by the vehicle (Sect. 7.3). The

operator may also control the velocity of the MAV directly via the kinematic controller

(Sect. 7.1). In both autonomous flight experiments, the MAV was able to fly stably and

return to its starting position with only a small drift in the estimated poses.

We do note that the estimation accuracy in autonomous flight is slightly worse than
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Trial Autonomous 1 Autonomous 2 Handheld

Duration (sec) 281.4 303.6 78.72

Distance (m) 81.39 87.52 63.38

Position Drift (m) 0.634 0.944 0.364

Position Drift % 0.78% 1.08% 0.58%

Yaw Drift (deg) 1.83 2.703 1.79

Yaw Drift % 0.51% 0.75% 0.50%

Table 6.4: Statistics of autonomous indoor flight and handheld experiments. Note that

the handheld experiment runs much faster and with much less small motion (hovering),

therefore both duration and distance are reduced. Drift is measured by putting the MAV

back to the starting pose after the experiment.

the handheld experiment. This is due to much noisier IMU measurements caused by

mechanical vibrations from the motors while flying. A comparison in both time and

frequency domain of IMU measurements during both in flight and handheld cases is

shown in Fig. 6.13. In all trials, the onboard state estimator behaves consistently in the

sense that the overall trajectory is well aligned. Note that since the visual scale is not

directly observable in the monocular VINS setting, consistent scale in all trials indicates

that the scale is correctly estimated.

For comparison, we also present the state estimates from the Tango in the same envi-

ronment (Fig. 6.15). Since we do not have direct access to the Tango data, we can only

obtain an approximation of the drift by counting the grids. These results suggest that our

results are on par with those from the Tango, despite that the Tango has the advantage of

having a RGB-D camera for direct scale observation.
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(a) (b)

Figure 6.12: Images from the onboard camera during autonomous flight in indoor en-
vironments. red dots represent features that have valid depth from sliding window op-
timization, green lines shows the tracking of such features between the current and the
latest fix frame. Blue dots are features that are being tracked but have not be added into
the optimization. The criteria of choosing features are discussed in Sect. 6.6.2.
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Figure 6.13: Comparison of IMU noise characteristics in both time and frequency do-
mains for in flight and handheld cases. Plots shows the variation of the magnitude of
the IMU measurement across all axes. Note how the mechanical vibrations worsen IMU
performance while in flight.
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Figure 6.14: Trajectories of two autonomous flight and one handheld experiments. The
onboard estimator is able to deliver repeatably results in the sense that the drift in all
trials are similar, and the scale estimate is correct. Keep in mind that the visual scale is
not directly observable in the monocular VINS setup, a consistent scale implies correct
scale estimation.

Figure 6.15: State estimation from the Google Tango in the same environment as
Fig. 6.14 and with similar trajectory. Each grid in the graph is one meter wide. The
final position drift is approximately 0.8 m.
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6.6.7 State Estimation in Large-Scale Environments

In the final experiment, we push the limit of the proposed approach in complex large-

scale indoor environments with challenging changes in lighting and texture conditions. A

feature-rich and a relatively feature-less parts of the environment are shown in Fig. 6.18.

In this experiment, the MAV is handheld due to 1) the length of the trajectory is higher

than the feasible flight distance; and 2) failures are anticipated due to the challenging

environmental conditions.

Fig. 6.16 shows the estimated paths of two trials conducted in the same environment

but with different lighting conditions. Failures are highlighted with circles. Note that

these trajectories are not perfectly aligned due to small errors in the initial placement of

the vehicle. Both trials have position drift of approximately 5 meters. We do not list the

exact number here as failures occurred during both trials, and as such the drift in position

and yaw does not reflect the performance since the drift is dominated by the time that

failure occurred. The earlier the failure, the longer the “lever arm” to amplify the error,

resulting in larger drift. For comparison, we also show the trajectory obtained by the

Google Tango (Fig. 6.17) in the same environment and lighting condition as the first trial

and with similar trajectories. We note similar drifting behaviors between the proposed

approach and the Tango. However, we need to keep in mind that the Tango has a RGB-D

sensor to correct the visual scale, while our system does not has such advantage.

We now analyze typical cases of failures or performance downgrade while operating

in complex environments. In this experiment, failures are considered as cases where the

state performance is significantly downgraded due to the lack of features. However, in all

failure cases, the nonlinear estimator was eventually able to recover as sufficient features

are observed later. As highlighted in Fig. 6.16, failures cause significant discontinuities

in the state estimates. We find that failure is almost alway caused by the lack of feature

measurements, although the cause of insufficient feature measurement varies.
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Figure 6.16: Estimated paths of two trials of state estimation experiment in large-scale
environments. Failures in different trials are highlighted with circles of the corresponding
color.

Figure 6.17: State estimation from the Google Tango in the same environment as
Fig. 6.16. Each grid in the graph has the width of ten meters. The final position drift
is approximately 6.0 m.
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(a) (b)

Figure 6.18: Onboard images from large-scale environments, showing both feature-right
(Fig. 6.18(a)) and relatively featureless (Fig. 6.18(b)) parts of the environment.

Fig. 6.19 show a challenging situation where the MAV moves from very bright but

featureless area to very dark but feature-rich area. During the transition, the dynamic

range of the scene is extremely high, causing no features being detected in the dark area

(Fig. 6.19(a)). As the platform moves towards to the dark area, the bright area is oversat-

urated, which again causes lose of feature tracking (Fig. 6.19(b)). The number of features

that are observed in the current frame and are used for the optimization frequently drop

to zero (Fig. 6.19(c)), causing large noise in the state estimate.

In the second case, the platform perform a quick turn into a bright area when it is

very close to a wall (Fig. 6.20). In such case, the platform quickly loses track of existing

features due to rapid changes in the image. However, during a rapid rotation, there is

limited baseline, and new features cannot be triangulated and added into the optimization

immediately, again causing insufficient features in the current frame (Fig. 6.20(c)). The

estimator was able to recover after sufficient parallax is obtained for the new features.

The last failure case is due to poor lighting conditions. As shown in Fig. 6.21, the plat-

form first moves in a very dark corridor, which leads to in insufficient number of features

and causes drift in visual scale. As the platform moves into brighter regions, corrections

in the visual scale cause large discontinuities in the state estimates (Fig. 6.21(c)).
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Figure 6.19: Failure of the estimator due to high dynamic range of the scene. Occasion-
ally, there is no feature in the current frame that is used for optimization (Fig. 6.19(c)).
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Figure 6.20: Failure of the estimator due to rapid rotation, which causes insufficient
parallax for feature triangulation, and it is reflected as very small or even zero number
optimized features in the current frame (Fig. 6.20(c)).
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Figure 6.21: Failure of the estimator due to poor lighting condition. The number of
optimized features are constantly small in poorly lighted regions (Fig. 6.21(c)). The
large correction in visual scale as the platform moves into brighter regions causes large
discontinuities in the state estimates (Fig. 6.21(c)).
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6.7 Discussion

In this chapter, we propose a novel approach for initialization and failure recovery for

monocular visual-inertial system. We show that even with one camera, which is unable

to provide direct distance measurement, it is still possible to recover all critical naviga-

tion states such as velocity and attitude without any prior knowledge of the system. We

then propose a nonlinear solver that operates on the tangent space of the rotation mani-

fold for continued high precision state estimation without any rotation singularities. We

also address the issues of degenerate motions by proposing a two-way marginalization.

We integrate all modules into a complete fail-safe system and demonstrate high-speed

autonomous flight with average speed up to 2 m/s in complex indoor environments. We

present both autonomous flight and handheld experimental results in a variety of envi-

ronments to demonstrate the performance of the proposed approach. From this chapter,

we believe that the monocular VINS setup has great potential towards to miniature MAV

platforms with tight SWaP constrains.
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Chapter 7

Planning and Control

This chapter considers the adaption of planning and control methodologies to meet the

need of aerial navigation. We first show control architectures that enable efficient human-

robot interaction, and then focus on a system architecture that guarantees smoothness in

both state estimation and control during planning and replanning.

7.1 Feedback Control

Given onboard state estimates, we command the MAV to track desired trajectories with

a position tracking controller with nonlinear error metric [51] due to its superior perfor-

mance in highly dynamical motions that involve large angle changes and significant ac-

celerations. The onboard state estimates from the either the sensor fusion module (Ch. 5)

or the monocular VINS system (Ch. 6) are used directly as the feedback for the controller.

In our implementation, the attitude controller runs at 1 kHz on the ARM processor on the

vehicle’s AutoPilot board, while the position tracking control operates at 100 Hz on the

onboard computer.

Although our goal is to develop a fully autonomous vehicle, at some point during

the experiment, the human operator may wish to have simple, but direct control of the

vehicle. As such, we developed a finite state machine-based hybrid-system controller
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Figure 7.1: A finite state machine-based approach enables the operator to interact with
the vehicle during experiments.

(Fig. 7.1) to allow human-robot interaction. There are four modes in this controller.

The normal mode is position tracking mode. At any time, the operator is able to send

inputs via a remote control. These commands are interpreted by the vehicle as kinematic

velocity commands (where no commands result in hover state). We experimentally tested

that the velocity control mode is easy to use in the sense that an untrained operator is able

to control the vehicle without direct line-of-sight using only the 1 Hz image feed and the

real-time 3D map visualization. The hover mode serves as an idle state, where the vehicle

is waiting for commands from the operator.

7.2 High Level Planning

As the SLAM module generates globally consistent poses of the MAV and maps of the

environment (Sect 3.3, 4.3.3, and 5.3), we wish to generate collision-free paths that

enable the MAV to navigate autonomously within this map. Let the optimized pose in

the SLAM frame denoted as (pwj , Rw
j ). The pose correction from the visual SLAM

dwej , which serves as the transform between the estimator frame and the SLAM frame, is

formulated such that:

(pwj , Rw
j ) = dwej ⊕ (pej , Re

j) (7.1)
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where ⊕ is the pose update function defined in [104] and (pej , Re
j) is the corresponding

pose in the estimator frame. In contrast to traditional approaches, we do not use (pwj , Rw
j )

as a global pose measurement for correcting the drift in the estimator (Sect. 5.2). Instead,

we feed dwej into the trajectory generator (Sect. 7.3) and compute trajectories that are

guaranteed to be smooth even if there are large discontinuities in the SLAM pose estimate

(i.e. ‖dwej 	 dwej−1‖ is large, see Fig. 4.9(c))) due to loop closures or GPS corrections.

The key difference between the estimator frame and the SLAM frame is that the

estimator frame drifts over time due to the lack of global measurements, while the SLAM

frame remains globally consistent if loop closures of GPS measurements are available.

Note that even if GPS measurements are available to the estimator, we still construct the

drifting estimator frame via indirect GPS fusion (Sect. 5.3) in order to generate smooth

state estimates, which are crucial for feedback control (Sect. 7.1).

We employ a two-stage planning approach. On a higher level, given user-specified

waypoints in the SLAM frame, and treating the MAV as a cylinder, a high level path that

connects the current vehicle position and the desired goal, which consists a sequence of

desired 3D positions and yaw angles, is generated using the RRT* [40] implementation

in the Open Motion Planning Library (OMPL) [107].

The resulting path is simplified by finding longest collision-free segments, which will

eliminate intermediate waypoints. The resulting waypoints gwk are sent to the trajectory

generator (Sect 7.3) for further refinement. The path is checked for possible collisions at

the same frequency as the SLAM module.

7.3 Minimum Jerk Trajectory Generation

We first transform all waypoints from the high level planner into the estimator frame

using the latest pose correction from SLAM (7.1):

gek = 	dwej ⊕ gwk .
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If the MAV flies through all transformed waypoints using state estimates in the estimator

frame for feedback control, it will also fly through the same set of waypoints in the SLAM

frame. Moreover, if there are large scale loop closures (i.e. large changes in dwej ), the set

of waypoints that the vehicle is heading towards to will change significantly. However, if

we are able to regenerate smooth trajectories with initial conditions equal to the current

state of the vehicle, the transition between trajectories will be smooth and no special

handling is needed within the onboard state estimator and the controller.

We wish to ensure that the MAV smoothly passes through all waypoints, while at

the same time maintaining a reliable state estimate. A crucial condition that affects the

quality of vision-based state estimates is the tracking performance. The effect of transla-

tion on the movement of a image features depends on the distances of the features, while

rotation has uniform effect on all features, regardless of distance. Meanwhile, due to

the underactuate nature of our quadrotor MAV platforms (4-DOF control versus 6-DOF

pose), all translation motions are results of attitude changes. As shown Fig. 7.2 that fast

translation has little effect on the tracking performance. However, fast rotation can blur

the image easily, causing the failure of the feature tracker. This observation motivates us

to design trajectories that minimize angular velocities in roll and pitch.

By differentiating the equation of motion of a quadrotor [71], it can be seen that the

angular velocity of the body frame is affinely related to the jerk, which is the derivative

of the linear acceleration. As such, we generate trajectories that minimize the jerk of the

quadrotor in horizontal directions. For the vertical direction, we wish to minimize the

RPM changes of the motors, which again correspond to the jerk. In order to avoid large

deviations from the high level path, intermediate waypoints are added shortly before and

after a waypoint if the angle between the two line segments that connect this waypoint

exceeds a threshold. We utilize a polynomial trajectory generation algorithm [83], which

is derived from [69], that runs onboard the vehicle with a runtime on the order of 10

ms. Optimal trajectories can be found by solving the following unconstrained quadratic
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programming:

min
y

yTQy

where y is a collection of desired derivative values at each waypoint that can be either

free or fixed. We fix the position, velocity and acceleration at the first waypoint to be

current state of the vehicle in order to maintain smooth trajectories during replanning and

loop closures. The velocity and acceleration are set to be zero for the last waypoint. For

all other waypoints, only position is fixed and the trajectory generator will provide the

velocity and acceleration profile. The coefficients of the polynomial trajectories s can be

found via a linear mapping s = My.

A limitation of the above trajectory generation approach is the necessity of predefin-

ing the travel time between waypoints. Due to computational constraints, we do not

perform any iterative time optimization [69, 83] to find the optimal segment time, but

rather use a heuristic that approximates the segment time as a linear trajectory that al-

ways accelerates from and decelerates to zero speed with a constant acceleration at the

beginning and end of a segment, and maintains constant velocity in the middle of a seg-

ment. This simple heuristic can help avoid excessive accelerations during short segments,

and is a reasonable time approximation for long segments.

Fig. 7.3 shows in simulation a quadrotor tracking a smooth trajectory generated from

a sequence of waypoints. A change of waypoints and trajectory regeneration take place

at 20 sec. The regenerated trajectory smoothly connects to the initial trajectory and the

quadrotor is able to smoothly switch waypoints.

7.4 Experimental Results

We now present a set of experiment conducted inside a lab space with ground truth mo-

tion capture system to verify the effectiveness of the integrated high level planning and

trajectory (re)generation. In this experiment, the platform setup is identical to the one
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(a) Before translation (b) After translation

(c) Before rotation (d) After rotation

Figure 7.2: Effects on feature tracking performance due to fast translation (Figs. 7.2(a)–
7.2(b)) and fast rotation (Figs. 7.2(c)–7.2(d)). The number of tracked features signifi-
cantly decreases after rotation.
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Figure 7.3: A simulated quadrotor tracks a smooth trajectory generated from a sequence
of waypoints. Trajectory regeneration takes place after a change of waypoints at 20 sec.
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Figure 7.4: Autonomous tracking of smooth trajectories generated from a rectangle pat-

tern.

used in Ch. 4. We have a vision-based state estimator and a UKF to produce 100 Hz

slow drifting pose estimates that are sufficient to stabilize the MAV. In addition, a visual

SLAM (Sect. 4.3.3) detects visual loop closures and produce globally consistent pose

estimates. This causes discrepancy between estimator and SLAM frames, which validate

the necessity of the proposed planning approach.

In this experiment, the MAV autonomously follows smooth trajectories generated

from a rectangle pattern at approximately 1 m/s. The ground truth is used to quantify

the global tracking performance. As seen from Fig. 7.4(a) and Fig. 7.4(b), there is slow

position drift in vision-based state estimates. However, global corrections from the visual

SLAM enables globally consistent operation. Note that the MAV is controlled using on-

board state estimates, although global loop closure is clearly incorporated into the system.

Due to corrections from the visual SLAM, the desired smooth trajectory in the estimator

frame regenerates and changes over time. It can be seen from Fig. 7.4(b) that the ac-

tual position of the MAV converges to the desired position, with a standard deviation of

{σx, σy, σz} = {0.1108, 0.1186, 0.0834} (m), indicating globally consistent tracking.
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Chapter 8

Autonomous Three-Dimensional

Environment Coverage

We utilize our state estimation and mapping approaches introduced in previous chapters

(Ch. 3, 4, 5, 6), and combine with planning and control methodologies (Ch. 7) to form

a navigation that is able to guide the MAV autonomously fly to a predefined goal in

an incrementally mapped environment while avoiding collisions. However, there are still

questions of how this goal should be defined. Intuitively, we can have the human operator

to select goals in the current map. However, there are missions that we would like to have

the human operator completely out of the loop. One example is autonomous environment

coverage, which is also called exploration in robotics. In such missions, we would like

to have the vehicle start without any prior knowledge of the environment, and return the

complete map without any human interaction.

In this chapter, we study a core component in the exploration mission, which is a way

to incrementally identify regions or goals that, if visited by the vehicle, will eventually

lead to full coverage of the environment. Specifically, we consider the case of exploration

of 3D environments consists of multiple floors with a MAV. Central to this methodology

is a stochastic differential equation-based exploration algorithm to enable exploration in

three-dimensional indoor environments. We are able to address computation, memory,
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and sensor limitations by using a map representation which is dense for the known oc-

cupied space but sparse for the free space. We determine regions for further exploration

based on the evolution of a stochastic differential equation that simulates the expansion

of a system of particles with Newtonian dynamics. The regions of most significant par-

ticle expansion correlate to unexplored space. After identifying and processing these

regions, the autonomous MAV navigates to these locations to enable fully autonomous

exploration.

We begin by motivate and detail the key concepts of our approach (Sect. 8.1). The

methodology and algorithm details are provided in Sect. 8.3. We present numerical sim-

ulations that compare our method to a baseline frontier-based exploration approach in

Sect. 8.5.1. We then discuss simulation and experimental results obtained from our au-

tonomous MAV exploring complex indoor environments in Sects. 8.5.2-8.5.3.

8.1 Motivation

Consider a robot starting in a completely unknown environment. As the robot acquires

sensor information, it is able to build a map representing the unoccupied and occupied

spaces of the environment. Concurrently, we identify those sensed regions as known

and therefore explored. The goal of this work is to identify regions that are presently

unknown and guide the robot to those unknown locations, in the process exploring and

expanding the map representation of the environment.

The development of our approach results from the evaluation of existing methods,

such as frontier-based exploration [116] with naive extensions to three dimensions. These

methods often fail to accurately capture the differences between unoccupied and un-

known space because sensors provide incomplete information about the surrounding

three-dimensional environment. We frequently observed cases where unknown and un-

occupied regions of space were nearly co-located and sparsely-filled regions of the envi-

ronment that should clearly be identified as unoccupied. Frontier-based exploration per-
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forms poorly in this case as it relies on the boundary between unoccupied and unknown

space to determine the next exploratory step of the vehicle (Fig. 8.1), which results in a

myopic strategy that increases local coverage while reducing the rate of expansion of the

map. More recent methods such as those proposed in [18, 91] proved to be too compu-

tationally expensive for our system to enable real-time operation. Additionally, while in

two dimensions, maintaining a dense map that contains a representation of known and

unknown regions is computationally tractable, attempting the same in three dimensions

quickly becomes intractable for systems with limited memory and computational capa-

bilities because of the amount of sensor information.

Therefore, we pursue an approach that does not require a dense representation of the

free space. In doing so, we address some of the issues resulting from incomplete sensor

information. Fundamental to our approach is the observation (and assumption) that un-

structured or uncluttered regions of the map generally correlate with unexplored regions

of the indoor environment. Therefore, we wish to identify these regions as locations for

further exploration. Following the literature, we call these regions frontiers as they serve

to differentiate between the known and unknown regions of the environment.

8.2 Overview

8.2.1 Notes on Notation

This chapter considers a relatively isolated topic comparing to the rest of this thesis

(Ch. 3- 6). Therefore, it is appropriate to reuse some of the notations in this chapter

to simplify presentation. While reading this chapter, the readers should stay with only

the notations defined within it.
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Dense Free Space

Occupied Space

(a) Dense free space

Exploration Goals

(b) Goals found by traditional frontier-based ap-
proach

Sparse Free Space

(c) Sparse free space

Exploration Goals

(d) Goals found by the SDEE algorithm

Figure 8.1: Challenges with traditional frontier-based exploration methods in 3D. Fig-
ure 8.1(a) depicts experimental data showing the observed free and occupied space given
a dense voxel grid representation. Frontier-based exploration methods look toward the
boundary between free and unexplored space. However, in three dimensions, free space
observations are often incomplete due to occlusions and limitations on sensor field-
of-view and resolution, yielding frontiers that result in poor exploration performance
(Fig. 8.1(b)). The frontiers resulting from the proposed method are shown in Fig. 8.1(d).
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8.2.2 Approach

The exploration algorithm begins when the robot starts sensing the environment and

building a map of the occupied space. The free space, which is identified from sensor ob-

servations, is represented by an appropriately sampled set of virtual particles (Sect. 8.3.1).

The particle set is resampled based on the local particle density and the current particle

set to ensure an accurate representation of the environment free space (Sect. 8.3.2). These

virtual particles are subject to simulated disturbance forces that are stochastic in nature,

forcing them to disperse through the known and unknown space with the motion given by

Newtonian dynamics. The evolution of these particles is given by a stochastic differen-

tial equation (SDE) that considers collisions with the known occupied space defined by

the current map (Sect. 8.3.3). The simulation of the dynamics of the system of particles

and the expansion of the boundary of the set of particles allow us to identify exploration

frontiers (and therefore goals) based on the particle dispersion (Sect. 8.3.4). The frontier

goals are queued by the robot and removed from the queue as the robot visits the goals

(Sect. 8.3.5). The MAV navigates to these locations while incorporating sensor informa-

tion into the map and defining new particles based on the sensor observations of the free

space. The exploration algorithm terminates when all navigation goals are visited as this

corresponds to the full exploration of the environment. A graphical representation of the

approach is depicted in Figs. 8.2-8.3

We refer to the process of initializing, resampling, simulating particle expansion,

and extracting frontiers as the Stochastic Differential Equation-based Exploration algo-

rithm (SDEE). The SDEE algorithm is run repeatedly as required for the duration of the

experiment or until the environment is completely explored, where a new iteration of the

algorithm is triggered when the robot successfully visits a navigation goal. Each step of

the algorithm is described in detail in the remainder of this section and summarized in

Algorithm 2.
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Stochastic Differential Equation-based Exploration Algorithm

X�[k] X+[k]

G[k]

Navigation
System

P[k]

Active Set
Approximation

S[k]

Figure 8.2: The autonomous exploration system design. Registered sensor data is used
to populate an occupied voxel cell map and generate a sparse free space representation
defined by particles P[k]. Sensor observations in the form of these particles accumulate in
the set, P[k], until the kth iteration of the algorithm is triggered (Sect. 8.3.1). The particle
set is resampled (Sect. 8.3.2), yielding a set, X−[k], with Nmin[k] particles. The particles
X−[k] undergo a stochastic differential equation simulation (Sect. 8.3.3) to generate the
set X+[k]. Exploration frontiers are extracted based on the transformation of X−[k] to
X+[k] and define the set of goals G[k] (Sect. 8.3.4). These goals are queued, with the
current goal selected based on the current map representation and the state of the robot
(Sect. 8.3.5). Goals are also cleared from the queue as they are observed by the Kinect
sensor. An approximation to reduce the computational cost of integration of the SDE is
defined by considering the most recent or highly weighted particles (termed the active
set, Sect. 8.3.4), which are defined by the most recent sensor observations, P[k], and the
previous set of frontier goals, G[k − 1].

(a) X[k] (b) X−[k] (c) X+[k] (d) G[k]

Figure 8.3: Graphical illustration of the notation at the kth iteration including: the
sparse free space representation X[k] (Fig. 8.3(a)), the resampled particle set X−[k]
(Fig. 8.3(b)), the particle set after the SDE simulation X+[k] (prior X−[k] also shown
in gray, Fig. 8.3(c)), and the resulting frontier goals G[k] (shown as black stars with
associated particles in X+[k] in gray, Fig. 8.3(d)).
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8.2.3 Assumptions

We begin by assuming that the MAV is able to autonomously navigate. Hence, this work

builds upon systems developed in previous chapters, in which we describe the design of

a fully autonomous MAV system able to localize, map, plan, and control onboard the

vehicle without requiring external infrastructure or human interaction beyond high-level

navigation goals. The output of the SDEE algorithm is a sequence of goal locations in

the current map and the input for the navigation system of our MAV as shown in Fig. 8.2.

We assume that the characteristic sensor length, or maximum observable distance of

the least capable sensor, is known in advance, and denote this value as D. We set the

maximum observable distance of the laser scanner and RGB-D camera sensor as 30 m

and 4 m, respectively. Hence, D = 4 m for the simulation and experimental results.

8.3 The SDEE Algorithm

8.3.1 Particle-based Representation of Free Space

Our approach requires a sparsely sampled representation of the free space. As the robot

observes and maps the environment, it generates or emits particles at known free space

locations according to the sensors. Therefore, as the robot is equipped with a laser scan-

ner and RGB-D camera sensor, we may readily define free space locations by randomly

sampling over the space known to be unoccupied – the space between the robot and the

observed occupied space.

Define a set of particles, P[k], where each particle, pi[k], represents a point mass

in free space (R2 or R3 for this work) between iterations k − 1 and k of the SDEE

algorithm. As the robot observes the environment, the number of particles increases as

the particles accumulate in the set P[k]. During the experiment, we limit the rate of

particle emission by only creating new particles after a small translation or rotation. This

heuristic is applied to prevent the unnecessary creation of particles, for example, while
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the robot hovers in place without gathering any new information. After each iteration

of the SDEE algorithm P[k] is reset to the empty set. We also define a desired initial

hover pose directly above the starting position of the vehicle, denoted as qh. The initial

set P[0] is populated via sensor information gathered as the robot navigates to qh (see

Algorithm 2).

8.3.2 Resampling

As we are continually creating particles to represent the free space, we wish to main-

tain some bound on the number of particles while ensuring that the particles are evenly

distributed over the unoccupied space and accurately reflect the free space in the envi-

ronment. We wish to keep this number as small as possible. Accordingly, we limit the

number of particles to Nmin, a value that is calculated based on the state of the map and

an estimate of the volume of free space.

Consider the kth iteration of the SDEE algorithm with newly-created free space par-

ticles, P[k], and the resampled particles from the previous iteration, X−[k − 1]. Denote

the union of these two sets as:

X[k] = X−[k − 1] ∪P[k].

Let the number of particles in X[k] be:

N [k] = |X−[k − 1]|+ |P[k]|.

Define the mean distance between particles xi[k] ∈ X[k] as:

d[k] =
1

N [k]

N [k]∑
i=1

di[k]

with

di[k] =
1

ki

∑
j∈Ki

‖xj[k]− xi[k]‖ (8.1)

and Ki denoting the neighboring set of the nearest ki particles (i.e. |Ki| = ki).
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We want the average distance between particles to be considerably smaller thanD, the

characteristic sensing length of the robot. Therefore, we define the maximum permissible

separation distance between particles as dmax = βD with β � 1. Now we can calculate

Nmin[k], the minimum number of particles required for the kth iteration, so that we ensure

a maximum separation distance which is much smaller than the characteristic sensing

range. Specifically, we determine the rate at which Nmin[k] be changed by the average

distance between the particles and the characteristic length scale derived from the sensor

field-of-view according to:

Nmin[k]

Nmin[k − 1]
=
d[k − 1]3

d3
max

=
d[k − 1]3

(βD)3 .

As the robot explores the environment, the mean distance between particles will increase,

thus requiring Nmin[k] to also increase. However, if the mean distance between particles

does not increase, corresponding to an instance where the environment representation

does not increase in size, the minimum number of required particles will remain constant.

Associate with each particle xi[k] ∈ X[k] the weight wi[k] using the metric:

wi[k] =
di[k]3∑N [k]
j=1 dj[k]3

.

Note that the particle weight is analogous to the density of a mixture medium with uni-

form mass per particle but with particles in lower density regions having a higher weight,

and thus a higher probability of being sampled. The resampling step consists of drawing

Nmin[k] particles from X[k] based on the corresponding particle weights. The resampled

set is defined as X−[k] with |X−[k]| = Nmin[k].

In the next subsection we will describe the SDE simulation step. To avoid confusion,

we will drop the notation for the kth iteration and let x−i ∈ X− denote x−i [k] ∈ X−[k].

8.3.3 Particle Dynamics

Consider an enclosed three-dimensional environment that contains a fixed number of gas

molecules with dynamics that follow the Langevin equation:

mẍi(t) = −∇U(xi(t))− γẋi(t) +
√

2γkbTη(t) (8.2)
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with m defining the molecule mass, xi(t) ∈ R3 is the position of the ith molecule at time

t, U(xi(t)) is the potential due to interactions between molecules, γ is a damping term,

kb is the Boltzmann constant, T is the temperature, and η(t) is a δ-correlated stationary

zero-mean Gaussian process:

< η(t) > = 0

< η(t) η(t′) > = δ(t− t′).

We want the molecules to emulate an ideal gas. This means that the molecules do not in-

teract (U(xi(t)) = 0), and the collisions are perfectly elastic and satisfy the assumptions

for frictionless impact. The evolution of the state of each molecule, xi(t), is dictated

by (8.2), with initial conditions xi(0), ẋi(0), and the environment. At steady state, the

pressure of the gas, P , in an environment volume, V , is given by the ideal gas law:

P = µ
N

V
(8.3)

where µ = kbT can be considered to be a constant.

As the particles disperse through the environment according to the motion equations

in (8.2), the volume increases and according to (8.3), the pressure and the density of

particles, ρ = N
V

, decrease. Both of these quantities, P and ρ, can be estimated locally

based on the distances between particles. The lowest density regions, which are areas

of maximum expansion, correspond to unexplored regions and can be used to guide the

identification of frontiers as discussed in Sect. 8.3.4.

Time and Length Scales

From (8.2), the time constant associated with the deterministic, macro-scale Newtonian

motion of a particle is given by:

τ =
m

γ
.

A choice of the time scale and the initial velocity of a particle leads naturally to a length

scale. By solving the differential equation we get an expression of the distance travelled
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by the particle:

xi(t)− xi(0) = τ ẋ(0)(1− e−
t
τ ).

Thus the length scale, L, associated with the time scale τ is given by:

L = τ ẋi(0)(1− e−1). (8.4)

It is natural to choose the length scale based on the sensor field-of-view, L ∼ D. Thus,

we can pick either the initial velocities for the particles in the SDE simulation or the time

scale τ and determine the other using the equation above.

SDE Integration and Initialization

Each run of the SDE simulation is carried out for a randomly chosen initial velocity

ẋi(0) for the time duration τ . However, the integration time step, ∆t, and initial velocity

must be chosen to ensure that we detect any particle collisions with the environment.

Therefore, we choose ∆t and define ẋi(0) as a function of ∆t and the resolution of the

occupied space with voxels of dimension ∆M×∆M×∆M . To ensure that we are able to

detect any possible collisions of the particles with the environment, we require ‖ẋi(0)‖ =

∆M
∆t

. The magnitude is consistent across all particles and we draw the direction of the

initial velocity vector randomly from a uniform distribution in azimuth and elevation

angles.

We denote the particle set after the SDE simulation as X+[k]. We will now consider

the transformation from X−[k] to X+[k] and extract frontier goals for further exploration.

8.3.4 Frontier Extraction

Based on the previous statement that we are interested in detecting regions of greatest

expansion, we can consider volumetric or density changes as a function of local changes

in X−[k] and X+[k]. For the sake of brevity, we only discuss detection based on vol-

umetric changes. However, changes in local density are readily computed and may be

approached in a similar manner.
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Algorithm 2 The SDEE Algorithm
X−[0], G[0]← ∅, qi ← qh, Q[0]← {qi}, k ← 0

while Q[k] 6= ∅ do

P[k]← ∅

while qi ∈ Q[k] and navigating to qi do

P[k]← Sample free space particles (Sect. 8.3.1)

if qj ∈ Q[k] is observed by sensor (∀qj ∈ Q[k]) then

Q[k]← Q[k] \ qj
end if

end while

k ← k + 1

X[k]← X−[k − 1] ∪P[k − 1]

X−[k]← Resample(X[k]) (Sect. 8.3.2)

if G[k − 1] 6= ∅ then

S[k]← G[k − 1] ∪P[k − 1]

X+[k]← SDE Integration(S[k]) (Sect. 8.3.3)

else

X+[k]← SDE Integration(X−[k])

end if

G[k]← Frontier Extraction(X−[k], X+[k]) (Sect. 8.3.4)

Q[k]← Q[k − 1] ∪G[k]

qi ← Choose Next Goal(Q[k]) (Sect. 8.3.5)

end while
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We are interested in the particles (only for the kth iteration), x+
i ∈ X+, that are

spatially separated from the particles, x−i ∈ X−. We draw from the set X− the closest

neighbor to the particle x+
i :

d̂i = arg min
x−j ∈X−

‖x+
i − x−j ‖

by constructing a KD-Tree based on X− and compute d̂i for all x+
i ∈ X+. We choose

the largest distances through thresholding:

d̂i > αD

where α ∈ (0, 1] is a scalar. Decreasing α will yield more possible frontier locations but

at the cost of increasing the number of false positive solutions – frontier goals that do not

lie in the unexplored space.

The actual goal for autonomous navigation should be in the known free space to

ensure that the robot is able to continue to localize itself. Therefore, we define the point

gi as the position of the ith particle immediately following its last reflection (assuming an

obstacle collision occurs). The orientation of the goal is defined as the orientation of the

velocity of the ith particle at gi: ġi
‖ġi‖ . Hence, the exploration goal will always have direct

line-of-sight sensing of both explored and unexplored space. These goals define the set

G[k] at the kth iteration with associated position and orientation.

Improving Performance via the Active Set

In general, the number of particles that actively impact the outcome of the frontier extrac-

tion are considerably fewer than the number of particles in the set X−[k]. Define the set

of particles, S[k], as containing those particles with the highest weight, G[k − 1], from

the previous SDE simulation and all newly created particles since the last algorithm up-

date, P[k]. We refer to S[k] as the active set of particles: those particles most influential

in the update of the exploration algorithm. At the kth iteration, rather than apply the SDE

step to the particles in X−, we consider only the particles si ∈ S with |S| = NS. As we
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are guaranteed that NS ≤ Nmin (and generally NS � Nmin), we reduce the computation

requirements of the SDE integration by considering fewer particles in the calculation.

After integration, for each particle s+
i ∈ S+ we compute:

d̂i = arg min
x−j ∈X−

‖s+
i − x−j ‖

and apply the same thresholding approach as before. Note that we are computing the

change with respect to X−. During operation, it is possible that this heuristic fails (i.e., no

viable goals are computed via thresholding). In this case, we re-run the frontier detection

approach based on the full particle set.

8.3.5 Goal Queuing and Algorithm Termination

The final step in the exploration strategy is the queuing of frontiers goals. Define the goal

queue:

Q[k] = Q[k − 1] ∪G[k]

starting with Q[0] = ∅. We choose from Q[k] a goal qi (position and orientation) to

send to the autonomous navigation system. The goal is selected to minimize the motion

of the vehicle (accounting for motion around obstacles or floor transitions) but could be

based on other criteria. We also clear a goal from the queue when the goal is observable

by the robot and within a distance D from the robot’s state. The event of reaching qi

triggers a new iteration of the SDEE algorithm. The exploration strategy terminates when

Q[k] = ∅.

8.3.6 Heuristics for Improved Performance

We employ some heuristics to improve upon the performance of the algorithm.

• The exploration rate increases if we bias the sampling of initial velocities of the

particles in the SDE simulation to favor x-y motion over z motion. This heuristic
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Active Set Particle SDE Frontier

Heuristic Resampling Simulation Identification

No O(N logN) O(TNmin) O(Nmin logNmin)

Yes O(N logN) O(TNS) O(NS logNmin)

Table 8.1: Complexity of the kth iteration of the SDEE algorithm.

is effective because buildings tend to be larger in length and width as compared to

height.

• We do not want the robot to fly in directions corresponding to blind spots. Thus the

planner finds trajectories whose tangents are limited to a maximum vertical slope

of half the field-of-view of the RGB-D sensor with the robot facing the direction of

forward motion.

• A goal, gi[k], is discarded if the line segment connecting gi[k] and its associated

particle in X+[k] goes through a small opening in the environment that is not

traversable by the actual robot.

8.4 Complexity

As the number of particles varies between iterations, the complexity also varies be-

tween iterations. The SDEE algorithm consists of three computational steps: resampling,

simulation of the SDE, and selection of the frontiers. The complexity of resampling

is O(N [k] logN [k]). The complexity of the SDE simulation is O(TNmin[k]), where

T = τ/∆t is the total number of update steps. The complexity of frontier identifica-

tion is O(Nmin[k] logNmin[k]). However, if the active set heuristic is applied, the com-

plexity of the SDE simulation and frontier identification is reduced to O(TNS[k]) and

O(NS[k] logNmin[k]), respectively. A summary of the algorithm complexity is presented
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in Table 8.1.

Available onboard memory is most greatly impacted by the occupied and free space

storage. For a map of size M ×M ×M , the occupied-space requires O(M3) storage

space. In practice, we reduce this amount by using our compact environment repre-

sentation of the occupied space (Sect. 3.3.1) such that the required memory becomes

O(mM2), where m is a small number compared to M . The free space particle rep-

resentation conservatively requires O(N [k]) space to store. Note that for a voxel grid

free space representation the map will require O(M3). In most practical applications

N [k]�M3. Therefore, the proposed algorithm can run using much less memory than a

dense voxel grid environment representation.

8.5 Results

We present both simulation and experimental results to demonstrate the performance of

our proposed approach. We also present the comparison of our approach with traditional

frontier-based exploration in 2D simulations.

8.5.1 Comparison to Frontier-based Exploration

In this section, we compare the performance of the SDE-based frontier extraction to

traditional frontier-based exploration methods [9]. As noted previously (Sect. 8.1) and

depicted in Fig. 8.1, the traditional approach performs poorly in three dimensions. For

this reason, we consider the comparison in two dimensions. In Fig. 8.4 we show three

different maps of different geometric characteristics, the output of the SDE-based frontier

extraction, G, and the output of the traditional frontier-based approach using the param-

eters from Table 8.2. We see that the SDE-based approach yields results similar to the

traditional approach.

As previously detailed, algorithm parameters, specifically α, play an important role
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α β ∆M (m) ∆t (s) D (m)

0.6 0.3 0.1 0.01 4.0

Table 8.2: Simulation and experimental results parameters.

in performance. In Fig. 8.5, we depict the rate of false positive frontiers while varying

N and holding α = 0.6. The figure depicts the average of 100 simulated trials for each

N for each representative map in Fig. 8.4. Note that for N < 100, the false positive rate

is high, but when N > 150, this number drops to zero and remains at this value. This

study suggests that the SDEE algorithm compares favorably to frontier-based exploration

in effectiveness of identifying regions for further exploration given a relatively sparse

representation of the environment free space, supporting the memory efficiency argument

made in Sect. 8.4.

In practice, we find that one need only select an appropriate α for a simulated en-

vironment of similar scale and the algorithm will work well for a variety of different

environments. Hence, α must be reconsidered only when the environment scale and

characteristics change considerably.

8.5.2 Simulation Results

We now consider the performance of the SDEE algorithm in three-dimensional environ-

ments in simulation. In this section, we are interested in considering the effectiveness

of the algorithm in identifying and extracting SDE-based frontiers. We are unable to

compare performance to the frontier-based exploration approach leveraged above as it

performs poorly in three-dimensional environments as discussed in Sect. 8.1.

We consider two studies to evaluate the performance of the SDEE algorithm. The first

study focuses on the ability of the algorithm to identify and extract SDE-based frontiers

in a large single floor environment with volume 2650.1 m3. The second study extends the

discussion to a multi-floor environment with volume 765.2 m3. In both studies, accuracy
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Figure 8.4: Numerical simulations of the SDE-based frontier identification approach.
The output of the SDEE algorithm is shown for two cases, N = 200 and N = 800,
for three different types of environments. We show the resulting frontier goals (gi) and
results from traditional frontier-based exploration [9].
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Figure 8.5: The effects of varying the free space particle count while holding α = 0.6
for the three environments (Fig. 8.4). The figure depicts the average of 100 simulated
trials for each particle count and representative map. The rate of false positives is the
percentage of identified particles in X+ that do not lie in the unexplored space.

is defined as a function of environment coverage and performance is reported based on

the total number of required free space particles and the size of the active set.

The simulation software accurately models the vehicle dynamics and sensors, is writ-

ten in C++, and operates in real-time. The simulated indoor environment is generated

from experimental data collected by the aerial vehicle in similar experimental environ-

ments to those in Sect. 8.5.3. The simulation of vehicle dynamics matches the exper-

imental vehicle and all onboard estimation and control software are equivalent in the

simulation as in the experiments. The simulation of laser and Kinect sensor data is ac-

complished using ray-tracing methods while IMU sensor data is provided by the dynamic

model. The simulated MAV operates with a maximum speed of 1 m/s.

The performance of the single- and multi-floor simulations is shown in Fig. 8.7 with

relevant statistics shown in Table. 8.3. The vehicle successfully navigates through the

environments with close to complete coverage in comparison to the true environment

descriptions (Fig. 8.6). Note that for a few instances in both the single- and multi-floor

environments that the active set particle count, NS, and the free space particle count, N ,
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Duration (s) Path Length (m) Explored (%)

Single floor 2178 1220.2 99.7

Multi-floor 731 463.9 98.6

Table 8.3: Simulation performance via duration, path length, and coverage.

are equal, indicating the active set heuristic fails, as discussed in Sect. 8.3.4.

8.5.3 Experimental Results

We present a full 3D exploration in a multi-floor environment to demonstrate the perfor-

mance of the proposed algorithm. In the experiment, the exploration process is completed

when the SDEE algorithm no longer identifies frontiers for further exploration. The con-

figuration of the experimental platform is discussed in Sect. 1.3 and shown in Fig. 1.2(a).

Estimation and mapping are powered by approaches in Ch. 3 and Ch. 5. Planning, trajec-

tory generation and control follows the methodology presented in Ch. 7.

The robot operates in an unstructured lobby of a multi-floor building, where there

are several vertical spaces for the robot to explore. Figure 8.9 shows the intermediate

stages of the exploration process. We can see the goals that lead the robot to first finish

the exploration of the first floor, and then try to explore the vertical direction. Despite

the fact that the ceiling height exceeds four meters, the proposed algorithm successfully

finds exploration goals that guide the robot to sense the high ceiling area, resulting in full

coverage of the ceiling and the second floor. The number of free space and active set

particles as well as the observed map size are shown in Fig. 8.8.

153



0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (sec)

N
u

m
b

e
r 

o
f 

F
re

e
 S

p
a

c
e

 S
a

m
p

le
s

 

 Total Free Space Samples

Active Free Space Samples

0 500 1000 1500 2000
0

20

40

60

80

100

Time (sec)
E

n
v
ir
o

n
m

e
n

t 
C

o
v
e

ra
g

e
 (

%
)

(a) Single floor

0 200 400 600 800
0

500

1000

1500

2000

2500

Time (sec)

N
u

m
b

e
r 

o
f 

F
re

e
 S

p
a

c
e

 S
a

m
p

le
s

 

 Total Free Space Samples

Active Free Space Samples

0 200 400 600 800
0

20

40

60

80

100

Time (sec)

E
n
v
ir
o
n
m

e
n
t 
C

o
v
e
ra

g
e
 (

%
)

(b) Multi-floor

Figure 8.6: Environment coverage and free space particle counts (N and NS) for the
exploration simulations in single- and multi-floor environments.
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(a) Single floor environment and robot trajectory (b) Multi-floor environment and robot trajectory

(c) Single floor simulation result (d) Multi-floor simulation result

Figure 8.7: An aerial robot explores single- and multi-floor environments in simulation
(Figs. 8.7(a) and 8.7(b)) with the path shown in red. and the maps resulting from the sim-
ulated exploration (Figs. 8.7(c) and 8.7(d)). For both environments, complete coverage
is achieved.

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

Time (sec)

N
u

m
b

e
r 

o
f 

F
re

e
 S

p
a

c
e

 S
a

m
p

le
s

 

 
Total Free Space Samples

Active Free Space Samples

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3
x 10

5

Time (sec)

N
u
m

b
e
r 

o
f 
O

c
c
u
p
ie

d
 V

o
x
e
ls

Figure 8.8: Free space particle counts (N and NS) and total occupied voxel count for the
exploration experiment in a multi-floor environment.
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Figure 8.9: Exploration of a multi-floor building. The left column shows views from an
external camera to illustrate the structure of the environment. The right column shows
the online data visualization.
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8.6 Discussion

In this chapter, we propose a stochastic differential equation-based exploration algo-

rithm to enable exploration in three-dimensional indoor environments with a payload

constrained MAV. We demonstrate our approach and benchmark our algorithm through

numerical simulations and experimental results in single- and multi-floor indoor exper-

iments. This chapter provides the last building block towards fully autonomous MAVs

for operations in complex environments without any human interaction. This chapter

concludes the development of autonomous MAVs in this thesis.
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Chapter 9

Conclusion and Future Work

In this this thesis, we present contributions to the state-of-the-art in autonomous nav-

igation of MAVs in complex indoor and outdoor environments, with a focus on state

estimation. In Ch 3 and 4, we develop state estimation and mapping systems that en-

able off-the-shelf MAVs equipped with laser scanners or cameras to fly autonomous in

GPS-denied environments. In Ch 5, we present a modular and extensible methodology

that is able to combine information from multiple sensors, including those from previ-

ous chapters, in a consistent manner. In Ch 6, we show even with a sensor suite that

consists of only one camera and one IMU, it is still possible to recover all metric values

of critical navigation states, such as velocity and attitude, without any prior know of the

system and the environment. We demonstrate high speed autonomous flight with such

minimum sensing capability. We present planning and control approaches that is specifi-

cally adapted for autonomous aerial navigation in Ch 7 to form a integrated MAV system.

Building on top of all these, in Ch. 8, we present an algorithm that enables autonomous

environment coverage without any human interaction.

We note that the although the primary experimental platform used throughout this

thesis are quadrotors, our methodologies are not limited to this particular type of plat-

form. In fact, our approaches are sensor-based and work equally well on other vehicles

such as fixed and flapping wing MAVs, as well as ground and surface vehicles.
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9.1 Summary of Contributions

To summarize, we identify the key contributions of this thesis as follows:

• We develop algorithms and system that enables computation-constrained MAVs to

fly autonomously in GPS-denied environments using only lasers or cameras as the

primary source of sensing.

• We propose a methodology that improves system reliability via optimally fuse in-

formation from heterogeneous sensors.

• We present an algorithm that enables on-the-fly initialization and failure recov-

ery for MAVs equipped with only the monocular visual-inertial sensor suite, and

demonstrate high speed autonomous flight with such sensor suite in complex in-

door environments.

• We propose a fast online algorithm for generation of informative waypoints that

guide towards full coverage of three-dimensional environments.

• We develop fully integrated MAV systems and show through extensive experiments

that it is possible to have a MAV equipped with limited onboard sensing and com-

putation to autonomously navigation through complex indoor and outdoor environ-

ments. This is also the main goal as well as the expected technical outcome of this

thesis.

9.2 Future Work

This thesis opens up several interesting research areas, some are continued development

into large-scale systems as the technical capability of MAVs move forward, while others

are new directions that may worth pursuing as we evaluate the performance of state-of-

the-art approaches.
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Intersection of Estimation and Control for High-Speed Navigation

In our current work, planning and control modules are mostly isolated from the estimator.

However, as we move towards very high-speed autonomous flight, we may require the

estimator and the controller to interact with each other in order to generate and execute

efficient, collision-free, and safe flight trajectories.

Dense Vision Systems

Thanks for the rapid development of mobile graphic processors, we believe real-time

processing of dense image and pointcloud data is possible. This will lead to significant

robustness improvement against motion blur, which is likely to occurred during aggres-

sive maneuvers. Further on this topic, we may investigate the effects of rolling shutters

on the performance of dense vision systems, and propose compensation methodologies

accordingly.

Novel Sensing Technologies for MAVs

Although conventional sensors such as GPS, cameras, and laser range finders are proven

to be useful for MAV navigation, recent advancement in sensing technologies may create

new opportunities. For instance, light-field can be an alternative for depth perception,

and dynamic vision sensor provides low-latency optical flow-like measurements. There

are great potentials in these new sensing technologies for their applications to MAVs.

Sensor versus Observability

It is quite obvious that more sensors lead to better observability of the system, however,

how individual sensor affects the observability properties remains unclear. A single cam-

era is able to observe the linear velocities up to a metric scale. With the addition of an

IMU and sufficient acceleration excitation, the metric scale becomes observable. How-

ever, the definition of sufficient excitation remains unclear. Adding more sensors renders
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more quantities observable, but the information that the sensor provides, as well as the

quality of the information, result in complex conditions for the observability properties.

As such, a generic framework that is able to identify the observability properties in an

online fashion will be beneficial for higher level tasks such as motion planning and risk

assessment.

Multi-Agent Systems

As the reliability of single MAV systems improves, it becomes feasible to deploy multiple

MAVs into more complex missions such collaborative exploration and mapping [57]. It

is also interesting to deploy heterogeneous autonomous agents such as ground and aerial

vehicles in order to leverage the advantage of different platforms.
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