
                                                                    

University of Dundee

PallorMetrics

Gibbon, Samuel; Muniz-Terrera, Graciela; Yii, Fabian S. L.; Hamid, Charlene; Cox, Simon;
Maccormick, Ian J. C.
Published in:
Translational Vision Science and Technology

DOI:
10.1167/tvst.13.5.20

Publication date:
2024

Licence:
CC BY-NC-ND

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Gibbon, S., Muniz-Terrera, G., Yii, F. S. L., Hamid, C., Cox, S., Maccormick, I. J. C., Tatham, A. J., Ritchie, C.,
Trucco, E., Dhillon, B., & MacGillivray, T. J. (2024). PallorMetrics: Software for Automatically Quantifying Optic
Disc Pallor in Fundus Photographs, and Associations With Peripapillary RNFL Thickness. Translational Vision
Science and Technology, 13(5), Article 20. https://doi.org/10.1167/tvst.13.5.20

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Jul. 2024

https://doi.org/10.1167/tvst.13.5.20
https://discovery.dundee.ac.uk/en/publications/d424e0b0-b45a-418e-8633-2e61b0a76bba
https://doi.org/10.1167/tvst.13.5.20


Neuro-Ophthalmology

PallorMetrics: Software for Automatically Quantifying Optic
Disc Pallor in Fundus Photographs, and Associations With
Peripapillary RNFL Thickness
Samuel Gibbon1,2, Graciela Muniz-Terrera3, Fabian S. L. Yii1,2, Charlene Hamid1,
Simon Cox5, Ian J. C. Maccormick6,7, Andrew J. Tatham1,8, Craig Ritchie1,3,
Emanuele Trucco9, Baljean Dhillon1,8, and Thomas J. MacGillivray1,2,4

1 Centre for Clinical Brain Sciences, Edinburgh, UK
2 Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, University of Edinburgh, UK, Edinburgh, UK
3 Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
4 VAMPIRE Project, Edinburgh Clinical Research facility, University of Edinburgh, Edinburgh, UK
5 Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
6 Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
7 Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
8 Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh, UK
9 VAMPIRE Project, Computing (SSEN), University of Dundee, Dundee, UK

Correspondence: Samuel Gibbon,
Chancellor’s Building, The University
of Edinburgh, 49 Little France
Crescent, Edinburgh EH16 4SB, UK.
e-mail: samuel.gibbon@ed.ac.uk

Received: June 8, 2023
Accepted: April 10, 2024
Published:May 23, 2024

Keywords: optic disc pallor; RNFL;
optic atrophy; fundus; deep learning

Citation: Gibbon S, Muniz-Terrera G,
Yii FSL, Hamid C, Cox S, Maccormick
IJC, Tatham AJ, Ritchie C, Trucco E,
Dhillon B, MacGillivray TJ.
PallorMetrics: Software for
automatically quantifying optic disc
pallor in fundus photographs, and
associations with peripapillary RNFL
thickness. Transl Vis Sci Technol.
2024;13(5):20,
https://doi.org/10.1167/tvst.13.5.20

Purpose: We sough to develop an automatic method of quantifying optic disc pallor
in fundus photographs and determine associations with peripapillary retinal nerve fiber
layer (pRNFL) thickness.

Methods: We used deep learning to segment the optic disc, fovea, and vessels in
fundus photographs, and measured pallor. We assessed the relationship between
pallor and pRNFL thickness derived from optical coherence tomography scans in 118
participants. Separately, we used images diagnosed by clinical inspection as pale
(n= 45) and assessed howmeasurements compared with healthy controls (n= 46). We
also developed automatic rejection thresholds and tested the software for robustness
to camera type, image format, and resolution.

Results:We developed software that automatically quantified disc pallor across several
zones in fundus photographs. Pallor was associated with pRNFL thickness globally
(β = −9.81; standard error [SE] = 3.16; P < 0.05), in the temporal inferior zone
(β = −29.78; SE = 8.32; P < 0.01), with the nasal/temporal ratio (β = 0.88; SE = 0.34;
P < 0.05), and in the whole disc (β = −8.22; SE = 2.92; P < 0.05). Furthermore, pallor
was significantly higher in the patient group. Last, we demonstrate the analysis to be
robust to camera type, image format, and resolution.

Conclusions: We developed software that automatically locates and quantifies disc
pallor in fundusphotographs and foundassociationsbetweenpallormeasurements and
pRNFL thickness.

Translational Relevance: We think our method will be useful for the identification,
monitoring, and progression of diseases characterized by disc pallor and optic atrophy,
including glaucoma, compression, and potentially in neurodegenerative disorders.

Copyright 2024 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded from tvst.arvojournals.org on 05/28/2024

mailto:samuel.gibbon@ed.ac.uk
https://doi.org/10.1167/tvst.13.5.20
http://creativecommons.org/licenses/by-nc-nd/4.0/


Optic Disc Pallor and RNFL TVST | May 2024 | Vol. 13 | No. 5 | Article 20 | 2

Introduction

A pale optic disc is the hallmark of nonglaucoma-
tous optic atrophy, which refers to the irreversible
loss or damage of retinal ganglion cell axons
along the anterior visual pathway.1 A pale disc has
numerous potential causes, including inflamma-
tion, ischemia, compression, increased intracranial
pressure, toxicity, nutritional deficiency, trauma,
hereditary conditions, vascular disease, infection,
and retinal disease.1,2 As such, disc pallor indicates
the end stage of one of several disease processes.
It begins to show approximately 4 to 6 weeks
after axonal damage.1 In clinical practice, a pale
disc is often considered to be due to a compres-
sive lesion until further tests prove otherwise.1,3
Correctly identifying disc pallor can lead to life-saving
treatment.

Pallor can be identified through ophthalmoscopy
or fundus photography. However, these methods
are limited in that assessing change over time may
be difficult, judgment can vary substantially among
observers,4 and the location of pallor is often not
recorded consistently.5 Computational approaches
may offer a solution, but efforts have been limited,
either requiring special filters during acquisition6–8 or
manual demarcation of the disc.9,10 The purpose of
this study was to develop a fully automatic method
of locating and quantifying disc pallor in fundus
photographs.

The quantity of retinal ganglion cell axons can
be observed directly with optical coherence tomog-
raphy (OCT), which images the retinal nerve fiber
layer (RNFL). Accordingly, we validated the tool by

comparing pallor with peripapillary RNFL (pRNFL)
thickness from OCT scans in anatomically equiva-
lent zones. Additionally, we tested the software on
an image set with clinically diagnosed pallor. Finally,
we tested the robustness of the software to camera
type, image format, and resolution with a variety of
datasets.

Materials and Methods

Participants and Image Capture

Several datasets were used in model develop-
ment and testing (Fig. 1); however, only one dataset
(PREVENT) was used for testing the associa-
tion between pallor and pRNFL thickness. The
PREVENT-Dementia study protocol is described
elsewhere.11 Briefly, participants aged 40 to 59 years
were recruited through multiple sources from five
sites in the UK. Retinal imaging was conducted in
a substudy at the Edinburgh site only (n = 123),
which included fundus photography centered halfway
between the optic disc and the macula (Fig. 2, right),
with a nonmydriatic 45° field of view camera (CR-
DGi; Canon USA, Inc., Lake Success, NY), and OCT
(Heidelberg SPECTRALIS, Heidelberg Engineering,
Germany) (Figs. 2 and 4 left most images). The N-
site circular scan OCT module was used, set to high
speed (1536 A-scans) with a target automatic real-
time function of 100. Participants provided written
informed consent, and the study was carried out in
compliance with the Declaration of Helsinki. Six
additional datasets were used in model development
and testing (Table 1).

Figure 1. Flow of images through annotation, networks, and into the final software.
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Figure 2. (A–D) Output of the Heidelberg SPECTRALIS peripapillary scan, where (A) shows the scan location, (B) shows the various layers
(thick topmost layer is RNFL), (C) shows the measurement zones, and (D) shows the normative data (jagged line is the current participant).
(E) shows the corresponding retinal fundus image.

Figure 3. Annotation procedure. The annotator loads a full-sized image and zooms into the optic disc. The user then drags the waypoints
of a deformable ellipse to the desired location. Additional waypoints can be added by double clicking. The entire shape can also be dragged.
Performed in MATLAB with custom-written code.

Optic Disc Annotation

We annotated the optic disc in 536 images from
three datasets (100 ORIGA, 339 PREVENT, 97 LBC).
In fundoscopy, it is widely accepted that the disc
margin lies at the inner edge of the border tissue,
defined as collagenous tissue that arises from the sclera
to join Bruch’s membrane, forming a scleral cuff or
lip between the optic nerve head and the choroid,
which gives rise to its characteristic appearance as a
yellow–white halo or crescent (Fig. 3).19,20 Accord-
ingly, the annotation protocol required dragging the
waypoints of a deformable ellipse to the inner edge
of the border tissue in full-resolution RGB fundus
images (Fig. 3). Annotation was performed by a single

researcher (author S.G., a PhD student in retinal image
analysis), using custom MATLAB code.

To assess interannotator agreement, a second
researcher (author F.Y., a PhD student in retinal image
analysis and an optometrist) annotated a subset of 100
images (30 ORIGA, 40 PREVENT, 30 LBC) using the
same protocol. The agreement metric was the mean
intersection over union (mIoU), calculated as the area
of overlap divided by the area of union. The mIoU has
been shown to be a suitable measure of interannotator
agreement for medical image segmentation tasks.21 The
mIoU between the two annotators was 0.942 (94.2%).
Overall, F.Y. annotated a smaller area than S.G. (mean
number of pixels for all images = 75,844 vs. 84,701);
however, this difference was largely driven by a low
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Figure 4. Histogram of interannotator agreement.

agreement on a few images (see the histogram in Fig. 4
and examples in Fig. 5).

Fovea Annotation

We annotated the fovea in 1870 images from the
LBC and PREVENT datasets (280 PREVENT, 1590
LBC). The annotation procedure involved dragging
a circle with a fixed radius of 150 pixels onto the
estimated center of the fovea to generate a binary fovea
map, where pixels inside the circle were labelled as
fovea and pixels outside labelled as background. The
image presented to the annotator was preprocessed
to improve visibility by extracting the green channel
of the RGB image and contrast was enhanced by
performing contrast-limited adaptive histogram equal-
ization. When the fovea was not visible (i.e., owing to
poor illumination), the annotator estimated its position
relative to the vessel arc of the central arcades and
disc. If neither the vessel arc nor the disc was visible,
the image was rejected. According to this protocol,
33 of 1623 images were rejected from the LBC, and
none were rejected from PREVENT. Annotation was
performed by a single researcher (author S.G.) using
custom MATLAB code. No second annotator was
used. The annotation and procedure are visualized
in Figure 6.

Convolutional Neural Network Architecture
and Computing Platform

Based on a 2022 survey of deep learning–
based image segmentation,22 we selected Google’s

DeepLabv3+ architecture,23 which was the best
performing network for image segmentation among
the networks reviewed. DeepLabv3+ incorporates an
encoding and decoding phase. The encoder–decoder
model has been described elsewhere.22,23 Briefly, in the
encoding phase, information from the input image is
extracted and compressed into a feature representa-
tion using a backbone convolutional neural network.
The decoder then takes this as input to reconstruct
the initial representation. The goal of such encoder–
decoder architecture is for the model to learn a useful
representation of the image. The result is accurate
segmentation along object boundaries.23 DeepLabv3+
can take one of several backbone architectures, includ-
ing MobileNetv224 and Xception.25 During experi-
mentation, we found that MobileNetv2 produced the
best results. Accordingly, we used DeepLabv3+ with a
MobileNetv2 backbone pretrained on ImageNet26 for
all models, except vessel segmentation, for which we
selected Xception. The values of relevant parameters
varied with tasks and are given in the next section.

All models were trained in MATLAB (version
R2022b; The MathWorks Inc., Natick, MA) using the
Deep Learning Toolbox, on a Dell 7820 machine, fitted
with an Intel Xeon Silver CPU and a NVIDIAQuadro
RTX 5000 GPU, running Windows 10.

Optic Disc Localization

The optic disc localization network was trained
on 536 images from three datasets (100 ORIGA, 339
PREVENT, 97 LBC). In preprocessing, we resized all
images and their corresponding labels to 650 × 650
pixels, allowing the whole image to be processed by
the network. We then split images into training, valida-
tion, and test sets, with a ratio of 80/10/10, yielding 429
images for training, 54 for validation, and 53 for testing.
We used the Adam optimizer, the learning rate was
constant at 0.0001, and the batch size was 4. During
training, validation was carried out after every 100
iterations (approximately every epoch). We applied the
following data augmentations to the training images
to enhance generalization to unseen data: addition of
random color jitter (brightness = 0.3, contrast = 0.3,
saturation = 0.3), scaling (between a factor of 0.8 and
1.3), and rotation (between −30° and 30°). To prevent
overfitting, we finalized training if the validation loss
stopped decreasing or was equal to the previous 10
losses (validation patience).

The aim of the task was to locate the approxi-
mate center of the disc. There were far fewer pixels
labelled as “disc” than pixels labelled as background
(ratio = 1/65), leading to an imbalanced training set.
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Original image             Annotator 1           Annotator 2                Overlap

Figure 5. Interannotator agreement. (A) A high level of agreement. (B) A low-level agreement. Annotator 1 (S.G.); annotator 2 (F.Y.).

Figure 6. Fovea annotation procedure. (A) A good quality image, with the fovea clearly visible. (B) An area of low illumination over the
macula, but the fovea can still be estimated. (C) Very low illumination and blur across the image; however. the optic disc and vessel arc are
still visible, allowing the fovea to be estimated. (D) Neither the vessel arc nor the optic disc is visible; fovea estimation not possible.

With common metrics, a model would perform quite
well if all pixels were simply labelled as background.
To account for imbalance, we replaced the classifica-
tion layer with a class weights layer, based on the class
distribution of the full image set.

The convergence criterion was met after 3700 itera-
tions (during the 28th epoch). The final validation
accuracy was 99.16%. After postprocessing (remov-
ing the smallest object where multiple objects were
detected), we computed the mean Euclidean distance
(mED) in pixels between the ground truth and predic-
tion based on the central points (Fig. 7). The mED in
the test set was 2.06 ± 1.21 pixels, which expressed as
a percentage of disc size (major axis length) was 2.02%
± 1.2%.

Optic Disc Segmentation

The optic disc segmentation network was trained
on 536 images from three datasets (100 ORIGA, 339

PREVENT, 97 LBC). Input to the network was a 650
× 650 × 3 RGB image, cropped around the disc, plus
its corresponding ground truth segmentation. We split
images into training, validation, and test sets, with
a ratio of 80/10/10, respectively. We used the Adam
optimizer, the learning rate was constant at 0.0001,
and the batch size was 4. During training, validation
was carried out after every 100 iterations (approxi-
mately every epoch). Augmentations were applied as
before, but with additional levels of random color
jitter (brightness = 0.6, contrast = 0.6, saturation =
0.6) and scaling (between a factor of 0.4 and 1.6).
As before, class imbalance was high, albeit less than
before (ratio ≈ 1/4.17), which we accounted for in the
same way. The validation patience was 20. The conver-
gence criterion was met after 16,400 iterations (during
the 123rd epoch). The final validation accuracy was
98.79%. ThemIoU for the test set (53 images) was 0.959
(95.9%). Two examples from the test set are presented
in Figure 8.
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Figure 7. Disc localization results on the test set. The ground truth is represented by a circle, and the prediction by an asterisk.

Original          Ground Truth                   Prediction                     Overlay

Figure 8. Optic disc boundary predictions from the test set.

We carried out external testing on IDRiD andRIM-
ONE. Before generating predictions for IDRiD, each
input image was resized, while maintaining its aspect
ratio, to the median height of the training images. This
strategy ensured that, when the image was cropped
around the disc, the ratio of disc to background was
approximately similar to that of a typical image from
the training set. We carried out this step to improve
generalizability.

The RIM-ONE dataset contains images that are
already cropped around the disc; therefore, we skipped
the disc localization stage. Our main performance

metric was the mIoU; however, to enable a better
comparison with other work, we also provide mean
accuracy, defined as TP/(TP + FN), where TP is a
true positive and FN is a false negative. We provide a
direct comparison with the state of the art for IDRiD;
however, for RIM-ONE we applied our network
to their most recent data release (release 3). Other
networks cited here have only been applied to release 1;
therefore, comparative results are indicative only. On
IDRiD, our model achieved a mIoU of 0.891, which
beat the current state of the art (0.845). OnRIM-ONE,
we achieved a mIoU of 0.926 for nonglaucomatous
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Table 2. Comparison of Our OD Segmentation Model to State of the Art

Method Year IDRiD (81 Images)
RIM-ONE V3

(Nonglaucoma; 313 Images)
RIM-ONE V3

(Glaucoma; 172 Images)
RIM-ONE V1
(169 Images)

mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU
ResNet + Unet 2020 – – – – – – – 0.925a

DRNet 2021 0.997 0.845 – – – – 0.962 0.901
Ours 2022 0.899 0.891b 0.958 0.926b 0.947 0.907 – –

ResNet + Unet,28 DRNet.29
aSecond best score.
bBest score.
mAcc, mean accuracy.

eyes, and 0.907 for glaucomatous eyes. A comparative
summary is shown in Table 2.

Fovea Localization

The fovea localization network was trained on 1870
images from the LBC and PREVENT datasets (280
PREVENT, 1590 LBC). In preprocessing, we resized
each image to 224 × 224 pixels. Unlike other features,
the fovea is often not visible; however, its location can
be inferred from its position relative to other salient
features, including the vessel arc of the central arcades
and the large dark patch covering the macula, which
is common in poorly illuminated images. We hypothe-
sized that substantially decreasing the image size would
force the network to focus on these features. There-
fore, input to the network was a 224 × 224 × 3
RGB image and its corresponding label. Images were
split into training, validation, and test sets, with a
ratio of 70/10/20, respectively, yielding 1309 images
for training, 187 for validation, and 374 for testing.
We chose a relatively large (20%) test set for this
task as the focus was on generalization. We used
the Adam optimizer, the learning rate was constant
at 0.0001, and the batch size was 64. During train-
ing, validation was carried out after every 20 itera-
tions.

We manually stopped training after 1167 itera-
tions (during epoch 41), when we observed that the
model was no longer improving. In postprocessing, we
removed the smallest object, where multiple objects
were detected. As with the optic disc localization
network, we measured performance in the test set by
calculating the Euclidian distance between the ground
truth and prediction based on their central points. The
mED was 3.77 ± 2.71. Expressed as a percentage of
image height (224 pixels; disc size was not consistently
available owing to image quality), the mED was 1.68%
± 1.11%. Several results from challenging images in the
test set are presented in Figure 9.

We carried out external testing on IDRiD (103
images). In addition to providing the mED, we evalu-
ate performance with the 1R criterion,29 which refers
to the radius of the optic disc. The 1R grid is
centered on the fovea, and a score of 1 is given if
the predicted coordinates lie within a given region
(Fig. 10). The mED was 64.38 ± 76.43, and median
Euclidean distance was 38.71. Overall, 95.15% of
predictions fell within 1R, 86.41%within 0.5 R, 71.84%
within 0.25 R, and 4.85% fell outside 1R (failed).
The current state of the art for IDRiD is mED
41.87.28

Vessel Segmentation

We trained the vessel segmentation network on 800
images from the FIVES dataset. In preprocessing, we
used the optic disc localization network, described
elsewhere in this article, to crop each image and its
counterpart vessel mask to 650 × 650 pixels centered
on the disc. Therefore, input to the network was a 650
× 650 × 3 RGB image and its corresponding label.
We split images into training, validation, and test sets,
with a ratio of 70/15/15, resulting in 560 images for
training, 120 for validation, and 120 for testing. Unlike
our previous networks, we used Xception25 as the
backbone, because it generated more accurate segmen-
tations during experimentation. We used the Adam
optimizer; the learning rate was 0.0001, which we set
to decrease by a factor of 0.1 in a piecewise manner
every five epochs. The batch size was 4, and validation
was carried out every 100 iterations. Augmentations
applied were identical to those used for disc localiza-
tion.

We manually stopped training after 3561 iterations
(during epoch 6), because the model had converged.
The final validation accuracy was 97.2%. The mean
accuracy on the test set was 95.43% and the mIoU was
0.88. An example of the ground truth and automatic
result is presented in Figure 11.
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Figure 9. Fovea estimations in challenging images from the test set. The yellow circle represents the ground truth, and the asterisk is the
prediction.

Figure 10. Both Euclidean distance and the 1R criterion were used
to evaluate performance in the fovea detection network. The circular
1R grid is centered on the fovea. Image shown is from IDRiD.

Generating Pallor Measures

To calculate pallor, the software took as input full-
size color fundus photographs. In preprocessing, a 300-
pixel border of zeros was added to the left and right
sides of the image, and the whole image was resized to
the median height of the training images (2166 pixels),
while maintaining its aspect ratio. Adding the border
prevented a cropping failure when the disc was close
to or on the border, and resizing helped the model to
generalize by ensuring that the input imagewas approx-

imately equivalent in size to the images the networkwas
trained on.

The disc localization network was used to locate the
disc center. Then, the image was cropped to a size of
650 × 650 pixels, with the disc at the center. Next, disc
segmentation was performed on the cropped image.
Postprocessing of the predicted disc boundary involved
keeping the largest object (where multiple objects were
detected), filling holes (where holes were detected),
and smoothing edges. Edge smoothing consisted of
three stages: (1) morphological opening with a disc-
shaped structuring element of radius 75, (2) blur with a
two-dimensional convolution, and (3) rethreshold to a
value of 0.5. (Edge smoothing algorithm taken directly
from MATLAB user “Image Analyst”, available at
https://uk.mathworks.com/matlabcentral/answers/
380687-how-to-smooth-rough-edges-along-a-binary
-image).

We defined the measurement region as starting
at the inner edge of the border tissue and extend-
ing a fixed distance of 30 pixels inward. We chose
this distance through direct observation as a balance
between capturing as much of the neuroretinal rim
(NRR) as possible while avoiding the cup. We defined
the control region as starting at the outer border of
the cropped image and extending a fixed distance of 50
pixels inwards. We chose this distance through direct
observation as a compromise between capturing as
much of the retina as possible while avoiding the disc
and any atrophy. Vessels were detected in the cropped
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Figure 11. Vessel segmentation. (A) Input to the network, (B) ground truth, (C) automatic result, and (D) superposition of false-color image
of ground truth and automatic result (false negative = green; false positive = magenta).

image and excluded (vessel pixels replaced with zero)
from both the measurement region and the control
region.

We then divided the measurement region into zones
in accordance with the Heidelberg system for assess-
ing pRNFL thickness. Specifically, the intersection of
the optic disc–fovea axis and the measurement region
took a value of zero degrees. The temporal zone then
extended from 45° to −45°, the temporal inferior from
45° to 90°, and so on. The papillomacular bundle is a
special case of the temporal zone, extending from 15°
to −15°.

Finally, we calculated pallor based on the ratios
of red and green pixel intensities6,7,10,30,31 between
the measurement and control regions. Specifically, we
divided the mean of the green channel in the measure-
ment zone by the mean of the red channel in the same
zone. The result was then divided by the samemeasure-
ment in the control region, except using the medians
instead of the means. The result was a measure of
pallor within each eye, for each zone.

Statistical Analysis

Data from one eye are correlated with data from
the fellow eye.32 Shuang et al.33 showed that ignoring
this intereye correlation in standard regression models
can lead to spurious conclusions. The authors suggest
that linear mixed effects modelling with the eye as
the unit of analysis should be used. Accordingly, we
modelled a random intercept for each person and eye.
We adjusted P values for multiple comparisons with
the false discovery rate procedure, which accounts for
correlation between measurements. Statistical analysis
was performed in R (version 4.2.1; www.R-project.org)
using the lme4 and LmerTest packages.

To select covariates, we follow the dijunctive cause
criterion,34 which states that covariates should be

added if they are causes of the exposure or outcome,
or causes of both. Accordingly, the two retinal covari-
ates are disc size and image brightness.

Disc Size
The NRR must accommodate between 0.9 and

1.5 million retinal ganglion cell axons. In a large disc,
the axons can spread out, whereas in a small disc they
are more compact. This means that, theoretically, the
larger the disc, the paler it will appear, and vice versa.
Indeed, we found a correlation between disc size and
global pallor (R2 = 0.11).

Brightness
We defined brightness as the median of all pixels

inside the control region, after converting to greyscale,
and removing vessels. Although the software controls
for image brightness within each eye, light reflectance
in the fundus is known to vary depending on the
which part of the retina it strikes.35 Specifically, the
proportion of light reflected from the NRR and the
background fundus may not remain constant with the
level of light entering the pupil through the camera
flash. Indeed, we found a correlation between bright-
ness in the control region and global pallor (R2 = 0.12).

Interocular Variability

Weassessed interocular differences in pallor for each
zone and propose a new measure, namely, interocular
pallor variability, defined as the sum of absolute differ-
ences from all six zones.

Detecting Pallor in the RFMiD Dataset

We tested the results of our software on 92 images
from the RFMiD dataset (images taken from the
training set), one-half of which had been labelled as
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optic disc pallor and one-half as disease risk = 0 by
ophthalmologists from the RFMiD group. To assess
group differences, we performed unpaired two-sampled
Wilcoxon tests.

Testing the Software for Robustness to
Camera System, Format, and Resolution

Among different countries, clinics, and research
institutions, there is considerable heterogeneity in the
technical aspect of retinal fundus images, including (i)
the camera (e.g., Topcon, Canon), (ii) image resolu-
tion and image size, and (iii) file format (e.g., JPG,
PNG, TIFF). To test the resilience of our system
to these factors, a dataset was constructed contain-
ing images captured by various imaging systems, with
different resolutions and formats. In addition, details
pertaining to the field of view, centering protocol, and
dilation were also noted. We chose 5 sets of 10 images
from a total of 4 datasets (G102036, MESSIDOR37

PREVENT, and REFUGE38). All these datasets,
except for PREVENT, are accessible publicly. The
task focus was on whether images could be processed
successfully, not on how the software copes with
images of varying levels of quality. Accordingly, we
selected images with sufficient quality (broadly even
illumination, free of major pathology). We judged the
results by visual inspection, according to whether the
software correctly (a) located the fovea, (b) located and
segmented the disc, (c) rotated the image along the
optic disc-fovea axis, and (d) segmented the vessels. We
also recorded the computation time for each batch to
assess whether processing time differed by dataset.

Developing a Set of Automatic Rejection
Criteria

If there was insufficient information in an image to
localize the disc or fovea, the image failed at the stage
of processing. These images were usually very overex-
posed or underexposed (i.e., near totally white or black,
respectively), or contained excessive blur. However, in
most cases, the software processed the image, even
when the quality was very low. To enable process-
ing on large datasets, we aimed to develop a set of
criteria through which such images could be rejected
automatically. That is, although the images have been
processed successfully, they are clearly not suitable for
further analysis. For this task we used the LBC dataset,
which contains images of varying levels of quality. We
propose two automatic rejection criteria: disc eccentric-
ity and control region brightness.

1. Eccentricity is the ratio of the distance between
the center of an ellipse fitted onto the disc, and
the major axis length, where 0 is a circle, and 1 is
a line.

2. Control region brightness is the median of all
pixels inside the control region, after converting
to greyscale, and removing vessels.

By visual inspection, we aimed to develop conser-
vative thresholds that would reject only the poorest
quality images, or cases in which the software clearly
failed for another reason (e.g., severe pathology).

Results

The software takes less than 3 seconds to process
a single image and outputs several key visualizations
(Fig. 12) alongside tabular data.

Quality Control and Sample Derivation

The sample derivation is illustrated in Figure 13.
After quality control, concurrent fundus images and
OCT scans were available for 118 participants (226
eyes). Three fundus images were rejected owing to
segmentation error and low illumination (author
S.G.; visual inspection) (Supplementary Fig. S1), and
13 OCT scans were excluded for reasons including
clipping (4 images), improper centering (4 images),
high myopia (≤−5 diopters; 2 images), poor segmenta-
tion (3 images), poor illumination (1 image), and signs
of pathology (5 images). Pathologies in OCT included
epiretinal membrane, excessive peripapillary atrophy,
and tilted discs. OCT quality control was carried
out by C.H., an ophthalmic imager and analyst, via
manual inspection of the images through the Heidel-
berg platform.

Summary Statistics

Image characteristics are summarized in Table 3,
alongside basic demographics. Histograms showed that
pallor was normally distributed (Supplementary Fig.
S2).

Pallor was highest temporally and lowest nasally.
Mean pallor was lower when considering all zones in
the measurement region (global pallor; 1.37 ± 0.18)
than when considering the entire disc (mean, 1.43 ±
0.2). In all measurement zones, pallor was numerically
higher in the left eye compared with the right eye.
pRNFL was thickest in both polar zones (superiorly
and inferiorly), which was in accordance with typical
findings.39 Unlike pallor, pRNFL was not systemati-
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Figure 12. Core visualizations of the software. (A) Disc and fovea localization are used to rotate the image along the optic disc–fovea
line. (B) Cropped optic disc. (C) Segmented disc excluding vessels. (D) Measurement region excluding vessels. (E) measurement and control
region (outer square) excluding vessels. (F) Alert system (region lights up red if a limit is exceeded). (G) Dashed line represents 1 standard
deviation above the mean of all participants in PREVENT, red line is the current participant.

cally different between the eyes. Boxplots of pallor and
pRNFL by zone and eye are presented in Figure 14.

Associations Between pRNFL Thickness and
Pallor

After adjusting for age, sex, disc area, control region
brightness, and multiple comparisons, we observed
statistically significant associations between pRNFL
thickness and pallor globally (β = −9.81; SE = 3.16; P
< 0.05), in the temporal inferior zone (β = −29.78; SE
= 3.32; P < 0.01), and with the nasal/temporal ratio (β
= 0.88; SE= 0.34;P< 0.05). Pallor in themeasurement
regionwasmore discriminative than pallormeasured in
the whole disc (β = −8.22; SE = 2.92; P < 0.05). We
also found an association between pRNFL thickness
and pallor in the temporal-superior zone (β = −17.29;
SE = 7.83; P < 0.05); however, this significance did not
survive correction for multiple comparisons. Results
are summarized in Table 4.

Interocular Pallor Variability

In the PREVENT dataset, data from both eyes
were available for 108 participants. For global pallor,
we measured a mean unit difference of 0.10 ± 0.07
between the eyes. To put this into context, global
pallor ranges from 0.87 to 1.90. This result means that,

although interocular difference is evident, measure-
ments from one eye in a person are broadly similar to
measurements from the fellow eye. We also observed
differences between zones, for example, the greatest
difference between the left and right eyes was observed
in the temporal region (mean, 0.13 ± 0.1). The general
pattern of pallor being high temporally and low nasally
was preserved between the eyes (Fig. 15). In Figure 16
(right), pallor is higher in the right eye than the fellow
eye in the nasal zone, but higher in the left eye than the
fellow eye in the temporal zone. To capture this zone-
to-zone variability, we take the sum of absolute differ-
ences from all six zones. By contrast, in Figure 16 (left),
pallor is higher in all zones in the left eye.

Assessing Pallor in the RFMiD Dataset

Of 92 images (46 pallor, 46 controls) in the RFMiD
dataset (training set), which contained a patient group
(diagnosed optic disc pallor) and healthy controls, the
fovea localization module failed in one patient image
and was subsequently rejected, despite accurate disc
segmentation. Accordingly, analysis was carried out on
45 images labelled as pallor and 46 healthy controls.

Predicted pallor was substantially higher in the
patient group compared with the control group for
all zones. For example, the mean global pallor in the
control group was 0.98 ± 0.09 compared with 1.23 ±
0.14 in the patient group, and this difference was statis-
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Figure 13. Sample derivation flowchart.

tically significant (Wilcoxon unpaired signed rank test:
W = 208; P < 10−11; R = 0.73) (Table 5). There was no
evidence of significant difference in the nasal/temporal
ratio between the groups (control group mean, 0.9
± 0.07; patient group mean, 0.9 ± 0.05), reflecting
the diffuse nature of pallor identified in the images.
One example from each group is presented visually
in Figure 17.

Robustness to Camera System, Format, and
Resolution

We tested the software on five different datasets
(none of which were used in model development)
containing images captured with five different camera
systems (from three manufacturers), three different
image formats, and resolutions ranging from 1634 ×

1623 to 3072 × 2048. Judged by visual inspection, as
per the criteria described in the Methods section, the
methodology successfully processed all 50 images from
all 5 datasets. Technical characteristics of the images
are summarized in Table 6, and one example from each
dataset is presented in Figure 18. Computation time
was highest for the MESSIDOR dataset (2.9 seconds
per image) and lowest for the REFUGECanon dataset
(2.5 seconds per image).

Developing a Set of Automatic Rejection
Criteria

Of 1584 images from the LBC dataset, 13 failed
processing for reasons including excessive blur, optic
disc outside field of view, and overexposure and under-
exposure. Rejection thresholds were set based on visual
inspection of the remaining 1571 images. Using our
best judgment, thresholds for rejecting images were set
at greater than 0.65 for eccentricity at greater than 0.65
and less than 50 for brightness of the control region.
Examples of images that exceed these thresholds are
presented in Figure 19. Summary statistics for images
exceeding the proposed thresholds for both LBC and
PREVENT are summarized in Table 7.

Discussion

We have presented a fully automatic method
of quantifying optic disc pallor in color fundus
photographs. In approximately 3 seconds per image,
the software generates tabular data and visualizations
capturing key measurements and summative proper-
ties. In particular, the software generates a global pallor
metric, as well as metrics for seven zones, in accor-
dance with the Spectralis OCT peripapillary scan.
The software proved robust to camera system, image
format, and resolution in our experiments and gener-
ates several metrics that can be used to filter out
challenging or low-quality images, thereby allowing for
application to large datasets.

In similar work, Yang et al.30 developed a fully
automatic pallor quantification system that operates
on standard fundus photographs. However, their work
has some limitations. For example, vasculature is
included in their measurement region. This factor may
be problematic, because vessel appearance is known
to change with disease. For example, in hyperten-
sive retinopathy, the arteriolar light reflex is accentu-
ated,40 in retinal vasculitis a white cuff is visible around
vessels,41 and, although rare, in lipemia retinalis,
vessels appear creamy.42 In addition, zones in Yang
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Table 3. Demographics, Covariates, Pallor, and pRNFL Thickness in Microns by Zone and Eye

Eye

Left Right Overall

N (participants) 118
N (eyes) (n = 112) (n = 114) (N = 226)
Age, years 51.5 ± 5.60 51.4 ± 5.67 51.4 ± 5.63
Sex (female) 68 (60.7) 68 (59.6) 136 (60.2)
Disc area 75,300 ± 16,400 72,400 ± 14,500 73,900 ± 15,500
Luminance 93.1 ± 19.5 90.1 ± 18.8 91.6 ± 19.1
Temporal
Pallor 1.62 ± 0.24 1.54 ± 0.22 1.58 ± 0.23
RNFL 69.3 ± 13.8 73.8 ± 13.1 71.6 ± 13.6
RNFL missing 5 (4.5) 6 (5.3) 11 (4.9)

Temporal inferior
Pallor 1.42 ± 0.19 1.34 ± 0.19 1.38 ± 0.19
RNFL 139 ± 19.7 141 ± 22.7 140 ± 21.2
RNFL missing 5 (4.5) 6 (5.3) 11 (4.9)

Nasal inferior
Pallor 1.16 ± 0.14 1.12 ± 0.14 1.14 ± 0.14
RNFL 113 ± 21.9 112 ± 22.1 113 ± 22.0
RNFL missing 5 (4.5) 6 (5.3) 11 (4.9)

Nasal
Pallor 1.25 ± 0.16 1.19 ± 0.15 1.22 ± 0.18
RNFL 74.7 ± 16.2 76.9 ± 18.9 75.8 ± 17.6
RNFL missing 6 (5.4) 7 (6.1) 13 (5.8)

Nasal superior
Pallor 1.27 ± 0.16 1.20 ± 0.15 1.23 ± 0.16
RNFL 111 ± 18.9 98.6 ± 18.8 105 ± 19.8
RNFL missing 6 (5.4) 7 (6.1) 13 (5.8)

Temporal superior
Pallor 1.36 ± 0.19 1.30 ± 0.18 1.33 ± 0.19
RNFL 135 ± 17.3 135 ± 16.9 135 ± 17.0
RNFL missing 5 (4.5) 6 (5.3) 11 (4.9)

PMB
Pallor 1.68 ± 0.25 1.59 ± 0.23 1.63 ± 0.25
RNFL 53.9 ± 13.1 55.6 ± 9.04 54.7 ± 11.2
RNFL missing 6 (5.4) 9 (7.9) 15 (6.6)

Global
Pallor 1.41 ± 0.18 1.34 ± 0.17 1.37 ± 0.18
RNFL 98.1 ± 8.03 98.2 ± 8.12 98.2 ± 8.06
RNFL missing 6 (5.4) 7 (6.1) 13 (5.8)

Nasal/temporal ratio
Pallor 0.77 ± 0.07 0.78 ± 0.08 0.78 ± 0.07
RNFL 1.13 ± 0.34 1.08 ± 0.36 1.10 ± 0.35
RNFL missing 7 (6.3) 10 (8.8) 17 (7.5)

Whole disc
Pallor 1.46 ± 0.201 1.39 ± 0.185 1.43 ± 0.196
Values are mean ± SD or number (%).
PMB, papillomacular bundle.
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Figure 14. Boxplots representing pallor and pRNFL thickness values by zone and eye. N = 118 (114 right eyes, 112 left eyes).

et al.’s work (clock-hour locations) were not defined
by their spatial relation to the fovea, making it difficult
to compare measurements accurately across different
images or to make sectoral comparisons to OCT. Our
approach addresses these limitations by (a) detecting
vessels and excluding them from both themeasurement
and control region and (b) rotating the image along the
optic disc–fovea axis before analysis.

In other similar work, Gonzalez-Hernandez
et al.31 developed a fully automated system to assess
hemoglobin content in the optic disc (Laguna-ONhE;
Optic Nerve Head Evaluation), which partly explains
pallor. As with Yang et al.’s system, the Laguna
software did not define the measurement zone in
relation to the fovea. However, unlike Yang et al. and
the current study, Laguna does attempt to segment the
optic cup. Although this strategy carries the advantage
of capturing the entire NRR (where possible), it may
fail when the cup is not visible, which is often the
case in fundus photographs. Indeed, numerous studies
show that segmenting the cup is difficult,4,27,43,44
although recent work has been more successful45;
moreover, it is difficult to establish ground truth given
interobserver variability in locating the extent of optic
disc cupping. For this reason, we chose instead to

define the measurement region in accordance with
Yang et al. at a fixed distance inward from the disc
margin, sacrificing potential accuracy for robust-
ness.

We investigated the relationship between pallor and
pRNFL thickness in participants for whom concurrent
data were available. Controlling for age, sex, disc area,
control region brightness, and multiple comparisons,
we found statistically significant associations between
pallor and global pRNFL thickness, with a signifi-
cant association also observed in the temporal-inferior
and temporal-superior zones and in the temporal-
nasal ratio. pRNFL thinning (as measured with OCT)
is associated with several negative health outcomes,
including glaucoma,46 increased cardiovascular risk,47
Alzheimer’s disease, mild cognitive impairment,48
future cognitive decline,49 increased risk of demen-
tia,50 small vessel disease,51 and stroke.52 However,
OCT is not yet widely available. Our approach gener-
ates measures of disc pallor that are associated
with pRNFL thickness from simple color fundus
photographs, which are much more widely available,
potentially enabling the detection and monitoring of
the progression of diseases that involve pRNFL loss
with this imaging technology.
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Table 4. Linear Mixed Effects Regression Models of pRNFL Thickness Predicted by Pallor in Equivalent Zones

Coefficients

Zone β (SE) P Value P Value (Adjusted for FDR)

Global −9.81 (3.16) 0.002** 0.011*

Temporal −2.89 (4.68) 0.538 0.724
Temporal-inferior −29.78 (8.32) 0.000*** 0.004**

Nasal-inferior 5.92 (13.09) 0.652 0.724
Nasal −4.7 (9.2) 0.610 0.724
Nasal-superior −7.92 (9.85) 0.422 0.704
Temporal-superior −17.29 (7.83) 0.028* 0.057
PMB −0.03 (3.72) 0.994 0.994
Global pRNFL ∼ pallor in whole disc −8.22 (2.92) 0.005** 0.018*

Nasal-temporal ratio 0.88 (0.34) 0.011* 0.028*

Random intercepts aremodelled for each subject and eye.Models are adjusted for age, sex, disc area, and image brightness.
*P < 0.05.
**P < 0.01.
***P < 0.001.
FDR, false discovery rate; PMB, papillomacular bundle.

Figure 15. Boxplots representing the difference in pallor between the eyes of a participant (N = 108).

Aside from its association with pRNFL thickness,
the ability to quantify pallor may have additional value
in differentiating the etiology of structural changes
to the optic nerve head; for example, in differ-
entiating glaucomatous and nonglaucomatous optic
neuropathy. Although pRNFL thinning is seen in
both conditions, cupping rather than pallor is typical
of glaucomatous optic neuropathy, and the presence
of clinically apparent pallor often triggers investiga-
tions for nonglaucomatous causes, including poten-
tial magnetic resonance imaging of the anterior visual
pathway.6,53

In all zones, pallor was slightly lower in the right
eye compared with the left eye, and this finding largely
corresponded with pRNFL thickness measured in

equivalent zones. This observation is in agreement with
other studies that found the RNFL to be consistently
thicker in the right eye.54–57 Cameron et al.58 discussed
the importance of interocular symmetry in health and
disease, pointing out that the emergence of asymmetry
may alert the ophthalmologist that glaucoma should
be considered. Further, they review several studies
that attempt to create thresholds for when RNFL
asymmetry may be clinically meaningful for glaucoma
diagnosis and progression. This observation further
suggests that our measure of symmetry (interocular
pallor variability), may find usefulness in glaucoma
detection and diagnosis.

Another important use case for the software could
be the identification, monitoring and progression of
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Figure 16. Parallel plots from two participants showing interocular differences in pallor by zone (nasal pallor is repeated on either side of
each plot for aesthetics). I, inferior; IoPV, interocular pallor variability; N, nasal; S, superior; T, temporal.

Table 5. UnpairedWilcoxon Signed Rank Test Results Comparing Eyes Labelled as Having Pallor vs Controls in the
RMFiD Dataset

Zone Group, Mean ± SD Wilcoxon Test

Control Pallor W P Value R (Effect Size)

Temporal 1.06 ± 0.12 1.32 ± 0.15 195 <10−10 0.7
Temporal-inferior 0.95 ± 0.09 1.2 ± 0.13 118 <10−12 0.76
Nasal-inferior 0.91 ± 0.09 1.15 ± 0.13 143 <10−11 0.74
Nasal 0.95 ± 0.1 1.18 ± 0.14 161 <10−11 0.73
Nasal-superior 0.93 ± 0.09 1.14 ± 0.13 176 <10−11 0.72
Temporal-superior 0.97 ± 0.1 1.24 ± 0.15 151 <10−11 0.74
PMB 1.08 ± 0.12 1.34 ± 0.16 208 <10−10 0.69
Global 0.98 ± 0.09 1.23 ± 0.14 164 <10−11 0.73
Global pRNFL ∼ whole disc pallor 1.03 ± 0.11 1.26 ± 0.15 217 <10−10 0.68
Nasal-temporal ratio 0.9 ± 0.07 0.9 ± 0.05 1063 0.82 0.02

Note: We chose not to correct for multiple comparisons here owing to the very low P values.
PMB, papillomacular bundle; SD, standard deviation of the mean.

compressive optic neuropathy, whereby a compres-
sive lesion anywhere along the optic nerve or anterior
visual pathway (anterior to the lateral geniculate body)
causes axons to die, resulting in optic atrophy/pallor.59
The ability to quantify sectoral pallor may provide
additional value. For example, compression to the
optic chiasm can cause pallor in the temporal and

nasal zones—a condition known as band or bow tie
atrophy.60 Therefore, the pattern of optic disc pallor
may further help localization of the lesion. Of partic-
ular relevance may be the detection of optic pathway
gliomas (OPGs), which predominantly affect children
(mean age at presentation, 8.8 years).61 Assessment of
vision is crucial in diagnosis; however, young children
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Figure 17. Intermittent stages of the pallor software on two images from the RFMiD dataset, one diagnosed by two ophthalmologists as
having optic disc pallor (right) and a healthy control (left).

Table 6. Technical Characteristics of the Datasets Used to Assess How the Software Deals With Images Captured
With a Range of Different Camera Systems, Resolutions, and Formats

Dataset Format Camera Resolution FOV Centering Dilation

Computation
Time per Image

(Seconds)

G1020 JPG Topcon
TRC-NW8

Between
1944 × 2108

and
2426 × 3007

45° Mixed Yes 2.8

MESSIDOR TIFF Topcon
TRC-NW6

2240 × 1488 45° Mixed Yes 2.9

PREVENT
(follow-up
images)

BMP Canon CR-Dgi 3072 × 2048 45° Posterior
pole

No 2.7

REFUGE
(Canon)

JPG Canon CR-2 1634 × 1634 – Posterior
pole

– 2.5

REFUGE
(Zeiss)

JPG Zeiss Visucam
500

2124 × 2056 – Posterior
pole

– 2.6

FOV, field of view.

will often not complain of vision loss, and instead
present at a later stage with headache or pain.62 Given
that disc pallor is present in approximately 60% of
cases,61,62 it is feasible that OPG could be detected
automatically through routine fundus imaging, which
is not typically viewed by an ophthalmologist. Further
research should investigate the association between
optic disc pallor, asmeasuredwith the current software,
and various types of compressive optic neuropa-
thy.

Disc pallor is also an important measure of
chemotherapy success in pediatric OPGs,63 with the
authors suggesting that the degree of pallor could be
important. Indeed, complementary work investigating
the visual outcomes of childhood OPG treated with
radiotherapy found that severe disc pallor (compared
with mild) at diagnosis or follow-up may be associated
with a negative prognosis.64 Further work could reeval-

uate such existing studies, substituting clinical notes
on pallor for the continuous measures generated by
our software (depending on the availability of fundus
images). However, care should be taken if investigating
changes in pallor, because it rarely improves63; there-
fore, the direction of change will almost always be one
way.

OCT is the gold standard for assessing RNFL loss.
However, compared with fundus, imaging it is costly,
requires greater operator training, and is less preva-
lent. Furthermore, to avoid movement artefacts to
which OCT is prone, such as those cause by ocular
saccades, blinks, changes in head position, or respi-
ratory movements,65 patients must maintain a steady
focus on a fixed point for several tens of seconds. There-
fore, obtaining a high-quality OCT can be particu-
larly challenging in individuals who may struggle with
prolonged focus and steadiness, such as children,66 the
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Figure 18. Robustness to camera system, format, and resolution results. (A) G1020, (B) MESSIDOR, (C) REFUGE Canon, (D) MESSIDOR, and
(E) REFUGE Zeiss. Image to the left shows disc segmentation and fovea localization in the whole image, image to the right shows disc
segmentation in closer detail. Pallor value shown is for the whole disc.

Figure 19. Automatic image rejection based on exceeding set thresholds for luminance (left) and eccentricity (right). We acknowledge
that the image to the right was a failure of the software to correctly identify the disc margin owing to excessive chorioretinal atrophy.

Table 7. Automatic Image Rejection Thresholds

Criterion Threshold LBC PREVENT

Mean ± SD Images Over
Threshold (n, %)

Mean ± SD Images Over
Threshold (n, %)

Eccentricity >0.65 0.39 ± 0.11 22 (1.4) 0.4 ± 0.1 2 (0.6)
Luminance <50 110.21 ± 26.24 18 (1.15) 90.56 ± 18.62 9 (2.85)

SD, standard deviation.

frail elderly, or those with movement disorders. Owing
to the speed of acquisition, fundus imaging is more
likely to be successful in these groups. Pallor derived
from fundus photographs could provide an indicator
that further examination is required, and could be a
good alternative in groups where OCT scanning is not
feasible.

Strengths of the current study included the
networks’ ability to segment the optic disc to the
inner edge of the border tissue accurately. The disc
margin is marked differently depending on the imaging

modality through which it is observed. In OCT, the
margin is marked at Bruch’s membrane opening,20
whereas in clinical ophthalmoscopy and fundus
photography, it is defined as the inner edge of the
border tissue.20 There are many deep learning–based
disc segmentation algorithms (for a review see Hasan
et al.28); however, most systems are trained on one
or more of four open-source image sets, namely
IDRiD, RIMONE, DRISHTI-GS,67 and DRIVE.68
This factor may be problematic for our requirement,
because, on close inspection of ground truth segmen-
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Figure 20. Examples from RIM ONE (glaucoma = A–B, nonglaucoma = C–D) and IDRiD (E–F), where the disc margin is overestimated
according to a clinical definition. The ground truth (according to the original annotations) ismarked in pink. The dashed line in (A) represents
where we perceive the margin to be. In (A), the space between the dashed line and the start of the pink represents label noise.

tations in IDRiD and RIMONE, we observed a
noticeable departure from what we perceived to be
the clinically defined margin (Fig. 20). We believe
this could be the result of averaging multiple annota-
tions from different individuals to arrive at a ground
truth, in which there is considerable disagreement.
Such disagreements may have arisen owing to the
annotators either marking the boundary clinically,
or inferring Bruch’s membrane opening–based infor-
mation, for example, the bend of vessels at the rim.
Although disagreement between multiple annotators
provides an important measure of confidence that
must be considered when assessing an automatic
system, averaging multiple annotations can lead to
label noise.

A recent study on label noise in medical image
segmentation demonstrated that, although state-of-
the-art networks are somewhat robust to unbiased or
random noise, they are sensitive to biased noise.69
Indeed, we observed that RIMONE and IDRiD may
contain biased noise, whereby the clinically defined
disc boundary is overestimated systematically with
respect to where we perceive the clinical margin
to lie. It is, therefore, possible that deep learning–
based models trained on these datasets will system-
atically overestimate the clinically defined boundary.
The significance of this factor for automatic segmen-
tation programs would depend on the application.
For example, the VAMPIRE software,70 which is
concerned with obtaining vessel-based measurements,
requires that the disc be estimated as a best fit ellipse,
in which case the precise boundary is less impor-
tant. However, our work required greater precision,
because sharp changes in color at the border would
erroneously affect pallor metrics. Another use case

that may benefit from a more precisely defined disc
margin is measuring the cup to disc ratio/profile
in glaucoma,71 because an overestimated rim could
erroneously widen the profile, leading to a false positive
(missing glaucoma).

Another strength of the current study is the
robustness of the fovea detection network, which, in
our experiments, gives good estimates even for very
challenging images (Fig. 9). Additionally, locating the
fovea helps the software to determine which eye (left
or right) is being processed and allows for accurate
zone placement. Last, the study had the advantage of
using mixed effects modelling, which enabled the use
of data from both eyes, thereby increasing statistical
power.

The current study has several limitations. First,
disc appearance is affected by physiological factors,
chiefly the media opacity of the lens, but also poten-
tially the richness of the capillary net supplying the
optic nerve. Lens status was not available for the
patients included in our study; therefore, we could not
distinguish the pallor caused by optic atrophy from
pseudopallor (nonpathological paleness, most notably
caused by cataract extraction).2 Further validation
work should be carried out to assess the extent to
which the current pallormetrics are affected byworsen-
ing cataract and cataract removal. In the meantime,
information on cataract status and other potential
causes of pseudopallor should be included as covari-
ates where possible, particularly with older individuals.
With regard to perfusion, in future studies it would be
interesting to examine the relationship between OCT
angiography measures of vessel density and pallor
measured using the software to determine whether
density of the capillary net might be a confound-
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ing factor in grading pallor, or if the software could
potentially be useful for evaluating changes to the
optic nerve head caused by reduced optic nerve head
perfusion.

Another limitation is that pallor quantification
was affected somewhat by the brightness of the
control region (which itself is largely determined by
pigmentation—a factor that varies among individuals.
To overcome this issue, we added control region bright-
ness as a covariate in all statistical models. Although
this approach may be acceptable for research studies
with multiple participants, for clinical insight into a
single image, normative data with a wide range of
relevant parameters would be required to determine the
extent to which pigmentation affects the measure.

With regard to peripapillary atrophy, we selected the
control region to include as much of the background
retina as possible, while minimizing the inclusion of
any atrophy. Further, we used median values when
calculating the overall control region brightness, which
helped to mitigate the effect of any included atrophy.
However, if the control region of an image contains
a significant portion of atrophy, the image should be
rejected, because the pallor metrics may be unreli-
able (there were no such cases in the PREVENT
dataset).

Another limitation is that three of the four networks
(disc localization and segmentation, and fovea localiza-
tion) were partly trained on PREVENT images. This
overlap calls into question the generalizability of the
software. However, we point to internal (test set) and
external testing carried out on all three networks, which
show excellent generalizability. Nonetheless, further
research should aim to replicate the finding that disc
pallor is associated with pRNFL thickness in a novel
dataset.

A final limitation was the lack of association
between pRNFL thickness and pallor in five of
the seven zones. In similar work, but using clini-
cal notes (e.g., pallor absent/present), Aleman et al.5
observed that the association between pallor and
pRNFL thickness is optimal only when significant
thinning has occurred. This may help explain the lack
of associations in five zones in the current study, as
participants in the PREVENT cohort are relatively
healthy; global mean pRNFL was thick (98.2 ±
8.3 μm) in comparison with normative data (90 μm
in Whites72 and 94 μm in a multiethnic cohort),72
although thinner than in individuals from Ghana
(102 μm).73

Further research should aim to replicate the current
findings in a larger sample, generate normative data,
and test for associations with cardiovascular risk
factors and disease.

Conclusions

A pale disc indicates irreversible damage to the
anterior visual pathway and is present in numer-
ous diseases. We present an automatic, artificial
intelligence–enabled method that is fast, easy to
use, robust, and suitable for application to large
datasets. We found associations between pallor and
pRNFL thickness, suggesting that disc pallor derived
from fundus photographs may act as a proxy for
pRNFL. We think our method will be useful for the
identification and monitoring of the progression of
diseases characterized by disc pallor and optic atrophy,
including glaucoma, compression, and potentially in
neurodegenerative disorders.
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