2,815 research outputs found

    Three-dimensional foot shape analysis in children : a pilot analysis using three-dimensional shape descriptors

    Get PDF
    Existing clinical measures to describe foot morphology are limited in that they are commonly two-dimensional, low in resolution and accuracy, and do not accurately represent the multi-planar and complex changes during development across childhood. Using three-dimensional (3D) scanner technology provides the opportunity to understand more about morphological changes throughout childhood with higher resolution and potentially more relevant 3D shape measures. This is important to advance the prevailing arguments about the typical development of children's feet and inform the development of appropriate clinical measures. 3D shape descriptors derived from 3D scanning can be used to quantify changes in shape at each point of the 3D surface. The aim of this study was to determine whether 3D shape descriptors derived from 3D scanning data can identify differences in foot morphology between children of different ages. Fifteen children were recruited from three age groups (2, 5, and 7ā€‰years of age). Both feet were scanned in bipedal stance, using the Artec Eva (Artec Group, Luxembourg, Luxembourg) hand-held scanner. Three dimensional shape descriptors were extracted from the 3D scans of the right foot, to create histograms for each age group and heat maps of representative participants for comparison. There were changes to the dorsal, medial and lateral surfaces of the feet with age. The surfaces became less round along with an increase in indented areas. This is supported by the heat maps which demonstrated that the surfaces of the anatomical landmarks (e.g. the malleoli and navicular tuberosity) became more rounded and protruding, with indented surfaces appearing around these landmarks. On the plantar surface, the concavity of the midfoot was evident and this concavity extended into the midfoot from the medial aspect as age increased. The findings of this study indicated that with increasing age the foot becomes thinner in 3D, with bony architecture emerging, and the medial longitudinal arch (MLA) increases in area and concavity. Three-dimensional shape descriptors have shown good potential for locating and quantifying changes in foot structure across childhood. Three-dimensional shape descriptor data will be beneficial for understanding more about foot development and quantifying changes over time

    A Novel Scheme for Intelligent Recognition of Pornographic Images

    Full text link
    Harmful contents are rising in internet day by day and this motivates the essence of more research in fast and reliable obscene and immoral material filtering. Pornographic image recognition is an important component in each filtering system. In this paper, a new approach for detecting pornographic images is introduced. In this approach, two new features are suggested. These two features in combination with other simple traditional features provide decent difference between porn and non-porn images. In addition, we applied fuzzy integral based information fusion to combine MLP (Multi-Layer Perceptron) and NF (Neuro-Fuzzy) outputs. To test the proposed method, performance of system was evaluated over 18354 download images from internet. The attained precision was 93% in TP and 8% in FP on training dataset, and 87% and 5.5% on test dataset. Achieved results verify the performance of proposed system versus other related works

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Rice seed image classiļ¬cation based on HOG descriptor with missing values imputation

    Get PDF
    Rice is a primary source of food consumed by almost half of world population. Rice quality mainly depends on the purity of the rice seed. In order to ensure the purity of rice variety, the recognition process is an essential stage. In this paper, we ļ¬rstly propose to use histogram of oriented gradient (HOG) descriptor to characterize rice seed images. Since the size of image is totally random and the features extracted by HOG can not be used directly by classiļ¬er due to the different dimensions. We apply several imputation methods to ļ¬ll the missing data for HOG descriptor. The experiment is applied on the VNRICE benchmark dataset to evaluate the proposed approach

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods
    • ā€¦
    corecore