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Abstract 

The human eye, connected to the brain, gives people the possibility to immediately, 
automatically and exactly recognize one person from another. A main aim is obviously to “copy” 
this recognition mechanism of the brain and to use it as a means for face recognition. Since the 
human recognition happens through an automatic “authentication” of facial shape and features, this 
face study is totally Geometry-based. In order to formalize the anatomical facial features, many 
strategies may be used. This work collects various solutions.  

Particularly, a geometrical description of human face is here proposed as a survey. Some 
elements of Differential Geometry, such as the Coefficients of the Fundamental Forms, the 
Principal Curvatures, Mean and Gaussian Curvatures, the derivatives and the Shape and Curvedness 
Indexes introduced by Koenderink and VanDoorn are briefly defined and explained, and then used 
as descriptors for three-dimensional facial surface. Their behaviour on faces is classified according 
to some feedback parameters: similarity between different faces, sensitivity to noise, completeness 
and smoothness. 

Face is the most important part of human anatomy, and its study has many scopes. This 
survey may be used as a starting point for elaborating and implementing an algorithm for 3D facial 
recognition. 
 
1. Introduction 

Face recognition is a task involving our lifes daily. The nowadays attempt is to automate it 
in computers through targeted algorithms, in order to use it as a means suitable for the study and 
able to perform both authentication and recognition. The purposes are various, but belong to three 
big branches: face verification, or authentication, to guarantee secure access; face identification, or 
recognition of suspects, dangerous individuals and public enemies by Police, FBI and other safety 
organizations; and maxillofacial surgery, for studying the faces which surgeons have to deal with. 
As can be imagined, automatization is necessary. In particular, a facial recognition system is a 
computer application for automatically identifying or verifying a person from a digital image or a 
video frame from a video source. Some popular recognition algorithms are Principal Component 
Analysis, used by Lei et al. [23], Mian [25] and Xue et al. [56], Hidden Markov Models, used by Yi 
et al. [37], and Iterative Closest Point, used by Amor et al. [3], Amberg et al. [2], Alyuz et al. [1], 
Xiaoguang et al. [36], Yong-An et al. [38] and Smeets et al. [30]. 
Although 2D facial recognition was introduced earlier and was the first to be automated, in the late 
1980s the advantages of 3D recognition emerged. Three-dimensional face recognition is a method 
for facial recognition in which the three-dimensional geometry of the human face is used. It has 
been shown that 3D face recognition methods can achieve significantly higher accuracy than their 
2D counterparts, rivaling fingerprint recognition. 3D face recognition has the potential to achieve 
better accuracy than its two-dimensional counterpart by measuring geometry of rigid features on the 
face. This avoids such pitfalls of 2D face recognition algorithms as change in lighting, different 
facial expressions, make-up and head orientation. The main novelty of this approach is the ability to 
compare surfaces independent of natural deformations resulting from facial expressions. First, the 
range image and the texture of the face are acquired. Next, the range image is preprocessed by 
removing certain parts such as hair, which can complicate the recognition process. Finally, a 
canonical form of the facial surface is computed. Such a representation is insensitive to head 



orientations and facial expressions, thus significantly simplifying the recognition procedure. The 
recognition itself is performed on the canonical surfaces [41]. 

The method emerged significantly later than the other ones because of the technological 
limitation of acquisition of three-dimensional images. However, nowadays it can easily be possible 
to obtain 3D shootings just through the use of two or more 2D cameras pointing to the same 
subject: intersecting the views a 3D image is obtained. It’s the method used to realize the three-
dimensional effects of the latest movies. Since many public areas are shot by more cameras, a 3D 
recognition is possible. 

Starting from this concept, Elyan et al. [11] presented a technique for 3D face recognition 
system using a set of parameters representing the central region of the face. These parameters are 
essentially vertical and cross sectional profiles and are extracted automatically without any prior 
knowledge or assumption about the image pose or orientation. In addition, these profiles are stored 
in terms of their Fourier Coefficients in order to minimize the size of input data. Cadavid et al. [4] 
presented a method for 3D face recognition using adaboosted geodesic distance features. AdaBoost 
generates a strong-classifier based on a collection of geodesic distances that are most discriminative 
for face recognition. Fabry et al. [13] presented a general 3D face recognition method based on 
point cloud kernel correlation and kernel density estimation for registration, which doesn’t make 
use of a training set of faces or point correspondences and can handle noisy, unpreprocessed face 
scans. Queirolo et al. [27] [28] combined a Simulated Annealing-based approach (SA) for image 
registration using the Surface Interpenetration Measure (SIM) to perform a precise matching 
between two face images. Harguess et al. [20] presented an analysis on using the pattern of 
symmetry in the face to increase the accuracy of three-dimensional face recognition. They 
introduced the concept of the “dasia average-half-face psila”, motivated by the symmetry 
preserving singular value decomposition. Gunlu et al. [18] [19] presented a method for 3D facial 
feature extraction. In this method, 3D discrete cosine transform (DCT) is used to extract features. 
The coefficients of 3D transformation are calculated and the most discriminant 3D transform 
coefficients are selected as feature vector where the ratio of within-class variance and between-class 
variance is used as selection measure. They also investigate the proposed approach by using 3D 
discrete Fourier transform instead of 3D DCT for comparison. 

Anyway, if all these works show how recognition is possible with the use of different 
algorithms, mathematical operators, models and descriptors, no ones deal with the geometrical 
description of anatomical facial features. The brain gives human beings the possibility to recognize 
immediately persons, as an automatic process. Since the brain is unfailing, the possibility to 
computationally elaborate the same recognizing procedure gives the research a strong method for 
the face recognition. Excluding the typical colours of a person, namely skin, eyes and hair, the 
shape of the components of the faces are clearly the most important elements to establish a 
correspondence between a face and another. That is why a deep geometrical study of facial surface 
is so important. The use of some main notions and formalisms of Differential Geometry is 
necessary. This is exactly the starting point of the study. 
 
2. Geometrical Descriptors 

Some main notions of geometry are used to study the facial surface behaviour and help 
recognition. After introducing the definition of free-form surface, a summary of differential 
geometry basic coefficients and curvatures is here presented. Furthermore, shape and curvedness 
indexes are explained. All the elements explained in this section will be used as descriptors in the 
next one. 

Classical differential geometry is the study of local properties of curves and surfaces. A 
patch or local surface is a differentiable mapping x: U → nℜ , where U is an open subset of 2ℜ . 
Actually, a facial surface is not a well-known patch: it is a free-form surface. A free-form surface is 
defined to be a smooth surface, such that the surface normal is well defined and continuous almost 
everywhere, except at vertices, edges, and cusps [8]. They talk about free-form surfaces of 



sculptures, car bodies, human bodies and faces, airplanes, boat hulls and soil trends: they are 
piecewisesmooth. Free-form is a characterization of an object whose surfaces do not belong to 
classes easily categorizable as flat surfaces or quadrics. Accordingly, it is assumed that a free-form 
object consists of one or more “non-flat and non-quadric” surfaces. Alternatively, a free-form 
surface is rigorously defined as “a manifold of unknown equation which, thanks to suitable 
assumptions of regularity in the main function, the directional derivative calculated at any point, on 
the overall profile of partial curvatures, can be decomposed into subdomains through an artifice. 
Each subdomain, in turn, can be studied as a combination of simple geometries such as spherical 
shells, cones, cylinders, paraboloids and saddles”. In the next part of the paper the human face is 
treated as a free-form object characterized by sufficient regularity and composed by easily 
identifiable surfaces. The operators and curvatures used below can be applied to patches and free-
form surfaces in the same way. 

Since a patch can be written as an n-tuple of functions 
( ),),(),...,,(),( 1 vuxvuxvux n=  

the partial derivative of x with respect to u can be defined by 
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The other partial derivatives are defined similarly. 
 
2.1 Coefficients of the Fundamental Forms 
 It is possible to measure distances on a surface. In Euclidean space nℜ , if ( )nppp ,...,1=  

and ( )nqqq ,...,1= are points in nℜ , then the distance s from p  to q  is given by 
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Because a general surface is curved, distance on it is not the same as in Euclidean space; in 
particular, the form above is in general false however the coordinates are interpreted. To describe 
how to measure distance on a surface, the mathematically imprecise concept of an “infinitesimal” is 
necessary. The infinitesimal version of that for n = 2 for a surface is 

,2 222 GdvFdudvEduds ++=  
called First Fundamental Form, or Riemann Metric. This is the classical notation for a metric on a 
surface. E, F, G are functions U → ℜ such that: 
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and are called Coefficients of the First Fundamental Form. These coefficients are given by inner 
products of the partial derivatives of the surface. Therefore, the First Fundamental Form is merely 
the expression of how the surface inherits the natural inner product of 3ℜ . Geometrically, the first 
fundamental form allows to make measurements on the surface (lengths of curves, angles of tangent 
vectors, areas of regions) without referring back to the ambient space 3ℜ  where the surface lies [7]. 

To introduce the Second Fundamental Form, the definitions of Gauss map must be given. 
For an injective patch x: U → nℜ  the unit normal vector field or surface normal N is defined by 
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at those points ( ) Uvu ∈, at which vu xx ×  does not vanish [17]. The map that assigns to each point p 
on a surface the point on the unit sphere 32 )1( ℜ⊂S  that is parallel to the unit normal )( pN , or 

pN , is called the Gauss Map. 



Let x: U → nℜ be a regular patch. Then 
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are called the Coefficients of the Second Fundamental Form of x, and 22 2 gdvfdudvedu ++  is the 
Second Fundamental Form of the patch x. 
 Very often a surface is given as the graph of a differentiable function ),( yxhz = , where 

),( yx  belong to an open set U → 2ℜ . It is, therefore, convenient to have at hand formulas for the 
relevant concepts in this case. To obtain such formulas let us parametrize the surface by 
( ) ( )( ),,,,, vuhvuvux =   ( ) ,, Uvu ∈  

where u = x, v = y. A simple computation shows that 
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is a unit normal field on the surface, and the Coefficients of the Second Fundamental Form in this 
orientation are given by 
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From the above expressions, any needed formula can be easily computed. For instance, the 
Coefficients of the First Fundamental Form are obtained: 
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 Some authors used Fundamental Forms for recognition, images processing and motion 
analysis. Elad et al. [9] presented a method to construct a bending invariant canonical form for such 
surfaces. This invariant representation is an embedding of the intrinsic geodesic structure of the 
surface in a finite dimensional Euclidean space, in which geodesic distances are approximated by 
Euclidean ones. The canonical representation is constructed by first measuring the intergeodesic 
distances between points on the surfaces. Next, multi-dimensional scaling (MDS) techniques are 
applied to extract a finite dimensional flat space in which geodesic distances are represented as 
Euclidean ones. The geodesic distances are measured by the efficient fast marching on triangulated 
domains numerical algorithm. Applying this transform to various objects with similar geodesic 



structures (similar First Fundamental Form) maps isometric objects into similar canonical forms. 
Isometric surfaces share the same geometric structure, also known as the First Fundamental Form. 
Then, they presented a method to construct a bending invariant signature for such surfaces [10]. In 
his various publications Goldgof et al. [14] [15] [16] presented a new algorithm for recovering 
motion parameters of non-rigid objects using both point and line correspondences between 3D 
surfaces. It requires estimating the coefficients of the first fundamental form before and after the 
motion. A vector point function is utilized as the motion parameter, called the “displacement 
function”. Differential-geometric changes of surfaces are then used in tracking small deformations. 
Discriminant of First Fundamental Form, unit-normal and Gaussian Curvature are the invariant 
differential-geometric parameters that have been utilized for non-rigid motion analysis. 
 
2.2 Curvatures 
 Curvatures are used to measure how a regular surface x bends in 3ℜ . One way to do this is 
to estimate how the tangent plane changes from point to point. 
 The two-dimensional vector subspace 3)( ℜ⊂qDx , where D is the differential and q is a 
point of U, coincides with the set of tangent vectors to x at )(qx  [7]. By the above proposition, the 
plane )(qDx , which passes through )(qx = p, does not depend on the parametrization. This plane 
will be called the tangent plane to x at p and will be denoted by )(xTp . For each p there exists an 
orthonormal basis { }21 ,ee  of )(xTp  such that 111 )( ekeDN p −= , 222 )( ekeDN p −= . Moreover, 1k  
and 2k  ( 21 kk ≥ ) are the maximum and minimum of the Second Fundamental Form restricted to the 
unit circle of )(xTp . The maximum curvature 1k  and the minimum curvature 2k  introduced above 
are called the Principal Curvatures at p; the corresponding directions, that is, the directions given 
by the eigenvectors 1e , 2e  are called Principal Directions at p [7]. For instance, in the plane all 
directions at all points are principal directions. The same happens with a sphere. In both cases, this 
comes from the fact that the second fundamental form at each point is constant.  

The determinant of DN is the product 2121 ))(( kkkk =−−  of the Principal Curvatures, and the 
trace of DN is the negative )( 21 kk +−  of the sum of Principal Curvatures. If the orientation of the 
surface is changed, the determinant does not change (the fact that the dimension is even is essential 
here); the trace, however, changes sign. Particularly, in point p, the determinant of pDN  is the 
Gaussian Curvature K of x at p. The negative of half of the trace of DN is called the Mean 
Curvature H of x at p [7]. 

In terms of the principal curvatures can be written 
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At an elliptic point the Gaussian curvature is positive. Both principal curvatures have the 
same sign, and therefore all curves passing through this point have their normal vectors pointing 
toward the same side of the tangent plane. The points of a sphere are elliptic points. At a hyperbolic 
point, the Gaussian curvature is negative. The principal curvatures have opposite signs, and 
therefore there are curves through p whose normal vectors at p point toward any of the sides of the 
tangent plane at p. At a parabolic point, the Gaussian Curvature is zero, but one of the principal 
curvatures is not zero. The points of a cylinder are parabolic points. Finally, at a planar point, all 
principal curvatures are zero. The points of a plane trivially satisfy this condition. 

The Gaussian curvature and the mean curvature of x are given by the formulas 



( ) ,
2

2

,

2

2

2

FEG
gEfFeGH

FEG
fegK

−
+−

=

−
−

=
 

where E, F, G, e, f, g are the Coefficients of the Fundamental Forms. Using the parametrization 
such that ),( yxhz = , an alternative form for K and H are obtained: 
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The forms with h were implemented in the numerical computation and used to generate the facial 
images presented later. 
 The Principal Curvatures are the roots of the quadratic equation 

.022 =+− KHxx  
Thus 1k  and  2k  can be chosen so that 

.

,
2

2

2
1

KHHk

KHHk

−−=

−+=
  (4) 

 Some researchers used curvature as a means for recognition. Mahoor et al. [24] presented an 
approach for 3D face recognition from range data based on the principal curvature, kmax, and 
Hausdorff distance. They use the principal curvature to represent the face image as a 3D binary 
image called ridge image, which shows the locations of the ridge lines around the important facial 
regions on the face. D’Hose et al. [6] presented a method for localization of particular features on 
3D faces using Gabor wavelets to extract the curvature of the 3D faces, which is then used for 
performing a coarse detection of landmarks. Sun et al. [32] proposed to use a generic model to label 
the 3D facial features. This approach relies on their realistic face modelling technique, by which the 
individual face model is created using a generic model and two views of a face. In the 
individualized model, they label the face features by their maximum and minimum curvatures. 
Ming et al. [26] proposed a framework for 3D face recognition based on depth information, whose 
core is Orthogonal Laplacianfaces (OLPP), a method for utilizing a Euclid space into which data 
points are mapped and for producing orthogonal basis functions. In order to overcome facial 
expression variation, they first utilize curvature information projected onto the moving least-squares 
(MLS) surface to segment a face rigid area, which is insensitive to expression variation. In a survey 
of the available methodologies and parameters for reverse engineering, Vezzetti et al. [34] 
identified the Gaussian Curvature as a possible morphological descriptor, employing it in the 
methods of Percentiles, Angle Deficit and Quadratic Surface Fitting. 
 
2.3 Derivatives 
 The derivatives with respect to the horizontal and vertical coordinates are an important 
descriptor for facial surface behaviour, although their information is contained in other geometrical 
elements, such as the curvatures and the coefficients of the Fundamental Forms. Anyway they are 
used here as a separate parameter, because the other descriptors do not carry all the information the 
derivatives themselves do. The derivative is a measure of how a function changes as its input 
changes. Formally, the first derivative of the one-variable function f at a is the limit 
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of the different quotient as h approaches to zero, if the limit exists. The second derivative f ′′  is the 
derivative of the first derivative, if it exists. As its definition explains, the first derivative describes 
the slope of the facial surface and, consequently, identify the critical points, namely the points in 
which the derivative is equal to zero; while the second derivative tells us if those critical points are 
maximums, minimums or inflections. If 0)( <′′ af , then a is a local maximum of the function f; if 

0)( >′′ af , then a is a local minimum; while, if 0)( =′′ af , then a is an inflection point. The 
discussion can be extended to other dimensions, namely to functions with more variables, using the 
Hessian Matrix instead of the second derivative. The first derivatives with respect to x and y, the 
second and mixed derivatives are here used as descriptors. 
 Derivatives are widely used in many ways for face recognition purposes. Yongsheng et al. 
[39] proposed a novel high-order local pattern descriptor, local derivative pattern (LDP), for face 
recognition. LDP is a general framework to encode directional pattern features based on local 
derivative variations. The nth-order LDP is proposed to encode the (n-1)th -order local derivative 
direction variations, which can capture more detailed information than the first-order local pattern 
used in local binary pattern (LBP).  Then proposed a new Circular Derivative Pattern (CDP) which 
extracts high-order derivative information of images along circular directions. They argue that the 
high-order circular derivatives contain more detailed and more discriminative information than the 
first-order LBP in terms of recognition accuracy [40]. Jinye at al. [21] analyzed theoretically the 
derivative feature of ASBW by which the gradient vector of a facial image at every resolution level 
can be obtained. Then an analysis of the robustness of directional gradient angles of facial images is 
presented. Then we propose a multi-scale Bayesian face recognition based on ASBW. Essannouni 
et al.’s main objective [12] was to automate face tracking and verify the identity of the person. In 
fact the most pure algorithms of tracking has two major problems, namely the initialization problem 
and the lost track problem. To avoid these problems, the initialization is done by real time face 
detector. The verification of the presence of the searched face is done using a new technique of 
template matching based on robust correlation of the orientation of the second derivatives. The 
tracking is done using the Sum of Squared Difference (SSD). 
 
2.4 Shape and Curvedness Indexes 
 Several techniques have been developed to estimate the curvature information in the last two 
decades. From the mathematical viewpoint, the curvature information can be retrieved by the first 
and second partial derivatives of the local surface, the local surface normal and the tensor voting 
[33]. An interesting curvature representation was proposed by Koenderink et al. [22]. It is based on 
the parametrization of the structure in two features maps, namely the Shape Index S and the 
Curvedness Index C. The formal definition of Shape Index can be given as follows: 
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It describes the shape of the surface. Koenderink et al. proposed a partition of the range [-1,1] in 
nine categories, which correspond to nine different surfaces. In this paper a simplified scale is used, 
with seven categories, proposed by Vezzetti et al. [33] and Calignano [5]. 

This representation has many intuitively “natural” properties [22]: 

• two shapes for which the Shape Index differs merely by sign represent complementary pairs 
that will fit together as “stamp” and “mould” when suitably scaled; 

• the shape for which the Shape Index vanishes - and consequently has indeterminate sign - 
represents the objects which are congruent to their own moulds; 

• convexities and concavities find their places on opposite sides of the shape scale. These 
basic shapes are separated by those shapes which are neither convex nor concave, that are 
the saddlelike objects. The transitional shapes that divide the convexities/concavities from 
the saddle-shapes are the cylindrical ridge and the cylindrical rut; 



• if shapes are drawn at random from an isotropic distribution in the ),( 21 kk -plane, then the 
Shape Index scale will be uniformly covered, thus the scale is “well tempered”. This follows 
immediately from the fact that the Shape Index S is directly proportional to the angle with 
the 021 =+ kk -axis. 

S does not give an indication of the scale of curvature present in the shapes. For this reason, an 
additional feature is introduced, the Curvedness Index of a surface: 
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It is a measure of how highly or gently curved a point is and is defined as the distance from the 
origin in the ),( 21 kk -plane. Whereas the Shape Index scale is quite independent of the choice of a 
unit of length, the curvedness scale is not. Curvedness has the dimension of reciprocal length. In 
practice one has to point out some fiducial sphere as the unit sphere to fix the curvedness scale. 
Curvedness index scale is shown in Figure 2. 

The curvedness has some obvious properties that makes it a desirable curvature measure in 
an intuitive sense [22]: 

• the curvedness vanishes only at the planar points. Both the Gaussian and Mean Curvature 
also vanish at the planar points. The Gaussian Curvature vanishes also on the parabolic 
curves, however, whereas the Mean Curvature also vanishes on the loci where the surface is 
locally minimal (that is, 21 kk −= ). But both at the parabolic points, and at the minimal 
points, the surface has a decidedly “curved look” to most observers; 

• the curvedness scales inversely with size; 
• the curvedness is trivially coordinate independent, i.e. it has true geometrical significance. 

 
Few authors used shape and curvedness indexes for recognition. Worthington et al. [35] 

investigated whether regions of uniform surface topography can be extracted from intensity images 
using shape-from-shading and subsequently used for the purposes of thirty object recognition. They 
draw on the constant Shape Index maximal patch representation of Dorai et al.. They showed that 
the resulting Shape Index regions are stable under different viewing angles. Song et al. [31] 
described a 3D face recognition method using facial Shape Indexes. Given an unknown range 
image, they extract invariant facial features based on the facial geometry. For face recognition 
method, they define and extract facial Shape Indexes based on facial curvature characteristics and 
perform dynamic programming. Shin et al. [29] described a pose invariant three-dimensional face 
recognition method using distinctive facial features. They extract invariant facial feature points on 
those components using the facial geometry from a normalized face data and calculate relative 
features using these feature points. They also calculate a Shape Index on each area of facial feature 
point to represent curvature characteristics of facial components.  
 
3. Parameters benchmarking 

To perform the study on facial geometric features, many human faces in person were 
scanned and used to numerically test the descriptors just introduced. The scanner was a Minolta 
Vivid 910. Thirty scans of six subjects with different expressions were taken. They are useful to 
check if the descriptor is strongly connected to the expression or if it is stable between different 
persons and poses. Real surfaces were never used, but only points that describe the surface shape. 
These point clouds are called shells. The shells were elaborated by RapidForm, a standard software 
for 3D scanners. Only the points of the face were kept: the unnecessary, such as hair, ear, neck, 
parts of collar and clothes, was excluded. A noise filter was applied and little holes were filled. 
Then the point clouds were triangulated and the mesh was converted into a square grid. The 
processing and the numerical implementations were performed with Matlab. An example is shown 
in Figure 1. 



      
Figure 1. The triangular mesh and the square grid of three scanned faces. 

Now a graphical representation of the behaviour of the various descriptors on facial surfaces, 
one at a time, is here presented. An analysis of each of them is here provided. The goal is to find out 
the features the these descriptors join among all the faces, in order to collect and use them to 
describe the similarities of faces. Although every visage is unique, all faces are similar. As a matter 
of fact, the first step of a recognition algorithm is to search the points common to all faces. Then the 
comparison between the position of these points of different faces is done, in order to authenticate 
the subject. But the individuation of the common features is an indispensable first stage for the 
following steps. This work is focused exactly on the formalization of this analogy, through the use 
of these elements of Differential Geometry. Every descriptor behaviour will be judged using four 
parameters: 

• similarity of the descriptor among various faces and different facial expressions: the 
analogies between the behaviours of the descriptor among different scans will be 
analysed; 

• sensitivity to noise: some inaccuracies during the scanning may present, especially 
where there is an abrupt changing of colours, namely on the mouth, near the eyes, 
the eyebrows and the hairline. Some descriptors are more affected by the noise. That 
is because the acquisition device coincides with the measuring instrument; 

• completeness in the description of the whole visage: some parameters have an 
interesting behaviour in many zone of the face, while others accurately describe only 
one area; 

• smoothness of their trend (size of the neighborhood): it is a measure of how much 
gradual is the trend of the descriptor on the face; the presence of isolated points with 
a very different value is a “not smooth” behaviour. For every descriptor and for 
every point, its neighborhood is taken into consideration: if the surrounding points 
have a similar value of the descriptor, then the trend is gradual and the descriptor has 
a smooth behaviour. 

In all the following images, generated with Matlab, red colour corresponds to a high value of the 
descriptor, while blue corresponds to a low value. 
 
3.1 Coefficients of the Fundamental Forms 
 The forms (1) and (2) were implemented in order to apply the definitions of these 
coefficients on the shells point by point. The six coefficients presents different behaviours on the 
face, as can be seen in Figures 2, 3, 4, 5, 6 and 7. 



       
Figure 2. The Coefficient E of the First Fundamental Form applied to three facial shells. 

     
Figure 3. The Coefficient F of the First Fundamental Form applied to three facial shells.    

     
Figure 4. The Coefficient G of the First Fundamental Form applied to three facial shells. 

     
Figure 5. The Coefficient e of the Second Fundamental Form applied to three facial shells. 

      
Figure 6. The Coefficient f of the Second Fundamental Form applied to three facial shells. 



      
Figure 7. The Coefficient g of the Second Fundamental Form applied to three facial shells. 

As can be seen from the images above, the coefficients have similar behaviours in the faces, even 
though the facial expressions are different. Since the mouth is an area in which the accuracy of the 
scanning was not as precise as other parts, probably because of the changing in the colour, this zone 
can be considered, and the areas on the face borders, more sensible to the noise, so less reliable. The 
same is true for the eyes, that some of the subjects kept close and some kept open during the 
scanning. Consequently the geometry of these zone may be not so similar for all the shells. From an 
immediate view can be noticed that only some of these descriptors describe a face in detail: while 
the graphical representation of E and e does not give any indication of where mouth and eyes are 
located, other descriptors, such as f and g, are more “complete”. Probably g is the most complete at 
all: the point of the nose, the little protrusion of the mouth, the eyes and their borders, and even the 
lines of the eyebrows can be clearly identified. On the contrary, E is very restricted to the zones at 
the two sides of the nose, without giving any description of other parts. All the graphs seem to be 
quite smooth, namely there are not peaks or points of non-differentiability, such as sharp corners or 
cusps. Furtheremore, F and f have an even symmetry with respect to the vertical axis through the 
centre of the nose, namely what is positive on the left is negative on the right, and viceversa. 

 
3.1 Curvatures 
 The forms (3) and (4) were implemented to obtain a numerical implementation of the 
Principal Curvatures, the Gaussian Curvature and the Mean Curvature. Their behaviour on facial 
surfaces is shown in Figures 8, 9, 10 and 11. 

     
Figure 8. The Principal Curvature 1k  applied to three facial shells. 



     
Figure 9. The Principal Curvature 2k  applied to three facial shells. 

     
Figure 10. The Gaussian Curvature K applied to three facial shells. 

     
Figure 21. The Mean Curvature H applied to three facial shells. 

Although the main colours of the last two images seem to differ among the faces, the behaviour of 
all these curvatures are similar from face to face. The differences are given by the various facial 
expressions and by the initial data obtained with the scanning. In fact, the trends are quite analogue. 
The Principal Curvatures and the Mean Curvature give a complete description of the face, giving 
the possibility to distinguish the various facial features, even the details around the eyes, while the 
Gaussian Curvature is the less exhaustive, probably the less complete among the descriptors. 
Moreover, it is the less smooth, namely its behaviour is made up of peaks and cusps: the maximums 
and minimums are pointwise and not gradual. This is not true for the other curvatures. 
 
3.3 Derivatives 
 The derivatives were computed with the function gradient of Matlab. For every point of 
the point cloud it checks the coordinates of the adjacent points and computes the derivative in that 
point. Axis x is vertical, axis y is horizontal, axis z enters the sheet. In Figures 12, 13, 14, 15 and 16 
some behaviours are shown. 



     
Figure 3. The derivative of  z with respect to x-direction applied to three facial shells. 

     
Figure 4. The derivative of  z with respect to y-direction applied to three facial shells. 

     
Figure 5. The second derivative of  z with respect to x-direction applied to three facial shells. 

     
Figure 6. The second derivative of  z with respect to y-direction applied to three facial shells. 



     
Figure 16. The mixed derivative of  z applied to three facial shells. 

The behaviours of the derivatives among different faces is quite similar, especially for the second 
derivatives and the mixed the derivative. The first derivatives and the second derivative with respect 
to y give exhaustive information of many parts of the face, above all the first derivative with respect 
to y. Contrariwise the second derivative of z with respect to x gives only partial information, only in 
the area of the nose. Moreover, the first derivatives are very smooth, probably the smoothest of this 
study: the increments and decreases are gradual. 
 
3.4 Shape and Curvedness Indexes 
 Forms (5) and (6) were used to numerically implement the forms for S and C. The images 
shown if Figures 17 and 18 were obtained. 

     
Figure 17. The behaviour of the Shape Index applied to three facial shells. Red points are the ones corresponding 
to a high value of the index (dome surface), while blue ones correspond to a low value (cup surface). 

     
Figure 18. The behaviour of the Curvedness Index applied to the same three shells. The wrinkles near the mouth 
and the nose of the first and the second shells can be noticed: they are consequences of the crimped expression of 
the face. The red points have a higher value of the index. 

The behaviour of the Indexes are similar among the two faces, although the facial expression 
differs. Generally, cheeks, lips, bottom nose, pupils and forehead have a high value of S, while the 
inner corners of eyes and the zone around the nose have low values of the Shape Index. Saddle 
points, such as the part on the top of the nose and the little hollow between nose and mouth, have 
medium values, close to zero. The lighter zones of the Curvedness Index correspond to those areas 
in which the curvature brusquely change value: eyebrows, eyelids, nose and lips. The areas close to 
the mouth may be considered more sensitive to the nose and so less reliable. These descriptor are 



very complete: by their definition and the structure of the face, they are able to describe accurately 
every part of the face, even focusing the zones, such as the saddle points, less easily identifiable. 
They are not very smooth, but for their role in the description, it does not matter at all. 
 
4. Discussion and conclusion 
 The descriptors are judged and classified according to the four parameters. A good mark (1 
is bad, 10 is excellent) in similarity means that the descriptor has a similar behaviour in all the 
shells; a good mark in sensitivity means that it is not sensitive to the noise, namely the descriptor 
does not focus its description on the zones more affected by the noise, i.e. mouth and eyelids; a 
good mark in completeness implies that the descriptors well portrays many areas of the face; a good 
mark in smoothness means that its behaviour is smooth: its trend is gradual. The marks are shown 
in Table 1 and in the graphical representation of Figure 19. 
 The evaluation is performed thanks to the graphs and the images here reported previously. 
The behaviour of the descriptors allow a precise examination of their trends, based on the 
parameters chosen for the judgement. 
 

 similarity sensitivity completeness smoothness 
E 10 10 6 8 
F 9 10 7 8 
G 7 8 7 8 
e 8 10 7 8 
f 9 10 7 8 
g 8 8 9 8 

1k  8 7 8 7 

2k  8 7 8 7 
K 8 7 6 6 
H 8 7 9 7 

xD  10 10 7 10 

yD  7 7 9 10 

xxD  10 10 6 8 

yyD  7 7 8 8 

xyD  8 9 8 8 
S 7 7 10 6 
C 7 7 10 6 

Table 1. The descriptors are judged according to the parameters. 
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Figure 19. Marks of the descriptors referred to the parameters. 
 



 The descriptors show good marks for every parameter. This means that these descriptors are 
not only valid, but even suitable for a face description. Averaging the marks for every descriptor a 
diagram of the results was done, in order to have a graphical view of their usefulness. It is reported 
in Figure 20. 
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Figure 20. Global marks of the descriptors, obtained with an average. 
 
 The global marks are quite good for all the descriptors. The best evaluation is given to the 
derivative with respect to x, whose behaviour is very similar among different faces and facial 
expressions, is not very sensitive to noise and is the smoothest between the geometrical elements. 
The worst is the Gaussian Curvature. It is not complete and not very smooth: many punctual values 
are present in its trend. 
 
 The attention was here focused to some descriptors of Differential Geometry applied to the 
human face, giving a survey of their behaviours on facial surface. They were classified according to 
four parameters, whose meaning may be easily and concretely checked. This is a starting point for a 
complete geometrical description of faces. In the next work, landmarks will be used, namely some 
scientific points of reference on the face, which all faces join and with a particular biological 
meaning. It will be shown how to use these descriptors as a means for recognition, identifying the 
areas of interest which the landmarks lies in and then extracting them accurately. The goal is most 
of all to show how recognition is possible only using geometry. 
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