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Abstract

Glaucoma is a leading cause of irreversible vision impairment globally, and cases are continuously
rising worldwide. Early detection is crucial, allowing timely intervention that can prevent further
visual field loss. To detect glaucoma, examination of the optic nerve head via fundus imaging can be
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performed, at the center of which is the assessment of the optic cup and disc boundaries. Fundus
imaging is non-invasive and low-cost; however, the image examination relies on subjective, time-
consuming, and costly expert assessments.

A timely question to ask is: “Can artificial intelligence mimic glaucoma assessments made by
experts?”. Specifically, can artificial intelligence automatically find the boundaries of the optic cup
and disc (providing a so-called segmented fundus image) and then use the segmented image to
identify glaucoma with high accuracy?

We conducted a comprehensive review on artificial intelligence-enabled glaucoma detection
frameworks that produce and use segmented fundus images and summarized the advantages and
disadvantages of such frameworks. We identified 36 relevant papers from 2011-2021 and 2 main
approaches: 1) logical rule-based frameworks, based on a set of rules; and 2) machine
learning/statistical modelling based frameworks. We critically evaluated the state-of-art of the 2
approaches, identified gaps in the literature and pointed at areas for future research.

Keywords
glaucoma, artificial intelligence, automatic detection, prediction, fundus images/imaging,
classification/discrimination, segment/segmented/segmentation

1. Introduction

Glaucoma is one of the leading causes of global vision impairment” and the second most common
cause of blindness globally (89). By 2040, it is estimated that 112 million individuals globally will have
the disease (93). With the ageing global population (89), there will be a corresponding increase in
glaucoma cases that will continuously challenge our resources worldwide (77). The global burden of
vision impairment and/or blindness from glaucoma is significantly associated with a decrease in
quality of life, physical functioning, and mental health (22). Although irreversible, early diagnosis of
glaucomatous neuropathy allows for treatment to be implemented that may slow or prevent
glaucoma progression and blindness.

Currently, in the United Kingdom (UK), glaucoma detection is opportunistic, most frequently
accomplished by optometrist assessment in the community (42). Around half of the glaucoma
patients in the community remain undiagnosed (16). A recent population-based study in Northern
Ireland suggests that the majority of people with glaucoma are undetected and two-thirds of
glaucoma patients within the study were unaware of having the disease (64).

Although a worldwide problem, the burden of glaucoma is higher within developing countries (30),
and the disease disproportionately affects African and Asian countries (79). Moreover, studies
indicate that more than 11.2 million individuals in India are affected by glaucoma, constituting
approximately one-fifth of the global burden of the disease (83). In the UK, hospital eye services
(HES) are the busiest outpatient service in the National Health System (NHS) and are responsible for
8.3% of all outpatient activity®. Glaucoma accounts for 25% of HES appointments. Individuals with,
or at risk of, glaucoma are detected by community optometrists and referred to HES, 15-20% of the
new referrals will have glaucoma and around 50% will be discharged at the first visit, costing the NHS
upwards of £75m/year (10).

Given this worldwide problem of glaucoma detection, the urgent question is how close we are to
having accurate artificial intelligence (Al)-enabled glaucoma detection (42) and whether such Al can
then be explained to the clinician and patient. The answer to this question is two-fold: we need to
understand the process of detecting glaucoma in clinical practice, and then we need to determine if
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artificial intelligence can accurately detect glaucoma while also providing key explanations,
mimicking the clinician’s reasoning.

The detection of glaucoma by a clinician

Glaucoma is a chronic progressive optic neuropathy in which changes in the structure of the optic
nerve head (ONH) (Figure 1a) and retinal nerve fibre layer (RNFL) are associated with visual defects.
Structural changes are manifested by a slow, yet progressive, narrowing of the neuroretinal rim,
indicating degeneration of retinal ganglion cells axons, and astrocytes of the optic nerve (13). To
evaluate the narrowing of the neuroretinal rim (NRR) the clinician needs to identify the boundary
contours of the cup and disc. Such contours then help when explaining to the patient the reasoning
behind the diagnosis, and thus help the patient to participate in the discussion and treatment
decision. Given the significance of patient involvement in the decisions regarding their care and the
importance of Al explainability, this review focuses on Al that provides optic cup and optic disc
contours.

Ratinad Vessels

Oone Dise
S/

Figure 1: Fundus photograph examples (a- left) with labels of the optic nerve head and (b) with
(Inferior-Superior-Nasal-Temporal) ISNT quadrants.

Glaucoma detection is a challenging and lengthy process, relying on multiple examinations and
clinical expertise. The National Institute for Health and Care Excellence (NICE) in the UK recommends
examination of the ONH via a technique called fundus imaging (22). Imaging modalities are key for
evaluating structural abnormalities in the ONH. Such structural abnormalities often precede the
development of visual field loss (90).

One method of fundus imaging is color images collected by fundus cameras (Figure 1).

Another fundus imaging technology is optical coherence tomography (OCT), which can provide 3-
dimensional information to aid glaucoma diagnosis. The interpretation of color fundus image versus
OCT is different, though both essentially evaluate the structure of ONH. OCT outputs provide
numerical and graphical representations of the peripapillary retinal nerve fibre layer compared to
age-matched normative data in an objective way. A report can be generated from this output
(dependent on the OCT platform used). This report assists clinicians in the interpretation and the
identification of glaucoma-related abnormalities thus OCT can require less clinical expertise than the
interpretation of a color optic disc image.

Fundus cameras are advantageous owing to their relatively low cost compared to their imaging
counterparts such as OCT and Heidelberg Retinal Tomography (HRT). Yet, they provide images that
are of suitable quality to detect abnormalities in the ONH for evaluating ocular health (95). Owing to
their cheaper cost, fundus cameras are readily available in a range of settings including rural
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community centers, local ophthalmologist offices, and hospitals. Although in recent years, OCT
imaging has become cheaper and more widely available to optometrists in economically stronger
countries. Low-cost portable fundus cameras have been developed that can be more readily utilized
for wider population-based screening of glaucoma in lower resource settings or isolated
communities.

Portable fundus cameras are becoming increasingly accessible and viable (11) even within
economically less fortunate countries. These recently developed smaller mobile cameras enable
high-quality imaging of the ONH at a considerably lower cost, providing a more cost-effective
alternative to tabletop devices (26). Potentially, portable fundus cameras can be used to identify
suspects in glaucoma screening programmes, outside of the hospital setting (communities or
optometry centers). Once an individual is suspected to have glaucoma based on the fundus imaging,
they must undergo a comprehensive glaucoma evaluation including an assessment of visual acuity,
IOP, gonioscopy and visual fields. Therefore, this review focuses on Al that utilizes fundus images.

Detecting glaucoma via Artificial Intelligence (Al)

Al is a computer system that can perform tasks that normally require human intelligence such as
glaucoma detection via examination of fundus images. Al methods are developed by applying
technical expertise (in data science, mathematics, and computing -- also known as algorithmic
expertise) to interrogate the data, which leads to producing fast and intelligent computer
algorithms. Often, but not always, human intelligence (such as knowledge of rim thinning in
glaucoma) is also applied in synergy with algorithmic intelligence. Al is an umbrella term that
encapsulates machine learning algorithms, which in turn include deep learning (DL) methods. In
recent years, we have seen a significant increase in the utilization and development of Al, alongside
momentous developments in technology €. Automated algorithms are already being used in some
clinics including ophthalmology (7) such as the FDA-approved Al-based device that detects diabetic
retinopathy °.

Technological advances mean that the creation of Al-enabled glaucoma detection methods via the
modality of fundus images is a realistic proposition (69). Several portable fundus cameras have been
developed; such devices are small, inexpensive and are becoming straightforward enough to be
operated by laypersons (48). A recent review on the use of telemedicine in glaucoma highlights that
machines that are less operator-dependent should give more objective results even when they are
operated by less experienced personnel at remote sites (57).

If Al-enabled glaucoma detection methods using fundus imaging could be deployed in screening
mechanisms, this could aid in reducing human error (e.g., observer bias and fatigue) and be used for
large-scale screening at a low cost. This could provide much-needed eye care services to remote
rural areas, particularly in nations where there is a scarcity of qualified, skilled, and competent
ophthalmologists (61). In the near future, automated image interpretation for screening, referral
decision-making, and patient monitoring is likely to play a crucial role in frontline eye care. Even in
resource-rich care settings such as the NHS in the UK, referral refinement with Al has the potential
to address the staggering outpatient appointment demand while reducing false positive referral
rates’.

What remains unclear is the full state of Al-enabled glaucoma detection, namely the frameworks
that utilize fundus cameras while providing the contours of the optic cup and disc. To understand
the potential application of Al-enabled glaucoma detection, we must first answer many questions
(i.e., how accurate are the Al methods, how suitable/appropriate are they, and how have they been
trained/tested/validated). Following this, we can then identify the next steps to further develop Al-
enabled glaucoma detection.
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There are two Al approaches for glaucoma detection

Al for glaucoma detection can be split into two approaches: one-step and two-step. In a one-step
approach, the Al detects glaucoma in a single step. The only way to do it is via deep learning black-
box approaches, also called end-to-end approaches. The two-step approach to glaucoma detection is
to proceed in two steps. In the first step, Al can be applied to find the optic cup and disc contours,
then a second step uses the information from the first step for the derivation of the automated
decision rule for glaucoma detection. One-step approaches do not find nor provide the contours of
the optic cup and optic disc (i.e., they do not provide segmentation).

This review solely focuses on two-step Al approaches for two primary reasons. Firstly, two-step Al
approaches may have advantages over the one-step approaches that are unknown to the Al
community at large. Secondly, reviews of solely two-step approaches are absent from the literature.
Previous reviews have already extensively covered one-step/end-to-end approaches see
(2,17,65,94). A detailed comparison of the two approaches is in Section 3.6.

Overview

Our key objectives are: (1) to outline and clarify the main Al terminology used with Al-enabled
glaucoma detection such that the review is accessible to ophthalmologists, and (2) to provide a
detailed overview of the state-of-art Al-enabled glaucoma detection methods that use segmented
fundus images - highlighting the two approaches used when using fundus imaging, and (3) to provide
a discussion on the progress of Al-enabled glaucoma detection methods and highlight areas that
require further work.

In the following sections, we provide a clinical and technical background and define the terminology
referred to throughout this review. Section 3 then defines the methods used for the literature
search and outlines the key information extracted from the reviewed papers. Section 4 explains the
methods employed in this review and Section 5 covers the results of the review. Lastly, Section 6
provides a discussion, conclusions, and future work recommendations.

2. Clinical terminology and brief background

2.1. Cup to disc ratio
The cup-to-disc ratio (CDR) is a universally acknowledged parameter for describing glaucomatous
neuropathy, obtained from assessment of the ONH. There are different variants of the CDR
parameter however, the primary two are the vertical cup-to-disc ratio (vCDR) and the area cup-to-
disc ratio ACDR.
The vCDR is defined as:

Vertical Cup Diameter

CDR =
v Vertical Disc Diameter

The ACDR is defined as:
Areaof Cu
ACDR = #
Area of Disc

Although well used in practice, the CDR parameter is limited in cases of genetically large or small
optic disc, large optic cup cases, and in cases where myopic ONH changes are present (66,21); in
such instances, the CDR can be misleading (41) and lead to errors in diagnosis. Other morphometric
features such as the rim-to-disc ratio (RDR) and horizontal cup-to-disc ratio (hCDR) can also be
considered. In contrast to the CDR, a decrease in the RDR indicates glaucomatous neuropathy. The
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ACDR provides a 2-D feature-based measurement allowing structural changes of the ONH to be
assessed.

2.2. Neuroretinal rim area ratio

The Neuroretinal Rim (NRR) is the area between the optic cup margin and the optic disc margin
which comprises retinal nerve fibre axons. When using fundus images, the NRR is the area left
behind when subtracting the optic cup from the disc. The NRR is divided into four quadrants:
inferior, superior, nasal, and temporal as shown in Figure 1b.

The NRR area (92) is calculated as:

NRR — Area in Inferior Quadrant + Area in Superior Quadrant

Area in Nasal Quadrant + Area in Temporal Quadrant

The four quadrants of the NRR are typically expected to satisfy the inferior-superior-nasal-temporal
(ISNT) rule (I>S>N>T) (66). Whilst the cup-to-disc ratio parameter focuses on the optic cup size with
respect to the optic disc, the ISNT rule focuses on the NRR width i.e., the area between the boundary
of the optic cup and disc (66). The ISNT rule follows that the inferior rim is thicker than the superior
rim, which is thicker than the nasal rim, which is thicker than the temporal rim in a healthy eye (24).
Any violation of the ISNT rule can be seen as a sign of glaucomatous neuropathy. However, this is
not always the case (i.e., a healthy NRR can violate the rule) (92). As such, the ISNT rule is not
recognized as a diagnostic test, but rather a clinical tool.

2.3. Disc Damage Likelihood Scale

The Disc Damage Likelihood Scale (DDLS) is a grading protocol that divides glaucomatous
progression into ten stages while accounting for optic disc size (88). The advantage of this method is
in higher inter-observer repeatability (90) and higher agreement with the gold standard (21) than
the vertical CDR. The DDLS method has proved to be time-consuming, requiring a detailed grading
protocol with a standard set of images for comparison purposes. Also, it necessitates further training
of clinicians.

3. Technical terminology and brief background
Within the Al community, many terms are used interchangeably; we define the key terminology
used throughout this review.

3.1. Fundus image segmentation

In medical image processing, image segmentation refers to the (typically automated) partitioning of
an image into multiple clinically meaningful segments (Figure 2). Fundus image segmentation is the
process of finding the visible boundaries (or “contours”) of the optic cup and disc. Manual image
segmentation can involve a trained expert, such as a clinician or grader, manually annotating the
boundary of the optic cup and disc. Whereas automatic image segmentation is accomplished by
mathematical algorithms. To date, there have been a large number of Al methods proposed for
automatic image segmentation of the ONH. Popular approaches include level-set-based algorithms,
threshold-based algorithms, and clustering-based algorithms (9,97). The resulting annotation of the
boundaries is what we call the segmented image.
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Figure 2 - Examples of the automatic optic cup and disc segmentation in fundus images centered on
the optic nerve head. The yellow line represents the optic cup boundary, and the blue line represents
the optic disc boundary.

3.2. Image features

In the Al community, the term “image feature” refers to a variable or parameter derived from an
image. Two types of image features can be extracted from fundus images: namely, clinically
interpretable features and abstract features.

Clinically interpretable features are features with clinical meaning (e.g., vCDR and NRR area). These
clinical features have been developed over many years by expert ophthalmologists and can be
intuitively explained to a patient. In contrast, we can also consider mathematically derived abstract
features. Such features may not be clinically interpretable as they are constructed via a
mathematical or statistical process.

3.3. Probability of glaucoma

In general, Al calculates the probability of glaucoma for an unseen new fundus image as a number
between 0 and 100% (e.g., 90%). This probability is interpreted as follows: given the training set that
Al used and the mathematical/statistical method that the Al is built on, the Al believes that the
chance of glaucoma is 90%, i.e., among the 10 images that look like the new image, 9 do have
glaucoma and 1 do not. The value of the probability of glaucoma should be calculated to reflect the
prevalence in the population of interest via e.g., Bayesian updating rule. If the probability provided
by Al is 50%, then the Al.is not certain if the new image is glaucomatous or not; however, if the
probability is 99%, this does not mean that Al is certain that it is glaucoma. The probability estimates
provided by Al (e.g., produced by softmax or by statistical predictive algorithms) need to be
calibrated to be clinically meaningful (see e.g., 96, 1), as well as uncertainty needs to be ascribed to
the probability estimates produced by Al models. For example, if the new image is not represented
well in the training dataset, then Al is not sufficiently trained to judge the new image, and therefore
it should be able to express its uncertainty’. The calculation of uncertainty of Al is a complex
problem and it is a current area of intensive research.

3.4. Image classification

We use the term “image classification” to refer to the automated process of determining the
category to which a given fundus image belongs e.g., healthy, or glaucomatous group (binary
classification); or healthy, suspected glaucoma or glaucoma group (multi-class classification). This
process is also referred to as image discrimination (23) or disease prediction. To achieve the
classification, Al can apply a threshold to the estimated probability of glaucoma, e.g., if the image’s
estimated probability is higher than the threshold, the image is classified as glaucoma. If Al is
uncertain in the calculated probability, then such uncertainty will propagate into the uncertainty of
the classification.
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3.5. Classifier

We use the term “classifier” to refer to a mathematical or statistical or machine learning method
used within the Al framework to estimate which disease category the patient belongs to
(glaucomatous, suspected glaucomatous or healthy). Popular classifiers are support vector machines
and logistic regression.

3.6. Al framework

We use the term “Al framework” to encapsulate the whole process of automatically classifying a
given fundus image into a group (glaucomatous, suspected glaucomatous or healthy). This process
can comprise many steps including (but not limited to) image segmentation, feature extraction, and
using the image features (via various methods) for discrimination of glaucomatous neuropathy. The
framework’s final step is to provide the classification output for a given image.

One-step Al framework. Some Al frameworks do not require and do not produce segmented
images. They learn a link between the fundus images and the disease status and then directly
provide their estimate of the disease group. To build such Al, a so-called end-to-end image
classification method is needed. Such computation can be enabled via DL algorithms (59) (e.g.,
convolution neural networks). This is possible due to their complex interior working architectures
with complex transformations across multiple layers.

Two-step Al framework. Other Al frameworks produce a segmented image as the first step. In this
step, the segmented image can provide clinically interpretable features (e.g., CDR ratio and NRR
area), or abstract features (e.g., texture and colour features). The second step then uses such
features and provides an estimate of the disease group. In general, these two-step frameworks have
increased interpretability as they have the potential to provide the clinician and patient with the
segmented image, which allows demonstration of the part of the image leading to the Al's output
for a patient (50) and facilitates further investigation. The concept of a two-step Al framework is not
new. One recent example is the work of De Fauw in 2018 (27) for diagnosis and referral of retinal
disease, however, their work does not include glaucoma.

One of the criteria by which one-step and two-step Al methods are compared is interpretability. This
is one of the key elements of building trust, especially in high stake scenarios such as disease
detection. Interpretability means that Al can explain its conclusion about a patient, i.e., what part of
the image was most crucial in the conclusion and why Al has provided the respective outputCF. This
is related to GDPR Article 15, which stipulates that individuals have the right to access their data®.
This includes an obligation for the controller to provide meaningful information about the logic
involved and the significance and envisaged consequences of processing the individual’s data via Al".
The principles outlined by the High-level expert group on Al appointed by the European Commission
(HLEG)I state that it should be possible to demand a suitable explanation of the Al system’s decision-
making process. Not only does this impact the patient but it also puts responsibility onto the
controller (i.e., the clinicians implementing the Al) to quantify and fully understand the Al to provide
such information to the requesting individuals. More discussion on desired Al properties can be
found in (80, ).

Advantages of two-step Al frameworks:

1) At the interface of the two steps, the boundaries of the optic disc and cup are provided. This
enables clinicians access to intermediate representation that illustrates which part of the rim is
narrowing and thus suggesting the presence of glaucoma (interpretability). This can be
integrated into clinical workflows and Al quality monitoring. This can be interrogated by human
experts if they want to see why a recommendation has been made. This means that clinicians
can remain in the process of making a diagnosis. Such knowledge is advantageous for patients
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too, as it shows the areas of narrowing of the optic rim and then this offers the possibility for a
patient to appeal the output of Al, as well as a possibility to participate in shaping Al design and
operation. All mentioned points are crucial for building trust. Additionally, there is a utility of
fundus images beyond the optic disc for glaucoma diagnosis (45).

2) Two-step frameworks may require smaller datasets for training than one-step frameworks that
utilize DL. This statement is supported by the following points. Firstly, the fact that two-step
methods may need less data can be explained by looking at the architecture of the Al. One-step
approaches that use a DL architecture learn via complex multi-level representation
transformations across many layers, with large numbers of parameters to estimate. These
transformations are non-linear and are not designed manually but learned via the training data.
That is, the network learns by examples, finding its own way of discerning between ground truth
labels (i.e., glaucoma vs healthy). As a result, they require vast amounts of data to learn such
patterns. Although in recent years we have seen a ‘rise of data’ there is still not an abundance of
high-quality accessible data within the field of glaucoma. This is even more problematic when
requiring data with high-quality annotations (ground truth) and a good sample of examples
(patients, cohorts, imaging devices etc.). This can be highlighted by the example of two
proposed works. The two-step framework for glaucoma detection by MacCormick and
coworkers (62) achieved an accuracy of AUROC 99.6% and 91.0%, in internal and external
validation respectively, while using approximately 300 images for training. Whilst a one-step DL
framework proposed by Li and coworkers (58) achieved comparable accuracy but required
30,000 images for training.

Secondly, the one-step DL approaches must address the issue of dealing with lots of redundancy
in the data, and a small set of labels assigned to the whole image mean that little ground-truth
information is made available. The use of the whole fundus image in DL methods means that the
methods have a large amount of data to handle, much of which may be redundant — with the
most important information appearing to lie in the boundaries of the ONH. Thirdly, in areas
outside of ophthalmology, it has also been observed that neural networks can be made more
data-efficient if they utilize contours (39).

Disadvantages of two-step Al frameworks:

1) They are prone to compound errors. This is due to the sequential nature of two-step frameworks
— it inherently gives rise to compounding errors. An error in the first stage of segmentation will
then transpire throughout the framework and could lead to errors in the second stage and
incorrect predictions. In model training, it is possible to use this as a tool for improvement. The
Al developer can evaluate the Al performance in isolation (i.e., segmentation and classification
performance). They can further explore any misclassifications that occur and work back to
deconstruct why these are happening (i.e., segmentation error) and implement methods to
improve upon this. One-step frameworks do not directly have the capacity to be interrogated in
such ways but are not at the same risk of compound errors.

2) They require more domain expertise and more time for technical work for Al model
development. Firstly, even though they need less training data, such training data need more
clinical annotations (i.e., annotations of the boundaries of cup and disc). Secondly, the clinical
knowledge needs to be elicited and then used to craft the Al model (e.g., knowledge about rim
thinning in glaucoma). Thirdly, the technical team needs to find ways to incorporate the
knowledge into the Al model, thus more time is needed for Al development. This all enables
increased interpretability, as well as lowers the need for vast amounts of training data (see
Advantages 1 and 2).

Further comments on two-step vs one-step Al frameworks for glaucoma detection:
1) We previously highlighted (Advantage 1) that two-step Al frameworks can be constructed to
facilitate explanation of the final decision, i.e., they are interpretable by design. Such
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frameworks are able to explain why they arrived at a conclusion that an eye has glaucoma. In
contrast, the one-step frameworks relying on black-box approaches, such as DL, do not provide
an explanation without post-hoc descriptive methodology; however, recently the Al community
is working on bringing interpretability to DL. This remains an ongoing and active research area.
The interpretability of DL is being researched in two ways. Firstly, there is a research effort to
make DL interpretable by design. Examples are in detecting bird species and car models (20), or
text classification (19). Such methods have not been implemented for glaucoma detection.
Secondly, there is an intention to develop a ‘post-hoc interpretability’ for DL as an additional
analysis. Here, one interprets a trained DL method by fitting explanations as to how it performed
the classification. This can be then visualized (i.e., saliency maps). One can find regions of the
image that led to the classification output (i.e., opening the black box). Yet, whilst such post-hoc
methods can aid an expert user to understand what data is most relevant to how the Al works, it
provides limited insight into how that information is used.

2) Two-step Al frameworks may be easier to generalize and are less prone to overfitting issues than
the one-step methods If Al has been ‘over-fit’ to specific training data, then the Al cannot be
used reliably to make conclusions on future data, i.e., it lacks generalizability. The problem of
overfitting can be mitigated to a degree for one-step frameworks that utilize DL with techniques
such as dropout, early stopping and regularization yet each technique has its drawbacks and
overfitting remains an issue in many approaches.

3) Two-step Al frameworks may be less computationally intensive than one-step Al frameworks
i.e., they need lower computational power. However, the computational intensity is (to some
extent) mitigated for DL via state-of-the-art computational algorithms and hardware.

3.7. Evaluating the performance of Al

Careful evaluation of Al is required to understand the Al’s performance capabilities; that is, how well
the Al agrees with the gold standard. By the “gold standard” (also referred to as ground truth), we
refer to the decision of a clinical expert on whether the eye has glaucoma or not. There is no single
measure that alone would be enough to evaluate the performance of Al. Hence, a combination of
measures is required to give a complete overview of the Al framework’s capabilities. In what follows
we briefly mention the most important measures for evaluating the performance of Al.

Confusion matrix. The confusion matrix (Table 1) is used to give an overall representation of the
performance of the Al's framework. Using this confusion matrix, key performance metrics are

derived.
Predicted Class
Negative (0) Positive (1)
Actual Class Neg?'five (0) True Negati.ve (Ty) False Pos.it.ive (Fp)
Positive (1) False Negative (Fy) True Positive (Tp)

Table 1: Confusion matrix

The true positives (Tp) are the glaucomatous observations that have been correctly classified,
whereas the true negatives (Ty) are the non-glaucomatous observations that are correctly classified
as non-glaucomatous. The false positives (Fp) are the non-glaucomatous observations that are
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incorrectly classified as glaucomatous, and the false negatives (Fy) are the glaucomatous
observations that are incorrectly classified as non-glaucomatous.

The accuracy metric is the proportion of correctly classified images. Sensitivity (aka true positive
rate) is the proportion of actual positive cases (i.e., glaucomatous) that are classified as positive.
Specificity (aka recall) is the proportion of actual negative cases (i.e., healthy) which are classified as
negative.

The positive predictive value (PPV) is the probability that an individual with a positive reference test
truly has the disease whilst the negative predictive value (NPV) is the probability that an individual
with a negative reference test truly does not have the disease.

Sensitivit Tp
ensitivity = ———
Y =T, ¥ Fy

Specificit Tn
ecificity = —————
p Y Ty + Fp

Tp + Ty
Accuracy =

Tp +Ty + Fp + Fy

Tp
Positive Predictive Value (PPV) = —————x 100
(Tp + Fp)

Ty

Negative Predictive Value (NPV) = ———
egative Predictive Value (NPV) T + Fr

X 100

False positives are mistakes that potentially could lead to unnecessary further testing/referrals.
Arguably false negatives are more serious in glaucoma as the disease is not identified and treated at
the earliest stage. The detection of glaucoma would then occur at later stages, resulting in advanced
and irreversible ONH damage and possible visual field loss, impacting the patient significantly. To
this end, an effective framework (with high sensitivity) for the detection of potential glaucomatous
subjects at the earliest stage is paramount.

Area under receiver operating characteristic curve (AUROC). A Receiver Operating Characteristic
(ROC) curve plots the true positive rate (sensitivity) vs the false positive rate (1 — specificity) at
all classification thresholds. The AUROC is defined as the area under the ROC curve. If we are
presented with a pair of eyes, one with glaucoma and one without glaucoma, then the AUROC
metric is interpreted as the probability of correctly distinguishing the glaucomatous eye from the
non-glaucomatous eye. An AUROC of 0.5 is the equivalent to the flip of a coin.

Internal and external evaluation of Al. Al methods are tested to compute the aforementioned
performance metrics (i.e., accuracy, sensitivity, AUROC etc.). Al must be evaluated on data that have
not been used within its training component. There are two methods for evaluating Al: internally
and externally. In internal evaluation, the dataset can be split into two partitions, one is used for
training and one for testing (e.g., 70:30 split). Hence, an image can either be in the training or testing
set, but not in both.

Another approach to internal evaluation is k-fold cross-validation. When using k-fold cross-
validation, the dataset is randomly split into k equally sized partitions; (k — 1) partitions are used
for training the classifier and the final partition is used for testing. This is repeated k times with the
performance metrics being retained each time. The final metric presented is the average of the
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k splits. Generally, the value of k is set to five or ten for optimal bias-variance trade-off (44). Such
evaluation approaches are called internal as all images come from the same source (i.e., the same
cohort), and hence it may not be sufficient for evaluating the generalizability of the Al.

Conversely, external evaluation consists of testing the framework on data from a different source
(then the data used for training). This could be a dataset acquired from a different cohort or device.
Whilst internal testing gives insight into the performance capabilities of the framework, external
testing is required as it provides an understanding of the generalizability of the framework with
unseen data from different sources.

3.8. Reporting guidelines for Al in healthcare

With the ongoing developments of Al for health applications, there has been an increase in
published guidelines for the reporting of the methods. The key information that should be reported
includes the imaging device, contextual study setting, detailed cohort information and data
processing methods (34). With the use of Al, further detail is required to be reported comprising the
technical aspects of the methods presented. Recently, new standards specific to reporting studies of
machine learning/Al interventions have been in development. This includes TRIPOD-ML, SPIRIT-AI
and CONSORT Al (34) under the EQUATOR initiative *.

4. Methods

We performed a comprehensive literature search, details of which can be found in the Method of
Literature Search section. A table was used to extract all relevant information from the selected
papers. For this review, we extracted information regarding the author, year of publication,
approach to classification, data used (sample size, availability of the data publicly, number of data
annotators, imaging device details), techniques used for segmentation, validation techniques
applied, performance metrics of the methods (accuracy, sensitivity, specificity and AUROC). The key
terms were agreed upon by a collection of professionals with a range of experiences. This included
mathematicians/statisticians and experienced clinicians. Two people reviewed titles and abstracts
(LC and GC) and any disagreements were reconciled via consulting with a third person (BW). Whilst
this review is primarily focused on assessing the classification of glaucoma following segmentation,
we do provide details about methods for segmentation as this is a key step in the pipeline and can
heavily influence classification results.

5. Results

5.1 Papers included

We identified a total of 1080 papers (Figure 3) to meet the keyword search (Section 7). After the
removal of 252 duplicates, papers were screened based on titles and abstracts. A total of 623 papers
were removed following title and abstract screening due to unsuitability for this review. The
remaining 205 papers were screened based on text. Of these, 169 papers were removed due to
unsuitability for this review, leaving 36. There were 3 main reasons papers were labelled as
unsuitable in this review (from most prevalent): (1) they proposed a one-step Al framework that did
not require any segmentation of the fundus images, (2) they focused purely on segmentation and
provided no framework for classification of glaucomatous optic neuropathy, (3) they did not present
a 2-step approach with fundus images. A total of 63 papers were identified in 2021, from the 21
papers collected for full-text reading, 5 papers were excluded due to not using segmentation, 4
excluded as they proposed no classification (only segmentation), 1 excluded due to using solely OCT
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and 1 excluded due to unclear reporting. The final number of papers that met eligibility criteria
(Section 7) for this review was 36.

Papers identified in

Papers identified in Papers identified in Papers identified in

Scopus (n = 289) PubMed (n = 189 ) We:’ﬂ"_';:*,"“ MEDLINE (n=173)
1 | 1 ]
1
Total papers
identified {(n= 1080)
Duplicate papers
(n= 252)
Total papers after
removing duplicates
(n=828)

Excluded based on

titles and abstracts
(n=623)

Full text papers
assessed for
eligibility (n= 205)
Excluded based on
full text reading
(n= 169}
Papers included
{n=36)
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Figure 3: Flow diagram of papers included within the review.

5.2 Characteristics of identified papers

We have highlighted two distinct approaches to the classification of glaucoma from segmented
images. We termed the first approach the logical rule-based framework due to the use of
straightforward threshold rules (IF-ELSE statements) based on clinically interpretable imaging
features. The second is machine learning/statistical modelling frameworks which exploit the imaging
features in a range of classification models/algorithms for glaucoma detection. In this review, 12
papers were identified as using the logical rule-based framework, whilst 24 papers used machine
learning/statistical modelling frameworks.

Simple

Detection Rule h
Optic Cup

\ Glaucoma OR Healthy

<~

Fundus
Image

Segmentation Feature Extraction

Glaucoma OR Healthy OR
Suspected Glaucoma

Optic Disc

Machine
Learning/Statistical
Framework

Figure 4: Pathways of frameworks for two-step Al-enabled glaucoma detection

5.3 Logical rule-based Al frameworks for glaucoma detection from segmented
images

We use the term logical rule-based frameworks to refer to frameworks that use a set of simple IF-
ELSE rules (Figure 4). For such methods to work, the optic cup and disc are first segmented, then
some clinically interpretable imaging features are obtained from the segmented image. Such
clinically interpretable imaging features can include variations of the CDR (i.e., vCDR ratio, ACDR and
RDR) and measurements from the NRR (i.e., NRR area, area in quadrants, ISNT rule compliance).
These features are then used in the framework via IF-ELSE formats for glaucoma classification as
presented in (Table 2). In the following text, we reflect on the key aspects of the reviewed papers
that apply a logical rule-based Al framework.
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Features Rule for - e s Testing Datasets
Paper Feature glaucoma Accuracy | Sensitivity | Specificity
(N) . data (N) (N)
classification
(BOZ'C'ZSS;'S etal, 1 ACDR >0.3 96.8% - - 200 1
(Dutta et al., 2014) 1 vCDR >0.75 90.0% - - 10 1
(Aga;‘gi';t al, 1 ACDR >0.3 90.0% - - 20 1
(Ah";gcl' :)t al. 1 VCDR >0.5 92.0% 93.0% 88.0% 100 1
(Dutta et al., 2018) 1 ACDR >0.26 83.0% - - 101 1
(S°°2rgal 8e)t al., 1 VCDR >0.7 97.0% | 96.5% 98.0% 215 1
(Mvoulana et al.,
2019) 1 ACDR >0.63 98.0% 100.0% 94.4% 51 1
0/, *
(Ong et al., 2020) 1 ACDR >0.5 ngc 82.0% 89.0% 133 1
vCDR vCDR>0.5
(Das et al., 2016b) 2 ;AS'\’\II?_ 94.0% 92.6% 94.5% 244 5
ISNT
violation
ACDR ISNT rule
violation
(Issac and Dutta, vCDR AND o o 9
2019) 3 VCDR > 0.6 93.0% 94.0% 96.0% 364 1
ISNT OR ACDR <
0.25
93% 92% 150
ACDR ACDR>0.4 (Private (Private (Private
(Vijapur and Kunte, 3 RDRO<R 06 ) Database) | Database) | Database) 2
2017) RDR OR
87% (HRF) | 87% (HRF) | 30 (HRF)
VRI VRI<0.2
1 ACDR >=0.3 - 82% 86%
(Neto et al., 2021) 1 vCDR >=0.5 - 89% 79% 660 3
1 HCDR >=0.5 - 82% 64%

Table 2: Details of the reviewed papers proposing logical rule-based Al frameworks. All papers considered two groups
(glaucoma vs healthy), except for Issac and Dutta (2019) and (Soorya. et al., 2018) whom both had three groups (healthy,
glaucoma or suspected glaucoma): if the features obtained from the fundus image did not meet the criteria for glaucoma or
healthy group, this was then classified as suspected. ( - represents information not provided).

Clinical features used by logical rule-based Al frameworks. The success of the logical rule-based
frameworks is highly dependent on the imaging features used. From the twelve papers identified,
nine of the papers used one feature, one paper combined two features, and two papers combined
three features for their proposed detection rule (Table 2). The most frequently used feature was the
ACDR which was used by seven different frameworks. Following this, the vCDR was used by six
frameworks, and a variation of the ISNT rule was exploited by two frameworks. The features of
vessel ratio index (VRI) and RDR were both used once in combination with other features.

Logical rule-based Al frameworks using one feature. Variants of the CDR parameter have proven to
be popular due to their clinical value, interpretability, and cheap computation from a segmented
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fundus image. However, some authors have criticized the use of a CDR feature alone, stating that
the feature is a limited and incomplete parameter for classifying glaucomatous neuropathy (3, 43,
62).

The vCDR was used alone in a detection rule by Dutta and coworkers (32) with a reported accuracy
of 90%. This framework was tested on a small sample of ten images thus, only one image was
incorrectly classified. The one incorrectly classified image displayed a vCDR of 0.6 which their rule
classified as healthy yet the ground truth from ophthalmologists marked the observation as
glaucomatous. Although a small study, this example highlights why using the vCDR alone can be
problematic. Clinically, it is known that healthy individuals with a large disc can display large vCDR
values, and conversely, glaucoma patients with a small disc can have small vCDR values". The authors
also recognized this pitfall and propose that future work should consider incorporating other
clinically interpretable features.

Three other reviewed papers considered the vCDR alone. Ahmad and coworkers obtained an
accuracy of 92%, sensitivity of 93%, and specificity of 88% (6). While Soorya and coworkers obtained
an accuracy of 97%, a sensitivity of 96.5%, and specificity of 98% (61). Both frameworks (61,6) only
tested their approach on a dataset acquired from one source which limits the conclusions that can
be made about the frameworks’ generalizability. Conversely, Netoc and coworkers proposed 3 rules
for glaucoma classification using the features of vCDR, hCDR and ACDR independently (71). They
found the optimal results when using the vCDR, this gave a sensitivity of 89% and a specificity of
79%. Thus, although vCDR may be a limited parameter when used independently, it is better than
the parameters of hCDR and ACDR in this case (71). Note that Neto and coworkers tested their
approach on a larger database of 660 images (Table 2).

Further work by Dutta and coworkers (31) proposed the use of the ACDR independently. The authors
stated that the parameter of the ACDR is more appropriate than the vCDR parameter for glaucoma
classification. They reasoned that the vCDR parameter assumes that the optic cup and disc are
virtually circular; thus, the parameter will not account for any shape irregularities that occur with
glaucoma neuropathy.

When using the ACDR alone, the reported accuracies from three papers ranged from 83% (31) to
90% (4) and 96.8% (14) (Table 2). Note that all three papers did not provide the metrics of sensitivity
or specificity and used only one dataset. Two other papers (68,73) also used the ACDR parameter
alone. Mvoulana and coworkers’ (68) analysis yielded an accuracy of 98%, sensitivity of 100% and
specificity of 94% and Ong and coworkers’ analysis (73) yielded a balanced accuracy of 86% and a
sensitivity and specificity of 82% and 89% respectively.

Logical rule-based frameworks using two or more features. Rather than using one feature alone,
Das and coworkers (25) proposed combining the vCDR with the ISNT rule for their detection rule.
They classified an image as ‘healthy’ if the vCDR < 0.5 and it satisfies the ISNT rule, otherwise, the
image was labelled as glaucomatous. Upon inspection of the framework’s misclassifications, they
determined that these occurred due to the segmentation step rather than the features used (25).
Thus, highlighting the importance of accurate segmentation methods in the first step of the
framework.

Vijapur and Kunte (98) used the 3 features of ACDR, rim-to-disc ratio, and vessel ratio index (Table
2). The authors cite that their detection rules were determined after consultations with
ophthalmologists to ensure they were clinically relevant and appropriate (98). Their framework
introduced the novel idea of segmenting blood vessels and accounting for this within glaucoma
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classification. However, further external testing is required to evaluate whether the vessel ratio
index feature is generalizable to images from other sources.

o Featu Accur | Sensiti | Specifi | AUR | Validatio
Paper Classifier | res Features Data . .
(N) acy vity city ocC n
Area of OC
& 0D,
(zahoor | o - dom ngII\DIE'RArea RIM-
and Fraz, 10 ! ONE & 95.3% | 96.3% | 95.3% | - -
2018) Forest HCDR, HRE
VvCDR, Area
of ISNT
regions (4)
(Deepika ACDR & 3
and statistical
Mahesw | SVM 4 features HRF 91.7% | 90.0% | 93.3% | - 60:40
ari, from blood
2018) vessels
ACDR, NRR
(Issacet | SVM Area &
al., (RBF 3 Blood Private 94.0% | 93.8% | 94.0% | - Loocv
2015) kernel) Vessel
Ratio
vCDR
(Lotanka ’
retal, | K-NN 4 ACDR, Private | 99.2% | 86.7% | 84.0% | - 10-Fold
RDAR & H- cv
2015) VGDR
ﬁrCeDaR'NRR DRISHTI | 96.7% 3/00'0 95.0% | -
(Pathan | SVM ] >
. Colour (4) 10-Fold
et al.,, (linear 10 & Texture oV
2021) kernel) () Private 90.0% | 93.5% | 91.2% | -
features
(Kausu ACDR &
etal, | MLP 2 | TeMurepivate | 97.7% | 98.0% | 97.4% |- | oFold
2018) Feature cv
(Energy)
(Krishna | SVM
netal, (RBF 1 vCDR DRISHTI | - - - - 50:50
2020) kernel)
(Agarwal | SVM
etal., (RBF 2 QSER& Private 90.0% 3/00'0 80.0% | - 70:30
2015) kernel) ’
VvCDR & DRIVE 92.5% | 83.3% | 94.1% | -
RDR DIARET
94.4% | 75.0% | 96.3% | -
(Akram Spatial DB1 ’ ? ?
etal,, M- 10 | Features  DRIONS- | o5 oo | 86.7% | 94.7% | - 70:30
2015) Mediods (5) DB
Spectral HEI MED | 86.7% | 84.2% | 87.1% | -
Features MESSID
89.0% | 84.0% | 94.4% | -
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HRF 91.1% | 93.3% | 90.0% | -
i':;;o 90.8% | 85.7% | 92.9% | -
70:30 &
100
(MacCor ORIGA - 96.6% | 99% ?/9'7 bootstra
. (o]
mick et LME 24 pCD,R (24 pped
al., CDR’s) samples
o AU R R DR Y B
ONE % N
(Narasim
hanand | SVM
Vijayarek | (linear 2 ACDR&. Private 95.0% | - - - 70:30
ISNT Ratio
ha, kernel)
2011)
vCDR,
ACDR,
(Mukherj | SVM dCDR, 5-Fold
eeetal., | (linear 8 notch Private 87.0% | 86.4% | 90.0% | - oV
2019) kernel) factor, S&I
Distance,
ISNT rule.
(
Karkuzha
. VvCDR, ISNT
iand fecgonn |3 | Ratiog | DRisam | 1000 | 1000 11000 0.0
Manime DOO % % %
galai,
2017)
vCDR, ISNT
(Kang et | SVM fecr?r;’\
al., (RBF 8 arei ’ Private 85.1% | 82.0% | 88.3% | - 60:40
202 k I !
020) ernel) distance
from OD
VCDR, RDR,
(Khalil et | SVM ;UF’Shape Glauco 10-Fold
al., (RBF 62 texture/int | maDB 94% 96% 92% - oV
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ensity
features
(Raja ACDR, NRR
and Area, BVR 0
Ramana DLRNL 6 & Texture HRF 89.0% | - - - -
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Geometric
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features
e P e e R
(contrast, |\ AGGLE | 90% |90% |86% |-
dissimilarit
DES-MI Y,
(Zufira et | (Dynamic homogenei
al., Ensembl | 7 ty, energy, 5-fold CV
2021) e correlation
Method) Jangular | e | 91% | 90% | s9% |-
second
moment)
& ACDR.
Simple RNFLD . 96.1% 95.6% 98.1
rule on presence, Private - % 80:20
(Xu et RNFLD MCDR
al., then 3 (mean cup
2021) SVM to disc . 98.3 | External
(linear ratio) and Private 98.4% | 94.1% % Testing
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Perceptr
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Network
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Homogene
ity
Contrast
Correlation
Standard
deviation
disc

Mean disc
Entropy
disc
Energy disc
Standard
deviation
cup

Mean cup
(Singh et Entropy

al., MLP 20 cup DRIONS ;5'82 ;8'59 98.6% | - 70:30
2021) Energy cup

Radius disc
Area disc
Radius cup
Area cup
Cup-to-disc
ratio
Inferior
region area
Superior
region area
Nasal
region area
Temporal
region area

pCDR (24 0.99 )
Linear CDR’s), ORIGA 0.989 | 0.974 7 50:50

(Adithya | e ACDR & 2
etal, Effects 27 variance 0.96 | External
2021) DHRISTI | 0.947 | 0.923 - ) .

Model parameter 9 Testing

s
XGB RIMONE
(Extreme CDRat10 | V3, 93.6 | 5-Fold

1 3% | - -
Gradient 0 locations DRISHTI 88.3% % cv

Boost) GS

(Afolabi
etal,,
2021)

Table 3: Details of the reviewed papers proposing machine learning/statistical modelling-based Al
frameworks. Twenty papers considered binary classification (glaucoma vs healthy). Four papers
(Khalil et al., 2017), (Perdomo et al., 2018), (Yunitasari et al., 2021) and (Zufira et al., 2021) proposed
three classes (glaucoma, suspect glaucoma and healthy). Krishnan et al.,2020 used only F1 score as a
quality of classification metric, which was 91%.
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Three clinically interpretable imaging features: vCDR ratio, ACDR & ISNT rule compliance were used
by Issac and Dutta (46), the authors used a logical rule presented in a hierarchical IF-ELSE format
(Table 2). This framework resulted in an accuracy of 93%, sensitivity of 94%, and specificity of 96%
(46). In frameworks when rules are used in a hierarchical format such as this, it is important to note
which features are first in the chain. While it is widely used in practice, the ISNT rule is shown to be
less reliable than the vCDR parameter; thus, more errors could occur by applying the ISNT rule first
(76).

Das and coworkers proposed the use of vertical cup-to-disc ratio in combination with the ISNT rule
(25), the method was tested on four publicly available datasets and one private dataset. This
framework resulted in an accuracy of 94%, sensitivity of 92.6%, and specificity of 94.5% (25).
Following this, Issac and Dutta used the ACDR parameter with the vCDR parameter and the ISNT
rule, yielding an accuracy of 93%, sensitivity of 94%, and specificity of 96% (46). Finally, the paper by
Vijapur and Kunte used the ACDR with the RDR parameter and vessel ratio index (98). They obtained
a sensitivity of 93% and specificity of 92%; the accuracy of the framework was not provided (98).

5.4. Machine learning/statistical modelling — based Al frameworks for
glaucoma detection from the segmented image

The machine learning or statistical modelling—based Al frameworks differ from the logical rule-based
Al frameworks as they implement a mathematically complex classifier to perform the classification
of glaucoma. Alike to the logical rule-based Al frameworks, they can make use of clinically
interpretable features extracted from a segmented fundus image, but different from the logical rule-
based Al frameworks, they can also create and utilize abstract features and exploit these within
machine learning or statistical modelling classifiers. The following section presents the findings of
the 24 papers identified in this review that implement a machine learning or statistical modelling-
based Al framework.

Table 3: Details of the reviewed papers proposing machine learning/statistical modelling-based Al
frameworks. Twenty papers considered binary classification (glaucoma vs healthy). Four papers
(Khalil et al., 2017), (Perdomo et al., 2018), (Yunitasari et al., 2021) and (Zufira et al., 2021) proposed
three classes (glaucoma, suspect glaucoma and healthy). Krishnan et al.,2020 used only F1 score as a
quality of classification metric, which was 91%.

5.4.1. Machine learning/statistical modelling — based Al classifiers and their reported
performance

The machine learning/statistical modelling frameworks differed from one another by the type of
classifiers they implemented (Table 3). Support vector machines (SVM'’s) were the most popular
classifier, being used in 11 out of 17 papers. The clustering methods of M-Mediods and K-nearest
neighbours (K-NN) were used by one paper each and the ensemble classifiers of Random Forest (RF),
dynamic ensembling and XGBoost were all proposed once. Additionally, two papers used Linear
Mixed Effects (LME) modelling. The remaining frameworks proposed a variant of a neural network
(NN) for classification. Note that, Table 3 only presents the optimal classifier used in the
frameworks. That is, many papers propose a range of classification models/algorithms and present
the classifier which worked optimally. The type of optimal classier also depends on the dataset used.
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Support Vector Machine Classifiers. A total of 11 studies used support vector machine classifiers,
and two different kernel functions were selected within these. The radial basis function (RBF) kernel
was used by five frameworks and the linear kernel was used by four frameworks. From the papers
using the RBF kernel, Issac and coworkers (47) obtained an accuracy of 94%, sensitivity of 100%, and
specificity of 90%. Krishnan and coworkers (56) only provided the F1 score as a metric, which was
91%. The framework proposed by Agarwal and coworkers obtained an accuracy of 90%, sensitivity of
100% and specificity of 80% (5); while the framework by Khalil and coworkers combined two support
vector machines with RBF kernels and achieved an accuracy of 92.9%, sensitivity of 87.5% and
specificity 90.84% (52). Khalil and coworkers found significant improvement in classification
capabilities was achieved by combining the outputs of the support vector machine classifiers and
considering a range of structural and textural features. A more recent study by Kang and coworkers
resulted in an accuracy of 85.06%, sensitivity of 81.95% and specificity of 88.28% (49).

From the four papers that used support vector machine classifiers with linear kernels, Narasimhan
and Vijayarekha only provided the metric of accuracy which was 95% (70). Mukherjee and coworkers
obtained an accuracy of 87%, sensitivity of 86.4% and specificity of 90% (66). More recently, Pathan
and coworkers achieved an accuracy of 96.66%, sensitivity of 100% and specificity of 95% with the
publicly available DRISHTI database but on external testing with a private database, this reduced to
an accuracy of 90%, sensitivity of 93.47% and specificity of 91.2% (60). Xu and coworkers proposed a
linear kernel SVM in combination with a decision rule (99). Firstly, if RNFLD were present this was
marked as glaucoma. If not, then the SVM was applied for the decision output. This novel method
resulted in a sensitivity and specificity of 96.1% and 95.6% respectively. Furthermore, Xu and
coworkers implemented external testing; this achieved the metrics of 98.4% sensitivity and 94.1%
specificity; indicating the generalizability of their adopted approach. Deepika and Maheswari did not
specify the kernel used, this framework yielded an accuracy of 91.67%, sensitivity of 90% and
specificity of 93.3% (21). Likewise, Yunitasari and coworkers did not specify the kernel used; their
proposed framework achieved an accuracy of 95%, sensitivity of 91.4% and specificity of 95.6%
(100).

Clustering classifiers. Clustering methods were used by two frameworks. The k-nearest neighbours’
algorithm (K-NN) was proposed by Lotankar and coworkers, achieving an accuracy of 99.2%,
sensitivity of 86.7% and specificity of 84% (60). The framework of Akram and coworkers used a
clustering method of M-Medoids (8). They proposed that there is variation in the number and
distribution of the samples within the two classes (healthy & glaucomatous) and via employing
multivariate m-modelling and classification, they could handle multimodal distribution of samples
within the two classification groups (8). This method was tested on five datasets; the accuracy across
the datasets ranged from 86.7 — 94.4 %, sensitivity from 75 — 93.3% and specificity from 87.1 —
97.1% (8).

Random Forest classifier. A Random Forest classifier was proposed by Zahoor and Fraz (101). This
method resulted in an accuracy of 95.3%, sensitivity of 96.31% and specificity of 95.33%. However,
the authors state the use of the publicly available High-Resolution Fundus Image (HRF) database but
removed nine of the total 36 fundus images without explanation.

XGBoost classifier. Afolabi and coworkers proposed an XGBoost classifier resulting in an accuracy of
88.3% and AUC of 93.6% via 5-fold cross-validation (3).

Dynamic ensemble method. Zulfira and coworkers implemented a dynamic ensemble classifier,
they used three publicly available datasets independently; the accuracy ranged from 90-91%,
sensitivity from 86-90% and specificity from 86-89% (103). Their choice of a dynamic ensemble
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classifier was to handle the imbalanced datasets (i.e., different numbers of images for the three
groups: healthy, mild glaucoma and severe glaucoma).

Linear mixed-effects statistical modelling. A linear mixed-effects (LME) modelling approach was
used by two papers (62,55). This framework was originally proposed by MacCormick and coworkers
and yielded an AUROC of 99.7%, sensitivity of 100% and specificity of 98.3% on internal testing. The
proposed framework then employed external validation using the publicly available RIM-ONE V3
dataset, the AUROC obtained was 91% (62). A disadvantage of such an approach is in requiring the
segmented image of healthy eyes to follow a statistical model with a plausible number of
parameters. This is not always possible, however, in the case of glaucoma, this was a suitable
approach. The authors determined that the contours of the optic cup and disc appeared to be two-
centered ellipses in healthy eyes and additionally, they included a technique to account for each eye
displaying different disc sizes — all of which were captured in the statistical model. Using this
information, the classification of glaucoma was then based on a deviation of the contours from the
model of healthy eyes.

This framework was then improved by Adithya and coworkers who incorporated further relevant
parameters (ACDR and group variance) to imp