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ABSTRACT

IMAGE MORPHOLOGICAL PROCESSING

by
Vijayalakshmi Gaddipati

Mathematical Morphology with applications in image processing and analysis has been

becoming increasingly important in today's technology. Mathematical Morphological

operations, which are based on set theory, can extract object features by suitably shaped

structuring elements. Mathematical Morphological filters are combinations of

morphological operations that transform an image into a quantitative description of its

geometrical structure based on structuring elements. Important applications of

morphological operations are shape description, shape recognition, nonlinear filtering,

industrial parts inspection, and medical image processing.

In this dissertation, basic morphological operations, properties and fuzzy

morphology are reviewed. Existing techniques for solving corner and edge detection are

presented. A new approach to solve corner detection using regulated mathematical

morphology is presented and is shown that it is more efficient in binary images than the

existing mathematical morphology based asymmetric closing for corner detection.

A new class of morphological operations called sweep mathematical

morphological operations is developed. The theoretical framework for representation,

computation and analysis of sweep morphology is presented. The basic sweep

morphological operations, sweep dilation and sweep erosion, are defined and their

properties are studied. It is shown that considering only the boundaries and performing



operations on the boundaries can substantially reduce the computation. Various

applications of this new class of morphological operations are discussed, including the

blending of swept surfaces with deformations, image enhancement, edge linking and

shortest path planning for rotating objects.

Sweep mathematical morphology is an efficient tool for geometric modeling and

representation. The sweep dilation/erosion provides a natural representation of sweep

motion in the manufacturing processes. A set of grammatical rules that govern the

generation of objects belonging to the same group are defined. Earley's parser serves in

the screening process to determine whether a pattern is a part of the language. Finally,

summary and future research of this dissertation are provided.
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CHAPTER 1

INTRODUCTION

Mathematical Morphology provides an approach to the processing of digital images

based on shape. Mathematical Morphology is a topological and geometrical based

approach for image analysis. It provides powerful tools for extracting geometrical

structures and representing shapes in many applications.

Mathematical morphology is becoming increasingly important in image

processing and computer vision applications for the identification and decomposition of

objects, object features, and object surface defects. Morphological operators can simplify

image data, preserving their essential shape characteristics, and can eliminate

irrelevancies. Mathematical Morphology is a set-theoretical method that was first

introduced by Matheron [39] and Serra [63] at Paris School of Mines, France around

1964.

Mathematical Morphological operations can be employed for corner and edge

detection, segmentation, and enhancement of images, which provides for the systematic

alteration of the geometric content of an image while maintaining the stability of

important geometric characteristics. Moreover, there exists a well-defined morphological

algebra that can be employed for representation and optimization and it is possible to

express digital algorithms in terms of a very small class of primitive morphological

operations.

Maragos and Ziff [36] showed that many composite morphological systems, such

as morphological edge detection, pealdvalley extraction, skeletonization, and shape-size

distributions obey linear superposition, which is called threshold-linear superposition.

1
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Namely, the output is the sum of outputs due to input binary images that result from

thresholding the input gray-level images at all levels. The threshold decomposition

architecture and stacking property are introduced by Shih and Mitchell [68], which

allows the implementation of the architecture that gray-scale operations can be

decomposed into binary operation with the same dimensionality as the original

operations. Shih and Mitchell [69] [70] presented techniques for decomposing big gray-

scale morphological structuring elements into combined structures of segmented small

components. The decomposition is suitable for parallel-pipelined architecture and the

technique will allow us to design any kind and size of gray-scale structuring elements.

Edge operators based on gray-scale morphological operations are introduced by

Lee, Haralick and Shapiro [31]. The simplest morphological edge detectors are the

dilation residue and erosion residue operators. Different combinations of these two

operators is also introduced and justified. The blur-minimum morphological edge

detector is defined whose inherent noise sensitivity is less than the dilation and erosion

residue operators. The alternating sequential filter edge detector proposed by Song and

Neuvo [79] overcomes the problem of localizing the edges correctly introduced by the

blur-minimum morphological edge detector. Not all edges with various fineness

regarding spectral contrast and spatial geometry can be detected by single operator and

Chanda and et al. [5] have proposed a multi-scale morphological edge detector that can

differentiate the fine variations of gray-level surface, and yet can remove noise.

Shape decomposition is a very important issue in image processing and pattern

recognition. Shape decomposition is to decompose binary objects into a union of simple

objects. The decomposition should be unique, translation, scaling, and rotation invariant.
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Some morphological approach [48] [49] is to use the structuring elements as the simplest

object component and to analyze an image as a union of the structuring elements. This

approach is based on the structuring elements used, therefore, an object is represented by

those structuring elements.

Shape description describes the object according to its shape geometric features.

The shape of an object refers to its profile and physical structure. These characteristics

can be represented by the boundary, region, moment, and structural representations.

These representations can be used for matching shapes, recognizing objects, or making

measurements on the shape characteristics. Therefore, the shape description is a very

active and important issue in image processing, computer vision, and pattern recognition

during recent decades.

In this chapter, the basic morphological operations of dilation and erosion in an

N-dimensional Euclidean space and their derived operations of opening and closing and

their properties are reviewed. Later various techniques that have been developed in

mathematical morphology are discussed.

1.1 Binary Morphological Operations

The language of mathematical morphology is set theory. Given two sets A, B c AN ' the

morphological dilation of a set A by a set of structuring element B is defined [21] by

dilation operation can be interpreted as the union of all the possible shifts for which the

reflected and shifted B intersects A. That is,
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A ED B = {xl(A n ( )„# 0) (1.2)

where B is the reflection of B given by B = {x 3 b E B: x = -b}.

An example of dilation is given in Figure 1.1.

A	 B	 A ED B

xxxxx	 xxxxx

xx•xx	 xxx	 xx••x

xx.xx 	 e	 x. .	 =	 xx.xx

xx.xx	 xxx 	 xx.xx

xxxxx	 xxxxx

Figure 1.1 Example of dilation of set A by structuring element B.

Given two sets A,BCZN , the morphological erosion of a set A by a set of

structuring element B is defined [21] by

AeB= {x1VbEB3aeA:x=a—b}=nb.B(A)-b 	 (1.3)

The erosion of A by B results in an erosion of the shapes in A. The erosion

operation can be interpreted as the union of all the possible shifts for which the shifted B

is contained completely within A. That is,

A e B = {x ( A c n (B), = 0)	 (1.4)

where A c is the complement of A defined by A' = {x I x A }.

An example of erosion is given in Figure 1.2.
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(5) Increasing property:

AcB=>A@CcBeC	 (1.12)

AcB—>AeCcBeC	 (1.13)

(6) Distributive property:

(A U B) e C = (A ED C) U (B ED C)	 (1.14)

A e (B U C) = (A ED B) U (A e 	 (1.15)

A e(BUC)= (AeB)n(Aec)	 (1.16)

(B	 e A = (B e A) n (c e A)	 (1.17)

The derived morphological operations opening and closing are defined as follows.

Given two sets A, B c AN, the morphological opening of a set A by a set of structuring

element B is defined [21] by

A 0 B = (A e B) ED B	 (1.18)

and the morphological closing of a set A by a set of structuring element B is defined [21]

by

A • B = (A e B) e B	 (1.19)

Examples of opening and closing are given as follows.
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(a)
	

(b)

(c)
	

(d)

(e)

Figure 1.5 (a) Original binary image (b) Structuring element (c) Result of dilation
(d) Result of erosion (e) Result of closing (f) Result of opening.
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1.2 Gray Scale Morphological Operations

The notions and morphological transformations of a binary image can also be extended to

gray-scale images. Let f and k be the gray-scale image and the structuring elements. The

gray-scale morphological dilation, erosion, opening and closing are defined as follows,

and its properties. Figure 1.6 illustrates dilation, erosion, closing and opening operations

by a 3 x3 structuring element on a gray-level image.



Figure 1.6 (a) Original image (b) Structuring element (c) Result of dilation (d) Result of
erosion (e) Result of closing (f) Result of opening.
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1.3 Fuzzy Mathematical Morphology

Fuzzy set theory has found a promising field of application in the domain of digital image

processing, since fuzziness is an intrinsic property of images. In this images are modeled

as fuzzy subsets of the Euclidean plane or Cartesian grid, and the morphological

operators are defined in terms of a fuzzy index function. Fuzzy sets were introduced by

Zadeh [85] and elementary operations, intersection, union, complementation, inclusion,

etc., were defined. The fuzzy set theoretic operations are defined as follows. The
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The support of a set A, denoted as L9(A), is a crisp set of those elements of U

which belong to A with some certainty:

SO) = {x : pA(x)> 0}	 (1.30)

The translation of a set A by a vector v E U, denoted by f(A; v), is defined as

ill:r(A;v)(X) = /I* - v)

	

(1.31)

The reflection of set A, denoted by A, defined as

114(x) = , 1,4 (-x)
	

(1.32)

The scalar addition of a fuzzy set A and a constant a, denoted as A 0 a, is defined as

= min(1, max[0, ,uA(x) + a])	 (1.33)

Giles [19] proposed fuzzy operations, bold union, AO Y of two sets A and Y as

,uxA y(z) = min [ 1, ,uy(z), ,y(z)]

and bold intersection AV Y as

Ex FY(Z) = max [0, itlx(Z), Aly(Z) - 1]

If A and Y are crisp sets, then CA Y E- AU Y and AV Y An Y.

An index function I: 2 u x 2u —> {0, 11 is defined as

{1 ifAcB
1(A, B) =

0 otherwise

(1.34)

(1.35)

(1.36)

The above equation can be rewritten so as to express the index function directly in terms

of characteristic functions:

1(A, B) = infxEA pB(x)

= min [infxEA x(x), infxetA l]	 (1.37)

= inf,EupAcAB (x)
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The last relation follows because for crisp sets the bold union has the following

properties:

The index function can be generalized, so that 1(A, B) gives the degree to which A

is a subset of B. The formulation given in the equation (1.37) suffices for this purpose.

The properties of morphological operations will be induced by the properties of the index

function.

Consider any two fuzzy subsets A, B C U; index function 1(A, B) for different

values of set B, and set A essentially fixed and A * 0. The properties (axioms) for index

the function to satisfy are as follows:
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The fuzzy morphological operations are illustrated in following examples. The

area of interest in a given image is represented by a rectangle and the membership values

within this rectangular region are specified in a matrix format. The membership values

outside this region are assumed to be fixed and this value is specified as a superscript of

the matrix and the coordinates of the topmost-leftmost element of the matrix as subscript.



15



16



CHAPTER 2

CORNER DETECTION

2.1 Introduction

The corners of an object are frequently employed in the recognition of objects by

computer [13][45][50][58]. Given a digital image of an object, a typical approach to

detecting its corners involves first segmenting the object (by thresholding or some similar

method), extracting its boundary as a chain code, and then searching for significant

turnings in the boundary. Rutkowski and Rosenfeld [51], and references cited therein,

provide a good survey of such techniques. However, most approaches work directly at

These methods usually use local measurements in order to obtain corner strength.

Non-maxima suppression and thresholding lead then to a binary map showing where

corners have been detected. An accuracy of few pixels and a relatively high level of false

positives usually characterize these corner finders.

One of the difficulties with corner detection lies in the corner definition itself. A

restrictive description simply defines corner as the junction of two homogeneous regions

separated by a high-curvature boundary. This definition is incomplete since it does not

include X, Y and junction that should also be categorized as corners since they might

be the image of 3D corners (intersection of planes in space). A less right definition

assimilates corners to points with high derivatives in several directions. This is a very

loose description of the term corner since several "non-corner" points fall into this

category.

17
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This chapter proposes a corner detector based on regulated mathematical

morphology. The next section is a review of existing corner detectors. Section 3 describes

the asymmetrical closing proposed by Laganiere and its shortcomings. Section 4

describes the regulated morphological operators as defined by Agam and Dinstein and

how these regulated dilation and erosion can be used for corner detection. Conclusions

are made in Section 5.

2.2 Related Research

Corner detection techniques can be classified into two major categories: boundary-based

approaches and gray-level approaches. Boundary-based approaches detect corners on the

boundaries of the objects. Gray-level approaches directly work on gray-level images by

matching corner templates [40] or by computing gradients [59][76] at edge points.

Kitchen and Rosenfeld [26] noted that gray-level schemes perform significantly better

than binary techniques. Singh and Slmeier [76] viewed the problem of gray-level corner

detection as one similar to that of gray-level edge detection, and proposed a fusion

method of template based techniques and gradient based techniques. Cooper et al. [9]

used similarity between image patches along the edge direction, and showed that their

method was more robust to noise than other gray corner detection method including the

Plessy, Kitchen-Rosenfeld and Beaudet [2] detectors. Zheng and et al. [87] proposed

gradient-direction corner detector that is comparable to Plessy in detection but has better

performance of localization and stability. Lee and Bien [32] developed a real-time gray-

level corner detector using fuzzy logic and hardware implementation of the developed

algorithm is studied to detect corners in real time.
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Tsai, Hou and Su [81] proposed a boundary-based corner detection method based

on the eigenvalues of the covariance matrix of data points on a curve segment. This is

computationally fast and easy to implement. It avoids false alarms for superfluous

corners and circular arcs. Laganiere [29] proposed a corner detector based on

mathematical morphology. This approach is computationally very fast and yields results

of good quality with suitable accuracy and robustness to noise. Lin, Chu and Hsueh [35]

have proposed a modified morphological corner detector, which finds convex and

concave significant points using simple integer computation. They use morphological

operators to extract connected regions containing convex and concave corners. Then

locate convex and concave corners as those points on the boundaries of the extracted

region with maximal N-hit numbers. The drawbacks of this approach are:

(1) Difficult to choose a suitable structuring element to fit working purpose.

(2) As the size of structuring element increases, this method may increase the

precision of the corners detected, but it will increase the computation as well.

2.3 Asymmetrical Closing for Corner Detection

Laganiere [29] proposed an approach to corner detection based on mathematical

morphology. The goal of this approach was to obtain a fast corner detector that is, at the

same time, sufficiently accurate, stable, selective and robust to noise.

Traditional opening and closing operators can be used for corner detection. The

comparison of Figure 2.1(c) and (e) with (a) reveals the capability of opening and closing

operators to detect corners when a cross-shaped structuring element is used. However,

these corners suffer from the following problems.
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1. Opening affects only the bright corners over dark background while closing affects

only the dark corners over the bright background.

2. Small image structures are also eliminated and thus can be wrongly assimilated to

corners.

3. This kind of corner detection is not rotationally invariant.

Laganiere proposed asymmetrical closing to overcome these problems.

Asymmetrical closing is dilation of the image using a given structuring element followed
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by an erosion using another structuring element. The central idea is to make dilation and

erosion complementary in terms of the type of corners they affect. The structuring

elements used are cross + as the first one and a lozenge 0 for the second one.

Asymmetrical closing of image A by structuring elements + and 0 is given by

And corner strength is given by

This misses some corners and to detect those missing corners the following operator is

used. (which is a 45 ° rotated version of the preceding one).

The combination of these two operators make corner detection almost rotationally

invariant and insensitive to small image structures and leads to a the following operator,

The operator proposed by Laganiere detects most of the corners. It does not detect

wide-angle corners. Selecting median or center of a small neighborhood as the corner can

reduce the multiple pixel response for some corners. Also it is found that in a binary like

images where there are very dark objects in a bright background, taking the difference of
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corner strengths of A c + .0. and Acx.1  is removing some corners and taking the union of the

strengths is a better option.

Some results of using this technique with the modification C + AA) = I A — 	 o

u I A — „❑ I instead of C + AA) = A c + . o - A c .. ❑ 1 are shown below.

(a)	 (b)	 (c)
Figure 2.3 (a) Triangle binary image (b) Corners with Laganiere's operator (c) Corners
with modified Laganiere's operator.

(a)	 (b)	 (c)
Figure 2.4 (a) Grayscale image (b) Corners with Laganiere's operator (c) Corners with
modified Laganiere's operator.
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2.4 Regulated Morphological Operations

The binary dilation collects shifts for which the kernel set intersects the object set without

taking into account what is the size of the intersection, whereas the binary erosion

collects shifts for which the kernel set is completely contained within the object set

without considering shifts for which some kernel elements are not contained within the

object set. As a result of these strict approaches, the ordinary morphological operations

are sensitive to noise and small intrusions or protrusions on the boundary of shapes. In

order to solve this problem, various extensions to the ordinary morphological operations

have been proposed. These extensions can be classified into two major groups: fuzzy

morphological operations [3][77] and soft morphological operations [28][71]. Agam and

Dinstein [I] have defined regulated morphological operations, and shown how the fitting

property of the ordinary morphological operations is controlled in these operations. The

defined regulated morphological operations include: regulated erosion, regulated dilation,

regulated open, and regulated close. The properties of the regulated morphological

operations are discussed and it is shown that they posses many of the properties of the

ordinary morphological operations. In particular, it is shown that the regulated open and

close are idempotent for an arbitrary kernel and strictness parameter. Since the regulated

morphological operations possess many of the properties of ordinary morphological

operations, it is possible to use the regulated morphological operations in the existing

algorithms that are based on morphological operations in order to improve their

performance, where the strictness parameter of the regulated morphological operations

may be optimized according to some criteria.
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The following sections describe the regulated morphological operators as defined

by Agam and Dinstein [1] and how these regulated dilation and erosion can be used for

corner detection and show that this gives better results than that proposed by Laganiere

[29] with less computation in case of binary images.

The regulated dilation of a set A by a set of structuring element B with a strictness

of s is defined by:



2.4.1 Regulated Morphological Operators for Corner Detection

For corner detection, the image is dilated with a 5 x 5 cross with a strictness of 2 followed

by an erosion with the same structuring element with the same strictness. The resulting

image A' is given by
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Corner detection with the above-discussed method uses only single structuring

element for detecting as many corners detected by the operator proposed by Laganiere,

which uses four different structuring elements. Some results of corner detection by

regulated morphological closing are shown in Figure 2.8 - Figure 2.11. Figure 2.12

illustrates corner detection with different strictness values.
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(a)
	

(b)

Figure 2.10 (a) Triangle (b) Corners with regulated closing with strictness 2.

(a)
	

(b)

Figure 2.11 (a) Image (b) Corners with regulated closing with strictness 2.
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2.5 Conclusions

It is shown that regulated morphological operations give better results for corner

detection in binary images than Laganiere's method. Also it was shown that there is

substantial reduction in computation as this uses one structuring element where as

Laganiere method uses four structuring elements. Future work involves extending corner
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detection using regulated morphology to grayscale images. One way of extending this is

to compose the grayscale equivalents of the binary operations by processing thresholded

sections of grayscale image by the binary operations, and then stacking the processed

sections in order to obtain the grayscale result. Other areas of study are using fuzzy

methods and ordered-statistics for corner detection directly on grayscale images.



CHAPTER 3

GENERAL SWEEP MATHEMATICAL MORPHOLOGY

General sweep mathematical morphology provides a new class of morphological

operations, which allow one to select varying shapes and orientations of structuring

elements during the sweeping process. Such a class holds syntactic characteristics similar

to algebraic morphology as well as sweep geometric modeling. The conventional

morphology is a subclass of the general sweep morphology. The sweep morphological

dilationlerosion provides a natural representation of sweep motion in the manufacturing

processes, and the sweep openinglclosing provides variant degrees of smoothing in image

filtering. The theoretical framework for representation, computation and analysis of

sweep morphology is presented in this chapter. Its applications to the sweeping with

deformations, image enhancement, edge linking, and shortest path planning for rotating

objects are also discussed.

3.1 Introduction

The sweep operation to generate a new object by sweeping an object along a space curve

trajectory provides a natural design tool in solid modeling. The simplest sweep is linear

extrusion defined by a 2-D area swept along a linear path normal to the plane of the area

to create a volume [54]. Another simple sweep is rotational sweep defined by rotating a

2-D object about an axis. Though simple, these two sweeps are often seen in real

applications. Sweeps that generate area or volume changes in size, shape, or orientation

during the sweeping process, and follow an arbitrarily curved trajectory are called

general sweeps [16][53].

30
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General sweeps of solids are useful in modeling the region swept out by a

machine-tool cutting head or a robot following a path. General sweeps of 2-D cross-

sections are known as generalized cylinders in computer vision, and are usually modeled

as parameterized 2-D cross-sections swept at right angles along an arbitrary curve. Being

the simplest of general sweeps, generalized cylinders are somewhat easy to compute.

However, general sweeps of solids are difficult to compute since the trajectory and object

shape may make the sweep object self-intersect [16].

Mathematical morphology involves the geometric analysis of shapes and textures

in images. Appropriately used, mathematical morphological operations tend to simplify

image data presenting their essential shape characteristics and eliminating irrelevancies

[21][63][68][70]. As the object recognition, feature extraction, and defect detection

correlate directly with shape, it becomes apparent that mathematical morphology is the

natural processing approach to deal with the machine vision recognition process and the

visually guided robot problem.

The mathematical morphological operations can be thought of working with two

images. Conceptually, the image being processed is referred to as the active image and

the other image being a kernel is referred to as the structuring element. Each structuring

element has a designed shape, which can be thought of as a probe or filter of the active

image. The active image can be modified by probing it with various structuring elements.

The two fundamental mathematical morphological operations are dilation and

erosion. Dilation combines two sets using vector addition of set elements. Dilation by

disk structuring elements corresponds to isotropic expansion algorithm popular to binary

image processing. Dilation by small square (3 x 3) is an 8-neighborhood operation which
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can be easily implemented by adjacently connected array architectures and is the one

known by the name "fill," "expand," or "grow." Erosion is the morphological dual to

dilation. It combines two sets using vector subtraction of set elements. Some equivalent

terms of erosion are "shrink" and "reduce."

The traditional morphological operations perform vector additions or subtractions

by a translation of structuring element to the object pixel. They are far from being

capable of modeling the swept volumes of structuring elements moving with complex,

simultaneous translation, scaling, and rotation in Euclidean space. In this chapter, an

approach is developed that adopts sweep morphological operations to study the

properties of swept volumes. The author presents the theoretical framework for

representation, computation, and analysis of a new class of general sweep mathematical

morphology and its practical applications. This chapter is organized as follows. Section 2

presents the theoretical development of general sweep mathematical morphology along

with its properties. Section 3 describes an application of sweep morphology, which

represents the blending of swept surfaces with deformations. Section 4 presents the usage

of sweep morphology for image enhancement and Section 5 the edge linking and Section

6 the shortest path planning. The conclusions are made in Section 7.

3.2 Theoretical Development of General Sweep Mathematical Morphology

Traditional morphological dilation and erosion perform vector additions or subtractions

by translating a structuring element along an object. These operations obviously have the

limitation of orientation-dependence and can represent the sweep motion, which involves

only translation. By including not only translation but also rotation and scaling, the entire

theoretical framework and practical applications become extremely fruitful. Sweep
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morphological dilation and erosion describe a motion of a structuring element that

sweeps along the boundary of an object or an arbitrary curve by geometric

transformations. The rotation angles and scaling factors are defined with respect to the

boundary or the curve.

3.2.1 The Computation of Traditional Morphology

Because rotation and scaling are inherently defined on each pixel of the curve, the

traditional morphological operations of an object by a structuring element need to be

converted to the sweep morphological operations of a boundary by the structuring

element. It is assumed throughout this chapter that the sets considered are connected and

bounded.

Definition 1: A set S is said to be connected if each pair of points, p, q E S can be joined

by a path which consists of pixels entirely located in S.

Definition 2: Given a set S, a boundary as is defined as the set of points all of whose

neighborhoods intersect both S and its complement Sy .

Definition 3: If a set S is connected and has no holes, it is called simply connected; if it is

connected but has holes, it is called multiply connected.

Definition 4: Given a set S, the outer boundary (3+S of the set is defined as the closed

loop of points in S that contains every other closed loop consisting of points of the set S;

the inner boundary dB is defined as the closed loop of points in S that does not contain

any other closed loop in S [84].
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Proposition 1: If a set S is simply connected, then 8S is its boundary; if it is multiply

Definition 5: The positive filling of a set S is denoted as [S] + and is defined as the set of

all points that are inside the outer boundary of S; the negative filling is denoted as [S]_ and

is defined as the set of all points that are outside the inner boundary.

Note that if S is simply connected, then [S]_ is a universal set. Therefore, no matter

Proposition 2: Let A and B be simply connected sets. The dilation of A by B equals the

. The significance is that if A and B are

simply connected sets, then just compute the dilation of the boundary 8A by the set B.

This leads to a substantial reduction of computation.

Proposition 3: If A and B are simply connected sets, the dilation of A by B equals the

This proposition reduces further the computation required for the dilation.

Namely, the dilation of sets A by B can be computed by the dilation of the boundary of A

by the boundary of B.
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Since A and B possess the commutative property with respect to dilation, the

following proposition can be easily obtained.

Proposition 5: If A is simply connected and B is multiply connected,

3.2.2 The General Sweep Mathematical Morphology

The sweep morphology can be represented as a 4-tuple, TAB, A, S, 0), where B is a

structuring element set, indicating a primitive object; A is either a curve path or a closed

object whose boundary representing the sweep trajectory with a parameter t along which

the structuring element B is swept; S(t) is a vector consisting of the scaling factors; OW is

a vector consisting of the rotation angles. Note that both scaling factors and rotation

angles are defined with respect to the sweep trajectory.

Definition 6: If A is a simply connected object and let al denote its boundary, the sweep

morphological dilation of A by B in Euclidean space is denoted by A Ai B and is defined

as
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Note that if B does not involve rotations (or B is rotation-invariant like a circle)

and scaling, then the sweep dilation is equivalent to the traditional morphological

dilation.

Figure 3.1(a) shows a curve and Figure 3.1(b) shows an elliptical structuring

element. The rotation angle 0 is defined as 0(t) = tan 1 (dyldt)l(dxldt) along the curve with

parameter t in the range of [0,1]. The traditional morphological dilation is shown in

Figure 3.1(c) and the sweep dilation using the defined rotation is shown in Figure 3.1(d).
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A geometric transformation of the structuring element specifies the new

coordinates of each point as functions of the old coordinates. Note that the new

coordinates are not necessarily integers after a transformation to a digital image is

applied. To make the results of the transformation into a digital image, they must be

resampled or interpolated. Since a two-valued (black-and-white) image is being

transformed, the zero-order interpolation is adopted.

The sweep morphological erosion, unlike dilation, is defined with the restriction

on a closed object only and its boundary represents the sweep trajectory.

Definition 7: Let A be a closed object and B be a structuring element. The sweep

morphological erosion of A by B in Euclidean space, denoted by A El B, is defined as

An example of a sweep erosion by an elliptical structuring element whose semi-

major axis is tangent to the boundary is shown in Figure 3.2. Like in traditional

morphology, the general sweep morphological opening can be defined as a general sweep

erosion of A by B followed by a general sweep dilation, where A must be a closed object.

The sweep morphological closing can be defined in the opposite sequence, i.e., a general

sweep dilation of A by B followed by a general sweep erosion, where A can be either a

closed object or a curve path.
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The propositions of traditional morphological operations can be extended to

sweep morphological operations.

Proposition 6: If the structuring element B is simply connected, the sweep dilation of A

by B equals to the positive filling of the sweep dilation by the boundary of B, i.e.,

Extending this proposition to multiply connected objects, the following three

cases are obtained.
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This leads to a substantial reduction of computation. An analogous development

for the sweep erosion can be made.

Proposition 7: If A and B are simply connected sets, then .

With the aforementioned propositions and considering the boundary of the

structuring element, the computation of sweep morphological operations can further be

reduced.

3.2.3 The Properties of Sweep Morphological Operations

Property 1: Non-commutative. Because of the rotational factor in the operation, the

Property 2: Non-associative. Because the rotational and scaling factors are dependent on

the characteristics of the boundary of the object, associativity does not hold. Hence, A EEG

(B EBB 	 # (A ® B) ER C.
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But associativity of regular dilation and sweep dilation holds

B) El C. As structuring element is rotated based on the boundary properties of B and after

A ED B, still the boundary properties will be similar to that of B.

Property 3: Translational Invariance:
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(b) Dilation is not distributive over union of sets. That is, dilation of (A U C) with a

structuring element B is not same as union of dilation of A with B and dilation of C with

B.

(c) Erosion is anti-distributive over union of structuring elements. That is, erosion of A

with a union of two structuring elements B and C is the same as intersection of erosion of

A with B and erosion of A with C.

(d) Distributivity over intersection.
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3.3 Blending of Swept Surfaces with Deformations

By using the general sweep mathematical morphology, a smooth sculptured surface can

be described as a trajectory of cross-section curve swept along a profile curve, where the

trajectory of cross-section curve is the structuring element B and the profile curve is the

open or closed curve C. It is very easy to describe the sculptured surface by specifying

the 2-D cross-sections, and that the resulting surface is aesthetically appealing. The

designer can envision the surface as a blended trajectory of cross-section curves swept

along a profile curve.

Let O3 denote the boundary of a structuring element B. A swept surface sw(a3,0

is produced by moving dB along a given trajectory curve C. The plane of B must be

perpendicular to C at any time instance. The contour curve is represented as a B-spline

curve and dB is represented as the polygon net of the actual curve. This polygon net is

swept along the trajectory to get the intermediate polygon nets and later they are

interpolated by a B-spline surface. Twisting or scaling uniformly or by applying the

deformations to selected points of O3 can deform the curve. The curve can also be

deformed by varying the weights at each of the points. When a uniform variation is

desired, it can be applied to all the points and otherwise to some selected points. These

deformations are applied to o3 before it is moved along the trajectory C.

Let O3 denote a planar polygon with n points and each point 5Bi = (xi, yid, zip, hi),

where i = 1, 2, ..., n. Let C denote any 3-D curve with m points and each point q = (sxj, xj,

zj), where] = 1, 2, ...,m. The scaling factor, weight, and twisting factor for point] of C are

denoted as sxj, sxj, szj, w j, and 0j, respectively. The deformation matrix is obtained as [Scud

= [S SW] [Re], where
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spline curve at each point of C. To get the whole swept surface, the spline curves at

each point of the trajectory C have to be calculated. Selecting a few polygon nets and

calculating the spline surface can reduce this computation.

Example 1: Sweeping of a square along a trajectory with deformation to a circle.

Here the deformation is only the variation of the weights. The circle is represented

as a rational B-spline curve. The polygon net is a square with 9 points with the first and

last being the same and the weights of the corner vary from 5 to -Nth /2 as it is being swept

along the trajectory C, which is given in the parametric form as x = Os and y = costs) -

1. The sweep transformation is given by
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3.4 Image Enhancement

Because of being adapted to local properties of the image, general sweep morphological

operations can provide variant degrees of smoothing for noise removal while preserving

the object features. Research on statistical analysis of traditional morphological

operations has been found. Stevenson and Arce [80] developed the output distribution

function of opening with flat structuring elements by threshold decomposition. Morales

and Acharya [41] presented general solutions for the statistical analysis of morphological

openings with compact, convex, and homothetic structuring elements.

Traditional opening can remove noise as well as object features whose sizes are

smaller than the structuring element. With the general sweep morphological opening, the

object features of similar shape and greater size compared to the structuring element will

be preserved while removing noise. In general, the highly varying parts of the image are

assigned with smaller structuring elements, while the slowly varying parts with larger

ones. The structuring elements can be assigned based on the contour gradient variation.

An example is illustrated in Figure 3.4, (a) circular structuring element scaled

based on the gradient of the signal and (b) elliptical structuring element rotated based on

the slope and scaled based on the curvature of the signal.



46



47

where h is the strength of the edge, and N., is i.i.d. Gaussian random noise with mean

value 0 and variance 1. For image filtering with a general sweep morphological opening,

essentially adopt smaller sized structuring element for the important feature points, and

larger one for other locations. Therefore, the noise in an image is removed while the

features are preserved. For instance, in a one-dimensional image, it can be easily

achieved by computing the gradient byl(x) - f(x-1) and setting those points accordingly,

in which the gradient values are larger than the predefined threshold, with smaller

structuring elements.

Chen and et al. [6] presented the results of noisy step edge filtering by both

traditional morphological opening and so-called space-varxing (involving both scaling

and translation in the general sweep morphology model) opening and compared by

computing the mean and variance of output signals. The mean value of the output

distribution follows the main shape of the filtering result well and this gives the evidence

of shape preserving ability of the proposed operation. Meanwhile, the variance of output

distribution coincides with the noise variance, and this shows the corresponding noise

removal ability. It is observed that general sweep opening possesses approximately the

same noise removing ability as compared to the traditional one. Moreover, it can be

observed that, the relative edge strength with respect to the variation between the

transition interval, say [-2,2], for general sweep opening, is larger than that of the

traditional one. This explains why the edge is degraded in the traditional morphology

case but is enhanced in the general sweep one. Although a step-edge model was tested

successfully, other complicated cases need further elaboration. The statistical analysis for
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providing a quantitative approach to general sweep morphological operations will be

further investigated.

Chen and et al. [7] have shown image filtering using adaptive signal processing,

which is nothing but the sweep morphology with only scaling and translation. The

method uses space varying structuring elements by assigning different filtering scales to

the feature parts and other parts. To adaptively assign structuring elements, they have

developed the progressive umbra-filling (PUF) procedure. This is an iterative process.

The experimental results have shown that this approach can successfully eliminate noise

without over smoothing the important features of a signal.

3.5 Edge Linliing

Edge is a local property of a pixel and its immediate neighborhood. Edge detector is a

local processing to locate sharp changes in the intensity function. An ideal edge has a step

like cross section as gray levels change abruptly across the border. In practice, edges in

digital images are generally slightly blurred as effects of sampling and noise.

There are many edge detection algorithms and the basic idea underlying most

edge detection techniques is the computation of a local derivative operator [20]. Some

algorithms like the LoG filter produce closed edges, however, false edges are generated

when blur and noise appear in an image. Some algorithms like Sobel operator produce

noisy boundaries that do not actually lie on the borders and broken gaps where border

pixels should reside. That is because noise and breaks present in the boundary from non-

uniform illumination and other effects that introduce spurious intensity discontinuities.

Thus, edge detection algorithms are typically followed by linking and other boundary
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detection procedures, which are designed to assemble edge pixels into meaningful

boundaries.

The edge linking by the tree search technique was proposed by Matelli [37] to

link the edge sequentially along the boundary between pixels. The cost of each boundary

element is defined by the step size between the pixels on its both sides. The larger the

intensity difference corresponds to the larger the step size, which is assigned a lower cost.

The path of boundary elements with the lowest cost is linked up as an edge. The cost

function was later redefined by Cooper et al. [8], where the edge is extended through the

path having a maximal local likelihood. Similar efforts were made by Eichel and Delp

[14] and by Farag and Edward [15].

Basically, the tree search method is time-consuming and requires the suitable

assignment of root points. Another method locates all of the ends points of the broken

edges and uses a relaxation method to pair them up, so that line direction is maintained,

lines are not allowed to cross, and closer points are matched first. However, this suffers

problems if unmatched end points or noises are present.

A simple approach to edge linking is a morphological dilation of points by some

arbitrarily selected radius of circles followed by the OR operator of the boundary image

with the resulting dilated circles and the result is finally skeletonized [62]. This method,

however, has the problem that some of the points may be too far apart for the circles to

touch, while oppositely the circles may obscure details by touching several existing lines.

To overcome this, the sweep mathematical morphology is used to allow the variation of

the structuring element according to local properties of the input pixels.
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3.5.1 Edge Linking using Sweep Morphology

Let B denote an elliptic structuring element shown in Figure 3.5, where p and q denote

respectively the semi-major and semi-minor axes. That is

An edge-linking algorithm was proposed by Shih and Cheng based on the sweep

dilation, thinning and pruning [65]. This is a three-step process as explained below.

Step 1: Sweep Dilation.

The broken line segments can be linked up by using the sweep morphology

provided that the structuring element is suitably adjusted. Considering the input signal

plotted in Figure 3.6(a), the concept of using the sweep morphological dilation is

illustrated in Figure 3.6(b). Extending the line segments in the direction of local slope

performs the linking. The basic shape of the structuring element is an ellipse, where the

major axis is always aligned with the tangent of the signal.
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Elliptical structuring element is to reduce noisy edge points and small

insignificant branches. The width of the ellipse is selected to accomplish this purpose.

The major axis of the ellipse should be adapted to the local curvature of the input signal

to protect from over stretch at high curvature point. At high curvature points, a short

major axis is selected and vice versa.

Step 2: Thinning.

After performing the sweep dilation by directional ellipses, the edge segments are

extended in the direction of the local slope. Because the tolerance (or the minor axis of

the ellipse) is added, the edge segments grow a little fat. To suppress this effect,

morphological thinning is adopted.

An algorithm of thinning using mathematical morphology is proposed by Jang

and Chin [24]. The skeletons generated by their algorithm are connected, one pixel width,

and closely follow the medial axes. The algorithm is an iterative process based on the

hitlmiss operation. Four structuring elements are constructed to remove boundary pixels

from four directions, and another four are constructed for removing the extra pixels at

skeleton junctions. There are four passes in each iteration. Three of the eight predefined
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structuring elements templates are applied simultaneously in each pass. The iterative

process is performed until the result converges. The thinning algorithm will not shorten

the skeletal legs. Therefore, it is applied to the adaptive dilated edges.

Step 3: Pruning:

The dilated edge segments after thinning may still produce a small number of

short skeletal branches. These short branches should be pruned. In a skeleton, any pixel,

which has three or more neighbors, is called a root. Starting from each neighbor of the

root pixel, the skeleton is traced outward. Those paths whose lengths are shorter than a

given threshold k are treated as branches and are pruned away.

Figure 3.7(a) shows an original elliptical edge and Figure 3.7(b) shows its

randomly discontinuous edge. The sweep morphological edge-linking algorithm is

experimented on Figure 3.7(b). Figure 3.8 shows the results of using circular structuring

elements with radius r=3, r=5 and r=10, respectively, in 5 iterations. Compared with the

original ellipse in Figure 3.7(a), it is known that if the gap is larger than the radius of the

structuring element, it is difficult to link the gap smoothly. However, if a very big circular

structuring element is used, the edge will look hollow and protuberant. Also, using big

circle can obscure the details of edge.
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Figure 3.7 (a) Original elliptical edge and (b) Its randomly discontinuous edge.
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Figure 3.9 Using the sweep morphological edge-linking algorithm.

Figure 3.9 shows the result of using the sweep morphological edge-linking

algorithm. Figure 3.10(a) shows the edge of an industrial part and Figure 3.10(b) shows

its randomly discontinuous edge. Figure 3.10(c) shows the result of using the sweep

morphological edge-linking algorithm. Figure 3.11 (a) shows the edge with added uniform

noise and Figure 3.11(b) shows the edge after removing noise. Figure 3.11(c) shows the

result of using the sweep morphological edge-linking algorithm.



(c)

Figure 3.10 (a) The edge of an industrial part, (b) Its randomly discontinuous edge, and
(c) Using the sweep morphological edge-linking algorithm.



(c)

Figure 3.11 (a) Part edge with added uniform noise, (b) Part edge after removing noise,
and (c) Using the sweep morphological edge-linking algorithm.



Figure 3.12(a) shows a face image with the originally detected broken edge.

Figure 3.12(b) shows the face image with the edge linked by the sweep morphological

edge-linking algorithm.

3.6 Shortest Path Planning for Mobile Robot

The recent advances in the fields of robotics and artificial intelligence have stimulated

considerable interest in the robot motion planning and the shortest path finding problem

[30]. The path planning is in general concerned with finding paths connecting different

locations in an environment (e.g., a network, a graph, or a geometric space). Depending

on the specific applications, the desired paths often need to satisfy some constraints (e.g.,

obstacle-avoiding) and optimize certain criteria (e.g., variant distance metrics and cost

functions). The problems of planning shortest paths arise in many disciplines, and in fact

are one of the several most powerful tools for modeling combinatorial optimization

problems.
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The path planning problem is given as a mobile robot of arbitrary shape moves

from a starting position to a destination in a finite space with arbitrarily shaped obstacles

in it. When the traditional mathematical morphology is applied to solve the problem, its

drawback is the fixed directional movement of the structuring element (i.e., robot), and is

no longer the optimal path in real world applications [34]. By incorporating rotation into

the motion of a moving object, it gives more realistic results to solving the shortest path

finding problem.

The shortest path-finding problem is equivalent to applying sweep (rotational)

morphological erosion to the free space followed by a distance transformation on the

domain with the grown obstacles excluded and then tracing back the distance map from

the destination point to the neighbors with the minimum distance until the starting point

is reached [46]. An example illustrating the shortest path of an H-shaped car by using the

sweep (rotational) morphology is shown in Figure 3.13.

Figure 3.13 Shortest path of an H-shaped car by using the sweep (rotational)
morphology.
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3.7 Conclusions

This chapter describes the limitation of traditional morphological operations and defines

new morphological operations, general sweep morphology. It is shown that traditional

morphology is a subset of general sweep morphology. The properties of the sweep

morphological operations are studied. The chapter contains several examples of the

proposed approach that demonstrate the advantages obtained by using the sweep

morphological operations instead of traditional morphological operations.



CHAPTER 4

GEOMETRIC MODELING AND REPRESENTATION

4.1 Introduction

The geometric modeling is the foundation for CADlCAM integration. The goal for the

automated manufacturing inspection and robotic assembly is to generate a complete

process automatically. The representation must not only possess the nominal geometric

shapes, but also reason the geometric inaccuracies (or tolerances) into the locations and

shapes of solid objects.

Boundarx representation and Constructed Solid Geometrx (CSG) representation

are popularly used as the internal database [55][601] for geometric modeling. Boundary

representation consists of two kinds of information — topological information and

geometric information — which represent the vertex coordinates, surface equations, and

the connectivity among faces, edges, and vertices. There are several advantages in

boundary representation: large domain, unambiguity, uniqueness, and explicit

representation of faces, edges, and vertices. There are also several disadvantages: verbose

data structure, difficulty in creating, difficulty in checking validity, and variational

information unavailability.

The CSG representation is to construct a complex part by hierarchically

combining simple primitives using Boolean set operations [43]. There are several

advantages in the CSG representation: large domain, unambiguity, easy-to-check validity,

and easy creativity. There are also several disadvantages: non-uniqueness, difficulty in

editing graphically, input data redundancy, and variational information unavailability.
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The framework proposed for geometric modeling and representation is sweep

mathematical morphologx presented in chapter 3, which is based on set-theoretic concept

along with geometric sweep. The sweep operation to generate a volume by sweeping a

primitive object along a space curve trajectory provides a natural design tool. The

simplest sweep is linear extrusion defined by a 2-D area swept along a linear path normal

to the plane of the area to create a volume [54]. Another sweep is rotational sweep

defined by rotating a 2-D object about an axis.

A generalized sweeping method for CSG modeling was developed by Shiroma et

al. [74] to generate a swept volume. It is shown that the complex solid shapes can be

generated with a blending surface to join two disconnected solids, fillet volumes for

rounding corners, and swept volumes formed by the movement of NC (Numeric Control)

tools. Ragothama and Shapiro [52] presented a B-Rep method for deformation in

parametric solid modeling.

In this chapter, the author presents a method of geometric modeling and

representation based on sweep mathematical morphology. It is organized as follows.

Section 2 describes modeling based on the sweep mathematical morphology. Section 3

describes the formal languages. Section 4 proposes the representation scheme for two-

dimensional and three-dimensional objects. Section 5 introduces the adopted grammars.

Section 6 applies the parsing algorithm to determine whether a given object belongs to

the language. Conclusions are made in Section 7.
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4.2 Geometric Modeling and Sweep Mathematical Morphology

Schemes based on sweep representation are useful in creating solid models of two-and-a-

half-dimensional objects that include both solids of uniform thickness in a given direction

and axis-symmetric solids. Computer representation of the swept volume of a planar

surface has been used as a primary modeling scheme in solid modeling systems [41[751.

Representation of the swept volume of a three-dimensional object [471[821[83], however,

has received limited attention.

Leu, Park and Wang [331 presented a method for representing the swept volumes

of translating objects using boundary representation and ray in-out classification. Their

method is restricted to translation only. Representing the swept volumes of moving

objects under a general motion is a more complex problem. A number of researchers

have examined the problem of computing swept volumes, including Korein [271 for

rotating polyhedra, Kaul [251 using Minkowski sums for translation, Wang and Wang

[831 using envelop theory, and Martin and Stephenson [381 using envelop theory and

computer algebraic techniques.

Geometric modeling based on sweep morphology is proposed. Because of

morphological operators' geometric nature and non-linear property, some modeling

problems will become simple and intuitive. This framework can be used for modeling not

only swept surface and volumes but also for tolerance modeling in manufacturing.

4.2.1 Tolerancing Expression

Tolerances constrain an object's features to lie within regions of space called tolerance

zones. Tolerance zones in Rossignac and Requicha [561[611 were constructed by

expanding the nominal feature to obtain the region bounded by the outer closed curve,
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shrinking the nominal feature to obtain the region bounded by the inner curve, and then

subtracting the two resulting regions. This procedure is equivalent to the morphological

dilation of the offset inner contour with a tolerance-radius disked structuring element.

Figure 4.1(a) shows an annular tolerance zone that corresponds to a circular hole, and

Figure 4.1(b) shows a tolerance zone for an elongated slot. Both can be constructed by

dilating the nominal contour with a tolerance-radius disked structuring element as shown

in Figure 4.2. The tolerance zone for testing the size of a round hole is an annular region

lying between two circles with the specified maximal and minimal diameters; the zone

corresponding to a form constraint for the hole is also an annulus, defined by two

concentric circles whose diameters must differ by a specified amount but are otherwise

arbitrary.



The sweep mathematical morphology supports the conventional limit (± )

tolerance on "dimensions" that appear in the engineering drawings. The positive

deviation is equivalent to the dilated result and the negative deviation is equivalent to the

eroded result. The industrial parts adding tolerance information can be expressed using a

dilation with a circle.

4.2.2 Sweep Surface Modeling

Simplest sweep surface is generated by a profile sweeping along a spine with or without

deformation. This is nothing but sweep mathematical dilation of the two curves. Let P(u)

be the profile curve, B(w) be the spine, and S(u,w) be the sweep surface. The sweep

surface can be expressed as

A sweep surface with initial and final profiles Pj(u) and P2(u) at relative locations

0 2 and 02 respectively and with the sweeping rule R(w) is shown in Figure 4.3 and can be

expressed as

S(u,w) = f[1-R(w)] [13* P(u) EH (B(w) — 02)]} + {R(w)[13 2(u) EH (B(w) — 02)]).



Figure 4.3 Modeling of sweep surface.

4.3 Formal Languages and Sweep Mathematical Morphology
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symbol which represents the solid object. The operators used include sweep

morphological dilation, set union, and set subtraction. Note that such a production allows

the nonterminal A to be replaced by the string fi independent of the context in which A

appears.
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The grammar G is context-free, since in each production the left part is a single

nonterminal and the right part is a nonempty string of terminals and nonterminals. The

languages generated by the context free grammars are called context-free languages.

Object representation can be viewed as a task of converting a solid shape into a sentence

in the language, whereas object classification is the task of "parsing" a sentence.

The criteria for the primitive selection are influenced by the nature of data, the

specific application in question, and the technology available for implementing the

system. The following serves as a general guideline for the primitive selection.

(1) The primitives should be the basic shape elements that can provide a compact but

adequate description of the object shape in terms of the specified structural

relations (e.g., the concatenation relation).

(2) The primitives should be easily extractable by the existing nonsyntactic (e.g.,

decision-theoretic) methods, since they are considered to be simple and compact

shapes and their structural information is not important.

4.4 Representation Scheme

4.4.1 Two-dimensional Attributes

Commonly used two-dimensional attributes are rectangle, parallelogram, triangle,

rhombus, circle, and trapezoid. They can be represented easily by using the sweep

morphological operators. The expressions are not unique, and the preference depends on

the simplest combination and the least computational complexity. The common method is

to decompose the attributes into smaller components and apply morphological dilations

to grow these components. Let a and b represent unit vectors in x- and x-axes,
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respectively. Note that when the sweep dilation is not associated with rotation and

scaling, it is equivalent to the traditional dilation.

(a) Rectangle: It is represented as a unit x-axis vector a swept along a unit y-axis vector

b, i.e., b H3 a with no rotation or scaling.

(b) Parallelogram: Let k denote a vector sum of a and b that are defined in (a). It is

represented as k Ea a with no rotation or scaling.

(c) Circle: Using a sweep rotation, a circle can be represented as a unit vector a swept

about a point p through 2n- degrees, i.e., p EBB a.

(d) Trapezoid: b EBB a with a linear scaling factor to change a magnitude of a into c as it is

The scaling factor along the

similar to trapezoid but with a linear scaling factor to change a

magnitude of a into zero as it is swept along b, as shown in Figure 4.4(b).
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4.4.2 Three-dimensional Attributes

The three-dimensional attributes can be applied by the similar method. Let a, b, c denote

unit vectors in x-, x-, and z-axes, respectively. The formal expressions are presented

below.

(a) Parallelepiped: It is represented as a unit vector a swept along a unit vector b to

obtain a rectangle and then it is swept along a unit vector c to obtain the parallelepiped,

(b) Cxlinder: It is represented as a unit vector a swept about a point p through 27r degrees

to obtain a circle, and then it is swept along a unit vector c to obtain the cylinder, i.e., c EBB

(p EBBa).
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(c) Parallelepiped with corner truncated bx a sphere: A unit vector a is swept along a

unit vector b to obtain a rectangle. A vector r is swept about a point p through 2n degrees

to obtain a circle, and then it is subtracted from the rectangle. The result is swept along a
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(d) Sweep dilation of a square along a trajectorx with deformation to a circle: The square

is represented as a rational B-spline curve. The polygon net is specified by a square with

9 points with the first and the last being the same and the weights of the corner vary from

as it is swept along the trajectory C that is defined in the parametric form as x

= lOs and x = cos(m) - 1. The sweep transformation is given by
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(e) Parallelepiped with a cxlindrical hole: A unit vector a is swept along a unit vector b

to obtain a rectangle. A vector r is swept about a point p through a degrees to obtain a

circle, and it is subtracted from the rectangle. The result is swept along a unit vector c,

(0 U-shape block: A unit vector a is swept along a unit vector b to obtain a rectangle. A

vector r is swept about a point p through r degrees to obtain a half circle, and it is dilated

along the rectangle to obtain a two-rounded-corner rectangle that is then subtracted from
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another rectangle to obtain a U-shaped two-dimensional object. The result is swept along

a unit vector c to obtain the final U-shaped object,

Figure 4.9 Machining with a round bottom tool.
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Note that the proposed sweep mathematical morphology model can be applied to

the NC machining process. For example, the ball-end milling cutter can be viewed as the

structuring element and it can be moved along a predefined path to cut a work piece.

During the movement, the cutter can be rotated to be perpendicular to the sweep path. If

the swept volume is subtracted from the work piece, the remaining part can be obtained.

4.5 Grammars

(a) Rectangle can be represented by the string bbmaa, with a's and b's repeated any

number of times depending on the required size.
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(b) Parallelogram can be represented by the string kkEflaaa, with a's and k's repeated any

number of times depending on the required size.

(c) Circle can be represented by the string pElaaa, with a's repeated any number of times

depending on the required size and with BE as

(d) Trapezoid can be represented by the string bbEnaa, with a's and b's repeated any

number of times depending on the required size and with Et as

0).

(e) Triangle can be represented by the string bbEHaa, with a's and b's repeated any

number of times depending on the required size and with El as

4.5.2 Three-dimensional Attributes

All the primitive three-dimensional objects can be categorized into the following

grammar:
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(a) Parallelepiped can be represented by the string cccEl(bbEElaaa),

repeated any number of times depending on the required size.

(b) Cxlinder can be represented by the string ccccB3(pElaaa), with ags and cgs repeated

any number of times depending on the required size and with the first dilation operator 93

and the second dilation as the traditional dilation.

(c) Consider the grammar

The productions for the rectangle and circle are given in Section 4.6.1.

(c.1) The sweep dilation of a rectangle with a corner truncated bx a circle can be

represented by the string ccEEK(bbElaaa)-(pEflaa)), with ags, bgs, and cgs repeated any

number of times depending on the required size and with the second dilation operator B3
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(c.2) The sweep dilation of a rectangle with a circular hole can be represented by the

string ccEB((bbIllaaa)-(pEE1a)), with ags, bgs, and cgs repeated any number of times

depending on the required size and with the second dilation operator El as

270. The difference from the previous one is that the circle lies completely within the

rectangle, and hence a hole is obtained instead of a truncated corner.

(d) The grammar for the U-shape block can be represented as follows:

The U-shape block can be represented by the string cccEB(bbbEHaaaa-

and cgs repeated any number of times depending on the required size and

with the fourth dilation operator 111 as
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4.6 Parsing Algorithm

Given a grammar G and an object representation as a string, the string can be parsed to

find out whether it belongs to the given grammar. There are various parsing algorithms,

among which Earleygs parsing algorithm for context-free grammars is very popular. Let

V* denote the set of all sentences composed of elements from V. The algorithm is

described as follows:
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Example 1. Rectangle represented by the string bEnaa and the given grammar is

G = (VN, VT, P, S),

where

VN = {S, A, B } , VT= { a, b, EH},

P: S .-- B ®A,

A —* Al a,

B—>bBlb.

The parsing lists obtained are as follows:

-10 II 12 13 14

[S—> .BABA, 01 [B—*b.B, 01 [S---d3EB.A,01 [A—+ a.A, 21 [A—*a.A, 31

[B-> . bB, 01 [B-*b. , 01 [A—*.aA, 21 [A-+a., 21 [A->a., 31

[B—+ .b, 01 [S-43.EBA, 01 [A—+. a, 21 [S.—÷B ELBA .,01 [A—>aA., 21

[B—.bB, 11	 [A—.aA, 31	 [A----+.aA, 41

[B-->. b, 11	 [A—>.a, 31 	 [A—*. a, 41

[S—>B MA., 01

Since [S->AEBB., 01 is in the last list, the input belongs to the language L(G) generated by

G.
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Since there is no production starting with S in the last list, the input does not belong to the

language generated by G.

Considering a rectangle and trapezoid the string representation is bbfflaa, same

for both but the difference is in the dilation operator representation. Rectangle is

represented by the dilation with no scaling and rotation whereas trapezoid has a dilation

El as ® (S = (1— t), 9 = 0). Both will be classified into the same broader group of

quadrilaterals but into different subgroups.
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Consider the swept surface shown in Figure 4.10. Its string representation is the

same as the swept surface shown in Figure 4.7. The only difference is that it is not

deformed as being swept.

Figure 4.10 An example of swept surface.

4.7 Conclusions

This chapter presented a method of geometric modeling and representation based on

sweep mathematical morphology. Since the shape and the dimension of a 2-D structuring

element can be varied during the process, not only simple rotational and extruded solids

but also more complicated objects with blending surfaces can be generated by sweep

morphology. The author has developed grammars for solid objects and has applied

Earleygs parser algorithm to determine whether a given string belongs to a group of

similar objects. It is demonstrated that the sweep mathematical morphology is an efficient

tool for geometric modeling and representation in an intuitive manner.
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CHAPTER 5

SUMMARY AND FUTURE RESEARCH

This dissertation is aimed to investigate image processing techniques especially in the

implementation of mathematical morphology and to develop new morphological

operators, which can be applied to image analysis and object representation. This final

chapter summarizes the contributions of this research and briefly discuss the further

potential research.

The limitations of traditional morphological operations are discussed and a new

class of morphological operations, general sweep morphology, is defined. It is shown that

traditional morphology is a subset of general sweep morphology. The properties of the

sweep morphological dilation and erosion are studied. It is shown that sweep

morphological operations possess many properties of traditional morphological

operations.

The sweep mathematical morphology can be used to generate 3-D objects. Since

the shape and the dimension of a 2-D structuring element can be varied during the

process, not only simple rotational and extruded solids but also more complicated objects

with blending surfaces can be generated. Shih and Gaddipati [671 demonstrated the

blending of swept surfaces with deformations using the general sweep morphological

operation. Potential future research could be in studying the relations between these

operations and order-statistic filters and fuzzy morphology. Also investigate other

applications areas where this new class of operations can be used.
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Compared to traditional morphological operations, sweep morphological

operations are computationally expensive because of the rotation and scaling factors. As

traditional mathematical morphology is a subset of sweep mathematical morphology,

some properties of traditional mathematical morphology are satisfied only under

conditional constraints. In spite of these limitations, it is demonstrated that sweep

mathematical morphology has various useful applications.

The sweep morphological opening can be used for image enhancement. It has

been shown that sweep morphological opening preserves object features while removing

the noise better than traditional opening, where object features smaller than the

structuring element are also lost.

Another application of sweep mathematical morphology is for edge linking,

where it is shown that sweep morphological dilation with elliptical structuring element

does a far better job in edge linking than traditional dilation and thus demonstrating the

advantages of the developed approach over traditional morphological operations.

Another application of general sweep mathematical morphology is in the work of

motion planning. Modern manufacturing and other high technology fields of robotics and

artificial intelligence have simulated considerable interest in motion planning problems.

It has been shown that sweep mathematical morphology can be used to solve more

realistic motion-planning problems in which the moving object is not restricted to

translation motion, but rotational factor is also incorporated into it. Future work is to

investigate potentially more efficient method of motion planning which retains more of

the object geometry in the construction of optimal paths.
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It is shown that regulated morphological operations give better results for corner

detection in binary images than Laganieregs method. Also it was shown that there is

substantial reduction in computation as this uses one structuring element where as

Laganiere method uses four structuring elements.

Application of syntactic pattern recognition to solid modeling using sweep

mathematical morphology is discussed. Sweep mathematical morphology is

demonstrated as an intuitive and efficient tool for geometric modeling and representation.

Grammars are defined for the swept solid objects and their string representation are

given. It is shown that given the string representation of an object how it can be classified

into a broader group and later into a subgroup studying the sweep dilation properties.

Future research will study more complex objects and include grammatical inference for

learning the automata from sample patterns. Another challenging research lies in

automating the representation of swept objects. This approach can be extended beyond

CADlCAM into biotechnology and other related fields.

The goal in this dissertation was to study mathematical morphology. Existing

mathematical morphological operators were studied and weakness of these operators was

found and overcome. The final result is that this dissertation has developed new class of

mathematical morphology called sweep mathematical morphology and studied their

properties. Various applications are also illustrated. The author strongly hopes that this

dissertation will be useful in various other applications.



REFERENCES

[1] Agam, G. and Dinstein, I., "Regulated morphological operations," Pattern
Recognition, vol. 32, pp. 947-971, 1999.

[2] Beaudet, P. R., "Rotationally invariant image operators," International Joint
Conference on Pattern Recognition, pp. 579-583, 1978.

[3] Bloch, J. and Maitre, H., "Fuzzy mathematical morphology," Ann. Math. Artificial
Intell., vol. 10, pp. 55-84, 1994.

[4] Brooks, R. A., "Symbolic reasoning among 3-D models and 2-D images," Artificial
Intelligence, vol. 17, pp. 285-348, 1981.

[5] Chanda, B., Kundu, M. K., and Padmaja, Y. V., "A Multi-scale morphologic edge
detector," Pattern Recognition, vol. 31, no. 10, pp. 1469-1478, 1998.

[6] Chen, C., Hung, Y., and Wu, J., "Space-varying mathematical morphology for
adaptive smoothing of 3D range data." Asia Conference on Computer Vision,
Osaka, Japan, pp. 23-25, Nov. 1993.

[7] Chen, C. S., Wu, J. L., and Hung, Y. P., "Theoretical aspects of vertically invariant
gray-level morphological operators and their application on adaptive signal and
image filtering," IEEE Trans. Signal Processing, vol. 47, no. 4, April 1999.

[8] Cooper, D., Elliott, H., Cohen, F., and Symosek, P., "Stochastic boundary
estimation and object recognition," Computer Graphics Image Processing, vol.
12, pp. 326-356, 1980.

[9] Cooper, J., Venkatesh, S., and Kitchen, L., "Early jump-out corner detectors,"
IEEE Trans. Pattern Analxsis and Machine Intelligence, vol. 15, no. 8, pp. 823-
828, 1993.

[10] Deriche, R. and Giraudon, G., "Accurate corner detection: An analytical study,"
Proc. 3rd Int. Conf. on Computer Vision, pp. 66-70, 1990.

[11] Dougherty, E. and Giardina, C., Morphological methods in image and signal
processing, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[12] Dreschler, L. and Nagel, H. H., "Volumetric model and 3D trajectory of a moving
car derived from monocular TV frame sequences of a street scene," Computer
Vision, Graphics and Image Processing, vol. 20, no. 3, pp. 199-228, 1981.

[131 Duda, R. 0. and Hart, P.E., Pattern Classification and Scene Analxsis, Wiley, New
York, pp. 339, 1973.

85



86

[14] Eichel, P. H., Delp, E. J., Koral, K., and Buda, A. J., "A method for a fully
automatic definition of coronary arterial edges from cineangiograms," IEEE
Trans. Medical Imaging, MI-7, pp. 313-320, 1988.

[15] Farag, Aly A., and Delp, Edward J., "Edge linking by sequential search," Pattern
Recognition, pp. 611-633, 1995.

[16] Foley, J., VanDam, A., Feiner, S., and Hughes, J., Computer Graphics: Principles
and Practice, second edition, Addison-Wesley, Reading, MA, 1995.

[17] Fu, K. S., Sxntactic Pattern Recognition and Applications, Prentice Hall,
Englewood Cliffs, NJ, 1982.

[18] Ghosh, P. K., "A mathematical model for shape description using Minkowski
operators," Computer Vision, Graphics and Image Processing, vol. 44, pp. 239-
269, 1988.

[19] Giles, R., "Luckasiewicz logic and fuzzy theory," Internat. J Man-Mach. Stud.,
vol. 8, 1976.

[20] Gonzalez R. C., and Woods, R. E., Digital Image Processing, Addison-Wesley,
2001.

[21] Haralick, R. M., Sternberg, S. K., and Zhuang, X., "Image analysis using
mathematical morphology," IEEE Trans. on Pattern Analxsis and Machine
Intelligence, vol. 9, no. 4, pp. 532-550, July 1987.

[22] Harris, C. G., "Determination of ego-motion from matched points," Proc. Alvex
Vision Conf. 1987.

[23] Harris, C. G. and Stephens, M., "A combined corner and edge detector," Proc. 4th

Alvex Vision Conf., pp. 147-151, 1988.

[24] Jang, B. K. and Chin, R. T., "Analysis of thinning algorithms using mathematical
morphology," IEEE Transactions on Pattern Analxsis and Machine Intelligence,
vol. 12, no. 6, pp. 541 —551, June 1990.

[25] Kaul, Anil, Computing Minkowski Sums, Ph.D. thesis, Department of Mechanical
Engineering, Columbia University, 1993.

[26] Kitchen, L. and Rosenfeld, A., "Gray-level corner detection," Pattern Recognition
Letters, pp. 95-102, December 1982.

[27] Korein, J., A Geometric Investigating Reach, MIT Press, Cambridge, MA, 1985.

[281 Kuosmanen, P. and Astola, J., "Soft morphological filtering," J. Math. Imaging
Vision, vol. 5, pp. 231-262, 1995.



87

[29] Laganiere, R., "A morphological operator for corner detection," Pattern
Recognition, vol. 31, no. 11, pp. 1643-1652, 1998.

[30] Latombe, J., Robot Motion Planning, Kluwer Academic Publishers, 1991.

[31] Lee, J., Haralick, R., and Shapiro, L., "Morphological edge detection," IEEE Trans.
Robotics and Automation, vol. 3, no. 2, pp. 142-150, April 1987.

[32] Lee, Kil-jae and Bien, Zeungnam, "A gray-level corner detector using fuzzy logic,"
Pattern Recognition Letters, vol. 17, pp. 939-950, 1996.

[33] Leu, M. C., Park, S. H., and Wang, K. K., "Geometric representation of
translational swept volumes and its applications," ASME Journal of Engineering
for Industrx, vol. 108, pp. 113-119, 1986.

[34] Lin, P. L. and Chang, S., "A shortest path algorithm for nonrotating object among
obstacles of arbitrary shapes," IEEE Trans. Sxst., Man, and Cxber., vol. 23, no.
3, pp. 825-832, 1993.

[35] Lin, Rey-Sern, Chu, Chyi-Hwa, and Hsueh, Yuang-Cheh, "A modified
morphological corner detector," Pattern Recognition Letters, vol. 19, no. 3, pp.
279-286, 1998.

[36] Maragos, P. and Ziff, R., "Threshold superimposition in morphological image
analysis systems," IEEE Transactions on Pattern Analxsis and Machine
Intelligence, vol. 12, no. 5, pp. 498-504, 1990.

[37] Martelli, A., "An application of heuristic search methods to edge and contour
detection," Communication ACM, vol. 19, pp. 73-83, 1976.

[38] Martin, R. R. and Stephenson, P. C., "Sweeping of three dimensional objects,"
Computer Aided Design, vol. 22, no. 4, pp. 223-234, May 1990.

[39] Matheron, G., Random sets and Integral Geometrx, Wiley, New York, 1975.

[40] Mehrotra, R. and Nichani, S., "Corner detection," Pattern Recognition, vol. 23, pp.
1223-1233, 1990.

[41] Morales, A. and Acharya, R., "Statistical analysis of morphological openings,"
IEEE Trans. Signal Processing, vol. 41, no. 10, pp. 3052-3056, 1993.

[42] Moravec, H. P., "Towards automatic obstacle avoidance," Proc. of the Into. Joint
Conf. on Artificial Intelligence, pp. 584-586, 1977.

[431 Mott-Smith, J. C. and Baer, T., "Area and volume coding of pictures," in Picture
Bandwidth Compression, Eds. T. S. Huang and 0. J. Tretiak, Gordon and
Beach: New York, 1972.



88

[44] Noble, J. A., "Finding corners," Image Vision Comput., vol. 6, pp. 121-128, 1988.

[45] Pavlidis, T., Structural Pattern Recognition, Springer, New York, pp. 161ff, 1977.

[46] Pei, Soo-Chang, Lai, Chin-Lun, and Shih, Frank Y., "A morphological approach to
shortest path planning for rotating objects," Pattern Recognition, vol. 31, no. 8,
pp. 1127-1138, 1998.

[47] Pennington, A., Bloor, M. S., and Balila, M., "Geometric modeling: A contribution
toward intelligent robots," 13 th International Sxmposium on Industrial Robots,
April 17-21, pp. 7.35-7.54, 1983.

[48] Pitas I. and Venetsanopoulos, A. N., "Nonlinear digital filters," Kluwer Academic
Publishers, Boston, 199O.

[49] Pitas, I. and Venetsanopoulos, A. N., "Morphological shape decomposition," IEEE
Transactions on Pattern Analxsis and Machine Intelligence, vol. 12, pp. 38-45,
199O.

[50] Pratt, W. K. Digital Image Processing, Wiley, New York, pp. 53Off, 1978.

[51] Prewitt, J. M. S., "Object enhancement and extraction. In: Lipkin and Rosenfeld,
Eds.," Picture Processing and Psxchopictorics. Academic Press, New York, pp.
75-149, 1970.

[52] Ragothama, S. and Shapiro, V., "Boundary representation deformation in
parametric solid modeling," ACM Transactions on Graphics, vol. 17, no. 4, pp.
259-286, 1998.

[53] Requicha, A. A. G., "Representations for rigid solids: theory, methods, and
systems," ACM Computing Survexs, vol. 12, no. 4, pp. 437-464, December
198O.

[54] Requicha, A. A. G. and Voelcker, H. B., "Solid modeling: A historical summary
and contemporary assessment," IEEE Computer Graphics and Applications, vol.
2, no. 2, pp. 9 —24, 1982.

[55] Requicha, A. A. G. and Voelcker, H. B., "Solid modeling: current status and
research direction," IEEE Computer Graphics and Applications, vol. 3, pp. 25-
37, Oct. 1983.

[56] Requicha, A. A. G., "Representation of tolerances in solid modeling: issues and
alternative approaches," in Solid Modeling bx Computers, Eds. J. W. Boyse and
M. S. Pickett, Plenum, New York, pp. 3-12, 1984.

[57] Rosenfeld, A. and Johnston, E., "Angle detection on digital curves," IEEE Trans.
Computers, C-22, pp. 875-878, 1973.



89

[58] Rosenfeld, A. and Kak, A. C., Digital Picture Processing, Academic Press, New
York, pp. 371ff, 1976.

[59] Rosin, P. L., "Augmenting corner descriptors," Graphical Models and Image
Processing, vol. 58, pp. 286-294, 1996.

[60] Rossignac, J., "CSG-Brep duality and compression," Proc. ACM Sxmposium on
Solid Modeling and Applications, Saarbrucken, Germany, pp. 59-59, 2OO2.

[61] Rossignac, J. and Requicha, A. A. G., "Offsetting operations in solid modeling,"
Production Automation Project, University of Rochester, NY Tech. Memo, 53,
June 1985.

[62] Russ, J. C., The Image Processing Handbook, CRC Press, 1992.

[63] Serra, J., Image Analxsis and Mathematical Morphologx, Academic Press, New
York, 1982.

[64] Serra, J., "Introduction to mathematical morphology," Compute. Vision, Graphics,
Image Processing, vol. 35, pp. 283-3O5, Sep. 1986.

[65] Shih, F. Y. and Cheng, Shouxian, "An adaptive morphological edge-linking
algorithm," IEEE Trans. Sxstems, Man, and Cxbernetics, in submission.

[66] Shih, F. Y., Gaddipati, V., and Blackmore, D., "Error analysis of surface fitting for
swept volumes," Proc. Japan-USA Sxmp. Flexible Automation, Kobe, Japan, pp.
733-737, July 1994.

[67] Shih, F. Y. and Gaddipati, V., "General sweep mathematical morphology," Pattern
Recognition, vol. 36, no. 7, pp. 1489-15OO, July 2OO3.

[68] Shih, F. Y. and Mitchell, 0. R., "Threshold decomposition of gray-scale
morphology into binary morphology," IEEE Trans. on Pattern Analxsis and
machine Intelligence, vol. 11, no. 1, pp. 31-42, Jan. 1989.

[69] Shih, F. Y. and Mitchell, 0. R., "Decomposition of gray-scale morphological
structuring elements," Pattern Recognition, vol. 24, no. 3, pp. 195-2O3, 1991.

[70] Shih, F. Y. and Mitchell, 0. R., "A mathematical morphology approach to
euclidean distance transformation," IEEE Trans. on Image Processing, vol. 1,
no. 2, pp. 197-2O4, April 1992.

[71] Shih, F. Y. and Pu, C.C., "Analysis of the properties of soft morphological filtering
using threshold decomposition," IEEE Trans. Signal Processing, vol. 43, no. 2,
pp. 539-544, 1995.

[721 Shih, F. Y.,"Object representation and recognition using mathematical morphology
model," Journal of Sxstems Integration, vol. 1, pp. 235-256, 1991.



90

[73] Shih, F. Y. and Mitchell, 0. R., "Threshold decomposition of gray-scale
morphology into binary morphology," IEEE Trans. on Pattern Analxsis and
machine Intelligence, vol. 11, no. 1, pp. 31-42, Jan. 1989.

[74] Shiroma, Y., Kakazu, Y., and Okino, N., "A generalized sweeping method for CSG
modeling," Proc. of the First ACM Sxmposium on Solid Modeling Foundations
and CAD/CAM Applications, Austin, Texas, pp. 149-157, 1991.

[75] Shiroma, Y., Okino, N., and Kakazu, Y., "Research on 3-D geometric modeling by
sweep primitives," Proceedings of CAD 82, Brighton, United Kingdom, pp.
671-68O, 1982.

[76] Singh, A. and Shneier, M., "Gray level corner detection a generalization and a
robust real time implementation," Computer Vision Graphics and Image
Processing, vol. 51, pp. 54-69, 199O.

[77] Sinha D. and Dougherty, E.R., "Fuzzy mathematical morphology," Journal of
Visual Communication and Image Representation, vol. 3, no. 3, pp. 286-3O2,
September 1992.

[78] Smith, S. M. and Brady, J. M., "SUSAN — a new approach to low level image
processing," International Journal of Computer Vision, vol. 23, no. 1, pp. 45-78,
1997.

[79] Song, X. and Neuvo, Y., "Robust edge detector based on morphological filters,"
Pattern recognition Lett., vol. 14, pp. 889-894, 1993.

[80] Stevenson, R. L. and Arce, G. R., "Morphological filters: Statistics and further
syntactic properties," IEEE Trans. on Circuits and Sxstems, vol. 34, no. 11, pp.
1292-13O5, 1987.

[81] Tsai, Du-Ming, Hou, H. T., and Su, H. J., "Boundary-based corner detection using
eigenvalues of covariance matrices," Pattern Recognition Letters, vol. 2O, no. 1,
pp. 31-4O, 1999.

[82] Voelcker, H. B. and Hunt, W. A., "The role of solid modeling in machining process
modeling and NC verification," SAE Tech. Paper #81O195, 1981.

[83] Wang, W. P. and Wang, K. K., "Geometric modeling for swept volume of moving
solids," IEEE Computer Graphics and Applications, vol. 6, no. 2, pp. 8-17,
1986.

[84] Wu, D. Q. and Brady, J. M., "A fast algorithm for morphological transformations,"
CV-3.1.6.

[851 Zadeh, L. A., "Fuzzy sets," Inform. Control, vol. 8, 1965.



91

[86] Zadeh, L. A., "Theory of fuzzy sets," in Encxclopedia of Computer Science and
Technologx (J. Belzer, A. Holzman, and A. Kent, eds.), Dekker, New York,
1977.

[87] Zheng, Zhicliang, Wang, Han, and Teoh, Earn Khwang, "Analysis of gray level
corner detection," Pattern Recognition Letters, vol. 2O, pp. 149-162, 1999.

[881 Zuniga, 0. A. and Haralick, R. M., "Corner detection using the facet model," Proc.
Conf. Computer Vision and Pattern Recognition, pp. 3O-37, 1983.


	Image morphological processing
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract Page (1 of 2)
	Abstract Page (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page 
	Acknowledgements
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Corner Detection
	Chapter 3: General Sweep Mathematical Morphology
	Chapter 4: Geometric Modeling and Representation 
	Chapter 5: Summary and Future Research
	References

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)


