
PARIPARI: CONNECTIVITY OPTIMIZATION

RELATORE: Ch.mo Prof. Enoch Peserico Stecchini Negri De Salvi

CORRELATORE: Ing. Paolo Bertasi

LAUREANDO: Francesco Peruch

Corso di laurea in Ingegneria Informatica

A.A. 2010-2011

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria dell'Informazione

Corso di Laurea in Ingegneria Informatica

TESI DI LAUREA

PARIPARI: CONNECTIVITY

OPTIMIZATION

RELATORE: Prof. Enoch Peserico Stecchini Negri De Salvi

CORRELATORE: Ing. Paolo Bertasi

LAUREANDO: Francesco Peruch

A.A. 2010-2011

To Valentina

Contents

Abstract 1

Sommario 3

1 Introduction 5

2 PariPari 7

2.1 Plug-in architecture . 7

2.1.1 PariCore . 8

2.1.2 Credit System . 9

2.2 Network layout . 10

2.3 PariConnectivity . 12

3 Java NIO 15

3.1 Bu�ers . 15

3.1.1 Direct bu�ers . 16

3.2 Channels . 17

3.2.1 Channels basics . 18

3.2.2 InterruptibleChannel interface 18

3.2.3 Main abstract classes . 18

3.3 Selectors . 21

3.3.1 Registration . 21

3.3.2 Selection process . 22

4 PariConnectivity: the Core 25

4.1 A new abstraction layer . 25

4.2 Enhancing I/O performance . 26

4.3 Synchronous communications . 27

v

INDEX

5 Asynchronous I/O 31

5.1 Some preliminary notions . 31

5.2 Asynchronous I/O in PariConnectivity 33

5.3 Interaction with other plug-ins . 33

6 Bandwidth limitation 35

6.1 The Token Bucket algorithm . 35

6.2 Implementing the bandwidth limitation 37

6.3 Improving the QoS . 38

7 NAT Traversal 41

7.1 Communicating behind NAT . 41

7.2 NAT Traversal: services and techniques 42

7.2.1 IP Discovery . 42

7.2.2 The STUN protocol . 43

7.2.3 UDP Hole Punching . 44

7.2.4 The TURN protocol . 45

7.3 Interaction with other plug-ins . 46

7.4 Tunneling . 49

8 Multicast 51

8.1 Preliminary notions . 51

8.2 Centralized architecture . 53

8.3 Distributed architecture . 54

8.4 Selecting servers and cluster-leaders 57

9 Anonymity 61

9.1 Onion routing: an overview . 61

9.2 Sender Anonymity . 63

9.3 Receiver Anonymity . 65

9.4 A completely anonymous communication 66

10 Team management 69

10.1 Organizational structure . 69

10.2 Programming techniques . 70

10.3 Workforce management . 71

vi

INDEX

10.3.1 Working on PariConnectivity for a thesis 71

10.3.2 Working on PariConnectivity as a Software Engineering

student . 73

11 Conclusions and future work 75

11.1 Intensive testing . 75

11.2 TLS/SSL support . 76

11.3 Serialization support . 76

11.4 Direct �le transfer . 76

Bibliography 77

List of �gures 81

vii

Abstract

PariPari is a multi-functional and extensible P2P platform, currently developed

at the Department of Information Engineering of the University of Padova.

Its plug-in architecture, accessible through a set of clear and simple APIs,

considerably eases the addition of new features: the variety and complexity of its

modules � from �le sharing to VoIP, from Web hosting to distributed storage �

are expected to increase, eventually integrated by third party applications. This

development requires scalability, transparency, e�ciency, security and anonymity

qualities.

PariConnectivity is the plug-in that provides Network Communication APIs

and aims to ensure these qualities regarding the network I/O.

In its �rst implementation, it was a substantial reworking of the already ex-

isting Java libraries: though simple, this solution soon revealed its inadequacy.

This thesis illustrates how PariConnectivity has been reengineered and optimized.

Through the development of a new set of APIs, built on the Java NIO libraries,

we have created a new network abstraction layer, providing easiness-to-use and

e�ciency thanks to the introduction of advanced features as, for instance, the

asynchronous I/O. On this basis, we have introduced and enhanced some crucial

services like bandwidth limitation, NAT Traversal, Multicast and Anonymity.

Sommario

PariPari è una piattaforma P2P multifunzionale ed estensibile, attualmente in

sviluppo presso il Dipartimento di Ingegneria dell'Informazione dell'Università di

Padova.

La sua struttura a plug-in, accessibile tramite un insieme di semplici API, è

studiata per facilitare l'aggiunta di nuove funzionalità: la varietà e la complessità

dei moduli o�erti � che già ora spaziano dal semplice �le sharing al VoIP e al

�le hosting � sono destinate a crescere, anche con l'integrazione di applicazioni

prodotte da terze parti. Uno sviluppo di questo genere richiede che vengano

garantiti alcuni aspetti fondamentali quali scalabilità,trasparenza, e�cienza, si-

curezza e anonimato.

PariConnectivity è il plug-in che fornisce le API per le comunicazioni di rete,

e , per esse, punta ad assicurare queste caratteristiche.

Nella sua prima implementazione, questo plug-in costituiva sostanzialmente

un riadattamento delle librerie Java già esistenti: sebbene semplice, questa soluzione

si è presto rilevata inadeguata. Questa tesi descrive come PariConnectivity è stato

completamente riprogettato e ottimizzato: lo sviluppo di un nuovo insieme di

API, fondate sulle librerie Java NIO, ha fornito un nuovo livello di astrazione per

l'accesso alla rete in PariPari, arricchito da un sistema e�ciente di I/O asincrono.

Su questa base è stato poi possibile realizzare nuovi servizi quali limitazione di

banda, NAT Traversal, Multicast e Anonimato.

Chapter 1

Introduction

PariPari is a P2P platform currently developed by more than 60 students at the

Department of Information Engineering of the University of Padova. Whereas in

its decentralized, serverless architecture it resembles most traditional P2P appli-

cations like eMule, Skype or Azureus, PariPari aims at broadening P2P's horizons,

pursuing an ambitious goal: it does not focus on a particular service but, instead,

provides a multifunctional and extensible platform on which multiple services can

run simultaneously and cooperatively.

The number and heterogeneity of provided services � already spacing from

�le sharing to VoIP, from Web hosting to distributed storage � are still expected

to increase, even with the participation of third party developers. In order to

achieve this, PariPari exhibits a highly modular architecture, where every service

is provided by a plug-in (Chapter 2).

In order to adequately orchestrate this large number of plug-ins, particular

attention must be paid to the management of network resources. Requirements to

be ful�lled are manifold: some plug-ins need to establish dozens of connections in

a few seconds, others may require to simultaneously manage many TCP connec-

tions, others ask for some network parameters (for instance, minimum bandwidth

or maximum latency) to be guaranteed. In addition, since networking is a basic

operation performed by all plug-ins, these features should be easily accessible

through a set of advanced, but still clear, APIs.

The necessity of an adequate network abstraction layer naturally arises � and

PariConnectivity is the plug-in devoted to provide it.

In its �rst implementation, Connectivity was a substantial reworking of the

5

CHAPTER 1. INTRODUCTION

already existing Java libraries; though simple, this solution soon revealed its in-

adequacy. This thesis illustrates how PariConnectivity has been entirely reengi-

neered and optimized.

First of all, we aimed at providing a new set of APIs. E�ciency requirements

suggested us the adoption of the new Java NIO libraries: indeed, with respect

to the traditional Java libraries, NIO classes achieve a more scalable I/O, better

leveraging the I/O capabilities of the underlying operating system (Chapter 3).

Though high-performance, NIO libraries are not so easy to deal with. There-

fore, we decided to introduce an intermediate layer between them and the APIs

accessed by external plug-ins: this layer translates NIO's structures into more

manageable objects, and is provided by a Connectivity's module, the Connectiv-

ity Core (Chapter 4).

As a further improvement, an asynchronous I/O mechanism was designed:

our implementation provides a degree of scalability comparable to that provided

by the NIO APIs, exhibiting a more developer-frienldy interface (Chapter 5).

On this basis, we introduced and enhanced some crucial services.

PariConnectivity now aims at o�ering an advanced QoS, relying on a set of

bandwidth limitation functionalities that let us better �t the di�erent bandwidth

requirements exhibited by di�erent plug-ins (Chapter 6).

Thanks to the NAT Traversal mechanism, enhanced by Tunneling services,

now communications can be established even among hosts lying behind NAT

and �rewall devices; given the con�guration adopted by most local networks

nowadays, this represents a crucial service (Chapter 7).

Some plug-ins (for instance, those providing distributed hosting) may require

multicast or anonymity-granting facilities. These services are provided by two

submodules of Connectivity � Multicast (Chapter 8) and Anonymity (Chapter

9), respectively. Both these submodules, already provided by the old Connectivity

module, incurred a revision and a profound renewal.

PariConnectivity is developed by students. Leading this special kind of work-

force, as well as establishing fruitful relationships with the teams developing other

plug-ins, entail the adoption of a well-de�ned organizational structure and a set

of appropriate programming techniques (Chapter 10).

While a hard work has been done, further developments are still possible:

they are brie�y depicted at the end of this thesis (Chapter 11).

6

Chapter 2

PariPari

PariPari is a serverless P2P multi-functional application currently under develop-

ment at the Department of Information Engineering of the University of Padova.

It di�ers from traditional P2P applications like eMule [2], Skype [6] or Azureus [1]

in that it provides a multifunctional and extensible platform: a large number of

heterogeneous services, ranging from the traditionally P2P ones � e.g., �le sharing

and VoIP � to more server-based ones � like Web and mail hosting, IRC chat and

DNS hosting � are accessible through a collection of simple and uniform APIs,

allowing a large body of students (presently, more than 60 people) to cooperate

developing and � in the future � third party developers to write their own appli-

cations. One of the key features of PariPari is its highly modular architecture: in

this chapter, we brie�y review its plug-in organization, orchestrated by the Core

(Section 2.1), and its network layout (Section 2.2), trying to better contextualize

the role of PariConnectivity in the system as a whole (Section 2.3).

2.1 Plug-in architecture

PariPari hosts are based on a plug-in architecture. Users can decide which plug-

ins to load, and can load them at runtime; plug-ins can not communicate directly

with each other or with the outer world: every request must pass through Pari-

Core, the authentic kernel of this system. It takes care to route messages among

the running plug-ins, granting PariPari with security checking all messages (Sub-

section 2.1.1) and exploiting PariCredits information (Subsection 2.1.2). Given

their crucial role, PariCore and PariCredits modules are described in more details

7

CHAPTER 2. PARIPARI

in the following Subsections.

2.1.1 PariCore

The modular architecture of PariPari relies on a speci�c plug-in � PariCore

T.A.L.P.A. (The Acronym for Lightweight Plug-in Architecture). This Core

version was born in January 2009 and was designed to be the kernel of PariPari.

Its main functions are managing plug-ins, routing their messages and protecting

users and good plug-ins from malicious ones: we face these aspects in more detail

in the following.

Managing plug-ins

One of the main features of the Core is granting a high level of standardization

among plug-ins. All the services plug-ins provide are speci�ed by a set of abstract

classes � the APIs : every API implements the super interface paripari.API.API

(which contains, in particular, some methods needed by the Credit System) and

must be extended by the speci�c class implementing the service. This distinction

between de�nition and implementation makes it easier, in particular, for di�erent

plug-ins to provide the same service: interferences among such plug-ins (arising,

for instance, when using identical class names) are avoided by instantiating a dif-

ferent classloader for each plug-in. In every plug-in jar, the �le (descriptor.xml)

must be present: it lists plug-in dependencies as well as provided services.

Routing messages

Communications take place through appropriate calls to the Core. Each plug-in

holds two data structures �Mound Putter and Private Mound. The former is used

for the outgoing messages: every message a plug-in sends (a request or a response

to a previous received message as well) is �rst dispatched to the Core � which

forwards them to other plug-ins when necessary; the latter stores all the requests

coming from other plug-ins: in order to readily catch these messages, every plug-

in generally holds a Listener thread monitoring Private Mound. Figure 2.1

illustrates this mechanism.

8

2.1. PLUG-IN ARCHITECTURE

Granting security

PariCore manages security-related aspects by means of the PariPariSecurity-

Manager, which replaces the standard Web Start's Security Manager. Only a

few plug-ins � the so called inner circle plug-ins � are trusted by default and are

allowed to perform potentially dangerous operations, such as disk and network

I/O; such inner plug-ins are developed by the PariPari Team and should not be

replaced even in the future. Currently, this group counts three modules: PariS-

torage for local �le access, PariConnectivity for network I/O and PariDHT for

PariPari network access.

Figure 2.1: How plug-ins deal with messages.

2.1.2 Credit System

A dedicated module handles the Credit System of PariPari. Roughly speaking,

we can divide the whole Credit System into two layers:

Inter-peer Credits layer, regulating communications among hosts

Intra-peer Credits layer, regulating communications among plug-ins lying in

the same host

The Inter-peer Credits mechanism shares some purposes with other usual P2P

credit systems: namely, it aims at encouraging participation (for instance, by

means of sharing �les or o�ering disk space) and discouraging parasitic behaviors.

However, PariPari Inter-peer credits pursue a further goal: this layer � still in

development � is intended to create a scalable, transitive and cohesive barter based

economy among peers [31].

9

CHAPTER 2. PARIPARI

The Intra-peer Credits layer has been almost entirely implemented. This

layer, exploiting the fact that all plug-ins share the same goals and hold the same

authority, relies on a simple mechanism managed by the Core: the exchange of

tokens. More precisely, the Core periodically assigns a number of tokens to every

running plug-in (this amount varies according to the guidelines established by the

user � it can be a prede�ned or an adaptive one); when a plug-in needs some kind

of resource from another plug-in, it must pay a certain amount of tokens. In this

way, plug-ins requiring the same resource compete in an auction system, which

actually determines the price of the resource itself. Analyzing such prices, plug-

ins can choose a strategy that minimizes the expense of tokens : for example, a

compression of data can be worthwhile if CPU cycles are much cheaper compared

to bandwidth. Once the price p of a resource is established, the plug-in buys it

for a number t of time units paying p · t tokens. Note how, in order to obtain a

proper charging, plug-ins o�ering a resource must precisely quantify how much

a time unit lasts and notify the Credit module about every change occurred in

resource's availability.

2.2 Network layout

The PariPari Network layout is based on a Distributed Hash Table (DHT),

PariDHT, providing a high degree of scalability, decentralization and fault toler-

ance. Recent years have seen DHTs adopted in several applications with a vast

public (e.g. the popular eMule [2] and Azureus [1] �lesharing clients and the

JXTA system [5])

The classic mechanisms a DHT relies on are well known. Broadly speaking,

each node is assigned a number in a d-bit address space � the nodeID ; each

resource is represented by a key-value (k, v) pair: the key usually corresponds

to a keyword associated with the resource itself and is mapped into a keyID,

belonging to the same d-bit address space of nodeIDs, by means of a well de�ned

hash function v (that is, keyID= v(k)). A speci�c notion of distance is de�ned

among nodeIDs and keyIDs; in these regards, PariDHT adopts a value of d equal

to 256, and the same XOR metric already employed in Kademlia [28].

Resources are stored and retrieved by nodes thanks to the shared address

space: in particular, two fundamental primitives (store and search) are provided.

10

2.2. NETWORK LAYOUT

When a node stores a resource r (corresponding to a key k and a value v), r is

assigned to the node nk belonging to the network whose ID is the closest to v(k)

according to the XOR metric. When another node searches for that resource,

it contacts nk. As we can easily see, both primitives rely on a mechanism for

looking for a node across the network. Thanks to the particular structure owned

by PariDHT, a node in the network can contact any other node in O(logN) hops,

where N is the number of active nodes. In order to achieve this, each node n

keeps contacts with a small number m of nodes in the other half of the network

(with respect to n's nodeID), m nodes in the other quarter, k in the other eighth

and so on (see Figure 2.2). Although it is theoretically enough to keep m = 1,

PariDHT adopts m = 20 in order to improve the robustness of the network.

The structure storing these contacts is usually called routing table. Given this

structure, both store and search primitives are achieved within O(logN) hops.

Figure 2.3 exempli�es the search procedure: node u wants to get the key k, so

it contacts u1, its known contact laying in the same half of the network as k; u1

returns the address of u2, that is the closest to the key among its contact, and

so on, in a iteratively fashion, until the node owning the required resource (the

node whose ID is the closest to v(k)) is reached.

Figure 2.2: A feasible routing table con�guration

for the node with nodeID= 001010, in a DHT with d = 6 and m = 1.

11

CHAPTER 2. PARIPARI

Figure 2.3: An example of lookup.

2.3 PariConnectivity

As mentioned above, PariConnectivity is the inner circle plug-in designed to

provide network services to the others. It implements a set of APIs for carrying

out e�cient communications directly over TCP [34] and UDP [33], or over more

advanced and customized protocols; with the exception of PariCore, all plug-ins

can perform network I/O only through PariConnectivity: it is the only plug-in

allowed to access network I/O structures by the PariPariSecurityManager.

In particular, PariConnectivity APIs provide other plug-ins with a set of ob-

jects, through which all the communications are performed: these objects can

be thought as abstractions of di�erent kinds of sockets (e.g., TCP sockets, UDP

sockets, SSLTCP sockets and so on). For the sake of clarity, in the following

we will refer to them by a single, comprehensive term: Network Access Points

(NAPs).

The main goal PariConnectivity addresses is designing these APIs in such a

way that the development of network components is made simple and e�cient

for the other plug-ins: in other words, PariConnectivity aims at supplying an

e�cient and easy-to-use network service.

As we will see, a �rst step in this direction has been the introduction of the

Java NIO APIs (see Chapter 3).

In addition, our plug-in has been enhanced by a set of more advanced features.

Although they will be widely analyzed in the following Chapters, we think it is

12

2.3. PARICONNECTIVITY

convenient to o�er a succinct, yet exhaustive overview here.

Asynchronous I/O

Plug-ins generating a heavy network tra�c highly bene�t from the PariConnec-

tivity's system of asynchronous calls. It is functional and, furthermore, extremely

easy to use. This system exhibits a degree of expressiveness comparable to that

owned by the Java NIO Asynchronous I/O, while avoiding the cumbersome ap-

proach adopted by the latter. Expensive structures like those implemented in

Selector or SelectionKey classes or features like registration mechanisms and

registration processes (see Chapter 5) are appropriately wrapped: for a plug-in

aiming at performing network I/O it is enough to submit a set of operations to

PariConnectivity, which will take care of them and notify the plug-in once they

have been ful�lled.

Bandwidth limitation

The amount of bandwidth available to each peer is a limited and precious resource,

so it should be adequately handled and distributed among the di�erent running

plug-ins. In order to achieve this goal, PariPari imposes a strict rule: that is,

each plug-in must exactly quantify the bandwidth it will ask for, providing an

adequate counterweight in terms of credits. Thanks to this well de�ned charging

system, exceeding amounts of bandwidth can be reutilized in order to improve

the provided QoS.

Communication over PariPari Network

Usually, a service can be identi�ed across a network by means of one or more (IP,

port) pairs. But sometimes � as it actually happens in PariPari � even a node

without public ports (usually, behind NAT) may wish to o�er a service, publishing

its availability on the DHT network. The APIs provided by PariConnectivity let

PariPari peers communicate even in such cases: provided NAPs make use of the

(PariDHT ID, virtual port) pair in order to identify a service on a peer, and

transparently try to establish a connection.

13

CHAPTER 2. PARIPARI

Multicast

When the same information has to be simultaneously sent to many peers, a

multicast service may be useful. A subplug-in of PariConnectivity, Multicast, is

meant to exactly o�er this service (see Chapter 8).

Anonymity

NAPs providing anonymity services are supplied by a separate subplug-in of Pari-

Connectivity as well. The main purpose of the Anonymity module (widely de-

scribed in Chapter 9) is to ensure the untraceability of peers performing commu-

nications: that is, a message cannot be associated with its sender nor with its

receiver and, furthermore, it can carry an encrypted payload.

14

Chapter 3

Java NIO

Many applications rely on the well known java.net package [3] in order to per-

form network I/O. Although could be a good choice in most contexts, since the

abstraction layer it provides allows to easily implement a wide range of I/O ser-

vices, this package su�ers from two main drawbacks: it does not scale well when

handling thousand of simultaneous connections and does not support some com-

mon I/O functionalities provided by most operating systems nowadays.

Starting from J2SE SDK v.1.4, Sun Microsystems provides the Java NIO

(New IO) APIs in the java.nio package [4] and its subpackages; Java NIO

straightens out the problems we have mentioned above, providing high-speed,

scalable and block-oriented network I/O. This chapter brie�y describes the main

features of the java.nio package, analyzing in particular its most important

structures: bu�ers (Section 3.1), channels (Section 3.2) and selectors (Section

3.3). The interested reader can �nd an exhaustive explanation in [23].

3.1 Bu�ers

A bu�er represents a container for data: bu�ers are useful especially when large

amounts of bytes should be accessed, transferred or processed.

They are as easy to use as arrays, allowing to access stored data in a totally

random fashion. Besides, they implement some additional interesting features:

bu�ers support e�cient methods for sequentially �lling and draining stored el-

ements and for easing bulk data transfers among bu�ers and I/O channels (see

Section 3.2). Indeed, the new NIO's Bu�er classes are the linkage between regular

15

CHAPTER 3. JAVA NIO

classes and the channel abstractions themselves.

Figure 3.1: Bu�er family tree.

As we can see from the Bu�er class-specialization hierarchy shown in Figure

3.1, there exists one Bu�er class for each primitive data type, with the exception

of the boolean type. Note how, although bu�ers act upon the data types they

store, they have a strong bias toward bytes: many operations dealing with chan-

nels can be done only by means of bu�ers of bytes (that is, by means of instances

of the ByteBuffer class). This kind of bu�er provides an interesting features:

the capability of performing direct I/O, as exposed in Subsection 3.1.1.

3.1.1 Direct bu�ers

The most signi�cant way in which byte bu�ers are distinguished from other bu�er

types is that they can be the sources and/or targets of I/O performed by channels.

In particular, NIO APIs introduce the notion of direct bu�ers. Direct bu�ers

are intended for interaction with channels and native I/O routines; they make a

best e�ort to store byte elements in a memory that a channel can use for direct,

or raw, access by using native code to tell the operating system to drain or �ll

the memory area directly.

Direcdt byte bu�ers are usually the best choice for I/O operations. By design,

they support the most e�cient I/O mechanism available to the JVM. The memory

used by direct bu�ers is allocated by calling through to native, operating-system

speci�c code, bypassing the standard JVM heap.

16

3.2. CHANNELS

DatagramChannel ⇐⇒ DatagramSocket

SocketChannel ⇐⇒ Socket

ServerSocketChannel ⇐⇒ ServerSocket

Table 3.1: Correspondence between channels and java.net classes.

3.2 Channels

The most important new abstraction provided by NIO is the concept of a channel.

A Channel object models a communication connection; in general, a channel can

be thought of as the pathway between a bu�er and an I/O service.

They are not an extension or enhancement, but a new, �rst-class Java I/O

paradigm: channels greatly reduce the abstraction represented by sockets, allow-

ing a strictly interaction and a direct connection with the native I/O services

provided by the OS layer. Moreover, they provide a standardized environment,

in which one can substantially adopt the same mechanisms when exchanging data

over a network, dealing with a �le or communicating with another thread.

The Channel family tree is quite articulated; a simpli�ed, but still su�-

cient for our purposes, version is shown in Figure 3.2. In the following, af-

ter depicting some channel basics, we will focus on a speci�c channel interface

(InterruptibleChannel) and on some abstract classes (DatagramChannel, used

when dealing with UDP datagrams, SocketChannel and ServerSocketChan-

nel, used when dealing with TCP connections, (SelectableChannel)). Before

starting our explanation, it may be worthwhile to underline how each channel

corresponds to an old java.net's socket class (see Table 3.1).

Figure 3.2: Simpli�ed Channel family tree

17

CHAPTER 3. JAVA NIO

3.2.1 Channels basics

Channel objects can be directly created using factory methods; the Channel

superclass provides the basic methods to be invoked for opening and closing a

channel or testing whether or not it is open.

In particular, the static methods employed for opening network channels are:

� SocketChannel SocketChannel.open()

� ServerSocketChannel ServerSocketChannel.open()

� DatagramChannel DatagramChannel.open()

Closing and checking whether a channel is open can be done, respectively, invok-

ing:

� void close() throws IOException

� boolean isOpen()

3.2.2 InterruptibleChannel interface

An InterruptibleChannel can be interrupted at any time, even if a thread is

doing an I/O on that channel.

In particular, if a thread A is blocked on an InterruptibleChannel and A

is interrupted (by calling the thread's interrupt() method), the channel will

be closed and a ClosedByInterruptException will be thrown. The same hap-

pens if the interrupt status of A is set, and A attempts to access the channel.

Finally, if a channel is closed when a thread A is blocked on it, this causes a

AsynchronousCloseException to be thrown.

3.2.3 Main abstract classes

In this subsection, we brie�y describe the four most important abstract classes

provided by NIO: although, as we will see in the following Chapters, these classes

are not directly accessed by external plug-ins, a deeper comprehension of the

mechanisms underlying them is essential in order to embrace how PariConnec-

tivity works.

18

3.2. CHANNELS

SocketChannel A SocketChannel object is a channel connected to a TCP

socket: it provides data transfer capabilities over TCP and methods for estab-

lishing a connection with a remote server. Both functionalities are provided both

in blocking and non-blocking mode.

One can connect to a remote TCP socket simply invoking:

� boolean connect(SocketAddress remote)throws IOException

If the SocketChannel is blocking, the thread calling that method waits until

the connection is established or an I/O error eventually occurs. In non-blocking

mode, the above method returns true only if the connection can be established

immediately; if false is returned, the connection can be �nalized once the con-

nectable state of the channel is set, by means of the method:

� boolean finishConnect() throws IOException

Data transfers can be performed only if the SocketChannel is already con-

nected. Read and write operations are carried out to and from ByteBuffer

objects: in both cases, these operations return the number of transferred bytes.

The most widely employed methods for reading and writing are:

� int read(ByteBuffer dst) throws IOException

� int write(ByteBuffer src) throws IOException

In blocking mode, the read method waits until at least one byte is available,

while the write method waits until all data remaining in the bu�er are sent; in

non-blocking mode, the call immediately returns. In this latter case, if either no

data are available in the socket input bu�er or the socket output bu�er is full,

read and write methods � respectively � return a value equal to 0.

ServerSocketChannel ServerSocketChannel is a channel-based TCP con-

nection listener: it waits for incoming connections on a given port. Since meth-

ods for specifying this listen port are not provided, one ought to fetch the related

ServerSocket instance and use it in order to bind to a port. The method em-

ployed for listening for incoming connections is:

� SocketChannel accept() throws IOException

19

CHAPTER 3. JAVA NIO

The object returned by accept is exactly the SocketChannel connected with the

remote host requesting the connection. If the channel is in blocking mode, the

method follows the same behavior as that provided by a ServerSocket instance

(that is, the caller waits until a connection request comes); in non-blocking mode,

the method immediately returns null if no incoming connections are currently

pending.

DatagramChannel DatagramChannel class provides data transfer capabilities

over UDP. Since UDP is a connectionless packet-oriented protocol, a single ob-

ject is enough to manage both incoming and outgoing packets: a further class

providing listener functionalities is not requested. As the ServerSocket channel

described above, the DatagramChannel does not allow the user to specify the

local listen port: this should be done using the related DatagramSocket instance.

Data transfer is packet-oriented, and payloads are managed through Byte-

Buffer objects. Methods belonging to this class and worth mentioning are:

� SocketAddress receive(ByteBuffer dst)

� int send(ByteBuffer src, SocketAddress target)

The �rst method receives packets coming from any host and returns information

about the source's address. If the packet contains more data than the ByteBuffer

dst capacity, any excess is simply discarded.

The second method sends data to the remote destination speci�ed by the

target argument and returns the number of sent bytes. In blocking mode, the

caller waits until all data are sent; in non-blocking mode, all data are packed in

a single datagram if possible; if not, nothing is sent and 0 is returned.

SelectableChannel All the channels used in PariConnectivity extend the Se-

lectableChannel superclass � that is, they can be multiplexed via a Selector

(see Section 3.3). One of the main features provided by selectable channels is

the distinction between synchronous and asynchronous I/O: indeed, a selectable

channel can be either in blocking mode or in non-blocking mode.

In blocking mode, every I/O operation invoked upon the channel will block

the caller until it completes (as it is usually the case with java.net objects); in

non-blocking mode, an I/O operation will never block, even transferring fewer

20

3.3. SELECTORS

bytes than were requested or possibly no bytes at all. One of the advantages of

asynchronous I/O is that it allows to do I/O from many inputs and outputs at

the same time; one can listen for I/O events on an arbitrary number of channels,

without necessity of polling and without extra threads.

Blocking mode can be set using the appropriate method provided by the Se-

lectableChannel class:

� void configureBlocking (boolean block) throws IOException;

3.3 Selectors

A selector is a multiplexor of SelectableChannel objects: it represents a crucial

object when dealing with asynchronous I/O.

Selectors provide the ability to do readiness selection, o�ering a mechanism by

which one can determine the status of one or more channels. A selector is where

one registers interest in various I/O events and is the object that takes care of

notifying when those events occur. Using selectors, a large number of active I/O

channels can be monitored and serviced by a single thread easily and e�ciently.

A selectable channel can be registered with one or more selectors, with respect

to some well de�ned operations; querying a selector, one can know which channels

� registered with it � are ready for a speci�c operation.

A selector is instantiated invoking the factory method:

� Selector open()

and is closed with:

� void close()

3.3.1 Registration

As we have brie�y mentioned above, selectable channels can be registered with a

selector monitoring their readiness: this relationship is encapsulated in a Selec-

tionKey object. Generally, a selector manages many channels and, specularly,

a single channel can be registered with many selectors: therefore, there exists a

M −N relationship among selectors and channels, as shown in Figure 3.3.

21

CHAPTER 3. JAVA NIO

Channel SelectorSelectionKey
N M

Figure 3.3: Relationship among channels, selectors and selectionKeys in an E-R

diagram.

Operation Int Value Supported Channel

SocketChannel ServerSocketChannel DatagramChannel

ACCEPT 16 X

CONNECT 8 X

WRITE 4 X X

READ 1 X X

Table 3.2: The registration process: selectable operations, their encoding and

their supported channels.

One can register a channel with a selector invoking the register method,

whose signature is:

� SelectionKey register(Selector sel, int ops)

This method is declared in the SelectableChannel class: when it is called on

a speci�c channel object, that channel is registered with the selector sel for the

operations speci�ed by the integer ops. This number is calculated as a bitwise

exclusive OR among the primitive operations the selector must test the readiness

of the channel on. In general, selectable operations depend on the speci�c chan-

nel employed: Table 3.2 shows the operations allowed in correspondence with

di�erent types of channel.

A SelectableChannel registration with a selector is represented by a Selec-

tionKey object (returned by the register method itself): when a selector must

notify of an incoming event, it does this by supplying the SelectionKey object

that corresponds to that event. These SelectionKey objects are also used to

deregister the channel.

3.3.2 Selection process

As previously discussed, a selector maintains a set of registered channels, and

each of these registrations is encapsulated in a SelectionKey object. The core

22

3.3. SELECTORS

of the selector class is the selection process.

The selection process monitors the state of all the channels currently registered

with the selector itself. It updates the readiness of such channels with respect to

the operations stored in the SelectionKey object whenever the following method,

provided by the Selector, class is called:

� int select()

It returns the number of ready channels that were not in the previous selection

and updates the selector's selected keys set with the selection keys of the ready

channel. A caller of this method blocks until at least one channel registered on

that selector is ready.

There exist two further methods letting us perform the selection process in a

slightly di�erent manner:

� int select(long timeout)

� int selectNow()

The former lets us set a timeout, while the latter represents a non-blocking call.

23

CHAPTER 3. JAVA NIO

24

Chapter 4

PariConnectivity: the Core

The main module of PariConnectivity is Connectivity Core. It receives all the

network I/O requests coming from the other plug-ins and takes care of satisfying

them. Not only external plug-ins, but also other modules of PariConnectivity as

well (for instance, Anonymity � see Chapter 9 � and Multicast � see Chapter 8)

must pass through Connectivity Core when performing network oeprations. This

represents a extremely modular approach, that will let us eventually modify and

make more e�cient the internal mechanisms of the Core without a�ecting the

generic interfaces it exhibits to the outer world.

Connectivity Core provides its users with a particular abstraction layer : each

plug-in aiming at transferring data through a network interface will use an object

and will call a set of methods on the object itself. In particular, every object

corresponds to a speci�c kind of connectivity: this concept will be faced in details

in Section 4.1. Every method tells Connectivity which speci�c operation should

be performed on that object, as explained in Section 4.2.

4.1 A new abstraction layer

In order to perform any I/O operation, a plug-in must request the object provid-

ing it by means of the structures supplied by the PariCore. Note how this strict

rule is necessary mainly for two reasons, that is, for exploiting the features of-

fered by the T.A.L.P.A. architecture (e.g., the high degree of modularity and the

automatically performed dependency resolution) and for introducing an adequate

charging system through the Credits module.

25

CHAPTER 4. PARICONNECTIVITY: THE CORE

Di�erent kinds of connectivity, each characterized by di�erent settings, are

available, depending on the functionalities requested by plug-ins. We can intro-

duce a quite clear classi�cation:

mode: plug-ins can handle transfer of data according to two distincts modes :

synchronous and asynchronous. In the former case, the calls made by plug-

in's threads in order to send or receive data are blocking; in the latter, these

calls are non-blocking: a system of queues is introduced letting threads

submit data and be noti�ed whenever necessary.

network: communications can take place between two PariPari's peers or be-

tween any pair of hosts. When both the nodes involved in the communica-

tion belong to the PariPari network, tunneling and NAT Traversal services

are provided.

protocol: the transmission model of either TCP or UDP can be chosen, accord-

ingly to the actual requirements of the requesting plug-in.

When requesting such objects, the maximum incoming and outgoing band-

width must be speci�ed: indeed, this parameter is essential for the Credits module

to calculate the corresponding charging.

In addition to these objects, plug-ins should con�gure a set of communication-

related parameters through an API provided by PariConnectivity: the PPConn-

QueryAPI. This API is necessary since we have to charge global aspects, not only

the ones related to a single communication; each plug-in must ask for a PPCon-

nQueryAPI object, specifying the maximum and minimum amount of bandwidth

the plug-in will use.

4.2 Enhancing I/O performance

The APIs providing connectivity functionalities essentially implement methods

for reading and writing data; besides, when the TCP protocol is used, methods

for opening and closing connections are provided too.

When a plug-in invokes a method on an API's instance, Connectivity trans-

lates this request into a sequence of basic I/O operations and starts performing

them. Let us consider the �rst operation: the channel involved in it is regis-

tered with a selector, and a thread periodically executes a selection process on

26

4.3. SYNCHRONOUS COMMUNICATIONS

that selector. Once the readiness of the channel is noti�ed, the channel for the

second operation (if di�erent from the �rst) is registered. All the channels con-

cerning operations waiting for completion are registered with the same selector,

and monitored by the same thread Tc. In such a way, the number of threads we

have to instantiate is dramatically reduced, without a�ecting performance: every

elementary I/O operation simply corresponds to a non-blocking call made on a

single channel, that is, a simple movement of a small amount of data from an area

of memory to another, without any further delay due to I/O-related mechanisms.

The response time achieved by a basic I/O operation performed in this way is

directly comparable with that provided by a multithreaded approach.

Furthermore, these basic operations do not su�er from any starvation problem:

every time the selection process is executed, all the channels being ready at that

instant are processed, before carrying out the subsequent call to the select

method.

The way this "breaking down" into basic operations is accomplished depends

on the type of object and on the speci�c operation required on it. For simplicity,

here we will analyze the simplest case: the synchronous communication toward a

node not belonging to PariPari. Examining this mechanism will help the reader

appreciate the enhancement introduced by the asynchronous I/O, as exposed in

Chapter 5.

4.3 Synchronous communications

Let us consider how a synchronous communication toward nodes not belonging

to PariPari is achieved. In this case, each object X is put into a one-to-one

correspondence with a channel CX .

We can describe how data are sent in a very simple manner: when the plug-in

P , owner of X, instantiates a thread TP and, through it, wants to send an amount

of data, TP is blocked and CX is registered with the selector in order to carry out

the requested write operations. Once the Connectivity's thread Tc has processed

all the data, CX is deregistered and TP unblocked.

Data are received in a similar manner. In this case, CX is registered soon after

its instantiation and put into correspondence with a private Direct ByteBuffer

object, owned by X. Whenever P wants to read data from X, it carries out

27

CHAPTER 4. PARICONNECTIVITY: THE CORE

the corresponding call by means of a thread TP : if the bu�er is empty, TP is

blocked, waiting for eventually incoming data; otherwise, all the bu�erized bytes

are returned. Note how, for the bu�er BrX , there exists a well de�ned size limit,

set by the plug-in during the instantiation phase. When BrX �lls up, CX is

deregistered from the selector: from now on, the OS takes charge of handling

all the incoming packets. This implies that such packets could be bu�erized

or dropped, depending on the speci�c OS settings; if we are dealing with TCP

connections, the OS will take care also of managing the Advertise Window. For

an exempli�cation of the whole mechanism, see Figure 4.1.

If the communication takes place over TCP, all the connection-related aspects

should be taken into account. When a plug-in aims at opening a connection, this

call is translated into a blocking one, and the thread undertaking the operation

has to wait until either the connection is established or a timeout expires (if a

speci�c timeout is speci�ed). Note that Connectivity performs this operation in

an asynchronous manner: for this purpose, the same thread handling the I/O on

channel is adopted.

The closing phase is managed by a thread provided by Connectivity too. How-

ever, in this case the NIO APIs do not o�er any asynchronous method, so a Pari-

PariThread object, appositely instantiated, carries out the operation and noti�es

the calling plug-in about its outcome. The overhead of running a di�erent thread

at every di�erent connection closure is negligible, since the PariPariThread is

mapped by the Core into a thread pool. The time needed in order to perform a

closure operation is very short: as a consequence, the threads running at the same

time are generally not so much; anyway, even if high congestion conditions should

occur, the policies adopted by the Core, such as ad-hoc queueing mechanisms,

prevent the number of such threads becoming excessively high.

28

4.3. SYNCHRONOUS COMMUNICATIONS

Figure 4.1: How plug-ins receive incoming data.

29

CHAPTER 4. PARICONNECTIVITY: THE CORE

30

Chapter 5

Asynchronous I/O

More and more often, modern applications aim at enhancing their performance

by using asynchronous I/O : in this way, I/O and computation can be overlapped.

Anyway, asynchronous I/O su�ers from a main drawback, namely the overhead

it may introduce. Indeed, whereas employing many threads running at the same

time can represent a good choice in some cases, in others it turns out to be a

limiting one: when the number of threads becomes too high, di�erent and more

e�cient choices should be made.

In this Chapter, we �rst provide an overview about features and advantages

of asynchronous I/O in Section 5.1; then, we illustrate its implementation in

PariConnectivity in details, exemplifying the interaction with other plug-ins in

Section 5.2.

5.1 Some preliminary notions

Asynchronous (or non blocking) I/O is a kind of input/output processing, that

enhances the overlapping between I/O and computation.

In general, when I/O requests are expected to take a large amount of time

(as it is the case when dealing with network communications), asynchronous I/O

is thought of to be a good choice in order to increase processing e�ciency [12].

However, a further aspect must be considered: when an application requests many

(and fast) I/O operations, asynchronous I/O often introduces a noticeably higher

overhead than synchronous I/O, even making the latter more suitable than the

former.

31

CHAPTER 5. ASYNCHRONOUS I/O

Asynchronous I/O mechanisms and implementation details may widely vary,

depending on platforms and contexts of use. Generally, the most employed solu-

tions are:

Polling: often, this is not considered as asynchronous I/O and is called syn-

chronous non-blocking I/O. This means that, instead of waiting for I/O

completion (like in traditional synchronous I/O), the operation is done only

if it can be immediately satis�ed; otherwise, an error code is returned. This

solution is extremely easy to be implemented using the selectable chan-

nels, but implies that an I/O request may not be immediately satis�ed.

Therefore, an application may be forced to do numerous calls while waiting

for completion, facing the di�culty to estimate the proper interval of time

between two subsequent calls.

Using threads: in a multithreaded environment, each I/O �ow can be handled

by a separate thread. This was the only viable solution in Java before the

introduction of NIO APIs, using a traditional blocking synchronous I/O

for each thread. This approach may preclude large-scale implementations

running a very large number of threads, and is particularly disadvantageous

in PariPari, where each plug-in can only use the well bounded number of

threads provided by the Core.

Select loops: this technique performs a non-blocking I/O with blocking noti�-

cations. According to this model, non-blocking I/O is set, and blocking

select calls are used to simultaneously determine the readiness of many

I/O operations. This call is usually made in a loop, alternating select calls

and I/O executions (returned whenever ready). This is the solution chosen

by NIO architects and is used for writing the PariConnectivity Core: in

this case, the select loops just described exactly correspond to the selection

process we have mentioned in Chapter 3.

Completion queues: I/O requests are issued in an asynchronous manner, but

noti�cations of completion are provided via a synchronizing queue mech-

anism according to the order in which they have been completed. This

solution is the one that best suits the needs of PariPari plug-ins and �

indeed � is the one implemented by PariConnectivity.

32

5.2. ASYNCHRONOUS I/O IN PARICONNECTIVITY

5.2 Asynchronous I/O in PariConnectivity

While PariConnectivity's synchronous APIs maintain high �delity and full com-

patibility with Java APIs, the asynchronous APIs provided by our plug-in adopt

a quite di�erent approach. In particular, we have chosen to enhance the easiness

of use, partially wasting �exibility aspects. For instance, the selection process

� which can cause some kinds of troubles when channels and selectors interact,

especially when used in conjunction with multithreading � has been substituted

by a queuing mechanism. All the transferred data are put into and picked up

from such queues.

The PariConnectivity's asynchronous APIs are available over both TCP and

UDP; besides, they can be useful for carrying out communications over the Pari-

Pari network thanks to the Tunneling and NAT Traversal services. However,

UDP and NAT Traversal services are packet-oriented, so a single object, handled

by a single thread, is enough in order to carry out more than one communica-

tion: the actual advantages granted by the asynchronous APIs reveal themselves

mostly in TCP connections, where each requires the instantiation of a di�erent

thread.

A generic plug-in P has to instantiate a queue Q implementing the Block-

ingQueue interface; such an interface is used by Connectivity in order to notify

the plug-in itself about the accomplishment of the requested operations. Each call

to asynchronous API's methods (like send(), receive(), connect() etc.) forces

the calling plug-in to specify a noti�cation queue Q and an object O (implement-

ing the AsynchronousNotification interface), through which it will be noti�ed.

O often provides a process() method, whose code contains all the operations

that need performing after the noti�cation, as well as further I/O requests.

This mechanism is shown in Figure 5.1.

5.3 Interaction with other plug-ins

In this subsection, we try to exemplify the structure owned by a plug-in P1 sending

and receiving �les over TCP, in asynchronous mode, toward di�erent peers.

Each �le Fi is segmented into ni chunks (say F 1
i ..F

ni
i) of constant size. A

Listener thread monitors the state of the noti�cation queue Q. Two classes

(named R,W), implementing the AsynchronousNotification interface, serve

33

CHAPTER 5. ASYNCHRONOUS I/O

as noti�er for receiving and sending events, respectively. R holds a reference to

the �le Fi, to the chunk being currently downloaded F
j
i and to the number of bytes

already received for F j
i . In this case, we can imagine that the process() method

will perform the following operations: adding the received bytes to the currently

processed chunk, writing the chunk on disk once it has been wholly received,

determining the next chunk to be processed and asking for the subsequent I/O

operation. W holds a reference to the �le Fi, storing the index j of the chunk being

currently uploaded; here, a call to process() determines the next chunk j to be

sent and requests the transfer of F j
i , by using the instance itself as noti�cation

object.

Therefore, the code in P1 managing the beginning of data transfers provides

an adequate instance of R (or W) and performs the �rst asynchronous I/O call

in order to start the transfer process. The corresponding Listener threads waits

on queue Q, calling the process() on every instance inserted into such a queue

by Connectivity, until the �le is totally transferred.

Figure 5.1: PariConnectivity's asynchronous I/O.

34

Chapter 6

Bandwidth limitation

The amount of bandwidth available to each peer is a limited and precious resource,

so it should be adequately handled and distributed among the di�erent running

plug-ins. In order to achieve this goal, PariPari imposes a strict rule: that is,

each plug-in must exactly quantify the bandwidth it will ask for, providing an

adequate counterweight in terms of credits. Thanks to this well de�ned charging

system, exceeding amounts of bandwidth can be reutilized in order to improve

the provided QoS.

The declared maximum amount of bandwidth remains a constant upper bound

that should not be violated; for such a purpose, PariPari adopts a bandwidth

limitation strategy, represented by the Token Bucket algorithm [21]. An overview

of its most known version is presented in Section 6.1; Section 6.2 illustrates how

PariConnectivity manages all the aspects concerning bandwidth management;

�nally, Section 6.3 depicts some guidelines for the development of a new QoS.

6.1 The Token Bucket algorithm

The Token Bucket algorithm is used to control the amount of data transferred

across a network, allowing for bursts of data to be sent. The control mechanism it

relays on establishes when tra�c can be transmitted on the basis of the presence

of tokens in a bucket. Roughly speaking, a token represents a certain amount of

data (generally a byte); a bucket is a container for a limited amount of tokens.

When a packet is compared with a token bucket, we have two possible outcomes:

if the amount of tokens (say, bytes) in the bucket is equal or greater than the size

35

CHAPTER 6. BANDWIDTH LIMITATION

of the packet, the packet is said to have conformed to the token bucket de�nition;

on the contrary, if there are less tokens in the bucket than bytes in the packet,

we say that the packet itself has exceeded the token bucket de�nition [20].

Figure 6.1: A token bucket.

The actual algorithm can be summarized as follows:

� at every interval of time t, r tokens are added to the bucket;

� a bucket can hold at most b tokens; if a bucket is full, no tokens can be

added;

� when a packet, with a size of n bytes, needs transferring, and the packet

has conformed to the bucket, n tokens are removed from the bucket itself;

� if the packet has exceeded the bucket, no tokens are removed.

As needed, di�erent actions can be taken for the packets having conformed or ex-

ceeded the bucket. In most implementations, conformed packets are immediately

transferred, while exceeding ones are dropped. Adopting these policies, the Token

bucket algorithm grants a transferring rate equal to r/t. Furthermore, as men-

tioned above, bursts of data are allowed. If we indicate the burst's transmission

rate by M , M can be sustained for maximum amount of time Tmax calculated as:

Tmax =
b

M
+
r · Tmax
M

⇒ Tmax(1−
r

M
) =

b

M

Tmax =
b

M − r

36

6.2. IMPLEMENTING THE BANDWIDTH LIMITATION

6.2 Implementing the bandwidth limitation

Accordingly to the current implementation, each plug-in can buy an amount of

bandwidth, paying it in credits. As for the other resources, the cost of each band-

width unit is determined considering the balance between supply and demand;

in order to evaluate the former, the available bandwidth is periodically estimated

or, alternatively, speci�ed by users by means of a con�guration �le in Connec-

tivity. The actual usage cannot exceed the declared (and bought) amount: the

bandwidth limitation is accomplished by means of the Token Bucket algorithm.

More in detail, each plug-in is provided with a pair of token buckets (the

one concerning the outgoing communications, the other concerning the incoming

ones): both are associated with a data rate rI/t and rO/t, respectively, on the

basis of the demand for bandwidth made by the plug-in. The length of the

interval of time t between two subsequent insertions of tokens into the bucket

can be speci�ed; if no such value is provided, a default value equal to 0.1 s is

assumed. Smaller values for t are, generally, useful for plug-ins requesting tra�c

trends to hold steady and su�ering from high jitter �uctuations (for instance, the

VoIP plug-in). Note how keeping low the value of t entails harder computation

e�orts for Connectivity; as a consequence, on equal terms of requested bandwidth,

smaller values of t translate into higher prices.

In addition to the plug-in's bandwidth, input and output bandwidth (rIi and

rOi) for each di�erent NAP Oi can be speci�ed. This demand is not subjected

to charging (since the plug-in pays its demand as a whole); however, two token

buckets BI
i and BO

i are instantiated anyway, in order to manage rIi and rOi . In

a sense, this NAP-spec�c bandwidth restriction represents a service available to

the single plug-in, helping it in correctly managing the amount of bandwidth it

bought.

Transmitting n bytes over a NAP is allowed only if there are at least n tokens

in the plug-in's token bucket BO and in the object's token bucket BO
i as well; if

so, they are taken away from both tokens. If this condition is not satis�ed, the

request eventually translates into a blocking call, that can be satis�ed only when

the requested amount of tokens is reached.

37

CHAPTER 6. BANDWIDTH LIMITATION

Figure 6.2: Implementation of the Token bucket algorithm in PariConnectivity.

6.3 Improving the QoS

Setting a well established upper bound on the maximum available bandwidth

for each plug-in, as described in the previous Section, represents only a �rst step.

More should be done in order to provide a QoS handling all the network resources

in a truly e�cient and rational manner.

Di�erent applications can exhibit di�erent needs with respect to the requested

network parameters. Let us consider a few common examples:

1. VoIP;

2. video streaming;

3. throughput-focused TCP applications;

4. on-line games.

1. and 2. need a minimum bandwidth to be guaranteed, as well as the possibility

of occasional bursts to take place in case of codec VBR 1; 1. and 4. strongly

bene�t from reductions in latency, while "greedy" applications like 2. and 3.

may need limitations in the bandwidth they subtract to others.

Such improvements are currently in a planning stage. For the sake of com-

pleteness, we can brie�y synthesize the main guidelines that should be followed:

� an overall limitation of bandwidth � for the PariPari software as a whole �

is guaranteed;

1Variable Bit Rate.

38

6.3. IMPROVING THE QOS

� performance are periodically estimated not only through the usual tra�c

analysis, but also by means of an active monitoring of the network;

� plug-ins can buy a minimum granted amount bandwidth b
t
(that is, the

plug-in is given the assurance of transferring b bytes in time t). Therefore,

demanding for a bandwidth b
t
or α·b

α·t makes di�erence. These demands can

take place at the plug-in level and at the NAP level as well, but, when

summed up, must not exceed the actual availability or the restrictions pos-

sibly set at a higher level;

� a fraction of bandwidth exceeding the granted one or not currently used

can be bought. Summing up all the fractions sold to the di�erent plug-ins

must return a result equal to 1: in this way, once the plug-ins asking for a

minimum amount of bandwidth have received their portion, the remaining

quantity of bandwidth can be used by plug-ins proportionally to the further

bought fraction.

39

CHAPTER 6. BANDWIDTH LIMITATION

40

Chapter 7

NAT Traversal

NAT Traversal is the module of PariConnectivity providing the NAPs used for

carrying out communications across the PariPari network. It allows peers � even

behind NAT � to be easily reached through UDP using common NAT Traversal

techniques. Besides, thanks to the introduction of tunneling, the number of used

ports can be noticeably reduced.

A detailed contextualization of NAT (Network Address Translation), among

with the problems it involves, is provided in Section 7.1; services and techniques

commonly adopted when performing NAT Traversal are discussed in Section 7.2;

the PariConnectivity's NAT Traversal module and its interaction with external

plug-ins is described in Section 7.3; �nally, Section 7.4 illustrates our tunneling

techniques.

7.1 Communicating behind NAT

Network Address Translation (NAT) [38] is a process performed by a routing

device that remaps a given address space into another, modifying the network

address information contained by packet headers. Usually NAT is used in order

to perform IP masquerading : this is a technique that hides a whole IP address

space behind a single IP address (usually a public one). In this context, a (IP,

port) pair belonging to a hidden address space is associated with a public port.

This procedure is more properly named PAT (Port Address Translation).

In order to achieve this, a routing device maintains a set of stateful translation

tables, mapping hidden (address, port) pair to a public port and then rewriting

41

CHAPTER 7. NAT TRAVERSAL

packet headers so they appear originated by the router. Along the reverse path,

responses are mapped back using the states stored in the translation tables them-

selves. As described, this method enables communication only if it is originated

from the hidden address space. If a peer behind a NAT wants to be reachable,

a static entry can be stored into the translation tables. This operation is named

port forwarding and is made by properly con�guring NAT devices. Note how

this often can not be performed by users. In fact, in business environments it is

generally denied to users to deal with NAT con�gurations.

7.2 NAT Traversal: services and techniques

Usually, NAT Traversal refers to a set of techniques that let users circumvent

many of the NAT problems described above. In particular, NAT Traversal pro-

vides methods to establish connections traversing NAT gateways, where the con-

versation can be originated outside the masquerading network. In this Section,

we describe how NAT traversal mechanisms are commonly implemented and il-

lustrate the services that should be provided to a masqueraded host.

7.2.1 IP Discovery

Figure 7.1: IP discovery.

Each node needing to be contacted from other ones should know its public IP

address, which, of course, is di�erent from the local IP address if a NAT gateway

is present. This service can be simply provided by another peer, accepting an

42

7.2. NAT TRAVERSAL: SERVICES AND TECHNIQUES

UDP packet on a public (IP, port) pair and replying to the sender with a packet

containing its IP as payload (see Figure 7.1). The knowledge of its own IP lets a

peer establish whether it is behind a NAT or not. If a NAT gateway is present,

but port forwarding is enabled on any port, this information is enough to make

the peer contactable from others.

7.2.2 The STUN protocol

STUN (Session Traversal Utilities for NAT) is a proposed standard protocol [36]

that can be used by a peer to determine the public IP address and port num-

ber that NAT has allocated to it. STUN also allows to maintain NAT bindings,

thanks to its keep-alive functions. In PariPari, STUN is adopted only on UDP, al-

though further versions are available also on TCP and TLS-over-TCP. The STUN

protocol requires the presence of a server, that is usually located in Internet.

A peer can learn its NAT status by sending a datagram to a STUN server.

The server answers with a datagram to the sender from the port where it has

received the request and tells another server to send the same packet. According

to the received packets, the peer can understand its reachability state:

� if the peer receives no responses, probably a �rewall blocks all the con-

nections crossing the used port and the client should not use this port at

all. Additional attempts can be possibly done using di�erent STUN servers

and ports.

� if the peer receives both datagrams, either a port forwarding can be en-

abled or the NAT device has created a temporary new entry in the traslation

tables that can be used by all the remote hosts. If necessary, one can peri-

odically send a packet to the STUN server in order to maintain the entry

up to date.

� if the peer receives only the �rst datagram, the client can not be directly

contacted from other peers on the port used for the STUN server without

introducing some tricks. It should be determined if, when data addressing

another destination are sent from the same local port, NAT maps such

packets into a di�erent public port or not. In the �rst case, in order to

establish a communication with another peer behind a NAT device, a TURN

43

CHAPTER 7. NAT TRAVERSAL

server must be used (see); in the second case, the UDP hole punching

method can help (see 7.2.3).

7.2.3 UDP Hole Punching

UDP Hole Punching is a technique adopted for establishing connectivity over

UDP between two hosts communicating across one or more NATs. It is useful

when a NAT device maps di�erent connections from the same internal (IP, port)

pair into the same external port. As required by NAT, a peer must send a

preventive UDP packet to another peer, in order to receive incoming packets from

it. This case can be noti�ed to it by a public server, with which a connection

is already established. If the other peer is not behind a NAT or virtual server

policies is enabled, this is made by a simply callback operation. On the other

hand, if both are behind a NAT, this operation is possible only if at least a NAT

device maps the connections as stated before; otherwise, both peers can not know

on which public port they should contact each other.

Figure 7.2: UDP Hole Punching mechanism.

More schematically, let A and B be two peers behind NATs N1 and N2 respec-

tively; assume they know their public port assigned by NAT, using the STUN

protocol; A is connected with a server S. If B wants to contact A, the following

should be performed (see also Figure 7.2):

44

7.2. NAT TRAVERSAL: SERVICES AND TECHNIQUES

1. B tells S their public port, signaling that it wants to contact A;

2. S informs A about this;

3. A sends a packet to B's public port, creating an UDP translation state on

N1 with B's public address;

4. A con�rms to S that the packet directed to B has been sent;

5. S tells to B that now A is reachable;

6. B begins the communication creating the correct translation also on N2.

7.2.4 The TURN protocol

TURN (Traversal Using Relay NAT [27]) is a protocol that allows a peer behind

a NAT or �rewall to receive incoming data over TCP or UDP connections. It

is used when a direct communication path can not be found, so an intermediate

host is used as a relay for the packets. This relay is named a TURN server,

typically hosted in Internet (see Figure 7.3).

PEER PEER

SERVER

NAT NAT

209.85.149.99

147.162.2.250151.16.119.85

192.168.0.100

192.168.0.1 192.168.1.1

192.168.1.100

Figure 7.3: A TURN Server servicing two clients.

This NAT Traversal method exhibits poor performance, since all the tra�c

between two peers has to pass through the TURN server: therefore, it is used

45

CHAPTER 7. NAT TRAVERSAL

only when the other methods fail. This is particularly true in PariPari, where

TURN servers are not dedicated servers: only a very small number of clients can

deal with the same TURN server.

7.3 Interaction with other plug-ins

PariConnectivity implements NAT Traversal techniques, letting peers communi-

cate even behind NAT. Since not every node can be identi�ed through a (IP, port)

pair, PariConnectivity adopts the nodeID provided by PariDHT as node identi-

�er: a strict communication between PariConnectivity and PariDHT modules is

therefore necessary.

The parameters required by the NAT Traversal NAP are: a PPId object,

containing PariDHT id and other information discussed below, a Virtual Port

and a Tunnel Type, used to tunnel multiple connections (see Section 7.4).

As already said, services in PariPari are not provided by dedicated servers.

Each peer joining the network is encouraged to provide some services � in order

to earn credits. Therefore, a peer looking for a service can not rely on a well-

known server: it should �nd another peer providing that service at that time.

Information about this can be e�ciently retrieved from the PariDHT network.

Broadly speaking, if a peer A wants to provide a service s stores on the DHT the

pair Ks, PA, where Ks is a key identifying the service s and PA is a pointer to the

peer A. Another peer B needing that service calls the search(Ks) procedure,

obtaining PA and the pointers to other peers providing the same service. Pointers

are directly managed by plug-ins performing search, so � in theory � they can be

represented by (IP, port) pairs, DHT ids or whatever else. However, a plug-in

aiming at using NAT Traversal facilities must use an apposite PPId object, pro-

vided by PariDHT. It contains all the information necessary for PariConnectivity

to contact a determined peer, like:

� PariDHT id;

� public address (IP, UDP tunneling port, TCP tunneling port);

� STUN server address (IP, port);

� TURN server address (IP, port);

46

7.3. INTERACTION WITH OTHER PLUG-INS

� �ags identifying working NAT Traversal techniques.

All these �elds (with the exception of the �rst) should be �lled by PariCon-

nectivity, using the information acquired thanks to the STUN protocol. This

information is then sent to the PariDHT module, which complete the structure

with the PariDHT id. The process of storing and retrieving information about a

service, in which two peers A,B are involved, can be summarized as follows (see

Figure 7.4):

1. the PariConnectivity module running on peer A creates the PPId object, us-

ing the information gathered with a STUN server, and sends it to PariDHT,

which completes it with the id �eld;

2. a plug-in P requests the complete PPId object to PariDHT;

3. P can store a service identi�ed by a key KS with the value PPId;

4. The same plug-in on the peerB can look for the service requesting retrieve(Ks)

to PariDHT

5. PariDHT returns the PPId (and eventually other values stored with the

same key);

6. plug-in P running on peer B can now use PPId in order to connect with A.

Figure 7.4: Store and retrieve of a service over PariDHT using a PPId

47

CHAPTER 7. NAT TRAVERSAL

Start-up process

What we have just described is the process commonly used in PariPari for o�ering

and �nding services. PariConnectivity use it too, in order to provide IP discov-

ery, STUN services and TURN services. Peers providing them must be directly

reachable thorugh a (IP, port) pair; therefore, it can be used as pointer in the

place of a PPId object. The main di�erence between these three NAT Traversal

services and other services (that is, services provided by other plug-ins) is that a

peer has to look for them at an early stage and its NAT status can be unknown.

NAT status detection is important for a peer which wants to join the PariPari

network. In fact, if another peer requires an UDP Hole Punching or a tra�c

relay for communicating with it, contacting it for exchanging only few data can

be ine�cient. In this case, it is not recommended to allow the peer to own some

PariDHT resources or take part in other DHT operations. On the other hand,

these peers can provide services such as the e�ort of providing NAT Traversal

techniques is repayed. Therefore, PariDHT lets nodes behind a NAT with no

port forwarding enabled perform store and search, but without assigning them

any resource or using them as inner hops. This status is determined by PariCon-

nectivity using NAT Traversal facilities and, then, communicated to the PariDHT

plug-in.

More precisely, this procedure consists of the following steps:

� PariConnectivity starts up, providing simple communications over TCP and

UDP;

� PariDHT starts up, providing only store and retrieve features; the peer is

supposed to be behind NAT;

� PariConnectivity gets a list of available NAT Traversal servers, using the

PariDHT search feature;

� PariConnectivity identi�es the NAT state of the peer using the STUN

server, generates the PPId object and communicates them to PariDHT.

48

7.4. TUNNELING

7.4 Tunneling

As seen before, NAPs providing NAT Traversal facilities require some parameters

about Virtual Port and Tunnel Type to be set. This is necessary in order to mux

multiple communications over a single port. The necessity of this feature derives

from the high number of ports required in many contexts: for instance, an IRC

servers and a Web Distributed servers require three ports each, while a DBMS

Distributed server requires three ports for every hosted database. This service

is provided by a PariConnectivity module � simply named Tunneling � and,

currently, can be used only indirectly by other plug-ins, through the use of NAT

Traversal facilities.

A plug-in can require two di�erent types of tunneling:

Best e�ort tunneling, in which �ows of information are mixed without any

further assurance, except the correctness of multiplexing and demultiplex-

ing operations. Here, the overhead introduced by the tunneling process is

minimum.

Tunneling with guarantees, in which ordered data transfer and retransmis-

sion of lost packets are guaranteed. These controls cause a certain overhead

and a subsequent waste of bandwidth; so, they should not be used only

when strictly necessary.

Figure 7.5: The Tunneling mechanism.

Currently, tunneling is provided only over UDP; the TCP version is under de-

velopment. The choice between TCP or UDP will be made by the NAT Traversal

49

CHAPTER 7. NAT TRAVERSAL

module itself, depending on the possibilities o�ered by the network and identi�ed

using the STUN server. If both TCP and UDP communication are available,

the NAT Traversal module requests the beste�ort Tunneling over UDP and the

Tunneling with guarantees over TCP.

In order to send tunneled data, the NAT Traversal module must know IP

address, tunneling port, virtual port and tunneling type of the remote service.

These last two parameters are speci�ed by the plug-in requesting the communi-

cation. IP address and tunneling port can be directly determined using the PPId

object provided, if the tunneling port of the destination is open; otherwise, they

can be determined after using the proper NAT Traversal techniques.

When receiving data, Tunneling returns to NAT Traversal the same four pa-

rameters, with regard to the remote peer. From the (IP, port) pair returned,

NAT Traversal creates a valid PPId object and returns it to the correct plug-in:

if the packet comes from an unknown peer, there is no need of any NAT traver-

sal mechanism for the reply, so the PPId contains only IP and port values; if

the packet comes from a peer which has already established a communication,

NAT Traversal must know some further information in order to contact it; this

information is included in the PPId object.

50

Chapter 8

Multicast

The Multicast module resides in a separate package and makes use of PariCon-

nectity's facilities like any other plug-in with no special privileges. This allows to

keep multicast services separated from basic I/O operations, providing the ability

of changing the one without a�ecting the other. Multicast provides developers

with a communication service among groups of users with one-to-many or many-

to-many connections. An overview of the Multicast module is given in Section

8.1; two di�erent Multicast plug-in architectures are described in Sections 8.2

and 8.3: the former is currently implemented in PariPari, while the latter is still

in development; �nally, Section 8.4 illustrates how a peer covering management

roles can be chosen.

8.1 Preliminary notions

In computer networks, there exist four types of addresses [11]:

Unicast: the most familiar one. Here, an address identi�es a single host;

Broadcast: the broadcast address identi�es all the hosts belonging to the net-

work;

Multicast: the multicast address identi�es a "host group", that is, a set of zero

or more hosts identi�ed by a single IP destination address [17] [15];

Anycast: a packet targeting an anycast address is delivered to at least one,

and preferably only one host, in a subset of hosts identi�ed by the anycast

address [30]. It is included in version 6 of the Internet Protocol [22]

51

CHAPTER 8. MULTICAST

Figure 8.1: Types of addresses in computer networks.

Multicast connections are typically required by applications involving groups

of users. Examples include telephone conferences via VoIP, chats between three

or more users and multimedia streaming services like IPTV. Communications in

these applications can be many-to-many, where all members of the group are both

sources and destinations of information, or one-to-many, where the data stream

originates from a single source.

The problem of routing multicast tra�c is more complex than routing a packet

to a single destination. A tree in the network must be built, in order to e�ciently

route information. Nodes belonging to the network must replicate the packages

to reach the recipients only when necessary, optimizing bandwidth consumption.

Another feature of multicast is the creation of a group and the recognition of its

members.

Although the multicast is already present as a feature of the IPv4 protocol

[17], its use is severely limited outside local area networks, because it has not

been widely adopted by most ISPs. Therefore, multicast communications on

the PariPari network must be maintained by the application layer implementing

multicast forwarding functionalities only at end-point hosts. This led to the

development of the multicast module, which provides facilities to other plug-ins

for sending one-to-many or many-to-many information. In this way, independence

between plug-ins using Multicast and mechanisms employed in the transmission

is maintained. It was also considered useful to separate Multicast from basic I/O

features: indeed, this led to the decision of implementing it as a separate plug-in,

interacting with PariConnectivity through the facilities o�ered by the Core.

52

8.2. CENTRALIZED ARCHITECTURE

In order to provide such a service, an overlay network connecting the members

belonging to the same multicast group is necessary. Two possible architectures

were designed to enable many-to-many communications (one-to-many ones can

be seen as a sub-case). The �rst is the currently implemented one and consists of

a single node, elected as the leader of the group, dealing with all communication-

related aspects (see 8.2). The second exhibits a higher scalability, creating a

particular hierarchical structure that allows a more uniform distribution of the

workload (see 8.3).

8.2 Centralized architecture

Figure 8.2: The SimpleConference architecture.

The currently implemented Multicast architecture is centralized and is named

SimpleConference. In this organization, a peer is elected as a "server" and

handles the multicast connection. All the other peers belonging to the group act

as "clients". The server node holds a direct connection with clients, receiving

their individual data streams and sending back the multicast tra�c.

Generally, the information to be distributed using multicast is a combination

of data streams generated by individual members of the group. For example, in

an audio conference, audio stream from all peers should be mixed, resulting in

a single stream. This merging operation is highly dependent on the application

using the multicast services. In the SimpleConference architecture, the merging

is performed by the server. In that node, the Multicast module acquires streams

53

CHAPTER 8. MULTICAST

from all the clients and returns them as a mixed stream, leaving its computation

to be performed by the application using the multicast services.

Note how implementing this architecture is relatively simple, because the han-

dling of the communication is centralized in the server node. In addition, the

SimpleConference maintains low latency in the distribution of content, a feature

highly desirable in many contexts, like audio or video conferences. Unfortunately,

there are two �aws that limit its use. First, the robustness of the network is af-

fected by its centralized nature. The whole system strictly depends on the server;

if the server node fails, the entire communication is interrupted regardless of the

status of other nodes. Second, the system guarantees poor scalability. In fact,

when considering the computational load needed for mixing information �ows

and the bandwidth needed for transmitting them toward the other nodes, the

server node turns out the bottleneck of the network. Generally, bandwidth and

computational resources requirements increase linearly as the number of nodes

in the group. These issues make this architecture feasible only for groups where

nodes are not too many. A more scalable architecture, currently developed, is

described in the next Section.

8.3 Distributed architecture

The architecture described in this Section is named AdvancedConference. It is

currently being implemented and organized as a distributed architecture, where

the load is splitted among several nodes. It is designed to improve the scalability

and reliability of the previously seen SimpleConference architecture.

The basic structure is taken from the NICE1 application-layer multicast pro-

tocol [8]. A hierarchically-connected control topology is created and the data

delivery path is implicitly de�ned, according to the hierarchical organization:

this is crucial in order to increase the scalability of the network. Nodes are or-

ganized in a layered fashion, and are sequentially numbered beginning from the

bottom. The �rst layer L0 contains all the peers, which are then partitioned into

a set of clusters. Only one peer in each cluster is included in the second layer L1

� the so called cluster-leader. Generalizing, layer Li is partitioned into clusters,

each of which has a leader that is a layer Li+1 member. An example considering

1An acronym standing for "NICE is the Internet Cooperative Environment"

54

8.3. DISTRIBUTED ARCHITECTURE

three layers is reported in Figure 8.3.

Figure 8.3: An example of Distributed Architecture topology.

Data delivering is organized as follows:

� all the peers send data to all the members of their layer L0 cluster;

� a cluster-leader mixes all the data from this cluster and sends them to the

higher-layers clusters whose it is a member;

� a member of a cluster mixes data from its cluster and sends them to lower-

layers clusters whose it is a cluster-leader.

Figure 8.4 shows an example of this protocol. L0's peers are partitioned into

four clusters, each counting four peers. Bi and C0 are leaders of their cluster in

L0. These peers together form a cluster in L1, which is leaded by C0. (a) and

(b) sub�gures show the paths followed by messages using this routing protocol.

In the �rst case, date come from a peer that resides only in a L0 cluster. In the

second case, they come from B0, which is a cluster-leader and should route data

to the peers belonging to the upper layers.

As described above, a cluster must exhibit a fully connected topology. More-

over, each non-leader peer must mix streams coming from all the members of its

cluster. This is not a problem as long as the maximum cluster size counts only

a few nodes, but for higher sizes, each cluster can be structured as a Simple-

Conference group (see 8.2). In this case, the cluster-leader must act as a server,

mixing and redistributing all the data coming from the members of the same

cluster as well as those coming from the upper layers.

55

CHAPTER 8. MULTICAST

Figure 8.4: Data delivery according to the AdvancedConference architecture.

In the MultiConference structure, if the cluster size is equal to C and there

are n peers, the number of layers is at most NL(n) ∈ Θ(logC n). The maximum

number of hops between two peers is 2(NL(n) − 1) + 2 = 2NL(n) ∈ Θ(logC n),

so the number of hops is logarithmic in n. Regarding bandwidth, peers in L0

requires a bandwidth B that is the sum of their output stream and the mixed

input stream. If a peer is also residing in a greater layer Li (with i > 0), requested

bandwidth is (C ·B)i+B.

It is should be clear, now, how the AdvancedConference architecture achieves

a better scalability than the SimpleConference. Latencies su�ered by the Advanced-

Conferencemay appear higher, since they are logarithmic in the number of nodes

instead of constant, but, for groups smaller than the size of a cluster, latency is

constant.

Another advantage of the AdvancedConference is its robustness. In fact,

the failure of a leader can isolate communications to and from its cluster, but the

rest of the network remains una�ected.

In conclusion, the AdvancedConference distributed architecture presents a

more complex topology, but exhibits a better scalability when compared with the

SimpleConference; furthermore, it is more suitable for medium and large groups.

On the other hand, the SimpleConference remains preferable to multicast com-

munications within-a-few, mainly because it is easy to manage . The boundary

between these two strategies can be �xed or based on bandwidth and compu-

tational capabilities of a server node in the SimpleConference. In fact, if the

workload of the server exceeds its capabilities, reliance to AdvancedConference

architecture allows to split the load across multiple peers.

56

8.4. SELECTING SERVERS AND CLUSTER-LEADERS

8.4 Selecting servers and cluster-leaders

In the two architectures just seen, the choice of the nodes acting as server or

cluster-leader is a crucial aspect. A non-optimal choice may translate into a

performance degradation. The three main criteria to be adopted are: latency,

bandwidth and reliability. The relative importance of these parameters depends

on the speci�c application which is using multicast services. However, it is neces-

sary to estimate these values for each peer in order to select the more appropriate

one.

Latency

Latency is an essential parameter for most many-to-many communications, in-

cluding instant messaging, VoIP, videoconferencing, etc.. Let us denote by δij

the RTT2 between peers i and j, both belonging to the multicast group's subset

G. In order to determine the subset of peers ĩ with the best overall latency, we

consider:

� ĩ =

{
i ∈ G : max δij ≤ max δkj ∀k ∈ G, j ∈ G

}
i.e. peers with minimum maximum latency;

� ĩ =

{
i ∈ G :

∑
j∈G

δij
|G|
≤

∑
j∈G

δkj
|G|
∀k ∈ G, j ∈ G

}
i.e. peers with minimum average latency;

Other formulas or policies may be used, depending on RTT values and other

requirements.

Most of the criteria designed for determining the best peer in terms of latency

require knowledge of the RTT between all the pairs of peers. This can be trivially

found doing O(|G|2) measurements, considering all the pairs of peers in the in-

terested set |G|. An alternative and more scalable solution is to use an algorithm

for RTT estimation [14] [29] [16]. In these algorithms, a multi-dimensional coor-

dinate space is used: peers are placed through the measurement of RTT with a

small number of other peers. The RTT of any pair of peers can now be evaluated

by applying a function to their coordinates.

2Round Trip Time

57

CHAPTER 8. MULTICAST

Bandwidth

This parameter is particularly signi�cant when each peer must receive a lot of

data or there are several peers joining the multicast group.

Denote by R the required bandwidth of a given application between a single

pair of peers. A node with bandwidth B can interact with no more than bB
R
c

peers simultaneously. Choosing a server with a higher band in the centralized

architecture allows to increase the maximum number of peers that can join the

group. Similarly, in the distributed architecture, having cluster-leaders with a

higher bandwidth lets increase the size of the clusters and, therefore, decrease

the number of layers and the overall latency.

The measurement of the available bandwidth of a peer is not a de�nitively

solved problem yet. The bandwidth purchased by the Multicast plug-in (see

Section 6.2 for further details) is considered as the actual available bandwidth.

This can be a good approximation in an absolute sense, but it could be very

di�erent from the real bandwidth available for other members of the group. A

partial solution may be monitoring the internal tra�c and exchanging additional

packages, allowing an estimate of the available bandwidth between each pair of

nodes.

Reliability

In order to guarantee the stability of the overlay network, servers and nodes must

exhibit a high degree of reliability.

Since we are dealing with a P2P network, an important parameter is repre-

sented by the Remaining Stay Times (RST). Several studies [10] [37] highlight

that peers with a higher age tend to stay longer in the group, so the age of a node

could be used as a good predictor of the RST. Given this result, in the Multicast

plug-in, reliability of a node is estimated on the basis of its uptime, where more

stable nodes are those that have been connected to the network for a longer time.

To improve reliability, it is also necessary an adequate failure detection and

recovery system. The main symptom of a failure is generally the interruption of

data �ow: when this condition occurs, in the current implementation of Multicast,

it is enough to replace the peer suspected to be broken with another which is

known to work. In order to replace a failed node and recover the network status,

new peers should obtain the topological information stored by the failed node:

58

8.4. SELECTING SERVERS AND CLUSTER-LEADERS

for this purpose, one should replicate the information held by a leader through a

certain amount of nodes belonging to the group.

59

CHAPTER 8. MULTICAST

60

Chapter 9

Anonymity

The main purpose of the Anonymity package is to ensure the untraceability of

PariPari users. Similarly to Multicast (Chapter 8), Anonymity resides in a pack-

age external to the Connectivity plug-in itself, ensuring modularity with respect

to other I/O services.

Anonymity provides, in particular, facilities for carrying out data transmis-

sions not revealing the IP addresses owned by the communication endpoints. In

general, hiding the content of a message just encrypting it could not be a su�-

cient protection: one could track that message, discovering in such a way who is

talking with whom. This tracking is identi�ed by a speci�c name: tra�c analysis.

Anonymity plug-in exactly aims at preventing such analysis, by means of onion

routing techniques: Section 9.1 details these mechanisms.

Since the plug-in can be divided into two distinct "subunits", Sender Anonymity

and Receiver Anonymity, we explain in more detail each subunit separately � in

Sections 9.2 and 9.3, respectively.

9.1 Onion routing: an overview

In the last decade, Anonymity techniques have noticeably evolved: as a few exam-

ples, we can cite Crowds [7], Freenet [13] and OneSwarm [24]. In our plug-in, we

have adopted the Onion Routing model [35], whose most famous implementation

is perhaps Tor [19].

Onion routing provides bidirectional, application-independent and nearly real-

time communications; in particular, it relies on a group of nodes � the onion

61

CHAPTER 9. ANONYMITY

routers (OR) � providing an anonymity service: it is exactly through these nodes

that encrypted communications take place. The last hop along this "chain" is the

exit relay node: it performs a clear transmission of messages toward the server

the anonymous connection should be established with.

Therefore, a client aiming at connecting to a server must perform the following

steps:

� retrieving (by contacting a Directory Server) a list of onion routers usable

to redirect the tra�c;

� identifying a sequence p1...pn of such nodes: this will constitute the "com-

munication chain" toward the server;

� encrypting the data to be sent and its own address with pn's public key,

obtaining the payload cn;

� calculating the generic payload ci, encrypting the payload ci+1 together with

pi+1's address with pi's public key;

� sending a packet with c1 as payload to p1.

Thanks to this structure, each node along the chain can decrypt the packet just

received, obtaining a new payload and the address of the next hop. Note how,

in such a way, it knows only its predecessor and its successor along the chain; no

other nodes are revealed.

Figure 9.1 schematizes the communication �ow we have just explained.

Actually, in PariPari we do not deal with entities like clients and servers: we

deal with peers. This means that a peer providing a service is not necessarily

known by every other node belonging to the network: it simply publishes that

service through the DHT 2.2; in the same manner, a node looking for a service

does not have any server at its disposal: it performs a search across the network,

in order to �nd out an active node currently o�ering that service. As we easily see,

a di�culty arises at this point: both these publications and researches must be

anonymous, as well as the establishment of communication between the involved

peers. The following Sections explain how Anonymity addresses these problems.

62

9.2. SENDER ANONYMITY

Figure 9.1: Communicating by means of onion routers.

9.2 Sender Anonymity

The Sender Anonymity service allows a node to publish a resource across PariDHT

in an totally anonymous manner. In particular, this means that the node the

store(K,V operation is called on does not know which node is actually calling

that store; furthermore, even if a pointer is stored, the actual identity of the node

being referenced remains hidden. This is accomplished thanks to onion routing

techniques similar to those described in Section 9.1. Let us represent the node

p0 aiming at (anonymously) publishing a resource as the head of the chain. The

procedure it should follow can be easily summarized:

1. p0 retrieves a list of nodes providing the anonymity service;

2. among those nodes, a succession p1..pn of nodes is selected: p0 must acquire

their public keys K+
p1
..K+

pn ;

3. p0 obtains the payload cn for the peer pn, constituted by a random gener-

ated number Idn−1 together with the data required by the store operation,

encrypted with K+
pn ;

4. s obtains the payload of the generic packet pi, containing the (IPpi+1, ci+1)

pair: it is encrypted with K+
pi
and the randomly generated number Idi−1,

representing the previous node;

5. p0 sends a packet with payload c1 to p1, as shown in Figure 9.3.

63

CHAPTER 9. ANONYMITY

Figure 9.2: Onion routing encapsulation.

Note how, according to this structure, each intermediate node pi receives

a packet containing Idi−1, pi+1's IP address and the payload ci+1 to be for-

warded. From the last one, the value of Idi can be extracted, since it is not

encrypted. Before forwarding the message, pi adds the quadruple constituted

by (Idi−1, IPi−1, Idi, IPi+1) to a routing table it constantly keeps up-to-date: by

using this table, pi can forward subsequent messages coming from and going to

pair of adjacent nodes along the chain.

The node laying at the head of the chain, pn, performs the store operation

on PariDHT, accordingly to the data brought by the received packet's payload.

A �ag indicates whether V represents a value or a reference; in this case, the

referred node is pn: that is, every request addressing the resource is forwarded to

pn, which has to forward the request along the chain in turn.

64

9.3. RECEIVER ANONYMITY

c1 = Id0, (IPp2 c2︷ ︸︸ ︷
Id1, (IPp3 , c3︷ ︸︸ ︷

Id2, (IPp4 , ...

...︷ ︸︸ ︷
Idn−1, (store (K,V))K

+
pn

)K
+
p3

)K
+
p2

)K
+
p1

Figure 9.3: Sender Anonymity: payload of �rst sent packet.

Idi−1 IPi−1 Idi IPi+1

56434 147.162.2.250 62662 174.25.12.114

54735 147.162.2.250 12394 174.25.12.114

34234 147.162.2.250 22344 89.5.14.24

24546 95.43.56.123 23424 90.15.62.45

Table 9.1: An example of routing table.

9.3 Receiver Anonymity

As we have already mentioned, the Receiver Anonymity module addresses the

problem of making the retrieval of a generic resource r = (K,V) anonymous

across PariDHT. If V represents a pointer to a peer, it is possible to establish

an anonymous communication with that peer by using the same chain of peers

crossed during the search operation. The mechanism, here, is quite similar to

that seen for the Sender Anonymity module: the creation of the chain follows

the usual onion routing technique's rules, with the head of the chain acting on

the place of the node requesting the anonymity and taking care of forwarding

messages.

A node p0, aiming at performing an anonymous search on PariDHT, will

follow the same steps we have already seen in Section 9.2: in this case, the

payload cn of the packet sent to the head of the chain contains the parameters

according to those the retrieval is accomplished. Packets transmitted among the

intermediate nodes pi exhibit the same structure as in the Sender Anonymity

process; similarly, the operations such as the forwarding of payloads from one

hop to another and the insertion of the (Idi−1, IPi−1, Idi, IPi+1) quadruple into

65

CHAPTER 9. ANONYMITY

Figure 9.4: Sender Anonymity: an example of communication chain.

the routing table are performed in the same manner as well.

Figure 9.5: Receiver Anonymity: an example of communication chain.

9.4 A completely anonymous communication

As discussed above, Anonymity lets peers both provide and retrieve a resource or

a service in an anonymous manner. Using both services gives rise to a completely

anonymous communication, in which peers o�ering or requesting resources re-

main unknown. In fact, if a server ps0 holds an anonymity chain ps1..p
s
n, and a

corresponding client, similarly, an anonymity chain pr1..p
r
n, we have that:

66

9.4. A COMPLETELY ANONYMOUS COMMUNICATION

� peers ps1..p
s
n−1 and p

r
1..p

r
n−1 know only their adjacent peers, without knowing

their own position along the chain;

� peers psn and p
r
n know that they are, respectively, the head of the chain and

the destination address of the packets passing through the chain; but this

node only represents the head of the other chain, not the actual destination;

� peers ps0 and p
r
0 known all the members belonging to their chain, but only

the head of the other chain. All these peers are simply anonymizer nodes.

67

CHAPTER 9. ANONYMITY

68

Chapter 10

Team management

PariPari is currently being developed by 60+ students, mainly as their thesis work

or as a course project. With the exception of the two project leaders, the team is

entirely composed by students, whose time availability, programming skills and

personal initiative may widely vary.

Given these characteristics, the need of a robust hierarchical organization, as

that described in Section 10.1, naturally arises; furthermore, some programming

techniques maximizing the productivity in this context are introduced, as dis-

cussed in Section 10.2. An overview of the employed workforce is provided in

Section 10.3.

10.1 Organizational structure

Each PariPari's plug-in is developed by a team of students. The modular orga-

nization of the software leads to a semi-isolation of each plug-in from the rest of

PariPari: many times, communications between teams simply reduce to reading

documentation of the other plug-in's APIs. Some sets of plug-ins share many

components, so they are grouped into confederations. An example of such a con-

federation is represented by PariConnectivity, PariAnonymity and PariMulticast.

The entire workforce is organized according to a hierarchical structure, as

shown in Figure 10.1.

At the top, there are the project leaders, who de�ne the main lines of the

project and the deadlines for the pre-releases. They are constantly kept updated

by the plug-in leaders about the overall situation, through frequent meetings

69

CHAPTER 10. TEAM MANAGEMENT

Figure 10.1: Hierarchical organization in PariPari.

and weekly reports. They are the only ones that can decide about rewarding or

punishing students. Currently, the project leaders are the Ph.D. student Michele

Bonazza and the assistant professor Paolo Bertasi.

Team leaders determine the priority of tasks for each plug-in in the confed-

eration, taking into account the already established pre-release deadlines. They

have a clear view of all the confederation's plug-ins interaction and know well the

structure of PariPari.

Plug-in leaders organize the job assignments within a group, generally con-

sisting of 2-10 students. If a plug-in is not part of any confederation, its plug-in

leader also acts as team leader.

10.2 Programming techniques

Since the workforce of PariPari consists entirely of students, it is subject to a

very high turnover; typically, students spend about nine months working on the

project. This fact, combined with the large number of programmers, make nec-

essary to de�ne precise rules and guidelines in the development process. In par-

ticular, these choices have been made:

� the OOP1 paradigm is adopted: it enables faster code development, easier

maintenance and simpler testing process;

� eXtreme Programming software development methodology is followed, in

1Object Oriented Programming

70

10.3. WORKFORCE MANAGEMENT

order to improve software quality and responsiveness to requirements chang-

ings [9];

� a Test-driven development (TDD) process; it is related to the test-�rst

programming concepts of the eXtreme Programming and drastically reduces

the number of bugs introduced during refactoring or code changing;

� plug-ins are mutually isolated and communicate only through public APIs,

allowing a more e�ective testing, less necessary knowledge to newcomers to

begin the development and less in�uence of bugs across plug-ins;

� many development-related aspects are standardized; just for citing a few,

we mention: style and format for the source code, tools used for writing

code, compiling it and reporting bugs. This allows a simpler code-merge

and an easier interaction among programmers.

10.3 Workforce management

Most of the PariPari developers are students, who do this work as their thesis

project. This year, a group of students attending the course of Software Engineer-

ing has joined the PariPari time, for the duration of an entire semester. These

two categories of workforce present completely di�erent characteristics: we will

analyze them separately, specifying, for each of them, strengths, faults and the

most appropriate allocations in the project.

10.3.1 Working on PariConnectivity for a thesis

These students are generally recruited during large, sporadic recruitment events,

involving dozens of people. During these events, an intensive advertising about

PariPari's bene�ts is made. The importance of joining the project as a unique

opportunity to learn the tools and techniques used in the industry is emphasized.

The possibilities o�ered by the software and the future prospects of being able to

take over many contemporary P2P solutions, represent usually a good argument

in order to motivate students to join. The advantage of this type of recruitment

is that it is able to attract motivated students who believe in the project, at the

cost of not having any control over their other qualities.

71

CHAPTER 10. TEAM MANAGEMENT

Indeed, it is di�cult � almost impossible � to determine the actual skills owned

by a student during recruitment. As a consequence, the assignment of a student

to a determined plug-in is dependent only on the preferences suggested by the

student itself. In some cases, students whose commitment is low or erratic, or

whose prior knowledge is totally insu�cient for the project, are recruited; the

time spent by senior-members to manage and train them is greater than the

contribution provided to the project by these students.

These members su�er from a main disadvantage: they do not have predictable

periods in which they can focus on code development. Each of them writes

code for about nine months, but the commitment is distributed in a completely

heterogeneous way, generally depending on the exams' dates and on the personal

organization of the time devoted to study. This makes it di�cult to schedule

task and to organize milestones in order to synchronize jobs, especially when

managing plug-ins that provide APIs to others, for which the deadline are much

more stringent. This time fragmentation also brings di�culties in the newcomers

training. In fact, although many student will join the project during the same

recruitment session, they are available to begin code development in very di�erent

periods.

An advantage of this workforce are the relationships that are established

among students during collaboration. The team meetings are generally informal,

and are organized through non-academic communication channels. The climate

is necessarily collaborative, since the attitude of direct competition among stu-

dents makes no sense in this context, and all the developers share an interest in

the overall project. The relationships with the leaders are generally good too,

since they do not make an accurate assessment of the work, but more properly

evaluate the correspondence between work and requests and provide help and

tips to achieve them, when necessary.

Another advantage is the interest and initiative shown in the project. Students

decide to join PariPari because they are interested in what the project can o�er.

This leads some students to o�er more time and resources to the project than

those that would be required for a normal thesis work. This is often a crucial

aspect, that distinguishes future team leaders.

In conclusion, these students, after doing an early assignment that lets us

train them and test their skills, are extremely useful in new or young plug-ins.

72

10.3. WORKFORCE MANAGEMENT

They should work on challenging tasks, that maintain high their level of interest;

they are also good candidates to become future team/plug-in leaders.

10.3.2 Working on PariConnectivity as a Software Engi-

neering student

This year, students attending the course of Software Engineering had to carry

out a practical code development activity, that contributed in assessing their

�nal evaluation.

Students were involved in four di�erent projects (PariPari, Psort, ELaw and

BioScanner). Due to a "numerus clausus" policy, only 60 students could be

admitted (40 in PariPari). Over 150 students applied: this high request allowed

a careful selection. Since practical aspects of development heavily in�uenced the

�nal evaluation, it was decided to include some team leaders in the selection

procedure. It was composed of a simple logic test, an individual interview with

one or more team leaders and a coding homework of moderate complexity (with

a three days long deadline). This allowed to admit students with good basic skills

and to assign them to the plug-ins that best suited their abilities.

The relationships among the students are poor. Students with previous friend-

ships are rarely put in the same group when using this selection procedure. In-

teractions with other members take place only during lessons, reducing the pos-

sibility of creating new friendships. Also, relationships established with the team

leaders are very di�erent with respect to those established by students working on

their thesis. All the team leaders had to periodically report to the course's pro-

fessor about the quality of the work being done: this clearly requires to establish

a less con�dential relationship between the student and the team leader.

Another problem is the interest in the project. These students are interested

in learning the basics of Software Engineering, many of them are not speci�cally

interested in PariPari. Their main incentive is the �nal evaluation: this means

that they generally have a high productivity during the course, but are rarely

interested in keep working in the project.

Many important bene�ts derive from the fact that all these students should

develop PariPari during a well-de�ned course schedule, �nishing the work at home

if necessary. This allows to greatly reduce the time spent for training, since it

is done to all the students simultaneously. Additionally, these students focus on

73

CHAPTER 10. TEAM MANAGEMENT

this course like on any other exam, without giving always low priority to code

development like other PariPari members. This leads to an easier synchronization

across di�erent tasks and to a much faster development process.

Summarizing, the pros and cons of this workforce are basically opposed to

those of other members. These students can be used to develop parts that require

rapid development, which have high dependencies with other parts of the code or

that regard less interesting aspects. Instead, they are less useful for those plug-ins

that still are at an early stage of development.

74

Chapter 11

Conclusions and future work

In this thesis, we have illustrated the reengineering and optimization of PariCon-

nectivity has been achieved. The code handling all connection-related aspects

(that is, the Connectivity Core) has been completely rewritten, using the Java

NIO API; this allowed to provide more advanced features to other plug-ins like

an asynchronous I/O, a centralized QoS System and NAT Traversal techniques,

with tunneled �ows. Furthermore, plug-ins like Multicast and Anonymity were

improved and adapted to the new API.

Currently, the code exhibits a good stability even when dealing with I/O in-

tensive plug-ins, such those providing �le sharing and distributed storage services.

Note how these are the areas where the introduction of the new features has more

relevance. Gradually, the plug-ins less interested in the new features (that is, less

involved in intensive network I/O) are migrating to the new version too, mainly

for compatibility reasons.

However, as we have seen, further developments must take place. In the next

Sections, we brie�y overview them.

11.1 Intensive testing

An advantage of Connectivity is that it's used by almost all other plug-ins, so

�nding bugs is easier, even if the pressure when they must be �xed is higher.

Test-writing and bug-�xing will therefore always represent a very important part

of the work to be done in PariConnectivity.

75

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

11.2 TLS/SSL support

Transport Layer Security (TLS) [18] and its predecessor, Secure Sockets Layer

(SSL), are cryptographic protocols that provide communications security over the

Internet. They use symmetric cryptography in order to guarantee privacy and

a keyed message authentication code in order to guarantee message reliability.

Providing a socket that natively supports these protocols currently represents a

very high-priority task.

11.3 Serialization support

Many plug-ins require to transfer objects instead of primitive types over the

network. Currently, this involves a proper management done by the interested

plug-ins, since this feature is not natively supported by the APIs provided by

PariConnectivity. Moreover, the facilities provided by Java are generally used

to serialize objects, which in many cases is a solution with low performance and

interoperability with external applications. Therefore, we need to provide a set

of APIs that natively allow an easy exchange of objects over the network, using

di�erent types of serialization.

11.4 Direct �le transfer

Java NIO channels are used not only to perform network I/O, but also to deal

with �les; besides, e�cient methods for exchanging data between two channels

are provided. From this fact, the idea of implementing a set APIs for the direct

transfer of data between network and local storage is born. This can be particu-

larly useful for �le sharing and distributed storage plug-ins, that currently have to

waste RAM for temporarily storing the data exchanged between PariConnectivity

and the module itself.

76

Bibliography

[1] Azureus. http://azureus.sourceforge.net/.

[2] emule. http://www.emule-project.net.

[3] Javadoc page for java.net package. http://download.oracle.com/javase/

6/docs/api/java/net/package-summary.html.

[4] Javadoc page for java.nio package. http://download.oracle.com/javase/

6/docs/api/java/nio/package-summary.html.

[5] Jxta. https://jxta.dev.java.net/.

[6] Skype. http://www.skype.com.

[7] Crowds: anonymity for Web transactions. ACM Transactions on Informa-

tion and System Security, Volume 1:pages 66�92, 1998.

[8] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-

able application layer multicast. In Proceedings of the ACM SIGCOMM,

volume 32, pages 205�217, 2002.

[9] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional, 2004.

[10] M. Bishop, S. Rao, and K. Sripanidkulchai. Considering Priority in Overlay

Multicast Protocols Under Heterogeneous Environments. In Proceedings of

IEEE INFOCOM, pages 1�13, 2006.

[11] Russell Bradford. The Art of Computer Networking. Pearson/Prentice Hall,

2007.

77

http://azureus.sourceforge.net/
http://www.emule-project.net
http://download.oracle.com/javase/6/docs/api/java/net/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/net/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/nio/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/nio/package-summary.html
https://jxta.dev.java.net/
http://www.skype.com

Bibliography

[12] David Buettner, Julian Kunkel, and Thomas Ludwig. Using Non-blocking

I/O operations in high performance computing to reduce execution times.

In Proceedings of the 16th European PVM/MPI Users' Group Meeting on

Recent Advances in Parallel Virtual Machine and Message Passing Interface,

pages 134�142, 2009.

[13] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore Hong. Freenet:

A distributed anonymous information storage and retrieval system. In De-

signing Privacy Enhancing Technologies, volume 2009 of Lecture Notes in

Computer Science, pages 46�66. Springer Berlin / Heidelberg, 2001.

[14] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Prac-

tical Internet Coordinates for Distance Estimation. In Proceedings of the 24th

International Conference on Distributed Computing Systems (ICDCS'04),

pages 178�187. IEEE Computer Society, 2004.

[15] M. Cotton, L. Vegoda, and D. Meyer. IANA Guidelines for IPv4 Multicast

Address Assignments. RFC 5771 (Best Current Practice), 2010.

[16] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A

decentralized network coordinate system. In Proceedings of the ACM SIG-

COMM, 2004.

[17] S.E. Deering. Host extensions for IP multicasting. RFC 1112 (Standard),

1989. Updated by RFC 2236.

[18] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246 (Proposed Standard), 2008. Updated by RFCs 5746,

5878.

[19] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-

generation onion router. In Proceedings of the 13th conference on USENIX

Security Symposium (SSYM'04), volume 13, 2004.

[20] John William Evans and Clarence Fils�ls. Deploying IP and MPLS QoS for

Multiservice Networks: Theory & Practice. Morgan Kaufmann Publishers

Inc., 2007.

78

BIBLIOGRAPHY

[21] Paul Ferguson and Geo� Huston. Quality of service: delivering QoS on the

Internet and in corporate networks. John Wiley & Sons Inc., 1998.

[22] R. Hinden and S. Deering. Internet Protocol Version 6 (IPv6) Addressing

Architecture. RFC 3513 (Proposed Standard), 2003. Made obsolete by RFC

4291.

[23] Ron Hitchens. Java NIO. O'Reilly, 2002.

[24] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Anderson.

Privacy-preserving P2P data sharing with OneSwarm. In Proceedings of the

ACM SIGCOMM, pages 111�122, 2010.

[25] Benedek Kovács. Mathematical remarks on token bucket. In Proceedings

of the 17th international conference on Software, Telecommunications and

Computer Networks (SoftCOM'09), pages 151�155, 2009.

[26] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down

Approach (4th Edition). Addison Wesley, 2007.

[27] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around

NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT

(STUN). RFC 5766 (Proposed Standard), 2010.

[28] Petar Maymounkov and David Mazi`eres. Kademlia: A peer-to-peer informa-

tion system based on the xor metric. In Proceedings of the 1st International

Workshop on Peer-to Peer Systems (IPTPS02), 2002.

[29] T. S. E. Ng and Hui Zhang. Predicting internet network distance with

coordinates-based approaches. In Proceedings of IEEE INFOCOM, pages

170�179, 2002.

[30] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. RFC

1546 (Informational), 1993.

[31] E. Peserico. P2P economies. In Proceedings of the ACM SIGCOMM, 2006.

[32] Larry L. Peterson and Bruce S. Davie. Computer Networks, Fourth Edition:

A Systems Approach. Morgan Kaufmann Publishers Inc., 2007.

79

Bibliography

[33] J. Postel. User Datagram Protocol. RFC 768 (Standard), 1980.

[34] J. Postel. Transmission Control Protocol. RFC 793 (Standard), 1981. Up-

dated by RFCs 1122, 3168, 6093.

[35] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous

connections and onion routing. IEEE Journal on Selected Areas in Commu-

nications, volume 16:pages 482�494, 1998.

[36] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utili-

ties for NAT (STUN). RFC 5389 (Proposed Standard), 2008.

[37] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. An analysis of

live streaming workloads on the internet. In Proceedings of ACM SIGCOMM

conference on Internet measurement (IMC '04), pages 41�54, 2004.

[38] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator

(Traditional NAT). RFC 3022 (Informational), 2001.

[39] P. Srisuresh, B. Ford, and D. Kegel. State of Peer-to-Peer (P2P) Communica-

tion across Network Address Translators (NATs). RFC 5128 (Informational),

2008.

[40] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the ACM SIGCOMM, pages 149�160, 2001.

[41] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Tech-

nical Reference, 4th edition, 2002.

[42] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-

ciples and Paradigms (2nd Edition). Prentice-Hall, Inc., 2006.

[43] Puqi Perry Tang and Tsung-Yuan Charles Tai. Network tra�c characteri-

zation using token bucket model. In Proceedings of IEEE INFOCOM, pages

51�62, 1999.

80

List of Figures

2.1 How plug-ins deal with messages. 9

2.2 A feasible routing table con�guration 11

2.3 An example of lookup. 12

3.1 Bu�er family tree. 16

3.2 Simpli�ed Channel family tree . 17

3.3 Relationship among channels, selectors and selectionKeys in an

E-R diagram. 22

4.1 How plug-ins receive incoming data. 29

5.1 PariConnectivity's asynchronous I/O. 34

6.1 A token bucket. 36

6.2 Implementation of the Token bucket algorithm in PariConnectivity. 38

7.1 IP discovery. 42

7.2 UDP Hole Punching mechanism. 44

7.3 A TURN Server servicing two clients. 45

7.4 Store and retrieve of a service over PariDHT using a PPId 47

7.5 The Tunneling mechanism. 49

8.1 Types of addresses in computer networks. 52

8.2 The SimpleConference architecture. 53

8.3 An example of Distributed Architecture topology. 55

8.4 Data delivery according to the AdvancedConference architecture. 56

9.1 Communicating by means of onion routers. 63

9.2 Onion routing encapsulation. 64

9.3 Sender Anonymity: payload of �rst sent packet. 65

81

List of �gures

9.4 Sender Anonymity: an example of communication chain. 66

9.5 Receiver Anonymity: an example of communication chain. 66

10.1 Hierarchical organization in PariPari. 70

82

	Abstract
	Sommario
	Introduction
	PariPari
	Plug-in architecture
	PariCore
	Credit System

	Network layout
	PariConnectivity

	Java NIO
	Buffers
	Direct buffers

	Channels
	Channels basics
	InterruptibleChannel interface
	Main abstract classes

	Selectors
	Registration
	Selection process

	PariConnectivity: the Core
	A new abstraction layer
	Enhancing I/O performance
	Synchronous communications

	Asynchronous I/O
	Some preliminary notions
	Asynchronous I/O in PariConnectivity
	Interaction with other plug-ins

	Bandwidth limitation
	The Token Bucket algorithm
	Implementing the bandwidth limitation
	Improving the QoS

	NAT Traversal
	Communicating behind NAT
	NAT Traversal: services and techniques
	IP Discovery
	The STUN protocol
	UDP Hole Punching
	The TURN protocol

	Interaction with other plug-ins
	Tunneling

	Multicast
	Preliminary notions
	Centralized architecture
	Distributed architecture
	Selecting servers and cluster-leaders

	Anonymity
	Onion routing: an overview
	Sender Anonymity
	Receiver Anonymity
	A completely anonymous communication

	Team management
	Organizational structure
	Programming techniques
	Workforce management
	Working on PariConnectivity for a thesis
	Working on PariConnectivity as a Software Engineering student

	Conclusions and future work
	Intensive testing
	TLS/SSL support
	Serialization support
	Direct file transfer

	Bibliography
	List of figures

