4,834 research outputs found

    Image morphological processing

    Get PDF
    Mathematical Morphology with applications in image processing and analysis has been becoming increasingly important in today\u27s technology. Mathematical Morphological operations, which are based on set theory, can extract object features by suitably shaped structuring elements. Mathematical Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations, properties and fuzzy morphology are reviewed. Existing techniques for solving corner and edge detection are presented. A new approach to solve corner detection using regulated mathematical morphology is presented and is shown that it is more efficient in binary images than the existing mathematical morphology based asymmetric closing for corner detection. A new class of morphological operations called sweep mathematical morphological operations is developed. The theoretical framework for representation, computation and analysis of sweep morphology is presented. The basic sweep morphological operations, sweep dilation and sweep erosion, are defined and their properties are studied. It is shown that considering only the boundaries and performing operations on the boundaries can substantially reduce the computation. Various applications of this new class of morphological operations are discussed, including the blending of swept surfaces with deformations, image enhancement, edge linking and shortest path planning for rotating objects. Sweep mathematical morphology is an efficient tool for geometric modeling and representation. The sweep dilation/erosion provides a natural representation of sweep motion in the manufacturing processes. A set of grammatical rules that govern the generation of objects belonging to the same group are defined. Earley\u27s parser serves in the screening process to determine whether a pattern is a part of the language. Finally, summary and future research of this dissertation are provided

    A morphological approach to the design of complex objects

    Get PDF
    The surface-trajectory model gives a solution to some of the problems presented by the general geometric models where the design of an object is separated from its manufacture. In fact, in this model, the internal representation of objects is made up of machining trajectories. As the display systems usually need triangles to represent the objects, a process of triangulation is needed to visualize them. In other words, a secondary surface model is needed to display the objects. The following is a geometric model that, maintaining the philosophy of the surface-trajectory model, encapsulates the calculation of the machining process from the formal framework that provides the set theory and the mathematical morphology. The model addresses the process of designing objects by assimilation of a machining process by giving solutions to the design of complex objects and an arithmetic to support the generation of trajectories of manufacturing. The design process is similar to the craft work of sculptors designing their pieces by hand with their tools. It also gives a direct solution to the problems of the trajectory generation since they are already defined at the design phase. The model is generic and robust as there are no special cases or complex objects in which the model does not provide a correct solution. It also naturally incorporates the realistic display of the machined objects in a quickly and accurately way

    Theory and algorithms for swept manifold intersections

    Get PDF
    Recent developments in such fields as computer aided geometric design, geometric modeling, and computational topology have generated a spate of interest towards geometric objects called swept volumes. Besides their great applicability in various practical areas, the mere geometry and topology of these entities make them a perfect testbed for novel approaches aimed at analyzing and representing geometric objects. The structure of swept volumes reveals that it is also important to focus on a little simpler, although a very similar type of objects - swept manifolds. In particular, effective computability of swept manifold intersections is of major concern. The main goal of this dissertation is to conduct a study of swept manifolds and, based on the findings, develop methods for computing swept surface intersections. The twofold nature of this goal prompted a division of the work into two distinct parts. At first, a theoretical analysis of swept manifolds is performed, providing a better insight into the topological structure of swept manifolds and unveiling several important properties. In the course of the investigation, several subclasses of swept manifolds are introduced; in particular, attention is focused on regular and critical swept manifolds. Because of the high applicability, additional effort is put into analysis of two-dimensional swept manifolds - swept surfaces. Some of the valuable properties exhibited by such surfaces are generalized to higher dimensions by introducing yet another class of swept manifolds - recursive swept manifolds. In the second part of this work, algorithms for finding swept surface intersections are developed. The need for such algorithms is necessitated by a specific structure of swept surfaces that precludes direct employment of existing intersection methods. The new algorithms are designed by utilizing the underlying ideas of existing intersection techniques and making necessary technical modifications. Such modifications are achieved by employing properties of swept surfaces obtained in the course of the theoretical study. The intersection problems is also considered from a little different prospective. A novel, homology based approach to local characterization of intersections of submanifolds and s-subvarieties of a Euclidean space is presented. It provides a method for distinguishing between transverse and tangential intersection points and determining, in some cases, whether the intersection point belongs to a boundary. At the end, several possible applications of the obtained results are described, including virtual sculpting and modeling of heterogeneous materials

    A rigorous definition of axial lines: ridges on isovist fields

    Get PDF
    We suggest that 'axial lines' defined by (Hillier and Hanson, 1984) as lines of uninterrupted movement within urban streetscapes or buildings, appear as ridges in isovist fields (Benedikt, 1979). These are formed from the maximum diametric lengths of the individual isovists, sometimes called viewsheds, that make up these fields (Batty and Rana, 2004). We present an image processing technique for the identification of lines from ridges, discuss current strengths and weaknesses of the method, and show how it can be implemented easily and effectively.Comment: 18 pages, 5 figure

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    The automatic definition and generation of axial lines and axial maps

    Get PDF
    corecore