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ABSTRACT 

LANDSLIDE SUSCEPTIBILITY MAPPING THROUGH ENHANCED 

DYNAMIC SLOPE STABILITY ANALYSIS USING EARTH 

OBSERVING SATELLITE MEASUREMENTS 
by 

Ram Lakhan Ray 

University of New Hampshire, September, 2009 

Landslides are common throughout the world and can be triggered by earthquakes, 

volcanoes, floods, and heavy continuous rainfall in mountainous regions. For most types 

of slope failure, soil moisture plays a critical role because increased pore water pressure 

reduces the soil strength and increases stress. The combined effect of soil moisture in 

unsaturated soil layers and pore water pressure in saturated soil layers is critical to 

accurately predict landslides. However, dynamic in-situ soil moisture profiles are rarely 

measured on regional or global scales. 

The dynamic soil moisture can be estimated by a soil vegetation atmosphere 

transfer (SVAT) model or satellite. While a SVAT model can estimate soil moisture 

profile, satellite estimates are limited to the upper thin surface (0-5 cm). However, 

considering the complex database needed for a SVAT model, satellite data can be 

obtained quickly and may produce promising results in less data-rich regions at the global 

scale. While no previous landslide studies have used remotely-sensed soil moisture data, 
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Advanced Microwave Scanning Radiometer (AMSR-E) has the potential to be useful in 

characterizing soil moisture profiles. 

First this study investigated relationships among landslides, AMSR-E soil 

moisture and Tropical Rainfall Measuring Mission (TRMM) in landslide prone regions of 

California, U.S., Leyte, Philippines and Dhading, Nepal. Then, a modified infinite slope 

stability model was developed and applied at Cleveland Corral, California, US and 

Dhading Nepal, using variable infiltration capacity (VIC-3L) soil moisture and AMSR-E 

soil moisture to develop dynamic landslide susceptibility maps at regional scale. 

Results show a strong relationship among remotely sensed soil moisture, rainfall 

and landslide events. Results also show a modified infinite slope stability model that 

directly includes vadose zone soil moisture can produce promising landslide 

susceptibility maps at regional scale using either VIC-3L or AMSR-E soil moisture. 

Vadose zone soil moisture has a significant role in shallow slope failure. Results show 

promising agreement between the susceptible area predicted by the model and the actual 

slope movements and slope failures observed in the study region. This model is quite 

reasonable to use in shallow slope stability analysis at a regional or global scale. 
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CHAPTER 1. 

INTRODUCTION 

Natural disasters, like landslides, tsunamis, and floods, cost billions of dollars and 

result in numerous deaths and injuries throughout the world in mountainous regions 

(Metternicht et al., 2005). Both developed countries (e.g., U.S., Australia, Japan and 

U.K.) and developing countries (e.g., China, India, Indonesia, Philippines and Nepal) 

routinely have catastrophic landslides, especially during rainy seasons. Furthermore, 

inventories conducted between 1964 and 1999 show a steady increase in the number of 

landslide disasters worldwide (Kjekstad, 2002; Metternicht et al., 2005). In the U.S. 

alone, landslides cause $3.5 billion in damage and between 25 and 50 fatalities annually 

(USGS, 2004). 

Landslides can be triggered by earthquakes, volcanoes, and floods. However, 

most of the slope failures are proceeded by intense rainfall. Slope failures ultimately are 

caused by processes that increase shear stresses or decrease shear strengths of soil mass 

(Abramson et al., 1996). Various natural factors (e.g., earthquake, concentrated rainfall, 

undercutting of banks by flood) and anthropogenic factors (e.g., deforestation, cuts and 

fills on slopes) contribute to slope failures by decreasing shear strength or increasing 

shear stress. Human infrastructure development, such as roads and deforestation that 

change the topography and remove the vegetation cover, respectively, can decrease slope 

stability (Sidle et al., 2004). 
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Slope failure is strongly related to slope, soil moisture/water content, vegetation, 

and soil types. Weather and climate factors that increase soil water content and hence the 

pore water pressures serve to enhance slope instability. The mechanism for most of the 

shallow slope failures is the rapid build up of pore water pressure in the soil mantle above 

the impervious soil layer or bedrock. 

For slope stability analysis, several approaches have been used (Ermini et al., 

2005; Abella and Van Westen, 2008; Ray and de Smedt, 2009) including heuristic 

approaches (Gorsevski et al., 2006a; Ruff and Czurda, 2008; Abella and Van Westen, 

2008), statistical techniques (Skirikar et al., 1998; Suzen and Doyuran 2004; Lee, 2004, 

2005; Saha et al., 2005; Ayalew and Yamagishi, 2005), landslide risk assessment (Petley 

et al., 2004; Saldivar-Sali and Einstein, 2007) and deterministic techniques (Soeters and 

Van Westen, 1996; Joshi et al., 2000). In heuristic approaches, survey and observed maps 

as well as individual experience are necessary, but geotechnical parameters are not 

required (Gulla et al., 2008; Abella and Van Westen, 2008). In statistical approaches, 

bivariate and multivariate statistics, the spatial correlation is established by linking 

environmental variables. The qualitative and quantitative probability of loss of life and 

property technique is used in landslide risk assessment. Of these methods only the 

deterministic approach is physically-based. 

A factor of safety can be computed deterministically using the infinite slope 

stability model based on the limit equilibrium approach. In this method, a slope can be 

divided into a number of slices and the factor of safety is computed by solving the static 

equilibrium equations based on a set of assumptions. The parameters required to perform 

this type of analysis generally include the soil type, friction angle, cohesive intercept, 
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shear strength, location of the water table and slope geometry as well as the soil moisture 

in unsaturated soil layer. Numerous studies have analyzed shallow landslides using a one 

dimensional infinite slope stability model (e.g., Montgomery and Dietrich, 1994; Van 

Western and Terlien, 1996; Cho and Lee, 2002; D'Odorico and Fagherazzi, 2003; Onda 

et al., 2004; Borga et al., 2005; Muntohar and Liao, 2009). These studies typically use 

wetness indices to estimate the water table position, but neglect the soil moisture in the 

upper soil layer above the groundwater table (Rosso et al., 2006). Because landslides are 

triggered by the combined effect of surface and subsurface saturation, it is necessary to 

be able to link the surface soil moisture to the subsurface layer. 

Vadose zone soil moisture can be obtained by in-situ measurements. However, 

such measurements are time consuming and require complex data collection efforts even 

for local scales. As a result, there are very few in-situ observing systems to measure soil 

moisture at regional or continental scale (Gao et al., 2006). At these scales, either remote 

sensing or soil-vegetation-atmosphere-transfer (SVAT) models are useful methods to 

estimate soil moisture values. Because SVAT models require significant data and 

computational resources, they may not be appropriate for a region with limited data such 

as developing countries. 

An alternative is to use remotely sensed soil moisture. While these data have not 

been used previously for landslide studies, remote sensing can be used to predict 

catastrophic events and hazardous areas (Ostir et al., 2003). Landslide inventory maps 

have been developed using aerial photography with photo interpretation technique (Oka, 

1998; Brardinoni et al., 2003; van Western and Getahun, 2003) as well as using remotely 

sensed data with image analysis technique. Over the past decade, the Earth Observing 
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System (EOS) platforms have deployed a suite of instruments that monitor land 

conditions relevant to landslide hazard characterization such as Light Detection and 

Ranging (Lidar), Interferometric Synthetic Aperture Radar (InSAR), Differential SAR 

Interferometry (DInSAR) data. 

The use of multi-temporal satellite imagery is increasingly applied to monitor, 

classify and detect landslides (Mantovani et al., 1996; Hervas et al., 2003; Cheng et al., 

2004). For regional scale landslide analyses, Landsat TM and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) have been used to derive 

landcover in regions including the Himalayas range (Zomer et al., 2002; Saha et al., 

2002; Sarkar and Kanungo, 2004). Kaab (2005) showed that recent Shuttle Radar 

Topography Mission (SRTM) results are promising for characterizing topography in 

regions having landslides. Climate data including precipitation and convection pattern 

characterization using Tropical Rainfall Measuring Mission (TRMM) and Meteosat-5 

have been valuable additions to complement sparse data in the Himalayas (Barros and 

Lang, 2003; Barros et al., 2004). 

Satellite instruments produce imagery with different spatial resolutions. High 

resolution (10 m) data can isolate critical areas, while lower resolution (104 m) data can 

track the evolution of regional conditions. For example, InSAR has been used to locate 

and characterize landslides (e.g., Canuti et al., 2004; Singhroy and Molch, 2004). SRTM 

DEM is available at 30 m spatial resolution for US and 90 m resolution for rest of the 

world. Even though high resolution DEM (10 m) is more appropriate for landslide 

studies, one has to use low resolution DEM for regional and global scales research work. 

Moreover, Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture and 
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TRMM rainfall are available at 25 and 27.5 km (approx.) spatial resolutions, respectively. 

The landslide study based on such a low resolution remotely sensed data requires 

downscaling. Downscaling requires many types of complex specific high resolution data 

that has demonstrated relationships with surface soil moisture at low resolution. There are 

also limitations to which scale the coarse resolution data can be downscaled. For 

example, AMSR-E data can be downscaled to 1 km resolution using normalized 

vegetation index (NDVI), albedo and land surface temperature (LST) with 1 km spatial 

resolution. Therefore, it can be appropriate to use comparatively coarse resolution 

remotely sensed data for landslide studies at regional or global scales. 

Pelletier et al. (1997) indicated that continuous remote-sensing of soil moisture 

coupled with a digital elevation model is a necessary component of a successful landslide 

hazard mitigation program. While no landslide studies exist using remotely-sensed soil 

moisture data, global data are available from AMSR-E that may be useful to obtain 

surface soil moisture. Clearly AMSR-E's 25 km spatial resolution makes it well suited to 

examine landslide conditions at a regional scale, but not to locate and characterize 

specific failure zones. 

Remote sensing products measure soil moisture for the upper 2 to 5 cm of the 

Earth's surface. This thin layer soil moisture information does not represent the complete 

unsaturated soil moisture profile underneath thick soil layer (subsurface) above the 

bedrock. However, it does provide valuable information on moisture conditions and how 

they evolve over time. For regional scales, this may be adequate to identify when zones 

reach potential hazard conditions. 
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If it is critical to obtain soil moisture profile of the whole soil layer above the 

bedrock or impermeable layer and to predict the position of the ground water table then 

remote sensing soil moisture products can not be used directly to identify landslide prone 

regions. A potential approach is to rely on a hydrologic model that can estimate soil 

moisture in the subsurface layer and to use the remotely sensed soil moisture product for 

validation or assimilation. Regardless, preliminary analyses are required to determine the 

potential of dynamic soil moisture to be used in landslide prone regions and to examine 

approaches to provide regional scale moisture. 

In addition, ancillary remote sensing measurements are a critical aspect of the 

proposed research. These measurements complement existing physical databases by 

characterizing dynamic terrestrial systems and hydrologic fluxes. For less data-rich 

regions, remote sensing measurements may provide the only high resolution data source 

available for the Earth's surface. 

The overall research goal was to develop a regional-scale, physically-based slope 

stability model that directly includes vadose zone soil moisture derived from satellite 

measurements or SVAT model to develop dynamic landslide susceptibility maps. The 

proposed enhanced model was applied to case studies in Dhading, Nepal, a data-poor 

region, and Cleveland Corral, California, US a data-rich region. 

The first objective of this research was to determine if a relationship exists among 

remotely sensed soil moisture, precipitation and landslide. Specific research questions 

are: (1) Can remotely sensed soil moisture provide information in landslide prone 

regions? (2) Is there a qualitative relationship among landslides, TRMM rainfall and 

AMSR-E soil moisture? 
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The second objective of this research was to develop a dynamic, infinite slope 

stability model that directly includes vadose zone soil moisture. To address this objective, 

research issues were: (1) How the infinite slope stability model can be modified to 

directly include vadose zone soil moisture? (2) How the unsaturated soil moisture and the 

saturated zone can jointly be estimated to include in the slope stability model, and (3) 

Under what conditions is vadose zone soil moisture critical for determining slope failure? 

The third research objective was to validate the VIC-3L model soil moisture 

profile and the wetness based groundwater model. Specific research questions include: 

(1) Does the Ray and de Smedt (2009) wetness index model provide reasonable 

groundwater table estimates? (2) Are SVAT derived soil moisture profiles reasonable? 

(3) What are the regional characteristics of landslide susceptibility maps using dynamic 

soil moisture and groundwater and how do they compare with traditional susceptibility 

maps? 

The fourth objective of this research was to characterize spatiotemporal landslide 

susceptibility. The primary goal was to determine: (1) the statistical characteristics of 

safety factors and differences by region, hazard category, and physical characteristics and 

(2) the frequency and duration with which potential failure regions fall below critical 

safety factors. 

This study's fifth objective was to evaluate dynamic landslide susceptibility maps 

that use remotely sensed soil moisture (AMSR-E). Towards this end, a downscaling 

method was examined to modify the AMSR-E soil moisture from 25 to 1 km spatial 

resolution. These remote sensing data were used to (1) identify unstable regions and (2) 

evaluate downscaling impacts on slope stability. 
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These five research objectives were addressed as a series of individual papers. 

Each research paper is presented in a separate chapter. The dissertation is organized with 

Chapter 1 Introduction, Chapters 2 to 6 for the five research papers, and Chapter 7 

Concluding Remarks. 
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CHAPTER 2. 

RELATIONSHIPS AMONG REMOTELY SENSED SOIL MOISTURE, 
PRECIPITATION AND LANDSLIDE EVENTS 

Abstract 

Landslides are triggered by earthquakes, volcanoes, floods and heavy continuous 

rainfall. For most types of slope failure, soil moisture plays a critical role because 

increased pore water pressure reduces the soil strength and increases stress. However, in-

situ soil moisture profiles are rarely measured. To establish the soil moisture and 

landslide relationship, a qualitative comparison among soil moisture derived from 

AMSR-E, precipitation from TRMM and major landslide events was conducted. This 

study shows that it is possible to estimate antecedent soil moisture conditions using 

AMSR-E and TRMM satellite data in landslide prone areas. AMSR-E data show distinct 

annual patterns of soil moisture that reflect observed rainfall patterns from TRMM. 

Results also show enhanced AMSR-E soil moisture and TRMM rainfall prior to major 

landslide events in landslide prone regions of California, U.S., Leyte, Philippines and, 

Dhading, Nepal. 
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Introduction 

Numerous natural factors, earthquakes, concentrated rainfall events, and 

undercutting of banks by flood, as well as anthropogenic factors, including deforestation 

and slope excavation, contribute to slope failures by decreasing shear strength or 

increasing shear stress of the soil mass (Abramson et al., 1996). However, most of the 

slope failures coincide with intensive rainfall (Anderson and Sitar, 1995; Iverson, 2000). 

Landslides are frequently a combined effect of intense rainfall and wet antecedent soil 

moisture conditions that cause landslides. For these slope failures, soil moisture plays a 

vital role because water both reduces the soil strength and increases the stress (Ray, 

2004). 

Soil moisture surrogates have been used extensively in slope stability analyses. 

Montgomery and Dietrich (1994), Van Westen and Terlien (1996), de Vleeschauwer and 

De Smedt (2002), and Acharya et al. (2006) analyzed slope stability using wetness 

indices calculated by the TOPOG model (O'Loughlin, 1986). As pointed out by Rosso et 

al. (2006), Montgomery and Dietrich's (1994) model neglects the presence of soil 

moisture in the upper soil layer above the groundwater table. They presented a modified 

model in order to consider soil moisture in the upper soil layer. Anderson and Sitar 

(1995), Iverson (2000), D'Odorico and Fagherazzi (2003), and Collins and Znindarcic 

(2004) showed that slope failures are primarily caused by infiltration of rainfall into the 

subsurface layer resulting in increased pore water pressure. 
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These studies focus on saturation level soil moisture contents as they relate to 

landslides. However, these studies have indirectly estimated the soil moisture or pore 

water pressure based on rainfall and do not directly account for the highly variable soil 

moisture prior to and during rainfall events. 

Antecedent soil moisture can be obtained by in-situ measurements. However, 

such measurements are time consuming and require complex data collection efforts even 

for local scales. As a result, there are very few in-situ observing systems to measure soil 

moisture at regional or continental scales (Gao et al., 2006). An alternative approach is to 

obtain surface soil moisture from satellite remote sensing at national and global scales. 

Surface soil moisture can be observed (measured) using microwave remote 

sensing (Jackson, 1982; Teng et al., 1993; Schmugge and Jackson, 1994; Kerr et al., 

2001; Jackson, 2002; Moran et al., 2004; Loew et al., 2006; de Rosney et al., 2006). 

Typically remote sensing instruments can only provide the soil moisture information 

from the surface soil depth down to one to five cm. Numerous studies (e.g., Njoku et al., 

2003; Walker et al, 2004; Lacava et al., 2005; Njoku and Chan, 2006; Gao et al., 2006) 

point out that microwave remote sensing measurements are affected by surface roughness, 

topographic features, dense vegetation and soil texture. This indicates that soil moisture 

data may have limited value on steep topography (Njoku et al., 2000). The few validation 

experiments, such as Soil Moisture Experiments 2004 (SMEX04) in northern Sonora, 

Mexico (Vivoni et al., 2008; Jackson et al., 2008), that have been conducted on such 

terrain show that rocky slopes can mask the moisture signal. As landslides mainly occur 

on steep slopes, a preliminary challenge is to determine if satellites can provide a signal 

in landslide prone areas. 
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Landslides are not triggered only due to surface layer saturation; rather, it is the 

combined effect of surface and subsurface saturation that is critical. Therefore, it is 

necessary to be able to link the surface soil moisture to the subsurface layer. A series of 

studies have established a link between surface soil moisture and groundwater. Choi and 

Jacobs (2007) soil moisture patterns on the surface were strongly related to those in the 

root zone. With an assumption of hydraulic potential equilibrium, Jackson (1980) 

developed a complete soil moisture profile based on surface soil moisture measurements. 

Arya et al. (1983) developed two approaches, regression and water budget, to establish 

the correlation between surface and subsurface soil moisture. Reutov and Shutko (1991, 

1992) explored a technique to measure the depth of a shallow groundwater table based on 

microwave remote sensing data that uses the capillary rise above the water table to 

estimate the water table depth. 

This study seeks to determine: (1) can remotely sensed soil moisture provide 

information in landslide prone regions? and (2) is there a qualitative relationship among 

landslides, TRMM rainfall and AMSR-E soil moisture? To answer these questions, the 

daily and seasonal variations of remotely sensed soil moisture from the Advanced 

Microwave Scanning Radiometer (AMSR-E) on the Earth Observing System (EOS) and 

rainfall from the Tropical Rainfall Measuring Mission (TRMM) are quantified in three 

landslide prone regions; Cleveland Corral, El Dorado County, CA, U.S., Guinsaugon, 

Southern Leyte, Philippines and Krishnabhir, Dhading, Nepal. 

The paper presents an overview of the remote sensing technologies available to 

measure soil moisture and a brief review of the TRMM rainfall measurements. The soil 

moisture retrieval algorithm is also discussed. Details on the study sites as well as the 
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rainfall and soil moisture data used in this study are provided. This paper compares and 

analyzes the-AMSR-E soil moisture and TRMM rainfall daily data from January, 2005 to 

May, 2006 at the three landslide prone regions. 
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Relationship between Water and Slope Failure 

A landslide is a sudden failure of slope with or without the influence of water. 

Landslides that result in disasters are more commonly known as landslide disasters. Prior 

to slope failure, there is a slope movement. Sometimes slope movement results in a 

landslide and sometimes it does not. Many slope failures are caused by soil moisture or 

groundwater that increases pore water pressure and shear stress and decreases shear 

strength. 

Safety factors (FS) are used to characterize slope stability. Slopes having safety 

factors less than one are considered unstable. A relationship can be established between 

soil moisture and slope failure for cohesive or cohesionless soil. Sidle and Ochiai (2006) 

developed a safety factor equation for any combination of soil and soil moisture, as 

FS= C° +^l_I^t (2.1} 
WsinO tone Wsind 

W = \yt{H-h)+Ysalh]^se (2-2) 

u = ywh cos2 9 (2-3) 

where FS is the safety factor, W is the weight acting on the slope [KN/m ], Cs is the 

9 9 

effective soil cohesion [KN/m ], u is the pore water pressure [KN/m ], H and h are the 

depth of the soil and water above failure plane, respectively [m], <j) is the angle of internal 

friction and 9 is slope angle [°], yt is the unit moist (but not saturated) weight of the soil 

[KN/m ], YSat the saturated unit weight of the soil [KN/m ], and yw the unit weight of 

water [KN/m3]. 
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Equation 2-1 shows that increasing the soil slope decreases the safety factor. 

Similarly, increasing the soil moisture/water increases pore water pressure (u), effectively 

decreases the safety factor. Landslides occur when the safety factor becomes less than 

one. 
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Remote Sensing Products 

Remotely Sensed Soil Moisture 

Soil moisture can be measured with passive or active microwave sensors. 

Although the active and passive sensors observe different parameters, brightness 

temperatures and backscattering coefficients, respectively, (Jackson, 2002), both sensors 

provide information about surface reflectivity. Based on surface reflectivity, the dielectric 

constant necessary to derive surface soil moisture is estimated (Jackson, 2002). However, 

vegetation and roughness reduce the sensitivity of the microwave observations to soil 

moisture (Njoku et al., 2003). 

Lower frequencies, L band (1-2 GHz), are more sensitive to soil moisture, but 

they are more susceptible to dense vegetation and radio frequency interference (RFI). The 

higher frequency C (6.9 GHz) and X (10.65 GHz) bands can be used to retrieve soil 

moisture (Jackson et al., 2005) because these higher frequency bands are comparatively 

less susceptible to RFI. At present, there are several satellite systems that are capable of 

observing surface soil moisture (Cashion et al., 2005). The systems include the Tropical 

Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) at 10.65 GHz, (Jackson 

and Hsu, 2001), and the Advanced Microwave Scanning Radiometer (AMSR) on the 

Earth Observing System (Njoku et al, 2003). Soil Moisture and Ocean Salinity (SMOS) 

(Kerr et al., 2001) is scheduled to launch in 2009 (Hoffmann, 2005, Scipal et al., 2005). 

The soil moisture active passive (SMAP) is expected to launch by 2013 (Drinkwater et 

al., 2009). This study uses the AMSR-E satellite data. 
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AMSR-E was developed by the National Space Development Agency of Japan 

(NASDA) and launched on Aqua satellite by the National Aeronautics and Space 

Administration (NASA) on May 4, 2002 (Njoku et al., 2003, Li et al., 2004). AMSR-E 

measures brightness temperature at six frequencies in the range 6.9-89 GHz (Njoku et al., 

2003). Soil moisture is retrieved using a microwave radiative transfer (RT) model that 

links surface geophysical variables to the observed brightness temperature (Jackson, 

1993, Njoku et al., 2003). AMSR-E produces soil moisture (product level 3) at 56 km 

spatial resolution and provides re-sampled products at a 25 km grid scale. AMSR-E data 

are available from June 18, 2002 to present on a daily basis. However, data are missing 

on a number of days. 

Remotely Sensed Rainfall 

The Tropical Rainfall Measuring Mission (TRMM) instrument was launched on 

November 27, 1997 as joint effort by NASA and the Japanese Space Agency (JAXA) 

(Kummerow et al., 1998, Gao et al., 2006). TRMM provides precipitation data from 1997 

to present (http://trmm.gsfc.nasa.gov). The primary instruments are the Precipitation 

Radar (PR), the first rain radar in space (13.8 GHz), and the TRMM Microwave Imager 

(TMI), a multi-channel (5 bands from 10.7 GHz to 85.5 GHz) passive microwave 

radiometer. In addition, the Visible Infrared Scanner (VIRS) instrument is used to image 

clouds to determine precipitation structure. TRMM provides data from 50° S and 180° W 

to 50° N and 180° E. This study uses the TRMM precipitation 3B42 3-hr product at a 

0.25° x 0.25° (27.5 km2) resolution. 
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Study Data Sets 

For this study, AMSR-E soil moisture data were obtained from the NASA Earth 

Observing System Data Gateway through National Snow and Ice Data Center (NSIDC). 

The TRMM rainfall 3B42 3-hr product was obtained from Goddard Distributed Active 

Archive Center (DAAC). Both TRMM rainfall and AMSR-E soil moisture data are for 

the period January 1, 2005 to May 31, 2006. Daily rainfall totals were calculated from the 

TRMM 3-hr product. AMSR-E soil moisture and TRMM rainfall values were analyzed 

and compared with landslide events to establish relationships among them. 

In order to consider the response of soil moisture and rainfall, active landslide 

locations were selected for the three regions. These landslide areas are on the order of 1 

km2. Compared to the study areas, both the TRMM and the AMSR-E pixels are much 

larger. Therefore, one satellite pixel was obtained and analyzed for each site's soil 

moisture and rainfall. 
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Study Areas 

Three study regions, which are highly prone to landslides, were selected for 

analysis. The study regions are Highway 50 at Cleveland Corral, El Dorado County, CA, 

US, Guinsaugon, Southern Leyte, Philippines, and Prithivi highway at Krishnabhir, 

Dhading, Nepal (Fig. 2-1). Since 1996, landslides and slope movements are very 

common in the Highway 50 corridor (Reid et al., 2003). In Guinsaugon, Southern Leyte, 

Philippines, a major landslide disaster occurred on February 17, 2006. This rainfall 

induced landslide crushed a village where 122 people were confirmed dead, hundreds of 

people were still missing as of 2006, and thousands of people were left homeless 

(Lagmay et al., 2006). In Krishnabhir, Dhading, Nepal, landslides have continuously 

occurred for four consecutive years starting from 2000 (Ray, 2004). Along the Prithivi 

highway corridor, landslides are very common during every monsoon. 

Cleveland Corral, CA, USA 

The Cleveland Corral landslide study region in Highway 50 corridor is located in 

the Sierra Mountains, California, USA (Reid et al., 2003). Highway 50 is a major road 

located between Sacramento and South Lake Tahoe in California (Spittler and Wagner, 

1998). The study area is located between 120° 17' 42"W to 120° 32' 42"W and 38° 39' 

12"N to 38° 54' 12"N. Altitudes range from about 902 to 2379 m. Since 1996, slope 
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movement and landslides occur infrequently during the winter season. Additionally, one 

major catastrophic landslide occurred in 1983 in this region (Spittler and Wagner, 1998). 

Since 1997, the USGS has monitored this region using real time data acquisition systems 

(Reid et al., 2003). They found elevated pore-water pressures and abundant soil moisture 

during periods with slope movement and landslides in the winter (rainy) season. 

Guinsaugon, Leyte, Philippines 

The Philippines is an island country located in South East Asia between latitude 

4°23'N and 21°25'N and longitude 116°E and 127°E with a 1850 km length and a 965 km 

width. The country's topography is characterized by alluvial plains to high mountains 

with an elevation to 3144 m. The Guinsaugon study region, municipality of St. Bernard, 

is located in Southern Leyte Province, Philippines. The Guinsaugon village, the site of 

the 2006 landslide disaster, is located at the foot of the slope (Lagmay et al., 2006). The 

study area is centered at 10° 21' 3"N, 125° 6' 33" E latitude and longitude, respectively, 

with a maximum elevation of 675 m (Lagmay et al., 2006). The authors indicate that the 

February, 2006 landslide's cause was a week long intensive rainfall in the Southern Leyte 

region. 

Krishnabhir, Dhading, Nepal 

Nepal consists of about 83% mountainous terrain and the remaining 17% in the 

southern alluvial plains. The country extends from 80° 04' to 88° 12'E longitude and 26° 
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22' to 30° 27'N latitude and spans approximately 885 km in the east-west direction and 

varies from 130 to 255 km in north-south direction. The altitude ranges from 70 m at 

Kanchan Kalan to 8850 m at the top of the Mount Everest within a very short distance. 

The relatively high landslide frequency in Nepal, as compared with mountain ranges of 

other countries, may be because Nepalese Mountains are geologically younger (Ray, 

2004). 

The Krishnabhir study region lies in the Dhusa Village Development Committee 

(VDC) in Dhading district, Nepal along the Prithvi Highway. The highway connects the 

Western and Eastern parts of the country to Kathmandu, the national capital. The area is 

situated between 27° 45' to 27° 52' 30 N latitude and 84° 37' 30" to 84° 52' 30"E 

longitude. Altitudes range from about 242 to 1922 m above the sea level. One of the 

major landslide areas is located at Krishnabhir of Dhusa village development committee 

(VDC) along the Prithivi Highway. Since 2000, landslides occur annually during the 

rainy season along the Prithivi Highway. 
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Results and Discussion 

Intercomparison 

Figure 2-2 shows daily and weekly moving average values of AMSR-E soil 

moisture for one and half years (January 1, 2005 to May 31, 2006). As daily soil moisture 

values are highly variable, a weekly moving average soil moisture was calculated for 

each date by averaging that day's soil moisture with that of the six preceding days. This 

plot clearly shows daily and seasonal variations for each study region. The period having 

the wettest soil moisture differs by region. For example, California's highest soil 

moisture occurs in the spring season. Nepal's soils are very wet shortly before and after 

the monsoon. The Philippines has the highest soil moisture value in the winter and late 

summer. Weekly moving average soil moisture values vary gradually in CA, USA, and 

Dhading, Nepal, but oscillate in Leyte, Philippines. 

Table 2-1 presents summary statistics that characterize soil moisture variations by 

study region. The highest soil moisture values, observed in California, US, are twice 

those reported for Leyte, Philippines because California study region may have less well-

drained soils and a colder climate. Based on the standard deviation of daily values, Nepal 

has much lower variability than either California or Leyte. Soil moisture ranges are 

smaller than expected, particularly for Nepal. Overall, these results indicate that, even in 

steep terrain or landslide prone regions, AMSR-E soil moisture can provide relevant 

information by capturing mean values and the timing and duration of wet periods. 
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Cleveland Corral. CA. USA 

Figure 2-3 shows the weekly moving average AMSR-E volumetric soil moisture 

values from January 2005 to May 2006 as well as the daily TRMM rainfall data in the 

Cleveland Corral, California study region. While the results show only a 12% range in 

the soil moisture variations annually, the observed variations are adequate to identify the 

timing of relatively high soil moisture. Seasonal trends show that soil moisture increases 

from March to late May each year. This rising trend in soil moisture corresponds to a 

period of high rainfall. Soil moisture peaks occurred in April and May for both 2005 and 

2006. However, peaks on 10th May, 2005 (24.9%) and on 14th April, 2006 (28.7%) do not 

coincide with rainfall peak events on 1st May, 2005 (31 mm) and on 5th April, 2006 (47.8 

mm), respectively. This may reflect the lag time between the rainfall event and the 

satellite measurement. The lag time is not consistent because the rainfall frequency and 

duration are not consistent with the TRMM and the AMSR-E satellites passing time to 

that particular region. Thus, soil moisture may better characterize using total accumulated 

rainfall rather than brief intense rainfall events. 

Soil moisture and rainfall trends were compared to slope movements and 

landslide events. Reported slope movement began in late February, 2005. Also, slope 

movements were observed throughout May, 2005 

(http://landslides.usgs.gov/monitoring/hwy50). Two landslides were observed in 2006, 

one on April 3rd near Whitehall and another on May 7th near Kyburz. All of the slope 

movements and landslides coincide with periods of enhanced surface soil moisture and 

rainfall in this region. Interestingly, the peak precipitation days did not necessarily match 

the dates of observed movements and landslides. 
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Guinsaugon, Leyte, Philippines 

Figure 2-4 depicts the weekly moving average AMSR-E volumetric soil moisture 

values and daily TRMM rainfall values from January 2005 to May 2006 in Guinsaugon, 

Leyte, Philippines. This study region has a completely different daily and seasonal soil 

moisture and rainfall temporal pattern than the California site. In this region, frequent 

rainfall events were observed throughout the year. Figures 2-2 and 2-4 show higher daily 

soil moisture variations than seasonal soil moisture variations. Due to the fairly uniform 

yearly rainfall distribution, no distinct seasonal soil moisture variations were observed. 

The seasonal evolution of soil moisture appears to somewhat correspond to the rainfall 

observations, but a clear relationship is not readily evident. 

The soil on the day of the landslide disaster, February 17, 2006, was not as wet as 

that in January, 2006. As shown in Figure 2-4, this region had received high rainfall (375 

mm) from 22 to 26 December in 2005. This rainfall causes a gradual increase of soil 

moisture until mid-January. Without rainfall, gradually decreased soil moisture can be 

observed from mid-January to mid-February in 2006. A week long continuous heavy 

rainfall (> 400 mm) that increased soil moisture/pore water pressure in the subsurface 

layer likely caused the landslide disaster. That the landslide occurred during lower than 

peak soil moisture indicates the importance of rainfall characteristics in addition to 

antecedent conditions. This site suggests that additional research is needed to estimate 

soil moisture for landslide hazard prediction that uses both soil moisture and rainfall. 
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Krishnabhir, Dhading, Nepal 

The one and half year (January 2005 to May 2006) moving average AMSR-E soil 

moisture and daily TRMM rainfall plot for Dhading, Nepal produces a comparatively 

uniform distribution pattern than the other two study regions (Fig. 2-5). This is mainly 

due to Nepal's monsoonal (June to September) climate. In this study region, off 

monsoonal (October to May) season receives very little rainfall. Dry soil conditions 

persist until late July. Figures 2-2 and 2-5 show higher seasonal soil moisture variations 

than daily soil moisture variations. Interestingly, the soil moisture values are nearly 

constant from September to February and appear to be insensitive to rainfall. This may 

indicate a measurement problem. As this period coincides with Nepal's typical late 

August planting, the potential cause is dense vegetation. 

From 2000 to present, landslides were observed annually during the monsoon 

(Mid August) (Ray, 2004) in the Prithivi highway corridor. During the monsoonal rainfall, 

enhanced soil moisture is shown in Figure 2-5. These wetter conditions increase pore 

water pressures to levels that are sufficient to cause slope failure. Hence in Nepal, the 

steady rainfall, measured by TRMM that causes a continuous increase in soil moisture is 

closely linked with this region's landslides. 
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Conclusion 

Soil moisture is an important parameter for landslide studies. As the soil mass's 

soil moisture increases, pore water pressure rises. Pore water pressure, which increases 

shear stress and decreases shear strength, is the main cause for many landslides. This soil 

moisture can be estimated by in-situ measurements, but such measurements are time 

consuming and cost prohibitive at national and global scale. In contrast, this study shows 

that AMSR-E can provide surface soil moisture for global scale at a daily temporal 

resolution. 

Each of the three study regions had landslides or slope movements when soil 

moisture and rainfall showed higher values. These landslide occurrences clearly indicate 

a good relationship among landslide events, AMSR-E surface soil moisture and TRMM 

rainfall. Results show that AMSR-E soil moisture data can be used for landslide studies. 

However, more intensive research still is necessary to validate soil moisture patterns and 

to include AMSR-E soil moisture in slope stability analysis. 
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Table 2-1: Statistical Analysis of AMSR-E soil moisture from January 2005 to May 
2006 in three study regions 

2005 

Descriptions 
Mean 
Range 
Std. Dev 
Min 
Max 
Count (Days) 

SoU 
California, USA 

Moisture 
(cm3/cm3) 
0.175 
0.117 
0.023 
0.132 
0.249 
271 

Date 

November, 
May, 10 

15 

Leyte, 
Soil 
Moisture 
(cm3/cm3) 
0.084 
0.139 
0.025 
0.015 
0.154 
225 

, Philippines 

Date 

December, 17 
August, 19 

Dhading, Nepal 
Soil 
Moisture 
(cm3/cm3) 
0.145 
0.068 
0.013 
0.109 
0.177 
232 

Date 

July, 17 
May, 7 

2006 (Jan to May) 

Descriptions 
Mean 
Range 
Std. Dev 
Min 
Max 
Count (Days) 

SoU 
California, USA 

Moisture 
(cm3/cm3) 
0.191 
0.147 
0.027 
0.14 
0.287 
113 

Date 

January, 2 
April, 14 

Leyte, 
SoU 
Moisture 
(cm3/cm3) 
0.079 
0.112 
0.023 
0.013 
0.125 
92 

, PhiUppines 

Date 

February, 11 
January, 25 

Dhading, Nepal 
Soil 
Moisture 
(cm3/cm3) 
0.153 
0.035 
0.008 
0.141 
0.176 
101 

Date 

February, 7 
April, 19 
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CHAPTER 3. 

IMPACTS OF VADOSE ZONE SOIL MOISTURE AND GROUNDWATER TABLE 
ON SLOPE INSTABILITY 

Abstract 

The combined effect of soil moisture in unsaturated soil layers and pore water 

pressure in saturated soil layers is critical to predict landslides. An improved infinite 

slope stability model, that directly includes vadose zone soil moisture and groundwater, 

was used to analyze sensitivity of safety factors/susceptibility to vadose zone soil 

moisture. First, the sensitivity of safety factors to vadose zone soil moisture was studied 

on pixels that exhibited active landslides at Cleveland Corral, California and later the 

method was applied to entire study region at regional scale. Results show a significant 

impact of vadose zone soil moisture in the sensitivity of the safety factor for a shallow 

soil layers (< 2 m) with comparatively deeper groundwater (1 m). For a shallow soil 

mantle (1 m), the change in safety factor was 59%, while it was only 13% for the thick 

soil mantle (3 m) for the 1 m groundwater position. The unstable area increases 

nonlinearly with increasing vadose zone soil moisture. Vadose zone soil moisture most 

strongly impacts shallow slope stability when soil mantles are less than 2 m thick. 
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Introduction 

Slope failures ultimately are caused by processes that increase shear stresses or 

decrease shear strengths between the soil layers (Cernica, 1982; Abramson et al., 1996). 

An increase in the pore water pressure reduces the effective normal stresses (&') and, 

consequently, the shear strength of the soil layers as defined by the Coulomb 

equation! = C + <j' tancp . Weather and climate factors that increase soil moisture/water 

content and hence pore water pressure serve to enhance slope instability (Ray and Jacobs, 

2007). 

Generally, a shallow landslide is assumed when the slope length is greater than 

the soil mantle thickness (Skempton and DeLory 1957); and ranges from 1 to 2 m 

(Meisina and Scarabelli, 2007) seldom exceeding 3 m (Au, 1998). Based on the limit 

equilibrium approach, the one dimensional infinite slope model is frequently used to 

study shallow landslides (e.g., Montgomery and Dietrich, 1994; Van Western and Terlien, 

1996; Cho and Lee, 2002; D'Odorico and Fagherazzi, 2003; Onda et al., 2004; Borga et 

al, 2005; Muntohar and Liao, 2009). An infinite slope stability model equates resisting 

and driving forces in order to estimate a safety factor (FS). Soil cohesion and angle of 

internal friction control the resisting forces. Increasing slope angle enhances the driving 

force. The unit soil weight, whether it is dry, moist or saturated, affects the resisting force 

through cr'applied to a potential failure surface and also the driving force along the 

potential failure surface on a slope. For shallow landslides, effects of soil cohesion are 
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large (Sidle and Ochiai, 2006). The weight on the slope and thus the driving force 

increases, when water fills previously empty pore space. 

Moreover, in the presence of groundwater or a saturated soil layer, the driving 

force caused by unit soil weight, can be greater still than the resisting force for any given 

slope angle because pore water pressure reduces the effective stress, and consequently, 

the resisting force. According to Ray and Jacobs (2007), landslides are not triggered only 

due to surface layer saturation; rather, it is the combined effect of surface and subsurface 

saturation that is critical. During rainfall, water infiltrates into the substratum, which 

increases soil moisture in the unsaturated zone and also raises the water table. Therefore, 

the vadose zone soil moisture (SM), which increases the unit soil weight, may play a vital 

role in shallow slope instability. It is essential to consider vadose SM when estimating 

moist unit soil weight above the saturated soil layer. 

Many authors have studied the unsaturated zone and slope instability by including 

matric suction or negative pore water pressure in the infinite slope stability model (e.g., 

Cho and Lee, 2002; Rahardjo et al., 2007; Muntohar and Liao, 2009). These studies show 

that the infiltrated rainfall water dissipates the soil suction or negative pore water 

pressure in the vadose zone and, in turn, reduces the shear strength and triggers slope 

failure. Lu and Godt (2008) modified the infinite slope stability model to include a 

skeletal stress that varies with the soil moisture variations in the unsaturated zone. They 

noted that most landslide studies that include unsaturated zone soil suction in an infinite 

slope stability model are just modifying the shear strength due to soil suction and do not 

account for the moist unit soil weight of the unsaturated layer or saturated layer weight in 

the slope stability model. 
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The two-layer concept, unsaturated and saturated soil layers, is frequently used in the 

infinite slope stability model to represent different unit soil weights. Some studies use a 

saturated unit soil weight to represent both layers (e.g., Montgomery and Dietrich, 1994; 

D'Odorico et al., 2005; Chiang and Chang, 2009). They assume constant saturated unit 

soil weight for their whole study area. De Vleeschauwer and De Smedt (2002) and 

Acharya et al. (2006) use dry and saturated unit soil weight, respectively, for the layer 

above and below the saturated soil layer. Collins and Znidarcic (2004) use effective and 

total unit soil weight for the saturated and unsaturated soil layers, respectively. Vanacker 

et al. (2003) and Gabet et al. (2004) use total unit soil weight for both layers. A more 

physically sound representation uses a moist unit soil weight for the unsaturated soil layer 

and saturated unit soil weight for a saturated soil layer (e.g., Burton and Bathurst, 1998; 

Sidle and Ochiai, 2006). The two-layer approaches use static values of moist unit soil 

weight and saturated unit soil weight, and do not take into account the impact of dynamic 

moisture condition for slope stability analysis. 

The vadose zone SM can be combined with groundwater for calculating wetness 

indices. The wetness indices are derived in various ways. One widely used wetness index 

approach is O' Loughlin's 1986 TOPOG model (e.g., Dietrich et al., 1993; Montgomery 

and Dietrich, 1994; Van Westen and Terlien, 1996; Pack et al., 1998; de Vleeschauwer 

and De Smedt, 2002; Acharya et al., 2006). The TOPOG model is based on the 

topographic wetness index developed by Beven and Kirkby (1979) within the runoff 

model TOPMODEL. These approaches are based on the assumption that all the 

infiltrating water in the upgradient contributing area contributes to the groundwater flow 

at the downstream convergence point. This assumption does not account for the time 
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duration for flow accumulation or the water storage and delay in the upgradient area 

(Barling et al, 1994). Van Westen and Terlien (1996) and Acharya et al. (2006) calculate 

wetness indices by taking the ratio of the saturated soil layer thickness to the total soil 

thickness. 

According to Rosso et al. (2006), wetness indices calculated by the TOPOG 

model neglect the presence of soil moisture in the upper soil layer above the groundwater 

table. The TOPMODEL approach, for calculating wetness indices, does not take into 

account the unsaturated soil thickness or vadose zone SM. This is a problem because the 

ground does not have to be saturated for failure (Dietrich et al., 1993) and slope failures 

can occur above the groundwater table in the unsaturated zone under the steady 

infiltration conditions (Lu and Godt, 2008). It is necessary to estimate a wetness index 

that includes the combined effects of vadose zone SM, pore water pressure or 

groundwater level. 

This paper proposes to directly include vadose zone SM in the slope stability 

model to estimate safety factors. The approach is to develop a wetness index model that 

takes into account both saturated zone and vadose zone SM. Moreover, this paper also 

uses an approach to calculate moist soil unit weight that takes into account the temporal 

dynamics of vadose SM. The main objectives of this study are: (1) to modify the infinite 

slope stability model to directly include vadose zone SM and (2) to analyze the combined 

impacts of vadose zone SM, groundwater table position and soil mantle thickness on 

instability. 
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Slope Stability Model 

This study uses the infinite slope method (Skempton and DeLory, 1957) to 

calculate safety factors that express the ratio of resisting forces to driving forces. Figure 

3-1 shows a schematic representation of a typical slope. The infinite slope stability model 

as adapted from the several studies (e.g., Montgomery and Dietrich 1994; van Westen 

and Terlien 1996; Acharya et al., 2006; Ray and De Smedt 2009) is 

c +c ( « > ' 
"- + FS= s . r + 

yeHsin0 

t a n l P (3-1) 
tan9 

where Cs and Cr are the effective soil and root cohesion [kN/m ], ye is the effective unit 

soil weight [kN/m3], H is the total depth of the soil above the failure plane [m], 9 is the 

slope angle [°], m is the wetness index [adimensional], § is the angle of internal friction 

of the soil [°], and yw is the unit weight of water [kN/m ]. Originally, Skempton and 

DeLory (1957) used the saturated unit soil weight (ys) instead of the effective unit soil 

weight (ye) and the vertical soil depth above the potential failure plane. However, 

Acharya et al. (2006) and Ray and De Smedt (2009) used the soil depth perpendicular to 

the potential failure plane (Fig. 3-1). The effective unit soil weight as defined by de 

Vleeschauwer and De Smedt (2002) is: 

qcos0 , . . 
T e = ^ — + ( l - m ) Y m + mY1 (3-2) 

r i 

where q is any additional load on the soil surface [kN/m ]. De Vleeschauwer and De 

Smedt (2002) used dry unit soil weight instead of moist unit soil weight (ym) [kN/m ] for 
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the unsaturated soil layer. Hence we define the moist unit soil weight of the unsaturated 

soil layer above the saturated soil layer [kN/m3] is defined as: 

G + S e 
Y m = 1

 w Yw (3-3) 

where G is the specific gravity of soil [adimensional], Sw is the degree of soil saturation 

[cm3/cm3] or vadose zone soil moisture and e is the void ratio [adimensional]. The degree 

of soil saturation (range from 0 to 1) is replaced by the vadose zone SM when calculating 

moist unit soil weight for the unsaturated layer. 

The traditional approach for calculating the wetness index is based on the 

TOPMODEL and uses effective rainfall, transmissivity, upslope specific contributing 

area and slope as well as the ratio of the saturated soil layer thickness to the total soil 

thickness. These approaches do not take into account the impact of vadose zone SM in 

the wetness index model. Here, a wetness index model is proposed that directly links 

vadose zone SM with the saturated soil layer thickness and the total soil thickness (Eq. 3-

4). 

h+(H-h)*S 
m - - v- (3-4) 

H 
where h is the saturated thickness of the soil above the failure plane [m]. 
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where N = S w y w T(l -—) + ywT— and 
rl rl 

D 2 = S w E y w ( — - l ) + Sw(Eyw-Eyw —+ y s -—y s + 7d — - y d ) + ^ ^ + Ys —+ y d - y d — 

The calculated FS values are used to categorize slopes into stability classes using 

Pack et al. (1998) and Acharya et al.'s (2006) stability classification system. The 

proposed four susceptibility classes are highly susceptible (FS<1), moderately susceptible 

(1<FS<1.25), slightly susceptible (1.25<FS<1.5) and not susceptible (FS>1.5). 
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Material and Methods 

Study Area 

The sensitivity of slope stability to soil moisture was considered using the 

physical characteristics at Cleveland Corral, CA. This landslide prone area is located on 

the slope of the Sierra Nevada Mountains along the Highway 50 corridor (Reid et al., 

2003). Highway 50 is a major road located between Sacramento and South Lake Tahoe in 

California (Spittler and Wagner, 1998). Since 1996, slope movements and landslides 

occurred infrequently during the winter season with a catastrophic landslide in 1983. A 

mapped landslide at the most active landslide zone is shown in Figure 3-2. 

The study domain is a 28 x 22 km area in El Dorado County, California, USA 

(Fig. 3-2). As derived from a 90 m Digital Elevation Model (DEM), elevations range 

from about 902 to 2,379 m and slopes range from 0 to 48°. This study region has 

considerable variability in soil texture ranging from clay loam to sandy loam. The 

majority of the observed soil is sandy loam (72%). On this rugged topography, conifers 

and wooded grassland are the dominant land covers: 80% and 14% of the study region, 

respectively. Some rock outcrops are also observed along the Highway 50 corridor. 

Since 1997, the USGS has monitored this active landslide region using real time 

data acquisition systems that measure rainfall, pore water pressure, slope movements, 

ground vibrations and landslides (Reid et al., 2003). The daily groundwater 

measurements for water years 2004 to 2006 were obtained from the USGS (Mark Reid, 

USGS). 
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Piezometers were used to measure the hydraulic head at the active landslide grid. High 

groundwater tables were observed during the periods with slope movement and 

landslides in the winter (rainy) season (Reid et al., 2003). 

Methods 

To study the impact of vadose zone SM in slope instability, an active landslide 

pixel was selected from this study region. The Eq. 3-6 was used to estimate the rate of 

change of the safety factors for a time series of groundwater (GW) levels and total soil 

depth with varying vadose zone SM. To obtain spatial distributions of susceptibility, the 

model was also applied to the entire study region with modeled vadose zone SM and in-

situ GW measurements. 

The Three-Layer Variable Infiltration Capacity (VIC-3L) model (Liang et al., 

1994) was used to estimate soil moisture in the unsaturated zone. VIC-3L is a macroscale 

land surface model that simulates water and energy budgets and includes spatial 

variations of soil properties, soil topography, precipitation, and vegetation (Maurer et al., 

2002; Huang and Liang, 2006). The model's soil column has three layers (Parada and 

Liang, 2004). The top, thin soil layer and the middle, soil layer characterize the dynamic 

response of the soil to weather and rainfall events. The lowest layer captures the seasonal 

soil moisture behavior (Liang et al., 1996; Huang and Liang, 2006). Based on the climatic 

parameter and soil and vegetation characteristics, this model can estimate soil moisture 

storage, evapotranspiration, runoff and snow water equivalent at hourly to daily time-

steps. 
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For this study region, the VIC-3L model was run using a daily time-step from 

2004 to 2006 with layers of 0.05, 0.35, 0.4 to 1.0 m thickness at a 0.0083° (approximately 

1 km) resolution. This study region has a total of 900, 0.7 km2 pixels. 

Model Data 

The data required for the VIC-3L hydrologic model and the slope stability model 

are summarized in Table 3-1. Rainfall, temperature and wind speed measurements were 

obtained from the National Climatic Data Center (NCDC) from 2000 to 2006. Soil layers, 

soil thickness and soil texture information were obtained from the States Soil Geographic 

(STATSGO) soil database (NRCS, USDA). There are a total of eleven soil layers in 

STATSGO. However, many layers have similar soil texture classes. To coincide with the 

VIC-3L model, the eleven soil layers were regrouped into three soil layers by merging 

similar soil textures from many layers to one layer. The first, second to fifth and sixth to 

eleventh soil layers of the STATSGO soil database were regrouped into three soil layers; 

respectively, first, second and third soil layers for the VIC-3L model. Consequently, the 

first and second layers have similar soil textures. About 72 and 28% of study area is 

covered with sandy loam and loam, respectively in both layers. The third (lower) layer 

consists of four soil types, loam, sandy loam, clay loam and sandy clay, and covers, 

respectively, 72, 16, 3 and 9%, of the study area. Soil types were identified from the 

STATSGO soil database. Each pixel was assigned a soil texture for each of the three soil 

layers based on majority type. For verification purposes, four soil samples were collected 

from the active landslide grid and tested in a laboratory using sieve analysis and 
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Atterberg Limits tests. The tests showed similar soil texture to the STATSGO soil 

database classification. The total soil depth ranged from 0.6 m to 1.4 m. The assumed 

potential failure plane underneath the soil layer is bedrock. The unit soil weight (saturated 

and moist) was calculated based on the soil moisture, soil porosity, and specific gravity of 

the soil samples using Eq. 3-3. Each soil type was assigned soil cohesion and friction 

angle values that were adapted from Deoja et al. (1991) 

Advanced Very High Resolution Radiometer (AVHRR) land cover data (1 km 

spatial resolution) were obtained from University of Maryland (UMD) (Hansen et al., 

2000). There are four land cover classes (types) in this study region. Each land cover 

class was assigned a root cohesion values that was adapted from Sidle and Ochiai (2006). 

The Land Data Assimilation System (LDAS) project has produced a gridded vegetation 

database for the USA. Root fraction, root depth, vegetation roughness, and vegetation 

height required for the VIC-3L model parameterization were obtained from the LDAS 

(Mitchell et al., 2004). The Shuttle Radar Topography Mission (SRTM) DEM (90 m 

spatial resolution) was used to derive slope angle in this study. 
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Model Results 

Soil Moisture and Groundwater Impact Analysis 

Theoretical safety factors and susceptible areas were calculated with Eqs. 3-5 and 

3-6. First, a safety factor sensitivity analysis was conducted at an active landslide location 

in the study area. Then, the impact of vadose zone SM and GW was considered with 

respect to susceptible areas in the study region. 

Figures 3-3 a, b, c and d show the rate of change in safety factors with varying 

vadose zone SM for a series of GW table positions, respectively for varying soil 

thicknesses. This analysis used characteristics obtained for the most active landslide grid 

in the California study region. The selected active landslide grid has a 1.4 m soil depth 

with sandy loam soil and wooded grassland land cover. This grid has a 32.5° slope. 

Using Eq. 3-6, the rates of change in safety factors were calculated with varying 

vadose zone SM (0-100%, using 5% increments). This analysis was repeated for a series 

of GW table positions (depth to groundwater) from 0.1 to 1 m below the surface (0.1 m 

increment). The 0.1 m GW table is the wettest scenario. The 1 m GW table is the driest 

scenario. The maximum saturation scenario was limited to 0.1 m depth to GW table 

because there is no impact of vadose zone SM under full saturation. 

Figure 3-3 shows a significant impact of vadose zone SM when the depth to GW 

is deep. For a thick soil layer (soil thickness > 2 m), the FS sensitivity is constant for all 

GW table positions. A constant FS sensitivity is also observed for a thin soil layer (soil 

thickness < 2 m) when the GW table is shallow (depth to GW table < 0.5 m). 
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The observed FS is less sensitive with increasing vadose zone SM (true until 70% 

SM) for a thin soil layer with a deeper GW table. When the vadose zone SM is greater 

than 70%, the FS values are equally sensitive to increases SM even with deep GW table. 

For all of the soil thicknesses (1 to 3 m in this analysis), the FS sensitivity 

decreases when the GW approaches the surface. The decrease has a nearly constant rate 

near the surface. For example, when the depth to GW is 0.5 m, the observed rates of 

changes for safety factors are 27, 15, 10 and 6% for soil thicknesses of 1, 1.4, 2 and 3 m, 

respectively. When the GW table is shallow, 0.1 m (0.4 m change), the safety factors' 

sensitivity declines to 4, 2, 2 and 1% for the 1, 1.4, 2 and 3 m thicknesses, respectively. 

Thus, a 0.4 m GW table rise significantly changes the FS sensitivity; by 20, 13, 8 and 5%. 

When the same 0.4 m GW table change occurs for deeper GW positions, 1 m rising to 0.6 

m, an even larger change in the FS occurs with differences of 29, 17, 9 and 6% for the 1, 

1.4, 2 and 3 m, soil thicknesses, respectively. 

Figure 3-4 shows the safety factors' sensitivity to soil depth with a controlled GW 

positions and varying vadose zone SM. These results show small rates of safety factor 

change (less than 15%) when the total soil depth is greater than 2 m. These changes 

increase nonlinearly with decreasing soil thickness. For example, when the soil thickness 

changes from 1 to. 1.5 m, the difference in the rate of change in safety factor was 18%, 

but it was only 7% when the soil thickness was changed from 1.5 to 2 m. 

At a regional scale, variations in SM and GW differentially effect individual 

locations. Figure 3-5 shows how the vadose zone SM and the GW table jointly influence 

regional susceptibility. Using Eq. 3-5, safety factors (FS) were calculated for a series of 

GW depths below the surface (0 to 1 m, 0.1 m increment) with varying vadose zone SM 
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(0-100%) for the entire Cleveland Corral study region. This study uses the 90 m spatial 

resolution for a total of 75988 grid cells. 

The results show that 0.58% of the study region is highly susceptible under the 

completely saturated scenario (lower right). No area is highly susceptible under the dry 

scenario (upper left). The contour lines of equal % susceptible area, 0.01% interval, 

become closer as the GW table approaches the ground surface and the vadose zone SM 

approaches the saturation level. Figure 3-5 shows that wetter unsaturated soils can be 

more vulnerable to landslides than the less wet unsaturated layer, even if the GW table is 

deeper for the former. 

Not surprisingly, as the GW thickness increases, the highly susceptible area 

increases. However, Figure 3-5 shows that regardless of soil saturation, the marginal 

increase in susceptible area increases as the GW table nears the surface. A 10% increase 

in soil saturation will cause more of the region to become unstable if the hillside is 

already wet than if the slopes were initially dry. It should also be noted that the marginal 

increases decrease somewhat for very wet slopes, 80 to 100% saturation, as compared to 

more moderately wet slopes, 30 to 80%. Overall this analysis shows that the vadose zone 

SM can have a significant role in slope instability. 
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Application 

VIC-3L Model Results 

The VIC-3L model was run at a 0.0083° (approximately 1 km) spatial resolution 

from 2004 to 2006 to obtain vadose zone soil moisture at Cleveland Corral. Figure 3-6 

shows the daily average modeled vadose zone soil moisture, rainfall and in-situ GW 

measurements at one active landslide grid ( l x l km) in this study region. Average daily 

soil moisture was calculated by weighted average of daily soil moisture obtained from the 

VIC-3L model in the top two layers. The GW measurements from the USGS station were 

used to validate the VIC-3L model results. Since no in-situ soil moisture measurements 

were available, soil wetness variations captured by the VIC-3L model were compared 

with GW fluctuations during the wet season. During the wet season, the GW was very 

close to the surface in this region. The near surface GW fluctuations are strongly 

indicative of the soil moisture storage in the unsaturated zone above the saturated zone. 

VIC-3L vadose zone SM values and the in-situ GW measurements show similar daily 

and seasonal variations throughout the year. 

Spring is the wettest season because relatively high amounts of rainfall (Fig. 3-6) 

and snow melt occur during this period. This period has the highest vadose zone SM and 

also has a GW level that is very close to the surface. During the 2005 wet season, January 

to May, the highest and the lowest vadose zone SM values estimated by the model were 

82 and 49%, respectively, when the shallowest and the deepest GW positions were 28 

and 137 cm below the surface, respectively. During the 2006 wet season, January-April, 
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the model predicted 83 and 52% vadose zone SM when the GW table was 35 and 

75 cm below the ground surface, respectively. The highest vadose zone SM predicted by 

the model in 2004, 2005 and 2006 were 84, 84.5 and 82.9%, respectively, when the 

groundwater levels were 38.5, 40.3 and 45.7 cm below the ground surface. 

The dry summer periods have the lowest vadose zone SM and very deep GW 

levels. There is a good agreement between the dry period predicted by the model and the 

groundwater measurements from July to November in 2005 and from June to September 

in 2006. In 2005, vadose zone SM ranged 20 to 27% when the groundwater levels were 

181 to 186 cm below the surface. Similarly, in 2006, vadose zone SM was 21% when the 

groundwater depth was 182 cm below the ground surface. 

Overall, the simple linear regression analysis for depth to GW and average vadose 

zone SM provided a good fit with a R2 of 0.63 and p-values less than 0.0001. Thus, 

results show that the vadose zone SM values predicted by the VIC-3L reasonably capture 

the wetting and drying of the vadose zone. In addition, it is clear that the GW and the SM 

values are strongly related. The predicted vadose zone SM values in combination with 

GW levels can be used in the slope stability model to calculate the safety factors. 

Regional Slope Stability Analysis 

The slope stability model described earlier was used at the Cleveland Corral to 

determine safety factors. This study used a 90 m spatial resolution to calculate wetness 

index, moist unit soil weight, effective unit soil weight and FS. Modeled moisture values 

with a 1 km spatial resolution were reclassified into 90 m spatial resolution using the 
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nearest-neighbor re-sampling technique. Wetness indices were calculated by using 

measured depth to GW, total soil thickness and average vadose zone SM values obtained 

from the VIC-3L model (Eq. 3-4). The vadose zone SM, obtained from the VIC-3L 

model, was also used to estimate moist unit soil weight in the unsaturated soil layer 

(above the saturated soil layer) (Eq. 3-3). The effective unit soil weight was calculated 

using moist unit soil weight, wetness index, total depth of soil, surcharge and slope angle 

(Eq. 3-2). Finally, Eq. 3-1 was used to calculate safety factors continuously for the region 

and a range of results are presented to demonstrate varying conditions. 

Three typical wet scenarios were identified based on the soil saturation wetness. 

A very wet scenario, on May 8, 2005, the GW position was 0.28 m below the surface. A 

wet scenario, on May 23, 2005, the GW position was 0.65 m below the surface, that is, 

between the failure plane and the ground surface. A slightly wet scenario, on 4* May, 

2005, the GW position was 1.12 m below the surface, that is, near to the bottom of the 

failure plane. These three wetness scenarios were used to estimate the range of safety 

factors (Table 3-2). A higher vadose zone SM was predicted for a shallow depth to GW 

as compared to a deeper depth to GW. Table 3-2 shows the proportion of the study area 

by susceptibility class for the three GW positions. Results show more susceptible area 

when the GW table is near the surface and has a high vadose zone SM. Interestingly, the 

susceptible area decreases include both a GW that is farther from the surface as well as a 

lower vadose zone SM. 

Slope stability variations were compared to slope movements and landslide events. 

All of the slope movements and landslides coincided with periods of enhanced surface 

soil moisture and high groundwater position in this region (Fig. 3-6). In the Cleveland 
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Corral region, 2 to 3 cm per day slope movements were frequently observed during the 

winter of 2005 (http://landslides.usgs.gov/monitoring/hwy50'). Reported slope 

movements began in early April, 2005 when the GW table was near the surface and it 

continued until end of the May. 

Safety Factors as a Function of Vadose Zone SM and GW 

To understand the relationship among vadose zone SM, GW table depth and soil 

thickness, safety factors were calculated using Eq. 3-1 for three scenarios at the 

Cleveland Corral, California study region. First, actual groundwater measurements were 

used with a varying vadose zone SM (0-100%, 10% increment). In this scenario, the 

typical wet season GW positions described earlier, 0.28, 0.65 and 1.12 m, were used to 

estimate the range of safety factors. Second, vadose zone SM and GW position were held 

constant while the total soil thickness varied. In this scenario, the total soil thickness 

increased from 1 to 3 m in 0.5 m increments with a constant 0.75 m groundwater 

saturated thickness and a 50% vadose zone SM. Finally, GW position was held constant 

while the vadose zone SM and the total soil thickness were varied. In this scenario, GW 

position was fixed at a 0.75 m saturated thickness and the vadose zone SM and the total 

soil thickness, respectively changed from 90% and 1 m to 50% and 3 m with 0.5 m 

increases in soil thickness and 10% decreases in soil moisture. These values reflect the 

modeled observations of the highest vadose zone SM for the shallowest GW table and 

lowest vadose zone SM for the deepest GW table. 
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Influence of Vadose Zone SM in Instability 

Figure 3-7 shows plots of percentage susceptible area by susceptibility class for 

completely dry to saturated vadose zone SM with the observed wet season GW tables. 

Under completely saturated conditions, 0.58% of the area was highly susceptible to 

failure. For a completely dry soil, the 0.84 m range in the wet season GW table has a 

highly susceptible area which ranges from 0.006 to 0.27% of the study area. The same 

GW table range results in nearly a 1% increase in the moderately susceptible areas. The 

combined increase in all susceptibility classes is equivalent to the reduction in stable area. 

For the 1.12 m GW table when vadose zone SM transitions from completely dry to 

saturation, the stable area was reduced by 5.2%, and the slightly susceptible, moderately 

susceptible and highly susceptible areas were increased by 2.85, 1.78, and 0.58%, 

respectively. 

The transition from dry to wet depends on the susceptibility class and the GW 

table. Safety factors for the highly and the moderately susceptible classes have a similar 

dependence on GW table and SM. In the dry conditions, when the GW table was deep, 

there is a pronouncedly non-linear increase in instability with increasing vadose zone SM. 

As the GW table approaches the ground surface, there is a more linear increase in 

instability with increasing vadose zone SM. On the other hand, the slightly susceptible 

and the stable classes have fairly constant rates of change in area under all SM conditions. 

The rate of change in the highly susceptible area is lower than the slightly susceptible 

area for similar saturation levels. Similarly, the rate of change in the highly susceptible 

area is lower for the shallowest GW table than for the deepest GW table. This shows that 

the vadose zone soil moisture has less of an impact on instability when the GW table is 
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very close to the ground surface. For example, the total highly susceptible area increased 

by 0.32% for the shallowest GW table and by 0.58% for the deepest GW table when the 

region went from a completely dry vadose zone to a completely saturated vadose zone. 

Influence of the Soil Thickness in Instability at Constant GW Thickness and Vadose 
Zone SM 

The impact of a thick unsaturated soil layer as compared to a thin unsaturated soil 

layer on stability was assessed by determining the susceptible area with a varying soil 

thickness for a constant saturated thickness or GW table thickness (0.75 m) and the 

vadose zone SM (50%). For example, a 1 m thick soil has a GW table 0.25 m below the 

ground surface where as 3 m thick soil has a GW table that is 2.25 m below the surface. 

Figure 3-8 shows that a thick unsaturated soil layer produces more unstable area 

than a thin unsaturated soil layer for the same GW table thickness. The rate at which the 

highly susceptible area increases is lower than that for the slightly susceptible area. The 

estimated highly, moderately, and slightly susceptible area increases from 0.14, 0.54 and 

1.57% to 0.82, 2.44 and 4.12%, respectively, as the soil thickness increases from 1 to 3 m. 

The changes, 0.67, 1.9 and 2.54%, respectively, in highly, moderately, and slightly 

susceptible areas are quite different with the highly susceptible class's rate of change is 

fairly constant in comparison to the moderately and slightly susceptible classes. Notably, 

there is more than a 500%) increase in the highly susceptible area. 

These results show that accurate knowledge of depth to a potential failure plane, 

in addition to GW table, is necessary when accounting for a dynamic vadose zone SM. A 
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thick unsaturated soil layer is more vulnerable to instability than a thin unsaturated soil 

layer for shallow soil mantles. 

Influence of the Soil Thickness and Vadose Zone SM in Instability at Constant GW 
Thickness 

While the previous section maintained a constant vadose zone SM, the observed 

vadose zone SM varied as a function of the GW position. In this section, the joint 

relationship between a varying vadose zone SM (90 to 50%, 10% decrease) and soil 

thickness (1 to 3 m, 0.5 m increase) was examined for a fixed GW table thickness. Wetter 

and drier conditions were assigned, respectively, for the shallowest and the deepest GW 

tables. 

Figure 3-9 shows the greatest sensitivity for shallow soil layers and less for the 

thicker, drier unsaturated soil layer. When the total soil thickness above the potential 

failure plane increased from 2 to 3 m, the estimated change in highly, moderately and 

slightly susceptible areas were 0.1, 0.16 and 0.35%, respectively. In contrast, when the 

soil thickness increased from 1 to 2 m, the estimated change was dramatically larger for 

highly, moderately and slightly susceptible areas, respectively, 0.51, 1.52 and 1.87%. 

These results show that including vadose zone SM in an infinite slope stability 

model is best suited for shallow slope stability analysis. When soil mantles are deep, 

slope stability is less sensitive to anticipated vadose zone SM variations. These 

observations clearly support Sidle and Ochiai's (2006) finding that for shallow soils, 

effects of pore water pressure are large and for deep soil mantles, effects of pore water 

pressure are small. 
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Conclusion 

The vadose zone soil moisture and pore water pressure are important parameters for 

slope stability analysis because landslides are not triggered only due to surface layer 

saturation; rather, it is the combined effect of surface and subsurface saturation that is 

critical. This study developed methods to estimate wetness indices based on vadose zone 

soil moisture and saturated soil thickness as well as to calculate dynamic moist unit weight 

using vadose zone soil moisture. This relationship was used to characterize the sensitivity of 

safety factors to vadose zone SM for a series of groundwater positions and soil depths. The 

same infinite slope stability model was applied to the Cleveland Corral region, California in 

order to examine the sensitivity results within an applied context. 

Results show significant impacts of vadose zone soil moisture on slope instability. 

The susceptibility to slope failure increases with an increase of vadose zone soil moisture as 

well as groundwater position. For shallow slope soil mantles, a thicker unsaturated soil 

thickness is more vulnerable to landslides in comparison to a thinner unsaturated soil 

thickness for the same position of the groundwater level above the potential failure plane. 

However, when soil mantles are deep, slope stability is less sensitive to anticipated vadose 

zone SM variations. 
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Table 3-1: List of model parameters and sources 
Parameters Sources Model 
Soil cohesion 
Soil porosity 
Soil texture 
Soil depth 
Hydraulic conductivity 
Soil bulk density 
Angle of internal friction 
Additional load (surcharge) 
Land cover 
Root cohesion 
Root depth 
Root fraction 
Vegetation roughness 
Vegetation height 
Leaf Area Index (LAI) 
Rainfall 
Groundwater 
Temperature 
Wind speed 

Deojaetel. (1991) 
Dingman (2002) 
STATSGO 
STATSGO 
STATSGO 
Dingman (2002) 
Deojaetel. (1991) 
Ray (2004) 
University of Maryland 
Sidle and Ochiai (2006) 
LDAS 
LDAS 
LDAS 
LDAS 
LDAS 
NCDC 
USGS (Mark Ried) 
NCDC 
NCDC 

Slope stability 
Slope stability and VIC-3L 
Slope stability and VIC-3L 
Slope stability and VIC-3L 
VIC-3L 
Slope stability and VIC-3L 
Slope stability 
Slope stability 
Slope stability and VIC-3L 
Slope stability 
VIC-3L 
VIC-3L 
VIC-3L 
VIC-3L 
VIC-3L 
VIC-3L 
Slope stability 
VIC-3L 
VIC-3L 

Table 3-2: 
season 
Depth to 
GW(m) 
0.28 
0.65 
1.12 

Predicted susceptible area (%) for the Cleveland Corral region during 

Avg. Vadose Highly Moderately 
Zone SM (%) Susceptible Susceptible 
72 0.49 1.67 
60 0.30 1.15 
52 0.11 0.55 

Slightly 
Susceptible 
2.87 
2.44 
1.61 

the wet 

Not 
Susceptible 
94.96 
96.11 
97.73 
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Ground surface I I ' 

Figure 3-1: Schematic diagram for the slope angle, saturated and total soil thickness, 
surcharge, saturated and moist unit soil weights (Adapted and modified from Skempton and 
Delory, 1957) 
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Depth to Groundwater Table (m) 
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Susceptible 
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100 
Figure 3-5: Highly susceptible area % as a function of GW and soil saturation (Dark: greater 
highly susceptible area, white: less highly susceptible area). Depth to GW table (1 m @ 10% 
decrease up to 0 m or surface) and eleven soil saturations (0% @ 10% increments up to 
100%) were used to calculate FS. The contour lines show equal percentage of highly 
susceptible area with 0.01% intervals. 
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Figure 3-7: Four susceptibility classes with varying SM (0 to 100%), three GW positions 
measured from the surface and observed SM at Cleveland Corral region, California in 
2005. A solid line that intersects susceptible classes' line represents observed vadose 
zone SM and GW tables 
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Figure 3-8: Variation of susceptibility area with increase of soil thickness with 
equal increase in depth to GW table (0.25 m for 1 m thick soil with 0.5 m increment 
to 2.25 m for 3 m thick soil or constant GW table thickness from the failure plane) 
and constant vadose zone SM (50%) at Cleveland Corral region, California in 2005 
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thick soil or constant GW table thickness from the failure plane) and varying vadose zone 
SM (as shown in Figure) at Cleveland Corral region, California in 2005 
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CHAPTER 4. 

MODELING LANDSLIDE SUSCEPTIBILITY USING DYNAMIC SOIL MOISTURE 
PROFILES 

Abstract 

A landslide susceptibility mapping study was performed using dynamic hillslope 

hydrology. The modified infinite slope stability model that directly includes vadose zone 

soil moisture (SM) was applied at Cleveland Corral, California, US and Dhading, Nepal. 

The variable infiltration capacity (VIC-3L) model simulated vadose zone soil moisture 

and the wetness index hydrologic model simulated groundwater (GW). The GW model 

predictions had a 75% NASH-Sutcliffe efficiency as compared to California's in-situ GW 

measurements. The model performed best during the wet season. Using predicted GW 

and VIC-3L vadose zone SM, the developed landslide susceptibility maps show very 

good agreement with mapped landslides at each study region. 
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Introduction 

Weather and climate factors that increase soil moisture and pore water pressures 

enhance slope instability. Slope stability analysis via the limit equilibrium approach can 

be used to quantify the impact of soil moisture on landslides (e.g., Montgomery and 

Dietrich, 1994; D'Odorico et al., 2005; Chiang and Chang, 2009). The limit equilibrium 

approach uses two unsaturated and one saturated soil layers. Some studies use a single 

saturated unit soil weight to represent both layers (e.g., Montgomery and Dietrich, 1994; 

D'Odorico et al., 2005; Chiang and Chang, 2009). Others use dry and saturated unit soil 

weight, respectively, for the layer above and below the saturated soil layer (De 

Vleeschauwer and De Smedt, 2002; Ray and De Smedt, 2009). An analogous approach 

uses wetness indices such as O' Loughlin's 1986 TOPOG model (e.g., Dietrich et al., 

1993; Montgomery and Dietrich, 1994; Van Westen and Terlien, 1996; Pack et al., 1998; 

de Vleeschauwer and De Smedt, 2002; Ray and De Smedt, 2009). These wetness indices 

can provide a dynamic spatially distributed representation of the water table, but neglect 

soil moisture in the upper soil layer above the groundwater table (Rosso et al., 2006). 

Ray and De Smedt (2009) developed landslide susceptibility maps for three 

steady state and two quasi dynamic scenarios. They assumed dry, half saturation and full 

saturation as steady state scenarios and 2 year and 25 year return period rainfall as 

dynamic scenarios. For quasi dynamic scenarios, they used infiltration based model to 

estimate increase of groundwater over the assumed half saturation. However, these 

authors pointed out that those results may not be realistic because an initial groundwater 
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prior to rainfall events was assumed. They recommended to study further based on the 

real groundwater table and antecedent soil moisture conditions. Although it is more 

realistic to use in-situ groundwater and soil moisture measurements, it is rather expensive, 

time consuming and almost impossible to monitor dynamic groundwater and soil 

moisture for dynamic susceptibility analysis at a regional or global scale. An alternate 

approach is to use a hydrologic model to characterize groundwater table and vadose zone 

soil moisture (SM) evolution. Ray et al.'s (2009a) enhanced wetness index model uses 

vadose zone SM to estimate moist unit soil weight and wetness index. At these scales, 

soil-vegetation-atmosphere-transfer (SVAT) models offer a useful method to estimate 

soil moisture values. 

Most SVAT models are well suited to predict soil moisture dynamics (Whitfield 

et al., 2006). Some SVAT models such as Biosphere Atmosphere Transfer Scheme 

(BATS; Dickinson et al., 1986) and Simple Biosphere Model (SiB; Sellers et al., 1986) 

are not viable in slope stability analysis because they do not include topographic effects 

(Ling et al., 1994). Other models, the Common Land Model (CLM; Dai et al, 2003) and 

Land Surface Process (LSP; Liou et al., 1999), require soil layer characteristics that are 

not the appropriate model for shallow slope stability analysis. The variable infiltration 

capacity (VIC-3L) model (Wood et al., 1992; Liang et al., 1994) considers topography 

and has three soil layers. This model has no vertical flow from the third soil layer, but 

instead generates baseflow. This agrees well with the infinite shallow slope stability 

model which assumes no vertical water movement on the impervious soil layer or 

bedrock. 
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This paper seeks to improve Ray and De Smedt's (2009) approach by including 

VIC-3L's soil moisture effects in landslide susceptibility maps. The results are 

demonstrated for two study regions; Cleveland Corral, California, USA and Dhading, 

Nepal. This paper also evaluates the Ray and De Smedt (2009) wetness index model by 

simulating the groundwater table at Cleveland Corral, California. The landslide 

susceptibility results are compared to mapped landslides and previous studies. The 

specific research objectives are: (1) to examine the Ray and De Smedt (2009) wetness 

index model groundwater table simulation, (2) to validate SVAT derived soil moisture 

profiles, (3) to characterize the regional landslide susceptibility maps using dynamic soil 

moisture and groundwater and (4) to compare these results with traditional susceptibility 

maps. 
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Models 

Slope Stability Model 

This study uses the infinite slope method (Skempton and DeLory, 1957) to 

calculate safety factors that expresses the ratio of resisting forces to driving forces. The 

infinite slope stability model as adapted by the several researchers (e.g., Montgomery and 

Dietrich 1994; van Westen and Terlien 1996; Acharya et al., 2006; Ray and De Smedt, 

2009) is: 

tanq) C. + C. f, y ^ 
FS= s . r + 

yeHsin0 1-m 
tanG 

(4-1) 

where Cs and Cr are the effective soil and root cohesion [kN/m2], ye is the effective unit 

soil weight [kN/m3], H is the total depth of the soil above the failure plane [m], 9 is the 

slope angle [°], m is the wetness index [adimensional], ty is the angle of internal friction 

of the soil [°], yw is the unit weight of water [kN/m ]. The effective unit weight is 

estimated as: 

qcosO ,. . 
y e = ^ - — - + ( l - m ) y m + my s (4-2) 

r l 

where q is any additional load on the soil surface [kN/m ] and ym is moist unit soil weight 

[kN/m2] for the unsaturated soil layer. 

The wetness index model follows Ray et al. (2009a) given as 

h+(H-h)*S 
m = - - - (4-3) 

H 
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where h is the saturated thickness of the soil above the failure plane [m] and Sw is the 

degree of soil saturation [cm /cm ] or vadose zone soil moisture. 

VIC-3L Model 

The vadose zone SM is simulated using the VIC-3L model. The VIC-3L 

hydrologic model (Liang et al., 1994, 1996, 1999; Cherkauer and Lettenmaier, 1999) is a 

three-layer SVAT land surface scheme (Lohmarm et al., 1998) that has been widely 

applied for surface runoff generation and soil moisture profile estimation (Liang and Xie, 

2003; Yuan et al., 2004; Dengzhong and Wanchang, 2005). This macroscale land surface 

model that simulates water and energy budgets by including spatial variations of soil 

properties, soil topography, precipitation, and vegetation (Maurer et al., 2002; Huang and 

Liang, 2006) and can be run at grids sizes ranging from a fraction of degree to several 

degrees latitude and longitude (Maurer et al., 2002). Based on the climate data and soil 

and vegetation characteristics, this model can estimate soil moisture storage, 

evapotranspiration, runoff and snow water equivalent at hourly to daily time-steps. 

Moreover, other distinguishing characteristics of this model are the ability to represent 

sub-grid variability in land surface vegetation classes, soil moisture storage capacity, 

topography as well as precipitation (Nijssen et al. 2001; Yuan et al., 2004; Zhou et al., 

2004; Huwang and Liang, 2006). VIC-3L uses the variable infiltration capacity approach 

(Nijssen et al. 1997) and varies runoff generation and evapotranspiration based on 

topography, soil and vegetation (Wood et al., 1992). 
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The model's soil column has three layers (Parada and Liang, 2004). The top, thin 

soil layer and the middle soil layer characterize the dynamic response of the soil to 

weather and rainfall events. The lowest layer captures the seasonal soil moisture behavior 

(Liang et al., 1996; Huang and Liang, 2006) and only responds to rainfall when the upper 

layer is wet. The first soil layer receives soil moisture from precipitation and drains it to 

the second soil layer by gravity using the Brooks and Corey (1988) relationship 

(Lohmann et al., 1998). The base flow from the third soil layer contributes to runoff 

based on the ARNO model (Francini and Pacciani, 1991). 

The VIC-3L model characterizes N+l land cover types where N is the different 

land cover types and 1 represents bare soil. There is no restriction in number of model 

land covers, however, it is more appropriate if they do not exceed 10 (Liang et al, 1994). 

Each land cover type has a leaf area index (LAI), minimum stomatal resistance, 

roughness length, displacement length and relative fraction of root (Liang et al., 1994; 

Nijssen et al., 1997). This model uses the Penman-Monteith equation to calculate 

evapotranspiration at each grid cell (Nijssen et al., 1997). 

The VIC-3L model can be operated in various simulation modes including an 

energy balance and water balance. The energy balance model is forced by maximum and 

minimum temperature, precipitation, wind speed, air pressure, vapor pressure, and 

incoming shortwave and long wave radiation. The energy balance simulates the surface 

energy flux and solves the complete water balance. The water balance model, applied for 

this research, only requires maximum and minimum temperature, precipitation and wind 

speed forcing data (Zhou et al., 2004; Yulin et al., 2008). 
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Groundwater Model 

The GW table fluctuations are simulated using the wetness index model (Ray and 

De Smedt, 2009) loosely coupled with VIC-3L soil moisture variation in the upper two 

soil layers. The Ray and De Smedt wetness index model estimates the thickness of 

saturated soil layer based on effective precipitation, specific yield and soil depth. The 

amount of water stored, AS [m], per increase in water table elevation, Ah, is the specific 

yield (or effective porosity), a = AS/Ah [-], a soil characteristic (De Smedt, 2006). Ray 

and De Smedt's (2009) wetness index model based on effective precipitation is 

h0 + Ah h0 AS IAtcosG 

GW H H aH ° aH v J 

where mow is the wetness index due to the GW, mo = ho/H is the initial wetness index 

before the rainfall event and is user defined saturated soil thickness prior to simulation 

time, and the amount of infiltrated rainfall stored in the soil is given by AS = (cos9)IAt, I 

is an effective precipitation [m], At the duration of the storm [s] and cosG compensates 

for the fact that rain intensities are equated on a horizontal area basis while the soil 

surface has a slope angle 0. Given mow, the thickness of groundwater or saturated soil 

thickness can be determined by 

h = mGW*H (4-5) 

Equations (4-3) and (4-5) are used to estimate the wetness index. Eq. 4-5 estimates a 

wetness index for a measured or estimated groundwater position and a dry vadose zone. 

Equation 4-3 includes the groundwater and the vadose zone SM. 
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Study Areas 

Cleveland Corral, CA, USA 

The Cleveland Corral study region in the Highway 50 corridor is located in the 

Sierra Mountains, California, USA (Reid et al., 2003). Highway 50 is a major road 

located between Sacramento and South Lake Tahoe in California (Spittler and Wagner, 

1998). The study area is about 28 by 22 km or 616 km2. Elevations range from about 902 

to 2379 m. Based on the 90 m digital elevation model (DEM), slopes in this region range 

from 0 to 48°. Since 1996, slope movements and landslides occur infrequently during 

winter. One major catastrophic landslide occurred in 1983 in this region (Spittler and 

Wagner, 1998). Since 1997, the USGS has monitored this region using real time data 

acquisition systems (Reid et al., 2003). They found elevated pore-water pressures and 

abundant soil moisture during periods with slope movement and landslides in the rainy 

season. 

This study region has considerable variability in soil texture ranging from clay 

loam to sandy loam (Table 4-1). The predominant soil is sandy loam. 72 and 28% of 

study area is covered with sandy loam and loam, respectively in the first and second soil 

layers. The third (lowest) layer consists of four soil types, loam, sandy loam, clay loam 

and sandy clay, and covers, respectively, 72, 16, 3 and 9%, of the study area (Table 4-1). 

The total soil depth ranges from 0.6 to 1.4 m. Conifer and wooded grassland are the 

dominant land covers at 80 and 14% of the study region, respectively. Some rock 

outcrops are also observed along the Highway 50 corridor. 
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Krishnabhir, Dhading, Nepal 

Nepal is about 83% mountainous terrains, the remaining 17% is southern alluvial 

plains. The country extends from 80° 04' to 88° 12'E longitude and 26° 22' to 30° 27'N 

latitude and spans approximately 885 km in the east-west direction and varies from 130 

to 255 km in north-south direction. The elevation ranges from 70 m at Kanchan Kalan to 

8850 m at the top of the Mount Everest within a very short distance. 

The study area is situated in Dhading, one of the seventy-five districts of Nepal. 

The transnational Prithvi highway connecting Kathmandu and Pokhara runs through the 

southern part of the district. The road parallels the Trishuli River. The study area is about 

25 km by 14 km or 350 km2 in total. Based on the Shuttle Radar Topography Mission 

(SRTM) DEM, altitudes in this region range from 256 to 1918 m with slope 0 to 57°. 

Landslides occur frequently in this area during the monsoon season, July to September, 

usually leading to interruption of the traffic. One of the major landslides in the district 

occurred in 2003 along the Prithvi highway at Krishna Bhir. The relatively high landslide 

frequency in Nepal, as compared with mountain ranges of other countries, may be 

because Nepalese mountains are geologically younger (Ray, 2004). 

Based on the United States Department of Agriculture (USDA) soil classification 

system, sandy clay loam, sandy clay, sandy loam, loam and sand soil types were 

identified in this region. The predominant soils are sandy clay loam (36%) and sandy 

loam (22%). On this steep terrain, woodland and cropland are the dominant land covers, 

50 and 29% of the study region, respectively. 
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Methods and Database 

This study uses a 90 m spatial resolution to calculate wetness index, moist unit 

soil weight, effective unit soil weight and safety factor (FS). Soil moisture, obtained from 

the VIC-3L model, was used to estimate moist unit weight of soil in the unsaturated layer 

above the water table. Wetness indices were calculated by using modeled GW depth, 

total soil thickness and average vadose zone SM values obtained from the VIC-3L model 

(Eq. 4-3) at both study regions. The effective unit weight of soil was calculated using 

moist unit weight, wetness index, depth of soil, surcharge and slope angle (Eq. 4-2). 

However, for Ray and De Smedt (2009) model, Eq. 4-4 was used to estimate wetness 

index based on the assumed GW position at half of total soil thickness (half saturation) 

and calculated additional GW using rainfall, specific yield and slope with dry vadose 

zone. 

Theoretically, landslides occur when the safety factor is less than one. 

Susceptibility maps were developed using four safety factor categories; highly 

susceptible (FS<1), moderately susceptible (1<FS<1.25), slightly susceptible 

(1.25<FS<1.5) and not susceptible (FS>1.5). 

Since no tools or methods exist to map an entire susceptible area for validation, 

this study compares observed landslides to the model results. Each study area was 

surveyed to identify a series of landslide locations for validation (Table 4-4 and 5). Due 

to the study extent and terrain, the survey was not comprehensive or all inclusive. 10 and 

12 landslide sites were observed, respectively, in the California and Nepal study 
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regions. Most of the sites failed prior to the study period. Several failures occurred during 

the study period. In California, slope movements and landslides occurred in May 2005 

and earlier. In Nepal, landslides occurred in August 2004 and earlier. 

California 

Methods 

For the Cleveland Corral study region, the VIC-3L model was run using a daily 

time-step from October 1, 2003 to September 30, 2006 with layers of 0.05, 0.35, 0.4 to 

1.0 m thickness at a 0.0083° (approximately 1 km) resolution. This duration was selected 

because this region has in-situ groundwater measurements for the study period. The 

Cleveland Corral study region has 900 0.7 km2 pixels. 

Model Data 

The soil and vegetation parameters required for the VIC-3L hydrologic model and 

the slope stability model are summarized in Tables 4-2 and 3, respectively. Soil layers, 

soil thickness and soil texture information were obtained from the States Soil Geographic 

(STATSGO) soil database (NRCS, USDA). There are eleven soil layers in the 

STATSGO soil database. To coincide with the VIC-3L model, these layers were 

regrouped into three soil layers. The first, the second to fifth and the sixth to eleventh soil 

layers of the STATSGO soil database were combined to parameterize the first, second 

and third soil layers, respectively, for the VIC-3L model. The assumed potential failure 
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plane underneath the soil layer is bedrock. The unit soil weight (saturated and moist) was 

calculated based on the soil moisture, soil porosity, and specific gravity of the soil 

samples using methods adapted by Ray et al. (2009a). Each soil type was assigned soil 

cohesion and friction angle values that were adapted from Deoja et al. (1991) and the 

slope of the retention curve adapted from Clapp and Hornberger (1978). Similarly, soil 

bulk density,^ field capacity, wilting point and saturated hydraulic conductivity values 

were adapted from the VIC-3L model documents and Miller and White (1998). 

Advanced Very High Resolution Radiometer (AVHRR) land cover data (1 km 

spatial resolution) were obtained from University of Maryland (UMD) (Hansen et al., 

2000). There are four land cover types excluding water and wetland in this study region. 

Each land cover class was assigned a root cohesion values that was adapted from Sidle 

and Ochiai (2006). Architectural resistance, minimal stomatal resistance, minimum 

incoming shortwave radiation, root fraction, root depth, vegetation roughness and 

vegetation height required for the VIC-3L model parameterization were obtained from 

the Land Data Assimilation System (LDAS; Mitchell et al., 2004). The monthly LAI data 

required for the VIC-3L model were obtained from Moderate Resolution Imaging 

Spectroradiometer (MODIS). The MOD15A2, 8-day composite LAI values were 

averaged to monthly values. 

Rainfall, temperature and wind speed measurements were obtained from the 

National Climatic Data Center (NCDC) from 2000 to 2006. The 90 m SRTM DEM was 

used to derive slope angle in this study. The daily groundwater measurements for water 

years 2004 to 2006 were obtained from the USGS (Mark Reid, USGS). 
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There are six model calibration parameters which can not be estimated from 

vegetation or soil information (Zhou et al., 2004). These six parameters are the 

infiltration shape parameter bjnf,it, the maximum subsurface flow Dmax, the fraction of 

maximum subsurface flow Ds, the fraction of maximum soil moisture in the third layer 

Ws and the two soil depths layer second and layer third. The VIC-3L model results were 

calibrated by comparing VIC-3L soil saturation in the third soil layer to in-situ 

groundwater measurements. The six determined model parameters were; binf,it = 0.2, Dmax 

= 30, Ds = 0.0001, Ws = 0.99, soil depth of layer 1, soil depth of layer 2, D2 = 0.35 m, 

and soil depth of layer 3, D3 = 0.4 -1.0 m. 

Nepal 

Methods 

For this study region, the VIC-3L model was run using a daily time-step from 

October 1, 2003 to September 30, 2006 with layers of 0.05, 0.35 and 0.6 to 1.1 m 

thickness at a 0.0083° (approximately 1 km) resolution. This study region has 450, 0.75 

km2 pixels. 

This region does not have in-situ groundwater measurements. Groundwater table 

was simulated using Eq. (4-4) and compared with the VIC-3L model average surface soil 

moisture. The simulated groundwater table was used for all safety factor related 

calculations. Geotechnical and hydrologic parameters used in this region are similar to 

California study region. 

84 



Model Data 

The soil and vegetation parameters required for the VIC-3L hydrologic model and 

the slope stability model are summarized in Table 4-2 and 4-3, respectively. Soil layers, 

soil thickness and soil texture information were obtained from previous research work 

(Ray, 2004; Ray and De Smedt, 2009). No vertical soil texture separation was observed 

in this study region. The assumed potential failure plane underneath the soil layer is 

bedrock. Ray (2004) developed a soil map for this study area using geology map, land 

cover map, Ariel photograph as well as Food and Agriculture Organization (FAO) digital 

soil map. All other soil (Ray, 2004) and land cover (UMD, Hansen et al., 2000) 

parameter estimates are identical to the California study region. 

The in-situ measurements of rainfall, temperature and wind speed were obtained 

from the Department of Hydrology, Nepal from 2003 to 2006. The 90 m SRTM DEM 

was used to derive slope angle in this study region. 
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Results and Discussion 

Groundwater Simulation in California and Nepal 

The modeled soil moisture profiles and GW table depths were compared to in-situ 

groundwater measurements from October 1, 2003 to September 30, 2006 at Cleveland 

Corral, California. The wetness based groundwater model performance compares well to 

the observed GW values (Table 4-6 and Fig. 4-1). The model's average GW depth and its 

variability are very close to observed GW values. In addition, the model has relatively 

low errors, strong correlation and high efficiency. 

California's rainy or wet season is from January to May. Figure 4-2a shows that 

the predicted GW results do an excellent job tracking the range and variability of the 

observed GW, particularly during the wet season. Because landslides occur during the 

wet season, it is critical for this period to have accurate GW tables and vadose zone SM. 

Errors are much less critical during the dry season. These results support the wetness 

model's application in a landslide prone region. The wetness based model's success in 

the California study region is valuable because this is its first application to a landslide 

prone region where in-situ dynamic GW measurements were available. 

The VIC-3L vadose zone SM values, the predicted GW and the in-situ GW 

measurements show similar daily, seasonal and annual variations in both study regions 

(Fig. 4-2a and 2b). There is also a strong correlation between SM and GW at both study 

regions (Table 4-7). The R2 values are 0.47 and 0.76, respectively for the California and 

the Nepal study regions and p-values are less than 0.0001 for both study regions. 
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In California, spring is the wettest season because there is relatively high rainfall and 

snow melt occurs during this period. The modeled SM values are wet during spring and 

dry in late summer and fall. The dry to wet transition, which shows that soil moisture 

increases prior to the GW table rising, is physically sound. In Nepal, the VIC-3L vadose 

zone SM values and predicted GW values also show similar daily, seasonal and annual 

variations (Fig. 4-2b). Nepal's rainy or wet season is from June to September. In contrast 

to California, the wet monsoon season begins with both SM and GW increasing 

simultaneously because intense rainfall occurs during this period. During Nepal's 2005 

dry season, there were some significant GW table increases that did not correspond to 

SM increases. While very good agreement between the VIC-3L SM and the model 

predicted GW values is found during the monsoon (wet season), the method is not 

recommended for the dry season. 

Figure 4-3 provides further support to the independent GW and VIC-3L SM 

models' wet season results. The relationship between the GW table depth and SM is 

analogous to a soil moisture characteristics curve. For both study regions, SM increases 

as the GW table rises. The relationship differs by region. The predominant soil types are 

sandy clay loam and sandy loam in Nepal and California, respectively. The coarse 

California soils drain relatively quickly when the water table lowers as compared to the 

finer Nepal soils. Figure 4-3 relationships are comparable to classic soil-water pressure 

versus saturation curve for the sites' soil types. 

Overall, the wetness based GW model and the VIC-3L SM demonstrate 

promising results for landslide studies where no GW measurements are available, 
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especially during the wet season. Practically, this approach can provide promising results 

for landslide studies that mainly occur during a wet season. 

Safety Factor Variations 

The strength of the GW and SM modeling approach is that it makes possible daily 

safety factor estimates at regional scales. This section first demonstrates the dynamic 

safety factor results then examines critical saturation states at a regional scale. 

Two 90 m pixels that are near observed landslides and slope movements were 

selected for each study region. Under the maximum modeled saturation, one pixel is 

highly susceptible and one is moderately susceptible in each region. Using the VIC-3L 

model soil moisture values and the model predicted GW, dynamic safety factors were 

calculated. Daily safety factors and rainfall are presented in Figures 4-4a and b for the 

California and the Nepal study regions, respectively. The lowest FS values were observed 

during the rainy season in each study region. This wet period is characterized by modest 

variations in these low FS values. Theoretically, a slope will fail when its FS value is less 

than or equal to 1. However, the safety factor time series show that FS values for active 

landslide pixels crossed the threshold many times from 2004 to 2006 in each region but 

slides did not occur each time. 

Clearly these dynamic safety factors are not perfect indicators of slope failure. 

Rather, they can show how a stable slope changes to unstable when a series of rainfall 

events raises the GW table, wets the vadose zone and increases the pore water pressure. 
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These cumulative impacts are often sustained for a period of time during which a slope is 

primed for failure. 

The monthly average VIC-3L surface SM, rainfall and number of days when the 

FS values went below the threshold are presented in Table 4-8. California had less 

rainfall in 2004 than in 2005. In contrast, Nepal had more rainfall in 2004 than in 2005. 

Table 4-8 shows that highly susceptible periods, when safety factor was below the 

threshold, occurred from January to May in 2005 and May to August in 2004 in 

California and Nepal, respectively. These periods agree well with Nepal's mapped 

landslides in 2004 and no landslides in 2005 (Figs. 4-4a and b). Similarly, California had 

series of slope movements in 2005 but no slope movements in 2004. The current findings 

suggest a strong potential for quantifying antecedent moisture conditions and applying 

them to estimate safety factors. While the threshold of one is not a perfect failure 

indicator, the relative variations among months and across years can enhance predicted 

susceptibilities, slope movements and landslide events for these regions. 

Dynamic safety factors are valuable at specific locations. However, the true value 

of this method is its ability to provide dynamic hazard risk maps at regional scales. This 

section presents regional landslide susceptibility results for four scenarios. Two dynamics 

scenarios were considered. The half-saturated condition has a variable soil moisture in 

the vadose zone and a GW table at the middle of the soil thickness (May 23, 2005 in 

California and September 12, 2004 in Nepal). The maximum modeled saturation 

condition has a variable soil moisture and GW table. For the 3-year study period, the 

maximum saturation occurred on May 8, 2005 and August 18, 2004 for California and 

Nepal, respectively. The remaining two scenarios, completely dry and full saturation, 
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provide lower and upper susceptibility boundaries. The dynamic scenarios are those used 

by Ray and De Smedt (2009) in Nepal except that their model did not consider vadose 

zone SM. Their half saturation case had a water table at 50% depth and 0% moisture in 

vadose zone. Their 2-year return period rainfall, 100 mm, estimated by Ray and De 

Smedt (2009) using 41 years of historical rainfall data, was used to compare to this 

study's maximum saturation scenario. 

Table 4-9 shows the susceptibility distributions for these four scenarios. These 

results show strong impacts of soil moisture and groundwater on instability. Both regions 

have negligible or no susceptible area when the soil is completely dry and comparatively 

high susceptible area when the soil is completely wet. Practically, no slope fails under dry 

conditions. For dry conditions in Nepal, the presence of highly susceptible area indicates 

that either no soils exist on these steep slope or that there are some input data errors. 

Considering that Nepal is a poor data region with steep terrain this finding is not 

unreasonable. All scenarios have more highly susceptible area in Nepal than California. 

Nepal has a steeper terrain and receives higher rainfall in the wet season than California. 

When comparing the current results with Ray and De Smedt (2009)'s results, 

there are some minor differences because they used topography and land cover maps 

developed in 1992 from aerial photographs and field verifications by the Nepal 

Government. This paper uses the most recently available remotely sensed land cover data 

and DEM. 

For the half saturation scenario, Ray and De Smedt (2009)'s method gives much 

less susceptible area than the current results. Their assumption that the vadose zone is dry 

in the wet season neglects some potentially high risk regions on their landslide hazard 
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maps. Ray and De Smedt (2009) considered a quasi-dynamic approach for susceptibility 

prediction. They estimated stability after a 2-year rainfall event using an infiltration 

approach. Nepal's 2-year design rainfall is 100 mm whereas the modeled maximum 

saturation conditions for this study had only 50 mm of rainfall. California's 2-year design 

rainfall is 86 mm whereas the modeled maximum saturation conditions for this study had 

only 61 mm of rainfall. Table 4-9 shows that the maximum modeled saturation for the 3-

year study period agrees extremely well with the 2-year rainfall events using the 

infiltration approach for both study regions. This result suggests that susceptibility 

mapping based on quasi-dynamic scenarios may provide reasonable insights. However, 

the design rainfall only indicates where hazardous regions exist, not when they occur. 

Since the model is based on estimated or measured groundwater and vadose zone SM, it 

can produce more reasonable results without any assumption of groundwater or soil 

moisture unlike Ray and De Smedt (2009). Also, the Ray and De Smedt (2009) model 

required long historical rainfall data to predict rainfall events but this model does not 

require any historical rainfall data. Interestingly, locations of the predicted highly 

susceptible area match each other, but the potential hazard area is not completely 

captured by the Ray and De Smedt (2009) model (not shown). 

Figures 4-5 and 6 show the susceptibility maps distribution for the two observed 

failures dates; May 8, 2005 for California and August 18, 2004 for Nepal. In California, 

most of the predicted highly susceptible areas are located along the Highway 50 corridor. 

This shows a clear anthropogenic impact on slopes that enhanced instability. Most of the 

mapped landslides were located on the predicted highly susceptible areas. On May 8, 

2005, four of the mapped landslides were identified as moderately susceptible (Table 4-4). 
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Since, the exact dates of mapped landslides are unknown; it is possible that some of the 

landslides occurred when soil moisture was higher than maximum modeled soil moisture 

on May 8, 2005. Results show excellent agreement between the predicted susceptible 

area and the observed landslide events. 

In Nepal, the predicted highly susceptible areas are not only located along the 

Prithvi highway, but are also found throughout the study region on steep slopes. The 11 

out of 12 mapped landslides were found on the predicted highly susceptible area along 

the Prithvi Highway (Table 4-5). There are many other susceptible zones where it was 

not possible to verify the model prediction because of lack of accessibility and resources 

during the field survey. Because susceptibility does not always mean slope failure, these 

results are quite reasonable and appropriate. One mapped landslide was found in a 

moderately susceptible zone. The exact dates of all the mapped landslides are not known, 

making it difficult to match the mapped slope failures with the August 18, 2004 

susceptibility maps. Moreover, the moderately susceptible area is very close to the highly 

susceptible area, some slope failures under moderately susceptible may not be uncommon. 
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Conclusion 

This paper developed landslide susceptibility maps, using the VIC-3L model's 

vadose zone soil moisture coupled with simulated groundwater in two distinct different 

geographical regions. A simple wetness based groundwater model, based on daily rainfall, 

specific yield and slope angle, was used to estimate groundwater table. This model 

requires few inputs and it can be readily applied to data poor regions. This model is best 

suited for wet season. Thus, it produces promising results for rainfall induced landslides 

which typically occur only during the wet season. 

When comparing the observed landslides and slope movements with the predicted 

highly susceptible area in both study regions, the results show promising agreement 

between the modeled and the slope failure ground truth. This modeling approach 

improves upon susceptible area predictions from the earlier quasi-dynamic model for 

design rainfall events and also informs the timing of landslide arrivals. Therefore, the 

approach is very useful for landslide hazard characterization in poorly monitored regions 

at scales from local and regional to global scale. 

While this research suggests the potential of dynamic models, significant 

improvements are possible. Because not all predicted highly susceptible areas are verified, 

additional field validation is required. Due to a lack of in-situ soil moisture measurements, 

the VIC-3L model results were not verified independently. It is recommended that further 

studies monitor surface soil moisture on landslide prone slopes. Finally, the analysis 

scales exceed typical slide scales. These differences should be explored further. 
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Figure 4-5: Susceptibility map on May 08, 2005 with mapped landslides in California, 
US 
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Figure 4-6: Susceptibility map on August 18, 2004 with mapped landslides in Dhading, 
Nepal (Inset picture was taken in August 2003) 
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CHAPTER 5. 

REGIONAL LANDSLIDE SUSCEPTIBILITY: STATISTICAL DISTRIBUTION IN 
SPACE AND TIME 

Abstract 

Landslides can be characterized based on spatial and temporal distribution of 

susceptibility. This paper presents spatiotemporal susceptibility distributions at two study 

regions; Cleveland Corral, California, US and Dhading, Nepal. Mean, standard deviation, 

skewness, L-moments, coefficient of variation and transitional characteristics of safety 

factors for each pixel were used to characterize landslide susceptibility variations in each 

study region. The results show that the variability of safety factors is lower during the wet 

season than the dry season. The relative variability of the safety factor is lower in Nepal, 

the highly susceptible region. Results also show that Nepal has much higher probability 

(95%) of being unstable than California (70%) study region. Transitional characteristics 

of safety factors show a strong power law relationship between the average duration and 

number of crossings for both regions. Mapped landslide locations typically had frequent 

crossings with brief unstable conditions suggesting stress relaxation as a possible cause of 

slope failure. 
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Introduction 

Shallow slope failures are quite common throughout the world in mountainous 

regions (Borga et al., 1998; Gulla et al., 2008). The soil moisture in an unsaturated zone 

and pore water pressure in a saturated zone are the controlling parameters that turn a 

stable slope to being unstable because both parameters reduce the shear strength and 

increase the shear stress to some extent. The intrinsic variables including topography, 

geology, soil regolith, engineering properties and extrinsic variables including rainfall, 

glacier outburst, earthquake, volcano play critical roles in slope stability (Dai and Lee 

2002; Dahal, et al., 2008). 

Researchers generally agree that wetness is a triggering factor in slope failure for 

rainfall induced landslides (Caine 1980; Iversion and Major, 1987; Rahardjo, 2000; Lee, 

2005; Adler et al., 2006; Meisina and Scarabelli, 2007). These authors mainly studied the 

role of rainfall spatial distribution, duration and intensity in triggering landslides. Few 

studies have examined the role of rainfall temporal distribution in landslide susceptibility. 

Iverson (2000) and Lan et al. (2005), studying short and moderately intense rainfall 

events, found that landslides and slope movements change in response to rainfall. Slope 

movements occur in higher permeability soils and rapid slope failures in lower 

permeability soils. 

The pore water pressure and soil moisture in saturated and unsaturated soil layers, 

respectively, are linked with the rainfall. The timing of soil wetting and drying controls 
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the landslide trigger and slope failure. Therefore, it is necessary to analyze soil 

moisture and pore water pressure both in time and space to determine landslide 

susceptibility. 

Landslide susceptibility is characterized by the static variables, slope and soil 

properties, and the dynamic variables, pore water pressure, soil moisture and human 

influence. Static variables change very slowly (Gorsevski et al., 2006). However, 

significant changes are possible in the dynamic variables. Therefore, to understand 

physical and dynamic processes of instability, it is necessary to develop landslide 

susceptibility both in time and space (Wu and Sidle, 1995). While Saha et al. (2005) 

expressed difficulties with predicting susceptibility in space and time, Wu and Sidle 

(1995) and Gorsevski et al. (2006) presented a dynamic, distributed, physical-based 

model to develop landslide susceptibility in space and time scales from hours to several 

years. However, these authors mainly focused on vegetation strength and surcharge 

changes and did not consider the impact of vadose zone soil moisture on instability. Wu 

and Sidle (1995) used precipitation as a dynamic input to their model but did not 

characterize the pore water and soil moisture during the non-rainy periods. Wu and Sidle 

(1995)'s and Gorsevski et al. (2006)'s results are monthly and annual landslide 

susceptibility maps which do not provide insight to the frequency or timing of 

susceptibility. 

This paper characterizes daily landslide susceptibility distribution annually and 

during the wet season. Distributions are derived from safety factors estimated for three 

years at Cleveland Corral, California, US and Dhading, Nepal. These two study regions, 

differing in location, terrain, soils and climate, provide insight into the landslide 
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susceptibility temporal variability and hazard. This research quantifies landslide 

susceptibility in space and time by (1) statistically characterizing safety factors, (2) 

describing the distribution and frequency of susceptibility in landslide prone regions, and 

(3) quantifying the transition properties of landslide prone regions. 
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Theory 

This paper uses the modified infinite slope stability model to develop landslide 

susceptibility that directly link vadose zone soil moisture and groundwater (Ray et al., 

2009a). The infinite slope method (Skempton and DeLory, 1957) calculates safety factors 

as the ratio of resisting forces to driving forces. The infinite slope stability model as 

adapted by the several researchers (e.g., Montgomery and Dietrich 1994; van Westen 

and Terlien 1996; Acharya et al., 2006; Ray and De Smedt, 2009) is 

Cs+C r , ( , YwVan<P FS= s r + 
yeHsin0 

1-m 
tanG 

(5-1) 

where Cs and Cr are the effective soil and root cohesion [kN/m ], ye is the effective unit 

soil weight [kN/m ], H is the total depth of the soil above the failure plane [m], 0 is the 

slope angle [°], m is the wetness index [adimensional], § is the angle of internal friction 

of the soil [°], yw is the unit weight of water [kN/m ]. The effective unit weight is 

estimated as 

qcosO ,. . 
Y e = ^ — — + ( l - m ) Y n + my i (5-2) 

r i 

where q is any additional load on the soil surface [kN/m ] and ym is moist unit soil weight 

[kN/m2] for the unsaturated soil layer. 

The wetness index model follows Ray et al. (2009a) given as 

h+CH-h)*^ 
m = v- (5-3) 

H 
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where h is the saturated thickness of the soil [m] above the failure plane and Sw is the 

degree of soil saturation [cm /cm ] or vadose zone soil moisture. 

The VIC-3L model (Liang et al., 1994) was used to estimate soil moisture in the 

unsaturated zone. VIC-3L is a macroscale land surface model that was used to simulate 

the water budget based on the climatic, soil and vegetation characteristics. Model details 

and demonstration are provided in Ray et al. (2009b) 

The estimated safety factor (FS) values were categorized into stability classes 

using Pack et al.'s (1998) and Acharya et al.'s (2006) stability classification system. The 

proposed four susceptibility classes are highly susceptible (FS<1), moderately susceptible 

(1<FS<1.25), slightly susceptible (1.25<FS<1.5) and not susceptible (stable) (FS>1.5). 

The critical value for slope failure, defined by the ratio of resisting force to the 

sliding force on a slope, is 1 (Skempton and DeLory, 1957; Westen and Terlien 1996; 

Burton and Bathurst, 1998; Acharya et al , 2006; Ray and De Smedt, 2009). Depending 

on the soil, vegetation and climatic characteristics of the region, a slope may or may not 

fail at this critical safety factor value. However, a slope remains unstable if the safety 

factor is below 1; here it is assumed that the threshold value is 1. Safety factor crossing 

properties are defined as the number of times a site's safety factor drops below 1 and the 

average duration for which the site remains unstable or equivalently time below the 

threshold. For unstable sites, the safety factor's intensity is defined by the difference 

between the threshold safety factor (1) and the estimated safety factor value. 
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Application 

The Cleveland Corral study region in the Highway 50 corridor is located in the 

Sierra Nevada Mountains, California, USA (Reid et al., 2003). The study area is about 22 

by 28 km or 616 km . Highway 50 is a major road located between Sacramento and 

South Lake Tahoe in California (Spittler and Wagner, 1998). About 600 landslides were 

observed along the 24 km long corridor (Spittler and Wagner, 1998; Reid et al., 2003). 

One major catastrophic landslide occurred in 1983 (Spittler and Wagner, 1998). Since 

1996, slope movement and landslides occurred infrequently during the winter months. 

Mapped landslide and slope movement locations are shown in Figure 5-la. Since 1997, 

the United State Geological Survey (USGS) has monitored this region using real time 

data acquisition systems and found that elevated pore-water pressures and wet soils 

enhance slope movement and landslides during the winter (rainy) season (Reid et al., 

2003). 

Elevations in this study area range from about 902 to 2379 m. Based on the 90 m 

SRTM digital elevation model (DEM), slopes in this region range from 0 to 48° with 

1.27% greater than 30°. This study region has considerable variability in soil texture 

ranging from clay loam to sandy loam (Table 5-1). The soil is predominantly sandy loam 

(72%). The total soil depth ranges from 0.6 to 1.4 m. The assumed potential failure plane 

underneath the soil layer is bed rock. Conifer and wooded grassland are the dominant 

land covers, 80% and 14% of the study region, respectively. Some rock outcrops were 

also observed along the Highway 50 corridor during the field observation. 
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Weather data were obtained from the National Climatic Data Centre (NCDC) from 2003 

to 2006 (Table 5-1). This region has average annual rainfall, maximum temperature and 

minimum temperature of 1101 mm, 19.6 °C and 5.5 °C, respectively. The majority of 

rainfall was observed during the winter (725 mm) in this region. 

The Nepal study region has distinctly different topography, soil, vegetation and 

climatic characteristics. Nepal has 83% mountainous terrain and the remaining 17% is 

southern alluvial plains. The study area is situated in Dhading, one of the seventy-five 

districts of Nepal. The transnational Prithvi highway connecting Kathmandu and Pokhara 

runs through the southern part of the district. The road parallels the Trishuli River. 

Landslides occur frequently in this area during the monsoon season (June to September). 

Numerous major landslides have occurred along the Prithvi highway over the past decade 

(2000 to 2008). One of the major catastrophic landslides along the Prithvi highway at 

Krishna Bhir was observed in August 2003 (Fig. 5-lb). 

The study area is about 25 by 14 km or 350 km2. Based on the SRTM DEM, 

elevations range from 256 to 1918 m. Slopes in this region range from 0 to 57° with 

27.8% of the study region's slopes exceeding 30°. The soils are predominantly sandy clay 

loam (36%) and sandy loam (22%). Woodland and cropland are the dominant land covers 

50% and 29% of the study region, respectively. The total soil depth ranges from 1.0 to 

1.5 m. The assumed potential failure plane underneath the soil layer is bedrock. 

Rainfall, temperature and wind speed measurements were obtained from the 

Department of Hydrology, Nepal (Table 5-1). This region is warmer and wetter than the 

California study region. The monsoonal season, June to September, receives 1287 mm of 

1624 mm average annual rainfall. 

116 



The soil and vegetation parameter required for the three layer variable infiltration 

capacity (VIC-3L) hydrologic model and the slope stability model were obtained from 

States Soil Geographic (STATSGO) database (NRCS, USDA), Land Data Assimilation 

System (LDAS; Mitchell et al., 2004) and literature values. The unit soil weight 

(saturated and moist) was calculated based on the soil moisture, soil porosity, and 

specific gravity of the soil samples using methods adapted by Ray et al. (2009a). Each 

land cover class was assigned a root cohesion values that was adapted from Sidle and 

Ochiai (2006). Each soil type was assigned soil cohesion and friction angle values that 

were adapted from Deoja et al. (1991) and the slope of the retention curve is from Clapp 

and Homberger (1978). Similarly, soil bulk density, field capacity, wilting point and 

saturated hydraulic conductivity values were adapted from Miller and White (1998) and 

Dingman (2002). 

For these study regions, the VIC-3L model was applied at a daily time-step from 

October 2003 to September 2006 using a 0.0083° resolution. The Cleveland Corral, 

California, US study region has 900, 0.7 km2 pixels and Dhading, Nepal has 450, 0.75 

km2 pixels. The VIC-3L soil moisture values were applied to the 90 m DEM pixels using 

a nearest neighbour approach. 
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Results and Discussion 

Dynamic Landslide Susceptibilities 

Daily safety factors were calculated for 75,988 pixels in California and 41,800 

pixels in Nepal from October 1, 2003 to September 30, 2006. Based on maximum 

saturated conditions, each pixel was classified as stable or highly, moderately or slightly 

unstable. As summarized in Table 5-2, Nepal has a much greater proportion of 

susceptible area than California, by class, as expected. 

Figure 5-2 shows the time evolution of average FS values by category for each 

region. There are clearly different wet seasons in California and Nepal. However, both 

regions show similar safety factor variations during the wet and dry seasons. Each shares 

a similar time evolution across susceptibility classes. The intense rainfall events during 

the wet season, increasing wetness in vadose zone and raising groundwater table level, 

rapidly decrease safety factors. The threshold line (FS =1) shows when a typical hazard 

prone area becomes unstable. In California, a region is typically unstable (FS<1) for a 

short period of time. In Nepal, once regions become unstable they tend to stay unstable 

for the remainder of the monsoon season. 

Annual and wet season descriptive statistics, mean, standard deviation and skew 

were calculated for each pixel. The results, averaged by susceptibility class, are shown in 

Table 5-2. The average, standard deviation (SD) and coefficient of variance (CV) of the 

estimated safety factors are lower during the wet season than the entire season. Those 

same statistical parameters are lower in Nepal than California. The SD increases with 

118 



decreasing susceptibility, but the CVs are nearly identical for all susceptible classes. The 

safety factor values vary less during the wet season than on an annual basis. The negative 

and positive skewnesses during the annual period and wet season, respectively, at each 

susceptibility class suggest that there are two distinct populations of safety factors. 

For the highly susceptible class, the variability among susceptible locations was 

quantified. With the exception of skewness, the variability appears to be consistent across 

the wet season and the annual period as well as between locations. The variability 

decreases in California during the wet season, but increases in Nepal. Figure 5-3 shows 

the range of safety factor in each susceptible class at both study regions. Results show 

higher median, maximum, minimum and range of safety factors in California than Nepal. 

Figures 5-4 and 5 show the spatial distribution of CV values for all susceptible 

classes. Relative variability differs by location and there is some spatial structure. The 

California study region has a higher CV throughout the study area as compared to Nepal. 

Due to this higher relative variability, California may have less susceptible area than 

Nepal. Coincidently, both study regions have a highway and a stream passing through the 

center of the study region. However, CVs along the highway are completely different in 

each region. In Nepal, the southern region along the highway consists of steep terrain 

whereas the northern region consists of flat terrain including the river. Figure 5-5 shows 

very low CV values along the stream and highway with higher CV values along the steep 

terrain. In similar terrain, the California study region does not have a reduced CV along 

the highway and stream. This suggests that there is little influence of the stream or 

highway presence on stability variations if slope is not steep. The California study region 
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has lower CV values in the highly susceptible class (Fig. 5-4) near to the natural water 

body (Mapped landslide no. 1). 

Susceptibility Distribution and Probability Analysis 

Because landslides mainly occur during the wet season, this section further 

examines safety factor distributions during the wet season. The L-moment diagram, 13 

versus 14, for highly susceptible pixels does not match any of the plotted distributions 

(Fig. 5-6). However, the safety factor distribution in California shows three distinct 

populations. The two populations having a relatively high kurtosis and following a 

generalized pareto distribution are located near the natural water body. The remaining 

sections have a different, but distinct pattern with much lower kurtosis. In Nepal, kurtosis 

was constant and skew varied from 0.15 to 0.34. No specific distribution was identified 

for this region. 

The cumulative distribution function (CDF) plot also shows that safety factor 

distributions differ by region (Fig. 5-7). Nepal has a much higher probability of highly 

susceptible pixels being unstable at any time in the wet season than California. Nepal's 

region has higher probability of being unstable than California. In Nepal, there is almost a 

95% probability that the estimated safety factor will be under the FS = 1, 1.25 and 1.5 

class delineations during the wet season. In contrast, California has a 70% chance of the 

FS being below the critical value. 
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Transitional (crossing properties) Characteristics of Landslide Susceptibilities 

This section describes the spatiotemporal susceptibility characteristics for highly 

susceptible locations. For each location, the number of threshold crossings and the 

average duration of all crossing were determined. The crossing duration is the number of 

days that a pixel is unstable during a single crossing. A crossing is a transition from 

stable to unstable. 

Figure 5-8 shows that the median duration under the threshold is less in California 

than Nepal whereas the median number of crossings are same in Nepal and California. 

25% of Nepal's highly susceptible pixels have more than 9 numbers of crossings and less 

than 20 days of average duration per year. California has no pixels with more than 9 

crossings in a year. .25% unstable pixels in California have sustained unstable conditions 

exceeding 100 days annual. This may be the primary reason why California has frequent 

slope movements and less slope failures and Nepal has frequent slope failures and no 

routine slope movements during the wet season. 

Figure 5-9 shows the individual relationships among number of crossings, 

average duration and mapped landslide under threshold value. Both regions show a 

nonlinear decrease in duration with increasing crossings. Nepal's relationship is well 

defined (R2 = 0.69) by the power law function, y = 365x"04 where y is the duration and x 

is the number of crossings. This shows a strong correlation between duration and number 

of crossings for each pixel. For the equivalent number of crossings, California's locations 

typically have shorter durations than Nepal, but are within the Nepal range. This further 

explains why Nepal has frequent slope failures, while California has fewer failures and 

more frequent slope movements. This result is further supported by the findings of Lan et 
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al. (2005) who found that while some slopes can fail rapidly, others can take a long time 

to fail under similar saturation. 

Landslide locations were mapped in each region (Figs. 5-4 and 5). Interestingly, 

most of these highly susceptible pixels and mapped landslides have frequent crossings 

and short duration unstable conditions at each study region. Of the 10 mapped landslides 

in California, 7 of them have short duration unstable conditions and frequent crossings. In 

Nepal, 11 out of the 12 slide locations have short unstable conditions and frequent 

crossings. The physical characteristics of the mapped landslides locations in each region 

are presented in previous chapter (Table 4-4a and b). A gradual decrease or increase of 

stress over time that causes stress relaxation can be a possible reason for slope failure 

with frequent crossings. This fact is further supported by the findings of Borzdyka (1974) 

who observed failure in material due to cyclic relaxation stress. 

Crossing properties are mapped in Figures 5-10 and 11. While Nepal's region has 

a uniform distribution of crossing frequencies, California differs by area. Along 

California's highway, crossings are more frequent than in the northwest region. 

Physically, Nepal has no specific locations of steeper terrain whereas California has 

steeper terrain along the highway and in the northwest portion of the study region. These 

differences may be caused by different physical characteristics and distributions of the 

geotechnical variables and the hydrological variable distributions between regions. In 

California, the northwest region has longer susceptible periods, but fewer crossings than 

along the highway. Interestingly, frequent slope movements were observed (by USGS) 

along the highway, but not in the Northwest region. 
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Conclusion 

An infinite slope stability model coupled with a hydrologic model was used to 

develop dynamic landslide susceptibility maps in Cleveland Corral, California, US and 

Dhading Nepal. The mean, standard deviation, skew and coefficient of variation of safety 

factors were estimated to characterize the temporal variability and distribution of safety 

factors. The statistical results show higher relative variability in California than Nepal. 

Both study regions have positive skewnesses, however, for the wet season, Nepal's safety 

factors are more positively skewed than California's. The results show a strong 

relationship between the variability in susceptibility and slope failures. The Nepal study 

region, which has low spatial and temporal variability in susceptibility, is more prone to 

failure than California. 

The L-moments plot showed that there is a consistent safety factor distribution 

with small variations in kurtosis for Nepal. On the other hand, the California region 

appears to have two distinct probability distributions. One distribution clearly follows the 

generalized pareto distribution whereas the other distribution requires further analysis to 

define a distribution. 

Based on the transition properties of safety factor values, both regions' median 

number of crossing is 5. This indicates a tendency to frequently transition between stable 

and unstable conditions. A strong relationship was observed between the number of 

crossings and the average duration, which follows a power law. Results also show that 

the safety factors may fluctuate around the critical threshold, but not necessary fail. This 
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study provides preliminary insights as to how slopes reach and sustain potential 

hazardous conditions not revealed by previous static spatial distribution studies. 
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Table 5-1: Soil, vegetation and slope characteristics of the California and Nepal study 
regions 

California Nepal 
Land cover 
Evergreen forest 
Conifer 
Deciduous forest 
Woodland 
Wooded grassland 
Grassland 
Cropland 
Soil texture 
Loamy sand 
Sandy loam 
Loam 
Sandy clay 
Sandy clay loam 
Clay loam 
Slope (°) 
0-15 
15-30 
30-45 
45-60 

Area (%) 
3.3 

79.9 
2.7 

-
14.1 

-
-

_ 

72.0 
16.0 
3.0 

-
9.0 

71.2 
27.5 

1.2 
0.0 

1.0 
-
-

50.3 
18.2 

1.7 
28.8 

16.2 
22.5 

9.8 
15.0 
36.5 

-

19.0 
53.2 
27.0 

0.8 
Climate 
Average Annual Rainfall (mm) 
Average Rainfall Wet Season (mm) 
(Jan-May, CA and Jun-Sep, Nepal) 
Average Daily Max. Temperature (°C) 
Average Daily Min. Temperature (°C) 

1101 1624 

725 
19.6 
5.5 

1287 
27.0 
16.6 
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Figure 5-5: The coefficient of variance (CV) for all susceptible classes during the wet 
season in Dhading, Nepal. Zero represents stable class 
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Figure 5-10: (a) Number of annual crossings below the threshold safety factor and (b) 
average duration (days) below threshold for highly susceptible location from Oct. 2003 to 
Sep. 2006 in California, US 
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Figure 5-11: (a) Number of annual crossings below the threshold safety factor and (b) 
average duration (days) below threshold for highly susceptible location from Oct. 2003 to 
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CHAPTER 6. 

LANDSLIDE SUSCEPTIBILITY MAPPING USING DOWNSCALED AMSR-E SOIL 
MOISTURE: A CASE STUDY FROM CLEVELAND CORRAL, CALIFORNIA, US 

Abstract 

Remotely sensed data are widely used for landslide analysis. A dynamic 

physically-based slope stability model that requires soil moisture can be driven by remote 

sensing products from multiple Earth observing platforms. This research compares slope 

stability maps using the advanced microwave scanning radiometer (AMSR-E) surface 

soil moisture with the variable infiltration capacity (VIC-3L) model's soil moisture at 

Cleveland Corral landslide area in California, US. Despite snow cover influences on 

AMSR-E surface soil moisture estimates, results show a strong relationship between 

AMSR-E's surface soil moisture and VIC-3L modeled soil moisture. Results match the 

location and extent of landslide prone regions with the two methods. Under the maximum 

saturation scenario, 0.40 and 0.49% of the study area was highly susceptible for AMSR-E 

and VIC-3L model, respectively. Preliminary results show that AMSR-E soil moisture, 

coupled with a slope stability model, is viable for rainfall induced slope stability analysis 

at a regional or global scale. 
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Introduction 

Remote sensing and spatial analysis tools are widely used in landslide studies 

including landslide detection, landslide assessment, natural hazard, landslide mapping, 

and landslide inventories (e.g., Varnes, 1984; van Westen, 1994; Guzzetti et al., 1999; 

Gorsevski et al., 2003; Pradhan et al., 2006). Remote sensing data can be used to predict 

catastrophic events and hazardous areas (Ostir et al., 2003) and they have significant 

potential in landslide studies (Hong et al., 2007). Landslide inventory maps can be 

developed using aerial photography (Oka, 1998; Brardinoni et al., 2003; van Western and 

Getahun, 2003) as well as remotely sensed data with image analysis technique (Nichol 

and Wong, 2005; Abdallah et al., 2007). Over the past decade, the Earth Observing 

System (EOS) platforms have deployed a suite of instruments that monitor land 

conditions relevant to landslide hazard characterization such as Light Detection and 

Ranging (LiDAR), Interferometric Synthetic Aperture Radar (InSAR), and Differential 

SAR Interferometry (DInSAR) data. Multi-temporal satellite imagery is increasingly used 

to monitor, classify and detect landslides (Mantovani et al., 1996; Hervas et al., 2003; 

Cheng et al., 2004). 

For landslide analyses, Landsat TM and Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) have been used to derive land cover in regions 

including the Himalayas range (Zomer et al., 2002, Saha et al., 2002; Sarkar and 

Kanungo, 2004). InSAR has been used to locate and characterize landslides (e.g., Canuti 

et al., 2004; Singhroy and Molch, 2004). Kaab (2005) showed that recent 
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Shuttle Radar Topography Mission (SRTM) results are promising for characterizing 

topography in regions having landslides. 

Pelletier et al. (1997) indicated that continuous remote-sensing of soil moisture 

coupled with a digital elevation model is a necessary component of a successful landslide 

hazard mitigation program. Their work suggests the replacement of soil moisture 

surrogates that have been used extensively in slope stability analyses. Typically, slope 

stability is analyzed using wetness indices to estimate soil wetness (Montgomery and 

Dietrich, 1994; Van Westen and Terlien, 1996; de Vleeschauwer and De Smedt, 2002; 

Acharya et al., 2006). As pointed out by Rosso et al. (2006), these approaches neglect the 

presence of soil moisture in the upper soil layer above the groundwater table or indirectly 

estimate the soil moisture. Existing studies do not directly account for the temporal 

evolution of soil moisture prior to and during the rainfall events. Nevertheless, it is 

necessary to link the surface soil moisture to the subsurface layer because landslides are 

not triggered only by surface layer saturation; rather, it is the combined effect of surface 

and subsurface saturation that is critical (Ray and Jacobs, 2007). Ray et al. (2009a) 

enhanced wetness index model provides a means to apply vadose zone soil moisture. 

While they used modeled soil moisture, remotely sensed soil moisture data are a 

potentially viable alternative to modeled data. 

Satellite remote sensing can provide surface soil moisture at national and global 

scales. While no landslide studies thus far have used remotely-sensed soil moisture data, 

the Advanced Microwave Scanning Radiometer (AMSR-E) has the potential to 

characterize soil moisture profiles for this purpose. Numerous studies (e.g., Njoku et al., 

2003; Walker et al., 2004; Lacava et al., 2005; Njoku and Chan, 2006; Gao et al., 2006) 
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have shown that microwave remote sensing measurements including AMSR-E are 

affected by surface roughness, topographic features, dense vegetation and soil texture. 

This indicates that soil moisture data may have limited value on steep topography (Njoku 

et al., 2000). The few validation experiments, such as Soil Moisture Experiments 2004 

(SMEX04) in northern Sonora, Mexico (Vivoni et al., 2008; Jackson et al , 2008), that 

have been conducted on such terrain show that rocky slopes can mask the moisture 

signal. 

In addition to the aforementioned limitations, there are two other significant 

challenges to using AMSR-E data. The current remote sensing products can only measure 

the soil moisture at an upper thin surface of the Earth from 0 to 5 cm (Jackson et al., 

1995; Schmugge et al., 2002). This thin layer soil moisture information may not truly 

represent the entire soil moisture profile underneath thick soil layer (sub surface) above 

the bed rock. In addition, AMSR-E processed data have a 25 km spatial resolution. This 

is quite coarse for landslide studies even at regional and global scales. Therefore, it may 

be necessary to downscale the low resolution AMSR-E soil moisture to a finer scale. A 

simple downscaling approach for remotely sensed soil moisture was developed by 

Chauhan et al. (2003) and enhanced by Yu et al. (2008). They found the significant 

relationship among soil moisture based on normalized vegetation index (NDVI), albedo 

and land surface temperature (LST) to be useful in downscaling soil moisture data. 

This research tested the AMSR-E product's ability to provide the vadose zone soil 

moisture estimates necessary to dynamically map landslide susceptibility. The study 

region, Cleveland Corral, California, US, is an active hazard area. The research 

objectives of this paper are (1) to compare AMSR-E and variable infiltration capacity 
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(VIC-3L) surface soil moisture, and (2) to analyze the impacts in landslide susceptibility 

map using AMSR-E and VIC-3L surface soil moisture. Results consider AMSR-E 25 km 

pixels as well as downscaled 1 km pixels. 
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Theoretical Approach 

Slope Stability Model 

This study uses the modified infinite slope stability model (Ray et al., 2009a) to 

quantify landslide susceptibility including the vadose zone soil moisture and groundwater 

effects. The infinite slope method (Skempton and DeLory, 1957), widely applicable for 

shallow slope stability analysis, calculates safety factors as the ratio of resisting forces to 

driving forces. The infinite slope stability model as adapted by the several researchers is 

™ c +c 
FS = —'- T- + 

yeHsin0 

' " V n < P (6-1) 1 - m ^ 
yj tanG 

where Cs and Cr are the effective soil and root cohesion [kN/m ], ye is the effective unit 

soil weight [kN/m ], H is the total depth of the soil above the failure plane [m], 9 is the 

slope angle [°], m is the wetness index [adimensional], <(> is the angle of internal friction 

of the soil [°], yw is the unit weight of water [kN/m ]. The effective unit weight is 

estimated as 

qcos9 ,. x y e = ^ — - + (l-m)ym + mys (6-2) 

xi 

where q is any additional load on the soil surface [kN/m ] and ym is moist unit soil weight 

[kN/m2] for the unsaturated soil layer. 

The wetness index model follows Ray et al. (2009a) given as 
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h+ (H- h) * -^ 
m = 5_ (6-3) 

H 

where h is the saturated thickness of the soil above the failure plane [m], 6S is the 

volumetric soil moisture [cm3/cm3] and r\ is the porosity [cm3/cm3]. 

The estimated FS values were used to categorize slopes into stability classes using 

Pack et al. (1998) and Acharya et al.'s (2006) stability classification system. Our four 

susceptibility classes, used to develop landslide susceptibility map, are highly susceptible 

(FS<1), moderately susceptible (1<FS<1.25), slightly susceptible (1.25<FS<1.5) and not 

susceptible (stable) (FS>1.5). 

Land Surface Model (VIC-3L) 

This study used Ray et al.'s (2009b) VIC-3L model results for the Cleveland 

Corral, California study region as an independent measure of the soil moisture profile. 

The VIC-3L hydrologic model is a three-layer land surface model (Liang et al., 1994) 

that has been widely applied for surface runoff generation and soil moisture profile 

estimation (Liang and Xie, 2003). The model's soil column has three layers (Parada and 

Liang, 2004). The top, thin soil layer and the middle soil layer characterize the dynamic 

response of the soil to weather and rainfall events. The lowest layer captures the seasonal 

soil moisture behavior (Liang et al., 1996; Huang and Liang, 2006) and only responds to 

rainfall when the upper layer is wet. The VIC-3L model also provides a spatial 

representation of land cover. Each land cover has a leaf area index (LAI), minimum 

stomatal resistance, roughness length, displacement length and relative fraction of root 
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(Liang et al., 1994; Nijssen et al., 1997). Details about the VIC-3L model application are 

described by Ray et al. (2009b). 



Downscaling 

For application to the infinite slope stability model, the AMSR-E soil moisture 

can be used directly or downscaled. A linear or non-linear regression approach can be 

used to downscale the AMSR-E data from 25 to 1 km spatial resolution (Chauhan et al., 

2003; Yu et al , 2008). Yu et al. (2008) found that it is possible to downscale AMSR-E 

soil moisture from 25 to 1 or 5 km spatial resolution using NDVI, albedo and LST. This 

paper uses their linear regression approach to downscale the AMSR-E soil moisture from 

25 to 1 km spatial resolution. 

The general downscaling approach proposed by Chauhan et al. (2003) and applied 

by Yu et al. (2008) is 

i=« j=n k=n 

<?.=£! IV'™' (6-4) 
.1=0 y=0 *=0 

where V is the NDVI, T is the LST and A is the albedo (1 km). The equation is applied 

with n = 1, yielding a simple linear equation with interaction terms 

0, = ̂ ooo + <>m A + am T + am V + am T A + am V A + am V T (6-5) 

The AMSR-E (25 km) values and the NDVI, LST and albedo values, aggregated 

to a 25 km resolution, are used to determine the regression coefficients for the linear 

regression model. Yu et al. (2008) aggregated the 1 km NDVI, LST and albedo products 

to 25 km spatial resolution by 
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n m n m n m 

I I r, SSr, 114 
F B = ^ i — , r2! = ^-a—, 4 s = ± u ± _ (6.6) 

m?7 raw mn 

where V25 is the 25 km average NDVI, T25 is the 25 km average LST, A25 is the 25 km 

average albedo and m and n are, respectively, the number of 1 km pixels in ith rows and 

j t h columns in the AMSR-E pixel. 

Once a regression model is established, the model is applied to estimate the 1 km 

soil moisture from the 1 km NDVI, LST and albedo values. The downscaled AMSR-E (1 

km) can be re-aggregated to a 25 km resolution and compared with observed AMSR-E 

(25 km) to quantify the model error. 
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Remotely Sensed Data 

AMSR-E Soil Moisture 

The AMSR-E was developed by the National Space Development Agency of 

Japan (NASDA) and launched on the Aqua satellite by the National Aeronautics and 

Space Administration (NASA) on May 4, 2002 (Li et al., 2004). It measures radiation at 

six frequencies in the range 6.9-89 GHz (Njoku et al., 2003). Lower frequencies, L band 

(1-2 GHz), are more sensitive to soil moisture, but they are more susceptible to dense 

vegetation and radio frequency interference (RFI). The higher frequency C (6.9 GHz) and 

X (10.65 GHz) bands can be used to retrieve soil moisture (Jackson et al., 2005) because 

these higher frequency bands are comparatively less susceptible to RFI. The AMSR-E 

directly measure brightness temperature. Soil moisture retrievals use a radiative transfer 

(RT) model that links surface geophysical variables to the observed brightness 

temperature (Njoku et al., 2003). A RT model initially assumes a soil moisture value and 

predicts the brightness temperature based on surface parameters, vegetation parameters, 

and sensor parameters. If the difference between the predicted brightness temperature and 

the observed temperature is less than acceptable limit, then the final soil moisture value is 

derived. Otherwise the iteration continues with a modified initial soil moisture value. A 

detail description of the retrieval algorithm appears in Njoku et al. (2003). 

AMSR-E level 3 products (e.g., surface soil moisture, vegetation water contents 

etc) are developed from the level 2B product's brightness temperature at a 25 km earth 

grid scale both for ascending and descending passes 
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(http://www.ghcc.msfc.nasa.gov/AMSR/data_products.html). This study used the AMSR-E 

soil moisture level 3 products for ascending values from Jan 1, 2003 to Dec 31, 2006 on a 

daily basis. AMSR-E level 3 products were obtained from NASA Earth Observing 

System Data Gateway through National Snow and Ice Data Center (NSIDC). 

MODIS Data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

developed by NASA was launched on the Terra satellite in December 1999 and on the 

Aqua satellite in May 2002 (Wang et al., 2006). MODIS can collect information both in 

the morning and in the afternoon as Terra is scheduled to pass from north to south across 

the equator in the morning and Aqua is scheduled to pass from south to north in the 

afternoon. Even though Terra and Aqua satellites pass in the morning and in the 

afternoon, respectively, the temporal resolution of MODIS products is only for every 1 to 

2 days (Luo et al., 2008). MODIS data are available at three spatial resolutions of 250 m, 

500 m, 1,000 m and coarser resolution (Luo et al., 2008). 

This study required NDVI, albedo and LST at a 1 km spatial resolution. The 1 km 

MODIS TERRA albedo (MCD43B3), NDVI (MYD13A2) and LST (MYD11A1) 

products were used to downscale the AMSR-E surface soil moisture for 2005. These data 

are available as tiles in the Sinusoidal (SIN) projection. All these data were re-projected 

into geographical projection. 
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Study Region 

The Cleveland Corral study region in Highway 50 corridor is located in the Sierra 

Nevada Mountains, California, USA (Reid et al., 2003). Highway 50 is a major road 

located between Sacramento and South Lake Tahoe in California (Spittler and Wagner, 

1998). The Figure 6-1 shows observed recent landslide and location of study domain in 

California. The investigated area is about 28 by 22 km (616 km ) with elevations range 

from about 902 to 2379 m. Since 1996, slope movement and landslides occur 

infrequently during winter season. Additionally, one major catastrophic landslide 

occurred in 1983 (Spittler and Wagner, 1998). Since 1997, the United State Geological 

Survey (USGS) has monitored this region using real time data acquisition systems (Reid 

et al., 2003). They found elevated pore-water pressures and wet soils cause slope 

movement and landslides during the winter (rainy) season. 

Table 6-1 summarizes the study region's soils, land cover and climate. The 

predominant soil is sandy loam (72%). The total soil depth ranges from 0.6 to 1.4 m. 

Underneath the soil layer, the potential failure plane is bedrock. Conifer and wooded 

grassland are the dominant land covers, 80% and 14% of the study region, respectively. 

Some rock outcrops were also observed along the Highway 50 corridor. The north-east 

part of the study area has limited data because of water bodies and rock outcrops. This 

region has an average annual rainfall of 1101 mm, with 725 mm occurring during the 

winter. 
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The soil and vegetation parameters required for the slope stability model were 

obtained from the States Soil Geographic (STATSGO; NRCS, USDA), Land Data 

Assimilation System (LDAS; Mitchell et al., 2004) as well as from the literature. 

Monthly LAI values were obtained from the MODIS. The MOD 15A2, 8-day composite 

LAI values were averaged to monthly values. 

Root cohesion values for each vegetation class were adapted from Sidle and 

Ochiai (2006). The unit soil weight (saturated and moist) was calculated based on the soil 

moisture, soil porosity, and specific gravity of the soil samples using methods adapted by 

Ray et al. (2009a). Each soil type was assigned soil cohesion and friction angle values 

that were adapted from Deoja et al. (1991) and the slope of the retention curve adapted 

from Clapp and Hornberger (1978). Similarly, soil bulk density, field capacity, wilting 

point and saturated hydraulic conductivity values were adapted from Miller and White 

(1998) and Dingman (2002). 

For this region, validation data for landslide studies are difficult to obtain. The 

daily groundwater measurements were obtained from the USGS (Mark Reid, USGS). 

Previous research indicates that over 600 landslides have occurred in this the study region 

(Spittler and Wagner, 1998; Reid et al., 2003). In addition, field observations identified 

10 locations where failures had occurred prior to December 2007. Table 6-3 gives 

location details and physical characteristics of the slide locations. Observations show 

most of the mapped landslides were located in woodland regions with sandy loam soil 

texture. The slopes of the mapped landslides range from 24 to 37°. 
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Results and Discussion 

Downscaling AMSR-E Soil Moisture 

AMSR-E soil moisture at Cleveland Coral, California was downscaled from 25 to 

1 km using daily data from January 1 to December 31, 2005. The 1 km NDVI, LST, and 

albedo were aggregated to 25 km resolution using Eq. 6-6. The observed maximum LST, 

albedo and NDVI are, respectively, 51°C, 0.94 and 0.93. The minimum are, respectively, 

-20°C, 0.01 and -0.14. The AMSR-E (25 km) was regressed with aggregated NDVI, LST 

and albedo values (Eq. 6-5). The regression model which best fits the AMSR-E soil 

moisture is 

<9 = -1.426 + 4.169 A + 0.006 T + 2.254 V- 0.017 TA + 0.781 VA- 0.009 VT (6-7) 

This regression model provided a good fit with an R of 0.73, a root mean square error 

(RMSE) of 0.009 cm /cm and p-values less than 0.0001 for all independent variables. 

The resulting model was used to estimate the 1 km soil moisture values. These 

values were aggregated to 25 km and compared to the observed values (Fig. 6-2). The 

results show very good agreement between the observed and the downscaled AMSR-E 

soil moisture. However, low downscaled AMSR-E soil moisture values from January to 

April can be the snow cover effect to albedo and LST. A moderate correlation was 

observed with an R of 0.58 and a small RMSE of 0.017 cm /cm . The results are 

comparable to Yu et al. (2008) R2 values that ranged from 0.19 to 0.74 with 6 different 

regression techniques and Chauhan et al. (2003) RMSE of 0.016 cm3/cm3. 
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Both the downscaled and the observed AMSR-E capture the seasonal variations 

of moisture. The observed and downscaled soil moisture clearly indicate the winter wet 

season. However, a small time lag between the 25 km AMSR-E values and the 

downscaled soil moisture is evident during the wet season. The time lag is about a week. 

This time lag may be due to two types of errors (Chauhan et al., 2003). The first error is 

due to regression analysis and the second error is associated with input data. They found 

regression error in analysis and precision error in NDVI, albedo and LST. Overall, the 

results suggest that reasonable downscaled AMSR-E soil moisture can be produced using 

1 km MODIS LST, albedo and NDVI values. 

Comparison between Observed AMSR-E and VIC-3L Soil Moisture 

Figure 6-3 shows the observed AMSR-E soil moisture, the VIC-3L model's 1st 

and 2nd layers soil moisture, in situ groundwater measurements and snow accumulation at 

an active landslide pixel. The VIC-3L's first and second soil layer thicknesses were 0.05 

and 0.35 m, respectively. Both VIC-3L and AMSR-E estimate higher surface soil 

moisture during the rainy season and lower soil moisture values during the dry season. 

The results show minimal differences between the first and second layer's soil moisture 

estimated by the VIC-3L model. This suggests that the surface moisture provides an 

indicator of the vadose zone soil moisture profile for this region. For a shallow slope 

stability analysis, the unsaturated soil layer is often a comparatively thin layer. 

Since no in situ soil moisture measurements were available, modeled soil 

moisture and AMSR-E soil moisture values were compared with groundwater 
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measurements. Although groundwater, AMSR-E and modeled soil moistures have 

different measuring units, results show similar groundwater, AMSR-E and modeled soil 

moisture variations during the wet season. 

As shown in Figure 6-3, snow occurs regularly from December to March. AMSR-

E does not completely capture the soil moisture variability when there is snow. When 

snow is present on the ground, the surface temperature is below 0°C. At this freezing 

temperature, dielectric constant is very small and AMSR-E soil moisture retrievals are 

not possible (Hallikainen et al., 1985; Wang et al., 2009). For this region, lower or no soil 

moisture is indicated by AMSR-E in early winter. Thus, operational in-situ or remotely 

sensed snow monitoring is very important to use in combination with AMSR-E soil 

moisture for landslide studies in snowy regions. 

Another challenge is that the AMSR-E soil moisture measurements are lower 

during the wet season as compared to the VIC-3L measurements and have much lower 

variability overall. Some of this difference may be caused by the layer thicknesses. 

AMSR-E's 0-2 cm thin soil layer may dry faster than the VIC-3L's 5 cm soil layer. 

Previous research shows that the AMSR-E has lower estimations in comparison to land 

surface models and measured values (Choi et al., 2008; Sahoo et al., 2008; Gruhier et al., 

2008). These limitations are particularly apparent for dense vegetation and steep terrain. 

Overall, the AMSE-E soil moisture measurements can capture the timing of the 

modeled soil moisture wetting. However, the degree of wetness is considerably different 

and further complicated by snow. 
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Scaling f AMSR-E) 

Reichle et al. (2004) suggest that satellite soil moisture should be rescaled to use 

with land surface modeled soil moisture. Choi and Jacobs (2008) found that the AMSR-E 

soil moisture can be scaled to match with in situ as well as land surface model's wetness. 

To address the low variability of the AMSR-E surface soil moisture, the observed 

AMSR-E values were scaled, then compared to the VIC-3L surface soil moisture. 

AMSR-E soil moisture was scaled to minimum and maximum values using a 

simple interpolation approach. These scaled soil moisture values are appropriate for this 

study region's soil. The minimum and maximum observed AMSR-E soil moisture values 

were 0.09 and 0.33 cm3/cm3 in 2005, respectively. For the sandy loam soils in Cleveland 

Corral, California, Rawls et al. (1982) suggested a residual saturation of 0.05 and an 

upper bound equal to the 0.48 soil porosity. AMSR-E soil moisture values were scaled 

from 0.05 to 0.48 cm3/cm3. 

Figure 6-4 shows promising agreement between the VIC-3L soil moisture and the 

scaled AMSR-E soil moisture. With the scaling, AMSR-E has a soil wetness similar to 

that estimated by the VIC-3L model during the dry and wet season. While the snow 

challenges are still evident, soil moisture values are still consistent during the critical 

failure period, late spring. 

Soil Moisture Variability 

Soil wetness defined by groundwater and vadose zone soil moisture plays a 

critical role in slope instability. During the rainy season, rainfall increases soil moisture 
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and groundwater table. With the constant slope and geotechnical parameters, soil 

saturation is the dynamic factor that causes slopes to become unstable because instability 

increases with increasing soil saturation. A slope becomes unstable when its soil 

saturation results in its safety factor falling below 1. 

For the 3-year study period, the maximum saturation occurred on May 8, 2005. 

The maximum modeled saturation is the wettest day and had a GW table close to the 

surface and high vadose zone SM. Figures 6-5 and 6 show AMSR-E (1 km) and VIC-3L 

(1 km) soil moisture distributions, respectively, on May 8, 2005. The VIC-3L soil 

moisture values are higher than the AMSR-E values. The VIC-3L soil moisture values 

range from 0.25 to 0.52 whereas the AMSR-E soil moisture values range from 0.09 to 

0.33 ( c r a W ) . 

Both AMSR-E and the VIC-3L model reveal similar soil moisture distribution 

patterns in the north-west and south-east corners as well as along Highway 50. The VIC-

3L and AMSR-E show a low soil moisture values along the highway because the physical 

characteristics of the ground such as paved highway, numerous retaining and revetment 

walls, built up area and stream affect the quality of AMSR-E and VIC-3L modeled soil 

moisture. Differences in the soil moisture distribution were observed at the north-east and 

south-west corners of the study region. The north-east region has a number of physical 

features that appear to challenge the satellite soil moisture retrieval and the 

disaggregation approach. The observed brightness temperature is used to retrieve AMSR-

E soil moisture. High albedo values were found in the north-east region (Fig. 6-7a). Thus, 

a lower brightness temperature and higher albedo caused by snow or bright exposed 

surface such as sand or bare rock may influence disaggregation. AMSR-E measurements 
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are comparatively low in the southwestern corner of the study region. This area has the 

densest vegetation cover as evidenced by the high NDVI values (Fig. 6-7b). AMSR-E 

can not provide reasonable measurements with dense vegetation (McCabe et al., 2005; 

Njoku and Chan, 2006) because of the sensitivity of the C- and X-bands to dense 

vegetation. Accurate brightness temperature measurements are not possible over dense 

vegetation. 

On May 8, 2005, the observed AMSR-E soil moisture value was 0.17 cm3/cm3 at 

the native 25 km scale. This 0.17 cm3/cm3 SM value matches the average of the 1 km 

pixels in the study region. The simple downscaling model is promising. It captures much 

of the soil moisture variability in the study region with values ranging from 0.09 to 0.33 

cm3/cm3 instead of the single 0.17 cm3/cm3 SM value for the entire study region. In the 

future, higher resolution sensors and better downscaling approaches may improve soil 

moisture estimation for landslide prone regions. 

Susceptibility Analysis 

AMSR-E soil moisture values at the 25 and 1 km scale were used to calculate 

safety factors. These results were compared to previous estimated safety factors using 

VIC-3L soil moisture (Ray et al., 2009b). This section presents regional landslide 

susceptibility results using AMSR-E soil moistures. Three wetness scenarios were 

considered. The half saturation condition occurred on May 23, 2005. On this date, the 

vadose zone SM varies spatially and the GW table was located at the middle of the soil. 

The maximum saturation, May 8, 2005, was discussed in the previous section. The full 
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saturation scenario was not observed, but is presented to provide an upper bound to 

landslide susceptibility based on an assumed completely saturated profile 

Table 6-2 presents the predicted susceptible and stable areas using the AMSR-E 

soil moisture (25 and 1 km) and the VIC-3L soil moisture for the three scenarios. As 

expected, the predicted susceptible areas for all saturation scenarios were below the fully 

saturated condition for both AMSR-E and VIC-3L soil moisture. Under the half and 

maximum modeled saturation scenarios, the predicted susceptible area with the VIC-3L 

soil moisture was slightly higher than that using AMSR-E soil moisture. This reflects the 

wetter VIC-3L vadose zone compared to the AMSR-E surface soil moisture under 

maximum saturation scenario. The results show that 0.39 and 0.49% of the area is highly 

susceptible using AMSR-E (25 km) and VIC-3L model (1 km) soil moisture, respectively. 

A small prediction difference was observed with AMSR-E (25 km) and 

downscaled (1 km) soil moisture under half and maximum modeled saturation scenarios. 

This shows it can also be appropriate to use AMSR-E observed soil moisture in slope 

stability analysis if downscaling is not possible or desirable. However, in comparison to 

the observed AMSR-E (25 km), the downscaled AMSR-E (1 km) may be more 

appropriate to use in slope stability analysis because the higher resolution datasets are 

consistently recommended for landslide mapping. 

Figures 6-8 and 9 show susceptibility distributions by class for VIC-3L and 

AMSR-E soil moisture, respectively under the maximum modeled saturation scenario. 

Qualitatively, both VIC-3L and AMSR-E vadose zone soil moisture identified the same 

hazard zones as highly, moderately and slightly susceptible. However, small differences 

occur in the predicted susceptible areas (Fig. 6-10). 83.2% of highly susceptible locations 
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predicted using VIC-3L vadose zone soil moisture were also identified as highly 

susceptible by AMSR-E. Most of those not successfully identified were adjacent to areas 

correctly predicted. 

Susceptibility maps were compared with the landslide inventory data. For the 

May 8, 2005 saturation conditions, six of the mapped landslide locations would have 

been considered highly unstable. On May 8, 2005, four of the mapped landslides were 

identified as moderately susceptible. Since, the exact dates of mapped landslides are 

unknown; it is possible that some of the landslides occurred when soil moisture was 

higher than maximum modeled soil moisture on May 8, 2005. Moreover, moderately 

susceptible areas are not stable zones. External forces such as of vibrations caused by an 

Earthquake, large tree shaking (due to wind) and heavy highway traffic can trigger a 

slope to fail in a moderately susceptible area. Interestingly, the four mapped landslides 

are located along the Highway 50 and any external forces that are not included in slope 

stability model can cause slope failure in moderately susceptible area. 

Overall, the results show good potential to use the AMSR-E soil moisture for 

vadose zone in landslide susceptibility mapping. 
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Conclusion 

This work has downscaled AMSR-E soil moisture measurements to use in a slope 

stability model for landslide susceptibility mappings. The AMSR-E surface soil moisture 

can be used for vadose zone moisture in landslide susceptibility mapping at regional or 

global scale. For a shallow slope stability analysis or landslide mapping, AMSR-E soil 

moisture can play an important role at regional and global scales. Susceptibility maps for 

this study region were compared and validated with landslides inventory data and show 

promising agreement. The satellite-based products can provide an efficient means to 

develop landslide susceptibility maps based on antecedent soil moisture conditions. 

While AMSR-E can provide surface soil moisture, there are still challenges. Since, 

AMSR-E has much lower soil moisture and less variability than would be expected, it is 

necessary to scale the AMSR-E soil moisture. In addition, the spatial scale of observed 

AMSR-E is much greater than the typical landslide scale. While downscaling provides 

some improvement, better methods are needed. Moreover, AMSR-E can not produce 

reasonable soil moisture when there is snow on the surface. Finally, the lack of in-situ 

soil moisture on landslides prone slopes as well as observed slope failures coincident 

with soil moisture observations is a significant obstacle to validating results and 

enhancing hazard mitigation. 

The ability to capture the evolution of soil moisture will allow us to anticipate 

critical hazard periods on an ongoing, real time basis. For developed nations, EOS 

measurements can complement existing physical databases by characterizing changing 
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terrestrial systems and hydrologic stores. For less data rich regions, EOS measurements 

provide high resolution characterization of the Earth's surface. Although, this approach 

can produce promising results at regional and global scales, this approach is not 

appropriate for local scale slope stability analysis because of remotely sensed soil 

moisture's coarse scale. 

163 



Table 6-1: Soil, vegetation, slope and climate characteristics for the Cleveland Corral, 
California, US study area 

California 
Land cover 
Evergreen forest 
Conifer 
Deciduous forest 
Wooded grassland 
Soil texture 
Sandy loam 
Loam 
Sandy clay 
Clay loam 
Slope (°) 

(y5 
15-30 
30-45 
45-60 
Climate 
Average Annual Rainfall (mm) 
Average Rainfall Wet Season (mm, Jan-May) 
Average Maximum 
Average Maximum 

Temperature (°C) 
Temperature (°C) 

Area (%) 
3.3 

79.9 
2.7 

14.1 

72.0 
16.0 
3.0 
9.0 

71.2 
27.5 

1.2 
0.0 

1101.0 
725.0 

19.6 
5.5 
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Table 6-2: The portion of the study area (%) for each landslide susceptibility 
classification using VIC-3L, AMSR-E 25 km and downscaled soil moisture at Cleveland 
Corral, California, US. Three wetness scenarios are presented 

Scenario 

Full Saturation 

Half Saturation1 

VIC-3L(lkm) 

AMSR-E (25 km) 

AMSR-E (1 km) 

Maximum Modeled Saturation2 

VIC-3L(lkm) 

AMSR-E (25 km) 

AMSR-E (1 km) 

Highly 
Susceptible 

0.58 

0.26 

0.23 

0.21 

0.49 

0.39 

0.40 

Moderately 
Susceptible 

1.90 

1.01 

0.91 

0.96 

1.67 

1.39 

1.46 

Slightly 
Susceptible 

3.01 

2.12 

1.98 

2.07 

2.87 

2.54 

2.66 

Stable 

94.51 

96.60 

96.87 

96.76 

94.96 

95.67 

95.47 

Half saturation - Groundwater position table at half of the soil layer (May 23, 2005) 
Maximum modeled saturation - The day having the groundwater was closest to the 

surface and wettest vadose zone (May 8, 2005). 
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Figure 6-5: AMSR-E (1 km) soil moisture on maximum modeled soil moisture day (May 
8, 2005) 
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Figure 6-6: VIC-3L (1 km) soil moisture on maximum modeled soil moisture day (May 
8, 2005) 
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Figure 6-7a: The observed albedo (1 km) on maximum modeled soil moisture day (May 
8, 2005) 
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Figure 6-7b: The observed NDVI (1 km) on maximum modeled soil moisture day (May 
8, 2005) 
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CHAPTER 7. 

CONCLUSION 

This study modified infinite slope stability model that directly includes vadose 

zone soil moisture and groundwater depth using variable infiltration capacity (VIC-3L) as 

a modeled soil moisture and Advanced Microwave Scanning Radiometer (AMSR-E) 

satellite soil moisture. This model was applied in California, US and Dhading, Nepal to 

develop dynamic landslide susceptibility maps at a regional scale. The major findings of 

this study are summarized in four categories. 

1. Linking remotely sensed data with landslide disasters: 

• There was a strong relationship among landslide disaster, AMSR-E soil 

moisture and 

• Tropical rainfall Measuring Mission (TRMM) rainfall data. 

• AMSR-E soil moisture has potential to be used for landslide studies. 

2. Impact of vadose zone soil moisture in slope stability analysis 

• The traditional infinite slope stability model was modified to include the 

impact of vadose zone soil moisture for shallow landslide analysis at 

regional or global scale. 

• Landslides are not triggered only due to surface layer saturation; rather, it 

is the combined effect of surface and subsurface saturation that is critical. 
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• A significant impact of vadose zone soil moisture was found for shallow 

landslides whereas it was less significant for deep landslides. 

• The susceptibility to slope failure increases non linearly with an increase 

of vadose zone soil moisture as well as groundwater position. 

3. Modeling landslides using dynamic soil moisture 

• A simple wetness based model can be used to predict groundwater table 

during the wet season 

• Modeled vadose zone soil moisture enhance quasi-dynamic landslide 

studies 

4. Spatiotemporal distribution of susceptibility 

• A strong relationship was observed between the relative variability of 

susceptibility and slope failure. 

• A strong relationship was observed between the number of crossings and 

the average duration 

• Results showed it is not necessary a slope must fail when the safety factor 

is less than 1 as it is traditionally assumed, rather, it may stay longer under 

unstable condition before the failure took place. 

• The spatiotemporal distribution of susceptibility is necessary to predict the 

possible timing of slope failure 

An improved infinite slope stability model can produce reasonable susceptibility 

maps in landslide studies enhances susceptibility prediction by showing susceptibility 

evolution over time. Moreover, previous spatial distribution studies are not sufficient to 

predict possible timing of slope failure. 
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The Nepal study region is more vulnerable to landslides than the California. More 

frequent landslides occur in Nepal and more frequent slope movements in California. 

These regions have significant climate and hydrogeological differences. California region 

receives less rainfall than Nepal. In addition, Nepal has steeper terrain than the California. 

Soil texture and vegetation cover differs by region. As a result, the statistical properties 

differ somewhat between regions. However, there are many similarities as well. 

For a less data rich region, the applied model and approach will be very useful for 

slope stability analysis using remotely sensed data. This study used many remotely 

sensed data including AMSR-E for soil moisture, TRMM for rainfall, SRTM for DEM, 

MODIS for lead area index, vegetation index, surface albedo, and land surface 

temperature. Hence, this study somewhat reduced the dependency of landslide studies on 

in-situ data that is necessary to study economically at regional and global scales. 

This model can be used from local scale to global scales. However, it is not 

possible to use remotely sensed soil moisture for landslide studies at local scale. 
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FUTURE STUDY 

The approach used in this study can be very useful to develop landslide 

susceptibility mapping by using modeled and or remotely sensed soil moisture at regional 

and global scales. Relationships between remotely sensed data and landslides, the role of 

vadose zone soil moisture in instability, statistical analysis of susceptibility and the use of 

remotely sensed soil moisture in landslide susceptibility will be very helpful to explore 

the variability of landslide prone regions. It will further help to forecast landslides from 

local to global scale. However, the coarse scale remotely sensed and hydrologic modeled 

data, lack of in-situ soil moisture and groundwater data in landslide prone regions and the 

limited landslide inventory data are important issues that needed to be addressed in future 

for landslide susceptibility mapping and landslide forecast. 

Major future work is to (1) enhance the experimental datasets that are necessary 

to calibrate and validate models, 2) to improve the understanding of Digital Elevation 

Model (DEM) scaling effects on instability prediction and (3) to develop better 

downscaling approach to use remotely sensed soil moisture at hillslope scales. 

For the experimental work, a mountainous region needs to be instrumented to 

measure in-situ soil moisture, groundwater and required climatic parameters for the 

infinite slope stability model. Since very few validation experiments have been carried 

out on a slope, this work will be critical to validate the land surface hydrologic models as 

well as AMSR-E satellite soil moisture, TRMM precipitation on slopes. 
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For DEM scaling effects on instability prediction, in-situ as well as remotely 

sensed DEM needs to be compared and used to develop susceptibility maps from regional 

to global scales. The LIDAR datasets can be used as a higher resolution DEM to quantify 

errors in instability prediction using lower resolution DEM (in-situ and SRTM). 

Landslide inventory maps need to be developed using digital image processing 

and photogrammetric technique (possibly stereoscopic viewing) based on satellite images 

or aerial photographs depending on the scope and availability of required imagery. For 

this purpose, Landsat images and/or Lidar, InSAR and DInSAR data can be used. This 

will enhance methods used for landslide inventory mapping as well as in validating and 

characterizing landslides at regional and global scales. It will also refine our 

understanding of which tools provide the best information given the required prediction 

scale. 

These future works will help to develop global landslide forecasting models as 

well as provide better validation datasets for landslide studies. 
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Physical Properties of Soil 

Soil Type 

Well Graded Gravel 

Poorly Graded Gravel 

Gravel with Silts 

Gravel with Clay 

Well Graded Sand 

Poorly Graded Sand 

Sand with Silts 

Sand with Clay 

Mixture of SM-SC 

Inorganic Silts 

Inorganic Clay 

Mixture of CL-ML 

Organic Silts 

Inorganic Silts 

Inorganic Clay 

Group 
Symbol 

GW 

GP 

GM 

GC 

SW 

SP 

SM 

SC 

SM-SC 

ML 

CL 

CL-ML 

OL 

MH 

CH 

Cohesion Range (t/m2) 

Maximum Minimum 

0 

0 

-

-

0 

0 

5 

7.5 

0.5 

7 

9 

6.5 

-

7.5 

10 

0 

0 

-

-

0 

0 

2 

1 

0.15 

1 

1.5 

2 

-

2.1 

1 

Frictional 
Angle Q 

>38 

>37 

>34 

>31 

38 

37 

34 

31 

33 

32 

28 

32 

-

25 

19 

(Source: Mountain Risk Engineering Handbook, Deoja, 1991) 
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