29 research outputs found

    Landslide susceptibility mapping through enhanced dynamic slope stability analysis using earth observing satellite measurements

    Get PDF
    Landslides are common throughout the world and can be triggered by earthquakes, volcanoes, floods, and heavy continuous rainfall in mountainous regions. For most types of slope failure, soil moisture plays a critical role because increased pore water pressure reduces the soil strength and increases stress. The combined effect of soil moisture in unsaturated soil layers and pore water pressure in saturated soil layers is critical to accurately predict landslides. However, dynamic in-situ soil moisture profiles are rarely measured on regional or global scales. The dynamic soil moisture can be estimated by a soil vegetation atmosphere transfer (SVAT) model or satellite. While a SVAT model can estimate soil moisture profile, satellite estimates are limited to the upper thin surface (0-5 cm). However, considering the complex database needed for a SVAT model, satellite data can be obtained quickly and may produce promising results in less data-rich regions at the global scale. While no previous landslide studies have used remotely-sensed soil moisture data, Advanced Microwave Scanning Radiometer (AMSR-E) has the potential to be useful in characterizing soil moisture profiles. First this study investigated relationships among landslides, AMSR-E soil moisture and Tropical Rainfall Measuring Mission (TRMM) in landslide prone regions of California, U.S., Leyte, Philippines and Dhading, Nepal. Then, a modified infinite slope stability model was developed and applied at Cleveland Corral, California, US and Dhading Nepal, using variable infiltration capacity (VIC-3L) soil moisture and AMSR-E soil moisture to develop dynamic landslide susceptibility maps at regional scale. Results show a strong relationship among remotely sensed soil moisture, rainfall and landslide events. Results also show a modified infinite slope stability model that directly includes vadose zone soil moisture can produce promising landslide susceptibility maps at regional scale using either VIC-3L or AMSR-E soil moisture. Vadose zone soil moisture has a significant role in shallow slope failure. Results show promising agreement between the susceptible area predicted by the model and the actual slope movements and slope failures observed in the study region. This model is quite reasonable to use in shallow slope stability analysis at a regional or global scale

    Surface engineering to control electromagnetic waves across the spectrum

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Robust vision based slope estimation and rocks detection for autonomous space landers

    Get PDF
    As future robotic surface exploration missions to other planets, moons and asteroids become more ambitious in their science goals, there is a rapidly growing need to significantly enhance the capabilities of entry, descent and landing technology such that landings can be carried out with pin-point accuracy at previously inaccessible sites of high scientific value. As a consequence of the extreme uncertainty in touch-down locations of current missions and the absence of any effective hazard detection and avoidance capabilities, mission designers must exercise extreme caution when selecting candidate landing sites. The entire landing uncertainty footprint must be placed completely within a region of relatively flat and hazard free terrain in order to minimise the risk of mission ending damage to the spacecraft at touchdown. Consequently, vast numbers of scientifically rich landing sites must be rejected in favour of safer alternatives that may not offer the same level of scientific opportunity. The majority of truly scientifically interesting locations on planetary surfaces are rarely found in such hazard free and easily accessible locations, and so goals have been set for a number of advanced capabilities of future entry, descent and landing technology. Key amongst these is the ability to reliably detect and safely avoid all mission critical surface hazards in the area surrounding a pre-selected landing location. This thesis investigates techniques for the use of a single camera system as the primary sensor in the preliminary development of a hazard detection system that is capable of supporting pin-point landing operations for next generation robotic planetary landing craft. The requirements for such a system have been stated as the ability to detect slopes greater than 5 degrees and surface objects greater than 30cm in diameter. The primary contribution in this thesis, aimed at achieving these goals, is the development of a feature-based,self-initialising, fully adaptive structure from motion (SFM) algorithm based on a robust square-root unscented Kalman filtering framework and the fusion of the resulting SFM scene structure estimates with a sophisticated shape from shading (SFS) algorithm that has the potential to produce very dense and highly accurate digital elevation models (DEMs) that possess sufficient resolution to achieve the sensing accuracy required by next generation landers. Such a system is capable of adapting to potential changes in the external noise environment that may result from intermittent and varying rocket motor thrust and/or sudden turbulence during descent, which may translate to variations in the vibrations experienced by the platform and introduce varying levels of motion blur that will affect the accuracy of image feature tracking algorithms. Accurate scene structure estimates have been obtained using this system from both real and synthetic descent imagery, allowing for the production of accurate DEMs. While some further work would be required in order to produce DEMs that possess the resolution and accuracy needed to determine slopes and the presence of small objects such as rocks at the levels of accuracy required, this thesis presents a very strong foundation upon which to build and goes a long way towards developing a highly robust and accurate solution

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Multiresolution image models and estimation techniques

    Get PDF

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy

    Learning efficient image representations: Connections between statistics and neuroscience

    Get PDF
    This thesis summarizes different works developed in the framework of analyzing the relation between image processing, statistics and neuroscience. These relations are analyzed from the efficient coding hypothesis point of view (H. Barlow [1961] and Attneave [1954]). This hypothesis suggests that the human visual system has been adapted during the ages in order to process the visual information in an efficient way, i.e. taking advantage of the statistical regularities of the visual world. Under this classical idea different works in different directions are developed. One direction is analyzing the statistical properties of a revisited, extended and fitted classical model of the human visual system. No statistical information is used in the model. Results show that this model obtains a representation with good statistical properties, which is a new evidence in favor of the efficient coding hypothesis. From the statistical point of view, different methods are proposed and optimized using natural images. The models obtained using these statistical methods show similar behavior to the human visual system, both in the spatial and color dimensions, which are also new evidences of the efficient coding hypothesis. Applications in image processing are an important part of the Thesis. Statistical and neuroscience based methods are employed to develop a wide set of image processing algorithms. Results of these methods in denoising, classification, synthesis and quality assessment are comparable to some of the most successful current methods
    corecore