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ABSTRACT

LANDSLIDE SUSCEPTIBILITY MAPPING THROUGH ENHANCED
DYNAMIC SLOPE STABILITY ANALYSIS USING EARTH

OBSERVING SATELLITE MEASUREMENTSY
by

Ram Lakhan Ray

University of New Hampshire, September, 2009

Landslides are common throughout the world and can be triggered by earthquakes,
volcanoes, floods, and heavy continuous rainfall in mountainous regions. For most 'types
of slope failure, soil moisture plays a critical role because increased pore water pressure
reduces the soil strength and increases stress. The combined effect of soil moisture in
unsaturated soil layers and pore water pressure in saturated soil layers is critical to
accurately predict landslides. However, dynamic in-situ soil moisture profiles are rarely
measured on regional or global scales. |

The dynamic soil moisture can be estimated by a soil vegetation étrﬁosphere
transfer (SVAT) model or satellite. While a SVAT model can estimate soil moisture
profile, satellite estimates are limited to the upper thin surface (0-5 cm). However,
considering the complex databasé needed for a SVAT model, satellite data can be
obtained quickly and may produce promising results in less data-rich regions at the global

scale. While no previous landslide studies have used remotely-sensed soil moisture data,
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Advanced Microwave Scanning Radiometer (AMSR-E) has the potential to be useful in
characterizing soil moisture profiles.

First this study investigated relationships among landslides, AMSR-E soil
moisture and Tropical Rainfall Measuring Mission (TRMM) in landslide prone regions of
California, U.S., Leyte, Phﬂippines and Dhading, Nepal. Then, a modiﬁbed infinite slope
stability model was developed and applied at Cleveland Corral, California, US and
Dhading Nepal, using variable infiltration capacity (VIC-3L) soil moisture and AMSR-E
soil moisture to develop dynamic landslide susceptibility maps at regional scale.

Results show a strong relationship among remotely sensed soil nioisture, rainfall
and landslide events. Results also show a modified infinite slope stability model that
directly includes vadose zone soil .moisture can produce promising landslide
susceptibility maps at regional scale using either VIC-3L or AMSR-E soil moisture.
Vadose zone soil moisture has a significant role in shallow slope failure. Results show
promising agreement between the susceptible area predicted by the model and the actual
slope movements and slope failures observed in the study region. This model is quite

reasonable to use in shallow slope stability analysis at a regional or global scale.
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CHAPTER 1.

INTRODUCTION

Natural disasters, like landslides, tsunamis, and floods, cost billions of dollars and
result in numerous deaths and injuries throughout the world in mountainous regions
(Mettemicht et al., 2005). Both developed countries (e.g., U.S., Australia, Japan and
U.K.) and developing countries (e.g., China, India, Indonesia, Philippines and Nepal)
routinely have catastrophic landslides, especially during rainy seasons. Furthermore,
inventories conducted between 1964 and 1999 show a steady increase in the number of
landslide disasters worldwide (Kjekstad, 2002; Metternicht et al., 2005). In the U.S.
alone, landslides cause $3.5 billion in damage and between 25 and 50 fatalities annually
(USGS, 2004).

Landslides can be triggered by earthquakes, volcanoes, and floods. However,
most of the slope failures are proceeded by intense rainfall. Slope failures ultimately are
caused by processes that increase shear stresses or decrease shear strengths of soil mass
(Abramsoﬁ et al., 1996). Various natural factors (e.g., earthquake, concentrated rainfall,
undercutting of banks by flood) and anthropogenic factors (e.g., deforestation, cuts and
fills on slopes) contribute to slope failures by decreasing shear strength or increasing
shear stress. Human infrastructure development, such as roads and deforestation that
change the topography and remove the vegetation cover, respectively, can decrease slope

stability (Sidle et al., 2004).



Slope failure is strongly related to slope, soil moisture/water content, vegetation,
and soil types. Weather and climate factors that increase soil water content and hence the
pore water pressures serve to enhance slope instability. The mechanism for most of the
shallow slope failures is the rapid build up of pore water pressure in the soil mantle above
the impervious soil layer or bedrock.

For slope stability analysis, several appréaches have been used (Ermini et al.,
2005; Abella and Van Westen, 2008; Ray and de Smedt, 2009) including heuristic
approaches (Gbrsevski et al., 2006%; Ruff and Czurda, 2008; Abella and Van Westen,
2008), statistical techniques (Skirikar et al., 1998; Suzen and Doyuran 2004; Lee, 2004,
2005; Saha et al., 2005; Ayalew and Yamagishi, 2005), landslide ﬁsk assessment (Petley
et al., 2004; Saldivar-Sali and Einstein, 2007) and deterministic techniques “(Soeters and
Van Westen, 1996; Joshi et al., 2000). In heuristic approaches, survey and observed maps
as well as individual experience are necessary, but geotechnical parameters are not
required (Gulla et al., 2008; Abella and Van Westen, 2008). In statistical approaches,
bivariate and multivariate statistics, the spatial correlation is established by linking
environmental variables. The Qualitative and" quantitative probability of loss of life and
property technique is used in landslide risk assessment. Of these methods only the
deterministic approach is physically-based.

A facfor of safety can be computed deterministically using the infinite slope
stability model based on the limit equilibrium approach. In this methoci, a slope can be |
divided into a number of slices and the factor of safety is computed by solving the static
equiﬁbrium eduétions Based on a set of assumptions. The parameters required to perform

this type of analysis generally include the soil type, friction angle, cohesive intercept,



shear strength, location of the water table and slope geometry as well as the soil moisture
in unsaturated soil layer. Numerous studies have anélyzed shallow landslides using a one
dimensional infinite slope stability model (e.g., Montgomery and Dietrich, 1994; Van
Western and Terlien, 1996; Cho and Lee, 2002; D’Odorico and Fagherazzi, 2003; Onda
et al., 2004; Borga et al., 2005; Muntohar and Liao, 2009). These studies typically use
wetness indices to estimate the water table position, but neglect the soil moisture in the
upper soil layer above the groundwater table (Rosso et al., 2006). Because landslides are
tﬁggered by the combined effect of surface and subsurface saturation, it is necessary to

be able to link the surface soil moisture to the subsurface layer.

| Vadose zone soil moisture can be obtained by in-situ measurements. However,
such measurements are time consuming and require complex data collectibn efforts even
for local scales. As a result, there are very few in-situ observing systems to measure soil
moisture at regional or continental scale (Gao et al., 2006). At these scales, either remote
sénsing or soil-vegetation-atmosphere-transfer (SVAT) models are useful methods to
estimate soil moisture values. Because SVAT models require significant data and
computational resources, they may not be appropriate for a region with limited data such
as developing countries.

An alternative is to use remotely sensed soil moisture. While these data have not
been used previously for landslide studies, remote sensing can be used to predict
catastrophic events and hazardous areas (Ostir et al., 2003). Landslide inventory maps
have been developed using aerial photography with photo interpretation technique (Oka,
1998; Brardinoni et al., 2003; van Western and Getahun, 2003) as well as using remotely

sensed data with image analysis technique. Over the past decade, the Earth Observing



System (EOS) platforms have deployed a suite of instruments that monitor land
conditions relevant to landslide hazard characterization such as Light Detection and
Ranging (Lidar), Interferometric Synthetic Aperture Radar (InSAR), Differential SAR
Interferometry (DInSAR) data.

The use of multi-temporal satellite imagery is increasingly applied to monitor,
classify and detect landslides (Mantovani et al., 1996; Hervas et al., 2003; Cheng et al.,
2004). For regional scale landslide analyses, Landsat TM and Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) have been used to derive
landcover in regions including the Himalayas range (Zomer et al., 2002; Saha et al.,
2002; Sarkar and Kanungo, 2004). Kaab (2005) showed that recent Shuttle Radar
Topography Mission (SRTM) results are promising for ch‘aracterizing topography in
regions having landslides. Climate data including precipitation and convection pattern
characterization using Tropical Rainfall Measuring Mission (TRMM) and Meteosat-5
have been valuable additions to complement sparse data in the Himalayas (Barros and
Lang, 2003; Barros et al., 2004). | |

Satellite instruments produce imagery with different spatial resolutions. High
resolution (10 m) data can isolate critical areas, while lower resolution (104 m) data can
track the evolution of regional conditions. For example, InSAR has been used to locate
and characterize landslides (e.g., Canuti et al., 2004; Singhroy and Molch, 2004). SRTM
DEM is avéilable at 30 m spatial resolution for US and 90 m resolution ifor rest of the
world. Even though high resolution DEM (10 m) is more appropriate for landslide
studies,.one has to use low resolution DEM for regional and global scales research work.

Moreover, Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture and



TRMM rainfall are available at 25 and 27.5 km (approx.) spatial resolutions, respectively.
The landslide study based on such a low resolution 'remotely sensed data requires
downscaling. Downscalingi requires many types of complex specific high resolution data
that has demonstrated relationships with surface soil moisture at low resolution. There are
‘also limitations to which scale the coarse resolution data can be downscaled. For
example, AMSR-E data can be downscaled to 1 km resolution using normalized
vegetation index (NDVI), albedo and land surface temperature (LST) with 1 km spatial
resolution. Therefore, it can be abpropriate to use comparatively coarse resolution
remotely sensed data for landslide studies at regional or global scales.

Pelletier et al. (1997) indicated that ‘continuous remote-sensing of soil moisture
coupled with a digital elevation model is a necessary component of a successful landslide
hazard mitigation program. While no landslide studies exist using remotely-sensed soil
moisture data, global data are available from AMSR-E that may be useful to obtain
surfaee soil moisture. Clearly AMSR-E’s 25 km spatial resolution makes it well suited to
examine landslide conditions at a regional scale, but not to locate and characterize
specific failure zones.

Remote sensing products measure soil moisture for the upper 2 to 5 cm of the
Earth’s surface. This thin layer soil moisture information does not represent the complete
~ unsaturated soil moisture profile undereath thick soil ‘layer (subsurface) above the
bedrock. However, it does provide valuable information on moisture conditions and how
they evolve over time. For regional scales, this may be adequate to identify when zones

reach potential hazard conditions.



If it is critical to dbtain soil moisture profile of the whole soil layer above the
bedrock or impermeable layer and to predict the position of the ground water table then
remote sensing soil moisture products can not be used directly to identify landslide prone
regions. A potential approach is to rely on a hydrologic model that can estimate soil
moisture in the subsurface layer and to use the remotely sensed soil moisture product for
validation or assimilation. Regardless, preliminary analyses are required to determine the
potential of dynamic soil moisture to be used in landslide prone regions and to examine
approaches to provide regional scale moisture.

In addition, ancillary remote sensing measurements are a critical aspect of the
proposed research. These measurements complement existing physical databases by
characterizing dynamic terrestrial systems and hydrologic fluxes. For less data-rich
regions, remote seﬁsing measurements may provide the only high resolution data source
available for the Earth’s surface.

The overall research goal was to develop a regional-scale, physicallY—based slope
stability model that directly includes vadose zone soil moisture derived from satellite
measurements or SVAT model to develop dynamic landslide susceptibility maps. The
proposed enhanced model was applied to case studies in Dhading, Nepal, a data-poor
region, and Cleveland Corral, California, US a data-rich region. |

The first objective of this research was to determine if a relationship exists among
remotely sensed soil moisture, precipitation and landslide. Specific research questions
are: (1) Can remotely sensed soil moisture provide information in landslide prone
regions? (2) Is there a qualitative relationship among landslides, TRMM rainfall and

AMSR-E soil moisture?



The second objective of this research was to develop a dynamic, infinite slope
stability model that directly includes vadose zone soil moisture. To address this objective,
research issues were: (1) How the infinite slope stability model can be modified to
directly include vadose zone soil moisture? (2) How the unsaturated soil moisture and the
saturated zone can jointly be estimated to include in the slope stability model, and (3)
Under what conditions is vadose zone soil moisture critical for determining slope failure?

The third research objective was to validate the VIC-3L model soil moistufe
profile and the wetness based groundwater model. Specific research questions include:
(1) Does the Ray and de Smedt (2009) wetness index model provide reasonable
groundwater table estimates? (2) Are SVAT derived soil moisture profiles reasonable?
(3) What are the regional characteristics of landslide susceptibility maps using dynamic
soil moisture and groundwater and how do they compare with traditional susceptibility
maps?

The fourth objective of this research was to characterize spatiotemporal landslide
susceptibility. The primary goal was to determine: (1) the statistical characteristics of
safety factors and differences by region, hazard category, and physical characteristics and
(2) the frequency and duration with which potential failure regions fall below critical
safety factors.

This study’s fifth objective was to evaluate dynamic landslide susceptibility maps
that use remotely sensed soil moisture (AMSR-E). Towards this end, a downscaling
method was examined to modify the AMSR-E soil moisture froin 25 to 1 km spatial
resolution. These remote sensing data were used to (1) identify unstable regions and (2)

evaluate downscaling impacts on slope stability.



These five research objectives were addressed as a series of individual papers.
Each research paper is presented in a separate chapter. The dissertation is organized with
Chapter 1 Introduction, Chapters 2 to 6 for the five research papers, and Chapter 7

Concluding Remarks.



CHAPTER 2.

RELATIONSHIPS AMONG REMOTELY SENSED SOIL MOISTURE,
PRECIPITATION AND LANDSLIDE EVENTS

Abstract

Landslides are triggered by earthquakes, volcanoes, floods and heavy continuous
rainfall. For most types of slope failure, soil moisture plays a critical role becaﬁse
increased pore water pressure reduces the soil strength and increases stress. However, in-
situ soil moisture profiles are rarer measured. To establish the soil moisture and
landslide relationsﬁip, a qualitative comparison among soil moisture derived from
AMSR-E, precipitation from TRMM and major ‘landslide events was conducted. This
study shows that it is possible to estimate anfecedent soil moisture conditions using
AMSR-E and TRMM satellite data in landslide pfone areas. AMSR-E data show distinct
annual patterns of soil moisture that reflect observed rainfall patterns from TRMM.
Results also show ‘enhanced AMSR-E soil moisture and TRMM rainfall prior to major ‘
landslide events in landslide prone regions of California, U.S., Léyte, Philippines and,

Dhading, Nepal.



Introduction

Numerous natural factors, earthquakes, concentrated rainféll events, and.
undercutting of banks by flood, as well as anthropogenic factors, including defdresfation
and slope excavation, contribute to slope failures by decreasing shear strength or
increasing shear stress of the soil mass (Abramson et al., 1996). However, most of the
slope failures éoincide with intensive rainfall (Anderson and Sitar, 1995; Iverson, 2000).
Landslides are frequently a combined effect of intense rainfall and wet antecedent soil
moisture conditiqns that cause landslides. For these slope failures, soil moisture plays a
vital role because water both reduces the soil strength and .increases the stress (Ray,
2004).

Soil moisture surrogates have been used éxtensively in slope stability analyses.
Montgomery and Dietrich (1994), Vaﬁ Westen and Terlien (1996), de Vleeschauwer and
De Smedt (2002), and Acharya et al. (2006) analyzed slope stability_» using wetness
indices calculated by the TOPOG model (O’Loughlin, 1986). As pointed out by Rosso et
al. (2006), Montgomery and Dietrich’s (1994) model neglects the presence of soil
moisture in the upper soil layer above the groundwater table. They presented a modified
model in order to consider soil moisture in the upper soil layer. Anderson and Sitar
(1995), Iversén (2000), D’Odorico and Fagherazzi (2003), and Collins and Znindarcic
(2004) showed that slope failures are primarily caused by infiltration of rainfall into the

subsurface layer resulting in increased pore water pressure.
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These studies focus on saturation level soil moisture contents as they relate to
landslides. However, these studies have indirectly estimated the soil_moisture or pore
water pressure based on rainfall and do not directly account for the highly variable soil
moisture prior to and during rainfall events.

Antecedent soil moisture can be obtained by in-situ measurements. However,
such measurements are time consuming and require complex data collection efforts even
for local scales. As a result, there are very few in-situ observing systems to measure soil
moisture at regional or éontiﬁental scales (Gao et al., 2006). An alternative approach is to
obtain surface soil moisture from satellite remote sensing at national and global scales.

Surface soil moisture can be observed (measured) using microwave remote
sensing (Jackson, 1982; Teng et al., 1993; Schmugge and Jackson, 1994; Kerr et al.,
2001; Jackson, 2002; Moran et al., 2004; Loew et al., 2006; de Rosney et al., 2006).
- Typically remote sensing instruments can only provide the soil moisture information

from the surface soil depth down to one to five cm. Numerous studies (e.g., Njoku et al.,
2003; Walker et al., 2004; Lacava et al., 2005; Njoku and Chan, 2006; Gao et al., 2006)
point out that microwave remote sensing measurements are affected by surface roughness,
topographic features, dense vegetation and soil texture. This indicates that soil moisture
_data may have limited value on steep topography (Njoku et al., 2000). The few validation
experiments, such as Soil Moisture Experiments 2004 (SMEX04) in northern Sonora,
Mexico (Vivoni et al., 2008; Jackson et al., 2008), that have been conducted on such
terrain show that rocky slopes can mask the moisture signal. As landslides mainly occur
on steep slopes, a preliminary challenge is to determine if satellites can provide a signal

in landslide prone areas.
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Landslides are not triggered only due to surface layer saturation; rather, it is the
cémbined effect of surface and subsurface saturation that is critical. Therefore, it is
necessary to be able to link the surface soil moisture to the subsurface layer. A series of
studies have establiéhed a link between surface soil moisture and groundwater. Choi and
Jacobs (2007) soil moisture patterns on the surface were strongly related to those in the
root zone. With an assumption of hydraulic pofential equilibrium, Jackson (1980)
developed a complete soil moisture profile based on surface soil moisture measurements.
Arya .et al. (1983) developed two approaches, regression and water budget, to establish
the correlation between surfabe aﬁd subsurface soil moisture. Reutov and Shutko (1991,
1992) explored a technique to measure the depth of a shallow groundwater table based on
microwave rerﬁote sensing data that uses the capillary rise above the water vtable to
estimate the water table depth.

This study seeks to determine: (1) can remotely sensed soil moisture provide
information in landslide prone regions? and (2) is there a quaiitative relationship among
landslides, TRMM rainfall and AMSR-E soil moisture? To answer these questions, the
daily and seasonal variations of remotely sensed soil moisture from the Advanced
Microwave Scanning Radiometer (AMSR-E) on the Earth Observing System (EOS) and
rainfall from the Tropical Rainfall .Measuring Mission (TRMM) are quantiﬁed in three
landslide prone régions; Cleveland Corral, El Dorado County, CA, U.S., Guinsaugon,
Southern Leyte, Philippines and Krishnabhir, Dhading, Nepal.

The paper presents an overview of the remote sensing technologies available to
measure soil moisture and a brief review of the TRMM rainfall measurements. The soil

moisture retrieval algorithm is also discussed. Details on the study sites as well as the
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rainfall and soil moisture data used in this study are provided. This paper compares and
analyzes the-AMSR-E soil moisture and TRMM rainfall daily data from J énuary, 2005 to

May, 2006 at the three landslide prone regions.
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Relationship between Water and Slope Failure

A landslide is a sudden failure of slope with or without the influence of water.
Landslides that result in disasters are more commonly known as landslide disasters. Prior
to slope failure, there is a slope movement. Sometimes slope movement results in a
landslide and some_:timés it does not. Many slope failures are caused by soil moisture or
ground§vater that increases bofe water pressure and shear stress and decreases shear
strength.

Safety factors (FS) are used to characterize slope stability. Slopes having safety
factors less than one are considered unstable. A relationship caﬂ be established between
soil moisture and slope failure for cohesive or cohesionless soil. Sidle and Ochiai (2006)

developed a safety factor equation for any combination of soil and soil moisture, as

c +tan¢_utan¢

FS=—— : @2-1)
Wsin6 tanf Wsinf

W =[y,(H - h)+y, h]cosd | 2-2)

u=y hcos’ 6 (2-3)

where FS is the safety factbr,. W is the wéight acting on the slope [KN/m?], C; is the
effective soil pohesion [KN/m?], u is the pore water press.ure [KN/m?], H and h are the
depth of the soil and water above failure plane, respectively [m], ¢ is the angle of internal
friction and 6 is slope angle [°], v; is the unit moist (but not saturated) weight of the soil
[KN/m®], ysa the saturated unit weight of the soil [KN/m®], and y,, the unit weight of

water [KN/m].
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Equation 2-1 shows that increasing the soil slope decreases the safety factor.
Similarly, increasing the soil moisture/water increases pore water pressure (u), effectively
decreases the safety factor. Landslides occur when the safety factor becomes less than

one.
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Remote Sensing Products

Remotely Sensed Soil Moisture

Soil moisture can Be measured with passive or active microwave sensors.
Although the active and passive sensors observe different parameters, brightness
temperatures and backscattering coefficients, respectively, (Jackson, 2002), both sensors
provide information ;1bout surface reflectivity. Based on surface reflectivity, the dielectric
constant necéssary to derive surface soil moisture is estimated (Jackson, 2002). However,
vegetation and roughness reduce the sensitivity of the microwave observations to soil
moisture (Njoku et al., 2003).

Lower frequencies, L band (1-2 GHz), are more sensitive to soil moisture, but
they are more susceptible to dense vegetation and radio frequency interference (RFI). The
higher frequency C (6.9 GHz) and X (10.65 GHz) bands can be used to retrieve soil
moisture (Jackson et al., 2005) bec_guse these higher frequency bands are comparatively
less susceptible to RFI. At present, there are several satellite systems that aré capable of
observing sur.face soil moisture (Cashion et al., 2005). The systems include the Tropical
Rainfall Measuring Missioﬁ (TRMM) Microwave Imager (TMI) at 10.65 GHz, (Jackson
and Hsu, 2001), and the Advanced Microwave Scanning Radiometer (AMSR) on the
Earth Observing System (Njoku et al., 2003). Soil Moisture and Ocean Salinity (SMOS)
(Kerr et al., 2001) is scheduled to launch in 2009 (Hoffmann, 2005, Scipal et al., 2005).
The soil moisture active passive (SMAP) is expected to launch by 2013 (Drinkwater et

al., 2009). This study uses the AMSR-E satellite data.
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AMSR-E was developed by the National Space Development Agency of Japan
(NASDA) and launched on Aqua satellite by the National Aeronautics and Space
Administration (NASA) on May 4, 2002 (Njoku et al., 2003, Li et al., 2004). AMSR-E
measures brightness temperature at six frequencﬁes in the range 6.9-89 GHz (Njoku et al.,
2003). Soil moisture is retrieved using a microwave radiative transfer (RT) model that
links surface geophysical variables to the observed brightness temperature (Jackson,
1993, Njoku et al., 2003). AMSR-E produces soil moisture (product level 3) at 56 km
spatial resolution and provides re-sampled products at a 25 km grid scale. AMSR-E data
are available from June 18, 2002 to present on a daily basis. However, data are missing

on a number of days.

Remotely Sensed Rainfall

The Tropical Rainfall Measuring Mission (TRMM) instrument was launched on
November 27, 1997 as joint effort by NASA and the Japanese Space Agency (JAXA)
(Kummerow et al., 1998, Gao et al., 2006). TRMM provides precipitation data from 1997
to present (http://trmmﬁ.gsfc.nasa. gov). The primary instruments are the Precipitation
Radar (PR), the first rain radar in space (13.8 GHz), and the TRMM Microwave Imager
(TMI), a multi-channel (5 bands from 10.7 GHz to 85.5 GHz) passive microwave
radiometer. In addition, the Visible Infrared Scanner (VIRS) instrument is used to image
clouds to determine precipitation structure. TRMM provides data from 50° S and 180° W
to 50° N and 180° E. This study uses the TRMM precipitation 3B42 3-hr product at a

0.25° x 0.25° (27.5 km?) resolution.
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Study Data Sets

For this study, AMSR-E soil moisture data were obtained from the NASA Earth
Observing System Data Gateway through National Snow and Ice Data Center (NSIDC).
The TRMM rainfall 3B42 3-hr product was obtained from Goddard Distributed Active
Archive Center (DAAC). Both TRMM rainfall and AMSR-E soil moisture data are for
the period January 1, 2005 to May 31, 2006. Daily rainfall totals were calculated from the
TRMM 3-hr product. AMSR-E soil moisture and TRMM rainfall values were analyzed
- and compared with landslide events to establish relationships among them.

In order to consider the response of soil moisture and rainfall, active landslide
locations were selected for the three regions. These landslide areas are on the order of 1
km?. Compared to the study ér_eas,'both the TRMM and the AMSR-E pixels are much
larger. Thefefore, one satellite pixel was obtained and analyzed for each site’s soil

moisture and rainfall.
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Study Areas

Three study regions, which are highly proné to landslides, were selected for
analysis. The study regions are Highway 50 at Cleveland Corral, El Dorado County, CA,
US, Guinsaugon, Southern Leyte, Philippines, and Prithivi highway at Krishnabhir,
Dhading, Nepal (Fig. 2-1). Since 1996, landslides and slope movements are very
common in the Highway 50 corridor (Reid et al., 2003). In Guinsaugon, Southern Leyte,
Philippines, a major landslide disaster occurred on February 17, 2006. This rainfall
induced landslide crushed a village where 122 people were confirmed dead, hundreds of
’people.were still missing as of 2006, and thousands of people were left homeless
(Lagmay et al., 2006). In Krishnabhir, Dhading, Nepal, landslides have continuously
occurred for four cdnsecutivé years starting from 2000 (Ray, 2004). Along the Prithivi

highway corridor, landslides are very common during every monsoon.

Cleveland Corral, CA, USA

The Cleveland Corral landslide study region in Highway 50 corridor is located in
the Sierra Mountains, California, USA (Reid et al., 2003). Highway 50 is a major road
located between Sacramento and South Lake Tahoe in California (Spittler and Wagner,
1998). The study area is located between 120° 17' 42"W to 120° 32' 42"W aﬁd 38° 39'

12"N to 38° 54' 12"N. Altitudes range from about 902 to 2379 m. Since 1996, slope
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mdvement and landslides occur infrequeﬁtly during the winter season. Additionally, one
major catastrophic landslide occurred in 1983 in this region (Spittler and Wagner, 1998).
Since 1997, the USGS has monitoredv this region using real time data acquisiﬁon systems
(Reid et al., 2003). They found elevated pore-water pressures and abundant soil moisture

during periods with slope movement and landslides in the winter (rainy) season.

Guinsaugon, Leyte, Philippines

The Philippines is an island country located in South East Asia between latitude
4°23'N and 21°25'N and longitude 116°E é.nd 127°E with a 1850 km length and a 965 km
width. The country’s topography is characterized by alluvial plains to high mountains
with an elevation to 3144 m. The Guinsaugon study region, municipality of St. Bernard,
is located in Southern Leyte Province, Philippines. The Guinsaugon village, the site of
the 2006 landslide disaster, is located at the foot of the slope (Lagmay et al., 2006). The
study area is centered at 10°21' 3"N, 125° 6' 33" E latitude and longitude, respecti\./ely,
with a maximum elevation of 675 m (Lagmay et al., 2006). The authors indicate that the
February, 2006 landslide’s cause was a week long intensive rainfall in the Southern Leyte

region.

Krishnabhir, Dhading, Nepal

Nepal consists of about 83% mountainous terrain and the remaining 17% in the

southern alluvial plains. The country extends from 80° 04' to 88° 12E longitude and 26°
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22' to 30° 27'N latitude and spans approximately 885 km in the east-west direction and
varies from 130 to 255 km in north-south direction. The altitude ranges from 70 m at
Kanchan Kalan to 8850 m at the top of the Mount Everest within a very short distance.
The relatively high landslide frequency in Nepal, as compared with mountain ranges of
other couhtries, may be because Nepalese Mountains are geologically younger (Ray,

2004).

The Krishnabhir study region lies in the Dhusa Village Development Committee
(VDO) in Dhading district, Nepal along the Prithvi Highway. The highway connects the
Western and Eastern parts of the country to Kathmandu, the national capital. The area is
situated between 27° 45' to 27° 52' 30 N latitﬁde and 84° 37' 30" to 84° 52' 30"E
longitude. Altitudes range from about 242 to 1922 m above the sea level. One of the
major landslide areas is located at Krishnabhir of Dhusa village development committee
(VDC) along the Prithivi Highway. Since 2000, landslides occur annually during the

rainy season along the Prithivi Highway.
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Results and Discussion

Intercomparison

Figure 2-2 shows daily and weekly moving average values of AMSR-E soil
moisture for one and half years (January 1, 2005 to May 31, 2006). As déily soil moisture
values are highly variable, a weekly moving average soil moisture was calculated for
each date by averaging that day’s soil moisture with that of the six preceding da;ys. This
- plot clearly sthS daily and seasonal variations for each study region. The period having
the wettest soil moisture differs by region. For exz;mple, California’s highest soil
moisture occurs in the spring season. Nepal’s soils are very wét shortly before and after
the monsoon. The Philippines has the highest soil moisture value in the winter and late
summer. Weekly moving average soil moisture values vary gradually in CA, USA, and
Dhading, Nepal, but oscillate in Leyte, Philippines.

Table 2-1 presents summary statistics that characterize soil moisture variations by
study region. The highest soil moisture values, observed in California, US, are tWice
those reported for Leyte, Philippines because California study region may have less well-
drained soils and a colder climate. Based on the standard deviation of daily values, Népal
has much lower variability than either California or Leyte. Soil moisture ranges are
smaller than expected, particularly for Nepal. Overall, these results indicate that, even in
steep terrain orllavndslide prone regions, AMSR-E soil moisture can provide relevant

information by capturing mean values and the timing and duration of wet periods.
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Clevetand Corral, CA, USA

Figure 2-3 shows} the weekly moving average AMSR-E volumetric soil moisture
yalues from January 2005 to May 2006 as well as the daily TRMM rainfe_lll data in the
Cleveland Corral, California study region. While the results show only a 12% range in
the soil moisture variations annually, the obseryed variations are adequate to identify the
timing of relatively high soil moisture. Seasonal trends show that soil moisture increases
from March to late May each year. This rising trend in soil moisture corresponds to a
period of high rainfall. Soil moisture peaks occurred in April and May for both 2005 and
2006. However, peaks on 10™ May, 2005 (24.9%) and on 14™ April, 2006 (28.7%) do not
coincide with rainfall peak events on 1% May, 2005 (31 mm) and on 5% April, 2006 (47.8
mm), respectively. This may reflect the lag time between the rainfall event and the
satetlite measurement. The lag time is not consistent because the rainfall frequency and
duration are not consistent with the TRMM and the AMSR-E satellites passing time to
that particular region. Thus, soil moisture may better characterize using total accumulated
rainfall rather than brief intense rainfall events.

Soil moisture and rainfall trends were compared to slope movements and
landslide events. Reported slope movement began in late February, 2005. Also, slope
movements were observed throughout May, 2005

(http://landslides.usgs.gov/monitoring/hwy50). Two landslides were observed in 2006,

one on April 3™ near Whitehall and another on May 7™ near Kyburz. All of the slope
movements and landslides coincide with periods of enhanced surface soil moisture and

rainfall in this region. Interestingly, the peak precipitation days did not necessarily match

the dates of observed movements and landslides.
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Guinsaugon, Leyte, Philippines

Figure 2-4 depicts the weekly moving average AMSR-E volumetric soil moisture
values and daily TRMM rainfall values from January 2005 to May 2006 in Guinsaugon,
Leyte, Philippines. This study region has a completely different daily and seasonal soil
moisture and rainfall temporal pattern than the California site. In this region, frequent
rainfall events were observed throughout the year. Figures 2-2 and 2-4 show higher daily
soil moisture variations than seasonal soil moisture variations. Due to the fairly uniform
yearly rainfall distribution, no distinct seasonal soil moisture variations were observed.
The seasonal evblution'of soil moisture appears to somewhat correspond to the rainfall
observations, but a clgar relationship is not readily evident.

The soil on the day of the landslide disaster, February 17, 2006, was not as wet as
that in January, 2006. As shown in Figure 2-4, this region had received high rainfall (375
mm) from 22 to 26 December in 2005. This rainfall causes a gradual increase of soil
moisture until mid-January. Without rélinfall, gradually decreased soil moisture can be
observed from mid-January to mid-February in 2006. A week long continuous heavy
rainfall (> 400 mm) that increased soil moisture/pore water pressure in the subsurface
layer likely caused the landslide disaster. That the landslide éccuned during lower than
peak soil moisture indicates the importance ‘of faiﬁfall characteristics in addition to
antecedent coﬁditions. This site suggests that additional research is needed to estimate

soil moisture for landslide hazard prediction that uses both soil moisture and rainfall.

24



Krishnabhir, Dhading, Nepal

The one and half year (January 2005 to May 2006) moving avei'age AMSR-E soil
moisture and daily TRMM rainfall plot for Dhading, Nepal produces a comparatively
uniform distribution pattern than the other two study regions (Fig. 2-5). This is mainly
due to Nepal’s monsoonal (June to September) climate. In this study region, off
monsoonal (October to May) season receives very little rainfal]. Dry soil conditions
persist until late July. Figures 2-2 and 2-5 show higher seasonal soil moisture variations
than daily soil moisture variations. Interestingly, the soil moisture values are nearly
constant from September to February and appear to be insensitive to rainfall. This may
indicate a measurement problem. As this period coincides with Nepal’s: typical late
August planting, the potential cause is dense vegetation.

From 2000 to present, landslides were observed annually during the monsoon
(Mid August) (Ray, 2004) in the Prithivi highway corridor. During the monsoonal rainfall,
enhanced soil moisture is shown in Figure 2-5. These wetter conditions increase pore
water pressures to levels that are sufficient to cause slope failure. Hence in Nepal, the
steady rainfall, measured by TRMM that causes a continuous increase in soil moisture is

closely linked with this region’s landslides.
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Conclusion

Soil moisture is an important parameter for landslide studies. As the soil mass’s
soil moisture increases, pore water pressﬁre rises. Pore water pressure, which increases
shear stress and decreases rshea'r strength, is the main cause for many landslides. This soil
moisture can be estimated by in-situ measurements, but such measurements are time
consuming and cost i)rohibitive at national and global scale. In contrast, this study shows
that AMSR-E can provide surface soil moisture for global scale at a daily temporal
resolution.

Each of the three study regions had landslides or slope movements when soil
moisture and rainfall showed higher values. These landslide occurrences clearly indicate
a good relationship among landslide events, AMSR-E surface soﬂ moisture and TRMM
rainfall. Results show that AMSR-E soil moisture data can be used for landslide studies.
However, more intensive research still is necessary to validate soil moisture patterns and

to include AMSR-E soil moisture in slope stability analysis.
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Table 2-1: Statistical Analysis of AMSR-E soil moisture from January 2005 to May
2006 in three study regions

2005
California, USA Leyte, Philippines Dhading, Nepal

Soil Soil Soil

Moisture Moisture Moisture
Descriptions (cm’/cm®) Date (cm3/‘cm3) Date (cm’/cm’) Date
Mean 0.175 0.084 0.145
Range 0.117 0.139 0.068
Std. Dev 0.023 0.025 0.013
Min 0.132 November, 15 0.015 December, 17 0.109 July, 17
Max 0.249 May, 10 0.154 August, 19 0.177 May, 7
Count (Days) 271 225 232

, 2006 (Jan to May) .
California, USA Leyte, Philippines Dhading, Nepal

Soil Soil Seil

Moisture Moisture Moisture
Descriptions (cm’/cm®) Date (cm’/cm?) Date (cm’/cm’) Date
Mean 0.191 0.079 0.153
Range 0.147 0.112 0.035
Std. Dev 0.027 0.023 0.008
Min 0.14 January, 2 0.013 February, 11 0.141 February, 7
Max 0.287 April, 14 0.125 January, 25 0.176 April, 19
Count (Days) 113 92 101
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CHAPTER 3.

IMPACTS OF VADOSE ZONE SOIL MOISTURE AND GROUNDWATER TABLE
ON SLOPE INSTABILITY

Abstract

The combined effect of soil moisture in unsaturated soil layers and pore water
pressure in saturated soil layers is critical to predict landslides. An improved infinite
slope s.tability model, that directly includes vadose zone soil moisture and groundwater,
was used to analyze sensitivity of safety factors/susceptibility to vadose zone soil
moisture. First, the sensitivity of safety fabtors to vadose zone soil moisture was studied
on pixels that exhibited active landslides at Cleveland Corral, California and later the
method was applied to entire study region at regional scale. Results show a significant
impact of vadose zone soil moisture in the sensitivity of the safety factor for a shallow
soil layers (< 2 m) with comparatively deeper groundwater (1 m). For a shallow soil
mantle (1 m), the change in. safety factor was 59%, while it was only 13% for the thick
soil mantle (3 m) for the 1 m groundwater position. The unstable area increases
nonlinearly with increasing vadose zone soil moisture. Vadose zone soil moisture most

strongly impacts shallow slope stability when soil mantles are less than 2 m thick.
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Introduction

Slope failures ultimately are caused by processes that increase shear stresses or

decrease shear strengths between the soil layers (Cernica, 1982; Abramson et al., 1996).
An increase in the pore water pressure reduces the effective normal stresses (') and,

consequently, the shear strength of the soil layers as defined by the Coulomb
equation T = c+o' tan@ . Weather and climate factors that increase soil moisture/water

content and hence pore water pressufe serve to enhance slope instability (Ray and Jacobs,
2007).
Generally, a shallow landslide is assumed when the slope length is greater than
the soil mantle thickness (Skempton and DelLory 1957); and ranges from 1 to 2 m
(Meisina and Scarabelli, 2007) seldom exceéding 3 m (Au, 1998). Based on the limit
equilibrium approach, the one.dimensiénal infinite slope model is frequently used to
study shallow landslides (e.g., Montgomery and Dietrich, 1994; Van Western and Terlien,
1996; Cho and Lee, 2002; D’Odorico and Fagherazzi, 2003; Onda et al., 2004; Borga et
al, 2005; Muntohar and Liao, 2009). An infinite slope stability model equates resisting
-and driving forces in order to estimate a safety factor (FS). Soil cohesioﬁ énd angle of
_intefnal friction control the resisting forces. Increasing slope angle enhances the driving
force. The unit soil weight, whether it is dry, moist or saturated, affects the resisting force
through o' applied to a potential failure surface and also the driving force along the

potential failure surface on a slope. For shallow landslides, effects of sQil cohésion are
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large (Sidle and Ochiai, 2006). The weight on the slope and thus the driving force
increases, when water fills previously empty pore space.

Moreover, in the presence of groundwater or a saturated soil layer, the driving
force caused by unif soil weight, can be greater still than the resisting force for any given
slope angle because pore water pressure reduces the effective stress, and consequently,
the resisting force. According to Ray and Jacobs (2007), landslides are not triggered only
due to surface layer saturation; rather, it is the combined effect of surface and subsurface
saturation that is critical. During rainfall, water infiltrates into the substratum, Which»
increases soil moisture in the unsaturated zone and also raises the water table. Therefore,
the vadose zone soil moisture (SM), which increases the unit soil weight, may play a vital
role in shallow slope instability. It is essential to consider vadose SM when estimating
moist unit soil weight above the saturated soil layer.

Many authors have studied the unsaturated zone and slope instability by including
matric suction of negative pore water pressure in the infinite slope stability model (e.g.,
Cho and Lee, 2002; Rahardjo et al., 2007; Muﬁtohar and Liao, 2009). These studies show
that the infiltrated rainfall water dissipates the soil suction or negative pore water
pressure in the vadose zone and, in turn, reduces the shear strength and triggers slope
failure. Lu and Godt (2008) modified the infinite slope stability model to include a
skeletal stress that varies with the soil moisture variations in the unsaturated zone. They
noted that most landslide studies that include unsaturated zone soil suction in an infinite
slope stability model are just modifying the shear strength due to soil suction and do not
account for the moist unit soil weight of the unsaturated layer or saturated layer weight in

the slope stability model.
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. The two-layer concept, unsaturated and saturated soil layers, is frequently used in the
infinite slope stability model to represent different unit soil weights. Some studi¢s use a
saturated unit soil weight to represent both layers (e.g., Montgomery and Dietrich, 1994;
D’Odorico et al., 2005; Chiang and Chang, 2009). They éssume constant saturated unit
soil weight for their whole study area. De Vleeschauwér and De Smedt (2002) and
Acharya et al. (2006) use dry and saturated unit soil weight, respectively, for the layer
above and below the saturated soil layer. Collins and Znidarcic (2004) use effective and
total unit soil weight for the saturated and unsaturated soil layers, respectively. Vanacker
et al. (2003) and Gabet et al. (2004) use total unit soil weight for both layers. A more
physically spund representatioﬁ uses a moist unit soil weight for the unsatufated soil _layer
and saturated unit soil weight for a saturated soil layer (e.g., Burton and Bathurst, 1998;
Sidle and Ochiai, 2006). The two-layer approaches use static values of moist unit soil
weight and saturated unit soil weight, and do not take into account the impact of dynamic
moisture condition for slope stability analysis.

The vadose zone SM can be combined with groundwater for calculating wetness
indices. The wetness indices are derived in various ways. One widely used wetness index
approach is O’ Loughlin’s 1986 TOPOG model (e.g., Dietrich et al., 1993; Montgomery
and Dietrich, 1994; Van Westen and Terlien, 1996; Pack et al., 1998; de Vleeschauwer
and De Smedt, 2002; Acharya et al., 2006). The TOPOG model is based on the
topographic wetness index developed by Beven and Kirkby (1979) within the runoff
model TOPMODEL. These approaches are based on the assumption that all the
infiltrating water in the upgradient contributing area contributes to the groundwater flow

at the downstream convergence point. This assumption does not account for the time
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duration for flow accumulation or the water storage and delay in the upgradient area
(Barling et al., 1994). Van Westen and Terlien (1996) and Acharya et al. (2006) calculate
wetness indices by taking the ratio of the saturated soil layer thickness to the total soil
thickness.

According to Rosso et al. (2006), wetness indices calculated by the TOPOG
model neglect the presence of soil moisture in the upper soil layer above the groundwater
;[able. The TOPMODEL approach, for calculating wetness indices, does not take into
account the unsaturated soil thickness or vadose zone SM. This is a problem l;ecause the
ground does not have to be saturated for failure (Dietrich et al., 1993) and slope failures
can occur above the groundwater table in the unsaturated zone under the steady
infiltration conditions (Lu and Godt, 2008). It is necessary to estimate a wetness index
that includes the combined effects of vadose zone SM, pore water pressure or
groundwater level.

This paper proposes to directly include vadose zone SM in the slope stability
model to estimate safety factors. The approach is to develop a wetness index model that
takes into account both saturated zone and vadose zone SM. Moreover, this paper also
uses an approach to calculate moist soil unit weight that takes into account the temporal
dynamicsl of vadose SM. The main objectives of this study are: (1) to modify the infinite
slope stability model to directly include vadose zone SM and (2) to analyze the combined
impacts of vadose zone SM, groundwater table position and soil mantle thickness on

instability.
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Slope Stability Model

This study uses the inﬁnite. slope method (Skempton and DeLory, 1957) to
calculate safety factors that express the ratio of resisting forcés to driving forces. Figure
3-1 shows a schematic representation of a typical slope. The infinite slope stability model
as adapted from the several studies (e.g., Montgomery and Dietrich 1994; van Westen
and Terlien 1996; Acharya et.al., 2006; Ray and De Smedt 2009) is

FS=CS;,C’+ ]—mJIx tang , a (3-1)
v .Hsin® Y. ) tan0

where Cg and C; are the effective soil and root cohesion [kN/m?], Ye is the effective unit
soil weight [kN/m’], H is the total depth of the soil above the failure plane [m], 0 is the
slopé angle [°], m is the wetness index [adimensional], ¢ is the angle Of internal frictioh
of the soil [°], and vy, is the unit weight of water [kN/m3]. Originally, Skempton and
DeLory (1957) used the saturated unit soil weight (ys) instead of the effective unit soil
weight (yc) and the vertical soil depth above the potential failure plane. However,
Acharya et al. (2006) and Ray and De Smedt (2009) used the soil depth perpendicular to
the potential failure plane (Fig. 3-1). The effective unit soil weight as defined by de

Vleeschauwer and De Smedt (2002) is:

_ qcosf

<

+(1-m)y, +my, (3-2)

where q is any additional load on the soil surface [KN/m®]. De Vleeschauwer and De

Smedt (2002) used dry unit soil weight instead of moist unit soil weight (ym) [kN/m?] for
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the unsaturated soil layer. Hence we define the moist unit soil weight of the unsaturated

soil layer above the saturated soil layer [kN/m3] is defined as:

_G+S,e

T (3-3)
1+e

y m

where G is the specific gravity of soil [adimensional], Sy, is the degree of soil saturation
[cm3/cm3] or vadose zone soil moisture and e is the void ratio [adimensional]. The degree
of soil saturation (range from 0 to 1) is replaced by the vadose zone SM when calculating
moist unit soil weight for the unsaturated layer.

The traditional approach for calculating the wetness index is based on the
TOPMODEL and uses effective rainfall, transmissivity, upslope specific contributing
area and slope as well as the ratio of the saturated soil layer thiékness to the total soil
thickness. These approaches do not take into account the impact of vadose zone SM in
the wetness index model. Here, a wetness index model is proposed that directly links
vadose zone SM with the saturated s‘oil layer thickness and the total soil thickness (Eq. 3-
4).

_h) *
__htrH-h)*S,
H

(3-4)

where h is the saturated thickness of the soil above the failure plane [m].
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» =8, YW(H )+S, (Ey, e T gt ey Vo) g Tt leg

H

The calculated FS values are used to categorize slopes into stability classes using
Pack et al. (1998) and Acharya et al’s (2006) stability classification system. The
proposed four susceptibility classes are highly susceptible (FS<1), moderately susceptible

(1<FS<1.25), slightly susceptible (1.25<FS<1.5) and not susceptible (FS>1.5).
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Material and Methods

Study Area

The sensitivity of slope stability to soil moisture was considered using the
physiéal characteristics at Cleveland Corral, CA; This landslide prone area is located on
the slope of the Sierra Nevada Mountains along the Highway 50 corridor (Reid et al.,
2003). Highway 50 is a major road located between Sacramento and South Lake Tahoe in
~ California (Spittler and Wagner, 1998). Since 1-996, slope movements and landslides
occurred infrequently during the winfer season with a catastrophic landslide in 1983. A
mapped landslide at the most active landslide zone is shoWn in Figﬁre 3-2.

The study domain is a 28 x 22 km area in El Dorado County, California, USA
(Fig. 3-2). As derived from a 90 m Digital Elevation Model (DEM), elevations range
from about 902 to 2,379 m and slopes range from 0 to 48° This study region has
considerable variability in soil texture ranging from clay loam to sandy loam. The
majority of the observed soil is sandy loam (72%). ”On this rugged topography, conifers
and wqoded grassland are the dominant land covers: 80% and 14% of the study region,
respectively. Some £ock outcrops are also observed along the Highway 50 corridor.

Since 1997, the USGS has monitored this active landslide region using real time
data acquisition systems that measure rainfall, pore water pressure, slope movements,
ground vibrations and landslides (Reici et al., 2003). The daily groundwater
measurements for water years 2004 to 2006 were obtained from the USGS (Mark Reid,

USGS).
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Piezometers were used to measure the hydraulic head at the active landslide grid. High
groundwater tables were observed during the periods with slope movement and

landslides in the winter (rainy) season (Reid et al., 2003).

Methods

To study the impact of vadose zone SM in slope instability, an active landslide
pixel was selected from this study region. The Eq. 3-6 was used to estimate the rate of
change of the safety factors for a time series of groundwater (GW) levels and total soil
depth with varying vadose zone SM. To obtain spatial distributions of susceptibility, the
model was also applied to the entire study region with rnodeled vadose zone SM and in-
situ GW measurements.

The Three-Layer Variable Infiltration Capacity (VIC-3L) model (Liang et al.,
1994) was used to estimate soil moisture in the unsaturated zone. VIC-3L is a macroscale
land surface model that simulates water and energy budgets and includes spatial
variations of soil properties, soil topography, precipitation, and vegetation (Maurer et al.,
2002; Huang and Liang, 2006). The model’s soil column has three layers (Parada and
Liang, 2004). The top, thin soil layer and the middle soil layer characterize the dynamic
response of the soil to weather and rainfall events. The lowest layer captures the seasonal
soil moisture behavior (Liang et al., 1996; Huang and Liang, 2006). Based on the climatic
parameter and soil and vegetation characteristics, this model can estimate soil moisture
storage, evapotranspiration, runoff and snow water equivalent at hourly to daily time-

steps.
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For this study region, the VIC-3L model was run using a daily time-step from
2004 to 2006 with layers of 0.05, 0.35, 0.4 to 1.0 m thickness at a 0.0083° (apprdximately

1 km) resolution. This study region has a total of 900, 0.7 kmz_ pixels.

Model Data

The data required for the VIC-3L hydrologic model and the slope stability model
are summarized in fable 3-1. Rainfall, temperature and wind speed measurements were
obtained from the National Climatic Data Center (NCDC) from 2000 to 2006. Soil layers,
soil thickness and soil texture information were obtained from the States Soil Geographic
(STATSGO) soil database (NRCS, USDA). There are a total of eleven soil layers in
STATSGO. However, many layers have similar soil texture classes. To coincide with the
VIC-3L model, the eleven soil layers were regrouped into three soil layers by merging
similar soil textures from many layers to one layer. The first, second to fifth and sixth to
eleventh soil layers of the STATSGO soil database were regrouped into three soil layers;
respectively, first, second and third soil layers for the VIC-3L model. Consequently, the
first and second layers have similar soil textures. About 72 and 28% of study area is
covered with sandy loam and loam, respectively in both layers. The third (lower) layer
consists of four soil types, loam, sandy loam, clay loam and sandy clay, and covers,
respectively, 72, 16, 3 and 9%, of the study area. Soil types were identified from the
'STATSGO soil database. Each pixel was assigned a soil texture for each of the three soil
layers based on majority type. For verification purposes, four soil samples were collected

from the active landslide grid and tested in a laboratory using sieve analysis and
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Atterberg Limits tests. The tests showed similar soil texture td the STATSGO soil
database classification. The total soil depth ranged from 0.6 m to 1.4 m. The assumed
potehtial failure f)lane underneath the soil layer is bedrock. The unit soil weight (saturated
and moist) was calculated based on the soil moisture, soil porosity, and specific gravify of
the soil Asamples using Eq. 3-3. Each soil type was assigned soil cohesion and friction
angle values that were adapted from Deoja et al. (1991)

Advanced Very High Resolution Radiometer (AVHRR) land cover data (1 km
spatial resolution) were obtained from University of Maryland (UMD) (Hansen et al.,
2000). There are four land cover classes (types) in this study region. Each land cover
class was assigned a root cohesion values that was adapted from Sidle and Ochiai (2006).
The Land Data Assimilation System (LDAS) project has produced a gridded vegetation
database for the USA. Root fréction, root depth, vegetation roughness, and vegetation
height required for the VIC-3L model parameterizationrwere obtained from the LDAS
(Mitchell et al., 2004). The Shuttle Radar Topography Mission (SRTM) DEM (90 m

spatial resolution) was used to derive slope angle in this study.
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Model Results

Soil Moisture and Groundwater Impact Analysis

Theoretical safety factdrs and susceptible areas were calculated with Egs. 3-5 and
3-6. First, a safety factor sensitivity analysis was conducted at an active landslide location
in the study area. Then, the iﬁpact of vadose zone SM and GW was considered with
respect to susceptibkle areas in the study region.

Figures 3-3a, b, ¢ and d show the rate of change in safety factors with varying
vadose zone SM for a series of GW table positions, respectively for varying soil
thicknesses. This analysis used characteristics obtained for the most active landslide grid
in the California study region. The selected active landslide grid has a 1.4 m soil depth
with sandy loam soil and wooded grassland land cover. This grid has a 32.5° slope.

Using Eq. 3-6, the rates of change in safety factors were calculated with Varyiﬁg
vadose zone SM (0-100%, using 5% increments). This analysis was repeated for a series
of GW table positions (depth to groundwater) from 0.1 to 1 m below the surface (0.1 m
increment). The 0.1 m GW table is the wettest scenario. The 1 m GW table is th¢ driest
scenario. The maximum saturation scenario was limited to 0.1 m depth to GW table
because there is no impact of vadose zone SM under full saturation.

_Figure 3-3 shows a significant impact of vadose zone SM when the depth to GW
is deep. For a thick soil layer (soil thickness > 2 m), the FS sensitivity is constant for all
GW table positions. A constant FS sensitivity is also observed for a thin soil layer (soil

thickness < 2 m) when the GW table is shallow (depth to GW table < 0.5 m).
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The observed FS is less sensitive with increasing vadose zone SM (true until 70%
SM) for a thin soil layer with a deeper GW table. When the vadose zone SM is greater
than 70%, the FS values are equally sensitive to increases SM even with deep GW table.

For all of the sqil thicknesses (1 to 3 m in this analysis), the FS sensitivity
decreases when the GW approaches the surface. The decrease has a nearly constant rate
near the surface. For example, when the depth to GW is 0.5 m, the observed rates of
changes for safety factors are 27, 15, 10 and 6% for soil thicknesses of 1, 1.4, 2 and 3 m,
respectively. When the GW table is shallow, 0.1 m (0.4 m change), the safety factors’
sensitivity declines to 4, 2, 2 and 1% for the 1, 1.4, 2 and 3 m thicknesses, respectively.
Thus, a 0.4 m GW table rise significantly changes the FS sensitivity; by 20, 13, 8 and 5%.
When the same 0.4 m GW table change occurs for deeper GW positions, 1 m rising to 0.6
m, an even larger change in the FS occurs with differences of 29, 17, 9 and 6% for the 1,
1.4, 2 and 3 m, soil thicknesses, respectively.

Figure 3-4 shows the safety factors’ sensitivity to soil depth with a controlled GW
positions and varying vadose zone SM. These results show small rates of safety factor
change (less than 15%) when the total soil depth is greater than 2 m. These changes
’ increése nonlinearly with decreasing soil thickness. For example, when the soil thickness
changes from 1 to. 1.5 m, the difference in the rate of change in safety factor was 18%,
but it was only 7% when the soil thickness was changed from 1.5 to 2 m.

At a regional scale, variations in SM and GW differentially effect individual
locations. Figure 3-5 shows how the vadose zone SM and the GW table jointly influence
regional susceptibility. Using Eq. 3-5, safety factors (FS) were calculated for a series of

GW depths below the surface (0 to 1 m, 0.1 m increment) with varying vadose zone SM
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(0-100%) for the entire Cleveland Corral study region. This study uses the 90 m spatial
resolution for a total of 75988 grid cells. |

Th¢ results show that 0.58% of the study region is highly susceptible under the
completely saturated scenario (lower right). No area is highly susceptible under the dry
scenario (upper left). The contour lines of equal % susceptible area, 0.01% interval,
become closer as the GW table approaches the ground surface and the vadose zone SM
approaches the saturation level. Figure 3-5 shows that wetter unsaturated soils can be
more vulnerable to landslides than the less wet unsaturated layer, even if the GW table is
deeper for the former.

Not surprisingly, as the GW thickﬁess increases, the highly susceptible area
increases. However, Figure 3-5 shows that regardless of soil saturation, the marginal
increase in susceptible area increases as the GW table nears the surface. A 10% increase
in soil saturation will cause more of the region to become unstable if the hillside is
already wet than if the slopes were initially dry. It should also be noted that the marginal
increases decrease somewhat for very wet slopes, 80 to 100% saturation, as compared to
more moderately wet slopes, 30 to 80%. Overall this analysis shows that the vadose zone

SM can have a significant role in slope instability.
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Application

VIC-3L Model Results

The VIC-3L model was run at a 0.0083° (approximately 1 km) spatial resolution
from 2004 to 2006 to obtain vadose zone soil moisture at Cleveland Corral. Figure 3-6
shows the daily average modeled vadose zone soil moisture, rainfall and in-situ GW
ﬁeasurements at one active landslide grid (1 x 1 km) in this study region. Average daily
- soil moisture was calculated by weighted average of daily soil moisture obtained from the
VIC-3L model in the top two layers. The GW fneasurements from the USGS station were
used to validate the VIC-3L model results. Since no in-situ soil moisture measurements
were available, soil wetness variations captured by the VIC-3L model were compared
with GW fluctuations during the wet season. Duriﬁg the wet season, the GW was very
close to the surface in this region. The near surface GW fluctuations are strongly
indicative of the soil moisture storage in the unsaturated zone above the éaturated zone.
VIC-3L vadose zone SM values and the in-situ GW measurements show similar daily
gnd seasonal variations throughout the year.

Spring' is the wettest season because relatively high amounts of rainfall (Fig. 3-6)
and snow melt occur during this period. This period has the highest vadose zone SM and
also has a GW level that is very close to the surface. Durjng the 2005 wet season, January
to May, the highest and the lowest vadose zone SM values estimated by the model were
82 and 49%, respectively, when the shallowest and thé deepest GW positions were 28

and 137 cm below the surface, respectively. During the 2006 wet season, January-April,
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the model predicted 83 and 52% vadose zone SM when the GW table was 35 and
75 cm below the ground surface, respectively. The highest vadose zone SM predicted by
the model in 2004, 2005 and 2006 were 84, 84.5 and 82.9%, respectively, when the
groundwater levels were 38.5, 4Q.3 and 45.7 cm below the ground surface.

The dry summer periods have the lowest vadose zone SM and very deep GW
levels. There is a good agreement between the dry period predicted by the model and the
groundwater measurements from July to November in 2005 and from June to September
in 2006. In 2005, vadose zone SM ranged 20 to 27% when the groundwater levels were
181 to 186 cm below the surface. Similarly, in 2006, vadose zone SM was 21% when the
groundwater depth was 182 cm below the ground surface.

Overall, the simple linear regression analysis for depth to GW and average vadose
zone SM provided a good fit with a R? of 0.63 and p-values less than 0.0001. Thus,
results show that the vadose zone SM values predicted by the VIC-3L reasonably capture
the wetting and drying of the vadose zone. In addition, it is clear that the GW and the SM
values are strongly related. The predicted vadose zone SM values in combination with

GW levels can be used in the slope stability model to calculate the safety factors.

Regional Slope Stability Analysis

The slope stability model described earlier was used at the Cleveland Corral to
determine safety factors. This study used a 90 m spatial resolution to calculate wetness
index, moist unit soil weight, effective unit soil weight and FS. Modeled moisture values

with a 1 km spatial resolution were reclassified into 90 m spatial resolution using the
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nearest-neighbor re-sampling technique. Wetness indices were calculated by using
measured depth to GW, total soil thickness and average vadose zone SM values obtained
from the VIC-3L model (Eq. 3-4). The vadose zone SM, obtained from the VIC-3L
model, was also used to estimate moist unit soil weight in the unsaturated soil layer
(ébove the saturated soil layer). (Eq. 3-3). The effective unit soil weight was calculated
using moist unit soil weight, wetness index, total depth of soil, surcharge and slope angle
(Eq. 3-2). Finally, Eq. 3-1 was used to calculate safety factors continuously for the region
end a range of resﬁlts are presented to demonstrate varying conditions.

Three typical wet scenarios were identified based on the soil saturation wetness.
A very wet scenario, on May 8, 2005, the GW position was 0.28 m below the surface. A
wet scenario, on May 23, 2005, the GW position was 0.65 m below the surface, that is,
between the failure plane and the ground surface. A slightly wet scenario, on 4t May,
2005, the GW position was 1.12 m below the surface, that is, near to the bottom of the
failure plane. These three wetness scenarios were used to estimate the range of safety
factors (Table 3-2). A higher vadose zone SM was predicted for a shallow depth to GW
as compared to a deeper depth to GW. Table 3-2 shows the proportion of the study area
by susceptibility class for the three GW positions. Results show more susceptible area
when the GW table is near the surface and has a high vadose zone SM. Interestingly, the |
susceptible area decreases include both a GW that is farther from the surface as well as a
lower vadose zone SM.

Slope stability variations were compared to slope movements and landslide events.
All of the slope movements and landslides coincided with periods of enhanced surface

soil moisture and high groundwater position in this region (Fig. 3-6). In the Cleveland
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Corral region, 2 to 3 cm per day slope movements were frequently observed during the

winter of 2005 (http://landslides.usgs.gov/monitoring/thS0). Reported slope

movements began in early April, 2005 when the GW table was near the surface and it

continued until end of the May.

Safety Factors as a Function of Vadose Zone SM and GW

To understand the relationship among vadose zone SM, GW table depth and soil
~ thickness, éafety factors were calculated using Eq. 3-1 for three scenarios at the
Cleveland Corral, California study region. First, actual groundwater measurements were
uséd with a varying vadose zone SM (0-100%, 10% increment). In this scenario, the
typical wet season GW positions described earlier, 0.28, 0.65 and 1.12 m, were used to
estimate the range of safety factors. Second, vadose zone SM and GW position were held
constant while the total soil thickness varied. In this scenario, the total soil thickness
increased from‘ 1to 3 min 0.5 m increments with a constant 0.75 m groundwater
satufated thickness and a 50% vadose zone SM. Finally, GW position was held constant
while the vadose zone SM and the total soil thickness were varied. In this scenario, GW
position was fixed at a 0.75 m saturated thickness and the vadose zone SM and the total
soil thickness, respectively changed from 90% and 1 m to 50% and 3 m with 0.5 m
increases in soil thickness and 10% decreases in soil moisture. These values reflect the
modeled observations of the highest vadose zone SM for the shallowest GW table and

lowest vadose zone SM for the deepest GW table.
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Influence of Vadose Zone SM in Instability

Figure 3-7 shows plots of percentage susceptible area by susceptibility class for
completely dry to saturated vadose zone SM with the observed wet season GW tables.
Under completely saturated conditions, 0.58% of the area was highly susceptible to
failure. For a completely dry soil, the 0.84 m range in the wet season GW table has a
highly susceptible area which ranges from 0.006 to 0.27% of the study area. The same
GW table range results in nearly a 1% increase in the moderately susceptible areas. The
combined increase in all susceptibility classes is equivalent to the reduction in stable area.
For the 1.12 m GW table when vadose zone SM transitions'from completely dry to
saturation, the stable area was reduced by 5.2%, and the slightly susceptible, moderately
susceptible and highly susceptible areas were increased by 2.85, 1.78, and 0.58%,
respectively.

The transition from dry to wet depends on the susceptibility class and the GW
table. Safety factors for the highly and the moderately suscgptible classes have a similar
dependence on GW table and SM. In the dry conditions, when the GW table was deep,
there is a pronouncedly non-linear increase in instability with increasing vadose zone SM.
As the GW table approaches the ground surface, there is a more linear increase in
instability with increasing vadose zone SM. On %he other hand, the slightiy susceptible'
and the stable classes have fairly constant rates of change in area under all SM conditions.
The rate of change in the highly susceptible area is lower than the slightly susceptible
area for similar saturation levels. Similarly, the rate of change in the highly susceptible
area is lower forrt'he shallowest GW table than for the deepest GW table. This shows that

the vadose zone soil moisture has less of an impact on instability when the GW table is
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- very close to the ground surface. For example, the total highly susceptible area increased
by 0.32% for the shallowest GW table and by 0.58% for the deepest GW table when the

region went from a completely dry vadose zone to a completely saturated vadose zone.

Influence of the Soil Thickness in Instability at Constant GW Thickness and Vadose
Zone SM :

The impact of a thick unsaturated soil layer as compared to a thin unsaturated soil
layer on stability was assessed by determining the susceptible area with a varying soil
thickness for a constant saturated thickness or GW table thickness (0.75 m) and the
vadose zone SM (50%). For example, a 1 m thick soil has a GW table 0.25 m below the
ground sﬁrface where as 3 m thick soil has a GW table that is 2.25 m below the surface.

Figure 3-8 shows that a thick unsaturated soil layer produces more unstable area
than a thin unsaturated soil layer for the same GW table thickness. The rate at which the
highly susceptible area increases is lower than that for the slightly susceptible area. The
estimated highly, moderately, and slightly susceptible area increases from 0.14, 0.54 and
1.57% to 0.82, 2.44 and 4.12%, respectively, as the soil thickness increases from 1 to 3 m.
The changes, 0.67, 1.9 and 2.54%, respectively, in highly, moderately, and slightly
susceptible ‘areas are quite different with the highly susceptible class’s rate of change is
fairly constant in comparison to the moderately and slightly susceptible classes. Notably,
there is more than a 500% increase in' the highly susceptible area.

These results show that accurate knowledge of depth to a potential failure plane,

in addition to GW table, is necessary when accounting for a dynamic vadose zone SM. A
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thick unsaturated soil layer is more vulnerable to instability than a thin unsaturated soil

layer for shallow soil mantles.

Influence of the Soil Thickness and Vadose Zone SM in Instability at Constant GW
Thickness

While the previous section maintained a constant vadose zone SM, the observed
vadose zone SM varied as a function of the GW position. In this section, the joint
relationship between a varying vadose zone SM (90 to 50%, 10% decrease) and soil
thickness (1 to 3 m, 0.5 m increase) was examined for a fixed GW table thickness. Wetter
and drier conditions were assigned, respectively, for the shallowest and the deepest GW
tables.

Figure 3-9 shows the greatest sensitivityvfor shallow soil layers and less for the
thicker, drier unsaturated soil layer. When the total soil thickness above the potential
failure plane increased from 2 to 3 m, the estimated change in highly, moderately and
slightly susceptible areas were 0.1, 0.16 and 0.35%, respectively. In contrast, when the
soil thickness increased from 1 to 2 m, the estimated change was dramatically larger for
highly, moderately and slightly susceptible areas, respectively, 0.51, 1.52 and 1.87%.

These results show that including vadose zone S.M in an infinite slope stability
model is best suited for shallow slope stability: analysis. When soil mantles are deep,
slope stébility is less sensitive to anticipated vadose zone SM variations. These
observations clearly support Sidle and Ochiai’s (2006) finding that for shallow soils,
effects of pore water pressure are large and for deep soil mantles, effects of pore water

pressure are small.
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Conclusion

The vadose zone soil moisture and pore water pressure are important parameteré for
slope stability analysis because landslides are not triggered only due to surface layer
saturation; rather, it is the combined effect of surface and subsurface saturation that is
critical. This study developed methods to estiniate wetness indices based on vadose zone
soil moisture and saturated soil thickness as well as to calculate dynamic moist unit weight
using vadose zone soil moisture. This relationship was used to characterize the sensitivity of
safety factors to vadose zone SM for a series of groundwater positions and soil depths. The
saﬁle infinite slope stability model was applied to the Cleveland Corral region, California in
order to examine the sensitivity results within an applied context.

Results show significant impacts of vadose zone soil moisture on slope instability.
The susceptibility to slope failure increases with an increase of vadose zone soil moisture as
well as groundwater position. For shallow slope soil mantles, a thicker unsaturated soil
thickness is more vulnerable to landslides in comparison to a thinner unsaturated sbil
thickness for the same position of the groundwater level above the potential failure plane.
However, when soil mantles are deep, slope stability is less sensitive to anticipated vadose

zone SM variations.
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Table 3-1: List of model parameters and sources

Parameters Sources Model

Soil cohesion Deoja et el. (1991) Slope stability

Soil porosity Dingman (2002) Slope stability and VIC-3L
Soil texture STATSGO Slope stability and VIC-3L
Soil depth STATSGO Slope stability and VIC-3L
Hydraulic conductivity STATSGO VIC-3L ‘

Soil bulk density Dingman (2002) Slope stability and VIC-3L
Angle of internal friction Deojaetel. (1991) Slope stability

Additional load (surcharge) Ray (2004) Slope stability

Land cover University of Maryland Slope stability and VIC-3L
Root cohesion Sidle and Ochiai (2006) Slope stability

Root depth LDAS VIC-3L

Root fraction LDAS VIC-3L

Vegetation roughness LDAS VIC-3L

Vegetation height LDAS VIC-3L

Leaf Area Index (LAI) LDAS VIC-3L

Rainfall NCDC VIC-3L

Groundwater USGS (Mark Ried) Slope stability
Temperature NCDC VIC-3L

Wind speed NCDC VIC-3L

Table 3-2: Predicted susceptible area (%) for the Cleveland Corral region during the wet

season
Depth to Avg. Vadose Highly Moderately - Slightly Not
GW (m) Zone SM (%) Susceptible Susceptible Susceptible Susceptible
0.28 72 0.49 1.67 2.87 94.96
0.65 60 0.30 1.15 2.44 96.11
1.12 52 0.11 0.55 1.61 97.73
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Ground surface l . I

L2

L3

Figure 3-1: Schematic diagram for the slope angle, saturated and total soil thickness,
surcharge, saturated and moist unit soil weights (Adapted and modified from Skempton and

Delory, 1957)
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Vadose Zone Saturation (%o)
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Figure 3-5: Highly susceptible area % as a function of GW and soil saturation (Dark: greater
highly susceptible area, white: less highly susceptible area). Depth to GW table (1 m @ 10%
decrease up to 0 m or surface) and eleven soil saturations (0% @ 10% increments up to

100%) were used to calculate FS. The contour lines show equal percentage of highly
susceptible area with 0.01% intervals. '
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Figure 3-7: Four susceptibility classes with varying SM (0 to 100%), three GW positions
measured from the surface and observed SM at Cleveland Corral region, California in

2005. A solid line that intersects susceptible classes’ line represents observed vadose
zone SM and GW tables
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Figure 3-8: Variation of susceptibility area with increase of soil thickness with
equal increase in depth to GW table (0.25 m for 1 m thick soil with 0.5 m increment
to 2.25 m for 3 m thick soil or constant GW table thickness from the failure plane)
and constant vadose zone SM (50%) at Cleveland Corral region, California in 2005
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Figure 3-9: Susceptibility area with increase of soil thickness with equal increase in
depth to GW table (0.25 m for 1 m thick soil with 0.5 m increment to 2.25 m for 3 m
thick soil or constant GW table thickness from the failure plane) and varying vadose zone
SM (as shown in Figure) at Cleveland Corral region, California in 2005
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CHAPTER 4.

MODELING LANDSLIDE SUSCEPTIBILITY USING DYNAMIC SOIL MOISTURE
PROFILES : : '

Abstract

A landslide susceptibility mapping study was performed using dynamic hillslope
hydrology. The modified infinite slope stability model that directly includes vadose zone
soil moisture (SM) was applied at Cleveland Corral, Califomia, US and Dhading, Nepal.
‘The variable infiltration capacity (VIC-3L) model simulated vadose zone soil moisture

- and the wetness index hydrologic model simulated groundwater (GW). The GW model
predictions had a 75% NASH-Sutcliffe efficiency as compared to California’s in-situ GW
measurements. The model performed best during the wet season. Using predicted GW
and VIC-3L vadose zone SM, the developed landslide susceptibility maps show very

good agreement with mapped landslides at each study region.
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Introduction

Weather and climate factors that increase soil moisture and pore water pressures
enhance slope instability. Slope stability analysis via the limit equilibrium approach can
be used to quantify the impact of soil moisture on landslides (e.g., Montgomery and
Dietrich, 1994; D’Odorico et al., 2005; Chiang and Chang, 2009). The limit equilibrium
approach uses two unsaturated and one saturated soil layers. Some studies use a single
saturated unit soil weight to represent both layers (e.g., Montgomery and Dietrich, 1994;
D’Odorico et al., 2005; Chiang and Chang, 2009). Others use dry and saturated unit soil
‘weight, respectively, for the layer above and below the saturated soil layer (De
Vleeschauwer and De Smedt, 2002; Ray and De Smedt, 2009). An analogous approach
uses wetness indices such as O’ Loughlin’s 1986 TOPOG model (e.g., Dietrich et‘al.,
1993; Montgomery and Dietrich, 1994; Van Westen and Terlien, 1996; Pack et al., 1998;
de Vleeschauwer and De Smedt, 2002; Ray and De Smedt, 2009). These wetness indices
can provide a dynamic spatially distributed representation of the water table, but neglect
soil moisture in the upper soil layer above the groundwater table (Rosso et al., 2006).

" Ray and De Smedt (2009) developed landslide susceptibility maps for three
steady state and two quasi dynamic scenarios. They assumed dry, half saturation and full
saturation as steady state scenarios and 2 year and 25 year return period rainfall as
dynamic scenarios. For quasi dynamic scenarios, they used infiltration based model to
estimate increase of groundwater over the assumed half saturation. However, these

authors pointed out that those results may not be realistic because an initial groundwater
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prior to rainfall events was assumed. They recommended to study further based on the
real groundwater table and antecedent soil moisture conditions. Although it is more
realistic to use in-situ groundwater and soil moisture measurements, it is rather expensive,
time consuming and almost impossible to monitor dynamic groundwater and soil
moisture for dynamic susceptibility analysis at a regional or global scale. An alternate
approach is to use a hydrologic model to characterize groundwater table and vadose zone
soil moisture (SM) evolution. Ray et al.’s (2009a) enhanced wetness index model uses
vadose zone SM to estimate moist unit soil weight and wetness index. At these scales,
soil-vegetation-atmosphere-transfer (SVAT) models offer a useful method to estimate
soil moisture values.

Most SVAT models are well suited to predict soil moisture dynamics (Whitfield
et al., 2006). Some SVAT models such as Biospﬁere Atmosphere Transfer Scheme
(BATS; Dickinson et al., 1986) and Simple Biosphere Model (SiB; Sellers et al., 1986)
are not viable in slope stability analysis because they do not include topographic effects
(Ling et al., 1994). Other models, the Common Land Model (CLM; Dai et al., 2003) and
Land Surface Process (LSP; Liou et al., 1999), require soil layer characteristics that are
not the appropriate model for shallow slope stability analysis. The variable infiltration
capacity (VIC-3L) model (Wood et al., 1992; Liang et al., 1994) considers topography
and has three soil layers. This model has no vertical flow from the third soil layer, but
instead generates baseflow. This agrees well with the infinite shallow slope stability
model which assumes no vertical water movement on the impervious soil layer or

bedrock.
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This paper seéks to improve Ray and De Smedt’é (2009) approach by including
VIC-3L’s soil moisture effects in landslide susceptibility maps. The results are
demonstrated for two study regions; Cleveland Corral, California, USA and Dhading,
Nebal. This paper also evaluates the Ray and De Smedt (2009) wetness index model by
simulating the groundwater table at Cleveland Corral, California. The landslide
susceptibility results are comp.azlred to mapped landslides and previous studies. The
specific research objectives are: (1) to examine the Ray and De Smedt (2009) wetness
index model groundwater table simulation; (2) to validate SVAT derived soil moisture
profiles, (3) to characterize the regional landslide susceptibility maps using dynamic soil
moisture and groundwater and (4) to  compare these results with traditional susceptibility

maps.
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Models

Slope Stability Model

This study uses the infinite slope method (Skempton and\ DeLory, 1957) to
calculate safety factors that expresses the ratio of resisting forces to driving forces. The
infinite slope stabilify model as adapted by the several researchers (e.g., Montgomery and
Dietrich 1994; van Westen and Terlien 1996; Acharya et al., 2006; Ray and De Smedt,
2009) is:

FS =t Co |ty |00 @
v .Hsin® Y. ) tan0

where Cs and C; are the effective soil and root cohesion [kN/m?], v. is the effective unit
soil weight [kN/m®], H is the total depth of the soil above the failure plane [m], 6 is the
slope angle [°], m is the wetness index [adimensional], ¢ is the angle of internal friction
of the soil [°], yw is the unit weight of water [KN/m?]. The effective unit weight is

estimated as:

_ qcosf

+(1-m)y, +my, @2)

€

where q is any additional load on the soil surface [KN/m?] and Y, is moist unit soil weight
[kN/m?] for the unsaturated soil layer.

The wetness index model follows Ray et al. (2009a) given as

h+ (H-h)*S,
m-=
H

(4-3)
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where h is the saturated thickness of the soil above the failure plane [m] and S,, is the

degree of soil saturation [cm3/cm3] or vadose zone soil moisture.

VIC-3L Model

The vadose zone ‘SM is simulated using the VIC-3L model. The VIC-3L
hydrologic model (Liang et al., 1994, 1996, 1999; Cherkauer and Lettenmaier, 1999) isa
three-layer SVAT land surface scheme (Lohmann et al., 1998) that has been widely
applied for surface runoff generation and soil moisture profile estimation (Liang and Xie,
2003; Yuan et al., 2004; Dengzhong and Wanchang, 2005). This macroécale land surface
model that simulates water and energy budgets by including spatial variations of soil
properties, soil topography, precipitation, and vegetation (Maurer et al., 2002; Huang and
Liang, 2006) and can be run at grids sizes ranging from a fraction of degree to several
degrees latitude and longitude (Maurer et al., 2002). Based on the climate data and soil
and vegetation characteristics, this modél can estimate soil moisture storage,
evapotranspiration, runoff and snow water equivalent at hourly to daily time-steps.
Moreover, other distinguishing characteristics of this model are the ability to represent
sub-grid variability in land surface vegetation classes, soil moisture storage capacity,
topography as well as precipitation (Nijssen et al. 2001; Yuan et al., 2004; Zhou et al.,
2004; Huwang and Liang, 2006). VIC-3L uses the variable infiltration capacity approach
(Nijssen et al. 1997) and varies runoff generation and evapotranspiration based on

topography, soil and vegetation (Wood et al., 1992).
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The model’s soil column has three layers (Parada and Liang, 2004). The top, thin
soil layer and the middle soil layer characterize the dynamic response of the soil to
weather and rainfall events. The lowest layer captures the seasonal soil moisture behavior
(Liang et al., 1996; Huang and Liang, 2006) and only responds to rainfall when the upper
layer is wet. The first soil layer receives soil moisture from precipitation and drains it to
the second soil layer by gravity using the Brooks and Corey (1988) relationship
(Lohmann et al., 1998). The base flow from the third soil layer contributes to runoff
based on the ARNO model (Francini and Pacciani, 1991).

The VIC-3L model characterizes N+1 land cover types where N is the different
land cover types and 1 represents bare soil. There is no restriction in number of model
land covers, however, it is more appropriate if they do not exceed 10 (Liang et al., 1994).
Each land cover type has a leaf area index (LAI), minimum stomatal resistance,
roughness length, displacement length and relative fraction of root (Liang et al., 1994;
Nijssen et al., 1997). This model uses the Penman-Monteith equation to calculate
'evapotranspiraﬁon at each grid cell (Njj ssen etal., 1997).

The VIC-3L model can be operated in various simulation modes including an
energy balance and water balance. The energy balance model is forced by maximum and
minimum temperature, precipitation, wind speed, air pressure, vapor pressure, and
incoming shortwave and long wave radiation. The energy balance simulates the surface
energy flux and solves the complete water balance. The water balance model, applied for
this research, only requires maximum and minimum temperature, precipitation and wind

speed forcing data (Zhou et al., 2004; Yulin et al., 2008).
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Groundwater Model

- The GW table fluctuations are simulated using the wetness index model (Ray and
De Smedf, 2009) loosely coupled With VIC-3L soil moistufe variation in the upper two
soil layers. The Ray and De Smedt wetness index model estimates the thickness of
saturated soil layer based on effective precipitation, specific yield and soil depth. The
amount of water stored, AS [m], per increase in water table elevation, Ah, is the specific
yield (or effective porosity), o = AS/Ah [-], a soil characteristicr(De Smedt, 2006). Ray

and De Smedt’s (2009) wetness index model based on effective precipitation is

m _h0+Ah_P_0+_13_S_m+IAtcose
oW H H o ° oH

(4-4)

where mgw is the wetness index due to the GW, mg = hy/H is the initial wetness index
before the rainfall event and is user defined saturated soil thickness prior to simulation
time, and the amount of infiltrated rainfall stored in the soil is given by AS = (cosB)IAt, I
is an effective precipitation [m], At the duration of the storm [s] and cos® compensates
for the fact that rain intensities are equated on a horizontal area basis while the soil
surface has a slope angle 6. Given mgw, the thickness of groundwater or saturated soil
thickness can be determined by |

h=mg, *H (4-5)
Equations (4-3) and (4-5) are used to estimate the wetness index. Eq. 4-5 estimates a
wetness index for a measured or estimated groundwater position and a dry vadose Zone.

Equation 4-3 includes the groundwater and the vadose zone SM.
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Study Areas

Cleveland Corral, CA, USA

The Cleveland Corral study region in the Highway 50 corridor is located in the
Sierra Mountains, California, USA (Reid et al., 2003). Highway 50 is a major road
located between Sacramento and South Lake Tahoe in California (Spittler and Wagner,
1998). The study area is about 28 by 22 km or 616 km®. Elevations range from about 902
to 2379 m. Based on the 90 m digital elevation model (DEM), slopes in this region range
from 0 to 48°. Since 1996, slope movements and landslides occur infrequently during
winter. One major catastrophic landslide occurred in 1983 in this region (Spittler and
Wagner, 1998). Since 1997, the USGS has monitored this region using real time data
acquisition systems (Reid et al., 2003). They found elevated pore-water pressures and
abundant soil moisture during periods with slope movément and landslides in the rainy
season.

This study region has considerable variability in soﬂ texture ranging from clay
loam to sandy loam (Table 4-1). The predominant soil is sandy loam. 72 and 28% of
study area is covered with gandy loam and loam, respectively in the first aﬁd second soil
layers. The third (lowest) layer consists of fouf soil types, loam, sandy loam, clay loam
and sandy clay, and covers, respectively, 72, 16, 3 and 9%, of the study area (Table 4-1).
The total éoil depth ranges from 0.6 to 1.4 m. Conifer and wooded grassland are the
dominant land covers at 80 and 14% of the study region, respectively. Some rdck

outcrops are also observed along the Highway 50 corridor.
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Krishnabhir, Dhading, Nepal

Nepal is about 83% mountainous terrains, the remaining 17% is southern alluvial
plains. The country extends from 80° 04' to 88° 12'E longitude and 26° 22' to 30° 27'N
latitude and spans approximately 885 km in the east-west direction and varies from 130
to 255 km in north-south direction. The elevation ranges from 70 m at Kanchan Kélan to

8850 m at the top of the Mount Everest within a very short distance.

The stu_dy area is situated in Dhading, one of the seventy-five districts of Nepal.
The transnational Prithvi highWay connecting Kathmandu and Pokhara runs through the
southern part of the district. The road parallels the Trishuli River. The study area is about
25 km by 14 km or 350 km? in total. Based on the Shuttle Radar Topography‘ Mission
(SRTM) DEM, altitudes in this region range from 256 to 1918 m with slope 0 to 57°.
Landslides occur frequently in this area during the monsoon season, July to September,
usually leading to interruption of the traffic. One of the major landslides in the district
occurred in 2003 along the I;rithvi highway at Krishna Bhir. The relatively high landslide
frequency in Nepal, as compared with mouhtain ranges of other countries, may be

because Nepalese mountains are geologically younger (Ray, 2004).

Based on the United States Department of Agriculture (USDA) soil classification
system, sandy clay loam, sandy clay, sandy loam, loam and sand soil types were
identified in this region. The predominant soils are sandy clay loam (36%) and sandy
loam (22%). On this steep terrain, woodland and cropland are the dominant land covers,

50 and 29% of the study region, respectively.
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Methods and Database

This study uses a 90 m spatial resolution to calculate wetness index, moist unit
soil weight, effective unit soil weight and safety factor (FS). Soil moisture, obtained from
the VIC-3L model, was used to estimate moist unit weight of soil in the unsaturated layer
above the water table. Wetness indices were calculated by using modeled GW depth,
total séil thickness and average vadose zone SM values obtained from the VIC-3L model
(Eq. 4-3) at both study regions. The effective unit weight of soil was calculated using
moist unit weight, wetness index, depth of soil, surcharge and slope angle (Eq. 4-2).
Howeyer, for Ray and De Smedt (2009) model, Eq. 4-4 was used to estimate wetness
index based on the assumed GW position at half of total soil thickness (half saturation)
and calculated additional GW using rainfall,‘speciﬁc yield and slope with dry vadose
zone.

Theoretically, landslides occur when the safety factor is less than one.
Susceptibility maps were developed using four safety factor categories; highly
susceptible (FS<1), =~ moderately susceptible (1<FS<1725), slightly  susceptible
(1.25<FS<1.5) and not susceptible (FS>1.5). |

Since né tools or methods exist to map an entire susceptible area for validation,
this study compares observed landslides to the model results. Each study area was
surveyed to identify a series of landslide locations for validation (Table 4-4 and 5). Due
to the study extent and terrain, the survey was not comprehensive or all inclusive. 10 and

12 landslide sites were observed, respectively, in the California and Nepal study
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regions. Most of the sites failed prior to the study period. Several failures occurred during
the study period. In California, slope movements and landslides occurred in May 2005

and earlier. In Nepal, landslides occurred in August 2004 and earlier.

California
Methods

For the Cleveland Corral study region, the VIC-3L model was run using a daily
time-step from October 1, 2003 to September 30, 2006 with layers of 0.05, 0.35, 0.4 to
1.0 m thickness at a 0.0083° (approximately 1 km) resolution. This duration was selected
because this region has in-situ groundwater measurements for the study period. The

Cleveland Corral study region has 900 0.7 km? pixels.

Model Data

The soil and vegetation parameters required for the VIC-3L ilydrologic model and
the slope stability model are summarized in Tables 4-2 and 3, respectively. Soil layers,
soil thickness and soil texture information were obtained from the States Soil Geograpﬁic
(STATSGO) soil database (NRCS, USDA). There are eleven soil layers in the
STATSGO soil database. To coincide with the VIC-3L model, these layers were
regrouped into three soil layers. The first, the second to fifth and the sixth to eleventh soil
laslefs of the STATSGO soil database were combined to parameterize the first, second

and third soil layers, respectively, for the VIC-3L model. The assumed potential failure
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plane underneath the soil layer is bedrock. The unit soil weight (saturated and moist) was
calculated based on the soil moisture, soil porosity, and specific gravity of the soil
samples using metﬁods adapted by Ray et al. (2009a). Each soil type was assigned soil
cohesion and friction angle values that were adapted from Deoja et al. (1991) and the
slope of the retention curve adapted from Clapp and Hornberger (1978). Similarly, soil
bulk density, field capacity, wilting point and saturated hydraulic conductivity values
were adapted from the VIC-3L model documents and Miller and White (1998).

Advanced Very High Resolution Radiometer (AVHRR) land cover data (1 km
spatial resolution) were obtained from University of Maryland (UMD) (Hansen et al.,
2000). There are four land cover types excluding water and wetland in this study region.
Each land cover class was assigned a root cohesion values that was adapted from Sidle
and Ochiai (2006). Architectural resistance, minimal stomatal resistance, minimum
incoming shortwave radiation, root fraction, root depth, vegetation roughness and
vegetation height required for the VIC-3L model parameterization were obtained from
the Land Data Assimilation System (LDAS; Mitchell et al., 2004). The monthly LAI data
required for the VIC-3L model were obtained from Moderate Resolutioﬂ Imaging
Spectroradiometer (MODIS). The MODI15A2, 8-day comi)osite LAI values were
averaged to monthly va»lue.s.

Rainfall, temperature and wind speed measurements were obtained from the
National Climatic Data Center (NCDC) from 2000 to 2006. The 90 m SRTM DEM was
used to derive slope angle in this study. The daily groundwater measurements for water

years 2004 to 2006 were obtained from the USGS (Mark Reid, USGS).
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There are six model calibration parameters which can not be estimated from
vegetation or soil information (Zhou et al., 2004). These six parameters are the
infiltration shape parameter binﬁ]t, the maximum subsurface flow Dy, the fraction of
maximum subsurface flow D, the fraction of maximum soil moisture in the third layer
W; and the two soil depths layer second and layer third. The VIC-3L model results were
calibrated by comparing VIC-3L sbil saturation in the third soil layer to in-situ‘
groundwater measurements. The six determined model parameters were; bingyy = 0.2, Dmax
= 30, Ds = 0.0001, W, = 0.99, soil dépth of layer 1, soil depth of layer 2, D2 =0.35m,

and soil depth of layer 3, D3 =0.4 -1.0 m.

Nepal

Methods

For this study region, the VIC-3L model was run using a daily time-step from
October 1, 2003 to September 30, 2006 with layers of 0.05, 0.35 and 0.6 to 1.1 m
thickness at a 0.0083° (approximately 1 km) resolution. This study region has 450, 0.75
km? pixels.

This region does not have in-situ groundwater measurements. Groundwater table
was simulated using Eq. (4-4) and compared with the VIC-3L model average surface soil
moisture. The simulated gfoundwater table was used for all safety factor related
calculations. Geotechnical and hydrologic parameters used in this region are similar to

California study region.
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Model Data

The soil and vegetation parameters required for the VIC-3L hydrologic model and
the slope stability model are summarized in Table 4-2 and 4-3, respectively. Soil layers,
soil thickness and soil texture information were obtained from previous research work
(Ray, 2004; Ray and De Smedt, 2009). No vertical soil texture separation was observed
in this study region». The assumed potential failure plane underneath the soil layer is
bedrock. R;ly (2004) developed a soil map for this study area using geology map, land
cover map, Ariel photograph as well as Food and Agriculture Organization (FAQO) digital
soil map. All other soil (Ray, 2004) and land cover (UMD, Hansen et al., 2000)
parameter estimates are identical to the California study region.

The in-s‘itu. measurements of rainfall, temperature and wind speed Were obtained
from the Department of Hydrology, Nepal from 2003 to 2006. The 90 m SRTM DEM

was used to derive slope angle in this study region.
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Results and Discussion

Groundwater Simulation in California and Nepal

The modeled soil moisture profiles and GW table dépths were compared to in-situ
groundwater measurements from October 1, 2003 to September 30, 2006 at Cleveland
Corral, California. The wetness based groundwater model performance compares well to
the observed GW values (Table 4-6 and Fig. 4-1). The model’s average GW depth and its
variability are very close to observed GW values. In addition, the model has relatively
low errors, strong correlation and high efficiency.

California’s rainy or wet season is from January to May. Figure 4-2a shows that
the predicted GW results db an excellent job tracking the range and variability of the
observed GW, particularly during the wet season. Because landslides occur during the
wet season, it is critical for this period to have accurate GW tables and vadose zone SM.
Errors are much less critical during the dry season. These results support the wetness
model’s application in a landslide prone region. The wetness based model’s success in
the California study region is valuable because this ig its first application to a landslide
‘prone region where in-situ dynamic GW measurements were availabie.

The VIC-3L vadose zone SM values, the predicted GW and the in-situ GW
measurements show similar daily, seasonal and annual variations in both study regions
(Fig. 4-2a and 2b). There is also a strong correlation between SM and GW at both study
regions (Table 4-7). The R? values are 0.47 and 0.76, respectively for the Calivfornia and

the Nepal study regions and p-values are less than 0.0001 for both study regions.
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In California, spring is the wettest season because there is relatively high rainfall and
snow melt occurs during this period. The modeled SM values are wet during spring and
dry in late summer and fall. The dry to wet transition, which shows that soil moisture
increases prior to the GW table rising, is physically sound. In Nei)al, the VIC-3L vadose
zone SM values and predicted GW values also show similar daily, seasonal and annual
variations (Fig. 4-2b). Népal’s rainy or wet season is from June to September. In contrast
to California, the wet monsoon season begins with both SM and GW increasing
simultaneously because intense rainfall occurs during this period. During Nepal’s 2005
dry season, there were some significant GW table increases that did not correspond to
SM increases. While very good agreement between the VIC-3L SM and the model
predicted GW values is found during the monsoon (wet season), the method is not
recommended for the dry season. |

Figure 4-3 provides further support to the independent GW and VIC-3L SM
models’ wet season results. The relationship between the GW table depth and SM is
analogous to a soil moisture characteristics curve. For both study regions, SM increases
as the GW table rises. The relationship differs by region. The predominant soil types are
saridy clay loam and sandy loam in Nepal and California, respectively. The coarse
California soils drain relatively quickly when the water table lowers as compared to the
finer Nepal soils. Figure 4-3 relationships are comparable to classic soil-water pressure
versus saturation curve for the sites’ soil types.

Overall, the wetness based GW model and the VIC-3L SM demonstrate

promising results for landslide studies where no GW measurements are available,
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especially during the wet season. Practically, this approach can provide promising results

for landslide studies that mainly occur during a wet season.

Safety Factor Variations

The strength of the GW and SM modeling approach is that it makes possible daily
safety factor estimates at regional scales. This section first demonstrates the dynamic
safety factor results then examines critical saturation states at a regional scale.

Two 90 m pixels that are near observed landslides and slope movements were
selected for each study region. Under the maximum modeled saturation, one pixel is
highly susceptible and one is moderately susceptible in each region. Using the VIC-3L
model soil moisture values and the model predicted GW, dynamic safety factors were
calculated. Daily safety factors and rainfall are presented in Figures 4-4a and b for the
California and the Nepal study regions, respectively. The lowest FS values were obéerved
during the rainy season in each study region. This wet period is characterizéd by modest
variations in these low FS values. Theoretically, a slope will fail when its FS value is less
than or equal to 1. However, the safety factor time series show that FS values for active
landslide pixels crossed the threshold many times from 2004 to 2006 in each region but
slides did not occur each time.

Clearly these dynamic safety factors are not perfect indicators of slope failure.
Rather, they can show how a stable slope changes to unstable when a series of rainfall

events raises the GW table, wets the vadose zone and increases the pore water pressure.
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These cumulative impacts are often sustained for a period of time during which a slope is
| primed for failure.

The monthly average VIC-3L surface SM, rainfall and number of days when the
FS values went below the threshold are presented in Table 4-8. California had less
rainfall in 2004 than in 2005. In contrast, Nepal had more rainfall in 2004 than in 2005.
Table 4-8 shows that highly susceptible periods, when safety factor was below the
threshold, occurred from January to May in 2005 and May to August in 2004 in
California and Nepal, respectively. These periods agree well with Nepal’s mapped
landslides in 2004 and no landslides in 2005 (Figs. 4-4a and b). Similarly, California had
series of slope movements in 2005 but no slope movements in 2004. The current findings
suggest a strong potential for quantifying antecedent rﬁoisture conditions and applying
them to estimate safety factors. While the threshold of one is not a perfect failure
indicator, the relative variations among months and across years can enhance predicted
susceptibilities, slope movements and landslide events for these regions.

Dynamic safety factors are valuable at specific locations. However, the true value
of this method is its ability to prbvide dynamic hazard risk maps at regional scales. This
section bresents regional landslide susceptibility results for four scenarios. Two dynamics
scenarios were considered. The half-saturated condition has a variable soil moisture in
the vadose zone and a GW table at the middle of the soil thickness (May 23, 2005 in
California and September 12, 2004 in Nepal). The maximum modeled saturation
condition has a variable soil moisture and GW table. For the 3-year study period, the
vm'aximum saturation occurred on May 8, 2005 and August 18, 2004 for California and

Nepal, respectively. The remaining two scenarios, completely dry and full saturation,
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provide lower and upper susceptibility boundaries. The dynamic scenarios are those used
by Ray and De Smedt (2009) in Nepal excepf that their model did not consider vadose
zone SM. Their half saturation case had a water table at 50% depth and 0% moisture in
vadose zone. Their 2-year return period rainfall, 100 mm, estimated by Ray and De
Smedt (2009) using 41 years of historical rainfall data, was used to compare to this
study’s maximum saturation scenario.

Table 4-9 shows the susceptibility distributions for these four scenarios. These
results show strong impacts of soil moisture and groundwater on instability. Both regions -
have negligible or no susceptible area when the soil is completely dry and comparatively
high susceptible area when the soil is completely wet. Practically, no slope fails under dry
conditions. For dry conditions in Nepal, the presence of highly susceptible area indicates
that either no soils exist on these steep slope or that there are some input data errors.
Considering that Nepal is a poor data region with steep terrain this finding is not
unreasonable. All scenarios have more highly susceptible area in Nepal than California.
Nepal has a steeper terrain and receives higher rainfall in the wet season than California.

When comparing the current results with Ray and De Smedt (2009)’s results,
there are some minor differences because they used topography and land cover maps
developed in 1992 from aerial photographs and field -Veriﬁcations by the Nepal
Government. This paper uses the most recently available remotely sensed land cover data
and DEM.

For the half saturation scenario, Ray and De Smedt (2009)’s method gives much
less susceptible area than the current results. Their assumption that the vadose zone is dry

in the wet season neglects some potentially high risk regions on their landslide hazard
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maps. Ray and De Smedt (2009) considered a quasi-dynamic approach for susceptibility
prediction. They estimated stability after a 2-year rainfall event uSing an inﬁitration
approach. Nepal’s 2-year design rainfall is 100 mm whereas the modeled maximum
saturation conditions for this study had only 50 mm of rainfall. California’s 2-yea; design
rainfall is 86 mm whereas the modeled maximum saturation conditions for this study had
only 61 mm of rainfall. Table 4-9 shows that the maximum modéled ‘satl.lration for the 3-
year study period agrees extremely well with the 2-year rainfall events using the
infiltration approach for both study regions. This result suggests that susceptibility
mapping based on quasi-dynamic scenarios may provide reasonable insights. However,
the design rainfall only indicates where hazardous regions exist, not when they occur.
Since the model is based on estimated or measured groundwater and vadose zone SM, it
can produce more reasonable résults without any assumption of groundwater or soil
moisture unlike Ray and De Smedt (2009). Also, the Ray and De Smedt (2009) model
required long historical rainfall data to predict rainfall events but this model does not
require any historical rainfall data. Interestingly, locations of the predicted highly
susceptible area match each other, but the potential hazard area is not completely
captured by the Ray and De Smedt (2009) model (not shown).

Figures 4-5 and 6 sﬁow the susceptibility maps distribution for the two observed
failures dates; May 8, 2005 for California and August 18, 2004 for Nepal. In California,
most of the predicted highly susceptible areas are located along the Highway 50 corridor.
This shows a clear anthropogenic impact on slopes that enhanced instability. Most of the
mapped landslides were‘located on the predicted highly susceptible areas. On May 8,

2005, four of the mapped landslides were identified as moderately susceptible (Table 4-4).
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Since, the exact dates of mapped landslides ére unknown; it is poésible that some of the

landslides occurred when soil moisture was higher than maximum modeled soil moisture

on May 8, 2605. Results show excellent agreement between the predicted susceptible

area and the observed landslide events. |

In Nepal, the predicted highly susceptible areas are not only located along the

Prithvi highway, but are also found f[hroughout the study region on steep slopes. The 11

out of 12 mapped landslides were found on the predicted highly susceptible area along

the Prithvi Highway (Table 4-5). There arermany other susceptible zones where it was

not possible to verify the model prediction because of lack of accessibility and resources

- during the field survey. Because susceptibility does not always mean slope failure, these
results are quite reasonable and appropriate. One mapped landslide was found in a
moderately susceptible zone. The exact dates of all the mapped landslides are not known,
making it difficult to match the mapped slope failures with the August 18, 2004
susceptibility maps. Moreover, the moderately susceptible area is very close to the highly

susceptible area, some slope failures under moderately susceptible may not be uncommon.
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Conclusion

This paper developed landslide susceptibility maps, using the VIC-3L model’s
vadose zone soil moisture coupled with simulated groundwater in two distinct different
geographical regions. A simple wetness based groundwater model, based on daily rainfall,
-speciﬁc yield and slope angle, was used to estimate groundwater table. This model
requires few inputs and it can be readily applied to data poor regions. This model is best
suited for wet season. Thus, it produces promising results for rainfall induced landslides
which typically occur only during the wet season.

When comparing the observed landslides and‘ slope movements with the predicted
highly susceptible area in both study regions, the results show promising agreement
between the modeled and the slope failure ground truth. This modeling approach
improves upon susceptible area predictions from the earlier quasi-dynamic model fdr
design rainfall events and also informs the timing of landslide arrivals. Therefore, the
approach is very useful for landslide hazard characterization in poorly monitored regions
at scales from local and regional to global scale.

While this research suggests the potential of dynamic models, significant
improvements are possible. Because not all predicted highly susceptible areas are verified,
additional field validation is required. Due to a lack of in-situ soil moisture measurements,
the VIC-3L model results were not verified independently. It is recommended that further
studies monitor surface soil moisture on landslide prone slopes. Finally, the analysis

scales exceed typical slide scales. These differences should be explored further.
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Figure 4-5: Susceptibility map on May 08, 2005 with mapped landslides in California,
US
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CHAPTER 5.

REGIONAL LANDSLIDE,SUSCEPTIBILITY: STATISTICAL DISTRIBUTION IN
SPACE AND TIME

Abstract

Landslides can be characterized based on spatial and temporal distribution of
susceptibility. This paper presents spatiotemporal susceptibility distributions at two study
regions; Cleveland Corral, California, US and Dhading, Nepal. Mean, standard deviation,
skewness, L-moments, coefficient of variation and transitional characteristics of safety
factors for each pixel were used to characterize landslide susceptibility variations in each
study region. The results show that the variability of safety factors is loWer during the wet
‘season than the dry season. The relative variability of the safety factor is lower in Nepal,
the highly susceptible region. Results also show that Nepal has muchvhigher probability
(95%) of being unstable than California (70%) study region. Transitional characteristics
of safety factors show a strong power law relationship between the average duration and
" number of crossings for both regions. Mapped landslide locations typically had frequent
crossings with brief unstable conditions suggesting stress relaxation as a possible cause of

slope failure.
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Introduction -

Shallow slope failures are quite common throughout the world in mountainous
‘ regions (Borga et al., 1998; Gulla et al., 2008). The soil moisture in an unsaturated bzone
and pore W.ater_ pressure in a saturated zone are the controlling parameters that turn a
stable slope to being unstable because both parameters reduce the shear strength and
increase the shear stress to some exfent. The intrinsic v?lriables inclﬁding topography,
geology, soil regolith, engineering properties and extrinsic variables including rainfall,
glacier outburst, earthqﬁake, volcano play critical roles in slope stability (Dai and Lee
2002; Dahal, et al., 2008).

Researchers generally agree that wetness is a triggering factor in slope failure for
rainfall induced landslides (Caine 1980; Iversion and Major, 1987; Rahardjo, 2000; Lee,
2005; Adler et al., 2006; Meisina and Scarabelli, 2007). These authors mainly studied the
role of rainfall spatial distribution, duration and intensity in triggering landslides. Few
studies have examined the role of rainfall temporal distribution in landslide susceptibility.
Iverson (2000) and Lan et al. (2005), studying short and moderately intense rainfall
events, found that landslides and slope movementsvchange in response to rainfall. Slope
movements occur vin higher permeability soils and rapid slope failures in lower
permeability soils.

The pore water pressure and soil moisture in saturated and unsaturated soil layers,

respectively, are linked with the rainfall. The timing of soil wetting and drying controls
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the landslide trigger and slope failure. Therefore, it is necessary to analyze soil
moisture and pore water pressure both in time and >space to deterrﬁine landslide
susceptibility.

Landslide susceptibility is characterized by the static variables, slope and soil
properties, and the dynamic variables, pore water pressure, soil moisture and human
influence. Static variables change very slowly (Gorsevski et al., 2006). However,
significant changes are possible in the dynamic variables. Therefore, to understand
pﬁysical and dynamic processes of instability, it is necessary to develop landslide
susceptibility both in time and space (Wu and Sidle, 1995). While Saha et al. (2005)
expressed difficulties with predicting susceptibility in space and time, Wu and Sidle
(1995) and Gorsevski et al. (2006) presented a dynamic, distributed, physical-based
model to develop landslide susceptibility in space and time scales from hours to several
years. However, these -authors mainly focﬁsed on vegetation strength and surcharge
changes and did not consider the impact of vadose zone soil moisture on instability. Wu
and - Sidle (1995) used precipitation as a dynamic input té their model but did not
characterize the pore water and soil moisture during the non-rainy periods. Wu and Sidle
(1995)’s and Gorsevski et al. (2006)’s results are monthly and annual landslide
~ susceptibility maps which do not provide insight to the frequency or timing of
susceptibility.

This paper characterizes daily landslide susceptibility distribution annually and
during the wet season. Distributions are derived from safety factors estimated for three
years at Cleveland Corral, California, US and Dhading, Nepal. These two study regions,

differing in location, terrain, soils and climate, provide insight into the landslide
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susceptibility temporal variability and hazard. This research quantifies landslide
susceptibility in space and time by (1) statistically characterizing safety factors, (2) -
describing the distribution and frequency of susceptibility in landslide prone regions, and

(3) quantifying the transition properties of landslide prone regions.
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Theory

This paper uses the modified infinite slope stability model to develop landslide
susceptibility that directly link vadose zone soil moisture and groundwater (Ray et al.,
2009a). The infinite slope method (Skempton and DeLory, 1957) calculates safety factors
as the ratio of resisting forces to driving forces. The infinite slope stability model as
adapted by the several researchers (e.g., Montgomery and Dietrich 1994; van Westen
and Terlien 1996; Acharya et al., 2006; Ray and De Smedt, 2009) is

Fs= St G [ Y. |fane (5-1)
v Hsin6 Y, ) tan®

where C; and C,; are the effective soil and root cohesion [kN/mz], vYe is the effective unit
soil weight [kKN/m®], H is the total depth of the soil above the failure plane [m], 6 is the
slope angle [°], m is the wetness index [adimensional], ¢ is the angle of internal friction
of the soil [°], yw is the unit weight of water [KN/m?]. The effective unit weight is

estimated as

_ qcosh

+(1-m)y_ +my, (5-2)

e

where q is any additional load on the soil surface [kN/m?] and yr, is moist unit soil weight
[KN/m?] for the unsaturated soil layer.

The wetness index model follows Ray et al. (2009a) given as

—hY*
__h+H-N)*S,
H

(5-3)
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where h is the saturated thickness of the soil [m] above the failure plane and Sy, is the
| degree of soil saturation [em®/cm®] or vadose zone soil moisture.

The VIC-3L model (Liang et al., 1994) was used to estimate soil moisture in the
unsaturated zone. VIC-3L is a macroscale land surface model that was used to simulate
the water budget based on the climatic, soil and vegetation characteristics. Model details
and demonstration are provided in Ray et al. (2009b)

The estimated safety factor (FS) values were categorized into stability classes
using Pack et al.’s (1998) and Acharya et al.’s (2006) stability classification system. The
proposed four susceptibility classes are highly susceptible (FS<1), moderately susceptible
(1<FS<1.25), slightly susceptible (1.25<FS<1.5) and not susceptible (stable) (FS>1.5).

The critical value for slope failure, defined by the ratio of resisting force to the
sliding force on a slope, is 1 (Skempton and DeLory, 1957; Westen and Terlien 1996;
Burton and Bathurst, 1998; Acharya et al., 2006; Ray and De Smedt, 2009). Depending
on the soil, vegetation and climatic characteristics of the region, a slope may or may not
fail at this critical safety factor value. However, a slope remains unstable if the safety
factor is below 1; here it is assumed that the threshold value is 1. Safety factor crossing
properties are defined as the number of times a site’s safety factor drops below 1 and the
average duration for which the site remains unstable or equivalently time below the
threshold. For unstable sites, the safety factor’s intensity is defined by the difference

between the threshold safety factor (1) and the estimated safety factor value.

114



Application

The Cleveland Corral study region in the Highway 50 corridor is located in the
Sierra Nevada Mountains, California, USA (Reid et al., 2003). The study area is about 22
by 28 km or 616 km®. Highway 50 is a major road located between Sacramento and
South Lake Tahoe in California (Spittler and Wagner, 1998). About 600 landslides were
observed along the 24 km long corridor (Spittler and Wagner, 1998; Reid et al., 2003).
One major catastrophic landslide occurred in 1983 (Spittler and Wagner, 1998). Since
1996, slope movement and landslidés occurred infrequently during the winter months.
Mapped landslide and slope movement locations are shown in Figure 5-1a. Since 1997,
the United State Geological Survey (USGS) has monitored this region using real time
data acquisition systems and found that elevated pore-water pressures and wet soils
enhance slope movement and landslides during the winter (rainy) season (Reid et al.,
2003).

Elevations in this study area range from about 902 to 2379 m. Based on the 90 m
' SRTM digital ¢1evation model (DEM), slopes in this region range from 0 to 48° with
1.27% greater than 30°. This study region has considerable variability in soil texture:
ranging from clay loam to sandy loam (Table 5-1). The soil is predominantly sandy loam
(72%). The total soil depth ranges from 0.6 to 1.4 m. The assumed potential failure plane
underneath the soil layer is bed rock. Conifer and wooded grassland are the dominant
land covers, 80% and 14% of the study region, respectively. Some rock outcrops were

also observed along the Highway 50 cormridor during the field observation.
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Weather data were obtained ffom the National Climatic Data Centre (NCDC) from 2003
to 2006 (Table 5-1). This region has average annu;cll rainfall, maximum temperature and
niinimum temperature of 1101 mm, 19.6 °C aﬁd 5.5 °C, respectively. The majority of
rainfall was observed during the winter (725 mm) in this region.

The Nepal study region has distinctly different topography, soil, vegetation and
climatic characteristics. Nepal has 83% mountainous terrain and the remaining 17% is
southern alluvial plains. The study area is situated in Dhading, one of the seventy-five

~districts of Nepal. The transnational Prithvi highway connecting Kathmandu and Pokhara
runs through the southern part of the district. The roéd parallels the Trishuli River.
Landslides occur frequently in this area during the monsoon season (June to September).
Numerous major landslides have occurred along the Prithvi highway over the past decade
(2000 to 2008). One of the major catastrophic landslides along the Prithvi highway at
Krishna Bhir was observed in August 2003 (Fig. 5-1b).

The study area is about 25 by 14 km or 350 km®. Based on the SRTM DEM,
elevations range from 256 to 1918 m. Slopes in this region range from 0 to 57° with
27.8% of the study region’s slopes exceeding 30°. The soils are predominantly sandy clay
loam (36%) and sandy loam (22%). Woodland and cropland are the dominant land covers
50% and 29% of the study region, respectively. The total soil depth ranges from 1.0 to '
1.5 m. The assumed potential failure plane underneath the soil layer is bedrock.

Rainfall, temperature and wind speed measurements were obtained from the
Department of Hydrology, Nepal (Table 5-1). This region is warmer and wetter than the
California study region. The monsoonal season, June to September, receives 1287 mm of

1624 mm average annual rainfall.
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The soil ahd vegetation parametér required for the three layer Variable infiltration
capacity (VIC-3L) hydrologic model and the slope stability model were obtained from
States Soil Geographic (STATSGO) database (NRCS, USDA), Land Data Assimilation
System (LDAS; Mitchell et al., 2004) and literature values. The unit soil weight
(saturated and moist) was calculated based on the soil moisture, soil porosity, and
specific gravity of the soil samples using m¢th0ds adapted by Ray et al. (2009a). Each
land cover class was assigned a root cohesion values that was adapted from Sidle and
Ochiai (2006). Each soil type was assigned soil cohesion and friction angle values that
were adapted from Deoja et al. (1991) and the slope of the retention curve is from Clapp
and Hornberger (1978). Similarly, soil bulk density, field capacity, wilting point and
saturated hydraulic conductivity values were adapted from Miller and White (1998) and
Dingman (2002).

For these study regions, the VIC-3L model was applied at a daily time-step from
October 2003 to September 2006 using a 0.0083° resolution. The Cleveland Corral,
California, US study region has 900, 0.7 km? pixels and Dhading, Nepal has 450, 0.75
km? pixels. The VIC-3L soil moisture values were applied to the 90 m DEM pixels using

a nearest neighbour approach.
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Results and Discussion

Dynamic Landslide Susceptibilities

Daily safety factors were calculated for 75,988 pixels in California and 41,800
pixels in Nepal from October 1, 2003 to September 30, 2006. Based on maximum
saturated conditions, each pixel was classified as stable or highly, moderately or slightly
unstable. As summarized in Table 5-2, Nepal has a much greater proportion of
susceptible area than California, by class, as expected.

Figure 5-2 shows the time eyolution of average FS values by category for each
region; There are clearly different wet seasons in California and Nepal. However, both
regions show similar safety factor variations during the wet and dry seasons. Each shares
a similar time evolution across susceptibility classes. The intense rainfall events during
the wet season, increasing wetness in vadose zone and raising groundwater table level,
rapidly decrease safety factors. The threshold line (FS =1) shows when a typical hazard
prone area becomes unstable. In California, a region i§ typically unstable (FS<1) for a
short period -of time. In Nepal, once regions become unstable they tend to stay unstable
for the rémainder of the monsoon season.

Annual and wet season descriptive statistics, mean, standard deviation and skew
were calculated for each pixel. The results, averaged by susceptibility class, are shown in
Table 5-2. The average, standard deviation (SD) and coefficient of variance (CV) of the
estimated safety factors are lower during the wet season than the entire season. Those

same statistical parameters are lower in Nepal than California. The SD increases with

118



decreasing susceptibility, but the CVs are nearly identical for all susceptible classes. The
" safety factor values vary less during the wet season than on an annual basis. The riegative
and‘positive skewnesses during the annual period and wet season, respectively, at each
susceptibility class suggest that there are two distinct populations of safety factors.

" For the highly susceptible class, the variability among susceptible locations was
quantified. With the exception of skewness, the variability appears to be consistent across
the wet season and the annual period as well as between locations. The variability
decreases in California during the wet season, but increases in Nepal. Figure 5-3 shows
the range of safety factor in each‘ susceptible class at both study regions. Results show
higher mediari, maximum, minimum and range of safefy factors in California than Nepal.

Figures 5-4 and 5 show the spatial distribution of CV values for all susceptible
classes. Relative variability differs by locétion and there is some spatial structure. The
California study region has a higher CV throughout the study area as compared to Nepal.
Due to this higher relative variability, California may have less susceptible area than
Nepal. Coincidently, both study regions have a highway and a stream passing through the
center of the study region. However, CVs albng the highway are completely different in
each region. In Nepal, the southern region along the highway consists of steep terrain
whereas the northern region consists of flat terrain including the river. Figure 5-5 shows
very low CV values along the stream and highway with higher CV veilues along the steep
terrain. In similar terrain, the California study region does not have a reduced CV along
the highway and stream. This suggests that there is little influence of the stream or

highway presence on stability variations if slope is not steep. The California study region
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has lower CV values in the highly susceptible class (Fig. 5-4) near to the natural water

body (Mapped landslide no. 1).

Susceptibility Distribution and Probability Analysis

Because landslides mainly occur during the wet season, this section further
examines safety factor distributions during the wet season. The L-moment diagram, T3
versus T4, for highly susceptible pixels does not match any of the plotted distributions
(Fig. 5-6). However, the safety factor distribution in California shows three distinct
populations. The two populations having a relatively high kurtosis and followingb a
generalized pareto distribution are located near the natural water body. The remaining
sections have a different, but distinct pattern with much lower kurtosis. In Nepal, kurtosis
was constant and skew varied from 0.15 to 0.34. No specific distribution was identified
for this region. | |

The cumulative distribution function (CDF) plot also shows that safety factor
distributions differ by region (Fig. 5-7). Nepal has a much higher probability of highly
susceptible pixels being unstable at any time in the wet season than California. Nepal’s
region has higher probability of being unstable than California. In Nepal, there is almost a
95% probability fhat the estimated safety factor will be under the FS = 1, 1.25 and 1.5
class delineations during the wet season. In contrast, California has a 70% chance of the

.FS being below the critical value.
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Transitional (crossing properties) Characteristics of Landslide Susceptibilities

This section describes the spatiotemporal susceptibility characteristics for highly
susceptible locations. For each location, the number of threshold crossings and the
average duration of all crossing were determined. The crossing duration is the number of
~ days that a pixel is unstable during a single crossing. A crossing is a transition from
stable to unstable.

Figure 5-8 shows that the median duration under the threshold is less in California
than Nepal whereas the median number of crossings are same in Nepal and California.
25% of Nepal’s highly susceptible pixels have more than 9 numbers of crossings and less
than 20 days of average duration per year. California has no pixels with more than 9
crossings in a year..25% unstable pixels in California have sustained unstable conditions
exceeding 100 days annual. This may be the primary reason why California has frequent
slope movements and less slope failures and Nepal has frequent slope failures and no
routine slope movements dﬁring the wet season.

Figure 5-9 shows the individual relationships among number of crossings,
average duration and mapped landslide under threshold value. Both regions’showb a
nonlinear decrease in duration with increasing crossings. Nepal’s relationship is well
defined (R? = 0.69) by the power law function, y = 365x°* where y is the duration and x
is the number of crossings. This shows a strong correlation between duration and number
of crossings for each pixel. For the equivalent number of crossings, California’s locations
typically have shorter durations than Nepal, but are within the Nepal range. This further
explains why Nepal has frequent slope failures, while California has fewer failures and

more frequent slope movements. This result is further supported by the findings of Lan et
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al. (2005) who found that while some slopes can fail rapidly, others can take a long time
to fail under similar saturation.

Landslide locations were mapped in each region (Figs. 5-4 and 5). Interestingly,
most of these highly susceptible pixels and mapped landslides have frequent crossings
and short duratiqn unstable conditions at each study region. Of the 10 mapped iandslides
in California, 7 of them have short duration unstable conditions and frequent crossings. In
Nepal, 11 out of the 12 slide locations have short unstable conditions and frequent
crossings. The physical characteristics of the mapped landslides locations in each region
are presented in previous chapter (Table 4-4a and b). A gradual decrease or increase of
stress over time that causes stress relaxation can be a possible reason for slope failure
with frequent crossings. This fact is further supported by the findings of Borzdyka (1974)
who observed failure in material due to cyclic relaxation stress.

Crossing prdperties are mapped in Figures 5-10 and 11. While Nepal’s region has
a uniform distribution of crossing frequencies, California differs by area. Along
California’s highway, crossings are more frequent than in the northwest region.
Physically, Nepal has no specific locations of steeper terrain whereas California has
steeper terrain along the highway and in the northwest portion of the study region. These
differences may be caused by different physical characteristics and distributions of the
geotechnical variables and the hydrological variable distributions between regions. In
California, the northwest region has longer susceptible pefiods, but fewer crossings than
along the highway. Interestingly, frequent slope movements were observed (by USGS)

along the highway, but not in the Northwest region.
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Conclusion

An infinite slope stability model coupled with a hydrologic model was used to
develop dynamic landslide susceptibility maps in Cleveland Corral, California, US and |
Dhading Nepal. The mean, standard deviation, skew and coefficient of variation of safety
factors were estimated to characterize the temporal variabjlity and distribution of safety
factors. The statistical resultsr show higher relative variability in Califorﬁia than Nepal.
Both study regions have positive skewnesses, however, for the wet season, Nepal’s safety
factors are more positively skewed than California’s. The results show a strong
relationship between the variability in susceptibility and slope failures. The Nepal study
region, which has low spatial and temporal variability in susceptibility, is more prone to
failure than California.

The L-rﬁoments plot showed that there is a consistent safety factor distribution
with small variations in kurtosis for Nepal. On the other hand, the California region
appears to have two distinct probability distributions. One distribution clearly follows the
generalized pareto distribution whereas the other distribution requires further analysis to
define a distribution.

Based on the transition properties of safety factor values, both regions’ median |
number of crossing is 5. This indicates a tendency to frequently transition between stable
and unstable conditions. A strong relationship was observed between the number of
crossings and the average duration, which follows a power law. Results also show that

the safety factors may fluctuate around the critical threshold, but not necessary fail. This
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study provides preliminary insights as to how slopes reach and sustain potential

hazardous conditions not revealed by previous static spatial distribution studies.
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" Table 5-1: Soil, vegetation and slope characteristics of the California and Nepal study
regions

California Nepal

Land cover Area (%)
Evergreen forest 33 1.0
Conifer 79.9
Deciduous forest 2.7 -
Woodland - 50.3
Wooded grassland 14.1 18.2
Grassland - 1.7
Cropland - 28.8
Soil texture
Loamy sand : - 16.2
Sandy loam 72.0 225
Loam 16.0 9.8
Sandy clay 3.0 15.0
Sandy clay loam - 36.5
Clay loam 9.0 -
Slope (°)
0-15 71.2 19.0
15-30 27.5 53.2
30-45 1.2 27.0
45-60 0.0 0.8
‘Climate ‘
Average Annual Rainfall (mm) - 1101 1624
Average Rainfall Wet Season (mm)
(Jan-May, CA and Jun-Sep, Nepal) 725 1287
Average Daily Max. Temperature (°C) 19.6 27.0
" Average Daily Min. Temperature (°C) 5.5 16.6
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Figure 5-4: The coefficient of variance (CV) for all susceptible classes during the wet
season, in Cleveland Corral, California, US. Zero represents stable class
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Figure 5-5: The coefficient of variance (CV) for all susceptible classes during the wet
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Figure 5-10: (a) Number of annual crossings below the threshold safety factor and (b)
average duration (days) below threshold for highly susceptible location from Oct. 2003 to
Sep. 2006 in California, US
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Figure 5-11: (a) Number of annual crossings below the threshold safety factor and (b)

average duration (days) below threshold for highly susceptible location from Oct. 2003 to
Sep. 2006 in Dhading, Nepal
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CHAPTER 6.

LANDSLIDE SUSCEPTIBILITY MAPPING USING DOWNSCALED AMSR-E SOIL
MOISTURE: A CASE STUDY FROM CLEVELAND CORRAL, CALIFORNIA, US

Abstract

Remotely sensed data are widély used for landslide analysis. A dynamic
physically-based slope stability model that requires soil moisture can be driven by remote
sensing produéts ffom multiple Earth observing platforms. This research compares slope
stability maps using the advanced microwave scanning radiometer (AMSR-E) surface
soil moisture with the variable infiltration capacity (VIC-3L) model’s soil moisture at
Cleveland Corral landslide area in California, US. Despite snow cover influences on
AMSR-E surface soil moisture estimates, results show a strong relationship between
AMSR-E’s surface soil moisture and VIC-3L modeled soil moisture. Results match the
location and extent of landslide prone regions with the two methods. Under the maximum
saturation scenariq, 0.40 and 0.49% of the study area was highly susceptible for AMSR-E
and VIC-3L model, respectively. Preliminary results show that AMSR-E soil moisture,
coupled with a slope stability model, is viable for rainfall induced slope stability aﬁalysis

at a regional or global scale.
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Introduction

Remote sensing and spatial analysis tools are widely used in landslide studies
including landslide detection, landslide assessment, ﬁatural hazard, landslide mapping,
and landslide inventories (e.g., Varnes, 1984; van Westen, 1994; Guzzetti et al., 1999,
Gorsevski et al., 2003; Pradhan et al., 2006). Remote sensing data can be used to predict
catastrophic events and hazardous areas (Ostir et al., 2003) and they have significant

” potential in landslide studies (Hong et al., 2007). Landslide inventory maps can be
developed using aerial photography (Oka, 1998; Brardinoni et al., 2003; van Western and
Getahun, 2003) as well as remotely sensed data with image analysis technique (Nichol
and Wong, 2005; Abdallah et al.,, 2007). Over the past decade, the Earth Observing
System (EOS) platforms have deployed a suite of instruments that monitor land
conditions relevant to landslide hazard characterization such as Light Detection and
Ranging (LiDAR), Interferometric Synthetic Aperture Radar (InSAR), and Differential
SAR Interferometry (DInSAR) data. Multi-temporal satellite imagery is increasingly used
to monitor, classify and detect landslides (Mantovani et al., 1996; Hervas et al., 2003;
Cheng et al., 2004).

For landslide analyses, Landsat TM and Advaﬁced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) have been used to derive land cover in regions
including the Himalayas range (Zomer et al.,, 2002, Saha et al.,, 2002; Sarkar and
Kanungo, 2004). InSAR has been used to locate and characterize landslides (e.g., Canuti

et al., 2004; Singhroy and Molch, 2004). Kaab (2005) showed that recent
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Shuttle Radar Topography Mission (SRTM) results are promising for characterizing
topography in regions having landslides.

Pelletier et al. (1997) indicated that continuous remote-sensing of soii moisture
coupled with a digital elevaﬁon model is a necessary component of a successful landslide
hazard mitigation program. Their work suggests the replacement of soil moisture
surrogates that have been used extensively in slope stability analyses. Typically, slope
stability is analyzed using wetness indices to estimate soil wetness (Montgomery and
Dietrich, 1994; Van Westen and Terlien, 1996; de Vleeschauwer énd De Smedt, 2002;
Acharya et al., 2006). As pointed out by Rosso et al. (2006), these approaches negleét the
presence of soil moisture in the upper soil layer above the groundwater table or indirectly
estimate the soil moisture. Existing studies do not directly account for the temporal
evolution of soil moisture prior to and during the rainfall events. Nevertheless, it is
necessary to link the surface soil moisture to the subsurface layer because landslides are
not triggered only by surface layer saturation; rather, it is the combined effect of surface
and subsurface saturation that is critical (Ray and Jacobs, 2007). Ray et al. (2009a)
enhanced wetness index model provides a means to apply vadose zone soil moisture.
While they used modeled soil moisture, remotely sensed soil moisture data are a
potentially viable alternative to modeled data.

Satellite remote sensing can provide surface soil moisture at national and global
scales. While no landslide studies thus far have used remotely-sensed soil moisture data,
the Advanced Microwave Scanning Radiometer (AMSR-E) has the potential to
characterize soil moisturé profiles for this purpose. Numerous studies (e.g., Njoku et al.,

2003; Walker et al., 2004; Lacava et al., 2005; Njoku and Chan, 2006; Gao et al., 2006)
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have shown that microwave remote sensing measurements including AMSR-E are
affected by surface roughness, topographic hfeatures, dense vegetation and soil texture.
This indicates that soil moisture data may have limited value on steep topography (Njoku
et al., 2000). The few validation experiments, such as Soil Moisture Experiments 2004
(SMEXO04) in northern Sonora, Mexico (Vivoni et al., 2008; Jackson et al., 2008), that
have been conducted on such terrain show that rocky slopes can mask the moisture
signal.

In addition to the aforementioned limitations, there are two other significant
challenges to using AMSR-E data. The current remote sensing products can only measure
the soil moisture at an upper thin surface of the Earth from 0 to 5 cm (Jackson et al.,
1995; Schmugge et al., 2002). This thin layer soil moisture information may not truly
represent the entire soil moisture profile underneath thick soil layef (sub surface) above
the bed rock. In addition, AMSR-E processed data have a 25 km spatial resolution. This
is quite coarse for landslid.e studies even at regional and global scales. Therefore, it may
be necessary to downscale the low resolution AMSR-E soil moisture to a finer scale. A
simple downscaling approach for remotely sensed soil moisture was developed by
Chauhan et al. (2003) and enhanced by Yu et al. (2008). They found the significant
relationship among soil moisture based on normalized vegetation index (NDVI), albedo
and land surface temperature (LST) to be useful in downscaling soil moisture data.

This research tested the AMSR-E product’s ability to provide the vadose zone soil
moisture estimates necessary to dynamically map landslide susceptibility. The study
region, Cleveland Corral, California, US, is an active hazard area. The research

objectives of this paper are (1) to compare AMSR-E and variable infiltration capacity
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(VIC-3L) surface soil moisture, and (2) to analyze the impacts in landslide susceptibility
map using AMSR-E and VIC-3L surface soil moisture. Results consider AMSR-E 25 km

pixels as well as downscaled 1 km pixels.
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Theoretical Approach

Slope Stability Model

This study uses the modified infinite slope stability model (Ray et al., 2009a) to
quantify landslide susceptibility including the vadose zone soil moisture and groundwater
effects. The infinite slope method (Skempton and DeLory, 1957), widely applicable for
shallow slope stability analysis, calculates safety factors as the ratio of resisting forces to
driving forces. The infinite slope stability model as adapted by the several researchers\is

R ICRACHN Py M L (6-1)
v.Hsmn6 Y, ) tanf |

where Cs and C; are the effective soil and root cohesion [kKN/m’], y. is the effective unit
soil weight [kN/m?], H is the total depth of the soil above the failure i)lane [m], O is the
slope angle [°], m is the wetness index [adimensional], ¢ is the angle of internal friction
of the soil [°], yw is the unit weight of water [kN/m3]. The effective unit weight is

estimated as

_ gcosH

+(1-m)y, +my, / (6-2)

[+

where q is any additional load on the soil surface [kN/m?] and vr, is moist unit soil weight
[kN/m?] for the unsaturated soil layer.

The wetness index model follows Ray et al. (2009a) given as
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m = | (6-3)

where h is the saturated thickness of the soil above the failure plane [m], 65 is the
volumetric soil moisture [cm3/cm3 ] and n is the porosity [cm3 /em’ ].

The estimated FS values were used to categorize slopes into stability classes using
Pack et al. (1998) and Achafya et al.’s (2006) stability classification system. Our four
susceptibility classes, used to develop landslide susceptibility map, are highly susceptible
(FS<1), moderately‘susceptible (1<FS<1.25), slightly susceptible (1.25<FS<1.5) and not

susceptible (stable) (FS>1.5).

Land Surface Model (VIC-3L)

This study used Ray et al.’s (2009b) VIC-3L model results for the Cleveland
Corral, Califbrnia study region as an independent measure of the soil moisture profile.
The VIC-3L hydrologic model is a three-layer land surface model (Liang et al., 1994)
that has been widely applied for surface runoff generation and soil moisture profile
estimation (Liang and Xie, 2003). The model’s soil column has three layers (PAarada and
Liang, 2004). The top, thin soil layer and the middle soil layer characterizé tﬁe dynamic
response of the soil to weather and rainfall events. The lowest layer captures the seasonal
soil moisture behavior (Liang et al., 1996; Huang and Liang, 2006) and onlly responds to
rainfall when the upper layer is wet. The VIC-3L model also provides a spatial
representation of land cover. Each land cover has a leaf area index (LAI), minimum

stomatal resistance, roughness length, displacement length and relative fraction of root
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(Liang et al., 1994; Nijssen et al., 1997). Details about the VIC-3L model application are

described by Ray et al. (2009b).
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Downscaling

For application to the infinite slope stability»model, the AMSR-E soil moisture
can be used directly or downscaled. A linear or non-linear regression approach can be
used to downscale the AMSR-E data from 25 to 1 km spatial resolution (Chauhan et al.,
2003; Yu et al., 2008). Yu et al. (2008) found‘that it is possible to downscale AMSR-E
soil moisture from 25 to 1 or 5 km spatial resolution using NDVI, albedo and LST. This
paper uses their linear régression approach to downscale the AMSR-E soil moisture from
25 to 1 km spatial resolution.
The general downsdaling approach propos’ed by Chauhan et al. (2003) and applied

by Yu et al. (2008) is

IH

H _ I=p J=h k=n aijkViTjAk . (6-4)

5
i=0 j=0 k=0

where V is the NDVI, T is the LST and A is the albedo (1 km). The equation is applied
with n = 1, yielding a simple linear equation with interaction terms

6 =a,, +a

000 001

A+a, T+a, V+a, TA+a,V A+a, VT (&5

The AMSR-E (25 km) values and the NDVI, LST and albedo values, aggregated
t(; a 25 km resolution, are used to determine the regression coefficients for the linear
regression model. Yu et al. (2008) aggregated the 1 km NDVI, LST and albedo products

to 25 km spatial resolution by
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V - i=l j=1 ° , T — i=l j=1 , A = i=l j=1 v (6-6)
mn mn mn

where'st. is the 25 km average NDVI, Ty;s is.the 25 km average LST, Ajs is the 25 km
- average albedo and m and n are, respectively, the number of 1 km pixels in i"™ rows and
i™ columns in the AMSR-E pixel.

Once a regression model is established, the model is applied to estimate the 1 km
soil moisture from the 1 km NDVI, LST and albedo values. The downscaled AMSR-E (1
km) can be re-aggregated to a 25 km resolution and compared with observed AMSR-E

(25 km) to quantify the model error.
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Remotely Sensed Data

AMSR-E Soil Moisture

The AMSR-E was developed by the National Space Development Agency of
Japan (NASDA) and launched on the Aqua satellite by the National Aeronautics and
Space Administration (NASA) on May 4, 2002 (Li et al., 2004). It measures radiation at
six frequencies in the range 6.9-89 GHz (Njoku et al., 2003). Lower frequencies, L band
(1-2 GHz), are more sensitive to soil moisture, but they are more susceptible to dense
vegetation and radio frequency interference (RFI). The higher frequency C (6.9 GHz) and
X (10.65 GHz) bands can be used to retrieve soil moisture (Jackson et al., 2005) because
these higher frequency bands are comparatively less susceptible to RFI. The AMSR-E
directly measure brightness temperature. Soil moisture retrievals use a radiative transfer
(RT) model that links surface geophysical variables to the observed brightness
temperature (Njoku et al., 2003). A RT model initially assumes a soil moisture value and
predicts the brightnesé temperature based on surface parameters, vegetation parameters,
and sensor parameters. If the difference b_etween the predicted brightness temperature and
the observed temperature is less than acceptable limit, t-hen the final soil moisture value is
derived. Otherwise the iteration continues with a modified initial soil moisture value. A
detail description of the retrieval algorithm appears in Njoku et al. (2003).

AMSR-E level 3 products (e.g., surface soil moisture, vegetation water contents
etc) are developed from the level 2B product’s brightness temperature at a 25 km earth

grid scale both for ascending and descending passes
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(http://www.ghcc.msfc.nasa.gov/AMSR/data_products.html). This study used the AMSR-E
soil moisture level 3 products for ascending values from Jan 1, 2003 to Dec 31, 2006 on a
daily basis. AMSR-E level 3 products were obtained from NASA Earth Observing

System Data Gateway through National Snow and Ice Data Center (NSIDC).

MODIS Data

The Moderate Resolution Imaging .Spectroradiometer (MODIS) instrument
developed by NASA was launched on the Terra satellite in December 1999 and on the
Aqua satellite in May 2002 (Wang et al., 2006). MODIS can collect information both in
the morning and in the afternoon as Terra is scheduled to pass from north to south across
the equator in the morning and Aqua is scheduled to pass from south to north in the
aftérnoon. Even though Terra and Aqua satellites pass in the morning‘ and in the
afternoon, respectively, the temporal resolution of MODIS products is only for every 1 to
2 days (Luo et al., 2008). MODIS data are available at three spatial resolutions of 250 m,
500 m, 1,000 m and coarser resolution (Luo et al., 2008.).

This study required NDVI, albedo and LST at a 1 km spatial resolutioh. The 1 km
MODIS TERRA albedo (MCD43B3), NDVI (MYD13A2) and LST (MYDI11Al)
products were used to downscale the AMSR-E surface soil moisture for 2005. These data
are available as tiles in the Sinusoidal (SIN) projection. All »these data were re-projected

into geographical projection.
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Study Region

The Cleveland Cbrral study region in Highway 50 corridor ié located in the Sierra
Nevada Mountains, California, USA (Reid et al., 2003). Highway 50 is a major road
located between Sacramento and South Lake Tahoe in California (Spittler and Wagner,
1998). The Figure 6-1 shows observed recent landslide and location of study domain in
California. The investigated area is about 28 by 22 vkm (616 km?) with elevations range
from -about 902 to 2379 m. Sincc 1996, slope movement and landslides occur
infrequently during winter season. Additionally, one major catastrophic landslide
occurred in 1983 (Spittler and Wagner, 1998). Since 1997, the United State Geological
Survey (USGS) has monitored this region using real time data acquisition systems (Reid
et al.,, 2003). They found elevated pore-water pressures and wet soils cause slope
movement aﬁd landslides during the winter (rainy) season.

Table 6-1 summarizes the study region’s soils, land cover and climate. The
predominant soil is sandy loam (72%). The'total soil depth ranges from 0.6 to 1.4 m.
Underneath the soil layer, the pdtential failure plane is bedrock. Conifer and wooded
grassland are the dominant land covers, 80% and 14% of the study region, respectively.
Some rock outcrops were also observed along the Highway 50 corridor. The north-east
part of the study area has limited data because of water bodies and rock outcrops. This
region has an average annual rainfall of 1101 mm, with 725 mm occurring during the

winter.
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The soil and vegetation parameters required for the slope stability model were
obtained from the States Soil Geographic (STATSGO; NRCS, USDA), Land Data
Assimilation System (LDAS; Mitchell et al., 2004) as well as from the literature.
Monthly LAI values were obtained from the MODIS. The MOD15A2, 8-day composite
LAI values were averaged to monthly values.

Root cohesion ‘values for each vegetation class were adapted from Sidle and
Ochiai (2006). The unit soil weight (saturated and moist) was calculated based on the soil
moisture, soil porosity, and specific gravity of the soil samples using methods adapted by
Ray et al. (2009a). Each soil type was assigned soil cohesion and friction angle valués
that were adapted from Deoja et al. (1991) and the slope of the retention curve adapted
from Clapp and HomBerger (1978). Similarly, soil bulk density, field capacity, wilting
point and saturated hydraulic conductivity values were adapted from Miller and White
(1998) and Dingman (2002).

For this region, validation data for landslide studies are difficult to obtain. The
daily groundwater measurements were obtained from the USGS (Mark Reid, USGS).
Previous research indicates that over 600 landslides have occurred in‘ this the study region
(Spittler and Wagner, 1998;‘ Reid et al., 2003). In addition, field observations identified
10 locations where failures had occurred prior to December 2007. Table 6-3 gives
location details and physical characteristics of the slide locations._ Observations show
most of the mapped landslides were located in woodland regions with sandy loam soil

texture. The slopes of the mapped landslides range from 24 to 37°.
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Results and Discussion

Downscaling AMSR-E Soil Moisture

AMSR-E soil moisture at Cleveland Coral, California was downscaled from 25 to
1 km using daily data from January 1 to December 31, 2005. The 1 km NDVI, LST, and
albedo were aggregated to 25 km resolution ilsing Eq. 6-6. The observed maximum LST,
albedo and NDVI are, respectively, 51°C, 0.94 and 0.93. The minimum are, respectively,
-20°C, 0.01 and -0.14. The AMSR-E (25 km) was regressed with aggregated NDVI, LST
and albedo values (Eq. 6-5). The regression model which best fits the AMSR-E soil
moisture is |

0 =-1.426+4.169 4+ 0.006 T +2.254V -0.017T4A+0.781VA-0.009 VT (6-7)

Thie regression model provided a good fit with an R? of 0.73, a root mean square error
(RMSE) of 0.009 cm’/cm® and p-values less than 0.0001 for all independent variables. |
The resuiting model was used to estimate the 1 km soil moisture values. These
values were aggregated to 25 km and compared to the observed valbues (Fig. 6-2). The
results show very good agreement between the observed and the downscaled AMSR-E
soil moisture. However, low downscaled AMSR-E soil moisture values from January to
April can be the snow cover effect to albedo and LST. A moderate correlation was
observed with an R® of 0.58 and a small RMSE of 0.017 cm®/cm’®. The results are
comparable to Yu et al. (2008) R? values that ranged from 0.19 to 0.74 with 6 different

regression techniques and Chauhan et al. (2003) RMSE of 0.016 cm®/cm’.
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Both the downscaled and the observed AMSR-E capttire the seasonal variations
of moisture. The observed and downscaled soil moisture clearly indicate the winter wet
season. However, a small time lag betweén the 25 km AMSR-E values and the
downscaled soil moisture is evident during the wet season. The time lag is about a week.
This time lag may bé due to two types of errors (Chauhan et al., 2003). The first error is
due to regression analysis and the second error is associated with input data. They found
regression error in analysis and precision error in NDVI, albedo and LST. Overall, the
results suggest that reésonable downscaled AMSR-E soil moisture can be produced using

1 km MODIS LST, albedo and NDVI values.

Comparison between Observed AMSR-E and VIC-3L Soil Moisture

Figure 6-3 shows the observed AMSR-E soil moisture, the VIC-3L model’s 1™
and 2" layers soil moisture, in situ groundwater measurements and snow accumulation at
an active landslide pixel. The VIC-3L’s first and second soil layer thicknesses were 0.05
and 0.35 m, respectively. Both VIC-3L and AMSR-E estimate higher surface soil
moisture during the rainy season and lower soil moisture values during the dry season.
The results shov? minimal differences between the first and second layer’s soil moisture
estimated by the VIC-3L model. This suggests vthat the surface moisture provides an
indicator of the vadose zone soil moisture profile for this region. For a shallow slope
stability analysis, the unsaturated soil layer is often a comparatively thin layer.

Since no in situ soil moisture measurements were -available, modeled soil

moisture and AMSR-E soil moisture values were compared with groundwater
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measurements. Although groundwater, AMSR-E and modeled soil moistures have
different measuring units, results show similar groundwater, AMSR-E and modeled soil
moisture variations duﬁng the wet season.

As shown in Figure 6-3, snow occurs regularly from December to March. AMSR-
E does not completely capture the soil moisture variability When there is snow. When
show is present on the ground, the surface temperature is below 0°C. At this freezing
temperature, dielectric constant is very small and AMSR-E soil moisture retrievals are
not possible (Hallikaiﬁen et al., 1985; Wang et al., 2009). For this region, lower or no soil
moisture is indicated by AMSR-E in early winter. Thus, operational in-situ or remétely
sensed snow monitoring is very important to use in combination with AMSR-E soil
moisture for landslide studies in snowy regions.

Another challenge is that the AMSR-E soil moisture measurements are lower
during the wet season as compared to the VIC-3L. measurements and have much lower
variability overall. Some of this difference may be caused by the layer thicknesses.
AMSR-E’s 0-2 cm thin soil layer may dry faster than the VIC-3Lfs 5 cm soil layer.
Previous research shows that the AMSR-E has lower estimations in comparison to land
surface models and measured values (Choi et al., 2008; Sahoo ét al., 2008; Gruhier et al.,
2008). These limitations are particularly apparent for dense vegetation and steep terrain.

Overall, the AMSE-E soil moisture measurements can capture the timing of the
modeled soil moisture wetting. However, the degree of wetness is considerably different

and further complicated by snow.
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Scaling (AMSR-E)

Reichle et al. (2004) suggest that satellite soil moisture should be rescaled to use
withbland surface modeled soil moisture. Choi and Jacobs (2008) found that the AMSR-E
soil moisture can be scaled to match with in situ as well as land surface model’s wetness.
To address the low variability of the AMSR-E surface soil moisture, the observed
AMSR-E values were écaled, then compared to the VIC-3L surface soil moisture.

AMSR-E soil moisture was scaled to minimum and maximum values using a
simple interpolation approach. These scaled soil moisture values are appropriate for this
study region’s soil. The minimum and maximum observed AMSR-E soil moisture values
were 0.09 and 0.33 cm®/cm’ in 2005, respectively. For the sandy loam soils in Cleveland
Corral, Califomia, Rawls et al. (1982) suggested a residual saturation of 0.05 and an
upber bound equal to the 0.48 soil porosity. AMSR-E soil moisture values were scaled
from 0.05 to 0.48 cm’/cm’.

Figure 6-4 shows promising agreement between the VIC-3L soil moisture and the
scaled AMSR-E soil moisture. With the scaling, AMSR-E has a soil wetness similar to
that estimated by the VIC-3L model during the dry aﬁd wet season. While the snow
challenges are still evident, soil moisture values are still consistent during the critical

failure period, late spring.

Soil Moisture Variability

Soil wetness defined by groundwater and vadose zone soil moisture plays a

critical role in slope instability. During the rainy season, rainfall increases soil moisture
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and groundwater table. With the constant slope and geotechnical parameters, soil
saturation is the dynamic factor that causeé slopes to become unstable because instability
increases with increasing soil rsaturation. A slope becomes unstable when its - soil
saturation results in its safety factor falling below 1.

For the 3-year study period, the maximum saturation occurred on May 8, 2005.
The maximum modeled saturation is the wettest day and had a GW table close to the
surface and high vadose zone SM. Figures 6-5 and 6 show AMSR-E (1 km) and VIC-3L
(1 km) soil moisture distributions, respectively, on May 8, 2005. The VIC-3L soil
moisture values are higher than the AMSR-E values. The VIC-3L soil moisture values
range from 0.25 to 0.52 whereas the AMSR-E soil moisture values range from 0.09 to
0.33 (cm3/cm3).

Both AMSR-E and the VIC-3L model reveal similar soil moisture distribution
patterns in the north-west and south-east comers as well as along Highway 50. The VIC-
3L and AMSR-E show a low soil moisture values along the highway because the physical
characteristics of the ground such as paved highway, numerous retaining and revetment
walls, built up area and stream affect the quality of AMSR-E and VIC-3L modeled soil
moisture. Differences in the soil moisture distribution were observe_d at the north-east and
south-west corners of the study region. The north-east region has a number of phyéical
features that appear to challenge the satellite soil moisture retrieval and the
disaggregation approach. The observed brightness temperature is used to}retrieve AMSR-
E soil moisture. High albedo values were found in the north-east region (Fig. 6-7a). Thus,
a lower brightness temperature and higher albedo caused by snow or bright exposed

surface such as sand or bare rock may influence disaggregation. AMSR-E measurements
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are cdmparatively low in the southwestern corner of the study region. This area has the
densest vegetation cover as evidenced by the high NDVI values (Fig. 6-7b). AMSR-E
can not provide reasonable measurements with dense vegetation (McCabe et al., 2005;
Njoku and Chan, 2006) becaﬁse of the sensitivity of the C- and X-bands to dense
vegetation. Accurate brightness temperature measurements are not possible over dense
vegetation.

On May 8, 2005, the observed AMSR-E soil moisture value was 0.17 cm’/cm? at
the native 25 km scale. This 0.17 cm3,/cr‘n3 SM Avalue matches the average of the 1 km
pixels in the study region. The simple downscaling model is promising. It captures much
of the soil moisture variability in the study region with values ranging from 0.09 to 0.33
cm’/cm’ instead of the single 0.17 cm®/cm® SM value for the entire study region. In the
future, higher resolution sensors and better downscaling approaches may improve soil

moisture estimation for landslide prone regions.

Susceptibility Analysis

AMSR-E soil moisture values at the 25 and 1 km scale were used to calculate
- safety factors. These results were compared to previous estimated safety factors using
VIC-3L soil moisture (Ray et al., 2009b). This section presents regional landslide
susceptibility results using AMSR-E soil moistures. Three wetness scenarios were
considered. The half saturation condition occurred on May 23, 2005. On this date, the
vadose zone SM varies spatially and the GW table was located at the middle of the soil.

The maximum saturation, May 8, 2005, was discussed in the previous section. The full
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saturation scenario was not observedv, but is presented to provide an upper bound to
landslide susceptib.ility based on an assumed completely saturated profile

Table 6-2 presents the predicted sﬁsceptible and stable areas using the AMSR-E
soil moisture (25 and 1 km) and the VIC-3L soil moisture for thge three scenarios. As
expected, the predicted susceptible areas for all saturation scenarios were below the fully
saturated condition for both AMSR-E and VIC-3L soil moisture. Under the half and
maximum modeled saturation scenarios, the predicted susceptible area with the VIC-3L
soil moisture was slightly higher than that using AMSR-E soil moisture. This reflects the
wetter VIC-3L vadose zone compared to the AMSR-E surface soil moisture pnder
maximum saturation scenario. The results show that 0.39 and 0.49% of the area is highly
susceptible using AMSR-E (25 km) and VIC-3L model (1 kﬁ)) soil moisture, respectively.

A small prediction difference was observed with AMSR-E (25 km) and
downscaled (1 km) soil moisture under half and maximum modeled saturation scenarios.
This shows it can also be appropriate to use AMSR-E observed soil moisture in slope
stability analysis if downscaling is not possible or desirable. However, in comparison to
the observed AMSR-E (25 km), the downscaled AMSR-E (1 km) may be more
appropriate to use in slope stability analysis because the higher resolution datasets are
consistently recommended for landslide mapping.

Figures 6-8 and 9 show susceptibility distributions by class for VIC-3L and
AMSR-E soil moisture, respectively under the maximum modeled saturation scenario.
Qualitatively, both VIC-3L and AMSR-E vadose zone soil moisture identified the same
hazard zonesk as highly, moderately and slightly susceptible. However, small differences

occur in the predicted susceptible areas (Fig. 6-10). 83.2% of highly susceptible locations
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predicted using VIC-3L vadose zone soil moisture were also identified as highly
susceptible by AMSR-E. Most of those not successfully identified were adjaéent to areas
correétly predicted.

Susceptibility maps were compared with ‘the landslide inventory data. For the
May 8, 2005 saturation conditions, six of the mapped landslide locations would have
been considered highly unstable. On May 8, 2005, four of the mapped landslides were
identified as moderately susceptible. Since, the exact dates of mapped landslides are
unknown; it is possible that some of the landslides occurred when soil moisture was
higher than maximum modeled soil moisture on May 8, 2005. Moreover, moderately
susceptible areas are not stable zones. External forces sﬁch as of vibrations caused by an
Earthquake, large tree shaking (due to wind) and heavy highway traffic can trigger a
slope to fail in a moderately susceptible area. Interestingly, the four mapped landslides
are located along the Highway 50 and any external forces that are not included in slope
stability model can cause slope failure in moderately susceptible area.

Overall, the results show good potential to use the AMSR-E soil moisture for

vadose zone in landslide susceptibility mapping.
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Conclusion

This work has downsc‘aled AMSR-E soil moisture measurements to use in a slope
stability model for landslide susceptibility mappings. The AMSR-E surface soil moisture
can be used for vadose zone moisture in landslide susceptibility mapping at regional or
global scale. For a shallow slope stability aﬁa_lysis or landslide mapping, AMSR-E soil
moisture can play an important role at regional and global scales. Susceptibility maps for
this study region were compared and validated with landslides inventory data and show
promising agreen.le‘nt. The satellite-based products can provide an efficient means to
develop landslide susceptibility maps based on antecedent soil moisture conditions.

While AMSR-E can provide surface soil moisture, there are still challenges. Since,
AMSR-E has niuch lower soil moisture and less variability than would be expectéd, it is
necessary to scale the AMSR-E soil moisture. In addition, the spatial scale of observed
AMSR-E is much greater than the typical landslide scale. While downscaling provides
some improvement, better methods are needed. Moreover, AMSR-E can not produce
reasonable soil moisture when there is snow on the surface. Finally, the lack of in-situ
soil moisture on landslides prone slopes as well as observed slope failures coincident
with soil moisture observations is a significant obstacle to validating results and
enhancing hazard mitigation.

The ability to capture the evolution of soil moisture will allow us to anticipate
critical hazard periods on an ongoing, real time basis. For developed nations, EOS

measurements can complement existing physical databases by characterizing changing
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terrestrial systems and hydrologic stores. For less data rich regions, EOS measurements
provide high resolution characterization of the Earth’s surface. Although, this approach
can produce promising results at regional and global scales, this approach is not
appropriate for local scale élope stability analysis because of remotely sensed soil

moisture’s coarse scale.
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Table 6-1: Soil, vegetation, slope and climate characteristics for the Cleveland Corral,
California, US study area

California

Land cover Area (%)
Evergreen forest ' 33
Conifer 79.9
Deciduous forest 2.7
Wooded grassland 14.1
Soil texture '

Sandy loam 72.0
Loam 16.0
Sandy clay 3.0
Clay loam 9.0
Slope ()

0,15 71.2
15-30 ' _ 27.5
30-45 1.2
45-60 , 0.0
Climate ‘

Average Annual Rainfall (mm) 1101.0
Average Rainfall Wet Season (mm, Jan-May) 725.0
Average Maximum Temperature (°C) - 19.6
Average Maximum Temperature (°C) 5.5
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Table 6-2: The portion of the study area (%) for each landslide susceptibility

classification using VIC-3L, AMSR-E 25 km and downscaled soil moisture at Cleveland

Corral, California, US. Three wetness scenarios are presented

Highly Moderately Slightly
Scenario Susceptible  Susceptible Susceptible Stable
Full Saturation 0.58 1.90 3.01 94.51
Half Saturation'
VIC-3L (1 km) 0.26 1.01 2.12 96.60
AMSR-E (25 km) 0.23 0.91 1.98 96.87
AMSR-E (1 km) 0.21 0.96 2.07 96.76
Maximum Modeled Saturation®
VIC-3L (1 km) 0.49 1.67 2.87 94.96
AMSR-E (25 km) 0.39 1.39 2.54 95.67
AMSR-E (1 km) 0.40 1.46 2.66 95.47

"Half saturation - Groundwater position table at half of the soil layer (May 23, 2005)
2Maximum modeled saturation - The day having the groundwater was closest to the

surface and wettest vadose zone (May 8, 2005).

165



991

96L°0 080 SLL'O  ISL'0  weo[ApUBS  PUBIPOOA\  6FE 0T 9V 8  «Lb 91 0CI- Ol
0v0'1 $T0°'1 P10l 8860 WO APUBS  PUEIPOOM  99f .85 .9 8F  «£E .91 0TIF 6
2660 66°0 $96'0 6660  Weo[ApUBS  PUB[POOA, 96T b0 It ,8€ 8T 0T 0TI 8
8060 $06°0 1830 9580  WEO[APUES  PUEIPOOAN  T'IE SO 9% 8E - b€ .ITOZ- L
0v0'1 00’1 ZI0T 8860  WEO[APUES  DUER[POOM\ 'O  L£T.OF8E £S5 .TTLOCI- 9
850'T 050'1 9Z0'1  L66'0  WeO[ApUBS  PUBIPOOM  ['bT  «E€ 9V 8  «ET .£T 0TI- S
L0’ 0v0'T 910l  L86'0  WeO[ApUBS  PUBIPOOM  ¥'LT LS OV 8 € £TOTI- b
980 198°0 8€8'0  SI18'0  Weo[ApUBS  PUBIPOON  S'TE  IF IV 8E  «TT T OTI- 3
1€6°0 €€60 968'0  SL$0 weo]  uodnBoad 98T £T.0S8€ .81 .67 0TI 4
66L0 L6L'0 0LL'O  €SLO weo]  WISIAT  YLT  «£0 (IS 8E 9T LT 0TI I
(wy §0) (wy 1) (wy ) uoneinjes ®)
G4SNV 'Sd  d-4SINV S T€-DIA:Sd  IMJ:Sd  sadAyjiog 1900 pue  adofg opnjnyer spmSuoT NS

uornjemjes [[nJ pue (5007 ‘g ABJ) SUOT}IIPUOD UOTjRINIES PI[OPOW WNWIXEW
ISpun paje[nofed a1am sanjea S, ‘uordar s apispue] paddewr sy Jo (S]) 10108] A}oJes PIjeUWIIISS PUE SOSLINNORIEYD [OISAY ] :€-9 d[qe ],



L91

|

apiispue| paddew ay) im eruzojife)) ur Ajuno)) opelo(] [q ul uordar Apnis oy, -9 3In31g
— ury i it , t
ﬂ%;i% Ml ./, H.. =
R A
- funog epelod |3 uﬁj.eﬂ@o v
. ealy Apms 1y, T
Resyfiy— " °
abeg uey +
ag uenRuRwInysy) [ T
ir
puabaq - L
. f,;z/'M. ."\,x. T

MDA LI L
1 i

/f. M

g

/.

PRGN
b
3

]

FELLD

N T w&\%&,\nbﬂ? =
H - ¥ AfWﬁ @m @..,_..OI W—J
P . ALy oo 14
%&m - AN ~ L =
z&f.&...m er
-AH T i) )
(R XN AT ARTAELT (R i




891

W0/ WO £10°0 = SIARY ‘8570 = ;¥ SN ‘BIUIOJI[E) ‘[RLIOD PUB[IAS[D & SO0 Ul uonnjosalr [eneds ury
Gz 01 pate3a133e uonnjosal erjeds un] [ F-JYSIAV P[eOSUMOp pue (uonnjosal [erjeds ury ¢7) MSINY PaAIasqo AJre( :7-9 .Ingig

d N (o] S v r r ] v N E| r

i I Il L 1 L i 1 l I 1 Q
(wy ¢Z)I-usSWy

(pajeosumoq) I-YSIWY ~

o

(nospj121emp) BINISION 10S




(w) ssauyaly) mous pue J3Jempunols)

691

: 20BJINS
oY) MOJ3q WI Z8'] & pa[[elsul 19)owo0za1d JO Wr0)10q Sy} WO} PAINSBIW ST SSIUNONY) J9LMPUNOID) “S[) “BIUIOJI[B)) ‘[BLI0)) PUR[IAS])
1€ SJUSUIDINSEIW J31eMPUNOI3 pue Mous ‘(7 PUe [) I9AL[ 2IISIOW [I0S JE-DIA ‘dInsiou [10S F-YSINY PIAIssqQ :€-9 aanij

S A S
S $ O
00 y

i
o
4

(nosp/imema) 3INISION |10S

SSaUYIY MO
(w)moug o

TIKe TS IEDIA -------

1 19Ke NS 1€-DIA

ainysiofp {10S I USINY
0z S0




0LT

SN ‘BMIOJI[R) TeLIO)) PUB[AI]D)
Je $3Nn[eA MOUS pue (7 pue [) JoAe] SIISIOUI [10S TE-DIA “OIMISIOU [10S F-YSIAY ([UId/ WO 84°(-G0"0) PA[LIS POAISSQ) tp-9 danSiy

O S X R (o] % X N O © S N O S L A S

S & & & F F & F & & & &5 FF& & F

(wd) moug

o
o
=
o
(7]
-,
j=
-
(]
<
£
8
8
<
(]
S,
(wo)moug
2T NSIEDIN -+ -
o 1 4ake NS E-OIA ‘
BIMSION |10 T-HSNY - ; .
0¢ - = - §°0



‘ - [u
]
| =
. i
1 i
'-Jl}: I
2
v |
Us e 9 !
0 :ﬁjcﬂj .,.?,,:';:,-x:k. 8 . :Dj
97 §p
N F*OEEWMMWW,7
\ |
: kst "1‘.-#1: 0.05 |
0 25 5 ‘;f el Mapped Landside, B
K N Highweay |

Figure 6-5: AMSR-E (1 km) soil moisture on maximum modeled soil moisture day (May
8,2005)
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Figure 6-6: VIC-3L (1 km) soil moisture on maximum modeled soil moisture day (May
8, 2005)
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Figure 6-7b: The observed NDVI (1 km) on maximum modeled soil moisture day (May
8, 2005)
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Figure 6-9: Landslide susceptibility map for maximum modeled saturation day (May 8,
2005) using downscaled AMSR-E soil moisture
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- CHAPTER 7.
CONCLUSION

This study modified infinite slope stability model that directly includes vadose
zone soil moisture and groundwa‘g_er deiath using variable inﬁltration capacity (VIC-3L) as
a modeled soil moistﬁre alnd‘Ad‘vanced Microwave Scanning Radiometer (AMSR-E)
satellite soil moisture. This model was applied in California, US and Dhading, Nepal to
develop dynamic landslide susceptibility maps at a regional scale. The major findings of
this study are summarized in four categories. |
1. Linking remotely sensed data with landslide disasters:

e There was a strong relationship among landslide disaster, AMSR-E soil
moisture and

e Tropical rainfall Measuring Mission (TRMM) rainfall data.

e AMSR-E soil moisture has potential to be used for landslide studies.

2. Impact of vadose zone soil moisture in slope stability analysis
. The traditional infinite slope stability model was modified to include the

impact of vadose zone soil moisture for shallow landslide analysis at
fegional or global scale.

e Landslides are not triggered only due to surface layer saturation; rather, it

is the combined effect of surface and subsurface saturation that is critical.
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e A significant impact of vadose zone soil moisture was found for shallow
landslides whereas it was less significant for deep landslides.
e The susceptibility to slope failure increases non linearly with an increase
of vadose zone soil moisture as well as groundwater position.
3. Modeling landslides using dynamic soil moisture
e A simple wetness based model can be used to predict groundwater table
during the wet season
e Modeled vadose zone soil mbisture enhance quasi-dynamic landslide
studies
4. Spatiotemporal distribution of susceptibility
e A strong relationship was observed between the relative variability of
susceptibility and slope failure.
e A strong relationship was observed between the nurhber of crossings and
the average duration
e Results showed it is not necessary a slope must fail when the safety factor
is less than 1 as it is traditionally assumed, rather, it may stay longer under
unstable condition before the failure took blace.
e The spatiotemporal distribution of susceptibility is necessary to predict the
possible timing of slope failure
An improved infinite slope stability model can produce reasonable susceptibility
maps in landslide studies enhances susceptibility prediction by showing susceptibility
evolution over time. Moreover, previous spatial distribution studies are not sufficient to

predict possible timing of slope failure.
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The Nepal study region is more vulnerable to landslides than the Califomia. More
fr.equent.landslides occur in Nepal and more frequent slope movements in California.
These regions have significant climate and hydrogeological differences. California region
receives less rainfall than Nepal. In addition, Népal has steeper t}errain than the California.
Soil texture and vegetation cover differs by region. As a result, the statistical properties
differ somewhat between regions. However, there are many similarities as well.

For a less data rich region, the applied model and approach will be very useful for
slope stability analysis using remotely sensed data. This study used many remotely
sensed data including AMSR-E for soil moisture, TRMM for rainfall, SRTM for DEM,
MODIS for lead area index, vegetation index, surface albedo, and land surface
temperature. Hence, this study somewhat reduceAd the dependency of landslide studies on
in-situ data that is necessary to study economically at regional and global scales.

This model can be used from local scale to global scales. However, it is not

possible to use remotely sensed soil moisture for landslide studies at local scale.
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FUTURE STUDY

The approach used in this study can be very useful to develop landslide
susceISﬁbility mapping by using modeled and or remotely sensed soil moisture at regional
and global scales. Relationships between remotely sensed data and landslides, the role of
vadose zone soil moisture in instability, statistical analysis of susceptibility and the use of
remotely sensed soil moisture in landslide susceptibility will be very helpful to explore
the variability of landslide prone regions. It will further help to forecast landslides from
local to global scale. However, the coarse scale remotely sensed and hydrologic modeled
data, lack of in-situ soil moisture and groundwater data in landslide prone regions and the
limited landslide inventory data are important issues that needed to be addressed in future
for landslide sﬁsceptibility mapping and landslide forecast.

Major future work is to (1) enhance the experimental datasets that are necessary
to calibrate and validate models, 2) to improve the understanding of Digital Elevation
Model (DEM) scaling effects on instability prediction and (3) to develop better
downscaling approach to use remotely sensed soil moisture at hillslope scales.

For the experimental work, a mountaiﬁous region needs to be instrumented to
measure in-situ soil moisture, groundwater and required climatic parameters for the
infinite slope stability model. Since very few validation experiments have been carried
out on a slope, this work will be critical to validate the land surface hydrologic models as

well as AMSR-E satellite soil moisture, TRMM precipitation on slopes.
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For DEM scaling effects on instability prediction, in-situ as well as remotely
sensed DEM needs to be compared and used to develop susceptibility maps from regional
to global scales. The LIDAR datasets‘ can be used as a higher resolution DEM to quantify
errors in instability prediction using lower resolution DEM (in-situ and SRTM).

Landslide inventory maps need to be developed using digital image processing
and photogrammetric technique (possibly stereoscopic viewing) based on satellite images
or aerial photographs depending on the scope and availability of required -imagery. For
this purpose, Landsat images and/or Lidar, InNSAR and DInSAR data can be used. This
will enhance methods used for landslide inventory mapping as well as in validating and
characterizing landslides at regional and global scales. It will also refine our
understanding of which tools provide the best information given the required prediction
scale.

These future works will help to develop global landslide forecasting models as

well as provide better validation datasets for landslide studies.
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Physical Properties of Soil

Soil Type Group Cohesion Range (t/m?) Frictionoal
Symbol Maximum  Minimum Angle (°)
Well Graded Gravel GW 0 0 >38
Poorly Graded Gravel GP 0 0 >37
Gravel with Silts GM - . >34
Gravel with Clay GC - - >31
Well Graded Sand SW 0 0 38
Poorly Graded Sand : SP 0 0 37
Sand with Silts SM 5 2 34
Sand with Clay Ne 7.5 1 31
Mixture of SM-SC SM-SC 0.5 0.15 33
Inorganic Silts ML 7 1 32
Inorganic Clay 7 CL 9 1.5 28
Mixture of CL-ML - CL-ML 6.5 2 32,
Organic Silts ‘ OL - - -
Inorganic Silts MH 7.5 2.1 25
Inorganic Clay ' CH 10 1 19

(Source: Mountain Risk Engineering Handbook, Deoja, 1991)
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