24 research outputs found

    Performance Analysis of Multicast Mobility in a Hierarchical Mobile IP Proxy Environment

    Full text link
    Mobility support in IPv6 networks is ready for release as an RFC, stimulating major discussions on improvements to meet real-time communication requirements. Sprawling hot spots of IP-only wireless networks at the same time await voice and videoconferencing as standard mobile Internet services, thereby adding the request for multicast support to real-time mobility. This paper briefly introduces current approaches for seamless multicast extensions to Mobile IPv6. Key issues of multicast mobility are discussed. Both analytically and in simulations comparisons are drawn between handover performance characteristics, dedicating special focus on the M-HMIPv6 approach.Comment: 11 pages, 7 figure

    Roaming Real-Time Applications - Mobility Services in IPv6 Networks

    Full text link
    Emerging mobility standards within the next generation Internet Protocol, IPv6, promise to continuously operate devices roaming between IP networks. Associated with the paradigm of ubiquitous computing and communication, network technology is on the spot to deliver voice and videoconferencing as a standard internet solution. However, current roaming procedures are too slow, to remain seamless for real-time applications. Multicast mobility still waits for a convincing design. This paper investigates the temporal behaviour of mobile IPv6 with dedicated focus on topological impacts. Extending the hierarchical mobile IPv6 approach we suggest protocol improvements for a continuous handover, which may serve bidirectional multicast communication, as well. Along this line a multicast mobility concept is introduced as a service for clients and sources, as they are of dedicated importance in multipoint conferencing applications. The mechanisms introduced do not rely on assumptions of any specific multicast routing protocol in use.Comment: 15 pages, 5 figure

    A Distributed Multimedia Communication System and its Applications to E-Learning

    Get PDF
    In this paper we report on a multimedia communication system including a VCoIP (Video Conferencing over IP) software with a distributed architecture and its applications for teaching scenarios. It is a simple, ready-to-use scheme for distributed presenting, recording and streaming multimedia content. We also introduce and investigate concepts and experiments to IPv6 user and session mobility, with the special focus on real-time video group communication.Comment: Including 6 figure

    A Discrete Haar Wavelet Based Approach for Visualizing Error Regarding a Simulated Time Series

    Get PDF
    Point-wise error between a time series and itssimulated series is not a stronger technique in data analysis.However, extending this point-wise error into a decomposition oftwo different qualitative values is addressed here. Thedecomposition is facilitated by discrete Haar wavelet. Ultimately,a spectrum has been designed to illustrate the error allowinglocalized analysis and interpretations too

    Decoupling Information and Connectivity in Information-Centric Networking

    Get PDF
    This paper introduces and demonstrates the concept of Information-Centric Transport as a mechanism for cleanly decoupling the information plane from the connectivity plane in Information-Centric Networking (ICN) architectures, such as NDN and CICN. These are coupled in today\u27s incarnations of NDN and CICN through the use of forwarding strategy, which is the architectural component for deciding how to forward packets in the presence of either multiple next-hop options or dynamic feedback. As presently designed, forwarding strategy is not sustainable: application developers can only confidently specify strategy if they understand connectivity details, while network node operators can only confidently assign strategies if they understand application expectations. We show how Information-Centric Transport allows applications to operate on the information plane, concerned only with the namespace and identities relevant to the application, leaving network node operators free to implement ICT services in whatever way makes sense for the connectivity that they manage. To illustrate ICT, we introduce sync*, a synchronization service, and show how a) its use enables applications to operate well regardless of connectivity details and b) its implementation can be completely managed by network operators with no knowledge of application details

    Cloud media video encoding:review and challenges

    Get PDF
    In recent years, Internet traffic patterns have been changing. Most of the traffic demand by end users is multimedia, in particular, video streaming accounts for over 53%. This demand has led to improved network infrastructures and computing architectures to meet the challenges of delivering these multimedia services while maintaining an adequate quality of experience. Focusing on the preparation and adequacy of multimedia content for broadcasting, Cloud and Edge Computing infrastructures have been and will be crucial to offer high and ultra-high definition multimedia content in live, real-time, or video-on-demand scenarios. For these reasons, this review paper presents a detailed study of research papers related to encoding and transcoding techniques in cloud computing environments. It begins by discussing the evolution of streaming and the importance of the encoding process, with a focus on the latest streaming methods and codecs. Then, it examines the role of cloud systems in multimedia environments and provides details on the cloud infrastructure for media scenarios. After doing a systematic literature review, we have been able to find 49 valid papers that meet the requirements specified in the research questions. Each paper has been analyzed and classified according to several criteria, besides to inspect their relevance. To conclude this review, we have identified and elaborated on several challenges and open research issues associated with the development of video codecs optimized for diverse factors within both cloud and edge architectures. Additionally, we have discussed emerging challenges in designing new cloud/edge architectures aimed at more efficient delivery of media traffic. This involves investigating ways to improve the overall performance, reliability, and resource utilization of architectures that support the transmission of multimedia content over both cloud and edge computing environments ensuring a good quality of experience for the final user

    Decoupling Information and Connectivity via Information-Centric Transport

    Get PDF
    The power of Information-Centric Networking (ICN) architectures lies in their abstraction for communication --- the request for named data. This abstraction promises that applications can choose to operate only in the information plane, agnostic to the mechanisms implemented in the connectivity plane. However, despite this powerful promise, the information and connectivity planes are presently coupled in today\u27s incarnations of leading ICNs by a core architectural component, the forwarding strategy. Presently, this component is not sustainable: it implements both the information and connectivity mechanisms without specifying who should choose a forwarding strategy --- an application developer or the network operator. In practice, application developers can specify a strategy only if they understand connectivity details, while network operators can assign strategies only if they understand application expectations. In this paper, we define the role of forwarding strategies, and we introduce Information-Centric Transport (ICT) as an abstraction for cleanly decoupling the information plane from the connectivity plane. We discuss how ICTs allow applications to operate in the information plane, concerned only with namespaces and trust identities, leaving network node operators free to deploy whatever strategy mechanisms make sense for the connectivity that they manage. To illustrate the ICT concept, we demonstrate ICT-Sync and ICT-Notify. We show how these ICTs 1) enable applications to operate regardless of connectivity details, 2) are designed to satisfy a predefined set of application requirements and are free from application-specifics, and 3) can be deployed by network operators where needed, without requiring any change to the application logic

    Paripari: Connectivity optimization

    Get PDF
    PariPari è una piattaforma P2P multifunzionale ed estensibile. Questa tesi descrive come PariConnectivity, il modulo di PariPari che gestisce le comunicazioni di rete, sia stato completamente riprogettato e ottimizzato: lo sviluppo di un nuovo insieme di API, fondate sulle librerie Java NIO, ha fornito un nuovo livello di astrazione per l'accesso alla rete in PariPari, arricchito da un sistema efficiente di I/O asincrono. Su questa base è stato poi possibile realizzare nuovi servizi quali limitazione di banda, NAT Traversal, Multicast e Anonimato. PariPari is a multi-functional and extensible P2P platform. This thesis illustrates how PariConnectivity --the module of PariPari which provides access to network resources -- has been reengineered and optimized. Through the development of a new set of APIs, built on the Java NIO libraries, we have created a new network abstraction layer, providing easiness-to-use and efficiency thanks to the introduction of advanced features as, for instance, the asynchronous I/O. On this basis, we have introduced and enhanced some crucial services like bandwidth limitation, NAT Traversal, Multicast and Anonymit

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Quality of Service improvements for real time multimedia applications using next generation network architectures and blockchain in Internet Service Provider cooperative scenario

    Get PDF
    Real time communications are becoming part of our daily life, requiring constrained requisites with the purpose of being enjoyed in harmony by end users. The factors ruling these requisites are Quality of Service parameters of the users' Internet connections. Achieving a satisfactory QoS level for real time communications depends on parameters that are strongly influenced by the quality of the network connections among the Internet Service Providers, which are located in the path between final users and Over The Top service providers that are supplying them with real time services. Final users can be: business people having real time videoconferences, or adopting crytpocurrencies in their exchanges, videogamers playing online games together with others residing in other countries, migrants talking with their relatives or watching their children growing up in their home countries, people with disabilities adopting tecnologies to help them, doctors performing remote surgeries, manufacturers adopting augmented reality devices to perform dangerous tasks. Each of them performing their daily activities are requiring specific QoS parameters to their ISPs, that nowadays seem to be unable to provide them with a satisfactory QoS level for these kinds of real time services. Through the adoption of next generation networks, such as the Information Centric Networking, it would be possible to overcome the QoS problems that nowadays are experienced. By adopting Blockchain technologies, in several use cases, it would be possible to improve those security aspects related to the non-temperability of information and privacy. I started this thesis analyzing next generation architectures enabling real time multimedia communications. In Software Defined Networking, Named Data Networking and Community Information Centric Networking, I highlighted potential approaches to solve QoS problems that are affecting real time multimedia applications. During my experiments I found that applications able to transmit high quality videos, such as 4k or 8k videos, or to directly interact with devices AR/VR enabled are missing for both ICN approaches. Then I proposed a REST interface for the enforcing of a specific QoS parameter, the round trip time (RTT) taking into consideration the specific use case of a game company that connects with the same telecommunication company of the final user. Supposing that the proposed REST APIs have been deployed in the game company and in the ISP, when one or more users are experiencing lag, the game company will try to ask the ISP to reduce the RTT for that specific user or that group of users. This request can be done by performing a call to a method where IP address(es) and the maximum RTT desired are passed. I also proposed other methods, through which it would be possible to retrieve information about the QoS parameters, and exchange, if necessary, an exceeding parameter in change of another one. The proposed REST APIs can also be used in more complex scenarios, where ISPs along the path are chained together, in order to improve the end to end QoS among Over The Top service provider and final users. To store the information exchanged by using the proposed REST APIs, I proposed to adopt a permissioned blockchain, analizying the ISPs cooperative use case with Hyperledger Fabric, where I proposed the adoption of the Proof of Authority consensus algorithm, to increase the throughput in terms of transactions per second. In a specific case that I examined, I am proposing a combination of Information Centric Networking and Blockchain, in an architecture where ISPs are exchanging valuable information regarding final Users, to improve their QoS parameters. I also proposed my smart contract for the gaming delay use case, that can be used to rule the communication among those ISPs that are along the path among OTT and final users. An extension of this work can be done, by defining billing costs for the QoS improvements
    corecore