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Abstract  
Glaucoma is a leading cause of irreversible vision impairment globally, and cases are continuously 
rising worldwide. Early detection is crucial, allowing timely intervention that can prevent further 
visual field loss. To detect glaucoma, examination of the optic nerve head via fundus imaging can be 

                  



2 | P a g e  
 
 

performed, at the center of which is the assessment of the optic cup and disc boundaries. Fundus 
imaging is non-invasive and low-cost; however, the image examination relies on subjective, time-
consuming, and costly expert assessments.   
 
A timely question to ask is: “Can artificial intelligence mimic glaucoma assessments made by 
experts?”. Specifically, can artificial intelligence automatically find the boundaries of the optic cup 
and disc (providing a so-called segmented fundus image) and then use the segmented image to 
identify glaucoma with high accuracy?  
 
We conducted a comprehensive review on artificial intelligence-enabled glaucoma detection 
frameworks that produce and use segmented fundus images and summarized the advantages and 
disadvantages of such frameworks. We identified 36 relevant papers from 2011-2021 and 2 main 
approaches: 1) logical rule-based frameworks, based on a set of rules; and 2) machine 
learning/statistical modelling based frameworks. We critically evaluated the state-of-art of the 2 
approaches, identified gaps in the literature and pointed at areas for future research.  
 
Keywords  
glaucoma, artificial intelligence, automatic detection, prediction, fundus images/imaging, 
classification/discrimination, segment/segmented/segmentation 
 

1. Introduction  
 
Glaucoma is one of the leading causes of global vision impairmentA and the second most common 
cause of blindness globally (89). By 2040, it is estimated that 112 million individuals globally will have 
the disease (93). With the ageing global population (89), there will be a corresponding increase in 
glaucoma cases that will continuously challenge our resources worldwide (77). The global burden of 
vision impairment and/or blindness from glaucoma is significantly associated with a decrease in 
quality of life, physical functioning, and mental health (22).  Although irreversible, early diagnosis of 
glaucomatous neuropathy allows for treatment to be implemented that may slow or prevent 
glaucoma progression and blindness.  
 
Currently, in the United Kingdom (UK), glaucoma detection is opportunistic, most frequently 
accomplished by optometrist assessment in the community (42). Around half of the glaucoma 
patients in the community remain undiagnosed (16). A recent population-based study in Northern 
Ireland suggests that the majority of people with glaucoma are undetected and two-thirds of 
glaucoma patients within the study were unaware of having the disease (64).  
 
Although a worldwide problem, the burden of glaucoma is higher within developing countries (30), 
and the disease disproportionately affects African and Asian countries (79). Moreover, studies 
indicate that more than 11.2 million individuals in India are affected by glaucoma, constituting 
approximately one-fifth of the global burden of the disease (83). In the UK, hospital eye services 
(HES) are the busiest outpatient service in the National Health System (NHS) and are responsible for 
8.3% of all outpatient activityB. Glaucoma accounts for 25% of HES appointments. Individuals with, 
or at risk of, glaucoma are detected by community optometrists and referred to HES, 15-20% of the 
new referrals will have glaucoma and around 50% will be discharged at the first visit, costing the NHS 
upwards of £75m/year (10).  
 
Given this worldwide problem of glaucoma detection, the urgent question is how close we are to 
having accurate artificial intelligence (AI)-enabled glaucoma detection (42) and whether such AI can 
then be explained to the clinician and patient.  The answer to this question is two-fold: we need to 
understand the process of detecting glaucoma in clinical practice, and then we need to determine if 
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artificial intelligence can accurately detect glaucoma while also providing key explanations, 
mimicking the clinician’s reasoning.  
 
The detection of glaucoma by a clinician 
Glaucoma is a chronic progressive optic neuropathy in which changes in the structure of the optic 
nerve head (ONH) (Figure 1a) and retinal nerve fibre layer (RNFL) are associated with visual defects.  
Structural changes are manifested by a slow, yet progressive, narrowing of the neuroretinal rim, 
indicating degeneration of retinal ganglion cells axons, and astrocytes of the optic nerve (13). To 
evaluate the narrowing of the neuroretinal rim (NRR) the clinician needs to identify the boundary 
contours of the cup and disc.  Such contours then help when explaining to the patient the reasoning 
behind the diagnosis, and thus help the patient to participate in the discussion and treatment 
decision. Given the significance of patient involvement in the decisions regarding their care and the 
importance of AI explainability, this review focuses on AI that provides optic cup and optic disc 
contours. 
 

 

Figure 1: Fundus photograph examples (a- left) with labels of the optic nerve head and (b) with 
(Inferior-Superior-Nasal-Temporal) ISNT quadrants.  

Glaucoma detection is a challenging and lengthy process, relying on multiple examinations and 
clinical expertise. The National Institute for Health and Care Excellence (NICE) in the UK recommends 
examination of the ONH via a technique called fundus imaging (22). Imaging modalities are key for 
evaluating structural abnormalities in the ONH. Such structural abnormalities often precede the 
development of visual field loss (90).  
 
One method of fundus imaging is color images collected by fundus cameras (Figure 1). 
Another fundus imaging technology is optical coherence tomography (OCT), which can provide 3-
dimensional information to aid glaucoma diagnosis. The interpretation of color fundus image versus 
OCT is different, though both essentially evaluate the structure of ONH. OCT outputs provide 
numerical and graphical representations of the peripapillary retinal nerve fibre layer compared to 
age-matched normative data in an objective way. A report can be generated from this output 
(dependent on the OCT platform used). This report assists clinicians in the interpretation and the 
identification of glaucoma-related abnormalities thus OCT can require less clinical expertise than the 
interpretation of a color optic disc image.  
 
Fundus cameras are advantageous owing to their relatively low cost compared to their imaging 
counterparts such as OCT and Heidelberg Retinal Tomography (HRT). Yet, they provide images that 
are of suitable quality to detect abnormalities in the ONH for evaluating ocular health (95). Owing to 
their cheaper cost, fundus cameras are readily available in a range of settings including rural 
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community centers, local ophthalmologist offices, and hospitals. Although in recent years, OCT 
imaging has become cheaper and more widely available to optometrists in economically stronger 
countries. Low-cost portable fundus cameras have been developed that can be more readily utilized 
for wider population-based screening of glaucoma in lower resource settings or isolated 
communities.    
 
Portable fundus cameras are becoming increasingly accessible and viable (11) even within 
economically less fortunate countries. These recently developed smaller mobile cameras enable 
high-quality imaging of the ONH at a considerably lower cost, providing a more cost-effective 
alternative to tabletop devices (26). Potentially, portable fundus cameras can be used to identify 
suspects in glaucoma screening programmes, outside of the hospital setting (communities or 
optometry centers). Once an individual is suspected to have glaucoma based on the fundus imaging, 
they must undergo a comprehensive glaucoma evaluation including an assessment of visual acuity, 
IOP, gonioscopy and visual fields. Therefore, this review focuses on AI that utilizes fundus images.   
 
Detecting glaucoma via Artificial Intelligence (AI)  
AI is a computer system that can perform tasks that normally require human intelligence such as 
glaucoma detection via examination of fundus images. AI methods are developed by applying 
technical expertise (in data science, mathematics, and computing -- also known as algorithmic 
expertise) to interrogate the data, which leads to producing fast and intelligent computer 
algorithms. Often, but not always, human intelligence (such as knowledge of rim thinning in 
glaucoma) is also applied in synergy with algorithmic intelligence. AI is an umbrella term that 
encapsulates machine learning algorithms, which in turn include deep learning (DL) methods. In 
recent years, we have seen a significant increase in the utilization and development of AI, alongside 
momentous developments in technology C. Automated algorithms are already being used in some 
clinics including ophthalmology (7) such as the FDA-approved AI-based device that detects diabetic 
retinopathy D.  
 
Technological advances mean that the creation of AI-enabled glaucoma detection methods via the 
modality of fundus images is a realistic proposition (69). Several portable fundus cameras have been 
developed; such devices are small, inexpensive and are becoming straightforward enough to be 
operated by laypersons (48). A recent review on the use of telemedicine in glaucoma highlights that 
machines that are less operator-dependent should give more objective results even when they are 
operated by less experienced personnel at remote sites (57).  
 
If AI-enabled glaucoma detection methods using fundus imaging could be deployed in screening 
mechanisms, this could aid in reducing human error (e.g., observer bias and fatigue) and be used for 
large-scale screening at a low cost. This could provide much-needed eye care services to remote 
rural areas, particularly in nations where there is a scarcity of qualified, skilled, and competent 
ophthalmologists (61). In the near future, automated image interpretation for screening, referral 
decision-making, and patient monitoring is likely to play a crucial role in frontline eye care. Even in 
resource-rich care settings such as the NHS in the UK, referral refinement with AI has the potential 
to address the staggering outpatient appointment demand while reducing false positive referral 
ratesE. 
 
What remains unclear is the full state of AI-enabled glaucoma detection, namely the frameworks 
that utilize fundus cameras while providing the contours of the optic cup and disc. To understand 
the potential application of AI-enabled glaucoma detection, we must first answer many questions 
(i.e., how accurate are the AI methods, how suitable/appropriate are they, and how have they been 
trained/tested/validated). Following this, we can then identify the next steps to further develop AI-
enabled glaucoma detection.  
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There are two AI approaches for glaucoma detection 
AI for glaucoma detection can be split into two approaches: one-step and two-step. In a one-step 
approach, the AI detects glaucoma in a single step. The only way to do it is via deep learning black-
box approaches, also called end-to-end approaches. The two-step approach to glaucoma detection is 
to proceed in two steps. In the first step, AI can be applied to find the optic cup and disc contours, 
then a second step uses the information from the first step for the derivation of the automated 
decision rule for glaucoma detection. One-step approaches do not find nor provide the contours of 
the optic cup and optic disc (i.e., they do not provide segmentation).  
 
This review solely focuses on two-step AI approaches for two primary reasons. Firstly, two-step AI 
approaches may have advantages over the one-step approaches that are unknown to the AI 
community at large. Secondly, reviews of solely two-step approaches are absent from the literature. 
Previous reviews have already extensively covered one-step/end-to-end approaches see 
(2,17,65,94). A detailed comparison of the two approaches is in Section 3.6.  
 
Overview 
 
Our key objectives are: (1) to outline and clarify the main AI terminology used with AI-enabled 
glaucoma detection such that the review is accessible to ophthalmologists, and (2) to provide a 
detailed overview of the state-of-art AI-enabled glaucoma detection methods that use segmented 
fundus images - highlighting the two approaches used when using fundus imaging, and (3) to provide 
a discussion on the progress of AI-enabled glaucoma detection methods and highlight areas that 
require further work.   
 
In the following sections, we provide a clinical and technical background and define the terminology 
referred to throughout this review. Section 3 then defines the methods used for the literature 
search and outlines the key information extracted from the reviewed papers. Section 4 explains the 
methods employed in this review and Section 5 covers the results of the review. Lastly, Section 6 
provides a discussion, conclusions, and future work recommendations.  
 

2. Clinical terminology and brief background 
 

2.1. Cup to disc ratio 
The cup-to-disc ratio (CDR) is a universally acknowledged parameter for describing glaucomatous 
neuropathy, obtained from assessment of the ONH. There are different variants of the CDR 
parameter however, the primary two are the vertical cup-to-disc ratio (vCDR) and the area cup-to-
disc ratio ACDR.  
The vCDR is defined as:  

     
                     

                       
  

The ACDR is defined as: 

     
           

            
 

 
Although well used in practice, the CDR parameter is limited in cases of genetically large or small 
optic disc, large optic cup cases, and in cases where myopic ONH changes are present (66,21); in 
such instances, the CDR can be misleading (41) and lead to errors in diagnosis. Other morphometric 
features such as the rim-to-disc ratio (RDR) and horizontal cup-to-disc ratio (hCDR) can also be 
considered. In contrast to the CDR, a decrease in the RDR indicates glaucomatous neuropathy. The 
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ACDR provides a 2-D feature-based measurement allowing structural changes of the ONH to be 
assessed.  
 

2.2. Neuroretinal rim area ratio 
The Neuroretinal Rim (NRR) is the area between the optic cup margin and the optic disc margin 
which comprises retinal nerve fibre axons. When using fundus images, the NRR is the area left 
behind when subtracting the optic cup from the disc. The NRR is divided into four quadrants: 
inferior, superior, nasal, and temporal as shown in Figure 1b.  
 
The NRR area (92) is calculated as: 
 

    
                                                   

                                                  
 

 
The four quadrants of the NRR are typically expected to satisfy the inferior-superior-nasal-temporal 
(ISNT) rule (I>S>N>T) (66). Whilst the cup-to-disc ratio parameter focuses on the optic cup size with 
respect to the optic disc, the ISNT rule focuses on the NRR width i.e., the area between the boundary 
of the optic cup and disc (66). The ISNT rule follows that the inferior rim is thicker than the superior 
rim, which is thicker than the nasal rim, which is thicker than the temporal rim in a healthy eye (24). 
Any violation of the ISNT rule can be seen as a sign of glaucomatous neuropathy. However, this is 
not always the case (i.e., a healthy NRR can violate the rule) (92). As such, the ISNT rule is not 
recognized as a diagnostic test, but rather a clinical tool.  
 

2.3. Disc Damage Likelihood Scale 
The Disc Damage Likelihood Scale (DDLS) is a grading protocol that divides glaucomatous 
progression into ten stages while accounting for optic disc size (88). The advantage of this method is 
in higher inter-observer repeatability (90) and higher agreement with the gold standard (21) than 
the vertical CDR. The DDLS method has proved to be time-consuming, requiring a detailed grading 
protocol with a standard set of images for comparison purposes. Also, it necessitates further training 
of clinicians. 
 

3. Technical terminology and brief background  
Within the AI community, many terms are used interchangeably; we define the key terminology 
used throughout this review.  
 

3.1. Fundus image segmentation 
In medical image processing, image segmentation refers to the (typically automated) partitioning of 
an image into multiple clinically meaningful segments (Figure 2). Fundus image segmentation is the 
process of finding the visible boundaries (or “contours”) of the optic cup and disc. Manual image 
segmentation can involve a trained expert, such as a clinician or grader, manually annotating the 
boundary of the optic cup and disc. Whereas automatic image segmentation is accomplished by 
mathematical algorithms. To date, there have been a large number of AI methods proposed for 
automatic image segmentation of the ONH. Popular approaches include level-set-based algorithms, 
threshold-based algorithms, and clustering-based algorithms (9,97). The resulting annotation of the 
boundaries is what we call the segmented image. 
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Figure 2 - Examples of the automatic optic cup and disc segmentation in fundus images centered on 
the optic nerve head. The yellow line represents the optic cup boundary, and the blue line represents 
the optic disc boundary.  

 

3.2. Image features 
In the AI community, the term “image feature” refers to a variable or parameter derived from an 
image. Two types of image features can be extracted from fundus images: namely, clinically 
interpretable features and abstract features.  
 
Clinically interpretable features are features with clinical meaning (e.g., vCDR and NRR area). These 
clinical features have been developed over many years by expert ophthalmologists and can be 
intuitively explained to a patient. In contrast, we can also consider mathematically derived abstract 
features. Such features may not be clinically interpretable as they are constructed via a 
mathematical or statistical process.  
 

3.3. Probability of glaucoma 
In general, AI calculates the probability of glaucoma for an unseen new fundus image as a number 
between 0 and 100% (e.g., 90%). This probability is interpreted as follows: given the training set that 
AI used and the mathematical/statistical method that the AI is built on, the AI believes that the 
chance of glaucoma is 90%, i.e., among the 10 images that look like the new image, 9 do have 
glaucoma and 1 do not. The value of the probability of glaucoma should be calculated to reflect the 
prevalence in the population of interest via e.g., Bayesian updating rule. If the probability provided 
by AI is 50%, then the AI is not certain if the new image is glaucomatous or not; however, if the 
probability is 99%, this does not mean that AI is certain that it is glaucoma. The probability estimates 
provided by AI (e.g., produced by softmax or by statistical predictive algorithms) need to be 
calibrated to be clinically meaningful (see e.g., 96, 1), as well as uncertainty needs to be ascribed to 
the probability estimates produced by AI models. For example, if the new image is not represented 
well in the training dataset, then AI is not sufficiently trained to judge the new image, and therefore 
it should be able to express its uncertaintyF. The calculation of uncertainty of AI is a complex 
problem and it is a current area of intensive research.  
. 

3.4. Image classification 
We use the term “image classification” to refer to the automated process of determining the 
category to which a given fundus image belongs e.g., healthy, or glaucomatous group (binary 
classification); or healthy, suspected glaucoma or glaucoma group (multi-class classification). This 
process is also referred to as image discrimination (23) or disease prediction. To achieve the 
classification, AI can apply a threshold to the estimated probability of glaucoma, e.g., if the image’s 
estimated probability is higher than the threshold, the image is classified as glaucoma. If AI is 
uncertain in the calculated probability, then such uncertainty will propagate into the uncertainty of 
the classification. 
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3.5. Classifier 
We use the term “classifier” to refer to a mathematical or statistical or machine learning method 
used within the AI framework to estimate which disease category the patient belongs to 
(glaucomatous, suspected glaucomatous or healthy). Popular classifiers are support vector machines 
and logistic regression. 
 

3.6. AI framework 
We use the term “AI framework” to encapsulate the whole process of automatically classifying a 
given fundus image into a group (glaucomatous, suspected glaucomatous or healthy). This process 
can comprise many steps including (but not limited to) image segmentation, feature extraction, and 
using the image features (via various methods) for discrimination of glaucomatous neuropathy. The 
framework’s final step is to provide the classification output for a given image.  
 
One-step AI framework. Some AI frameworks do not require and do not produce segmented 
images. They learn a link between the fundus images and the disease status and then directly 
provide their estimate of the disease group. To build such AI, a so-called end-to-end image 
classification method is needed. Such computation can be enabled via DL algorithms (59) (e.g., 
convolution neural networks). This is possible due to their complex interior working architectures 
with complex transformations across multiple layers.  
 
Two-step AI framework. Other AI frameworks produce a segmented image as the first step. In this 
step, the segmented image can provide clinically interpretable features (e.g., CDR ratio and NRR 
area), or abstract features (e.g., texture and colour features). The second step then uses such 
features and provides an estimate of the disease group.  In general, these two-step frameworks have 
increased interpretability as they have the potential to provide the clinician and patient with the 
segmented image, which allows demonstration of the part of the image leading to the AI’s output 
for a patient (50) and facilitates further investigation. The concept of a two-step AI framework is not 
new. One recent example is the work of De Fauw in 2018 (27) for diagnosis and referral of retinal 
disease, however, their work does not include glaucoma. 
 
One of the criteria by which one-step and two-step AI methods are compared is interpretability. This 
is one of the key elements of building trust, especially in high stake scenarios such as disease 
detection. Interpretability means that AI can explain its conclusion about a patient, i.e., what part of 
the image was most crucial in the conclusion and why AI has provided the respective outputCF.  This 
is related to GDPR Article 15, which stipulates that individuals have the right to access their dataG. 
This includes an obligation for the controller to provide meaningful information about the logic 
involved and the significance and envisaged consequences of processing the individual’s data via AIH. 
The principles outlined by the High-level expert group on AI appointed by the European Commission 

(HLEG)I state that it should be possible to demand a suitable explanation of the AI system’s decision-
making process. Not only does this impact the patient but it also puts responsibility onto the 
controller (i.e., the clinicians implementing the AI) to quantify and fully understand the AI to provide 
such information to the requesting individuals. More discussion on desired AI properties can be 
found in (80, F,I,J ).  
 
Advantages of two-step AI frameworks: 
1) At the interface of the two steps, the boundaries of the optic disc and cup are provided. This 

enables clinicians access to intermediate representation that illustrates which part of the rim is 
narrowing and thus suggesting the presence of glaucoma (interpretability). This can be 
integrated into clinical workflows and AI quality monitoring. This can be interrogated by human 
experts if they want to see why a recommendation has been made. This means that clinicians 
can remain in the process of making a diagnosis. Such knowledge is advantageous for patients 
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too, as it shows the areas of narrowing of the optic rim and then this offers the possibility for a 
patient to appeal the output of AI, as well as a possibility to participate in shaping AI design and 
operation. All mentioned points are crucial for building trust. Additionally, there is a utility of 
fundus images beyond the optic disc for glaucoma diagnosis (45). 

2) Two-step frameworks may require smaller datasets for training than one-step frameworks that 
utilize DL. This statement is supported by the following points. Firstly, the fact that two-step 
methods may need less data can be explained by looking at the architecture of the AI. One-step 
approaches that use a DL architecture learn via complex multi-level representation 
transformations across many layers, with large numbers of parameters to estimate. These 
transformations are non-linear and are not designed manually but learned via the training data. 
That is, the network learns by examples, finding its own way of discerning between ground truth 
labels (i.e., glaucoma vs healthy). As a result, they require vast amounts of data to learn such 
patterns. Although in recent years we have seen a ‘rise of data’ there is still not an abundance of 
high-quality accessible data within the field of glaucoma. This is even more problematic when 
requiring data with high-quality annotations (ground truth) and a good sample of examples 
(patients, cohorts, imaging devices etc.).  This can be highlighted by the example of two 
proposed works. The two-step framework for glaucoma detection by MacCormick and 
coworkers (62) achieved an accuracy of AUROC 99.6% and 91.0%, in internal and external 
validation respectively, while using approximately 300 images for training. Whilst a one-step DL 
framework proposed by Li and coworkers (58) achieved comparable accuracy but required 
30,000 images for training.  
Secondly, the one-step DL approaches must address the issue of dealing with lots of redundancy 
in the data, and a small set of labels assigned to the whole image mean that little ground-truth 
information is made available. The use of the whole fundus image in DL methods means that the 
methods have a large amount of data to handle, much of which may be redundant – with the 
most important information appearing to lie in the boundaries of the ONH. Thirdly, in areas 
outside of ophthalmology, it has also been observed that neural networks can be made more 
data-efficient if they utilize contours (39).  

 
Disadvantages of two-step AI frameworks:  
1) They are prone to compound errors. This is due to the sequential nature of two-step frameworks 

– it inherently gives rise to compounding errors. An error in the first stage of segmentation will 
then transpire throughout the framework and could lead to errors in the second stage and 
incorrect predictions. In model training, it is possible to use this as a tool for improvement. The 
AI developer can evaluate the AI performance in isolation (i.e., segmentation and classification 
performance). They can further explore any misclassifications that occur and work back to 
deconstruct why these are happening (i.e., segmentation error) and implement methods to 
improve upon this. One-step frameworks do not directly have the capacity to be interrogated in 
such ways but are not at the same risk of compound errors.  

2) They require more domain expertise and more time for technical work for AI model 
development. Firstly, even though they need less training data, such training data need more 
clinical annotations (i.e., annotations of the boundaries of cup and disc). Secondly, the clinical 
knowledge needs to be elicited and then used to craft the AI model (e.g., knowledge about rim 
thinning in glaucoma). Thirdly, the technical team needs to find ways to incorporate the 
knowledge into the AI model, thus more time is needed for AI development. This all enables 
increased interpretability, as well as lowers the need for vast amounts of training data (see 
Advantages 1 and 2). 

 
Further comments on two-step vs one-step AI frameworks for glaucoma detection: 
1) We previously highlighted (Advantage 1) that two-step AI frameworks can be constructed to 

facilitate explanation of the final decision, i.e., they are interpretable by design. Such 
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frameworks are able to explain why they arrived at a conclusion that an eye has glaucoma. In 
contrast, the one-step frameworks relying on black-box approaches, such as DL, do not provide 
an explanation without post-hoc descriptive methodology; however, recently the AI community 
is working on bringing interpretability to DL. This remains an ongoing and active research area. 
The interpretability of DL is being researched in two ways. Firstly, there is a research effort to 
make DL interpretable by design. Examples are in detecting bird species and car models (20), or 
text classification (19). Such methods have not been implemented for glaucoma detection. 
Secondly, there is an intention to develop a ‘post-hoc interpretability’ for DL as an additional 
analysis. Here, one interprets a trained DL method by fitting explanations as to how it performed 
the classification. This can be then visualized (i.e., saliency maps). One can find regions of the 
image that led to the classification output (i.e., opening the black box).  Yet, whilst such post-hoc 
methods can aid an expert user to understand what data is most relevant to how the AI works, it 
provides limited insight into how that information is used. 

2) Two-step AI frameworks may be easier to generalize and are less prone to overfitting issues than 
the one-step methods If AI has been ‘over-fit’ to specific training data, then the AI cannot be 
used reliably to make conclusions on future data, i.e., it lacks generalizability. The problem of 
overfitting can be mitigated to a degree for one-step frameworks that utilize DL with techniques 
such as dropout, early stopping and regularization yet each technique has its drawbacks and 
overfitting remains an issue in many approaches. 

3) Two-step AI frameworks may be less computationally intensive than one-step AI frameworks 
i.e., they need lower computational power. However, the computational intensity is (to some 
extent) mitigated for DL via state-of-the-art computational algorithms and hardware.  

 

3.7. Evaluating the performance of AI  
 
Careful evaluation of AI is required to understand the AI’s performance capabilities; that is, how well 
the AI agrees with the gold standard. By the “gold standard” (also referred to as ground truth), we 
refer to the decision of a clinical expert on whether the eye has glaucoma or not. There is no single 
measure that alone would be enough to evaluate the performance of AI. Hence, a combination of 
measures is required to give a complete overview of the AI framework’s capabilities. In what follows 
we briefly mention the most important measures for evaluating the performance of AI.  
 
Confusion matrix. The confusion matrix (Table 1) is used to give an overall representation of the 
performance of the AI’s framework. Using this confusion matrix, key performance metrics are 
derived.  
 

  Predicted Class 

  Negative (0) Positive (1) 

Actual Class 
Negative (0) True Negative (  ) False Positive (  ) 

Positive (1) False Negative (  ) True Positive (  ) 

Table 1: Confusion matrix 

 
 

 
 
The true positives (  ) are the glaucomatous observations that have been correctly classified, 
whereas the true negatives (  ) are the non-glaucomatous observations that are correctly classified 
as non-glaucomatous. The false positives (  ) are the non-glaucomatous observations that are 
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incorrectly classified as glaucomatous, and the false negatives (  ) are the glaucomatous 
observations that are incorrectly classified as non-glaucomatous.  
 
The accuracy metric is the proportion of correctly classified images. Sensitivity (aka true positive 
rate) is the proportion of actual positive cases (i.e., glaucomatous) that are classified as positive. 
Specificity (aka recall) is the proportion of actual negative cases (i.e., healthy) which are classified as 
negative.  
 
The positive predictive value (PPV) is the probability that an individual with a positive reference test 
truly has the disease whilst the negative predictive value (NPV) is the probability that an individual 
with a negative reference test truly does not have the disease.  
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False positives are mistakes that potentially could lead to unnecessary further testing/referrals. 
Arguably false negatives are more serious in glaucoma as the disease is not identified and treated at 
the earliest stage. The detection of glaucoma would then occur at later stages, resulting in advanced 
and irreversible ONH damage and possible visual field loss, impacting the patient significantly. To 
this end, an effective framework (with high sensitivity) for the detection of potential glaucomatous 
subjects at the earliest stage is paramount.   
 
Area under receiver operating characteristic curve (AUROC). A Receiver Operating Characteristic 
(ROC) curve plots the true positive rate (           ) vs the false positive rate (             ) at 
all classification thresholds. The AUROC is defined as the area under the ROC curve. If we are 
presented with a pair of eyes, one with glaucoma and one without glaucoma, then the AUROC 
metric is interpreted as the probability of correctly distinguishing the glaucomatous eye from the 
non-glaucomatous eye. An AUROC of 0.5 is the equivalent to the flip of a coin.  
 
Internal and external evaluation of AI.  AI methods are tested to compute the aforementioned 
performance metrics (i.e., accuracy, sensitivity, AUROC etc.). AI must be evaluated on data that have 
not been used within its training component. There are two methods for evaluating AI: internally 
and externally. In internal evaluation, the dataset can be split into two partitions, one is used for 
training and one for testing (e.g., 70:30 split). Hence, an image can either be in the training or testing 
set, but not in both.  
Another approach to internal evaluation is k-fold cross-validation. When using k-fold cross-
validation, the dataset is randomly split into   equally sized partitions; (   ) partitions are used 
for training the classifier and the final partition is used for testing. This is repeated   times with the 
performance metrics being retained each time. The final metric presented is the average of the 
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  splits. Generally, the value of k is set to five or ten for optimal bias-variance trade-off (44). Such 
evaluation approaches are called internal as all images come from the same source (i.e., the same 
cohort), and hence it may not be sufficient for evaluating the generalizability of the AI.   
 
Conversely, external evaluation consists of testing the framework on data from a different source 
(then the data used for training). This could be a dataset acquired from a different cohort or device. 
Whilst internal testing gives insight into the performance capabilities of the framework, external 
testing is required as it provides an understanding of the generalizability of the framework with 
unseen data from different sources.  
 

3.8. Reporting guidelines for AI in healthcare 
 
With the ongoing developments of AI for health applications, there has been an increase in 
published guidelines for the reporting of the methods. The key information that should be reported 
includes the imaging device, contextual study setting, detailed cohort information and data 
processing methods (34). With the use of AI, further detail is required to be reported comprising the 
technical aspects of the methods presented. Recently, new standards specific to reporting studies of 
machine learning/AI interventions have been in development. This includes TRIPOD-ML, SPIRIT-AI 
and CONSORT AI (34) under the EQUATOR initiative K. 
 

4. Methods  
 
We performed a comprehensive literature search, details of which can be found in the Method of 
Literature Search section. A table was used to extract all relevant information from the selected 
papers. For this review, we extracted information regarding the author, year of publication, 
approach to classification, data used (sample size, availability of the data publicly, number of data 
annotators, imaging device details), techniques used for segmentation, validation techniques 
applied, performance metrics of the methods (accuracy, sensitivity, specificity and AUROC). The key 
terms were agreed upon by a collection of professionals with a range of experiences. This included 
mathematicians/statisticians and experienced clinicians. Two people reviewed titles and abstracts 
(LC and GC) and any disagreements were reconciled via consulting with a third person (BW). Whilst 
this review is primarily focused on assessing the classification of glaucoma following segmentation, 
we do provide details about methods for segmentation as this is a key step in the pipeline and can 
heavily influence classification results.  
 

5. Results 
 

5.1 Papers included 
 
We identified a total of 1080 papers (Figure 3) to meet the keyword search (Section 7). After the 
removal of 252 duplicates, papers were screened based on titles and abstracts. A total of 623 papers 
were removed following title and abstract screening due to unsuitability for this review. The 
remaining 205 papers were screened based on text. Of these, 169 papers were removed due to 
unsuitability for this review, leaving 36. There were 3 main reasons papers were labelled as 
unsuitable in this review (from most prevalent): (1) they proposed a one-step AI framework that did 
not require any segmentation of the fundus images, (2) they focused purely on segmentation and 
provided no framework for classification of glaucomatous optic neuropathy, (3) they did not present 
a 2-step approach with fundus images. A total of 63 papers were identified in 2021, from the 21 
papers collected for full-text reading, 5 papers were excluded due to not using segmentation, 4 
excluded as they proposed no classification (only segmentation), 1 excluded due to using solely OCT 
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and 1 excluded due to unclear reporting. The final number of papers that met eligibility criteria 
(Section 7) for this review was 36.  
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Figure 3: Flow diagram of papers included within the review. 

 

5.2 Characteristics of identified papers 
 
We have highlighted two distinct approaches to the classification of glaucoma from segmented 
images. We termed the first approach the logical rule-based framework due to the use of 
straightforward threshold rules (IF-ELSE statements) based on clinically interpretable imaging 
features. The second is machine learning/statistical modelling frameworks which exploit the imaging 
features in a range of classification models/algorithms for glaucoma detection. In this review, 12 
papers were identified as using the logical rule-based framework, whilst 24 papers used machine 
learning/statistical modelling frameworks.  
 

 

Figure 4: Pathways of frameworks for two-step AI-enabled glaucoma detection 

 

5.3 Logical rule-based AI frameworks for glaucoma detection from segmented 
images 
 
We use the term logical rule-based frameworks to refer to frameworks that use a set of simple IF-
ELSE rules (Figure 4). For such methods to work, the optic cup and disc are first segmented, then 
some clinically interpretable imaging features are obtained from the segmented image. Such 
clinically interpretable imaging features can include variations of the CDR (i.e., vCDR ratio, ACDR and 
RDR) and measurements from the NRR (i.e., NRR area, area in quadrants, ISNT rule compliance). 
These features are then used in the framework via IF-ELSE formats for glaucoma classification as 
presented in (Table 2). In the following text, we reflect on the key aspects of the reviewed papers 
that apply a logical rule-based AI framework.  
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Table 2: Details of the reviewed papers proposing logical rule-based AI frameworks. All papers considered two groups 

(glaucoma vs healthy), except for Issac and Dutta (2019) and (Soorya. et al., 2018) whom both had three groups (healthy, 

glaucoma or suspected glaucoma): if the features obtained from the fundus image did not meet the criteria for glaucoma or 

healthy group, this was then classified as suspected. ( - represents information not provided). 

 

 
 

 
Clinical features used by logical rule-based AI frameworks. The success of the logical rule-based 
frameworks is highly dependent on the imaging features used. From the twelve papers identified, 
nine of the papers used one feature, one paper combined two features, and two papers combined 
three features for their proposed detection rule (Table 2). The most frequently used feature was the 
ACDR which was used by seven different frameworks. Following this, the vCDR was used by six 
frameworks, and a variation of the ISNT rule was exploited by two frameworks. The features of 
vessel ratio index (VRI) and RDR were both used once in combination with other features.  
 
Logical rule-based AI frameworks using one feature. Variants of the CDR parameter have proven to 
be popular due to their clinical value, interpretability, and cheap computation from a segmented 

Paper 
Features 

(N) 
Feature 

Rule for 
glaucoma 

classification 
Accuracy Sensitivity Specificity 

Testing 
data (N) 

Datasets 
(N) 

(Božid-Štulid et al., 
2020) 

1 ACDR >0.3 96.8% - - 200 1 

(Dutta et al., 2014) 1 vCDR >0.75 90.0% - - 10 1 

(Agarwal et al., 
2015) 

1 ACDR >0.3 90.0% - - 20 1 

(Ahmad et al., 
2016) 

1 vCDR >0.5 92.0% 93.0% 88.0% 100 1 

(Dutta et al., 2018) 1 ACDR >0.26 83.0% - - 101 1 

(Soorya et al., 
2018) 

1 vCDR >0.7 97.0% 96.5% 98.0% 215 1 

(Mvoulana et al., 
2019) 

1 ACDR >0.63 98.0% 100.0% 94.4% 51 1 

(Ong et al., 2020) 1 ACDR >0.5 
86% * 
BAC 

82.0% 89.0% 133 1 

(Das et al., 2016b) 2 

vCDR vCDR>0.5  
AND 
ISNT 

violation 

94.0% 92.6% 94.5% 244 5 
ISNT 

(Issac and Dutta, 
2019) 

3 

ACDR ISNT rule 
violation 

AND 
vCDR > 0.6 
OR ACDR < 

0.25 

93.0% 94.0% 96.0% 364 1 vCDR 

ISNT 

(Vijapur and Kunte, 
2017) 

3 

ACDR ACDR > 0.4 
OR 

RDR <  0.6 
OR 

VRI < 0.2 

- 

93% 
(Private 

Database) 

92% 
(Private 

Database) 

150 
(Private 

Database) 2 
 

 RDR 
87% (HRF) 87% (HRF) 30 (HRF) 

VRI 

(Neto et al., 2021) 

1 ACDR >=0.3 - 82% 86% 

660 3 1 vCDR >= 0.5 - 89% 79% 

1 HCDR          >=0.5 - 82% 64% 
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fundus image. However, some authors have criticized the use of a CDR feature alone, stating that 
the feature is a limited and incomplete parameter for classifying glaucomatous neuropathy (3, 43, 
62).   
 
The vCDR was used alone in a detection rule by Dutta and coworkers (32) with a reported accuracy 
of 90%. This framework was tested on a small sample of ten images thus, only one image was 
incorrectly classified. The one incorrectly classified image displayed a vCDR of 0.6 which their rule 
classified as healthy yet the ground truth from ophthalmologists marked the observation as 
glaucomatous. Although a small study, this example highlights why using the vCDR alone can be 
problematic. Clinically, it is known that healthy individuals with a large disc can display large vCDR 
values, and conversely, glaucoma patients with a small disc can have small vCDR valuesL. The authors 
also recognized this pitfall and propose that future work should consider incorporating other 
clinically interpretable features.  
 
Three other reviewed papers considered the vCDR alone. Ahmad and coworkers obtained an 
accuracy of 92%, sensitivity of 93%, and specificity of 88% (6). While Soorya and coworkers obtained 
an accuracy of 97%, a sensitivity of 96.5%, and specificity of 98% (61). Both frameworks (61,6) only 
tested their approach on a dataset acquired from one source which limits the conclusions that can 
be made about the frameworks’ generalizability. Conversely, Neto and coworkers proposed 3 rules 
for glaucoma classification using the features of vCDR, hCDR and ACDR independently (71). They 
found the optimal results when using the vCDR, this gave a sensitivity of 89% and a specificity of 
79%. Thus, although vCDR may be a limited parameter when used independently, it is better than 
the parameters of hCDR and ACDR in this case (71). Note that Neto and coworkers tested their 
approach on a larger database of 660 images (Table 2).  
 
Further work by Dutta and coworkers (31) proposed the use of the ACDR independently. The authors 
stated that the parameter of the ACDR is more appropriate than the vCDR parameter for glaucoma 
classification. They reasoned that the vCDR parameter assumes that the optic cup and disc are 
virtually circular; thus, the parameter will not account for any shape irregularities that occur with 
glaucoma neuropathy.  
 
When using the ACDR alone, the reported accuracies from three papers ranged from 83% (31) to 
90% (4) and 96.8% (14) (Table 2). Note that all three papers did not provide the metrics of sensitivity 
or specificity and used only one dataset. Two other papers (68,73) also used the ACDR parameter 
alone. Mvoulana and coworkers’ (68) analysis yielded an accuracy of 98%, sensitivity of 100% and 
specificity of 94% and Ong and coworkers’ analysis (73) yielded a balanced accuracy of 86% and a 
sensitivity and specificity of 82% and 89% respectively.  
 
Logical rule-based frameworks using two or more features. Rather than using one feature alone, 
Das and coworkers (25) proposed combining the vCDR with the ISNT rule for their detection rule. 
They classified an image as ‘healthy’ if the vCDR < 0.5 and it satisfies the ISNT rule, otherwise, the 
image was labelled as glaucomatous. Upon inspection of the framework’s misclassifications, they 
determined that these occurred due to the segmentation step rather than the features used (25). 
Thus, highlighting the importance of accurate segmentation methods in the first step of the 
framework.   
 
Vijapur and Kunte (98) used the 3 features of ACDR, rim-to-disc ratio, and vessel ratio index (Table 
2). The authors cite that their detection rules were determined after consultations with 
ophthalmologists to ensure they were clinically relevant and appropriate (98). Their framework 
introduced the novel idea of segmenting blood vessels and accounting for this within glaucoma 
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classification. However, further external testing is required to evaluate whether the vessel ratio 
index feature is generalizable to images from other sources.  

Paper Classifier 
Featu
res 
(N) 

Features Data 
Accur
acy 

Sensiti
vity 

Specifi
city 

AUR
OC 

Validatio
n 

(Zahoor 
and Fraz, 
2018) 

Random 
Forest 

10 

Area of OC 
& OD, 
ACDR, Area 
of NRR, 
HCDR, 
vCDR, Area 
of ISNT 
regions (4) 

RIM-
ONE & 
HRF 

95.3% 96.3% 95.3% - - 

(Deepika 
and 
Mahesw
ari, 
2018) 

SVM 4 

ACDR & 3 
statistical 
features 
from blood 
vessels 

HRF 91.7% 90.0% 93.3% - 60:40 

(Issac et 
al., 
2015) 

SVM 
(RBF 
kernel) 

3 

ACDR, NRR 
Area & 
Blood 
Vessel 
Ratio 

Private 94.0% 93.8% 94.0% - LOOCV 

(Lotanka
r et al., 
2015) 

K-NN 4 

vCDR, 
ACDR, 
RDAR & H-
VCDR 

Private 99.2% 86.7% 84.0% - 
10-Fold 
CV 

(Pathan 
et al., 
2021) 

SVM 
(linear 
kernel) 

10 

ACDR, NRR 
Area, 
Colour (4) 
& Texture 
(4)  
features 

DRISHTI 96.7% 
100.0
% 

95.0% - 

10-Fold 
CV 

Private 90.0% 93.5% 91.2% - 

(Kausu 
et al., 
2018) 

MLP 2 

ACDR & 
Texture 
Feature 
(Energy) 

Private 97.7% 98.0% 97.1% - 
10-Fold 
CV 

(Krishna
n et al., 
2020) 

SVM 
(RBF 
kernel) 

1 vCDR DRISHTI - - - - 50:50 

(Agarwal 
et al., 
2015) 

SVM 
(RBF 
kernel) 

2 
ACDR & 
RDR 

Private 90.0% 
100.0
% 

80.0% - 70:30 

(Akram 
et al., 
2015) 

M-
Mediods 

10 

vCDR & 
RDR 
Spatial 
Features 
(5) 
Spectral 
Features 
(3) 

DRIVE 92.5% 83.3% 94.1% - 

70:30 
 

DIARET
DB1 

94.4% 75.0% 96.3% - 

DRIONS-
DB 

93.6% 86.7% 94.7% - 

HEI MED 86.7% 84.2% 87.1% - 

MESSID
OR 

89.0% 84.0% 94.4% - 
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HRF 91.1% 93.3% 90.0% - 

Glauco
maDB 

90.8% 85.7% 92.9% - 

(MacCor
mick et 
al., 
2019) 

LME 24 
pCDR (24 
CDR’s) 

ORIGA - 96.6% 99% 
99.7
% 

70:30 & 
100 
bootstra
pped 
samples 

RIM-
ONE 

- - - 
91.0
% 

External 
Validatio
n 

(Narasim
han and 
Vijayarek
ha, 
2011) 

SVM 
(linear 
kernel) 

2 
ACDR & 
ISNT Ratio 

Private 95.0% - - - 70:30 

(Mukherj
ee et al., 
2019) 

SVM 
(linear 
kernel) 

8 

vCDR, 
ACDR, 
dCDR, 
notch 
factor, S&I 
Distance, 
ISNT rule. 

Private 87.0% 86.4% 90.0% - 
5-Fold 
CV 

( 
Karkuzha
li and 
Manime
galai, 
2017) 

FFBPNN 3 
vCDR, ISNT 
Ratio & 
DOO 

DRISHTI 
100.0
% 

100.0
% 

100.0
% 

- 50:50 

(Kang et 
al., 
2020) 

SVM 
(RBF 
kernel) 

8 

vCDR, ISNT 
score, 
length, 
area, 
distance 
from OD 

Private 85.1% 82.0% 88.3% - 60:40 

(Khalil et 
al., 
2017) 

SVM 
(RBF 
kernel) 

62 

vCDR, RDR, 
Cup shape 
& 
texture/int
ensity 
features 

Glauco
maDB 

94% 96% 92% - 
10-Fold 
CV 

(Raja 
and 
Ramana
n, 2019) 

DLRNL 6 

ACDR, NRR 
Area, BVR 
& Texture 
features 

HRF 89.0% - - - - 

(Perdom
o et al., 
2018) 

MLP 19 

Geometric 
(2), Ratio 
(7), 
Distances 
(4) & Axis 
(4) 

RIM-
ONE & 
DR 

89.3% 89.5% 88.9% 
82.0
% 

70:30 

                  



19 | P a g e  
 
 

features 

(Zufira et 
al., 
2021) 

DES-MI 
(Dynamic 
Ensembl
e 
Method) 

7 

6 Features 
from GLCM   
(contrast, 
dissimilarit
y, 
homogenei
ty, energy, 
correlation
, angular 
second 
moment)  
& ACDR.  
 

RIM-
ONE 

91% 86% 87% - 

5-fold CV 

KAGGLE 90% 90% 86% - 

MESSID
OR 

91% 90% 89% - 

(Xu et 
al., 
2021) 

Simple 
rule on 
RNFLD 
then 
SVM 
(linear 
kernel) 

3 

RNFLD 
presence, 
MCDR 
(mean cup 
to disc 
ratio) and 
ISNT score 

Private   - 
96.1%  
 
 

95.6%  
 

98.1
%  
 

80:20 

Private  98.4% 94.1% 
98.3
% 

External 
Testing 

(Mansou
r et al., 
2021) 

Perceptr
on based 
Convolut
ional 
Multilaye
r Neural 
Network 

2 
vCDR & 
Holistic 
Features 

DRISHTI 
 

- - - 
97.1
% 

-  

(Yunitasa
ri et al., 
2021) 

SVM 7 

vCDR, 
optical disc 
area, 
optical cup 
area, 
optical disc 
perimeter, 
optical cup 
perimeter, 
optical disc 
circularity 
and optical 
cup 
circularity. 
 

Private 
and 
DRISHTI 
 

95% 
91.37
% 

95.86
% 

- 
 

50:50 
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Table 3: Details of the reviewed papers proposing machine learning/statistical modelling-based AI 
frameworks. Twenty papers considered binary classification (glaucoma vs healthy). Four papers 
(Khalil et al., 2017), (Perdomo et al., 2018), (Yunitasari et al., 2021) and  (Zufira et al., 2021) proposed 
three classes (glaucoma, suspect glaucoma and healthy). Krishnan et al.,2020 used only F1 score as a 
quality of classification metric, which was 91%. 
 

(Singh et 
al., 
2021) 

MLP 20 

Homogene
ity 
Contrast 
Correlation 
Standard 
deviation 
disc 
Mean disc  
Entropy 
disc 
Energy disc 
Standard 
deviation 
cup  
Mean cup 
Entropy 
cup  
Energy cup 
Radius disc 
Area disc 
Radius cup 
Area cup  
Cup-to-disc 
ratio  
Inferior 
region area  
Superior 
region area  
Nasal 
region area  
Temporal 
region area 
 

DRIONS 
95.82
% 

98.59
% 

98.6% -  70:30  

(Adithya 
et al., 
2021) 

Linear 
Mixed 
Effects 
Model 

27 

pCDR (24 
CDR’s), 
ACDR & 2 
variance 
parameter
s   

ORIGA 0.989 0.974 - 
0.99
7 

50:50 

DHRISTI  0.947 0.923 - 
0.96
9 

External 
Testing 

(Afolabi 
et al., 
2021) 

XGB 
(Extreme 
Gradient 
Boost) 

10 
CDR at 10 
locations 

RIMONE 
V3, 
DRISHTI 
GS 

88.3% - - 
93.6
% 

5-Fold 
CV 
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Three clinically interpretable imaging features: vCDR ratio, ACDR & ISNT rule compliance were used 
by Issac and Dutta (46), the authors used a logical rule presented in a hierarchical IF-ELSE format 
(Table 2). This framework resulted in an accuracy of 93%, sensitivity of 94%, and specificity of 96% 
(46). In frameworks when rules are used in a hierarchical format such as this, it is important to note 
which features are first in the chain. While it is widely used in practice, the ISNT rule is shown to be 
less reliable than the vCDR parameter; thus, more errors could occur by applying the ISNT rule first 
(76).  
 
Das and coworkers proposed the use of vertical cup-to-disc ratio in combination with the ISNT rule 
(25), the method was tested on four publicly available datasets and one private dataset. This 
framework resulted in an accuracy of 94%, sensitivity of 92.6%, and specificity of 94.5% (25). 
Following this, Issac and Dutta used the ACDR parameter with the vCDR parameter and the ISNT 
rule, yielding an accuracy of 93%, sensitivity of 94%, and specificity of 96% (46). Finally, the paper by 
Vijapur and Kunte used the ACDR with the RDR parameter and vessel ratio index (98). They obtained 
a sensitivity of 93% and specificity of 92%; the accuracy of the framework was not provided (98).   
 

5.4. Machine learning/statistical modelling – based AI frameworks for 
glaucoma detection from the segmented image 
 
The machine learning or statistical modelling–based AI frameworks differ from the logical rule-based 
AI frameworks as they implement a mathematically complex classifier to perform the classification 
of glaucoma. Alike to the logical rule-based AI frameworks, they can make use of clinically 
interpretable features extracted from a segmented fundus image, but different from the logical rule-
based AI frameworks, they can also create and utilize abstract features and exploit these within 
machine learning or statistical modelling classifiers. The following section presents the findings of 
the 24 papers identified in this review that implement a machine learning or statistical modelling-
based AI framework.  
 

 
 

5.4.1. Machine learning/statistical modelling – based AI classifiers and their reported 
performance 
 
The machine learning/statistical modelling frameworks differed from one another by the type of 
classifiers they implemented (Table 3). Support vector machines (SVM’s) were the most popular 
classifier, being used in 11 out of 17 papers. The clustering methods of M-Mediods and K-nearest 
neighbours (K-NN) were used by one paper each and the ensemble classifiers of Random Forest (RF), 
dynamic ensembling and XGBoost were all proposed once. Additionally, two papers used Linear 
Mixed Effects (LME) modelling. The remaining frameworks proposed a variant of a neural network 
(NN) for classification. Note that, Table 3 only presents the optimal classifier used in the 
frameworks. That is, many papers propose a range of classification models/algorithms and present 
the classifier which worked optimally. The type of optimal classier also depends on the dataset used. 

 
Table 3: Details of the reviewed papers proposing machine learning/statistical modelling-based AI 
frameworks. Twenty papers considered binary classification (glaucoma vs healthy). Four papers 
(Khalil et al., 2017), (Perdomo et al., 2018), (Yunitasari et al., 2021) and  (Zufira et al., 2021) proposed 
three classes (glaucoma, suspect glaucoma and healthy). Krishnan et al.,2020 used only F1 score as a 
quality of classification metric, which was 91%. 
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Support Vector Machine Classifiers. A total of 11 studies used support vector machine classifiers, 
and two different kernel functions were selected within these. The radial basis function (RBF) kernel 
was used by five frameworks and the linear kernel was used by four frameworks. From the papers 
using the RBF kernel, Issac and coworkers (47) obtained an accuracy of 94%, sensitivity of 100%, and 
specificity of 90%. Krishnan and coworkers (56) only provided the F1 score as a metric, which was 
91%. The framework proposed by Agarwal and coworkers obtained an accuracy of 90%, sensitivity of 
100% and specificity of 80% (5); while the framework by Khalil and coworkers combined two support 
vector machines with RBF kernels and achieved an accuracy of 92.9%, sensitivity of 87.5% and 
specificity 90.84% (52). Khalil and coworkers found significant improvement in classification 
capabilities was achieved by combining the outputs of the support vector machine classifiers and 
considering a range of structural and textural features. A more recent study by Kang and coworkers 
resulted in an accuracy of 85.06%, sensitivity of 81.95% and specificity of 88.28% (49).  
 
From the four papers that used support vector machine classifiers with linear kernels, Narasimhan 
and Vijayarekha only provided the metric of accuracy which was 95% (70). Mukherjee and coworkers 
obtained an accuracy of 87%, sensitivity of 86.4% and specificity of 90% (66). More recently, Pathan 
and coworkers achieved an accuracy of 96.66%, sensitivity of 100% and specificity of 95% with the 
publicly available DRISHTI database but on external testing with a private database, this reduced to 
an accuracy of 90%, sensitivity of 93.47% and specificity of 91.2% (60). Xu and coworkers proposed a 
linear kernel SVM in combination with a decision rule (99). Firstly, if RNFLD were present this was 
marked as glaucoma. If not, then the SVM was applied for the decision output. This novel method 
resulted in a sensitivity and specificity of 96.1% and 95.6% respectively. Furthermore, Xu and 
coworkers implemented external testing; this achieved the metrics of 98.4% sensitivity and 94.1% 
specificity; indicating the generalizability of their adopted approach. Deepika and Maheswari did not 
specify the kernel used, this framework yielded an accuracy of 91.67%, sensitivity of 90% and 
specificity of 93.3% (21). Likewise, Yunitasari and coworkers did not specify the kernel used; their 
proposed framework achieved an accuracy of 95%, sensitivity of 91.4% and specificity of 95.6% 
(100).  
 
Clustering classifiers. Clustering methods were used by two frameworks. The k-nearest neighbours’ 
algorithm (K-NN) was proposed by Lotankar and coworkers, achieving an accuracy of 99.2%, 
sensitivity of 86.7% and specificity of 84% (60). The framework of Akram and coworkers used a 
clustering method of M-Medoids (8). They proposed that there is variation in the number and 
distribution of the samples within the two classes (healthy & glaucomatous) and via employing 
multivariate m-modelling and classification, they could handle multimodal distribution of samples 
within the two classification groups (8). This method was tested on five datasets; the accuracy across 
the datasets ranged from 86.7 – 94.4 %, sensitivity from 75 – 93.3% and specificity from 87.1 – 
97.1% (8).  
 
Random Forest classifier. A Random Forest classifier was proposed by Zahoor and Fraz (101). This 
method resulted in an accuracy of 95.3%, sensitivity of 96.31% and specificity of 95.33%. However, 
the authors state the use of the publicly available High-Resolution Fundus Image (HRF) database but 
removed nine of the total 36 fundus images without explanation.   
 
XGBoost classifier. Afolabi and coworkers proposed an XGBoost classifier resulting in an accuracy of 
88.3% and AUC of 93.6% via 5-fold cross-validation (3). 
 
Dynamic ensemble method.  Zulfira and coworkers implemented a dynamic ensemble classifier, 
they used three publicly available datasets independently; the accuracy ranged from 90-91%, 
sensitivity from 86-90% and specificity from 86-89% (103). Their choice of a dynamic ensemble 
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classifier was to handle the imbalanced datasets (i.e., different numbers of images for the three 
groups: healthy, mild glaucoma and severe glaucoma).   
 
Linear mixed-effects statistical modelling. A linear mixed-effects (LME) modelling approach was 
used by two papers (62,55). This framework was originally proposed by MacCormick and coworkers 
and yielded an AUROC of 99.7%, sensitivity of 100% and specificity of 98.3% on internal testing. The 
proposed framework then employed external validation using the publicly available RIM-ONE V3 
dataset, the AUROC obtained was 91% (62). A disadvantage of such an approach is in requiring the 
segmented image of healthy eyes to follow a statistical model with a plausible number of 
parameters. This is not always possible, however, in the case of glaucoma, this was a suitable 
approach. The authors determined that the contours of the optic cup and disc appeared to be two-
centered ellipses in healthy eyes and additionally, they included a technique to account for each eye 
displaying different disc sizes – all of which were captured in the statistical model. Using this 
information, the classification of glaucoma was then based on a deviation of the contours from the 
model of healthy eyes. 
This framework was then improved by Adithya and coworkers who incorporated further relevant 
parameters (ACDR and group variance) to improve the model performance. They achieved an AUC of 
0.997 via internal testing and 0.969 on external testing (55).  
 
Neural network classifiers.  A multi-layer perceptron was proposed by Perdomo and coworkers with 
the final stage being composed of two fully connected layers with 64 hidden and 3 output units (75). 
The batch size, the number of epochs and optimal features were determined via a grid search. The 
binary classification achieved an accuracy of 89.3%, sensitivity of 89.5%, specificity of 88.9% and AUC 
82%. Using multi-class classification (healthy, suspected glaucoma, and glaucoma), they provided the 
metrics of precision and recall which were 0.76 and 0.72 respectively.  
 
Raja and Ramanan proposed the use of Damped Least-Squares Recurrent Deep Neural Learning 
Classification (DLRNL) (78). The classification was performed on the output layer using soft sign 
activation functions resulting in an accuracy of 89% however, no other performance metrics were 
specified. The paper by Karkuzhali and Manimegalai (50) considered a range of networks, the best 
performance was found when using the Feed Forward Back Propagation Neural Network (FFBPNN) 
and the Distributed Time Delay Neural Network (DTDNN); each of these provided an accuracy of 
100% and sensitivity and specificity of 100%. Note that they tested on a small subsection of the 
publicly available DRISHTI dataset consisting of just 26 images. Kausu and coworkers used a multi-
layer perceptron and obtained an accuracy of 97.67%, sensitivity of 98% and specificity of 97.1% 
(51). Note they did not provide any detail of the multi-layer perceptron (i.e., number of neurons in 
each layer, hyperparameter tuning etc.). 
 
More recently, Singh and coworkers proposed an MLP using twenty clinical features (Table 3); on 
internal testing, this resulted in an accuracy of 95.8% (84). They found that the MLP provided higher 
performance metrics than other popular machine learning classifiers (KNN, SVM and Naïve Bayes). 
Mansour and coworkers proposed a perceptron-based convolutional multilayer neural network, the 
performance metric of AUC was 97.1% on internal testing (63).  
 

5.4.2. The machine learning/statistical modelling AI frameworks utilize clinically 
interpretable image features as well as abstract image features 
 
The machine learning/statistical modelling-based AI frameworks reviewed used clinically 
interpretable and abstract image features (Table 3). Across all the papers reviewed, each framework 
used some variant of the CDR parameter, highlighting the significance of the parameter in glaucoma 
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classification. Thirteen of the papers used clinically interpretable imaging features (i.e., vCDR ratio, 
NRR area etc.), 11 papers proposed the use of novel spatial/spectral/texture/colour features.  
 
The use of spatial features by Akram and coworkers (8) was motivated by the fact that the area of 
the optic cup changes from the normal to the glaucomatous eye. In keeping with MacCormick and 
coworkers (62) and Adithya and coworkers (55), they state the use of the vCDR parameter alone was 
limited due to glaucoma manifesting at any direction in the ONH. Whereas Akram and coworkers 
combined the RDR parameter with spatial and spectral features (8), MacCormick and coworkers and 
Adithya and coworkers proposed using a profile CDR (pCDR) which quantifies the optic nerve rim 
consistency around the whole disc at 15-degree intervals (55, 62). Moreover, due to the use of linear 
mixed-effects modelling by MacCormick and coworkers and Adithya and coworkers, random effects 
were incorporated to indirectly take account of the size of the optic disc. The difference between the 
original work by MacCormick and coworkers and Adithya and coworkers is the use of the ACDR 
feature by Adithya and coworkers, and the inclusion of variance parameters to better capture the 
difference between the healthy and glaucoma group (55).  
 
A similar approach was adopted by Afolabi and coworkers (3). Their framework used the CDR 
measured at 10 locations around the ONH citing their framework eliminates the challenge of 
selecting the CDR threshold as required in logical rule frameworks (section 5.3). Yet, in contrast to 
previous works, they state that 10 CDR values are optimal as 5 did not give a full view of the 
changing geometry of the optic cup and disc and extracting more than ten 10 features only resulted 
in duplication of data (3). However, their approach is yet to be tested on external data.  
 
The framework by Kausu and coworkers (51) exploited clinically interpretable imaging features and 
abstract features in combination. Wavelet features were considered as the authors argued that 
texture features alone are not enough, as they do not consider frequency information. Yet, by 
exploiting the wavelet transform, frequency and spatial information would be considered. Kausu and 
coworkers (51) used the minimum redundance maximum relevance (mRMR) feature selection 
technique to determine the optimal features from the collection of clinically interpretable and 
wavelet features. However, in the end, the best performance was obtained when only using two 
features: vCDR and the second-order texture feature – energy. While the vCDR parameter is 
clinically interpretable, the second-order feature of energy is an abstract feature.  
 
Similar features were exploited by Singh and coworkers (84) and Zulfira and coworkers (103), both 
used a combination of clinical features (i.e., CDR) and abstract features. Both made use of Gray-Level 
Co-occurrence matrix (GLCM) features (i.e., contrast, energy, etc.) (Table 3). Regarding clinical 
features, Zulfira and coworkers used ACDR and accounted for PPA via GLCLM features (103). While 
Singh and coworkers highlighted the importance of the ISNT rule and incorporated features to 
account for this (e.g., inferior/superior area) (84).  
 
Correlation-based feature selection was applied by Pathan and coworkers (74). They began with 54 
color features, 12 texture features, and 2 clinically interpretable features. Following feature 
selection, 10 features (2 clinical, 4 colour & 4 texture) were deemed relevant and applied in the final 
framework. 
 
Mukherjee and coworkers (66) proposed a framework using eight features (Table 3). They compared 
this framework with the same methodology but using only the CDR feature yet, they found this 
resulted in significantly lower performance metrics. Thus, indicating the relevance of the other 
parameters used; however, this is to be further examined to test the generalizability of the other 
features for glaucoma classification with external datasets (66). Similarly, Khalil and coworkers (52) 
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found an improved performance by combining structural and textural features for classification 
(Table 3). 
 

5.5. Approaches to segmentation  
 
Intuitively, the success of a multi-step framework depends on the type and success of the 
automated ONH segmentation used in the first step of the framework. Although the focus of this 
review is not to assess the automated segmentation methods, in this section we give a brief 
overview of the approaches to segmentation used. Briefly, some automated segmentation methods 
focus on colour intensity and texture-based thresholding. Some advanced methods employ fully 
convolutional neural networks. The point is that there are many different approaches to 
segmentation with differing degrees of success. In the segmentation of the ONH, it is well-known 
that the optic cup is much more challenging to segment than the optic disc due to the low contrast 
between the optic cup and the neighboring disc region (31). As such, there are very few papers 
focused on developing optic cup segmentation methods.  
 

5.6. Glaucoma disease groups  
 
From the 34 papers identified in this review, 28 (82%) performed binary classification (healthy or 
glaucoma), and 6 performed multi-class classification. Across the papers performing multi-class 
classification, 4 classified images by healthy, suspected glaucoma or glaucoma and their method for 
incorporating the suspected class differed. Moreover, 2 proposed multi-class classification; however, 
they differentiated between the classes via severity (e.g., healthy, mild glaucoma and severe 
glaucoma).  
 
The framework by Khalil and coworkers (52) used a combination of clinically interpretable and 
abstract features in two support vector machine classifiers (one support vector machine using 
structural features and one support vector machine using textural features) for glaucoma 
classification. They proposed that, if the outputs of the two support vector machine classifiers did 
not agree (i.e., one support vector machine provides the outcome healthy and the other 
glaucomatous), they would classify this image as ‘suspect glaucoma’.  
 
Perdomo and coworkers (75) proposed a multi-layered perceptron with 3 output units using 19 
morphometric features. They used the publicly available RIM-ONE V3 dataset which comprises 35 
suspected glaucoma fundus images for training/testing their framework to handle the suspected 
class. Although they showed high performance metrics on binary classification, the performance on 
multi-class classification was inferior; the metrics of precision and recall were 0.76 and 0.72 
respectively (60). Thus, their framework was not optimal when considering the suspected glaucoma 
class.  
 
More recently, frameworks by Soorya and coworkers (61) and Issac and Dutta (46) applied logical 
rule-based AI frameworks with thresholds for glaucomatous and healthy; if the features obtained 
from the segmented fundus image did not meet the criteria for the glaucoma or healthy group, this 
was classified as suspected glaucoma (Table 2).  
 
Zulfira and coworkers proposed a framework to provide glaucoma severity: healthy, mild glaucoma 
or severe glaucoma (103). To achieve this, they used a dynamic ensemble classifier and features to 
represent PPA and CDR (Table 3). They found the highest accuracy in images with severe glaucoma 
but noted a lower accuracy in the mild glaucoma images as they were frequently misclassified as 
healthy. Thus, highlighting the difficulty in distinguishing between the subtle differences that mark 
an eye as healthy or mild glaucoma. Moreover, they do not provide information regarding the 
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ground truth criterion, or the number of experts used. It would be of interest to know how the ‘mild’ 
glaucoma group is defined.  Although their proposed method outperformed the deep learning-based 
U-net when evaluated using the same datasets, it has a drawback in requiring manual ONH 
detection for all images by an expert (103).  
 
A similar approach was adopted by Yunitasari and coworkers; however, they categorized images as 
early, moderate, and advanced glaucoma (100). Using an SVM and a combination of clinical features 
(Table 3) they tested their approach on 40 images and found encouraging results highlighting that 
automatic glaucoma severity marking could be a possibility. Yet, no information is provided 
regarding the ground truth definitions (i.e., the difference between the early and moderate 
glaucoma groups). Furthermore, the clinical application is to be considered, for example, how would 
glaucoma severity aid clinicians in practice and/or how is the framework going to work with healthy 
images as these have not been considered to date.  
 

5.7. Approaches to validation of methods and the reporting of performance 
metrics  
 
The approach to validation in logical rule-based AI frameworks. In the papers that used a logical 
rule-based AI framework, the approach to validation differed as they have no training component 
within their frameworks. The only means of validation per se (using a logical rule-based framework) 
is to acquire datasets from a range of sources to evaluate if their proposed rules are 
generalizable/appropriate. Of the 12 logical rule-based frameworks (Table 2), 9 (81%) used one 
dataset, 1 paper used 2 datasets, 1 paper used 3 datasets, and 1 paper used 5 datasets. As such, the 
majority of papers using logical rule-based frameworks did not consider validation of their proposed 
frameworks.  
 
Considering the performance metrics presented, six papers (50%) presented the performance 
metrics of accuracy, sensitivity & specificity while the remaining 6 papers did not. Four of the papers 
only provided their accuracy result, and 2 papers did not provide accuracy, only sensitivity & 
specificity.  
 
The approach to validation in machine learning/statistical modelling AI frameworks. The machine 
learning/statistical papers differed in their approach to framework validation. The approach of 10-
fold cross-validation was used by 5 papers, 5-fold cross-validation was used 3 times, and leave-one-
out cross-validation was also used once. The remaining papers used a data split for validation. A 
70:30 split was used 4 times whilst a 50:50 split was used five times. External validation was only 
used by three papers.  Seven papers used more than one database within their frameworks. For this, 
they either trained and tested their model individually on the different databases or they combined 
the databases and then trained and tested on the data (Table 3).  
 
In addition to conducting internal/external validation, some of the reviewed papers compare their AI 
method with previously published methods. Fourteen of the 24 machine learning papers compared 
their proposed methodology with previously published methods. Whilst 17 papers compared their 
methods with at least one other method proposed by themselves.  
Considering the performance metrics reported, 17 papers disclosed metrics of accuracy, sensitivity 
and specificity. Only 4 papers presented metrics for AUC, and 1 paper presented no metrics other 
than the F1 score. Additionally, 2 papers only presented the accuracy metric results.  
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5.8. Databases used for development and testing of the AI frameworks 
reviewed  
 
Within the frameworks highlighted in this review, a range of publicly available and private databases 
were used, an overview is provided in Table 4.   
 
 

Database Number of 
times used (N) 

Total Number 
of images (N) 

Healthy Glaucoma Suspected Annotators 

HRF 7 45 15 1 NA - 

RIM-ONE V1 1 169 118 51 NA 5 

DRISHTI 12 101 70 31 NA 4 

Messidor 4 100 72 28 NA - 

Drions 3 110 95 15 NA - 

DiaretDB 2 89 81 8 NA 4 

RIM-ONE V2 1 455 255 200 NA 1 

RIM-ONE V3 5 159 85 39 35 2 

GlaucomaDB 2 120 85 35 NA - 

DRIVE 1 40 34 6 NA 2 

HEI MED 1 50 31 19 NA 2 

ORIGA 2 650 482 168 NA - 

Private 17 NA NA NA NA NA 

Table 4: Databases used for development (training and testing) of the reviewed two-step AI-enabled 
glaucoma detection frameworks. 

 
 
 

5.8.1. Publicly available datasets  
 
DRISHTI dataset. From the papers identified, the DRISHTI database (86) was the most popular 
database being used twelve times. The database comprises 101 fundus images (31 healthy and 70 
glaucoma) acquired at Aravind Eye Hospital, Madurai, India. This dataset is of a single population as 
collected images are from subjects who are Indians. The images were taken with the eyes dilated 
using the following data collection protocol: centered on the optic disc with a Field-of-View of 30-
degrees and dimension 2896 × 1944 pixels. Low-quality images (poor contrast, positioning of optic 
disc region, etc.) were not used. The ground truth for the region boundaries, segmentation soft 
maps and CDRs by 4 different ophthalmologist experts (with varying clinical experience) is provided. 
The database is split into 50:51 training: testing. Note that, to access the ground truth for the test 
data, a researcher must register with the data owners (85).  
 
High-Resolution Fundus (HRF) dataset. The HRF dataset (15) was used by seven of the reviewed 
papers. In comparison to the other databases available, this database is small, comprising 45 fundus 
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images in total. The images were collected at the same clinic in the Czech Republic (72). Of the 45 
images, 15 are glaucomatous, 15 healthy and 15 are labelled as diabetic retinopathy. The database is 
publicly available and in an easily downloadable format online. All fundus images were acquired with 
a mydriatic fundus camera CANON CF–60 Uvi equipped with a CANON EOS–20D digital camera with 
a 60-degree field of view (FOV). The image size is 3504 × 2336 pixels (57). The database curators do 
not state how many ophthalmologists were used for the ground truth. As well as the fundus images, 
researchers can access the Field Of View (FOV) masks, vessel segmentation, and optic disc gold 
standards provided by 3 experts (72). Whether the images were obtained in a dilated state or not is 
not disclosed. 
 
Messidor dataset. The Messidor database (28) was used in four reviewed papers. It contains a total 
of 1200 images of different diseases, but only 100 images are annotated for glaucoma. Of the 100 
fundus images, 28 are glaucomatous and 72 are healthy. The images were acquired by 3 
ophthalmologic departments in France using a colour video 3CCD camera mounted on a Topcon TRC 
NW6 non-mydriatic retinography with a 45-degree field of view. To access the dataset, the 
researcher is required to submit a form that is evaluated by the data owners, and they decide upon 
the validity of the request and provide permission (28).  
 
ORIGA dataset. The ORIGA database (102) was used in 2 reviewed papers. The ORIGA database 
consists of 650 fundus images in total, 168 glaucomatous images and 482 randomly selected non-
glaucoma images. The authors state that there are 336 images from the left eye and 314 from the 
right. The ORIGA database was formed using retinal image data collected from the Singapore Malay 
Eye Study (SiMES) (34) conducted by the Singapore Eye Research Institute. Each image is tagged with 
grading information (CDR, ISNT rule compliance, RNFL defects, Notches and PPA) and the manually 
segmented result of the optic cup and disc (102). Although it is stated that it is publicly available, it is 
not easily accessible from searching online. Moreover, no details are provided regarding the imaging 
device used (53).  
 
RIM-ONE dataset. Four reviewed papers utilized the RIM-ONE databases (12,34,35). There are three 
different versions of the RIM-ONE databases: V1 and V2 which were used once and V3 – which was 
used five times. RIM-ONE V1 (34) was published in 2011; the dataset comprises 169 fundus images 
from different subjects. There are 5 groups: Normal, Early Glaucoma, Moderate Glaucoma, Deep 
Glaucoma and OHT (Ocular Hypertension) which have 118, 12, 14, 14 and 11 images respectively. 
The RIM-ONE V1 database consists of 5 manual reference segmentations per image. This enables the 
creation of reliable gold standards, thus decreasing the variability among expert segmentations and 
the development of highly accurate segmentation algorithms (34). The fundus images were acquired 
from three different hospitals located in different Spanish regions (Hospital  niversitario de 
Canarias,  ospital Cl nico San Carlos and  ospital  niversitario Miguel Servet).  he authors of RIM-
ONE state that compiling images from different medical sources guarantees the acquisition of a 
representative and heterogeneous image set (34). The images were captured using a Nidek AFC-210 
non-mydriatic fundus camera with a 21.1-megapixel Canon EOS 5D Mark II body, with a vertical and 
horizontal field of view of 45◦.   
 
The RIM-ONE V2 dataset (35) comprises 455 fundus images (200 glaucomatous and 255 healthy), the 
ground truth for the images were provided by one expert ophthalmologist.  The most recent version 
of the database is the RIM-ONE V3 which includes 159 fundus images with 85 healthy, 39 glaucoma 
and 35 suspected glaucoma. The images were taken by a non-mydriatic Kowa WX 3D stereo fundus 
camera (2144 × 1424 pixels) and 34-degree POV. The images were acquired at the Hospital 
Universitario de Canarias, and the ground truths provided by two experts (12).   
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GlaucomaDB dataset. The GlaucomaDB (52) database was used twice by frameworks in this review. 
The database is a subset of 120 fundus images from a larger database of 462 images gathered in a 
local hospital. The region/country of the local hospital was not disclosed. The images were captured 
using a TopCon TRC 50EX camera with a resolution of 1504 × 1000. The 120 images consist of 85 
healthy and 35 glaucomatous, with the ground truths provided by two ophthalmologists (52). To 
access the database for research purposes, permission from the authors must be requested.  
 
HEI MED dataset. The HEI Med Dataset (Hamilton Eye Institute Macular Edema Dataset) (39) is a 
collection of 169 fundus images, however, only 50 images are annotated for glaucoma detection. 
The HEI MED database was used by one framework. Of the 50 images, 30 are healthy and 19 are 
glaucomatous. The fundus images were collected at the Hamilton Eye Institute, United States of 
America, via a Visucam PRO fundus Camera (Zeiss) (53) and annotated by one ophthalmologist. The 
data is available on GitHub for public use.  
 
DRIONS dataset. The DRIONS database was used three times by papers in this review. The database 
comprises 110 fundus images (95 healthy and 15 glaucomatous). The images were collected at the 
Ophthalmology Service at Miguel Servet Hospital, Saragossa, Spain. Images were removed if any 
form of cataracts were present. All images were obtained from subjects of Caucasian ethnicity. The 
images were acquired with a colour analogical fundus camera, approximately centered on the ONH 
and they were stored in slide format. To have the images in digital format, they were digitized using 
a HP-PhotoSmart-S20 high-resolution scanner, RGB format, resolution 600 x 400 and 8 bits/pixel 
(21). The dataset is easily accessible and is available to download online.  
 
DIARETDB dataset. The DIARETDBM  database consists of 89 color fundus images and was primarily 
developed for aiding diabetic retinopathy research. However, the database has been made publicly 
available and it has been assessed for glaucoma. The 89 fundus images are split into 81 healthy and 
8 glaucomatous (8), and four medical experts were collected for the ground truth annotations. All 
images were captured using the same 50-degree field-of-view digital fundus camera with varying 
imaging settings at Kuopio University Hospital, Finland. The database is easily accessible for 
download online.  
 
DRIVE dataset. The DRIVE database was used by one paper in this review. The database comprises 
40 fundus images (34 healthy and 6 glaucomatous) annotated by 2 ophthalmologists (52). The 
images were acquired using a Canon CR5 non-mydriatic 3CCD camera with a 45-degree field of view 
(FOV). Each image was captured using 8 bits per color plane at 768 by 584 pixels. Although stated 
that the database is publicly available, it is not easily accessible online.  
 

5.8.2. Private datasets 
 
Private databases were popular in the development (training and testing) of the frameworks 
reviewed, a total of 17 private databases were used; however, as these are not publicly available, it 
was difficult to access detailed information on the databases if not provided directly by the authors. 
Many papers did not provide basic information other than the dataset size. Without all information 
regarding the datasets (i.e., patient cohort, imaging device, etc), it is difficult to draw conclusions 
regarding the robustness and generalisability of the proposed frameworks (as this is dependent 
upon the dataset used).  
 

6. Discussion and conclusions 
 
We present the first review, to our knowledge, of AI frameworks for glaucoma detection that utilize 
fundus images and produce ONH segmentation as the first step. By segmentation, we refer to a 
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process of an image being automatically partitioned into three areas: optic cup, optic disc and 
neuroretinal rim. We identified 36 papers published between January, 2011 and December, 2021.  
, 
We focused on fundus imaging as it is the simplest modality of ONH assessment. The quality of 
fundus images may be sufficient for evaluating ocular health for the presence of glaucomatous 
neuropathy and due to its relatively low cost, fundus cameras are readily available in a range of 
settings. As such, there is the potential to exploit fundus images via AI to develop automatic 
glaucoma screening provisions, even for economically weak areas in the world. AI-supported colour 
fundus images can help in two scenarios. Firstly, in a non-portable office-based environment--e.g., 
high street optometry – it can assist in diagnosis and highlight patients for referral. This could reduce 
unnecessary referrals and thus reduce the burden on the health care sector. Secondly, it can be a 
part of portable devices in less well-resourced environments for use by an ophthalmic technician or 
nurse to screen. In both scenarios, the AI certainty element will be an important factor to consider 
for patient safety. Such screening provisions can have a clinical oversight to monitor the quality of 
the screening.  
 

6.1 Three key findings of this review 
 

6.1.1 Glaucoma detection via two-step AI frameworks using fundus images present 
encouraging results  
 
We found that the two-step AI frameworks have presented promising results in their first step when 
identifying the contours of the optic cup and disc (i.e., segmentation of the ONH). We then identified 
two approaches to using features derived from the segmented fundus images: logical rule-based 
frameworks and machine learning/statistical modelling frameworks.  
 
This review highlights that the glaucoma detection performance of the logical rule-based AI 
frameworks is limited due to the nature of using a set of rules (even more so when the rules have 
been derived from small homogenous datasets). We found that ten papers split one dataset for 
training and testing and reported accuracy ranged from 83 to 97%. Since this accuracy was 
determined via internal validation and on small datasets it must be interpreted with caution. One 
paper (Vijapur and Kunte (98)) did perform external testing (i.e., they used more than one data 
source). They reported two combinations of sensitivity vs specificity: 93 vs. 92%, and 87 vs. 87%. 
Across all papers, we found that there was no consensus on thresholds applied within the rules for 
glaucoma classification. That is, although many papers highlighted that their rule was based upon 
clinical relevance (as they were using a clinical parameter within their rule i.e., vCDR), the threshold 
used for the clinical parameter changed from one paper to another. Consequently, this highlights 
that a given threshold may only be appropriate for the dataset at hand. Moreover, as the majority of 
the logical rule-based AI frameworks did not implement any external testing, we are limited in 
understanding how the framework would work in screening strategies with data collected from 
different sources.  
 
Regarding the machine learning/statistical modelling-based AI frameworks reviewed, we found that 
the reported accuracy was between 85.1 and 100%, predominantly reported via internal validation. 
The reported performance of some of the frameworks was comparable to that of the one-step 
approaches using DL. One of the current DL approaches is by Li and coworkers (58) who reported an 
accuracy of 0.986. However more direct accuracy comparisons are required on the same testing 
datasets to give a fair comparison of the approaches.  
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6.1.2 There is active research into developing two-step AI frameworks for glaucoma, where 
the first step is automatic detection of optic cup and disc contours 
 
We conducted this review by focusing on two-step AI frameworks that produce ONH segmentation 
as a first step. One key reason for this is the interpretability and explainability benefits that can be 
found when using segmented images within AI frameworks. It is known that the segmented contours 
of optic cup and disc can explain to the clinician why the AI has classified a given fundus image as 
glaucomatous or not. The two-step solution helps visually explain intermediate steps between the 
raw image and diagnosis (27). This can significantly aid in the development of trust within the AI and 
consequently the adoption of such methods within the practice of glaucoma detection. Moreover, 
such explainable AI methods can act as a support decision system such that the AI, clinician and 
patient can work together to decide upon treatment options and next steps.  
 

6.1.3 Color fundus images are actively studied for their potential use within AI-enabled 
glaucoma detection 
 
This review solely focuses on glaucoma detection frameworks using fundus imaging technology. This 
choice was guided by the fact that the detection of glaucoma in clinical practice is highly influenced 
by optic nerve head assessment via fundus imaging and the use of color fundus images is part of the 
guidelines for glaucoma diagnosis. Moreover, color fundus images are advantageous due to their 
lower cost in comparison with other imaging modalities and the technology is continuously 
developing such that they can consistently provide high-quality images capable of distinguishing 
glaucomatous neuropathy.  
 
It should be highlighted that there is a distinction between large fundus cameras, costing many 
thousands of pounds or dollars, and the recently developed smaller mobile phone cameras that 
enable fundus imaging of the ONH at a considerably lower cost. While other imaging modalities such 
as OCT can provide additional information and are becoming more widely available, it is currently 
hard to see if lower-cost mobile OCT is possible and hence whether it will be available to less 
developed countries and remote areas. Yet portable fundus cameras are becoming increasingly 
accessible and viable, even within economically less fortunate countries. 
 

6.2 Three key unresolved issues of current knowledge and potential areas for 
future studies 
 

6.2.1 There is a need to work on AI frameworks that utilize color fundus images and that 
provide contours of the optic cup and disc in their first step 
 
A direct comparison of all approaches for AI-enabled glaucoma detection methods is required.  One-
step AI approaches (end-to-end approaches, based on DL) need to be compared to two-step 
approaches reviewed here, on the same datasets. This will ensure a direct comparison can be made 
and one can consequently identify the benefits and drawbacks of both approaches. For now, we can 
identify that the advantage of the one-step AI is that it does not require such a large effort in terms 
of segmenting the fundus images and deriving clinical features from the segmentations; this is due 
to the nature and complexity of DL; however, a major disadvantage is in the lost interpretability (due 
to the black-box nature of DL) and in needing many annotated images to be trained. Such algorithms 
need to be studied together with two-step algorithms, to understand better which are more suited 
for glaucoma detection.   
Furthermore, more research needs to be done on comparing imaging modalities. Specifically, 
investigations need to be made between OCT and fundus imaging to comprehensively compare both 
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modalities such that we can determine which is most suitable for AI-enabled glaucoma detection 
frameworks.  
Moreover, further research should be conducted regarding the development of AI-enabled 
glaucoma detection frameworks. For example, an area to be studied is the quantification of 
uncertainty of the outputs provided by the AI frameworkJ . Also, the inclusion of other data sources 
needs to be investigated, e.g., patients’ de-identified personal data, genetics data, visual fields data. 
This will simulate the clinical workflow as well as potentially improve the performance of the AI 
frameworks and help to explain AI outputs.  
 

6.2.2 There is a need to keep building and sharing suitable datasets  
 
There exist several large landmark clinical study datasets which were not used in the publications 
reviewed - despite being a very rich resource of clinical images for glaucoma diagnosis. This includes 
the United Kingdom Glaucoma Treatment Study (UKGTS) (37), the Ocular Hypertension Treatment 
Study (OHTS) (40), and the Northern Ireland Cohort Longitudinal Study of Ageing (NICOLA) (64). 
There are several possible reasons for the exclusion of such datasets. These datasets lack pixel-level 
image annotation of the optic cup and disc, which is required to train and validate segmentation 
models. Acquiring such annotations is a time-consuming task requiring collaboration between 
domain expertise and technical expertise. Furthermore, access to these datasets requires an 
application, payment and submission of a suitable protocol, which can act as barriers. 
 
Moving on, our review has highlighted the increasing need for datasets to include the whole 
spectrum of glaucoma severities (not just glaucoma and normal, but also for glaucoma suspects). 
This is crucial to the development of AI frameworks that are useful in clinical practice as ‘suspect 
glaucoma’ is a case regularly observed by clinicians. Additionally, it is very important to collect and 
develop resource-rich longitudinal datasets such that disease onset and progression can be 
examined and incorporated into AI frameworks.  
 
We also highlight that it is essential that sufficient details are provided alongside datasets. This 
includes the number of patients, the number of images acquired from each patient, whether both 
eyes are used (i.e., an image per eye) etc. All this information is important and relevant for 
researchers developing AI frameworks as such methods can be based upon hard assumptions. If 
these assumptions are not upheld due to the lack of information provided with the datasets, this can 
cause significant issues. Additionally, other information that should be recorded including the type 
of camera used, number of ophthalmologists for annotation of images/providing of ground truth, 
source of data, inclusion/exclusion criteria for data collection, etc., was also limited. In particular, 
when data has been acquired from a private source, there has been a scarce amount of information 
provided. A detailed description of the dataset used is critical for the assessment of the quality, 
reliability, suitability to produce the desired output, potential generalizability of any findings, and 
especially reproducibility of the methods (90). 
 
Another important point to highlight is that further effort is required to ensure datasets are 
provided with suitable gold standards (aka ground truth). High-quality gold standards are crucial for 
AI development. A means of achieving this is acquiring annotations from multiple human graders. 
The reasoning for this is that ONH annotation (via fundus images) can suffer from large amounts of 
inter-observer variability – it is a subjective task (48,21). Using only one grader introduces bias into 
the ground truths upon which the AI is developed. A useful measure of the reliability of ground truth 
labels is inter-observer agreement between the labelers. By detailing the inter-observer agreement, 
readers can make a judgement on the likelihood that the ground truth label is correct.  This review 
has highlighted that only 3 of the 12 publicly available databases have more than two annotators. 
Whilst it should be standard to have more than 2 annotators, it should be recognized that obtaining 

                  



33 | P a g e  
 
 

manual annotation of images is not an easy task as it is time-consuming, expensive and requires 
expertise.  
 
Moreover, further work is required to improve the diversity of datasets. The use of the term 
diversity here refers to having fundus images captured from various devices, involving different 
patient ethnicities, and images taken in different lighting, contrast, and noise (12). The frameworks 
reviewed here are developed on datasets predominately acquired from one source and as such lack 
this diversity. A potential limitation of this is whether the quoted sensitivities and specificities will be 
generalizable to real-world patient cohorts where a range of factors can negatively impact the 
quality of the fundus images (67). Moreover, selection bias can be present if the dataset has been 
collected from homogeneous sources (i.e., using one ethnicity and/or specific hardware/imaging 
settings). Methods developed on such datasets are prone to generalization problems as one 
population data might have different characteristics that introduce bias in the proposed framework 
(82).  
 

6.2.3 There is a need to keep developing guidance for high-quality reporting of AI 
frameworks and promote following the guidance  
 
This review highlights that several publications lacked high-quality reporting – both in terms of 
datasets used and their glaucoma classification methodology. Some of the reviewed papers lacked 
the technical details regarding their classifier whilst others only provided a brief explanation of the 
methods selected. Often lacking sufficient detail was the model structure (i.e., hyperparameters 
used and their tuning mechanism). The limitation of not providing sufficient details of methods (i.e., 
technical AI details) is that this renders the paper unreproducible, a key criticism in the AI field.  
There is a need to support the work of the initiative EQUATOR K which is a collaboration between 
experts in statistics, machine learning and computing – but it also involves specialized clinicians and 
policymakers. This initiative develops and provides detailed guidance for reporting, with a specific 
focus on guidance for medical studies involving AI.   
 

7. Method of Literature Search  
 
We used four databases to search for relevant literature: PubMed, Scopus, Web of Science and 
Medline (OVID). The search covered January 2011 until the end of 2021. The search strategies are 
detailed in supplementary file 1.  
 

Search terms 
 

Database: Scopus 
( TITLE-ABS-KEY ( glaucoma )  AND  TITLE-ABS-KEY ( fundus  OR  retinal )  AND  TITLE-ABS-
KEY ( classif*  OR  discrim*  OR  diagnos* )  AND  TITLE-ABS-
KEY ( photograph*  OR  imag* )  AND  TITLE-ABS-KEY ( "auto* 
detect*"  OR  "detect"  OR  "predict*" )  AND  TITLE-ABS-KEY ( segment* ) ) 
 

Database: PubMed 
(((((glaucoma[Text Word]) AND (fundus[Text Word] OR retinal[Text Word])) AND (classif*[Text 
Word] OR discrim*[Text Word] OR diagnos*[Text Word])) AND (photograph*[Text Word] OR 
imag*[Text Word])) AND ("auto* detect*"[Text Word] OR detect*[Text Word] OR predict*[Text 
Word])) AND (segment*[Text Word]) 
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Database: Web of Science 
TS = (glaucoma AND (fundus OR retinal) AND (classif* OR discrim* OR diagnos*) AND (photograph* 
OR imag*) AND ("auto* detect*" OR detect* OR predict*) AND (segment*)) 
 

Database: MEDLINE 
(glaucoma and (fundus or retinal) and (classif* or discrim* or diagnos*) and (photograph* or imag*) 
and (auto* detect* or detect* or predict*) and segment*).tw. 
 

Eligibility criteria  
 

We included papers if: 
1. The paper uses segmented fundus images of the Optic Nerve Head (ONH). 
2. The paper proposes a methodology/framework for the classification of glaucoma.  
3. Full text is available online. 
4. Full text is available in English.  

We excluded papers if: 
1. Interested purely in segmentation of fundus images (provide no classification of glaucoma 

following segmentation). 
2. Focused purely on classification via methods that require no segmentation of the fundus 

image (i.e., one step AI frameworks). 
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