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Silhouette-Based Gait Recognition Using Procr ustes Shape Analysisand Elliptic Fourier Descriptors

Sruti Das Choudhury, Tardi Tjahjadi
School of Engineering, University of Warwick Gibbet Hill Rd, Coventry, CV4 7AL, United Kingdom.

Abstract

This paper presents a gait recognition method which corslipatio-temporal motion characteristics, statistical an
physical parameters (referred to as STM-SPP) of a humareautar its classification by analysing shape of the
subject’s silhouette contours using Procrustes shapgsaséPSA) and elliptic Fourier descriptors (EFDs). STMPSP
uses spatio-temporal gait characteristics and physicahpeters of human body to resolve similar dissimilarityreso
between probe and gallery sequences obtained by PSA. Adased shape analysis using EFDs is also introduced to
achieve robustness against carrying conditions. Theifitagon results by PSA and EFDs are combined, resolving
tie in ranking using contour matching based on Hu momentspeEmental results show STM-SPP outperforms

several silhouette-based gait recognition methods.
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1. Introduction

Biometrics has emerged as a reliable means of identifyingraam subject based on the subject’s distinctive
biological features. Physiological biometrics such a®fdimgerprints or iris pattern generally require cooperati
from the subject for a particular view, physical contact ooxyimity [1]. Behavioural biometrics examines human
behaviour and the most promising example is gait which etgpéosubject’s distinctive way of walking to perform
identification without interfering with the subject’s agty [2, 3]. Gait has the potential to identify a human subpc
a distance using low resolution video sequences, when glogstal biometrics are not perceivable [4]. Furthermore
it is difficult for a subject to conceal and disguise/lés gait characteristics [5, 3]. However, variations of the
subject’s clothing, footwear and hair styles ovefelient days bring challenges to gait recognition, and thgesti®
physical and mental conditions, e.g., leg injury, carryampditions, drunkenness, illness, fatigue, pregnancy, et
distort the walking patterns [1]. Gait recognition methdelsd to be not robust due to presence of occlusions in
the scene, and like most other biometrics a subject’s gaitaciteristics change with Ieer age. Despite these
challenges, gait has contributed to many potential apidica in the field of visual surveillance, access control,
forensics, biometric authentication and criminology (§69 7]). Approaches to gait recognition can be broadly

classified into two categories: model-based and silhourtsed.



Model-based gait recognition methods (e.g., [7, 8, 9, S§rabterise a walking subject by a structural model and
a motion model. The structural model usually representstibgect by a 2-dimensional (2D) contour, a stick figure
or a volumetric model based on the proportions of the humaly parts, and measures time-varying gait parameters
such as gait period, stance width and stride length to olttedrgait signatures. The motion model incorporates
the kinematical and dynamical motion parameters of theestipg¢.g., rotation patterns of hip and thigh, joint angle
trajectories and orientation changes of limbs. These nustican reliably deal with self-occlusions and occlusions
caused by the presence of other objects in the scene. Thewar&nt to scale changes, rotationfibets and slight
variations in viewpoint. Also, they are robust to noise. Héwer, they are characterised by complex searching and
mapping processes which increase the size of their fegbaeesand computational cost.

Silhouette-based gait recognition methods do not assunex@itit model of the human body, but analyse the
spatio-temporal shape and motion characteristics of sdties. Spatio-temporal motion-based methods (e.g., [1, 3
10, 11, 12, 13, 14]) capture both the spatial structural anmgpbral transitional characteristics of gait. These ndtho
are easy to implement with low computational complexity aimeplified feature space. However, they are susceptible
to variation in camera view and walking speed. Statisticathuds (e.g., [2, 15, 16, 17]) usually describe silhouettes
using shape and motion descriptors such as velocity monfigbisZernike velocity moments [16] and Procrustes
mean shape distance [2]. Eigenspace transformation amhicaihspace analysis are widely used in these methods
to reduce the dimensionality of input feature space andgéi class discrimination. Statistical methods are more
resilient to noise [6]. The physical parameter based meilied)., [18, 19]) estimate the subject’s geometrical and
structural properties, e.g., step length, cadence andhhéeifnese methods are robust against lighting variatiods an
segmentation imperfections. However, they require impdaechniques for camera calibration, body-part labelling
and depth compensation [6].

Since the subject’'s shape provides more significant infGonahan its kinematics in gait analysis for human
identification [20], we propose STM-SPP which analyses theps of silhouette contours using Procrustes shape
analysis (PSA) and elliptic Fourier descriptors (EFDs)][2%ince the performance of gait recognition algorithm
increases with the number of appropriate gait signaturasidered, we aim toffectively combine spatio-temporal
gait characteristics, statistical and physical paramai€human body for improved classification rate with reduced
computational complexity using simplified feature spacée ™ethod is defined on the lateral (i.e., profile) view
of silhouettes of a subject walking parallel to the imagenplaas most of the significant gait characteristics are
captured in this view. Instead of analysing the silhouettdy its boundary (i.e., contour) is considered to reduee th
computational complexity of STM-SPP.

Shape analysis by comparing landmarks have been appliéckirsd fields [22], e.g., study of shapéfdrences of
brains to identify schizophrenic patients, handwritingagnition, fish recognition, robotic harvesting of mushrsp
and study of shape and size variability of microfossilsngsraditional or geometrical methods. The traditionalgha
analysis methods either examine the ratios of distancelseoangles between landmarks, whereas the geometrical

methods analyse coordinates of the landmarks. One of ther nmagtivations for STM- SPP is to demonstrate the
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potential of traditional shape analysis for identifyingian subjects based on their gait signature.

With regards to a subject’s identity, the temporal chandeth® subject’s shape in a gait sequence provides
better discriminative power than the discrete snapshoimages, but it increases the computational complexity.
The performance of any shape-based gait recognition metegchdes due to variations in hair styles, clothing and
footwear over dierent days, as these factors distort the silhouette shdygeshiape of a silhouette is also significantly
altered due to carrying conditions. If either of the galleryprobe subject carries any item, certain parts of the
silhouette shape are likely to change and the discrimieatbility of the shape-based gait recognition algorithm
decreases with respect to these parts.

STM-SPP extends the application of traditional shape atgethod in gait recognition by comparing distances
of specific landmarks from the centre of mass of the subjsdt®uette contour (COM-SC) using PSA. The pur-
pose of using these distances rather than coordinates tdritiemarks is to reduce the dimensionality of the feature
space from 2D to 1-dimensional (1D). STM-SPP providesfhoient means of obtaining dissimilarity score between
gallery and probe sequences using PSA and EFDs for subgesifitation. The method validates similar dissimilarity
scores obtained by PSA using spatio-temporal gait chaistits and physical parameters of human body to enhance
classification rate in the presence of across-day gait ti@m= (e.g., walking speed, ftierent types of clothes and
footwear, and change of hair styles). The method also peswaeh experimentally supported insight into the detection
procedure of small carried items based on anatomical gudileuman body and introduces a part-based EFD analy-
sis to achieve robustness against shape variations dueryingeconditions among the probe and gallery subjects (as
detailed in Section 3.3). To utilise the benefit of shape saqe processing with reduced processing time, STM-SPP
characterises the subject’s contours using EFDs at spetifises of a gait period to considerably reduce computa-
tional complexity as well as to achieve robustness agaiatitimg speed variations and missing or distorted frames
(as detailed in Section 3.3). The output of the two classifi\SA and EFDs) combined by using rank-summation
based combination rule is used for identifying the subjeith the application of hierarchical contour matching lthse
on Hu moments [23] to resolve the case of two classes withahesombined rank.

The paper is organized as follows. Section 2 discussegdaledrk and Section 3 presents STM-SPP. The exper-

imental results are analysed in Section 4 and Section 5 gdeslthe paper.

2. Related Work

The silhouette based methods have advanced gait analydisifiean identification. The correspondence-free,
view-dependent method in [24] obtains 2D gait signaturesifthe 3-dimensional (3D) volume which encloses the
walking subject. The signature consists of image selfianity plot (SSP) which is defined as the absolute correla-
tion of each pair of images in two gait sequences of a walkidgext. The SSPs of two flierent gait sequences are
normalised following determination of frequency and phafgait, and compared using pattern classification tech-

nigues for human identification. Spectral partitioningésfprmed in [25] and human identification is achieved using
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weighted correlation and median weighted distance.

The correspondence-free method in [18] computes the gadgtcpef a subject by analysing width of the bounding
box which encloses the subject’'s moving silhouette and Bsg®sian classifier to confirm the subject’s identity.
However, silhouette width is noffective for computing gait period of the frontal view of a mogisubject. Hence,
temporal change of silhouette height is also considered%h o achieve robustness againdtelient views. This
method performs template matching between key frames ofdliery and probe gait sequences using normalised
correlation to obtain correlation scores, and uses neaeggibour classifier (NNC) for gait recognition. The method
in [14] converts a binary silhouette into 1D normalised aliste signal by contour unwrapping with respect to the
silhouette centroid. Principal Component Analysis (PC#\}hen used to reduce the dimensionality of the feature
space and to obtain projection centroids correspondingab gallery sequence in the eigenspace. Finally, NNC and
NNC with respect to class exemplars are used for identifinafl he identification is validated based on the subject’s
physical parameters for increased accuracy. The methdbiruges 3D radial silhouette distribution transform and
3D geodesic silhouette distribution transform for asgigrdepth information to the sequence of silhouettes. A genet
algorithm is used to combine features extracted by usirgptdiferent feature extractors, namely, radial integration
transform, circular integration transform and weightedwichouk moments for gait recognition.

Gait Energy Image (GEI) [1] which contains spatio-tempaonattion information of a gait period, is computed
from binary silhouettes. Real gait templates are computad £ach gait period and distorted to generate synthetic
gait templates. Component and discriminant analyses aregarformed on the templates for dimensionality reduc-
tion. The real and synthetic gait features thus obtainecdc@ngbined using a feature fusion strategy for improved
identification performance. This approach is not only cotapaonally dficient and consumes less storage space, but
also robust against noise. The gait recognition method Th §@mputes Gait Entropy Image from a sequence of
images of a subject’s gait period to identify noncooperaiirdividuals in unconstrained environment with varying
covariate conditions for gallery and probe sequences. akelime method [13] computes gait period by counting the
number of foreground pixels mostly from the legs and perfosbject identification using spatiotemporal correlation
of silhouettes. The method in [28] captures temporal inftiam of the gait sequence into a single colour image called
Chrono-Gait Image, and the method in [29] computes gait floage by determining the optical flow field from se-
guence of silhouettes for gait recognition. The featureaetion process in [12] involves the computation of angular
distance between the foreground pixels and the centre aGiltihmuette. The method uses linear time normalisation to
determine the subject’s identity. Thefidrent clothes worn by a subject in the gallery and probe sempsechange
specific parts of silhouette’s shape and thus complicat&#mification of the subject. Therefore, the method in [30]
applies a part-based feature extraction strategy to aelsigvstantial clothing invariance and uses an adaptivehiveig
control mechanism to identify the subject.

The use of general tensor discriminant analysis for gadgaition in [31] overcomes the undersampling problem
of conventional linear discriminant analysis (LDA), whideeserving discriminative information of the gallery ters

The use of GaborD, GaborS and GaborSD based averaged gaé iefaresentations in [31] considerably reduces the
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computational complexity of Gabor based image representatThe method in [32] normalises gait dynamics using
population Hidden Markov Model, whose states are specifince phases of a gait period determined by Viterbi
algorithm, and computes shape distances between stansesphising LDA to maximise inter-class and minimise
intra-class variations of the subjects for human identifice The method in [33] considers gait sequences as a third-
order tensor and uses an EigenTensorGait obtained by medtil PCA. The method in [34] recognises the periodic
movements of a human subject using motion power spectrbisinaf the Fourier co@cients of unstructured feature-
point kinematic data acquired from a marker-based 3D ojpticdion capture system.

The method in [35] represents deforming shape sequencaswdihsubjects over a gait period by 2D discrete
Fourier series and uses the resulting magnitude specwatalfie gait signatures. It uses Bhattacharya distancéametr
for maximising inter-class separation to achieve improgtedsification rate and finally uses k-nearest neighbour
classifier (k-NNC) for human identification. Motivated byetencouraging identification rate of this method, STM-
SPP analyses ten specific image frames of a gait period wilksE-form gait signatures for subject classification.

STM-SPP compares favourably with the method in [20] (reféito as VCR-C) and the method in [2] that also use
PSA for gait recognition. VCR-C uses both parametric andpaoametric methods to compare deforming silhouettes
for human identification and activity recognition. Humaraghs are described as k-dimensional complex vectors,
and Procrustes distance metrics are used to compute disthrtween the shape sequences. Although we consider
the distances of specific landmarks from COM-SC to compamamushapes at specific phases of a gait period to
simplify the feature space, a specific frame-wise compansay not always produce satisfactory identification due
to distortions of silhouettes, e.g., caused by partialusiohs. We thus characterise the contour of a silhouette at
specific phases of a gait period by translation-rotaticadesinvariant EFDs and perform subject classification based
on a dissimilarity score to exploit the benefit of shape saqgegrocessing without compromising the simplicity in
implementation and simplification of feature space.

The PSA in [2] describes the boundary points of the silheustta vector df complex numbersin 2D shape space
called a configuration and compares two such configurationsmeasuring similarity using Procrustes mean shape
distance. To ensure the same set of boundary pointsfiereint images are used for comparison, an interpolation
technique with point correspondence analysis is used. \Weider twenty eight landmarks based on anatomical and
geometric properties of human body on the silhouette contostead of considering the coordinates of landmarks for
comparing shapes, we use the distances of the landmark&f@ivir SC which correspond to theftérent rows of the
uni-columnar configuration matrix. ldentification is achéd by analysing the average dissimilarity score obtained
by comparing the probe configuration matrix with the galleopfiguration matrices of multiple sequences of same
subjects from the gallery data set.

The method in [2] employs classifier combination rules to borma the static and dynamic gait characteristics
obtained respectively by analysing silhouettes’ shapdgaint angle trajectories of lower limbs. STM-SPP combines
the classification results obtained by PSA and EFDs of sdtteucontours using rank-summation based classifier

combination rule for its simplicity andfectiveness.
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Figure 1: Extraction of a moving silhouette: (a) backgroimdge; (b) original image; (c) segmented regions; (d)

smoothed segmented region; (e) binary silhouette; (fpaitte contour; and (g) contour after polygon approxinmatio

3. STM-SPP

The proposed method, STM-SPP, comprises three module€Ex¢igction and postprocessing of a subject’s
silhouettes; (2) Classification of the subject using PSAagehl) and using EFDs (phase 2); (3) Combining the two

classification results.

3.1. Module 1: Silhouette extraction and postprocessing

Silhouette extraction involves segmenting regsthat correspond to a walking subject in a cluttered scenkl-S
SPP employs background modelling and moving object seatientin [36, 37], where background is considered
to be any static or periodically moving parts of a scene thatains static or periodic over the period of interest.
The segmented regions are smoothed using Gaussian filtsuafetted to connected-component analysis involving
morphological operation of dilation to remove noisy pixaigd followed by erosion to fill up any small holes inside
the silhouette to give a single connected region. The snedladhgmented region is then tracked based on the overlap
of the centroid of the bounding rectangle which enclosesdg®n in the subsequent frames as in [37]. The process is
illustrated in Fig. 1(a)-(d). The tracked segmented reggdnnarised using 2D Otsu automatic thresholding techmiqu
[38], which utilises both the grey level information of eaailkel and its spatial correlation information within the 2D
neighbourhood to outperform the Otsu method [39] in thegures of noise for extracting the subject’s silhouette as
illustrated in Fig. 1(e). The extreme outer boundary of #rgést connected component, i.e., silhouette contour as

shown in Fig. 1(f) is obtained using the sequence of vertige®rsal algorithm based on connectivity [37].

3.2. Phase 1 of Module 2: PSA

The successful identification of a subject should not dementow far the subject is from the camera and the
direction of walking. Thus, the shape feature vector useddfntification must be invariant to scale, translation and
rotation. One means of achieving this is through PSA, whigblves analysing the distribution of a set of shapes by
matching configurations (where each configuration is a sgeofmetric locations of landmarks of a shape) to calculate

the best shape-preserving Euclidean transformationsg usast squares techniques. The 2D Cartesian moment of
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orderp andq of a contour (x, ) is
N
Mg = > 10CY)XPY, 1)
i=1

whereN is the total number of pixels in the contour. The coordinafe€OM-SC, ., Yc), iS given by the ratio of
first-order to zero-order contour moments [40], i.e.,

- Y= (2)

We assign anatomical landmarks by considering thige@int positions of the human body joints as a fraction
of subject’s heightKl), obtained by measuring the height of the bounding rectanglich encloses the silhouette
contour. The vertical positions of ankl&), knee K), hip (HI), chest C), shoulder § H) and head KID) are then
estimated as a fraction of the body height following anatainstudies in [41] as 0.039 0.28H, 0.53H, 0.72H,
0.818 and 0.87® measured from the bottom of the bounding rectangle, relspéct The boundary points of the
contour that correspond ¥ K, HI, C, SHandHD are located (labelled as 11, 12,17, 19, 9, 14, 15, 21, 7, 23,5,
4,26, 3 and 27 in Fig. 2) and are treated as anatomical ladkdmar

Two mathematical landmarks are also defined as the end mditits contour diameter (Diam) joining two farthest

boundary points (labelled as 1 and 18 in Fig. 2), i.e., [42]
Diam(Contour)= max|[Dist(, g;)]. 3)

where Dist(.,.) computes the distance between two bounpleints o andq;. For better results, ten additional
pseudo landmarks are also considered (labelled as 2, 28, 8, 22, 10, 13, 16 and 20 in Fig. 2), each of which is
equi-distantly spaced between the anatomical landmatks tWenty eight landmarks are traversed in anticlockwise
direction starting from landmark 1 with respect to COM-Stthie double support phase of the gait period when both

feet are almost flat on the ground and farthest from each athehown in Fig. 2, resulting in the maximum width of
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the bounding rectangle of the contour. Therefore, the widitthe bounding rectangle in each frame of a gait period
is measured in terms of pixel units and the frame which cpoeds to the maximum width of the bounding rectangle
is considered as the subject’s double support phase.

The presence of shadows under feet distort the contourshreefiet and thus bring challenges to the estimation of
landmarks at the toe and ankle. Therefore, in the case okd&taontaining shadows under feet, STM-SPP encloses
the silhouettes using a bounding rectangle and estimateetfien of interest (ROI) from the bounding rectangle
having identical width but slightly reduced heighiti to discard the shadows under feet, whelrés the height of
the bounding rectangle andis a fraction. The value at is experimentally set to be 0.9375 for USF data set [28]
and 0.9901 for CMU MoBo data set. The estimated ROI is then copied to dimktson image of fixed height, i.e.,
height-normalised, for all the subjects of CMU data set tnaee camera depth variations. However, the silhouettes
provided by the USF HumanlID data set are already croppethecatigned and normalised to a fixed size 12288.
Thus, for the USF data set, we do not need to perform any niatiain of a silhouette after cropping its height to
remove the shadows.

The distancell; between each landmark;(y;) and COM-SC is given by
dli = [(x=%)? + (y = )?] . (4)

These distance values as a function of equally-spaced mwicatly increasing positions along contours form the

gallery and probe shape signals, and are labelled withénsgfat correspond to landmarks (denoted by solid circles)
in Fig. 3(b) and (c). The dimension of the configuration neatsi corresponding to gallery and probe sequences is
k x m, wherek=28 is the number of landmarks ang-1 is the number of dimensions of the landmarks. PSA is used
to measure the dissimilarity between two such configuratiatrices to achieve view, rotation and scale invariance.

Firstly, the gallery and probe configuration matricBs¢ndS,, respectively) are centred using [22]
S:I_C = CS:L ) SZC = CSZ» (5)

where centring matrixC = Iy — %1kll, Ik is ak x k identity matrix, 1 is ak-dimensional vector of ones, and T is
the transpose operator. The centred probe configuratiomn®at is then subjected to PSA to be transformed using
a combination of translation, scaling and rotation operetito give the transformed probe configuration matrix, i.e.
[22]

Y = {8Sl + Ly : Be R, T € SO(mM),y € R™}, (6)

whereg € R* is scale[' is an fm x m) rotation matrix,SO(m) is the special orthogonal group ahfx m) rotation
matrices and is an (n x 1) translation m-vector. The similarity parameterd” andg are estimated by minimizing

the squared Euclidean distance [22], i.e.,

D2 pp(Ste. S2c) = [1S1c ~ ASzel — Ly "I, 7
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Figure 3: Silhouette representation: (a) Positions of CO&®1-and landmarks 1 to 28; (b) and (c) are respectively
probe and gallery shape signals consisting of distanceamafnharks from COM-SC in anti-clockwise direction;

(d) Superimposition of the transformed probe shape sigteshed line) on the gallery shape signal (bold line) for
visualizing diferences between landmark distances from COMs of the caxwdprobe and gallery sequences of the

same subject.

where OPA stands for Ordinary Procrustes Analyi§®, = [traceS' S)]Y/? is the Euclidean norm. The rows of the
transformed matrix contain the transformed values of laattndistances from COM-SC. These distance values are
used to form the transformed probe shape signal (represbptéashed line in Fig. 3(d)) and is superimposed on the
gallery shape signal to visualise thefdirences between corresponding positions of landmarksiiss from COM-
SC in the two shape signals. The transformed probe configanatatrix Y is then compared with the centred gallery
configuration matrixg;. to obtain dissimilarity scor®psa between them using
O S (S~ Vi)
AT 2 (Sacij — A2

whereA is a row vector whose each element is the mean value of theealsmf the corresponding columnsSg.

(8)

The range 0Dpsa is [0,1] and denotes theftiérence between the gallery shape and probe shape, thetlzegaiue
the more dissimilar are the two shapes.

We obtain dissimilarity scores by comparing the transfatmpebe configuration matrix with the centred gallery
configuration matrix of every sequence of a particular sttliethe double support phase of a gait period, and comput-
ing the average of the dissimilarity scores. This averaggimilarity score is then used for classification. The gglle
class with whose sequences the probe sequence obtainsvitst bverage dissimilarity score is assigned rank 1, the
second lowest average dissimilarity score is assigned2amkd so on. In this way each class receives a ranking based
on the dissimilarity score obtained by PSA. In cases wherebepsubject generates similar dissimilarity scores with
two different gallery subjects, STM-SPP validates the two scort#stive spatio-temporal gait characteristics (gait
period and step length) and physical parameters of humay (bodld and compactness) to determine the class with

the lower rank for classifying the subject (see Sectionl3.ection 3.2.2 and Section 3.2.3).
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3.2.1. Estimation of gait period and step length

A step is the motion between successive heel strikes of @stbppposite feet and that a gait period consists of
two steps. The method in [19] computes gait period by comisigehe change in width and height of the bounding
rectangle which encloses a moving silhouette contour itetteeal and frontal views, respectively, and the method in
[18] performs autocorrelation of the bounding box width afesies of consecutive silhouettes for view-invariant gait
recognition. We use the method similar to that used in [2&8dmpute gait period as it is robust to shadows under
feet and carrying conditions, thereby outperforming thi¢ geriod estimation method used in the baseline method
[13] for near fronto-parallel view of subjects for USF Hunh2rgait challenge data set. The average widttof the

leg region enclosed betweaid andbH in framel is given by

bH
1
=—— % (d), O<as<bs<i, 9)
aH—bH;‘:4

W

where, the values od andb are respectively chosen to be 0.750 and 0.9375 for USF data seduce the féects
of shadows under feet and carrying condition, dnis the Euclidean distance between the leftmost foregroixe p

(Ix, ly) and the rightmost foreground pixek(ry) on theith line, i.e.,
A = [(1— 1) + Iy = ry)?12. (10)

It results in a periodic signal with distinct peaks and vyaléhat respectively correspond to the expansion and con-
traction of the bounding rectangle as the subject’s legsnektind come back together during a gait period. The gait
period is estimated as the average distance (in terms of auailirames) between each pair of consecutive valleys
or peaks.

Differences in walking speed of the same subjectfiiedint gait sequences result in variations in the gait period
i.e., if a subject walks slowly in a certain situation and mquickly in another, the gait period will comprisdtdrent
number of constituent frames. Thus, to detect similaritiesalking patterns of the same subject iffifeient video
sequences collected oveffdirent days, Dynamic Time Warping (DTW) [43, 4] is applied te@unt for variation in
human movement. DTW uses dynamic programming to computegirvgafunction that optimally aligns two time-
dependent sequences of variable lengths for measurintpgimmunder certain restrictions. Given two sequences of
the same subjed = (Wg1, Weo, ..., Wem) andF = (Wk1, Wi, ..., Wen) of respective lengthsl € N andN € N, and
Wei andWe; are the respective average width of leg region (as given loy £9) of their elements, DTW constructs

anM x N matrix of Euclidean distances between corresponding wjdié.,
d(Wei, Wej) = (Wei — Wej)2 (11)

An M x N warping path is a sequenge= (pi, p2,.... p.) With pp = (m,n) € [1 : M] x[1 : N]for | € [1 : L]

for mapping two sequences which satisfies the following¥:bundary condition;p; = (1,1) andp. = (M, N);

(b) monotonicity conditionmy < mp, < mg < ... <m andn; < Ny < n3 < ... < n; and (c) step size condition:
10



p+1— P €(1,0),(0,1),(1,1)forl e [1: L - 1]. DTW minimises the cost of warping andF together, i.e.,

(Sizs p.ﬁ). 12)

DTW(E,F) = min( 3

The similarity between sequendésandF is measured using Eqn. (12) to determine gait period of theesaubject.

The step length L) is the longitudinal distance between two feet when theyraarimally apart in a gait period.
Itis measured as the width of the bounding rectangle enajdhie silhouette contour at the double support phase of a
gait period only for the lateral view of the silhouettes teesttially remove the foreshorteninfjects due to dferent

views.

3.2.2. Estimation of physical parameters

We estimate the physical parameters of the height-norethiad centre-aligned silhouettes of the CMU MoBo
[44] and USF HumanlD [13] data sets in lateral views and atihiéble support phase of the gait period. The com-
pactness@M) of the contour is estimated in terms of fierimeterandareaof the silhouette asperimete)?/area
We useCM because it is dimensionless and is thus scale invariastalsd invariant to orientation and thus acts as a
good region descriptor [42]. BuildB|, being a ratio of subject’s chest width to subject’s heightsed to dierentiate
between thin and fat subjects, and between tall and shgeasbThese parameters are combined with the gait period
(G) and subject’s step lengtls ) to form a 4-dimensional vecter G, S L, CM, B > for each sequence of the same
subject. Note that this is unlike the method in [14] whichsiseG, S L, H, B > to validate the similarity scores be-
tween projection centroids of two gait sequences obtaigaging normalised Euclidean distance. The measurement
values of the physical parameters and spatio-temporatbaitacteristics for diierent sequences of all subjects are

stored to form the gallery database.

3.2.3. Validation using NNC

We use NNC due to its simplicity and ease of implementati@h{d validate similar dissimilarity scores generated
by a probe sequence with twofidirent gallery sequences to determine the lower rank of ttaskssify the probe
sequence. We compute the sum of the Euclidean distanceb fouameasurements of G,SL CM, B > between

the probe sequenc&j) and each of the two gallery sequenceg,(i.e.,
4 1
d=( (Ti-K))?2. (13)
i=1

The gallery class whose sequence is the nearest neighbdle pfobe, i.e., gives the smalléris selected as the

correct class for the probe and is assigned the lower of theawkings determined by PSA.

3.3. Phase 2 of Module 2: Shape characterisation using EFDs

We characterise the subject’s contours at specific phasiés géit period using EFDs, as EFDs are capable of

describing complex contours (i.e., straight lines emaugafiom the geometrical centre of the contour intersect the
11
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Figure 4: The specific phases of gait period (a)-(k): stataese (a)-(f) comprising about 60% of the gait period; and
swing phase (g)-(j), comprising remaining 40% of the gaitqukfor a subject from CMU MoBo data set.

contour more than once) with any degree of irregularity nameurately but using fewer cigients than the classical
Fourier descriptors [45]. Thus, EFDs serve as a data comsipretool which reduces space complexity.

A gait period comprises periodic alternating movement ef ltwer limbs resulting in a forward movement of
the body. It starts with the heel strike of either foot andtoares until the heel of the same foot touches the ground
again. Each foot in a gait period alternates between twogshasstance phase and a swing phase which respectively
constitute 60% and 40% of the gait period as illustrated in &i In the stance phase the foot remains in contact with
the ground, while in the swing phase the foot is in the air. 3taece phase begins with initial contact of the heel with
the ground and ends with the toe liffdhe same foot from the ground. This phase has the followimgpzments:

(a) initial contact when the heel of the forward foot (i.&¢ foot making a forward movement) touches the ground,;
(b) mid-stance when the foot is positioned flat on the grousdying the weight of the body while the other foot
is in swing phase; and (c) propulsion which begins withritiof the heel from the ground and ends with the toe
lifting off the same foot indicating the termination of the stance phEHse swing phase begins with lifting of the foot
from the ground and continues until the heel of the same faathes the ground. This phase has the following three
components: (a) pre-swing which begins with the téfgle ground and continues until the occurrence of maximum
knee flexion; (b) mid-swing, i.e., the motion between maximknee flexion and when the tibia is vertical to the
ground; and (c) ending swing which starts from the vertiaaifion of the tibia and continues until just prior to the
forward foot making initial contact with the ground.

We captured the video sequence of a subject (Fig. 1 (a)) malkterally to the image plane in a stationary indoor
background using a digital camera (Nikon Coolpix S3000)dix@ a tripod at a rate of 30 framyescond. After
estimating the subject’s gait period, we obtain its ten gjpgehases by visually analysing the constituent frames of
the gait period and extract the corresponding contours. pbingon of the contours enclosed in the region between
the bottom of the bounding rectangle and up to the anatomasition of just before the hand of an upright human
subject (i.e., 0.37M measured from the bottom of the bounding rectangle [41]hattén specific phases are set
as the Reference Region-Of-Interests (Rf-ROI’s), as thitign of contour remain urfected by the self-occlusions
caused by arm-swing. To obtain the ten specific phases ofahyaguence automatically, the Rf-ROI's are compared

one at a time with the same portion of contours of all the frafea subject’s gait period (referred to as the Target
12



Region-Of-Interests (Tr-ROI's)) using contour matchirased on Hu moments to obtain similarity scor8gc§e

using [37]

7

Sscore = Z

i=1

1 1
o
where,n" = signt").logh®'| andm{'" = sign").loglh™"|. h*" andh" denote the Hu moments of the Rf-ROI and

; (14)

Tr-ROI, respectively. The frame whose Tr-ROI results inlthweestSqcore With the Rf-ROI, is extracted as one of the
ten specific phases of the gait period and the process isnceatiby comparing the next Rf-ROI with the remaining
Tr-ROI's until all the ten specific phases are obtained.

Analysing a subject’s shape at the specific phases of a gaitdoenables STM-SPP not only to reduce compu-
tational complexity, but also to considerably overcomedtieerse fect of walking speed variations undeffdrent
circumstances, e.g., due to the subject’s mood changeshefomore, the extracted contours can be considerably
distorted by the presence of occlusions in the scene, sehadows under feet and extreme lighting variations. If
these distorted contours are not part of any of the ten speatifises of the gait period, they can be discarded in the
case of shape analysis using EFDs, without having dif@ceon the classification rate. However, if any of the ten
specific phases is missing including the double supportglidimmediate adjacent frame is considered. In this way,
STM-SPP achieves robustness to missing or distorted fréorszsme extent.

Since a silhouette contour is a closed curve, it can be expddsy a periodic signalt) of periodT, i.e.,
c(t+T) = c(t), (15)

whereT is the perimeter of the contour. We consider ten contoungsponding to the ten specific phases of the gait
period as shown in Fig. 4 to obtain EFDs for the gait sign@tufe ensure similar set of equal number of points along
the selected ten contours, each contour is approximated-$y’ i.e., 128 points using interpolation based on point
correspondence analysis [35].

Each contour with points of coordinategt, y(t)) is defined in a complex plane as

c(t) = x(t) + jy(t). (16)

The elliptical Fourier representation of a contour is [40]

m/2
o) = 22 + ) (axcotkut) + by sin(k2wt)) +
k=1

m/2
2+ ) (aycosikau) + by, sinfkzut)]. an
k=1
where m m
a =2 Y xcogkuir) , by, = 2 3 xsin(kwir), (18)
mi= A=

13
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Figure 5: The 3D bar graph with bars representing the madeitd EFDs corresponding to 64 Fourier ffogents

grouped together for each of ten specific phases of gaitgherio

2 O . 2
ay, = P~ ; yicodkwit) , by = p iZl:yism(kwlr), (19)
fundamental frequenay = T/2r and sampled period= T/m. The contour represented in matrix form is [40]

X(t) 1 | ax bk cogkwt)
== + .
[ y(©) ] 2 2 H ]

A
&y, k=1| 3y bYk sin(kwt)

This matrix resembles that of an ellipse, witl andby, representing its major and minor axes, respectively. The

(20)

scale, rotation and translation invariant EFD is

Ve
+ .

NN )

We represent EFDs in the form of a matrix of dimens#prx b, (with a; representing the ten specific phases of

EFD =

(21)

the gait period and, representing the number of elliptic Fourier @dgents considered). Since the number of elliptic

Fourier codicients equaling one half of the total number of contour oare capable of reconstructing a very good

approximation of the original contour [40], we uge= ny2, i.e., 64, for STM-SPP. Each EFD is represented by a bar

in the 3D bar graph shown in Fig. 5, where elements of the rdwiseomatrix are grouped together. LRRtandQ be

two such matrices for a gallery and a probe gait sequengegctgely. The dissimilarity score between them is
(P~ Qi)

234 (P — meanp;))?’

whereP; is jth column ofP; ; and mean(.) computes average. The rande=h is [0,1], the larger the value the more

EFD = (22)

dissimilar are the two shapes. We obtain dissimilarity edny comparing the EFDs of a probe subject with EFDs of
each of the gallery subjects for a gait period. In a similanne to phase 1, this dissimilarity score is used to classify

the subject.
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The above shape analysis gives excellent classificatianitseis the absence of shape variations between the
gallery and probe sequences of the same subject. The adassifi performance decreases significantly if the shape of
the gallery and probe subjectdfér due to diferent activities (e.g., slow or fast walk vs walking with [pahdertook
by the same subject for the CMU MoBo data set, and carryinglitions (briefcase vs no briefcase) and shadows
under feet for the USF HumanID data set. To reduce ftheces of shape variations on the classification rate, a
part-based shape analysis using EFDs is invoked when ogregindition is detected in a sequence.

The shape of an upright silhouette above the wrist is figicsed by shape variations when the subject’'s hand
carries a briefcase or a small bag. According to anthroptée position of the wrist as a fraction of body height
is estimated to be 0.485[41] measured from the bottom of the bounding rectangle.sThn analysis of the part
of silhouettes enclosed in the region (1-0.485i.e., 0.51% of the bounding rectangle measured from the top using
EFDs remove the shape variations due to carrying condiflomsfcase vs no briefcase) among the gallery and probe
sequences. The leg region of a silhouette enclosed betaideand bH (wherea = 0.750 andb =0.9375 [28])
removes the fect of shape distortion due to the presence of briefcase laaudos/s under feet. Thus, STM-SPP
detects the presence of briefcase or a small bag autoniatigaéxamining the dference in the number of contour
points enclosed in the region between 0.81and 0.75@1. A substantial increase in the number of contour points
(e.g., for USF data set an increase of at least twenty copimiats without applying polygon approximation and for
the same phase of gait period between gallery and probe segg)econfirms the presence of briefcase for most of
the cases. STM-SPP analyses the EFDs of the subjects cpbnyicase with shadows under feet in two parts, so as
to avoid the variations in shape among gallery and probeesemps. We verified theffectiveness of this part-based
shape analysis on all subjects carrying a briefcase for Bie dhta set.

If a subject carries a small item, e.g., ball, packag@éntbox, etc., with folded arms, it is unlikely that the
shape of silhouettes above the shoulder and below the gosifiwrist, i.e., 0.515l, from the top of the bounding
rectangle will be &iected. Experimental analysis for all the subjects holditglain CMU MoBo data set verifies
the appropriateness of the assumption. We found that thmesggpf the silhouette enclosed between 0R22&m
the top of the bounding rectangle, and the lower segmenbsedlbetween 0.560and the bottom of the bounding
rectangle exclude the ball for all the twenty four subjecatkimg with ball in the CMU MoBo data set (Fig. 6 (a)-(f)).
Experimental analysis reveals that an increase in the nuofbeontour points enclosed in the region between the
anatomical position of wrist and the top of the boundingaegte by at least fifty confirms the presence of a ball for
all the subjects in the CMU MoBo data set without applying amyrphological operation and polygon approximation
technique. Thus thefiect of carrying small items on silhouette shape can be rethbyesegmenting it in two parts:
(1) the upper segment spanning from the top of the boundittgmgle up to the shoulder; and (2) the lower segment
spanning from the anatomical position of wrist to the bottufrthe bounding rectangle. For part-based EFD analysis,

we obtain a dissimilarity score corresponding to each pattcmpute the average dissimilarity score.
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BEDIA

Figure 6: Illustration of part-based shape analysis: @xiper segments; and (d)-(f) lower segments of three stshje

from CMU MoBo data set to exclude the ball.

3.4. Module 3: Combining classifications

We use rank-summation based classifier combination ruletpi6éombine the outputs of the two classifiers for
improved reliability in human identification. We choosestitiombination rule due to its appropriateness in STM-
SPP, as it enables tdfectively combine the results of a small number of classifigtls a relatively large number of
classes. It is also easier to implement than the score-lfasienh strategy [47], as the latter requires transfornmatio
of the scores to a same scale in order to be comparable bedimg dcombined.

Let R0 (0) be the rank assigned to clasby classifierj € J, whereJ represents the set of classifiers consisting of
two elements for STM-SPP. The sum of all ranks assigned to &ass by all classifiers is

J

S(6) = Z(R“)G). (23)

j
The class with the lowest sum rank is chosen as the corress @a the probe sequence. Noting that Hu moments
are linear combinations of normalised central momentsatatnvariant to changes in rotation, reflection and scale,
to resolve cases where two classes have the same sum rankSBPNderforms hierarchical contour matching [37]
based on the Hu moments [23] between each image of the priteegaence and the corresponding images of the
gallery sequences.

The translational invariant 2Dp( o)™ order central momentgfq) of a contour (X, y) is

N

Hpg = Z 1(% y)(x = xavg)’(y — Yavg)", (24)

i=0
wherexavg = Mo/ Moo, Yavg = Mo1/Moo andN is the total number of pixels in the contour. To ensure objetthe

same shape but dissimilar sizes give similar values, wehesedrmalised central moment

HMpa

Npg = W (25)

The hierarchical contour matching technique involves trenition of contour trees [48] prior to the contour com-
parisons based on Hu moments. Since the resultant conems dére susceptible to minor variations in the contours,
all contours are approximated by a polygon using Douglas:ks approximation algorithm [49, 37] having fewer

vertices (as shown in Fig. 1(g)), for better comparison.
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Figure 7: Sample silhouettes of the same subject from CMU #d#&a set for six views.

@) (b) (© (d) (e) ®

Figure 8: Sample silhouettes offidirent subjects from USF Gait Data set: (a) and (b) walk onsgrath different
shoe types and viewpoints; (c) and (d) walk on concrete witleigtnt shoe types and viewpoints; and (e) and (f) walk

on grass carrying a briefcase.

4. Experiments

We use the silhouettes from CMU MoBo data set [44] and USF HubBgait challenge data set [13] to evaluate
the performance of STM-SPP with variations in terms of wadképeeds, carrying conditions, clothing, footwear and
viewpoints. Fig. 7 and Fig. 8 respectively show sample si#fiites of CMU MoBo data set and USF HumanID gait
challenge data set. Experimental analyses on these tweetatanable us to make uniform comparisons with several

related methods.

4.1. Experiments on CMU MoBo data set

CMU MoBo data set comprises sequences of 25 subjects penpriour types of walk: slow walk; fast walk;
walk holding a ball; and walk on an inclined plane of a tredtdnttach sequence is of approximately 11 seconds
duration and is recorded at 30 frames per second from fierdnt views. We evaluate the performance of STM-SPP
on the profile view of the silhouettes as illustrated in Figa)7using diferent gallery and probe sequences for slow
walk, fast walk and walk with ball. We compare the performan€t STM-SPP with the following silhouette based
approaches: SSP [24], CMU1 [19] and VCR-C [20].

In order to compare STM-SPP with SSP, we also use holdous aa&lation technique, in which gallery and
probe sets correspond toffirent combination of walking speeds for each of twenty figjestts. Since STM-SPP
is defined only on lateral view of the silhouettes, we consldteral view of two sequences per subject (total 50
sequences) walking at slow pace (2.06 nili@¢snd fast pace (2.82 mil@g, for performance comparison with SSP.
Table 1 shows that the performance of SSP for profile viewajakt from [24]) degrades significantly when the probe

and gallery sequencesidir in walking speed, whereas STM-SPP which analyses shape specific phases of gait
17



Table 1: Top-rank identification rates of STM-SPP (in petage) on MoBo data set for lateral view with rates of SSP

from [24] enclosed in parentheses.

Probe Gallery

Walk type | Slow walk | Fast walk| Walk with
ball

Slow walk | 100(100) | 94(54) 93

Fast walk | 91(32) 100(100) | 84

Walk with | 82 82 100

ball

Table 2: Top-rank identification rates (in percentage) ofl@Mfrom [19]) and STM-SPP on CMU MoBo data set

for profile views only.

Gallery Probe CMU1 | STM-SPP
profile, slow | profile, fast| 76 96
profile, slow | profile, ball | 92 93

period and uses DTW for gait period estimation overcomesftieets of variations in walking speed, and outperforms
SSP for the profile view.

Table 2 shows that STM-SPP outperforms CMU1 for profile vidwcomparison with VCR-C is presented in
Table 3 for subjects walking parallel to the image plane. Shape based approach of VRC-C which uses stance
correlation, shows encouraging results for subjects p@if.y same activities with varying speed. Although speed
variations are also accounted for in STM-SPP, like VCR-Quaormance of STM-SPP degrades when shape of the
subject’s silhouettes change due tffelient activities (e.g., slow walk vs walk with ball). The teetperformance of
STM-SPP over VCR-C is attributed to the validation based loysfzal parameters (i.e., gait period and step length)
which are independent of body shape, and part-based shalysiarusing EFDs.

4.2. Experiments on USF HumanlID gait challenge data set

We evaluate STM-SPP on both the earlier, smaller versio g&guences from 74 subjects, data acquired in
May only) and the full version (1870 sequences from 122 sibjedata acquired in May and November) of USF
HumanlD gait challenge data set available at fitpvw.GaitChallenge.org. This data set comprises sequenfces
subjects walking on elliptical paths and provides up tayttiwvo possible conditions by combining the following five

covariates: a) walking surface (grass (G) or concrete (8)3hoe type (A or B); ¢) viewpoint (right (R) or left (L));
18



Table 3: Top-rank identification rates (in percentage) ofMSIPP on MoBo data set for across-activities with rates

of VCR-C from [20] enclosed in parentheses.

Activity Slow Fast Walk with
walk walk ball

Slow walk 100(100)| 95(80) 93(48)

Fast walk 96(84) 100(100)| 84(48)

Walk with ball | 82(68) 82(48) 100(92)

d) carrying conditions (carrying a briefcase (BF) or notrgirg a briefcase (NB)); and e) elapsed time between the
acquisition of the sequences (May (M) or November (N)) [T3je thirty three subjects that are common in the May
and November data sets account for time covariate. The nuaflseibjects in the probe set is enclosed in square
bracket in both Table 4 and Table 5. There are no common segsdretween the gallery set and any of the probe
sets, and not all subjects participated in all experiment$3].

Table 4 shows the results on the full version of the data stdrims of identification rateR|) at ranks 1 and 5,
and verification rateR\/) at the false alarm rates of 1 percent and 10 percent, to @aatdmparison with that of the
baseline method [13] and GEI [1]. We report the verificatiates for baseline method obtained by using z-normalised
similarity scores. The identification rates achieved by @&Ekhe twelve challenge experiments after combining the
real and synthetic gait features are enclosed in parerghédlemethods perform satisfactorily for experiments A-J
but poorly for experiments K and L, with STM-SPP achieving best performances in all experiments, followed by
GEI. The better performance of STM-SPP in experiment G thaaxperiment F inspite of an additional covariate,
namely shoe type, is attributed to the fewer subjects ppating in experiment G and thus the smaller likelihood of
including subjects from the class which igfdiult to identify across all the experiments for STM-SPP [¥8ko, the
validation based on physical parameters contributes tanga&TM-SPP robust against across-day gait variations,
e.g., the same subject wearingfdient shoes.

Table 5 shows the results on the smaller, earlier versioheflata set (No-Briefcase data) to enable a comparison
with Baseline, CASIA [14], CMU2 [25], CMU1 and GEI. Note thae present the identification rates at rank 1 of
CMU2 obtained by weighted correlation similarity measwa®jts performance is better than the identification rates
at rank 1 obtained by median weighted distance similaritasnee presented in [25]. We compare the performance of
STM-SPP with the identification rates of GEI obtained byrigsieal and synthetic gait templates, as it shows higher
performance than the identification rates obtained segsiiay using real and synthetic gait templates. Table 5 shows
that STM-SPP outperforms the other methods for all experime

The performance of STM-SPP for the twelve challenge expamtsiof the data set is measured by twibetent

modes of experimental analysis, namely identification marteverification mode, using Cumulative Match Charac-
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Table 4: Top-rank identification rates (in percentage) fisfedent methods on full version of USF HumanlID gait
challenge data set using the gallery set (G, A, R, NBNMof 122 subjects. The rates for GEI from [1] are enclosed

in parentheses. Keys for covariates: 1 - view; 2 - shoe; 3fasar 4 - briefcase; 5 - time; and 6 - clothes.

Exp. | Probe [No. of subjects]| Covariate Identification RateR,)% Verification Rate Py)%
Baseline(GEl) STM-SPP Baseline STM-SPP
Rankl | Rank5 | Rankl | Rank5| Pg=1(10)% | Pr=1(10)%
A G,A L,NB,M/N[122] | 1 73(90) | 88(94) | 92 96 82(94) 88(100)
B G,B,R,NB, MN[54] | 2 78(91) | 93(94) | 95 98 87(94) 94(100)
C G,B,L,NB,M/N[54] | 2,1 48(81) | 78(93) | 84 95 65(94) 86(98)
D C,A, R,NB,MN[121] | 3 32(56) | 66(78)| 72 80 44(80) 80(94)
E C,B,R,NB, MN[60] | 3,2 22(64) | 55(81) | 68 84 35(76) 74(84)
F C,A L NB,M/N[121] | 3,1 17(25) | 42(56) | 29 59 20(60) 50(82)
G C,B,L,NB,M/N[60] | 3,2,1 17(36) | 38(53) | 40 61 28(55) 52(76)
H G, A R, BF, MN[120] | 4 61(64) | 85(90) | 69 92 72(91) 83(95)
I G, B, R, BF, MN [60] 4,2 57(60) | 78(83)| 60 84 67(85) 76(93)
J G,A, L, BF, M/N[120] | 4,1 36(60) | 62(82) | 64 85 48(76) 65(92)
K G,AB,R,NB,N[33] |5,2,6 3(6) | 12(27)]| 20 30 6(24) 21(58)
L C,AB,R,NB,N[33] | 3,5,2,6 | 3(15) | 15(21)| 18 27 6(24) 19(52)

Table 5: Top-rank identification rates (in percentage) fthrosiette-based algorithms on earlier, smaller USF Hu-
maniD gait challenge data set (data acquired in May only)guie Gallery Set (G, A, R) of 71 subjects. The rates
for Baseline, CASIA, CMU2, CMU1 and GEl are from [13], [1424], [25] and [1], respectively. Keys for covariates:

1 - view; 2 - shoe; and 3 - surface.

Exp. | Probe [No. of subjects] Covariate| Baseline| CASIA | CMU2 | CMU1 | GEI | STM-SPP
A G,AL[71] 1 87 70.42 | 85 87 100 | 100

B G,B,R [41] 2 81 58.54 | 81 81 90 |94

C G,B,L[41] 2,1 54 51.22 | 60 66 85 | 89

D C,A,R[70] 3 39 34.33 | 23 21 47 | 73

E C,B,R [44] 3,2 33 21.43 | 17 19 57 | 69

F C,AL[70] 3,1 29 27.27 | 25 27 32 | 40

G C,B,L [44] 32,1 26 1429 |21 23 31 | 36
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Figure 9: Performance on twelve challenge experiments ¢f ti&a set. Identification mode (CMC): (a) PSA and
(c) Combined. Verification mode (ROC): (b) PSA and (d) Corebinkeys: &’- Exp. A (Probe: G, A, L, NB, MN);
"o'- Exp. B (Probe: G, B, R, NB, WN); 'x’- Exp. C (Probe: G, B, L, NB, VN); '0’- Exp. D (Probe: C, A, R, NB,
M/N); ' x’- Exp. E (Probe: C, B, R, NB, WN); "e’- Exp. F (Probe: C, A, L, NB, MN); 'A’- Exp. G (Probe: C, B, L,
NB, M/N); '+'- Exp. H (Probe: G, A, R, BF, WN); 'o’- Exp. | (Probe: G, B, R, BF, ¥N); '#'- Exp. J (Probe: G, A,

L, BF, M/N); 'w’- Exp. K (Probe: G, AB, R, NB, N); and ¥'- Exp. L (Probe: C, AB, R, NB, N).

teristic (CMC) and Receiver Operating Characteristic (RO@ves respectively, following [50].

Identification refers to an attempt to determine the idgmtitan unknown subject by comparing a subject’s probe
sequence to all the gallery sequences in the database. tiastto open-set identification, a closed-set identificati
always guarantees the existence of the subject in the degtabathis paper, we analyse the closed set identification
performance of STM-SPP on the profile view by taking out ortgestt as the probe sequence and train it on all the
subjects of the data set including the probe sequence. Emtifidation result is represented by a CMC curve, i.e.,
the probability of correct matches versus ranks. Accordinthis curve, the probability of correct identification at
rankr implies that the probability of correct match is among thgrtgimilarity scores, and the performance at rank 1
represents the correct classification rate (CCR), i.eid#éaification rate. Fig. 9(a) and (c) show that the iderdtiizn
rates at rank 1 range from 3% to 84% for PSA, which are incobtisa range of 18% to 92% by using the classifier
combination rule.

Verification refers to an attempt to confirm a subject’s ckaihidentity by a one-to-one comparison of the probe
sequence to one or more gallery sequences correspondimgsalject of the claimed identity in terms of false alarm
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rate (the probability that the method incorrectly matclnesggrobe sequence to a nonmatching gallery sequence) and
verification rate (the probability that the method succeaedmrrectly detect a match between the probe and gallery
sequences). An ROC curve is a graphical representatioreatthtionship between false alarm rate and verification
rate of the classifier as its discrimination threshold isedr Fig. 9(b) and (d) show that the verification rates using
PSA range from 9% to 86% at a false alarm rate of 1%, and inerea$9% to 94% at a false alarm rate of 1% by
combining the classifiers, for all the twelve challenge eipents. It is evident from Table 4 and Fig. 9, that STM-
SPP is leastféected by variation in shoe types, followed by about 30 degobange in viewpoint. However, time
(i.e., when the data set was generated) has the most impdlee grerformance of STM-SPP, as it implicitly means

the same subjects wearingtdrent clothes and shoes.

4.3. Computational complexity analysis

The time for recognising a subject depends on the size ofdtegkts as well as on their characteristics, i.e., the
number of cases in which similar dissimilarity scores aramed by PSA and the number of subjects carrying items
in different sequences. The processing time (measured usingrtiputar system clock) for comparing all the ten
Rf-ROI's one at a time with the Rt-ROIs obtained from the @ilbtte images of a subject’s gait period based on Hu
moments and determining the minimBy..r in each case for extracting the ten specific phases of thgegadd is
5 secs using OpenCV 2.1 in Microsoft Visual Studio 2008 Egpriedition environment on an Intel (R) Core (TM)
i7 processor working at 2.93 GHz with 4 GB RAM and 500 GB HDD ming Windows 7 operating system. The
combined processing time to obtain the dissimilarity ssdretween a gallery subject and a probe subject using both
PSA and EFDs along with estimation of the subject’s phygieaameters is 45 sgmit period.

The baseline method has a very high computational complesitit performs repeated intersequence spatio-
temporal correlation between gallery and probe silhoissttpiences to obtain the similarity measure [4, 14]. Instead
of processing an entire gait sequence, the real-time methi@d identifies a previously known subject by analysing
its silhouettes over a gait period spanning up to 25 frameedace computational complexity. STM-SPP further
reduces it by analysing the shape of contours instead afisiittes at the double support phase and ten specific phases
of the gait period by using PSA and EFDs, respectively. Furtiore, it converts the contour at the double support
phase into 1D shape signal based on 28 landmarks beforeimgpBpA. Since the configuration matrices formed
by the shape signals have one column only, the space and éimplexity of PSA is linear, i.e., @f, wherek=28
for STM-SPP. Despite theffectiveness of DTW, it has a quadratic time and space complé(MN)) (whereM
andN denote the lengths of the two time-varying sequences beingpared) which limits its usefulness to small
sequences. However, the number of frames of a gait pericglmtmaisually exceed 35 and this ensures the suitability
of using DTW in STM-SPP. The ten specific phases of a gait gdeai@ obtained by Region-Of-Interest (ROI) of
contour matching based on Hu moments. The use of ROI helgsetedsup execution time, as it enables processing
of subregion of an image.

The NNC used for validating similar dissimilarity scorequ@es storage of entire gallery database, thus requiring
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much memory space and increased execution time. Howeveisétis limited only to resolving similar dissimilarity
scores obtained by PSA, and therefore it does not increasevierall computational complexity of STM-SPP sig-
nificantly. Since the computational complexity of EFDs isadratic, i.e., Of.m) (whereb. denotes the number of
elliptic Fourier codicients considered ana denotes the number of points of the polygon-approximatedocs),

it increases the processing time of STM-SPP. To addressitisiead of analysisng all frames of a gait period, we
analyse the contours by EFDs only at its ten specific phageskéeping, = 10) while capturing most of the signif-
icant gait characteristics. The contours are approximatddreduced number of points, i.en= 128, which reduces

processing time.

5. Conclusion

The proposed two-phase gait recognition method, STM-SRIFyses the shape of silhouette contours of a human
subject in a video sequence. In the first phase, STM-SPPrpesfeubject classification based on a dissimilarity score
by comparing distances of landmarks (anatomical, mathieataind pseudo) from centre-of-mass of the contour
in the double support phase of a gait period using PSA. Thissdication performance is substantially enhanced
by validating similar dissimilarity scores based on sp&timporal gait characteristics and physical parameters of
human body in the presence of limited variations in viewtlilog and footwear. In the second phase, STM-SPP
characterises the silhouette contours by EFDs at the terifispgghases of a gait period to obtain gait signatures and
uses a dissimilarity score to classify the subjects. A paged shape analysis using EFDs is applied to reduce the
impact of shape variation between gallery and probe sitttiew®ntours on the classification rate when across-day
variations due to carrying conditions are detected. Thewstof the two classifiers are combineftieetively by
rank-summation based classifier combination rule, where ia ranking is resolved by contour matching based on
Hu moments.

STM-SPP has several desirable advantages, which makéaibkuor real-world applications. The shape analysis
at the ten specific phases of a gait period and gait periodtiteteby the application of DTW aids STM-SPP to deal
with varying walking speeds of the same subject undffedint circumstances. STM-SPP is also robust to subjects
carrying small items and limited across-day gait variagidout not significant change of styles, e.g., pants verstts sk
or long coats, massive leg injury, variations of camera pieints, etc. It is also robust against missing or distorted
frames to some extent mainly due to partial occlusions agtheatation imperfections. It is insensitive to colour
and texture of the subject’s clothing, as it analyses theealof the contours. Since its feature space is simplified, it
does not require any dimensionality reduction technigke RCA and multiple discriminant analysis as in [1, 14].
The attractiveness of the STM-SPP is the ease of implenientaith low computational complexity. Experimental
analyses on two publicly available data sets show that SPR-Significantly outperforms several related silhouette-
based gait recognition methods. However, itsts from the following limitations which require furthetextion for

its advancement:
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e Walking direction: STM-SPP is designed to identify humabhjsats only for lateral views of the gallery and

probe sequences. Although, lateral views of the walkingesuib capture most of the significant gait charac-
teristics, it is not always possible to capture image frafnas the side of a subject, especially in hallways
[3]. Hence, future developments are required to enable SPR-to address unconstrained human movements

especially in cluttered scenes.

e Clothing invariance: STM-SPP is not robust against sigaiftaclothing variations between gallery and probe

sequences, such as pants vs long skirts, shorts vs dowrtgatiendy coats, etc. Also, the extraction of
landmarks in the limb region is impossible in the case of gesutwearing long skirt or long coat as the
clothing keeps the subject’s limbs covered. Thereforayrutvork will involve improvements of STM-SPP

using part-based clothing categorization to achieve sultisi clothing invariance.

e Dynamic gait characteristics: STM-SPP analyses sequafcksforming shape of contours over a gait period,

but does not incorporate the dynamic motion charactesisfigait which also play an important role in human
identification. Since the more appropriate gait signataresutilised the better is the performance of any gait
recognition algorithm, we will consider oscillatory traferies of joints in future work, giving arm-swing a

consideration.
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