188 research outputs found

    Deep learning analysis of eye fundus images to support medical diagnosis

    Get PDF
    Machine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. Different models for different eye diseases were developed. Four models were developed using eye fundus images: for DME, it was designed a two-stages model that uses a shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the raw fundus image into a 4-channel array as an input of a deep convolutional neural network for diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models. First, it was defined a deep learning model based on three-stages that contains an initial stage for automatically segment two binary masks containing optic disc and physiological cup segmentation, followed by an automatic morphometric features extraction stage from previous segmentations, and a final classification stage that supports the glaucoma diagnosis with intermediate medical information. Two late-data-fusion methods that fused morphometric features from cartesian and polar segmentation of the optic disc and physiological cup with features extracted from raw eye fundus images. On the other hand, two models were defined using optical coherence tomography. First, a customized convolutional neural network termed as OCT-NET to extract features from OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates images with highlighted local information about the clinical signs, and it estimates the number of slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT volumes as an input to estimate the retinal thickness map useful to grade AMD. The methods were systematically evaluated using ten free public datasets. The methods were compared and validated against other state-of-the-art algorithms and the results were also qualitatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition, the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glaucoma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging representations. Thus, we consider that this research could be potentially a big step in building telemedicine tools that could support medical personnel for detecting ocular diseases using eye fundus images and optical coherence tomography.Las técnicas de aprendizaje automático se han aplicado con éxito para apoyar la toma de decisiones médicas sobre el cáncer, las enfermedades cardíacas y las enfermedades degenerativas del cerebro. En particular, se han utilizado métodos de aprendizaje profundo para la detección temprana de anormalidades en el ojo que podrían mejorar el diagnóstico de diferentes enfermedades oculares, especialmente en países en desarrollo, donde existen grandes limitaciones para acceder a tratamiento médico especializado. Sin embargo, la detección temprana de signos clínicos como vasos sanguíneos, alteraciones del disco óptico, exudados, hemorragias, drusas y microaneurismas presenta tres desafíos principales: las imágenes oculares pueden verse afectadas por artefactos de ruido, las características de los signos clínicos dependen específicamente de fuente de adquisición, y la combinación de signos locales y clasificación de la enfermedad no es una tarea fácil. Esta investigación aborda el problema de combinar signos locales y etiquetas globales de diferentes fuentes de adquisición de información médica como una herramienta valiosa para apoyar la toma de decisiones médicas en enfermedades oculares. Se desarrollaron diferentes modelos para diferentes enfermedades oculares. Se desarrollaron cuatro modelos utilizando imágenes de fondo de ojo: para DME, se diseñó un modelo de dos etapas que utiliza un modelo superficial para predecir una máscara binaria de exudados. Luego, la máscara binaria se apila con la imagen de fondo de ojo original en una matriz de 4 canales como entrada de una red neuronal convolucional profunda para el diagnóstico de edema macular diabético; para el glaucoma, se desarrollaron tres modelos de aprendizaje profundo. Primero, se definió un modelo de aprendizaje profundo basado en tres etapas que contiene una etapa inicial para segmentar automáticamente dos máscaras binarias que contienen disco óptico y segmentación fisiológica de la copa, seguido de una etapa de extracción de características morfométricas automáticas de segmentaciones anteriores y una etapa de clasificación final que respalda el diagnóstico de glaucoma con información médica intermedia. Dos métodos de fusión de datos tardíos que fusionaron características morfométricas de la segmentación cartesiana y polar del disco óptico y la copa fisiológica con características extraídas de imágenes de fondo de ojo crudo. Por otro lado, se definieron dos modelos mediante tomografía de coherencia óptica. Primero, una red neuronal convolucional personalizada denominada OCT-NET para extraer características de los volúmenes OCT para clasificar las condiciones DME, DR-DME y AMD. Además, este modelo genera imágenes con información local resaltada sobre los signos clínicos, y estima el número de diapositivas dentro de un volumen con anomalías locales. Finalmente, un modelo de aprendizaje 3D-Deep que utiliza volúmenes OCT como entrada para estimar el mapa de espesor retiniano útil para calificar AMD. Los métodos se evaluaron sistemáticamente utilizando diez conjuntos de datos públicos gratuitos. Los métodos se compararon y validaron con otros algoritmos de vanguardia y los resultados también fueron evaluados cualitativamente por expertos en oftalmología de la Fundación Oftalmológica Nacional. Además, los métodos propuestos se probaron como una herramienta de diagnóstico de edema macular diabético, glaucoma, retinopatía diabética y degeneración macular relacionada con la edad utilizando dos representaciones de imágenes oculares diferentes. Por lo tanto, consideramos que esta investigación podría ser potencialmente un gran paso en la construcción de herramientas de telemedicina que podrían ayudar al personal médico a detectar enfermedades oculares utilizando imágenes de fondo de ojo y tomografía de coherencia óptica.Doctorad

    Una revisión sistemática de métodos de aprendizaje profundo aplicados a imágenes oculares

    Get PDF
    Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosisLa inteligencia artificial está teniendo un importante impacto en diversas áreas de la medicina y a la oftalmología no ha sido la excepción. En particular, los métodos de aprendizaje profundo han sido aplicados con éxito en la detección de signos clínicos y la clasificación de enfermedades oculares. Esto representa un potencial impacto en el incremento de pacientes correctamente y oportunamente diagnosticados. En oftalmología, los métodos de aprendizaje profundo se han aplicado principalmente a imágenes de fondo de ojo y tomografía de coherencia óptica. Por un lado, estos métodos han logrado un rendimiento sobresaliente en la detección de enfermedades oculares tales como: retinopatía diabética, glaucoma, degeneración macular diabética y degeneración macular relacionada con la edad. Por otro lado, varios desafíos mundiales han compartido grandes conjuntos de datos con segmentación de parte de los ojos, signos clínicos y el diagnóstico ocular realizado por expertos. Adicionalmente, estos métodos están rompiendo el estigma de los modelos de caja negra, con la entrega de información clínica interpretable. Esta revisión proporciona una visión general de los métodos de aprendizaje profundo de última generación utilizados en imágenes oftálmicas, bases de datos y posibles desafíos para los diagnósticos oculare

    A Machine Learning System for Glaucoma Detection using Inexpensive Machine Learning

    Get PDF
    This thesis presents a neural network system which segments images of the retina to calculate the cup-to-disc ratio, one of the diagnostic indicators of the presence or continuing development of glaucoma, a disease of the eye which causes blindness. The neural network is designed to run on commodity hardware and to be run with minimal skill required from the user by packaging the software required to run the network into a Singularity image. The RIGA dataset used to train the network provides images of the retina which have been annotated with the location of the optic cup and disc by six ophthalmologists, and six separate models have been trained, one for each ophthalmologist. Previous work with this dataset has combined the annotations into a consensus annotation, or taken all annotations together as a group to create a model, as opposed to creating individual models by annotator. The interannotator disagreements in the data are large and the method implemented in this thesis captures their differences rather than combining them together. The mean error of the pixel label predictions across the six models is 10.8%; the precision and recall for the predictions of the cup-to-disc ratio across the six models are 0.920 and 0.946, respectively

    A method for quantifying sectoral optic disc pallor in fundus photographs and its association with peripapillary RNFL thickness

    Full text link
    Purpose: To develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fibre layer (pRNFL) thickness. Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (N=45) and assessed how measurements compared to healthy controls (N=46). We also developed automatic rejection thresholds, and tested the software for robustness to camera type, image format, and resolution. Results: We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (\b{eta} = -9.81 (SE = 3.16), p < 0.05), in the temporal inferior zone (\b{eta} = -29.78 (SE = 8.32), p < 0.01), with the nasal/temporal ratio (\b{eta} = 0.88 (SE = 0.34), p < 0.05), and in the whole disc (\b{eta} = -8.22 (SE = 2.92), p < 0.05). Furthermore, pallor was significantly higher in the patient group. Lastly, we demonstrate the analysis to be robust to camera type, image format, and resolution. Conclusions: We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness. Translational relevance: We think our method will be useful for the identification, monitoring and progression of diseases characterized by disc pallor/optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.Comment: 44 pages, 20 figures, 7 tables, submitte

    Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review.

    Get PDF
    Glaucoma is a leading cause of irreversible vision impairment globally, and cases are continuously rising worldwide. Early detection is crucial, allowing timely intervention that can prevent further visual field loss. To detect glaucoma, examination of the optic nerve head via fundus imaging can be performed, at the center of which is the assessment of the optic cup and disc boundaries. Fundus imaging is non-invasive and low-cost; however, the image examination relies on subjective, time-consuming, and costly expert assessments. A timely question to ask is: "Can artificial intelligence mimic glaucoma assessments made by experts?". Specifically, can artificial intelligence automatically find the boundaries of the optic cup and disc (providing a so-called segmented fundus image) and then use the segmented image to identify glaucoma with high accuracy? We conducted a comprehensive review on artificial intelligence-enabled glaucoma detection frameworks that produce and use segmented fundus images and summarized the advantages and disadvantages of such frameworks. We identified 36 relevant papers from 2011-2021 and 2 main approaches: 1) logical rule-based frameworks, based on a set of rules; and 2) machine learning/statistical modelling based frameworks. We critically evaluated the state-of-art of the 2 approaches, identified gaps in the literature and pointed at areas for future research

    PallorMetrics:Software for Automatically Quantifying Optic Disc Pallor in Fundus Photographs, and Associations With Peripapillary RNFL Thickness

    Get PDF
    Purpose: We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness.Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (n = 45) and assessed how measurements compared with healthy controls (n = 46). We also developed automatic rejection thresholds and tested the software for robustness to camera type, image format, and resolution.Results: We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (β = -9.81; standard error [SE] = 3.16; P &lt; 0.05), in the temporal inferior zone (β = -29.78; SE = 8.32; P &lt; 0.01), with the nasal/temporal ratio (β = 0.88; SE = 0.34; P &lt; 0.05), and in the whole disc (β = -8.22; SE = 2.92; P &lt; 0.05). Furthermore, pallor was significantly higher in the patient group. Last, we demonstrate the analysis to be robust to camera type, image format, and resolution.Conclusions: We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness.Translational Relevance: We think our method will be useful for the identification, monitoring, and progression of diseases characterized by disc pallor and optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.</p
    corecore