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ABSTRACT

THEORY AND ALGORITHMS FOR SWEPT MANIFOLD
INTERSECTIONS

by
Yuriy Mileyko

Recent developments in such fields as computer aided geometric design, geometric

modeling, and computational topology have generated a spate of interest towards

geometric objects called swept volumes. Besides their great applicability in various

practical areas, the mere geometry and topology of these entities make them a perfect

testbed for novel approaches aimed at analyzing and representing geometric objects.

The structure of swept volumes reveals that it is also important to focus on a little

simpler, although a very similar type of objects — swept manifolds. In particular,

effective computability of swept manifold intersections is of major concern.

The main goal of this dissertation is to conduct a study of swept manifolds

and, based on the findings, develop methods for computing swept surface intersec-

tions. The twofold nature of this goal prompted a division of the work into two

distinct parts. At first, a theoretical analysis of swept manifolds is performed,

providing a better insight into the topological structure of swept manifolds and unveiling

several important properties. In the course of the investigation, several subclasses

of swept manifolds are introduced; in particular, attention is focused on regular and

critical swept manifolds. Because of the high applicability, additional effort is put

into analysis of two-dimensional swept manifolds — swept surfaces. Some of the valu-

able properties exhibited by such surfaces are generalized to higher dimensions by

introducing yet another class of swept manifolds — recursive swept manifolds.

In the second part of this work, algorithms for finding swept surface inter-

sections are developed. The need for such algorithms is necessitated by a specific

structure of swept surfaces that precludes direct employment of existing intersection



methods. The new algorithms are designed by utilizing the underlying ideas of ex-

isting intersection techniques and making necessary technical modifications. Such

modifications are achieved by employing properties of swept surfaces obtained in the

course of the theoretical study.

The intersection problems is also considered from a little different prospec-

tive. A novel, homology based approach to local characterization of intersections

of submanifolds and s-subvarieties of a Euclidean space is presented. It provides a

method for distinguishing between transverse and tangential intersection points and

determining, in some cases, whether the intersection point belongs to a boundary.

At the end, several possible applications of the obtained results are described,

including virtual sculpting and modeling of heterogeneous materials.
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CHAPTER 1

INTAODUCTION

Having dealt with the intersection problem for a while, one may develop a habit of

quickly skimming through an introduction of every other `intersection' paper, without

paying much attention to sometimes worthwhile descriptions of possible applications

of the surface-to-surface intersection problem and completely ignoring parts lauding

its importance. Why? Because the amount of attention paid to the intersection prob-

lem over recent years generated so many papers on different intersection techniques

that most phrases about the importance of the problem became mantras which can

be learned by heart after just a few repetitions. For the same reason, it is virtually

impossible to describe the work related to the intersection problem without repeating

already known and often hackneyed words and phrases. Having said this, we still

venture to present the intersection problem from a little different point of view, hop-

ing that emphasis on the new class of objects involved in intersections will make it

less trite. These objects are swept manifolds. They represent a new concept that

has been conceived as a simplified version of the more general notion of a swept

volume ([14]). It should be understood that our choice of swept manifolds for the

intersection problem was not arbitrary. In fact, it was our work on swept volumes

that eventually extended one of its branches into the realm of intersection methods.

Unfortunately, or perhaps fortunately, the setup of the occurring intersections was

not quite conventional, which necessitated adjustments to existing intersection tech-

niques and ultimately resulted in the development of intersection algorithms for an

entirely new class of surfaces. Making such a route towards the intersection problem

stimulated us to focus more on the structure of intersecting objects, shifting some

attention from the intersections per se. Interestingly, evolution of extant intersection

1
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methods was also largely determined by the class of objects under consideration. The

choice of such objects was, and still is, notably effected by the developments in the

field of computer aided geometric design — a discipline concerned with design and

implementation of methods for analysis and graphical representation of geometric

objects.

The intersection problem and computer aided geometric design have a long

and fascinating common history that can be traced as far back as 1960s, when such

companies as Renault and Boeing started investigating a new approach to automobile

and airplane design. A nice review of the history of curves and surfaces in computer

aided geometric design is given in {32j. It would be fair to say, though, that a

real outburst of interest towards the surface-to-surface intersection problem occurred

after boundary representation (B-rep) became one of the major tools for modeling

solids. The basic idea of B-rep is quite simple: an 3-dimensional solid is completely

determined by its boundary, which, in its turn, is determined by its own boundary, and

so on. This leads to a recursive representation of a solid that involves lists of boundary

elements of the solid in every dimension. Each boundary element is usually assumed

to be smooth, implying that solids with a non-smooth boundary have to be somehow

subdivided into smooth components. Interestingly, it turns out that finding such a

subdivision boils down to a number of intersection problems. To see this, consider the

following simple example. The boundary of a 3-dimensional parallelepiped consists

of six rectangles (six smooth components). Each of these rectangles is defined by the

plane in which it lies and the lines of intersection with four other rectangles. Notice

that the intersections of these lines determine vertices of the parallelepiped. Thus,

the boundary of the parallelepiped can be found by computing intersections of six

planes and sixteen lines. It should be noted that the latter line intersection problem

can be efficiently absorbed into the former plane intersection problem. Obviously, the

above toy problem is not hard to solve, but imagine that we want to create a 'curvy'
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parallelepiped, as shown in Figure 1.1. Suppose we know all the surfaces that should

represent faces of the parallelepiped. Then finding the boundary implies computing

intersections of several nonlinear surfaces, which is by no means an easy problem.

Figure 1.1 A `curvy' parallelepiped.

Linear B-rep models were, and still are, quite popular due to their simplicity

and efficiency, but ever growing demands coming from practice created a need for

more robust models that would be able to handle nonlinearities naturally. Obviously,

using general nonlinear surfaces would be too impractical, but algebraic surfaces of

some specific form seemed promising and eventually established strong dominance in

the field. There are quite a few classes of such surfaces; for example, Coons patches,

or Bezier patches, but the center stage clearly belongs to Con-Uniform Rational B-

Spines (CURBS). Applications of these types of surfaces to geometric modeling have

been analyzed in many texts. For example, a classical work of de Boor [23] contains a

thorough presentation of the general spline theory, emphasizing its geometric aspects,

while Farina [30] focuses on Bezier and Coon's patches. A nice introduction to CURBS

is given in [31]; a more comprehensive study of CURBS and their applications is given

in [80] . Specific and condensed accounts of the topic can be found in [29, 28, 82, 33] .

The popularity of CURBS and the other algebraic surfaces in B-rep models gener-
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acted a strong interest in the corresponding intersection problems — many intersection

methods have been designed specifically for one particular class of algebraic surfaces.

For example, Lasser [57], Aziz et al. [5], and Deng [78] present intersection

algorithms for Better surfaces, Piegl [81] provides a method for finding intersections of

quadrics and extruded surfaces, Meyer [66] focuses on quadratic surfaces, Kreizis and

Patrikalakis [53] explore ideas that allow to evaluate intersections of rational

polynomial surfaces, and Manocha et al. [62] give an intersection method for NURBS and

algebraic surfaces. With time, most intersection algorithms became more advanced

and could handle fairly general surfaces. For instance, in [6, 8, 9, 7, 22, 48, 92, 77, 59]

methods for computing intersections of general parametric surfaces are described, and

the algorithm developed by Grandiose and Klein [39], which is known as Grandine-

Klein interjector, became a standard for CAD/CAM libraries. Still, the shift of focus

towards NURBS and similar patches is quite noticeable. In fact, the majority of inter-

section methods suffer a significant fall off in efficiency when applied to non-algebraic

surfaces.

One might argue that the described deficiencies of extant intersection

algorithms are a little contrived. Indeed, as long as NURBS-like patches prevail in Leo-

metric modeling there seems to be no much need for sophisticated generalizations.

Thus, the following question arises: Is the dominance of algebraic surfaces in com-

puter aided geometric design and related disciplines strong enough to render more

general models practically unnecessary? As one might have expected, the answer to

this question is `no' — there are many cases when the standard algebraic techniques

do not work well enough. In fact, one such class of examples is provided by swept

volumes. A swept volume is a trajectory of a moving and possibly deforming object

in a space, as illustrated in Figure 1.2. We shall provide a more detailed exposition

of swept volumes in the sequel; for our purposes here, the above intuitive definition

is sufficient. Suppose we want to construct a computer model of a swept volume.
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Figure 1.2 An example of swept volume.

The law of motion should allow us to compute the image of the initial object at

each time. Thus, one possible approach would be to create a B-rep model based

on NURBS, or even linear approximations, by incrementally computing the bound-

ary of the swept volume. Cotice that possible self-intersections could be handled by

applying already known methods. While at first glance such an idea seem to work

fine, there is a significant drawback — once the model is constructed, it is no longer

a swept volume since the information about it being swept is lost. Furthermore, the

computed approximation of the swept volume may not be accurate enough to capture

features crucial for some geometric operations that one may need to perform later.

If the initial representation of the swept volume is discarded, a new approximation

simply cannot be constructed. Therefore, it becomes necessary to keep the original

representation of a swept volume and compute its B-rep models dynamically, as the

need for some geometric operation arises. In general, such an approach would be very

inefficient, making practical applications infeasible, and it seems more reasonable to

look into the possibility of handling swept volumes by using its original representation

directly. As shown in [19] and [15], this representation provides a lot of information

about the geometric as well as topological structure of a swept volume. But when

applied straightforwardly, it may not meet expected efficiency requirements, primary-
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idly because it is based on a volumetric description. In an attempt to rectify this

problem, a modified representation of a swept volume was proposed ([16]) . It uses

the fact that swept volumes are determined by their boundaries and significantly

reduces the amount computations by decreasing dimensionality. Unfortunately, the

level of sophistication of this method turned out to be too high and prevented its

wide spread use by practitioners. Still, the idea of focusing directly on the boundary

of a swept volume seems to be promising, and in this work we describe methods that

may be employed to create analogues of B-rep suited for swept volumes. As in a

regular B-reps model, parts of the boundary of a swept volume can be regarded as

separate entities — swept manifolds. The reduced dimensionality of such entities (in a

2-dimensional space they would be dimensionality surfaces) may allow us to perform

geometric operations more efficiently. Moreover, similar to regular B-rep, effective

methods for computing intersections of swept manifolds would provide us with almost

all the tools needed for constructing boundary representations of swept volumes.

Although the connection between swept manifolds and swept volumes is very

close and, furthermore, swept manifolds can be regarded as a special cases of swept

volumes, practical employment of these two classes of objects may be completely

unrelated. As we shall see, swept manifolds have a much broader range of applica-

tions than just the one described above. In fact, because of its unconventional setup,

considering the swept manifold intersection problem alone may provide new ideas for

the general intersection theory. In spite of the existing favoritism towards algebraic

surfaces, techniques within the algorithmic facet of intersection theory have been con-

stantly evolving, becoming more general and sophisticated. There has been a constant

inflow of ideas from geometric topology in an endeavor to create effective methods for

correctly resolving the topology of an intersection set, which became a crucial part

of many existing intersection algorithms. A sample of intersection research in a more

topological vein includes the work of Farouki et al. [26] on developing algorithms for
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piecewise linear, topologically consistent representations self-intersections, the use of

index theories for vector fields to characterize intersections in Kreizis et al. [54], and

the development by Peters and his collaborators (see e.g. [69]) of error bounds on

differential geometric surface characteristics that insure the correct ambient isotopy

type of their intersection sets. This strong topological influence on computational

techniques eventually led to the creation of a new field of inquiry — computational

topology — which can be considered as an amalgam of elements of computer aided

geometric design and geometric topology ([17, 10, 25, 92]) . It turns out that swept

manifolds and, obviously, swept volumes provide a paradigm for computational topol-

ogy, and we believe that studying swept manifolds and their intersections will not only

enrich the nascent discipline with new ideas, but also help in testing and assessing its

existing methods and techniques.

Malking about computational topology it is impossible not to mention a suc-

cessful employment of homology theory in several computational problems ([49, 27]) .

Homology is a powerful tool for analyttng shapes of topological spaces, and making it

algorithmically tractable ([49, 24]) significantly strengthens our computational abili-

ties. As a part of this work, we try to investigate how homology theory can be used

to perform local intersection analysis. Because of its generality, this approach is ap-

plicable to a very wide class of topological spaces, including general smooth manifolds

and s-varieties.

This dissertation is organized as follows. In Chapter 2, we provide an overview

of basic mathematical concepts that are extensively employed in the sequel. It in-

cludes elements of differential topology, algebraic topology, and dynamical systems,

along with references that give more detailed accounts on the standard mathematical

nomenclature that we use. Chapter 2 comprises a theoretical part of this work and

presents a rather detailed analysis of swept manifolds. The notion of a swept manifold

is introduced after giving a rigorous mathematical definition of a swept volume and
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stating several important results relevant to our study. The introductory part of the

chapter is followed by a thorough investigation of properties of swept manifolds under

different assumptions and restrictions. Results obtained for general swept manifolds

are later refined and improved for the case of swept surfaces. We switch to more

practical issues in Chapter 5, which contains descriptions of several algorithms for

finding intersections of swept surfaces. At the beginning of the chapter, we provide

a short overview of existing types of intersection methods. Then we modify some

basic ideas on which these methods are based in order to devise our own intersection

algorithms, which are well suited for swept surfaces. The description of each of the

three algorithms that we present includes a fairly deep analysis of its complexity and

a discussion of possible advantages and drawbacks. The last section of the chapter

changes the topic to a local analysis of intersections based on homology theory and

presents several useful theorems that allow us to interrogate possibly non-transversal

intersections of manifolds and s-subvarieties of a Euclidean space. Some of the

real-world applications of the results obtained in this work are illustrated in Chapter

6. Finally, in Chapter 7, we summarize the contributions of this dissertation and

discuss possible future research directions.

Throughout the text, most of the results and concepts are illustrated by pic-

tures that were generated using the Swept Surface software developed by the author.

The software is written in C++ programming language and employs Opened graphic

library for low-level management of 3-dimensional objects. At the higher-levels, geo-

metric objects are managed using implementation of the main ideas presented in this

work.



CHAPTEA 2

BACKGAOUND INFORMATION

This work incorporates elements from several different areas of mathematics, including

differential topology, dynamical systems, and algebraic topology. In this chapter, we

present a brief description of basic mathematical notions that will be extensively

used in the sequel. Additional information on the topics can be obtained from the

references provided throughout the discussion.

2.1 Spaces and Maps

In general, a spaces can be thought of as a set endowed with some additional structure.

We shall start with the definition of a topological space.

3. VAX Ε T.

An element of a topology is called an open set; the complement of an open set is a

closed set. Notice that the first condition implies that a finite intersection of open

sets is open, while the second condition means that any union of open sets is open.

subset of a topological space can be regarded as a topological space in itself.

9
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Considering topological spaces, it is always useful to define the notion of a

neighborhood.

Definition 2.1.3 Let (X, T) be a topological space, and let S C X . A set U C X is

a neighborhood of S if there is an open set O such that S C O C U.

If S = {x}, a one element set, we obtain a definition of a neighborhood of a point.

In general, topological spaces can have a very complicated structure with coun-

terintuitive properties. If one would rather that such properties be eliminated, addi-

tional restrictions should be imposed.

Definition 2.1.4 A topological space, X, is called Hausdorff if any two distinct

points have disjoint neighborhoods, that is, for any x, y Ε X such that x y there are

two open sets U and V such that x E U, y Ε V, and U Π V = fib.

Definition 2.1.5 A topological space, X, is called normal if any two disjoint closed

sets have have disjoint neighborhoods, that is, for any closed sets A, B C X such that

Α Π B= Ο there are two ope3 sets U and V such that Α C U, B C V, and U Π V =

Definition 2.1.8 A topological space X is called paracompact if every open cover has

a locally finite refinement.

There is an important relation between paracompact, Hausdorff and normal spaces.
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Theorem 2.1.9 A paracompact Hausdorff space is normal.

Very often instead of defining a topology on a set we can define a 'distance'

between elements of the set. In this case we obtain a metric space.

Definition 2.1.10 A map d : X x X —+ IR is a metric if it satisfies the following

conditions:

Definition 2.1.11 Let X be a set and d be a metric defined on X . A pair (X, d) is

called a metric space.

It is clear that every subset of a metric space is a metric space in itself. To show how

a metric defines a topology on X, we need the following definition.

Definition 2.1.12 Let (X, d) be a metric space. Suppose x Ε X and r Ε I11, r > 0.

An open ball in X with center x and radius r is the set Br ,x = {y Ε X Id(x, y ) < r}.

The topology on X induced by the metric d is defined as the collection of all possible

unions of open balls.

In this work we are mainly concerned with subsets of specific metric spaces

— Euclidean spaces. An n-dimensional Euclidean space, Ilan, consists of n-tuples,

If fact, a Euclidean space is a vector space over real numbers, which means that its

elements can be added together and multiplied by a real scalar, subject to usual

associative, distributive and commutative laws. For n-tuples, addition and multiplication
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by a scalar are defined elementwise. The standard topology of R7 is the topology

induced by the standard metric. The previous result about a topology induced by

a metric implies that the standard topology on R 1 is determined by open intervals;

in the case of R2 and R3 the standard topology is defined by open disks and balls,

respectively.

Analysis of different spaces would be impossible without the notion of a map.

Let us remind a reader that, intuitively, a map f between to sets X and Y is a

correspondence between elements of X and Y such that each x E X has a unique

element f(x) Ε Y corresponding to it. More rigorously, a map f is an ordered

triplet (X, Y, F), where F C X x Y is such that {x Ε X ( (x, y) Ε F} = X and for any

(x 1 , yid), (χ2, 1/2) E F, Χ 1 = x2 implies υι = y2 • If also yid = 1/2 implies x 1 = x2 , then the

map f is called one-to-one, or infective. The image of a set A C X under the map f is

the set f (A) = {y Ε Y I y = f (x), x Ε A}. The set f (X) is called the range of f, and if

f (X) = Y then f is called surjective. A one-to-one, subjective map is called bijective.

If a map f = (X, Y, F) is one-to-one, we can define the inverse map, f 1 : Y — X ,

by f 1 = (f (X ), X, Γαι  ), where Γαι = { (y , x) I (x, y) E F}. The inverse image, or

preimage, of a set Β E Y is the set f αι (Β) = {x Ε X jay Ε Β such that y = f (χ)}.

If we want to restrict f to some subset R Ε X, the corresponding map, (R, Y, FR),

where FR = { (x, y) E Fax Ε R}, is denoted by f I R .

Since spaces are sets with an additional structure, maps between spaces exhibit

some additional properties. One of the most important properties of maps between

topological spaces is continuity.

Definition 2.1.13 Let (X, Τ) and (Y, 7) be topological spaces. A map f : X -+ Y

is continuous if f αι (V) E Τ for any V Ε 7, that is, the inverse image of any open

set is open.

Notice that we would obtain an equivalent definition if we used closed sets instead of

open sets.
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Definition 2.1.14 Let (X, Τ) and (Y, T) be topological spaces. A map f : Χ — Y

is continuous at a point x Ε Χ if for any neighborhood Ν χ C Χ of x there is a

neighborhood Νν C Y of y = f (x) such that f -1 (Νν ) Ε Αχ

Clearly, a function is continuous on a whole space if and only if it is continuous at

every point of the space.

For metric spaces, continuity of a map can be defined in a different, although

equivalent fashion.

Definition 2.1.15 Let (X, d 1 ) and (Y, d2 ) be metric spaces. Α map f : Χ -i Y is

continuous at a point x Ε Χ if for any ε > 0 there is δ > 0, which may depend on x

and ε, such that d l (x, y) < δ implies d2 (f (x), f (y)) < ε.

The following definition, which is available only for functions between metric spaces,

is also very important.

Definition 2.1.16 A map f : Χ -^ Y between metric spaces (X, d1 ) and (Y, d2 ) is

Lipschitz if there is a constant L > 0 such that d2 (f (x), f (y)) < dl (χ, y) for all

Χ Ε X, y Ε Υ.

Considering Euclidean spaces, it is also possible to define the concept of a CT

function.

exist and are continuous on U C BR . If U is not an open set, f is CT on U if it can

be extended to a function that is CT on an open neighborhood of U. The function f

is called smooth, or COO, if it is CT for all r > 1.
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Α derivative of a function f : IΣgn — R at a point Bo  is a linear map f' (Bo ) : IEBn - IΣBm

defined by

A point B Ε a is called regular if the rank of f' (B) is maximal. Otherwise the point

B is called critical and the value f (B) Ε IRtm is called a critical value. If y E ktm is

not a critical value, it is called a regular value, even if y V f (IRn) .

Having defined some properties of maps, we can now use them to define various

notions of equivalence between spaces.

Definition 2.1.18 A continuous map f : X —4 Y, where (X, Τ) and (Y, 7) are

topological spaces, is a homeomorphic if it is a bisection and its inverse, f 1 : Y --4

X , is also continuous. Two topological spaces, X and Y, are called homeomorphism,

denoted by X ti Y, if there exists a homeomorphism between them.

homeomorphism spaces exhibit the same topological properties. Thus, we say that two

subsets of a topological space are equivalent if there is a homeomorphism between

them. If topological spaces under consideration are, actually, Euclidean spaces, it is

useful to distinguish the case when a homeomorphism is differentiable.

Definition 2.1.19 Two open subsets U C an and V C Rn are diffeomorphic,

r > 1, if is there is a homeomorphism f : U -> V such that f and f α1 are Cry. In

this case f is a dif,eomorphismm.

A little less restrictive relation between subsets of BR' is provided by a Cp-isomorphismm.

Definition 2.1.20 Α function f: U -+ 111m, U C IRA , is CPA if it is continuous on U

and Ο' on U \ S, where S is a subset of a countable union of non-accumulating sets,

each of which is C' -homeomorphic with a q-flat (0 < q < n), that is, with a set of the
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form {B E R' : x i = 0, q < i}. If f is a isomorphism and both f and f1 are Cps,

then f is called a Cps -isomorphism.

We say that two subsets, X C IΙBA and Y C W, are C-isomorphic, or piecewise

Cr-diffeomorphic, if there is a C-isomorphism f : X — Y.

Considering different subsets of a space, we might be interested not only in

their (topological) equivalence, but also in a possibility of `deforming' one set into the

other. Mathematically this can be expressed in terms of homotopy.

Definition 2.1.21 Let (X, T) and (Y, T) be topological spaces. Continuous func-

tions f : X -- Y and g : X -+ Y are said to be homotopy if there exists a

continuous function h : X x [0,1] —i Y, called a homotopic between f and g, such that

ho (x) = hex, 0) = fax) and h i (x) = h(x,l) = g (B) .

A special case of a homotopic is provided by a deformation retraction. We say that a

homotopy h : X x [0, 1] -4 X is a deformation retraction of a space X onto a subspace

A if h1 (X) = A and ht I q = 2dq, for all t Ε [0, 1] .

Definition 2.1.22 Let (X, T) and (Y, 72 ) be topological spaces. Α function f : X —>

Y is called a homotopic equivalence if there is a function g : Y -i X such that f o g

is homotopic to id, and g o f is homotopic to id, where id X and idY denote the

corresponding identity functions. In this case, the spaces X and Y are called homotopic

equivalent.

Notice that if there is a deformation retraction of X onto A, then A and X are

homotopy equivalent. Homotopy equivalence provides a nice generalization of topological

equivalence and lies at the core of homotopic theory, which is described in detail in

[91, 95] . More detailed accounts of spaces and maps can be found in [96, 72, 65, 26] .
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2.2 Manifolds and varieties

Most objects that we consider in this work are subsets of a Euclidean space that,

besides being topological, or metric spaces, have an additional structure that renders

them manifolds. Manifolds lie at the core of differential topology and have been

extensively studied throughout the years. The reader can find thorough and deep

discussions of manifolds in such works as [43, 71, 37, 85] . Analysis of more complicated

objects, varieties, can be found in [l, 75].

Definition 2.2.1 A Hausdorffparacompact topological space Μ is an nubdimensional

(topological) manifold if there is an open cover {Am}maΛ such that each Amp is

homeomorphism to an open (with respect to the induced topology) subset of a half-space,

ΗΙ = {B Ε 1R'B > Ο}.

This definition implies that for any x E Μ there is an open set Amp C Μ and a

map φΡλ  : Amp —^ ]ΗΙ such that Ψλmaps Amp homeomorphism onto its image. A

pair (Am, Ψλ) is called a chart, and the collection of charts, Α = {(Amp, φΡλ) } man is

called an atlas. A point x Ε Μ is called a boundary point if x Ε Am  1 (á1ΗΡ ), where

0ΉΙ = {B Ε llgA xi = 0}, for some chart (Amp, Amp). The set of all boundary points of

Μ is called the boundary of Μ and is denoted by 3Μ. If áM , then Μ is called

a manifold with boundary, or 3ubmanifoldd. Otherwise, it is called a manifold without

boundary, or just a manifold.

Consider an nubdimensional manifold, A, and two charts, (A, O) and (V, ψ).

The map ψ ο φΡ-1 : ψ(A) -i ψ(V) is a diffeomorphism between subsets of a Euclidean

space, which makes it possible to distinguish the case when ψ o 0α1 is differentiable.

This distinction leads to a smoother version of a manifold.

Definition 2.2.2 Let Μ be an nubdimensional manifold with an atlas A. If for any

two charts (A, ψ) Ε .A and (V, ψ) Ε Α such that A fl V I the map ψ o 0α1 : ψ(A) -^

ψ(V) is a Cry homeomorphism, 1 < r < Mob, then Μ is called a Cry manifold.
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Notice that every open subset of a manifold is also a manifold. Indeed, if

Α = {(Um, q5m)}mΕΛ is an atlas for a manifold Μ and O C Μ is open, then Αρ  =

{(Am Π O, Am ρ) } man is an atlas for O. Subsets of a manifold that are manifolds

themselves are called submanifold.

Definition 2.2.3 Let Μ be an n-dimensional manifold. A set N C Μ is a

submanifold of dimension n ( dimension (3 — n) ) if for every x Ε N there is a chart

(Am, Amp) such that x Ε Am and N fl Am = Om 1(Ξc), Lk C Ξ.

It is fairly easy to show that the boundary, 3A, of a manifold Μ is a codimension-l

submanifold of Μ.

When dealing with Cry submanifold of R', it is usually useful to consider an

alternative approach to their definition. Applying the Implicit Function Theorem,

one can show that Μ C n is a n-dimensional, Cry submanifold, 1 < r < οο, if for

every point B Ε Μ there is an open neighborhood A in n for which Mil A = fα1 (0),

if B is an interior point, and An A = f α1 (0) fl g -1 ([0, Mc)), if B is a boundary point,

where f: A -^ nαk and g: A --^ IEgk are Cry functions such that B a regular point of

f and g. Interestingly, if we drop the last condition, the resulting space becomes a

subvariety. That is, a subset V C n is called a k-dimensional subvariety if for every

point B E V there is an open neighborhood A in n for which V fl A = f -1 (0), if B

is an interior point, and V fl U = fα1 (0) Π gα1 ([0, Mob)), if B is a boundary point. If

V Π A is comprised of only finitely many semi-disks, it is an subvariety. The point

B can be a critical point in this case. In general, an subvariety is defined similarly

to a topological manifold: A topological space V is called a topological subvariety of

dimension n if each x Ε V has an open neighborhood A C V such that U is the union

of finitely many sets, each of which is homeomorphic with an open subset of L, and

the intersection set of these homeomorphic is comprised of finitely many manifolds of

lower dimensions.
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Very often one encounters submanifolds and subvarieties that, although not

completely smooth, exhibit some level of smoothness. For example, the boundary of a

square is not a smooth submanifold, but it can be easily subdivided into four smooth

submanifolds — its sides. Such manifolds and subvarieties are called piecewise smooth,

and their rigorous definition can be readily obtained from the foregoing definitions

by merely changing CT diffeomorphism and maps to Cps isomorphisms and maps.

We conclude this section by introducing an important concept pertaining to

manifold intersections.

Definition 2.2.4 Let Μ and Α be CT submanifold of W&, r > l. A point B Ε Aft N

is called a transverse intersection point if the tangent spaces of the two submanifolds

at B span ], that is, TX(M) + ΤΧ (N) =

If the submanifold are transverse at all their intersection points ub denoted as Μ ώ Α

ub it is easy to show that Μ ώ Α is a CT submanifolds and dim (M ώ N) = dim Μ +

dim Α — n. We also note that if f is a isomorphisms, then Μ ώ Α implies that

f(N) ώ f(N).

2.3 Vector Fields and Flows

As we have mentioned, swept volumes and swept manifolds are inherently related to

some laws of motion, and therefore can be regarded as systems evolving in time. This

point of view brings about such notions as a vector field and a flow, which belong

to the dynamical systems discipline. The area of dynamical systems has become

very popular in recent years, generating many excellent texts on the subject. For

example, [4] and [79] provide a simple and intuitive description of the main concepts

and results, while [44, 68, 12] give a more advanced presentation of the subject. In our

brief discussion here, we introduce basic nomenclature, utilizing ideas from several

sources.

Definition 2.3.1 Α vector field is a map F: A -4 BR' , where A C R'.
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Thus, a vector field assigns to each point B Ε A a vector Fax) which, when regarded

as a law of motion, indicates in what direction and how fast a particle should move.

For reasons explained below, we usually assume that a vector field is C'', r > l, or at

least Lipschitz.

Recall that a curve in I1^'' at a point B is a map c: I -* IRSn, where I is an open

interval, I = (-a, a), such that c(0) = B.

Definition 2.3.2 Let F : IR' -4 n be a vector field. An integral curve of F at

B Ε n is a C 1 curve at B such that c'(t) = F(c(t)) for all t Ε I.

The question about existence of an integral curve is answered by the following

theorem.

Theorem 2.3.3 Let A c Ilan be open, and F: A -i BR be a CT vector field, r > l.

Then for each Boa Ε A there is an integral curve at Boa and any two such curves

coincide on the intersection of their domains. Moreover, there is a neighborhood Ο X^

of Boa, ε > 0, and a Cry map A: 0c0 x I -+ IRS, where I = (-ε, e), such that the curve

cc  : I — Ilan defined by cX = ψ(B, t) is an integral curve at B.

The map A in the above theorem is called the flow generated by F. Notice that

for t = 0 the map ψο (B) = ψ(B, 0) is just the identity map, and as t grows, At

describes how 0 ο `flows'. It is not difficult to show that for a fixed t the map

Ate : ήχο —+ Ft (Οσο ) is a C''ubdiffeomorphism and its inverse is given by At  1 = Act .

More generally, At o ^s = ° Ate = Ψt+s, whenever the compositions are defined. This

property is called the group property.

Sometimes it is necessary to consider vector fields that change with time. Such

a vector field is a function F : A x I — IEWn, where A is an open subset of ΙSn and

I is an open interval. In this case, an integral curve, c(t), satisfies c(t) = F(c(t), t).

The existence and uniqueness theorem still holds, but the flow, A, becomes time-

dependent, that is, A = AFB, t, λ) = At,λ (B), λ Ε I. It is still a diffeomorphism for
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fixed t and λ, but the group property transforms into φα -,t (x) o ψt ,λ (x) = φΡT,^ (X),

φΡt,t = identity.

2.4 Morse Theory

It is reasonable to assume that the topological structure of a space can be studied by

analyttng certain types of maps defined on the space. Morse theory provides a specific

method for describing the topology of a manifold N by evaluating critical points of

a particular class of smooth functions from N to 1Ι . This theory has been, and still

is, one of the major tools for studying manifolds, and its employment significantly

simplifies our later analysis of swept manifolds. In what follows, we provide a quick

exposition of the basic principles of Morse theory. More comprehensive accounts of

the topic can be found in such texts as [64, 67, 43] .

Definition 2.4.1 Let f: A — IR, A C W, be a Cry function, r > 2. Α critical point

x of f is called nondegeneracy if the Hessian matrix, Hex) = (áχ^χ; (x))1 ^-ι, has

rank n.

Notice that nondegenerate implies that H(x) does not have zero eigenvalues. The

number of its negative eigenvalues is called the index of the critical point x.

A function f : N -^ IR defined on an manifold N is usually analyzed

in local coordinates, which means that instead of f itself we consider a function

f o φΡ-1 : ψ(A) —* Ili, where (A, ψ) is a chart. Thus, x E N is a nondegenerate critical

point of f if it is a nondegenerate critical point of f o φΡα1 for some, and hence for

every chart (A, ψ) such that x E A. Obviously, the same function can have different

representations in different local coordinates, making it reasonable to look for the

simplest one. For example, if x is a regular point of f, then there is a chart (A, ψ)

such that f o φΡ-1 (yi, • • • , Fyn) = ye • Unfortunately, we cannot obtain the same form if

x is a critical point, but some level of simplification is still achievable, as provided by

the following lemma.



This lemma lies at the core of Morse theory and serves as a base for the following

result, which is preceded by some technical definitions.

Definition 2.4.3 Α Morse function f : Μ — [a, b] is called admissible if ΑΜ =

f α1(a) A f -1 (b) and a and b are regular values.

Definition 2.4.4 Α Morse function f: Μ —> [a, b] is of type (A0 , ... , λπ ) if it has Lk

critical points of index k, 0 < k < n.

Definition 2.4.5 Let Μ be a manifold, and let D k = {x Ε IRS d(0, x) < l}, where d

is the standard metric on Ιιkk. Α nubcell in Μ is the image of D k under a continuous

map f: DB —* Μ such that f: D k —4 f (Dk ) is a homeomorphism.

Theorem 2.4.6 Let Μ be an nubdimensional compact manifold, and let f : Μ — [a, b]

be an admissible Morse function of type (L0 , ... , An ,) . If f has only one critical value

c Ε (a, b), then there is a deformation retraction of Μ onto f  -1 (a) A {υ _0 Ai k1 e },

where the k-cells eke, 1 < i < Lk, are pairwise disjoint and such that eke C Μ \ f -1 (b)

and ek Π f α1 (α) = áek .

Thus, passing a critical value of a Morse function corresponds to attaching cells, types

of which are determined by critical points and their indices. In the simple case of

only one critical point of index k, the manifold is homotopy equivalent to f  α1 (a) with

a k-cell attached.
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2.5 Homology Theory

In the interest of laying the groundwork for the homological intersection criteria that

we derive in the sequel, we shall now give a very brief introduction to the basic

concepts from homology theory that lie at the core of our approach. The reader can

find a wealth of additional information and details in such texts as [63], [52], [42], and

[73] .

2.5.1 Simplices and Singular Simplices

Definition 2.5.1 A subset of Rd is an l-simplex, 0 < n < d, if it is a convex hull of

a set S of n + 1 afβnely independent points.

Thus, a 1ubsimplex, or vertex, is just a point, and a 1-simplex, or edge, is a line

segment. Triangles and tetrahedra represent 2ub and Simplices, respectively.

Definition 2.5.2 Let Απ  be an nubsimplexx, n > 0, defined by points in S. A (k + l)ub

element subset F C S defines a l-simplex called a face of  Α.

A 1ubface of an 1ubsimplex is a vertex, and a 1ubface is an edge. For convenience, an

(n — 1ubface is often referred to as just a face.

Simplices lie at the core of simplicial homology, that is, homology defined

for simplicial complexes. While simple and intuitive, simplicial homology does not

provide a level of generality that can be found in singular homology, the type we

concentrate on here. This kind of homology is better suited for more complicated

topological spaces, and is based on the notion of a singular simplex.

Definition 2.5.3 Α singular n-simplex in a topological space X is a continuous map

A k-face of a singular n-simplex σ is defined as a restriction of σ to the corresponding
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2.5.2 Chains, Boundary Maps and Homology Groups

Let us denote by Cn(Χ) a free abelian group generated by all singular nubsimplex

in a topological space Χ . Then C(Χ) consists of elements of the form ΣΡk nBσk,

where each Lk is a singular 1ubsimplex in Χ , and nB E Ζ. Elements of C(Χ) are

called n-chains. Considering C(Χ) and Cn_ 1 (X ), one can define a boundary map

an : C(Χ) —i Cπ_ 1 (X) as follows. On the basis elements,

Here Lk denotes the lubth face of Απέ , and LΙΔn is the corresponding restriction of L,

which is a singular (n— nubsimplex. For an arbitrary element of C c  (X ), an (ΣΡk nkLB) =

ΣΡB nBán (LB). Boundary maps are homomorphism of abelian groups, and it is easy

to show that ánán+l = Ο. The collection { (An  (X ), a)} of groups of n-chains and the

corresponding boundary maps is called a chain complex, and is often represented by

the following diagram:

Since an is a homomorphism, its kernel, denoted by A n  (X ), is a subgroup of Ac (X) .

Elements of A (X) are called tecles, the name that becomes clear if one considers the

1-dimensional case, when a tecle is just a closed curve. Another important subgroup

of C(Χ) is the image of án+1, denoted by An  (X) . Naturally, elements of this sub-

group are called boundaries. Due to the property ánán+l = 0, every boundary is a

tecle. This allows us to define the quotient groups, Η(Χ) = A (X) /A n  (X ), which,

consequently, contain those tecles that are not boundaries. These groups are called

homology groups of Χ , and the collection { An  (X) }fEz is the homology of Χ .
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2.5.3 Computing Homology: EBact Sequences

Below we provide several basic results, some of which follow fairly easily from the

definition of homology groups.

This theorem becomes quite obvious if one recalls that a singular simplex is a contin-

uous map and, consequently, preserves pathubconnectednesss, thus splitting the corre-

sponding groups.

As a corollary, we obtain that A0 (X) is isomorphic to Lk = ®k1 Z, where k is the

number of pathubconnected components of X.

The fact that a point has only one nontrivial homology group, A 0 , can cause

some inconvenience. This can be remedied by introducing reduced homology groups,

which are obtained by considering the following augmented chain complex:

where the boundary map a0 is defined by ad (Σ no LA) = ΑΡ no  . Reduced homology

groups are denoted by An  (X ), and it is easy to show that ϊ(Χ) Ana (X) for n > 0,

and A0 (X) = A0 (X) $ Ζ . Therefore, a point has only trivial reduced homology

groups.

Consider now a continuous map f : X —* Y. Notice that if L is a singular

nubsimplex in X, then f o L is a singular simplex in Y. Therefore, we can define a

and it can be shown that it induces a homomorphism between homology groups,
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Theorem 2.5.7 Let maps f, g : Χ —> Y be homotopic. Then f * = g * , that is,

homotopic maps induce the same homomorphics between homology groups.

As a corollary, we obtain the following: a contractible space has the homology of a

point.

While it is sometimes possible to find homology groups of a space proceeding

directly from the definition, complex topological spaces require employment of ad-

ditional tools, because computations become cumbersome, if not unfeasible. Since

one is dealing with groups, it is natural to borrow some techniques from the realm

of algebra, and the main concept that is needed in the sequel is that of an exact

sequence.

Definition 2.5.8 The sequence of homomorphisms

There are many kinds of exact sequences for homology groups, but we will need only

two of them. The first one involves relative homology groups, which are defined

as follows. Let Α C Χ be a subspace of Χ and consider the groups of chains

in A, Au (A) . These are subgroups of AC (Χ) , and we can form the quotient groups,

AC (Χ, A) = Cn (Χ) /AC (A), thus making chains in Α trivial. Notice that the boundary

map 1 : Cn(Χ) - n_ 1 (Χ) takes CC (Α) to n _ 1 (Α), which allows us to define the

quotient boundary map and obtain the following chain complex:
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The corresponding homology groups are called relative homology groups and are

denoted by Ana (X, A) . The important fact is that all A (X, A) fit nicely into the

following exact sequence:

We do not indicate homomorphisms between the groups because their exact form is

not important for our later analysis.

Next, we consider Mayer-Vietoris sequences, which also are types of exact

sequences. Let Α and A be subsets of X such that X is the union of interiors of Α

and A. Then

It is worth noting that the same exact sequence holds for reduced homology groups.

We now use a Mayer-Vietoris sequence to compute the reduced homology

groups of the 3ubspheree, S. Let Α and A be the northern and southern hemispheres,

respectively, so that Α Π A = Sn α1 . Then, since Α and A are contractible, the reduced

MayerubVietoris sequence implies

a disjoint union of two points.

Thus, we obtain the following:

The last result we describe in this section is the excision theorem, which allows

us to investigate local structure in a space.



CHAPTER 3

SWEPT MANIFOLDS

Before trying to design a geometric or topological algorithm, it is crucial that the

corresponding structure of objects under consideration be thoroughly investigated,

elucidating properties that may facilitate the process of the algorithm development.

In this work, we are primarily interested in a new class of objects — swept manifolds

— and this chapter is devoted to investigating basic properties of such objects. Since

such an investigation is the first attempt of its kind, most of the results presented

here are new, although many of them are based on standard concepts of differential

topology and geometry. The few cases when we refer to a classical theorem are

indicated explicitly.

In order to properly introduce the notion of a swept manifold, we start by

providing a brief overview of sweeps and swept volumes, introducing basic concepts

and citing major results. Then follows the main part of the chapter, in which the

topological and geometric structure of swept manifolds is studied. Finally, the relation

between smooth manifolds and swept manifolds is considered, which leads to possible

generalizations and some questions.

3.1 Overview of Sweeps and Swept Manifolds

Perhaps one of the most natural occurrences of sweeps can be found in the field of rob-

robotics. Planning a motion of a robot requires solving the collision detection problem

([56, 47] ), which naturally involves trajectories of some geometric entities. Consider,

for example, a moving arm of a robot. As it moves, it sweeps another more comub

plicated geometric shape called swept volume, and if one needs to check for possible

obstructions on the way, it suffices to check whether the swept volume intersects the

objects around the arm. In general, a moving object can also be deforming, which

27
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leads us to the following intuitive definition: a swept volume as a set of points in

space traversed by a moving and possibly deforming object.

Arguably, the most attractive feature of swept volumes is a great variety of

shapes of different complexity that can be obtained by sweeping a very simple object.

For example, look at the object in Figure 3.1. This is a swept volume of a ball.

Obviously, its geometry is nothing like the geometry of a ball. Moreover, its topology

Figure 3.1 Swept volume of a ball.

is also more complicated, since it is not simply connected i . This property of swept

volumes can be a very effective tool for representing sophisticated geometric objects.

In fact, sweeping techniques became quite popular in solid modeling in recent years.

The main problem of such an approach is the computation of a swept volume given

the initial object and sweep. This is by no means a trivial task, and a lot of effort was

put into it ([16, 18, 14]) . Some of the findings on swept volumes are directly related

to our work, and we shall now present a brief, but fairly rigorous discussion of the

underlying concept and main results.

First, let us define precisely what we mean by an object. In what follows,

an object will refer to a compact, connected, oriental and piecewise smooth sub-

manifold of ΙR 7 , with or without a boundary. If it is a manifold with boundary,

its interior should be smooth. Where it does not lead to a confusion, we may abuse

notation and call an object simply a manifold or manifold.

The motion of an object can be mathematically described as follows.

i A reader familiar with the fundamental group can easily see that ir i(X) = 7L * Z, where X
is the swept volume
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Seemingly very abstract, this definition of a sweep provides a great deal of generality,

easily encompassing the most complicated deforming motions. Simpler sweeps can

be obtained by merely restricting the range of A.

Definition 3.1.2 Α sweep A is called rigid if (7(1) C Euc(n), the Lie group of Euclidub

ean isometrics of 1Rn. Otherwise, A is a deforming sweep.

Given an object N and sweep A, there is the sweep map, Σ : N x Ι —^ Rn,

associated to them, which is defined by Σ (x, t) = At (x) .

trajectory of A is closed, or, equivalently, S0 = S1 , the sweep and the corresponding

swept volume are called periodic; otherwise, they are called nonubperiodicc.

While mathematically appealing, the above definition of a swept volume does

not provide an easy way of performing actual computations. Fortunately, if a sweep

is smooth, it is possible to derive another, computationally attractive representation

of a swept volume. Indeed, A is just a curve in Di f f (Rn ), and if it is smooth, the

Lie group structure of Di! ff (IRRn) leads to the sweep differential equation (SIDE),

2 There is no loss of generality, since any finite closed interval can be reduced to [0,1] by a
simple reparametrization
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whose trajectories generate the sweep σ ([19]). The rightubhand side of the SIDE,

Χσ (x, t), is called the sweep vector field(SVF).

The SIDE based representation of swept volumes turned out to be very effecub

tive and was used as the basis for several rendering algorithms ([ 13, 19]) . Moreover,

it allows us to utilize the powerful machinery of dynamical systems and obtain more

insight into the structure of swept volumes. The only drawback, from a dynamical

systems viewpoint, could be the fact that the sweep vector field is, generally, time deub

pendent. This can be rectified by introducing an extension of the SIDE to space-time,

which, naturally, is called the excynded sweep differential equation (EDE) ([18]) . It

is defined by

The following result is easily obtained by employing basic properties of flows

of autonomous dynamical systems.

Theorem 3.1.4 An excynded swept volume is a piecewise smooth manifold of

lRn±l .

Unfortunately, a generic swept volume is not a manifold, since there may be selfub

intersections. It turns out that swept volumes belong to a wider, but still manageable

class of subvarietiess. The proof of this fact is based on the following lemma, and can

be found in [19].



Then given an obsect Μ and sweep F, π(SS(Μ)) = S σ (Μ). That is, a swept volume

is the image of the excynded swept volume under the canonical projection.

Proof. It suffices to show that the projection of the trajectory of the extended sweep,

F, starting at a point (Bo , m), is equal to the trajectory of the sweep Ft starting

at the point χ0 . The latter fact is easy to verify. The first trajectory is given by

Fro  1J (Χο , m), which by definition is equal to σ[ο,e] (Χο) x [m, 1]. Applying the projection,

ir, we obtain π(σ e] (Bib, m)) = π(F1o , e j (Boa) x [0, 1]) = σ[ο , e j (Bo ), which is exactly the

second trajectory. ❑

Theorem 3.1.6 A swept volume of a codimensionubm obsect, k > m, is a

codimensionubl subsubvarietyy, rn = max{0, k — 1}.

In most practical applications, an object being swept is either of

codimension or codimensionubml. Hence, its swept volume is a compact, connected, oriented,

codimensionubm subsubvarietyy, and, consequently, it is completely defined by its boundub

ary. Computation of a swept volume boundary has been a topic of great importance

in the field for many years, and several effective methods have been developed ([40]) .

Notice, though, that in many cases the boundary of a swept volume is to a large

extent determined by a codimensionubm submanifold of the initial object Μ — the set

of initial grattng points, that is, points where the SVF is tangent to Μ (if Μ is of

codimensionubl and with a boundary, then it is exactly the boundary, 3Μ). In fact,

the boundary of a swept volume can often be found by sweeping the set of initial

grattng points and evaluating selfubintersectionss. Thus, it seems reasonable to focus

our attention on sweeps of codimensionubm objects and try to develop methods for

finding selfubintersectionss of the corresponding swept volumes. Moreover, sweeps of

objects of higher codimensionubm may also be of use.
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Definition 3.1.7 A generalized swept manifold is a swept volume of a

codimension-k obsect, k? m.

Questions related to generalized swept manifolds are thoroughly investigated in the

sequel.

3.2 Introduction to Swept Manifolds

The foregoing discussion showed the importance of studying generalized swept manub

ifolds. In this section, we start building the corresponding mathematical framework.

Except for a few classical results, the findings presented in this section are new, and

some of them will be extensively employed later, in the course of developing intersecub

tion algorithms for swept manifolds.

The first important observation regarding generalized swept manifolds is that

they are not manifolds. According to Theorem 3.1.6, they are s-subvarieties. But

using Lemma 3.1.5, one can easily infer that all manifolds points of generalized

swept manifolds are produced by selfubintersectionss. Moreover, there will be only a

finite number of such selfubintersectionsss. Thus, we can subdivide a generalized swept

manifold into several pieces such that each of them is a manifold, and the original

object is obtained by putting these pieces together, and then evaluating the corre-

sponding intersections (see Figure 3.m). This simple fact shows that we can safely

restrict our attention to generalized swept manifolds that actually are manifolds.

Definition 3.2.1 A codimensionub(k manifold of 1ΙU , k > 1, is a swept manifold of

type 1 if it is a swept volume of a codimension-k + 1) obfect.

One of the main tools in the analysis of swept volumes was the SIDE, and since

a swept manifold is a specific case of a swept volume, we conclude that the type 1

swept manifold of an object N with a smooth sweep σ is a also given by the set of

trajectories of the SDE
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Figure 3.2 Subdivision of a generalized swept manifold into two intersecting man-
ifolds.

originating from M and continuing until time t = 1. To take advantage of the SIDE

representation, we further consider only smooth sweeps and shall not indicate this

assumption explicitly.

Focusing solely on the SIDE representation of swept manifolds allows us also

to broaden the class of objects under consideration. Indeed, our analysis will remain

the same if we change the SVF Εσ  (x, t) to an arbitrary AT vector field, r > 1.

Definition 3.2.2 A codimension-k manifold of 11n, S, is a swept manifold (of

type m), if there is a codimension-k + 1) obsect M and a AT, r > 1, vector field

X (B, t) on BR that generates the flow Ft  (B) such that S = φρΡ[ο , ij (M) = {At  (x) :

(x, t) Ε M x [m, 1] } . The obsect M is called an initial manifold (obsect) of S, and the

pair (M, Ε) is called a generator of S.

Most of our work will be done for swept manifolds of type 2, which will be usually

referred to simply as swept manifolds. Obviously, results obtained for swept manifolds

(of type m) are also true for swept manifolds of type 1. The reverse statement is,

generally, not true, which broaches the subject of equivalence of the two types. The

main question is: What condition should a vector field satisfy to be the SVF. The

answer is provided by the following theorem, which is an adaptation of a standard

result in differential topology.
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Theorem 3.2.3 Every smooth vector field with compact support is a SVF.

Proof. Let F : n x [m, 1] -+ An be a smooth vector field with compact support,

and let Ft  (B) be the flow generated by F. Then for each t E [m, 1], At : BR' -- n

is a diffeomorph of IΣ1n fixing points in the complement of a compact subset. In

addition, Auk is the identity map, so At Ε Di f f (Ι An) . Thus, we can define a map

σ : [m, 1] —> Di! f f (IRR') by Fat) _ Ate. Properties of a flow of a smooth vector field

guarantee that F is smooth, and therefore is a sweep generating the vector field F. D

Since smooth vector fields with compact support are dense in the space of α

vector fields, r > 0, and since practical cases are covered by the SFV, the difference

between the two types of swept manifolds is negligible. It also allows us to restrict

our attention to swept manifolds of type m that are generated by smooth vector fields.

3.2.1 Basic Properties of Swept Manifolds

Having laid out the basic definitions, we can now proceed to investigating the class

of swept manifolds. The main topic on our agenda is the structure of swept surfaces,

that is, codimension-1 swept manifolds in 1R 3 . This case is particularly important

because of its applicability — most geometric models are 3-dimensional. First, though,

we explore general properties of swept manifolds, laying down a basis for our later

analysis.

Look at the two surfaces shown in Figure 3.3. The first one is simply a sphere,

and the second, which looks more complicated, is a diffeomorph of a sphere. If asked

whether these surfaces are swept surfaces, one would promptly say that the sphere

definitely is, because it is the surface of revolution of a semicircle. The sweep for the

other surface is not obvious, though one might venture to say that it also is a swept

surface, because, intuitively, diffeomorphisms should preserve the property of being

swept. Such a guess would be correct.



Figure 3.3 A sphere and its diffeomorphism.

Theorem 3.2.4 Let Μ c Rn be a piecewise smooth submanifolds with a smooth in-

terior, and let S c RR  be a swept manifold. Suppose there is a diffeomorphic

f : As — AM, where AM and AS are open neighborhoods of M and S, respectively.

Then M is a swept manifold.

Proof. Let Α be the initial manifold of S, and F(B, t) be its generating vector field.

Define a smooth vector field on AM by Gay, t) = D f -l (ν) f o F(B -i (y), t), y Ε UM .

It is easy to check that if c1(t) is a trajectory of F emanating from B Ε N, that is,

c1(t) _ ψt (B), B Ε N, t Ε [m, 1], then f o c1 (t) is a trajectory of G emanating from

y = f -i (x) Ε f αi (Α) . Since M = f (UXEN cX ([m, 1])) and G can be extended to Rn by

employing partition of unity, we see that M is a swept manifold generated by G and

with the initial manifold f αi (Ν). ❑

Remark 3.2.5 If two piecewise smooth compact oriental submanifolds of Rn with

smooth interiors are piecewise diffeomorphism, the corresponding diffeomorphic is

extendable to some neighborhoods of the submanifolds. Therefore, the above theorem

holds if M and S are piecewise diffeomorphism.

Consider a line segment moving in space. If a vector field governing the motion

is transverse to the line, the resulting surface is obviously diffeomorphic to a square

(Figure 3.4), and that is what one would usually expect. It is possible, though, that at

some time during the motion the vector field becomes tangent to the line segment (see
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Figure 3.4 Regular swept surface of a line segment.

Figure 3.5). Moreover, the motion can be just a translation along the corresponding

Figure 3.5 Non-regular swept surface of a line segment.

line, thus making the swept volume just another line segment. The later two case are

not what one usually anticipates. Indeed, the resulting generalized swept manifold in

the first case is not even a manifold. In the second case, the line segment is a swept

manifold, but using another line segment to sweep it does not seem reasonable. This

brings us to the following definition.

Definition 3.2.6 A swept volume 5 with a generator (M, X) is called a regular swept

volume if X (B, t) is transverse to ap t (M) for alit Ε [m, 1], where φ, is the flow generated

by X.

Our definition of regularity is closely related to the one given in [18]. The main

advantage of regular swept manifolds is that they greatly simplify the underlying

analysis by eliminating some complicated cases. Unfortunately, there are important

examples not covered by regular sweeps. The most crucial one is, probably, a sphere.

A 2-sphere, 52 , is obtained by rotating a semicircle around the corresponding axis.
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(m, m, ±1),  where X is not transverse to At  (N) . In fact, X(m, m, ±1) = m, so these

points are critical points of X. Another important observation is that the two critical

points lie on the boundary of the initial manifold M. As we show later, augmenting

regular swept manifolds by those having critical points on the boundary of an initial

object produces a class of manifolds virtually as broad as the whole class of swept

manifolds.

Topological simplicity of regular swept manifolds can also be seen from the

following important result, which can be proved using the techniques employed to

prove the two previous theorems.

Theorem 3.2.7 Let S be a regular swept manifold with a generator (N, X) . Then

S is piecewise dijfeomorphic to M x [m, 1] if X is non-periodic, and to M x S i if X

is periodic. The corresponding incyriors are always dijfeomorphic.

The above theorem also yields a nice description of the boundary of a regular swept

manifold, which follows directly.

Looking at the proof of Theorem 3.2.7, one might notice that it is highly plausible

that the reverse statement is also true. Indeed, manifolds of the type N x [m, 1] or

M x S1 , where N is an object, are formed by a simple translations or rotation of

M, and a suitable homeomorphism should not change this drastically. A rigorous

formulation of these ideas can be expressed as
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Theorem 3.2.9 Let S be a dimensional(k, k > 0, manifold of ΙRn with a piecewise

smooth boundary and cooth incyrior. Suppose that S is piecewise diffeomorphic to

either M x [m, 1] or N x S i , where N is an obsect. Then S is a regular swept manifold.

Proof. Since both N x [m, 1] and M x S i are clearly swept manifold, the result follows

from Theorem 3.2.4. ❑

Theorems 3.2.7 and 3.2.9 represent criteria that lead to a nice topological description

of regular swept manifolds. This description involves a reduction in dimensionality,

which provides a great level of simplification. Of course, higher dimensional regular

swept manifolds can still be extremely complicated, but, as we shall see, the most

applicable class of regular swept surfaces possesses a simple topological classification.

We now list several interesting corollaries which focus on the fundamental

group of a regular swept manifold, and can be proved readily from the definitions

using standard techniques from algebraic topology.

Corollary 3.2.10 Let S be a regular swept manifold with a non-periodic generator

Corollary 3.2.11 Let S be a regular swept manifold with a periodic generator (N, X).

3.2.2 Critical Swept Manifolds

Though the simplicity of regular swept manifolds is enticing, one should remember

that several important swept manifolds are not regular. In this section, we investigate

the effects of non-regularity on the structure of swept manifolds. Particularly, we

focus on the type of non-regularity resulting from the presence of critical points of a

generating vector field in an initial manifold. It turns out that manifolds condition

limits the variety of complications that would ensue otherwise.

Definition 3.2.12 Let 5 be a swept manifold with a generator (N, X ), and suppose

that X vanishes on some C C M. Then S is called a critical swept manifold.
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While there are no restrictions on the critical set A in this definition, one might

suspect that it cannot be completely arbitrary. Indeed, consider a line segment J

moving according to a non-periodic vector field that has a critical point x Ε Into J

(see Figure 3.6). Then the resulting generalized swept manifold is not a manifold,

since a neighborhood of x is not homeomorphic to an open ball. Surprisingly, this

simple example has a very important generalization.

Figure 3.6 Generalized critical swept surface of a line segment.

Theorem 3.2.13 Let M C ΙRn be a n-dimensional obsect, k > 2, and let X be a

smooth vector field on R. Suppose also that x Ε M is an isolated critical point of

X . Then each of the following conditions implies that the generalized swept manifold

of M obtained with X is not a manifold.

Proof. Let dim M = k > 1. Since M is a manifold, it suffices to show that for any

ε > 0 the generalized swept manifold of a k-dimensional ball of radius ε centered at

B, Lk (B), is not a manifold if x is a critical point of the vector field X. First, suppose



40

manifold. The case when X is periodic is proved in the same way, the only difference

is that the time span becomes [—δ, δ] instead of [m, δ] .

Now let dim M = 1, x Ε Into M. This case can be reduced to the case of

sweeping a line segment, I = [x — €, x + €] . Notice that I \ {x} has two connected

components, and therefore (X, n) can have different signs on different components.

Nevertheless, if X is Non-periodical, the same argument as above shows that A[ο,δj (I)

is not a manifold. ❑

One of the consequences of this result is that the critical subset C of a critical swept

manifold cannot contain isolated points, unless the swept manifold is a surface and

the critical points are exactly the boundary point, or the vector field is periodic. To

see that the latter two cases are indeed possible, consider a rotation of a line segment

around one of its end points (Figure 3.7) . The resulting shape is a surface, and one

of the boundary points is a critical point. The second case happens when one takes a

circle and the corresponding rotational vector field to generate a 2-sphere (see Figure

3.8) . Notice that periodicity is crucial in this case.

Figure 3.7 non-periodic critical swept surface of a line segment.

Theorem 3.2.13 also gives more insight to other possible (and impossible)

configurations of a critical set. The second condition in the theorem suggests that

the only choice for a critical set of a Non-periodical vector field can be a union of path

connected components of the boundary of an initial object. The following result,
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Figure 3.8 Periodic critical swept surface of a circle.

which can be proved readily by employing the same techniques as in the preceding

theorem, just confirms this.

Theorem 3.2.14 Let 5 be a critical swept manifold with a non-periodicity generator

(Μ, X) and a critical set C c Μ. Then C is a union of path connected components

of 3M.

The next question we address is smoothness of non-periodicity critical swept

manifolds. The simple examples we considered so far always involved loss of smooth-

ness at critical points. This is not a coincidence, but rather a result of the behavior

of a vector field around a critical point. One might notice, though, that a critical

subset should remain at the boundary of a critical manifold, thus yielding a smooth

interior. In particular, one can easily prove the following result by using arguments

analogous to those which were used to verify the statement of Theorem 3.2.13.

Unfortunately, analysis of general periodic critical swept manifolds is much

more complicated, and basic properties resulting from non-periodicity are no longer

valid: a critical set can belong to the interior of an initial object, C° critical swept

manifolds are quite common, and the boundary of an initial object does not have to

remain a part of the boundary of the resulting swept manifold. In low dimensions,
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though, these properties are not crucial, and a complete classification of critical swept

manifolds is possible.

3.2.3 Swept Surfaces

Establishing the practical value of swept surfaces requires that additional effort should

be put into their analysis. Moreover, the usefulness of some of the results obtained

earlier for general swept manifolds may be a little obscure due to the abstract and

unifying approach. Reemphasizing the main properties for swept surfaces may cast a

new light on their possible applications, and utilittng additional mathematical tools

provided by low dimensionality can help detect new important features that could

elucidate the general structure of swept surfaces and facilitate design of efficient in-

tersection algorithms.

Let us start by considering possible initial manifolds for swept surfaces. These

are, in fact, just piecewise smooth, compact curves in 1R 3 . It is natural to distinguish

two cases right away: curves with a boundary, and curves without a boundary, that

is, closed curves. In I1 3 , though, one should be careful about an additional possibility

— knotted curves. Our notion of a knotted curve is somewhat different from the

classical concept of a knot (and most like that of a braid), since we do not require

a curve to be closed ([21]) . Hence, both curves in Figure 3.9 are knotted, but only

the second one is a knot. Studying swept manifolds with knotted initial curves seems

to be a challenging and interesting task; in this work, however, we concentrate on

more simple and, perhaps, more practical cases when an initial curve is not knotted,

in which case we shall call it simple.

As in the general case, the structure of a swept surface simplifies significantly

when the regularity condition is imposed. A low dimensionality for the initial manifold

simplifies things even further, as illustrated by the following theorem.



Figure 3.9 Examples of knotted curves.

Theorem 3.2.16 Let 5 be a regular swept surface with a generator (M, X ), and

suppose that M not knotted. Then 5 is piecewise diffeomorphic to one of the following:

(i) a square Q = [m, 1] x [m, 1], (ii) a cylinder Y = 5 i x [0, 1], (iii) a torus Τ2 = 5 i x 5 i .

Proof. The assumptions on M imply that M is piecewise diffeomorphic to either a

line segment, [m, 1], or a circle, 5 i . Therefore, M x [m, 1] is piecewise diffeomorphic to

one of the three surfaces indicated in the statement of the theorem. Now the result

follows from Theorem 3.2.7. ❑

Remark 3.2.17 In fact, this theorem also holds for the case of knotcyd initial curves.

Notice that if an initial curve is smooth and closed, the resulting regular swept surface

is also smooth. Similarly, regular periodic sweeps of smooth curves (closed or open)

create smooth swept surfaces. Unfortunately, regular non-periodic sweeps of open

curves always have points where smoothness is lost; indeed, it is easy to prove the

following result using arguments in the proof of the above theorem.

Corollary 3.2.18 Let 5 be a regular swept surface with a smooth generator (M, X) .

Then 5 is smooth if and only if X is periodic or M is closed. If 5 is piecewise smooth,

it is piecewise diffeomorphic to a square.

Intuitively, one can expect that practical handling of sweeps of piecewise

smooth curves should boil down to managing a finite collection of smooth curves

due to the obvious subdivision of the initial curve into smooth parts. As we shall see
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later, this is exactly the case. Therefore, it is reasonable to focus on swept surfaces

with smooth initial curves and try to exploit the smoothness condition to discover

additional properties. The classical result provided by the following easily proved

lemma is the first step in this direction.

Lemma 3.2.19 Let N is a smooth curve in IEg3 . Then there is a a point Κο Ε A

and a smooth vector field X on 1R3 such that N is the solution curve to the following

initial value problem

In other words, this lemma states that every smooth curve is, in fact, a swept curve.

The reverse statement is, obviously, also true. Hence, a swept surfaces can be effi-

ciently represented by an initial point, Κ 0 , and two vector fields, X and Y. We shall

regard such a triple as a generator of a swept surface and denote it by (Χ 0 , X, Y);

the old notation for a generator will indicate the possibility of a piecewise smooth

initial curve. The flows generated by X and Y will be usually denoted by gps and Ft,

respectively. Notice, that the first vector field, X, provides the tangent space of the

initial curve, Μ = ςο[ο,ij (Bo ), and the second is used to sweep this curve. Considering

sections of the corresponding swept surface, At (N), it is natural to assume that their

tangent spaces are somehow related to the tangent space of A. Such a relation is

provided by the following lemma.
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Having the tangent space for each of the sections of a swept surface should surely

be helpful in determining the tangent space of the whole surface. In fact, consider a

swept surface S with a generator (Boa, X, Y). As the lemma shows, a tangent vector

to S at a point B E 5 can be found by sweeping the vector field Α . Another tangent

vector is given directly by the vector field Y, and if these two vectors are linearly

independent at each point of S, they generate the tangent space of S. In general,

linear independence of the two vectors is not guaranteed, but the problem can be

easily rectified by imposing the regularity condition, thereby obtaining

Lemma 3.2.21 Let S be a regular swept surface with a generator (Bo , X, Y), and

let N, y and Αγ be defined as in Lemma 3.2.20. Then Αγ and Y(y, t) are linearly

independent vectors.

Observe that it follows from these lemmas that each point on a swept surface

seems to be uniquely determined by the two corresponding parameters, s and t. This

correspondence defines a map from [m, 1] x [m, 1] to R3 which makes a swept surface a

parametric surface. For example, it is easy to verify the following result.

-.,

Unfortunately, a closed form of the flow of a differential equation is, generally, not

obtainable, but the few cases when an exact expression of the map f can be found

represent a fairly broad class of swept surfaces and deserve some attention. This

question will be considered in more detail in Section 4.2.5, when the intersection

problem for the corresponding class of swept surfaces is considered. Meanwhile, we

employ the regular swept surface classification to derive a very important result.

A careful reader has probably observed that though the tangent space at a

point of a swept surface is generated by time dependent vector fields, it is, in itself,
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not time dependent. Thus, one would expect that at each point of a swept surface

the two vectors obtained using the time dependent fields should correspond to some

time independent vectors. Constructing such vectors at each point of a swept surface

would produce two time independent vector fields, which should behave very similar

to the original ones, that is, they should generate the same swept surface.

Proof. Using Theorem 3.2.16, it is enough to show that a telinder, a torus, and a

square can be generated with time independent vector fields. Indeed, then a time

independent vector fields for the original surface are obtained through a composition

with the corresponding diffeomorphism. It is easy to see, though, that a square is

generated by a pair of translations, a telinder - by a rotation and translation, and a

torus is generated by a pair of rotations. ❑

Let us focus again on the roles played by generating vector fields, Α and Y,

which, from now on, are assumed to be time independent. Suppose these vector

fields generate a swept surface S, then the initial manifold, N, is produced by the

first vector field, Α, sweeping the initial point Κ οι . Consider now a cross section

St = ψt (N). It follows from Theorem 3.2.20 that S t can be obtained by sweeping the

point Ψt (Bο ) using the vector field Αγ . This suggests that one may take N = ψ[ο,e] (Χο)

to be an initial manifold and then generate S sweeping N with Αγ. Thus, the roles

of Y and Α, or at least Ay , can be swapped. There is a little problem though. While

the vector fields Α and Y are defined on the whole R 3 , Αγά is initially defined only

at points of the swept surface, S. This raises a question: Is it possible to extend Α γά

to R3 ? The answer to this question is positive, although such an extension may be

quite sophisticated. Consider, for example, a torus, T 2 . As we know, it is a regular
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C°° swept surface obtained by (rigidly) sweeping a circle, A i , along another circle,

A2 (see Figure 3.10) . Exchanging the roles of A i and A2 , we see that the sweep

Figure 3.10 A torus as a swept surface.

becomes much more complicated; for instance, it is no longer rigid. Also, while it is

clear how to sweep each point of A2 to obtain Τ2 , the extension of the corresponding

vector field to the whole R3 is by no means obvious (at least to a less experienced

reader). One possible suggestion could be the vector field with the flow depicted in

Figure 3.11, which, incidentally, is related to a foliation of 5 3 . Indeed, such a choice

Figure 3.11 Some trajectories of Hoof foliation of 53

is the needed extension, and it is not very hard to show this rigorously. Hence, the

standard generator of a torus has its dual generator, obtained by swapping the roles

of the vector fields. Construction of dual generators for a square and a telinder can

be done in a similar way, and the following general result can be easily proved by

employing a standard procedure of differential topology which is based on tubular

neighborhoods, collars, and partition of unity.
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Theorem 3.2.24 Let 5 be a regular swept surface with a generator (B oa, X, Y). Then

there is a vector field X * defined on R3 such that X * a s = Xγ and (Bo , Y, X*) is also

a generator of 5, called a dual generator.

Existence of a dual generator has an obvious, but important consequence — every

regular swept surface, 5, has two associated vector fields, Χ * and Y, defined on 1R3 ,

such that X * ^ s and Y  s is a global frame for 5. Having a global frame for a swept

surface provides a big advantage when dealing with the intersection problem, and due

to Theorem 3.2.24 we can safely assume that Χ * and Y are given initially.

We conclude our discussion by making several observations regarding critical

swept surfaces. First, consider a non-periodic swept surface with an open initial

curve. In this case, there are are only two possible critical points — boundary points.

It is not difficult to show that if both boundary points are critical, the resulting swept

surface is piecewise diffeomorphic to a half-disk if only one boundary point is critical,

the swept surfaces is piecewise diffeomorphic to a triangle (Figure 3.12. The case of

periodic swept surfaces is more complicated, but it seems that most of such surfaces

are piecewise diffeomorphic to one of the following: a sphere, a sphere with a triangle

cut out (which is piecewise diffeomorphic to a triangle), and a disk (Figure 3.13).

Figure 3.12 Possible topological configurations of non-periodic critical swept sur-
faces.

3.2.4 Recursive Swept Manifolds

A large number of important properties of swept surfaces were obtained through the

representation involving an initial point and two vector fields. One of the obvious

advantages of such a representation is its uniformity — an initial curve is also a swept
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Figure 3.13 Some of the possible topological configurations of periodic critical
swept surfaces.

curve. Furthermore, specifying an explicit description of an initial curve provides

additional information about it, thus giving us more insight to the structure of the

entire swept surface. Not surprisingly, the question of a possible generalization of this

approach to higher dimensions is coming next on our agenda.

It is well known that the complexity of a manifold grows 'exponentially' with

its dimension. For example, there is a nice topological classification of surfaces ([43] ),

but no such classification is known for manifolds. This, obviously, complicates

our analysis of higher dimensional swept manifolds — an initial object can have a

very intricate structure, creating a substantial obstacle to fully understanding the

structure of the resulting swept manifold. Our study of swept surfaces was quite

successful partly because an initial manifold was assumed to be a simple smooth curve.

Note, that this assumption also makes an initial curve a swept curve — the fact that

ultimately turned out to be the most useful. Although smooth manifolds are generally

not swept manifolds, it is reasonable to ask what happens if one assumes that an initial

manifold of some swept manifold is a swept manifold in itself. Does it simplify things

significantly? There is an easy answer to this question — no, because though the

initial manifold is a swept manifold, it can still be quite complicated due to its high

dimension. The key here is to go further and demand that an initial manifold at every
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level be a swept manifold; to simplify things even more, the regularity condition can

be imposed. This bring us to the following definition.

Definition 3.2.25 Α recursive swept manifold of dimension 0 is a point. A recursive

swept manifold of dimension m > 0 is a regular swept manifold that has a recursive

swept manifold as its initial manifold. A generator of a recursive swept manifold of

dimension m is denocyd by (Xo, X1 , ... , Xk).

This definition nicely incorporates regular swept surface with smooth initial curves

and provides a logical generalization to higher dimensions. Moreover, one would hope

that a convenient mathematical representation of recursive swept manifolds will allow

us to generalize some of the most important properties of swept surfaces. Indeed, let

us denote the flows generated by the vector fields of a generator (B oa, Xi,.. . , Xk) by

ςοil , ... , φ . Then each point B of the corresponding recursive swept manifold, M, is

uniquely determined by the values of Al , ... , tk, since B = k o Αρ k=i o • • • o φφt1(o)•

Therefore, there is a simple parametrization of N, as shown by the following easily

proved result.

Thus, every recursive swept manifold is a parametric manifold, although, as we

mentioned before, such parametric representation may not be effectively computable.

Let us continue in the path trodden for swept surfaces and see if the generating

vector fields of a recursive swept manifold can be assumed time independent. Recall

that our proof of this result for swept surfaces was based on Theorem 3.2.16, which

provides a topological classification of swept surfaces. It turns out that a similar

classification can be obtained for recursive swept manifolds.
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Theorem 3.2.27 Let Μ be a recursive swept manifold of dimension k > 2. Then

Proof. We have already proved the result for m < 2. Now assume that it holds for

some k. Let dim Μ = k + 1, then by Theorem 3.2.7 S is piecewise diffeomorphic

to N x 13k+1 , Jk±l Ε {m,1 }, where N is an initial manifold. Since N is a recursive

swept manifold of dimension m, it is piecewise diffeomorphic to Ιο x • • • x I.ik by our

assumption, which implies that S is piecewise diffeomorphic with Ιj1 x . . • x I.ik x I1k+1 .

By induction, the result holds for all m Ε Ν. ❑

The statement about time independent generating vector fields readily follows from

the above theorem.

Another very useful feature of swept surfaces is the description of their tangent

spaces in terms of generating vector field. Fortunately, this property also can be

readily generalized for recursive swept manifolds.

are linearly independent and span ΤΧΜ. Hence, Ε (B), ... , Xk_1(x), Xk(x) is a

global frame for TN.

Finally, it would be worthwhile to invest some time in defining `dual' gener-

ators for recursive swept manifolds. The main difficulty here is the large number
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of possibilities in changing to the sweeping process. Indeed, there are k! ways to

generate the same recursive swept k-manifold, which corresponds to the number of

permutations of { 1, 2, ... , m}. Therefore, it is more convenient to introduce the notion

of equivalent generators. The following theorem is easy to prove, and it provides the

details.

An easy way to understand equivalent generators is to assume that each generating

vector field creates only one particular dimension of M. This assumption becomes

more natural if we recall that a collection of the generating vector fields is a frame

for ΤΜ. Then choosing one of the equivalent generators corresponds to selecting

a particular order of dimensions in which M is swept. For example, considering a

cube ( embedded in A4 ) we see that any of its three dimensions can be swept first,

second, or third. In general, it is not very important which generator is used to

sweep the manifold, but it can be crucial to have all equivalent generators available

when performing a local (or global) analysis of the manifold during an intersection

procedure.

The foregoing basic properties of swept manifolds provide a basis for our later

development of efficient intersection algorithms. There are, however, several addi-

tional important issues concerning swept manifolds that are not explicitly related to

algorithm development. One of the main examples, which is discussed in the next

section, is the relation between general smooth manifolds and swept manifolds.
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3.3 Smooth Manifolds vs. Swept Manifolds

So far regular swept surfaces and recursive swept manifolds were singled out for

their simplicity, but there also is a point of view where simplicity may be far from

what is needed. When designing a surface, one does not think about it in terms of

vector fields, but rather envisions a whole surface as such, and only after mentally

establishing the desired shape one would resort to mathematics in a search for a

suitable representation. This is where the simplicity of swept surfaces may play

against them — if the envisioned surface is quite complicated it may not be possible

to find its generator. Thus, the `swept approach' implicitly imposes restrictions on

the complexity of a surface. If formidable, such restrictions can impede the modeling

process and, consequently, diminish the potential of the approach. In what follows,

we restate which smooth manifolds can be represented as swept manifolds and prove

several new results that provide a useful tool for determining which smooth manifolds

are essentially non-swept.

Before engaging in a deep discussion of sweeping criteria, let us make a simple

observation which follows directly from the definition of a manifold: every manifold

is locally flat. This immediately leads to the following result.

Theorem 3.3.1 Every cooth manifold A C R' is locally swept, that is, for

every point x Ε A there is a neighborhood V with a compact closure such that V is

a swept manifold.

Although essentially trivial, this theorem has a nice and important consequence: no

matter how complicated a manifold is, it is always possible to subdivide it into swept

patches. Therefore, it seems reasonable to assume that if we managed to develop an

algorithmic procedure for constructing such a subdivision, all the topological restric-

tions would be lifted and the swept technique would be ready for practical applica-

tions. Unfortunately, the following statement shows that this approach would still

not lead to a complete resolution of the problem.
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Theorem 3.3.2 For any ε > 0 there is a smooth surface S such that every open

subset of S of the form S fl Βε (Χ), where Aε is a ball of radius ε centered at B Ε S,

is not regularly swept.

We postpone the proof of this theorem until basic criteria concerning non-swept man-

ifolds are considered. It is now evident, though, that even the best procedure for

subdividing a manifold into swept patches can take an enormous amount of time,

particularly if the manifold has a very complicated structure. Hence, being locally

swept is not enough for practical purposes, but it does not mean that the swept

patch subdivision procedure would not be useful — many of manifolds are comprised

of only a few swept patches and therefore admit an applicable differential equation

representation.

One of the most important results obtained for regular swept manifolds was the

following global sweeping criterion, as provided by Theorems 3.2.7 and 3.2.9: regular

swept manifolds are piecewise diffeomorphic to M x [m, 1] or M x S i , where M is

an obfect; and the converse is also true. Unfortunately, the practical value of this

statement is questionable. Indeed, how can one efficiently determine if two manifolds

are diffeomorphic? Well, if the two manifolds are compact smooth two-dimensional

surfaces, it suffices to compare their Puler characteristics ([43] ); however, no such

result is available in the general case. Despite this setback, we might still obtain

some insight into possible sweeping criteria by employing the common tool used for

analyzing and classifying smooth manifolds — Morse theory ([67, 43]) . So far, elements

of this theory were used only in proofs, but it is quite easy to reformulate some of

the previous results using Morse functions as the primary focus.

Theorem 3.3.3 Let M be a smooth manifold of R Ζ of codimension-2, and let

f: Μ —* [m, 1] be an admissible Morse function without critical points. Then N is a
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The statement of the theorem, which is an adaptation of a standard result in differ-

ential topology, is essentially a more specific and extended version of Theorem 3.2.9

not only does it state that a manifold is a regular swept manifold, but also provides a

corresponding generator. Unfortunately, there still is an obstacle - it is not clear how

to find the appropriate Morse function. The usual choice of one of the coordinate

functions, (Xi, 1p,... , χ? ) -> 1k , may often be unsatisfactory. Indeed, consider a sur-

face, 5, depicted in Figure 3.14. All three coordinate functions, f k (x l , Bpi L3 ) _ Lk ,

have critical points. Hence, Theorem 3.3.3 is not applicable to them. It is obvious,

though, that the surface is a swept surface formed by sweeping a circle.

Figure 3.14 A regular swept surface that does not admit the coordinate functions
as Morse functions without critical points.

Periodic swept manifolds constitute another difficulty for Morse functions -

even the simplest regular periodic swept surface, a torus, does not admit a Morse func-

tion without critical points. The impossibility of finding the right function could be

a disincentive for employing Morse theory, but we should notice that a non-existence
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of the appropriate Morse function may serve as a criterion for being a non-swept

manifold.

Lemma 3.3.4 Let N be a smooth manifold of n such that every admissible

Morse function f: A —+ IR has critical points. Then N is not a regular non-periodicity

swept manifold.

The assumption of non-periodic may seem too restrictive, but analyzing it more

carefully one notices that it excludes only periodic swept manifolds without a bound-

ary. This follows form the existence of equivalent generators (see Theorem 3.2.30).

As an example, consider a telinder. On one hand, it is generated by a periodic sweep

of a line segment, but on the other hand, it is generated by a non-periodicity sweep

of a circle. Still, it would be nice to extend the above result to all regular swept

manifolds, and we proceed to the construction of such an extension by making the

following trivial observation: for any x E S 1 and any neighborhood Α C S i of x,

the set S \ Α is diffeomorphic to [m, 1] . Recalling that every smooth periodic swept

manifold is diffeomorphic to A x S 1 , where A is an object, we arrive at the following

result.

Lemma 3.3.5 Let S be a smooth periodic swept manifold without a boundary. Then

there is a smooth manifold, M C 5, and a tubular neighborhood of N, Α C S,

such that the manifold S \ Α is a smooth non-periodicity swept manifold.

A simple reparametrization yields the required result. O

Reversing the statement of this lemma and combining it with Lemma 3.3.4 yields the

following non-swept criterion.
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Theorem 3.3.6 Let S be a smooth conneccyd submanifold of n . Then S is a regular

swept manifold if and only if one of the following two conditions holds.

1. There is an admissible Morse function on S without critical points. In this

case S is a non-periodic swept manifold.

2. There is a codimension-1 submanifold of S, A C S, such that for any tubular

neighborhood N D N in S the manifold SAN admits a Morse function without

critical points. In this case S is a periodic swept manifold without a boundary.

A straightforward application of this criterion may still be quite problematic, since

proving non-existence of a specific Morse function is by no means a trivial task. There-

fore, development of additional lemmas that would facilitate practical applications of

the criterion would provide a valuable tool. Recognizing the importance of the issue,

the author is planning to address it in his future research.

We finish this chapter by proving Theorem 3.3.2. The proof is based on the

following easily proved corollary of Theorem 3.3.6.

Corollary 3.3.7 Every smooth surface of genus k> 1 is not a regular swept surface.

Proof of Theorem 3.3.2 A trivial example is given by a surface of genus greater than

two with diameter less than ε. Α surface of an arbitrary diameter is constructed by

attaching handles to a sphere of the corresponding radius. Indeed, consider a sphere,

52• Given ε > 0, choose a collection of points {p ;} 1 C S2 such that each subset of

the form S Π Aε (χ), x E S p , contains at least one Pk that satisfies d(pk, x) < δi ι where

δi = ε/8. Let δ2 = min{d(ρ , p)11 < i, s < n,i s}, and define δ = min{δl , δp /8}.

For each ρ ; , 1 < i < n, attach a handle to S 2 that lies completely inside S2 Π Ad (ρ;) .

The resulting surface satisfies all the requirements of the theorem. 0



CHAPTER 4

INTEASECTION PROBLEM

When dealing with intersections of objects, it is impossible not to notice a drastic

difference between the theoretical and practical viewpoints. For instance, defining a

curve as the intersection set of two surfaces is a common practice, but being a neat

and easy-to-use representation for theoretical purposes, it turns into a formidable

problem rife with unexpected difficulties when it comes to practical applications. The

inherent difficulty of the intersection problem, from the practical point of view, can be

perceived by noticing that after the many years it has been scrutinized by numerous

scholars there is still no general solution that can encompass the large spectrum of

objects used in various applications. Moreover, it has become a `tradition' to focus

one's attention on the intersection problem for a specific class of objects that possess

some nice properties. Such properties are then used to get more insight into the

problem and, possibly, obtain a better solution.

In this chapter, the main class of objects under consideration is the class of

regular swept surfaces, and the main goal is to develop efficient algorithms for evaluat-

ing the intersection set of two such surfaces. To achieve this goal, we shall employ the

properties of regular swept surfaces that were discussed and analyzed in the forego-

ing theoretical part. Before plunging into details, though, we review several existing

methods for finding intersections. Besides providing a better understanding of the

problem, such a review may, actually, furnish several useful techniques. Furthermore,

we should not disregard the possibility that some of the extant intersection meth-

ods might be directly applicable to swept surfaces and therefore could save us from

much of the thankless work involved in reinventing the wheel. At the end, we pro-

58
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vide a novel unconventional approach to the intersection detection problem based on

homology theory.

4.1 Overview of the Surface-to-Surface Intersection Problem

The surface-to-surface intersection (SSI) problem has a long and fascinating history,

and can be traced as far back as 196ms (see [32]) . It evolved from a minor task for de-

signers to one of the most fundamental problems in computer aided design, computer

animation, simulation and control of manufacturing processes, and many other im-

portant areas. The growth of popularity and significance of the SSI problem resulted

in numerous algorithms and methods for finding its solution. Such methods often

emphasized different aspects of the problem (see e.g. [7, 61, 90, 46]), and by now the

number of different approaches is almost comparable to the total number of success-

ful procedures. Not surprisingly, classifying all the intersection methods is a far from

easy task, nevertheless, there are a few valuable surveys on the intersection methods

where several possible classifications are discussed ([83, 45, 76]) . Our description here

follows [76] . First, we present basic concepts related to the SSI problem.

While the meaning of the HSI problem is intuitively clear, a proper mathemat-

ical treatment of the issue requires more than just intuition. The following definition

provides some of the necessary rigor.

Problem 1 Let N c R3 and N C A 3 be two compact surfaces with smooth incyrior

and either with a piecewise smooth boundary or without a boundary. Find the set

A key word in this definition is 'find'. Its meaning can be quite different depending on

many aspects of the problem, such as representations of the surfaces, or later usage

of the intersection set. Moreover, it is usually impossible to 'find' the intersection set

exactly and therefore some approximating procedure is implicitly assumed. From a

practical point of view, it is important to distinguish the following two cases: 1) the
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intersection set, I, has to be computed in a closed form, that is, represented by some

formulae); 2) the intersection set has to be computed numerically, that is, represented

by a discrete set of values. In recent years, due to an extensive growth of computa-

tional power, often cumbersome analytical methods lost their appeal to more simple

and elegant numerical algorithms, which generally work fairly well. Unfortunately,

the latter methods have their own shortcomings.

1. An intersection set usually consists of several components. Making sure that
all such components are found is a formidable problem.

2. Mangential intersections may result in numerical instability. Therefore, such
cases require a special treatment, which is a heavy burden for intersection
algorithms.

Both of these problems have received a lot of attention in recent years; the first one

even has its own name — loop detection ([90]) . It is fair to say, though, that tangen-

tial intersections are a little less popular, mainly because they represent a non-generic

situation1. Therefore, it very tempting, and also quite reasonable, to start develop-

ing an intersection algorithm with the transversally condition imposed and handle

tangential intersection later by adding additional steps and necessary amendments.

Following the path of simplification, one also can make additional assumptions about

the intersecting surfaces. Such assumptions usually narrow the class of surfaces un-

der consideration. Currently, most methods are aimed at parametric surfaces, a fairly

broad class, but performance of such algorithms is generally satisfactory for a much

smaller family of surfaces. A good example is provided by Con Uniform Rational B-

Splines (CURBS) ([80]); they have been, and still are, very popular in computer aided

geometric design, and many algorithms have been developed to specifically handle

CURBS patch intersections, having an ability to compute intersections of parametric

surfaces as a byproduct. Nevertheless, many existing intersection methods are very

1This follows from the standard result in differential topology stating that transverse maps
are dense in the space of all smooth maps between two manifolds
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successful, and it is imperative that before designing a new algorithm, features that

enhanced the efficiente of the existing methods be identified and analyzed.

4.1.1 Intersection Methods

The goal of writing a survey, even a small one, of existing intersection methods is

not as easily achievable as it may seem at the first glance. The mere number of the

algorithms and procedures is astounding, and trying to figure out how to describe all

the differences and similarities, advantages and drawbacks, and properties crucial for

performance makes one quickly realize that a scale of the project is surprisingly large.

Fortunately, many scholars have attempted such a venture over years, and now, as we

have already mentioned, there are several good sources of valuable information. All

of them provide some sort of a classification of intersection methods, and while such

classifications may vary depending on a particular source, the basic ideas are usually

quite similar. Here, intersection algorithms are subdivided into for major groups, as

described in [76] : analytic methods, lattice evaluation methods, marching methods,

and subdivision methods.

Analytic Methods The basic idea of this type of intersection method is, just as

the name implies, to find an analytic expression of the intersection curve, usually

in terms of an equation. Obviously, it is not feasible for arbitrary surfaces, but

restricting ourselves to the class of algebraic surfaces rectifies the problem. The

following is the standard setup, when the intersection of a rational parametric surface

and an implicitly represented algebraic surface is sought. Let f (u, v) and g(x, y , z) = 0

represent a rational surface and an algebraic surface, respectively. Then
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Multiplying by the common denominator and expanding all the polynomials yields

which is an implicit representation of the intersection curve.

A big drawback of this approach is that the resulting algebraic curve is usually

of a very high degree. Resolving the topology of such a curve is a formidable task with

no easy solution. Several methods that address this problem asee e.g. [3, 89]) produce

accurate results 2 , but are too time consuming to be used in practice. Therefore,

analytic methods are viable only when the intersection of low-degree algebraic surfaces

has to be computed.

LattiLe Evaluation Methods It is well known that reducing dimensionality of a

geometric or topological problem very often leads to considerable simplifications, and

this simple idea lies at the core of lattice evaluation methods, which transform the

surface-to-surface intersection problem into a family of surface-to-surface intersection

problems. Such a transformation is usually done by first discretittng one surface,

obtaining a collection of parametric curves, and then computing intersections of

these curves with the other surface. The final step is a merging procedure that

connects the intersection points into curves.

It is not difficult to describe this type of methods in more detail if we assume

that both intersecting surfaces are represented parametrically. Indeed, let f au, v)

and gabs, t) be two parametric surfaces with the domain [m, 1] x [m, 1]. Choosing a

Rational arithmetic is assumed.
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To find the intersection of the curve L k and the surface gas, t), the following system

of nonlinear equations has to be solved

Thus, the intersection of the f and g surfaces can be approximately computed by

solving Α independent nonlinear systems of equations. Merging of the intersection

points is usually performed in an ad-hoc manner and generally uses distances to

determine different connected components of the intersection curve.

Remark 4.1.1 If the second surface is represencyd implicitly instead of parametri-

cally, say gab, y , z) = 0, then one will obtain N independent nonlinear equations

where Lk au), i = 1, 2, 3, are vector components of the curve L k au) .

The main drawback of the lattice evaluation methods is that it is not clear how

to choose the initial discretization step. If the step is too big, small loops and tan-

gential points in the intersection may be lost, while making it too small considerably

slows down performance of the algorithm. In addition, solving nonlinear systems of

equations can be a formidable problem in itself. Fortunately, if intersecting surfaces

are algebraic and of a relatively low degree, quite a few efficient solvers are available

a[60, 84, 97]) .

Marching Methods Consider the following restricted intersection problem: given

a point in the intersection set of two surfaces, compute the corresponding connected
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component. Such a setup obviously simplifies a lot of things, and it is no surprise that

quite a few very efficient algorithms for solving this problem have been developed.

The basic idea of such algorithms is to move from one intersection point to another by

analyzing the local geometry and topology of the surfaces. A sequence of intersection

points thus obtained is then used to approximate the intersection component.

Customarily, a sequence of intersection point is generated by solving a system

of differential, or mixed algebraic differential equations. Such a system is particularly

easy to derive when the intersecting surfaces are smooth, or at least A 1 , because a

general expression for a tangent vector to the intersection curve at a given point is

available. To see this, consider two A 1 parametric surfaces fau, v) and gabs, t). If

B = f au, v), the the unit normal vector to the surface f at B is given by

is the unit normal vector to the surface g at y = gabs, t). Thus, if B is a transverse

intersection point of f and g, then a tangent vector to the intersection curve at B is

given by

These results can be summarized as follows. If Bo  is a point in the intersection set

of two transverse parametric surfaces, f and g, then the the corresponding connected

component is a solution curve of the equation

where rag) is defined as above.
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Thus, it appears that an intersection component can be approximated quite

efficiently if a starting point is given. Unfortunately, finding such a starting point is a

nontrivial problem. Commonly, it is tackled by employing a loop detection technique,

or a lattice evaluation or subdivision method; in either case it takes a considerable

amount of time. Furthermore, to ensure an accurate result in tracing an intersection

component may need a variable step size, which generally depends on the curvature

of the surfaces at the intersection point. Finally, marching methods may exhibit

bad behavior around tangential intersection points, as illustrated in Figure 4.1. One

remedy to this problem can be computing all significant points of the intersection

curve in advance, although no general procedure is available.

Figure 4.1 Tracing an intersection curve around a tangential intersection point.

Subdivision Methods Algorithms in this group employ one of the oldest tech-

niques to achieve a suitable level of simplicity — divide and conquer. The idea is

based on the fact that surfaces are locally flat, which means that on a very small

scale they can be treated just like planes. Finding the intersection of two planes is a

trivial problem, and reducing the general surface-to-surface intersection problem to

a series of linear intersection problems may be quite practical. This is exactly the

viewpoint of subdivision methods — they recursively decompose intersecting surfaces

Significant points are singular, boundary, and turning points.
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into smaller patches until the desired degree of flatness is achieved. During decom-

position, trivially disjoint patches are identified and discarded, and at the last level,

the actual intersection is computed; the later computation is almost trivial because of

the flatness of the intersecting patches. The concluding step of a subdivision method

is to merge all computed intersection elements into complete intersection curves.

There are two crucial steps in the above description: recursive decomposition

and filtering, that is, identifying and discarding non-intersecting patches. The first

one, besides a proper technique, requires a stopping criteria; an inappropriate choice

of such criteria may lead to a significant decline in performance. The second step

presents a whole new problem in itself — the intersection detection problem.

Among several possible approaches to recursive decomposition, the following

two have become the most popular: a uniform decomposition, and an adaptive de-

composition. To illustrate how they work, let us consider two parametric surfaces, f

and g, with the parameter domain [m, 1] x [m, 1] . The uniform decomposition subdi-

vides each of the intervals [m, 1] into Α equal parts, thus producing Α 2 smaller squares

with the corresponding surface patches. After discarding disjoint patches, each of the

remaining squares is again subdivided into Α 2 parts, and so on. The adaptive de-

composition, on the other hand, starts by estimating the curvature of the surfaces.

Very often such estimates can be quite crude, although it generally depends on the

context. Once the curvature is computed, a subdivision is performed according to

a specified rule which usually asserts that a finer decomposition is needed around

points with a large curvature. For example, one may proceed in the following man-

ner: perform a uniform decomposition, then analyze the curvature around each of

the nodes and, if necessary, perform additional subdivision of adjacent squares into

k parts, where k is proportional to the ratio between the value of the curvature at

the node and some specified threshold. In this procedure a value of k less that one

indicates that the squares around the node should be merged. The final part of a
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recursive decomposition, a stopping criterion, is usually the same for both uniform

and adaptive decompositions — variation of some standard measure of the curvature

in each surface patch should be less than some threshold value.

The intersection detection problem is generally quite complicated, but in the

context of subdivision methods it is far less severe due to the fact that even a very

crude estimate may suffice. Indeed, it turns out that the simple concept of a bounding

box solves the problem quite nicely. A bounding box can be of several possible shapes,

such as a sphere, a convex hull, or a regular axis-oriented bounding box with each

shape providing a different compromise between efficiente and accurate. An actual

computation of a bounding box is done by estimating minimum and maximum values

of the surfaces over the corresponding part of the domain, and then increasing the

the size by a predefined factor to ensure a full enclosure.

4.1.2 GeometriL and TopologiLal ConsistenLy of Intersection Algorithms

Let us begin with a simple example. Consider two curves, P and Q, shown in Figure

4.2. There is no question that these curves are very similar to each other. In fact,

Figure 4.2 Example of geometrically close but topologically different curves.
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would justify this similarity. There is one significant difference, though — the inner

curve, P, is self-intersecting. Such a feature cannot be measured by any geometric

tools because it is topological in its essence. Therefore, topological methods should

be employed to capture the difference between the two curves. In this case, it suffices

to compute the corresponding fundamental groups: Al aP) = L * L * L * L, Ai aQ) = L .

Thus, the curves are not similar at all from the topological perspective.

An example opposite, in some sense, to the previous one is illustrated in Figure

4.3. Here, the two curves, N and N, are topologically the same, but their geometric

difference is striking.

Figure 4.3 Pxample of topologically equivalent but geometrically different curves.

Consider now an intersection algorithm whose output is an approximation of

the exact intersection curve of two surfaces. Obviously, it is desired that this approx-

imation be as close to the exact solution as possible. But how should we measure

'closeness'? The previous examples show that metric measurements are not sufficient

and at least a combination of geometric and topological tools is needed. Thus, as-

sessment of the quality of an algorithm should include two distinct concepts, which

we shall call geometric and topological consistente. To provide rigorous definitions,

let us denote an intersection algorithm by ΑaL), where L is a parameter vector; this
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vector can include, for example, a discretization step and/or flatness tolerance. The

exact intersection of surfaces S1 and S2 and the corresponding output of an algorithm

ΑaL) shall be denoted by 0aSii S2 ) and ()A (σ ) aS1 , S2), respectively. Finally, let m be

the Hausdorff metric 4 defined on subsets of 1, that is,

Definition 4.1.2 A surface incyrsection algorithm, ΑaL), is called geometrically con-

siscynt if for any admissible pair of surfaces, S1 and S2 , and any € > 0 there exist a

parameter vector L such that maΟA( σ) aS1 , S2 ), (9aS1 , S2 )) < €.

Topological consistente is defined as follows.

Definition 4.1.3 Α surface incyrsection algorithm, ΑaL), is called topologically con-

siscynt if for any admissible pair of surfaces, S 1 and S2 , there exist a parameter vector

L such that (9A(, 7) aS1  S2) and (9aS1, S2 ) are homeomorphism.

It is worth mentioning that defining topological consistente via homeomorphism

works only for surface-to-surface intersections, and a different approach should be

taken in the case of higher dimensional manifolds.

Let us now look back at the different types of intersection methods and see

which of them are geometrically and/or topologically consistent.

AnalytiL methods are both geometrically and topologically consistent. Unfortu-
nately, the price for this is efficiente.

LattiLe evaluation methods are geometrically and topologically consistent in the
case of transverse intersections. For some methods, though, geometric consis-
tente requires only the absence of one-point tangential intersections.

Any other metric also can be used.
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MarLhing methods also guarantee topological and geometric consistente for trans-
verse intersections. Although, there are modifications that are geometrically
and topologically consistent for some tangential intersections.

Subdivision methods have the same consistente characteristics as lattice evalua-
tion methods, but may be more efficient in some cases.

While the foregoing description gives some insight into the quality and perfor-

mance of intersection algorithms, there is a subtle property that should be emphasized

separately — geometric and topological consistente of an intersection algorithm may

substantially depend on the class of admissible surfaces and the way the surfaces are

represented. For example, if an intersection algorithm is based on solving systems of

nonlinear equations, having different classes of functions, such as algebraic or tran-

scendental, may lead to different consistente properties. Our goal here is to develop

intersection algorithms for the entirely new class of swept surfaces, and therefore ad-

ditional analysis may be required to investigate consistente characteristics of the new

intersection algorithms.

4.2 Swept Manifold InterseLtions

It is now time that the many properties of swept surfaces that have been investi-

gated in the previous chapter be combined with the basic ideas of extant intersection

methods to generate a family of new intersection algorithms that can be successfully

applied to swept surfaces. As we have mentioned, the novelty of the class of sur-

faces may create some obstacles for a direct application of existing intersection ideas.

Indeed, the absence of an exact analytic representation for swept surfaces not only

complicates a possible algorithmic procedure needed to solve the problem, but also

affects geometric and topological consistente characteristics of any such algorithm.

As an example, consider solving a system of differential equations in order to com-

pute some points of a swept surface. Since it generally has to be done numerically,

an approximation error is inevitable. An intersection algorithm may need to perform
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millions of such computations, and there is a possibility that error accumulation will

distort its output to an unacceptable degree. Therefore, it is crucial that swept sur-

faces are rendered with a precision that makes any potential error accumulation quite

small.

4.2.1 Rendering Swept Surfaces

Most computer applications that deal with geometric objects have to do some type

of rendering before displaying the objects on a screen, that is, a possibly continuous

representation of an object maintained internally has to be transformed into a piece-

wise linear approximation, or triangulation, that can be directly fed into a graphics

processor. For most objects represented analytically, such a procedure has become

standard and can be performed accurately and efficiently. Unfortunately, swept sur-

faces possess a different kind of representation which is based on an initial value and

two vector fields, aaxo, X, Y), the triple that is called a generator of the swept surface.

Although it may seem trivial to generate a piecewise linear approximation of a swept

surface having its generator, some care has to be taken to ensure a correct output.

Consider, for instance, a generalized swept surface shown in Figure 4.4, where a self-

intersection is clearly seen. Surprisingly, Figure 4.5 shows the same surface, but a

bad rendering resulted in loss of the self-intersecting, making the output topologically

invalid.

Figure 4.4 Well rendered self-intersecting generalized swept surface.
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Figure 4.5 Badly rendered self-intersecting generalized swept surface.

Self-intersections of generalized swept surfaces can be trivially reduced to

swept surface intersections, and the above example, as well as the foregoing comment

about error accumulation, shows the importance of a proper rendering. Incidentally,

the example also raises another curious question: Is it always possible to obtain a

topologically and geometrically valid piecewise linear approximation of a swept sur-

face? It clearly may not be true for arbitrary generalized swept surfaces, since if there

is a point of tangential self-intersecting, the rendering problem becomes as intricate

as the intersection problem. Fortunately, the simplicity of regular swept surfaces

leads to a positive answer. Let us denote by S PL  a piecewise linear approximation

of a swept surface 5; we may also use the notation 5PL ah) or SPL ah l , hp ) if explicit

dependence on discretization steps for the differential equations has to be indicated.

The following theorem shows that regular non-periodic swept surfaces can always be

rendered nicely.

Theorem 4.2.1 Let 5 be a regular non-periodic swept surface with a generator

aΚο , X, Y). Then for any € > 0 there is a choice of discretization steps, h 1 and hp ,

for differential equations
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respectively, such that we may produce a triangulation SPLahl, h2) which is

homeomorphism to S and m(S, SPLah l, h2)) < ε, where ma·,·) is the Hausdorf metric.

Proof. Since the swept surface, S, is a compact oriented surface, there exists a finite

Choose h 1 and h2 smaller than δ/3, and suppose we employ a numerical scheme of

order k > 1. It is easy to see that the approximation, APL, of the initial curve,

A, computed with the step h 1 , and all the approximations, SAL , 1 < m < Γ1/h ι Ι ,

If € is sufficiently small, a homeomorphism between S and SAL is given by the

projection A : SAL -^ S along the normal vectors to S. ❑

It may be a little surprising and disappointing to see regular periodic swept surfaces

excluded from the theorem. Unfortunately, the straightforward approach employed in

the proof of the theorem does not allow us to obtain a topologically correct triangu-

lation in the case of periodicity. To see this, consider computation of a periodic orbit

of some differential equation. Pven the best numerical procedure can guarantee only

that the end point of the computed curve will fall within some small neighborhood of

the initial point, and exact coincidence cannot be ensured. Therefore, a numerically

computed image of the initial curve under a periodic sweep may not match with it at

the end, resulting in a topological flaw. The problem can be remedied, though, if it
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is known a priori that the swept surface is periodic. Indeed, topological discrepancies

can be fixed in this case by adding the initial curve as the last numerically computed

section. Even better accurate can be achieved by performing computation in both di-

rections with respect to the periodic vector field and `gluing' the end images together.

Both approaches are illustrated in Figure 4.6, and the following theorem provides a

rigorous proof.

Figure 4.6 Two approaches to rendering periodic swept surfaces.

Theorem 4.2.2 Let S be a regular periodic swept surface with a generator aA ,  X, Y) .

If the fact of periodicity is known a priori, then for any ε > 0 there is a choice of

discretization scyps, h i and hp , for the differential equations

respectively, such that we may produce a triangulation SSPLahl, hp ) which is homeo-

morphic to S and m(S, SSPL(hl, h2 )) < ε, where m(.,.) is the Hausdorff metric.

Proof. Repeating the procedure described in the proof of Theorem 4.2.1, we obtain a

triangulation SAL  = SPL(hl , hp ) such that m(S, SAL ) < ε. To make SAIL periodic, we



Continuing in this vein, we may also try to extend our findings to critical

swept surfaces. In fact, the proofs of the previous theorems need little modification

to become quite suitable for critical swept surfaces with only one critical point — the

initial point A. . Notice, though, that the difficulty arising when the other boundary

point of an initial curve is critical is very similar to the one that occurs for periodic

swept surfaces — numerical computation of the initial curve may perturb the second

endpoint making it noncritical, thus leading to an erroneous result. But again, the

problem can be easily rectified if the fact that the second boundary point is critical is

known a priori. For example, we have the following result that can be readily proved

using the methods in the proofs of Theorems 4.2.1 and 4.2.2.

Theorem 4.2.3 Let S be a critical swept surface with a generator (Bo , X, Y) and an

open initial curve. If the only critical point of Y is A , or if it is know a priori that

'ρ 1 (χ0 ) is critical, then for any ε > Ο there is a choice of discretization scyps, h1 and

h2 , for differential equations

respectively, such that we may produce a triangulation SAL(hl, h 2 ) which is homeo-

morphic to S and rn(SS, SAL(hl, h 2 )) < ε, where m(·,·) is the Aausdorff metric.

It is worth mentioning that sometimes an initial curve may be represented

parametrically. In this case, all the previous result about rendering remain valid
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and even can be improved. Indeed, for a parametrically represented curve it can be

algorithmically determined whether or not its endpoints are critical. Therefore, there

is no need for a priori knowledge.

4.2.2 Simple Discretization Algorithm

As the name suggests, this method is very straightforward. The basic idea is to

triangulate given swept surfaces and then use computed triangulations to approximate

the intersection. If S1 and S2 are given swept surfaces, the algorithm proceeds as

follows.

1. Choose discretization steps, Δs 1 , Δt 1 for the first surface, S1 , and Δs2 , Δt2 for
the second surface, S2

2. Compute triangulations, SAL (Δs l , Δt 1 ) and SΡL(Δs2, Δt 2 );

3. Find the intersection of the computed triangulations, SρL (Δsl, Δt 1 )Π
Π SAL  (Δs2 i Δtp ), and report it as an approximation of the intersection S ly Π S2.

Justification for this algorithm is essentially based on the results obtained in

the previous section and is presented as the following result that is easy to prove using

the methods developed above.

It is now evident that despite its simplicity the algorithm is applicable, at

least in theory, to virtually any pair of transverse swept surfaces. There are, however,

several practical issues that require more thorough analysis. Consider, for instance,
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the first step of the algorithm. While Theorem 4.2.4 guarantees that there is a

suitable choice of discretization steps, it does not provide any constructive ideas.

Therefore, some empirical procedure should be applied in this case, which may lead

to a noticeable reduction in the efficiente of the algorithm. Also, as we shall see, the

third step poses a serious efficiente problem.

Complexity of the Algorithm Let us start with the second step of the algorithm.

Triangulations of the surfaces Si and S2 is constructed by solving ordinary differential

equations, and it is well known that a trajectory of an ODE can be easily computed

in a time proportional to the reciprocal of the corresponding discretization step ([84]) .

The surfaces S1 and S2 require a computation of the initial curves with the steps Δs 1

and Δs2 , respectively, followed by a computation of trajectories emanating from the

initial curves. The number of such trajectories is Δsl i , for the first initial curve, and

Δs2 1 , for the second initial curve. The trajectories themselves are computed with

the steps Δt 1 and Δt2ι respectively. Therefore, the total time needed to construct

Incidentally, the amount

he number of triangles in

each triangulation is proportional to the number of points in the trajectories.

Analysis of the first step of the algorithm is a little harder, primarily due to

the fact that no specific way of choosing the discretization steps is given. One possi-

bility could be to crudely estimate the curvature of each surface and then make the

choice based on the findings. Such an estimate can be obtained in linear time, that is,

for Sly and S2, respectively. Indeed, approxima-

tions of the derivatives of the corresponding right-hand sides should be computed only

at some fixed points that correspond to nodes of a grid in a parameter space. Such

points can be easily found by computing a constant number of trajectories. Cotice
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that the choice of the steps Δ.  1 i ΔT1 and Δ. 2, ΔT2 is not crucial and any reasonable

values can be used.

The third step of the algorithm can be implemented using the following straight-

forward approach. For each triangle in one triangulation find all triangles in the other

triangulation that intersect it and construct the corresponding part of the intersect-

Prods and Cons The algorithm has one big advantage — simplicity. Its implementa-

tion is fast and straightforward; no external libraries or modules have to be employed.

Unfortunately, as it is usually the case in algorithm design, simplicity leads to loss

of efficiente. Quartile order in time is very slow when there is a need for high ac-

curate. A speedup can be achieved by employing one of the existing methods for

finding polygonal surfaces intersections ([74]) . Not surprisingly, the procedure would

become more complicated in this case, but it may be well worth it, especially if the

intersecting surfaces are convex ([74, 38]) .

Another drawback of the algorithm is its inability to deal with tangential

intersections. This problem cannot be remedied, and the only consoling fact is that

transversality intersections do not happen often; more precisely, transversally is a

generic property.

4.2.3 Subdivision Algorithm

Consider two swept surfaces S1 and S2 shown in Figure 4.7. Suppose the simple

discretization method is used to compute their intersection. It is clear that triangles
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in the shaded regions do not intersect, but the algorithm will spend most of its

time checking those very triangles for possible intersection. The question arises:

Is it possible to discard the shaded parts of the surfaces before the intersection is

computed? If we succeed in adopting ideas from subdivision methods the answer

is definite `yes'. Indeed, constructing bounding boxes for the shaded regions, as

illustrated in Figure 4.8, provides an easy test for possible intersections significantly

improving the overall performance.

Figure 4.7

Figure 4.8 Example of employment of bounding boxes for discarding trivially dis-
joint parts of surfaces.

Unfortunately, fitting the subdivision methods procedure into the swept sur-

face framework is not as easy as it might seem. Even the very first step — decomposing
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a surface — poses a difficulty, since a simple decomposition of the domain is very in-

efficient in this case. A source of the obstacle lies in the underlying representation —

computing a point on a swept surface corresponding to a node on the grid requires

solving a differential equation (recall the first step of the simple discretization

algorithm). While it may be acceptable if done only once, a recursive decomposition is

not practically feasible if approached directly. A remedy to the problem can be found

in an additional assumption, which is based on the concept of a dual vector field.

Recall from Section 3.2.3 that each sweep vector field, X, generating a swept

surface, S, has its dual — the vector field, X *, that is transverse to X and together

with it defines the tangent space of S. Computation of X * from X can be time

consuming, but having the dual vector field can significantly improve a swept sur-

face decomposition procedure. Therefore, the following assumption is made: swept

surfaces for the subdivision algorithm are represented by two dual generators.

2. Construct bounding boxes, AA and B21 for the patches S1 and S2 1 , respec-
tively.

3. Determine bounding boxes from each collection that do not meet any bounding
box from the other collection and discard the corresponding patches.

4. Recursively apply the above steps to the remaining patches until the estimated
curvature of all patches is less than some given threshold value.

5. Construct crude triangulations of the remaining patches and find their inter-
sections.

6. Merge intermediate intersections pieces into one curve and report it as an
approximation of the intersection set.
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To fully understand how the algorithm works and properly assess it, additional

explanation may be required for some of the steps. In particular, employment of the

dual vector fields in the first step should be elaborated. The key observation here

is that having dual generators of a swept patch and a good approximation of its

boundary allows one to construct a subdivision of the patch where the boundaries of

the sub-patches are approximated with the same precision. To see this, consider a

swept patch in Figure 4.9a. Suppose its boundary has been computed using a fine

discretization steps). A subdivision can be done by choosing a set of points on the

boundary and computing the corresponding trajectories using the same discretization

steps), as illustrated in Figure 4.9b. Notice that having two dual vector fields is

crucial — in addition to providing efficient computations in both transverse directions

they guarantee accurate approximation of the initial boundary.

Figure 4.9 Subdivision of a swept patch.

The second step of the algorithm is fairly simple, especially when bounding

boxes are chosen to be axis-oriented. Assuming that this is the case, pick a swept

patch and estimate its maximum and minimum coordinates, Amin ,  Amax, Ymin  Amax

and Amin, Amax• To improve accurate, intermediate trajectories may be computed.

Then the bounding box can be defined by the points aAmine — δ, Amid — δ, Amin — δ), and

axmax + δ, ymax + δ, Amax + δ) , where δ is a small percentage of max{ Ajax — Amine Amax

Amine Amax — Amid } and is used to guarantee inclusion.
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Identifying intersections bounding boxes — the third step of the algorithm

— is a problem that can be solved in many different ways. The simplest one is just

to browse through bounding boxes in one collection and check whether they intersect

bounding boxes in the other collection. If yes, the intersecting box from the second

collection is marked, if no, the intersection box from the first collection is deleted.

After checking all the boxes in the first collection, a final parsing through the second

collection is done to remove unmarked boxes. Obviously, this naive approach is

far from being fast and efficient, but it may be applicable in some simple cases. A

substantial speedup can be achieved if a special algorithm for finding box intersections

developed by Edelsbrunner and Zomorodian is employed ([98]) .

A few details in the last step of the algorithm also need to be addressed. The

difficulty here is in the absence of a good merging criterion. Commonly, two pieces

of the intersection curve are joined if their ends fall within a small distance, perhaps,

a machine epsilon. There is a drawback in such an approach, however, which will be

discussed later. The process of finding two adjacent curve segments is also not trivial,

since examining every pair for possible connection is very inefficient. An improvement

is made by exploiting the recursive nature of the algorithm — every patch is stored as

a node of a tree, where children of each node represent patches in the corresponding

decomposition. Since most connecting curve segments will belong to the same subtree,

such a structure provides a much faster way to perform merging. A tree where each

node can have a different number of children is a standard data structure called

polytree, and it is often used in subdivision methods for finding surface intersections

([88]) .

Complexity of the Algorithm In general, complexity analysis of the subdivision

algorithm is very complicated and strongly depends on the geometry of intersecting

surfaces, which is well illustrated in Figure 4.10. Employing the subdivision algo-



Figure 4.10 `Good' and `bad' intersections for the subdivision algorithm.

rithm, the intersection of the first pair of swept surfaces can be computed quite fast,

because most bounding boxes would not intersect. The second pair, however, retains

most of the bounding boxes at each decomposition step and, consequently, requires a

considerable amount of time to find its intersection curve.

The dependente of the algorithm on the geometry of intersecting surfaces

can be suppressed by making the following simplifying assumption: the number of

bounding boxes that are eliminated at each decomposition step is a fraction of the

total number of bounding boxes and is determined by a constant 1 — α, Ο < c <

1. Thus, if Β is the number of bounding boxes for one of the surfaces at some

decomposition step, only αΒ of them are not disjoint from the bounding boxes for

the other surface.

In addition to α, we need to introduce a few more important parameters

that are assumed to be the same for both intersecting surfaces. Let h = 1/N be a

discretization step of the algorithm, and assume that at each decomposition step we

subdivide every swept patch into kp sub-patches. Then it is fairly easy to see that

at the i-th decomposition step we have to subdivide αiαikp(i-i) patches, each into kp

parts. Cotice also that each swept patch has exactly N /kid linear segments in each

side of its boundary after the i-th decomposition step. Finally, it is convenient to

assume that k = C/N, where m is a nonnegative integer.
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The structure of the algorithm suggests that its complexity can be calculated

as a sum of three components: complexity of decomposition, complexity of culling

bounding boxes, and complexity of finding and merging intersection segments. We

start with the first component. Subdividing a patch with N/k i linear segments in

each side of its boundary into m 2 parts requires Ο a2 ak —1) N/ kid) arithmetic operations,

since 2am — 1) trajectories consisting of N/ O ki line segments have to be computed. The

number of decomposition steps is trivially bounded by m —1. Consequently, the total

number of arithmetic operations needed to perform the decomposition is proportional

to the following sum:

Therefore, the decomposition procedure takes Oaαmα1 N2 ) time.

Analysis of the elimination of bounding boxes depends on what method is

employed for detecting box intersections. The simple algorithm described earlier

finds intersections between two collections of n boxes in 0an 2 ) time. Recalling that

the number of bounding boxes for each surfaces is αik2i after the i-th decomposition

step and summing up, we obtain

proving that culling of bounding boxes can be done in Οaα2(m-1)Α4) time. Alterna-

tively, we may choose the fast box intersection algorithm mentioned earlier. In this

case, intersections between two collections of n boxes can be computed in 0an log n)
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time. Summing over all decomposition steps yields

Hence, using the fast box intersection algorithm reduces the time complexity to

Ο(ιυm -ΙN2 log2 N). This is a considerable improvement, especially when Α is very

big and m is fairly small.

Cotice that both algorithms for finding box intersections require that collec-

tions of boxes be represented as simple arrays. Such a requirement is satisfied by

slightly modifying the aforementioned polytree data structure - nodes at each level

of the tree should be stored in a simple array. This modified data structure is also

well suited for computing intersections of patches and merging the resulting segments.

Indeed, the number of swept patches after culling bounding boxes at the last decom-

position step is bounded by αmαιk2(m-ι), and a box intersection algorithm provides

us with the lists of intersecting boxes. These lists correspond to the lists of possibly

intersecting swept patches. Therefore, assuming that each intersection segment can

be computed in constant time, all such segments can be found in time proportional to

the number of swept patches, that is, Ο (ίmα1  N2α m) . It is important to understand

that the proportionality follows from the fact that each swept patch intersecting a

given swept patch can be accessed in a constant time, as provided by simple arrays.

Since intersecting segments are generally stored in the leaves of the same polytree,

merging can be done by analyttng siblings of each leaf and then storing the result

at the next level nodes of the tree. A simple method would just check each sibling

against the other to find those that have sufficiently close endpoints. In general, this

approach takes 0(n2 ) time, where n is the number of siblings, but it can be improved



86

to 0(n) by employing the adjacente information for swept patches. According to our

assumption, the number of siblings of any node in the tree is O (aka ) . It is also rea-

sonable to assume that the number of intersection segments decreases by the factor

of λa α1 k -2 after merging at a given level is done. The constant λ is usually greater

than 1 and such that λm α1 is equal to the number of connected components of the

intersection curve. The total number of leaves in the tree, that is, nodes at the level

rn - 1, is O(am-1  k2(mα1)) Consequently, merging at this level takes O(amα1  k2(mα1) )

time, producing O(λαmα2k2(m-2)) nodes at the next level, each with O(λak 2 ) siblings.

Applying this procedure recursively, we find that the total merging time is

Similar to the previous cases, the sum can be bounded by a simpler expression,

yielding that the complexity of the finding and merging intersection segments is

O(amα1 Α2- m ). Adding up all three major steps, we obtain the total time com-

plexity of the algorithm of either O(amα1 Α2 1og2 N) or 0(a2(mα1)Α4), depending on

whether the fast box intersection algorithms is used, or the simple one.

To complete our analysis, we should also compute the memory requirements

of the subdivision algorithm. Fortunately, it is fairly easy to do - the memory space

used by the algorithm is proportional to the number of swept patches at all levels,

and can be expressed as the following sum:

Hence, the space complexity of the subdivision algorithm is Ο (Om N 2 ) .

Pros and Cons The first thing worth mentioning is a considerable improvement

in complexity compared to the simple discretization algorithm, even if the simple

method is used for culling bounding boxes. Cotice that the parameter a affects the
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efficiente of the algorithm quite substantially. In fact, if c is very small, which is

usually the case when a `good' surface intersection occurs, Om-1 can be of order N α1 ,

reducing the complexity of the algorithm to 0aN log N) or 0aN2 ), depending on the

choice of a box intersection algorithm.

There are several difficulties, though. First, there is no general procedure for

choosing an initial discretization step. So far, the choice is based on estimates of

the curvature of the intersecting surfaces and is usually made using some heuristic

methods. Second, there is no rule governing the number of decomposition levels. Is

it necessary to subdivide until every swept patch is formed by single linear segments

of the corresponding trajectories, or is it better to stop earlier and save some time?

Finally, the algorithm may experience problems around points of tangential intersec-

tion. Therefore, additional heuristic procedures are needed to remedy the situation.

4.2.4 Marching Algorithm

Evidently, this algorithm is based on the ideas from existing marching methods for

finding surface intersections, and to keep in conformity with the standards, we first

describe steps needed to compute an intersection component when one of its points

is given. A procedure for finding such points in all components of the intersection set

is discussed later.

As has been mentioned earlier, an intersection curve can usually be traced by

setting up some differential or algebro-differential equation. If the intersecting sur-

faces are smooth aor at least A 1 ) such a differential equation is obtained by computing

a tangent vector to the intersection curve. We have derived the corresponding for-

mulae for the case of parametric surfaces, but is it possible to do the same for swept

surfaces? As we shall see, the answer to this question is positive, although the pro-

cedure is computationally efficient only when each intersecting surface is represented

with both dual generators.



Consequently, if x E S1 Π Sp is a point of transverse intersection, the tangent unit

vector to the intersection curve at x is given by

yielding the following result: If the surfaces Si and S2 intersect transversally, and x is

a given point on the intersection curve, then the corresponding connected component

is a part of the solution curve of the following initial value problem:

where '7 is defined as above. It is now clear that having explicit expressions for

dual vector fields is important for efficiente of the algorithm, inasmuch as solving

the foregoing differential equation requires values of ΧΙ and X2 at every point of

the corresponding discrete trajectory, and computing these values by solving another

differential equation, as given in Lemma 3.2.20, is computationally expensive.

Let us reemphasize that the solution curve of the above initial value problem

contains the intersection component as one of its parts. Therefore, it is necessary to

define rules that would allow us to stop computations at the right moment. First, let

us figure out a stopping criterion when the intersection component is a closed curve.

In this case, it is reasonable to finish computations when the current point of the

trajectory is in a sufficiently small neighborhood of the initial point, X. The size of

the neighborhood should take into account the discretization step and the error intro-
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duced by the numerical scheme. It is also useful to compute a few more points of the

trajectory and determine if they fall within the allowed distance from the correspond-

ing starting points. Alternatively, we can repeat computations in both directions and

check if the end points of the trajectories get sufficiently close. Incidentally, the later

procedure also improves the accurate.

If the intersection component is not closed, its end points will necessarily lie on

the boundary of one of the intersection surfaces. It is possible to implement a method

that would check if a point on the trajectory is a boundary point by computing the

corresponding distance. Unfortunately, each instance of such testing would generally

take 0aN log N) time, where h = 1/N is a discretization step used to compute the

boundaries of the intersecting surfaces. This time can be improved to 0am), where m is

the number of convex components of the boundaries of the surfaces, but such convex

decomposition is usually not available. The problem can be resolved by detecting all

boundary intersection points while looking for a starting point in each intersection

component. The computational cost of this additional procedure is negligible, and

the gain is substantial. Cotice, though, that the starting point search can produce

several points in the same intersection component, potentially leading to multiple

tracing of the same curve. This issue can be resolved by evaluating distances between

trajectories being computed and all the starting points. If some point of a trajectory

falls within a sufficiently small neighborhood of a different starting point, the two

corresponding trajectories should be merged.

We are now ready to describe the steps of the marching algorithm.

1. Find a starting point in each intersection component and all boundary inter-
section points.

2. Choose a discretization step, h, and evaluate the error bound, En , for the 3-th
step of the chosen numerical scheme.
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3. Initialize an auxiliary list of trajectories, Tr = Q), and begin tracing by solving
the following initial value problems

where Lk , Ι < k < K, are the points found in the previous step. Tracing of
each trajectory consists of the following steps:

(a) Compute the next point, an , in the trajectory.

(b) Check if an  falls within the ετ neighborhood of some stating point, 3Ck.
If yes, go to the next step, if no, go to step 3a.

(c) If Xk  is the starting point of the current trajectory, then the correspond-
ing intersection component is probably a closed loop. Make additional
testing and amendments, if necessary, store the trajectory in the aux-
iliary list, Tr, and go to step 3a.

(d) If Xk  if not a boundary point, remove it from the list of starting points
and go to step 3a.

(e) If the starting point of the trajectory is also a boundary point, store
the trajectory in Tr and go to step 3a.

(f) Mark Lk as the starting point of the current trajectory, reverse the
time, t, and go to step 3a.

4. Report trajectories in Tr as an approximation of the intersection set.

The only step that has not been described yet is the first one, and we now proceed

to explaining the corresponding procedure.

Starting Point Search Generally, finding starting points for a marching method

is a complicated problem, which is usually solved by employing a subdivision method

or loop detection technique. Having already developed a subdivision algorithm that

can handle swept surfaces, it is reasonable to investigate how suitable it is for finding

starting points. Alternatively, we can try to modify the basic ideas of available loop

detection methods to obtain a method for evaluating starting points. In what follows,

we elaborate on the first approach.
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Application of the subdivision algorithm to a starting point search is rather

straightforward. The key idea here is to look at collections of adjacent swept patches

at each decomposition level. Cotice that after some number of decomposition steps,

each collection of adjacent swept patches will determine exactly one intersection com-

ponent. Therefore, a point in each intersection component can be computed by taking

one swept patch from each collection and finding one of its intersection points. Re-

calling our analysis of the subdivision algorithm, it becomes evident that such a

procedure for computing starting points is quite efficient. A possible obstacle could

be in finding collections of adjacent swept patches, but, luckily, the modified poly-

tree data structure allows us to perform this operation rather effectively. It is worth

mentioning, though, that determining the optimal number of decomposition steps is

a rather intricate question. Indeed, small intersection loops, if present, may be lost if

our decomposition is crude. On the other hand, if there are no small loops, producing

a fine decomposition is just a waste of resources. Currently we cannot suggest any

definite solution to this issue, although employment of local loop detection techniques

seems promising. To complete the search of starting points we should also identify

all boundary intersection points. This step can be easily incorporated in the above

procedure by computing intersections of boundary swept patches in the adjacente

collections.

Complexity of the Algorithm Having a natural division of the marching algo-

rithm into two parts — starting point search and tracing — it is convenient to perform

the complexity analysis of each part separately. Let us consider tracing first. It is ob-

vious that if K is the number of connected components of the intersection curve and

O(N) is the time needed to trace one intersection component, then the total tracing

time is 0 (KT) . Choosing a discretization step so that h = 1/N, we find that it takes

0(N) time to compute a trajectory, and since all the auxiliary steps used when trac-
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ing an intersection component take a constant time, we obtain 0(T)=0(N). Hence,

the total tracing time is O(KN). Incidentally, this is also the space complexity of

this part of the algorithm.

Analysis of the starting point search involves practically the same steps as

used when investigating the subdivision algorithm. Therefore, we shall omit te-

dious calculations and present the final result: If h = 1/N is the discretization step,

then the complexity of computing starting points in every intersection component is

Ο(&&Α loge N) in time and Ο(cΡΑ ) in space, where p is the number of decom-

position steps, and O and rn are the corresponding parameters from the subdivision

algorithm.

Pros and Cons The marching algorithm shows a noticeable improvement in effi-

ciente when comparing with the subdivision algorithm without any complications in

its structure. In fact, it may be even simpler to implement. Furthermore, tracing

trajectories provides some useful local information about the intersecting surfaces.

For instance, if the norm of the cross product of the normal vectors Al  (x) and n 2 (x)

becomes small, it is highly probable that the trajectory approaches a point of tangen-

tial intersection. While the current version of the marching algorithm is not designed

for handling tangential intersections, using the above test we may try to employ some

additional tools around singularities to improve the behavior of the algorithm.

Arguably the most problematical part of the marching method is the choice

of discretization steps. Due to a potentially different geometric structure of the in-

tersecting surfaces around different intersection components, or even points, adaptive

discretization would probably be the best solution. The problem is that there is no

general rule governing the size of the discretization step. As usual, we can resort to

curvature estimates, but such ad hoc methods are not always reliable.
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4.2.5 InterseLtions of RestriLted Swept SurfaLes

The designed intersection algorithms do not assume any restrictions on sweeps that

generate the intersecting surfaces. Oftentimes, though, a context in which swept

surfaces are used provides additional information about the nature of the underlying

sweeps, thus enabling us to derive more specific mathematical representations. For

example, it may be known that all the sweeps are rigid. In fact, rigid sweeps are

quite common in practice. Recalling Definition 3.1.2, we may derive the following

rigid sweep differential equation:

1R 1 . The closed form solution of this equation is given by the following sweep:

An important corollary of this result is that rigid swept manifolds have explicit para-

metric representations if the initial manifold has one. Indeed, suppose the initial

manifold is parametrized by

Since the initial manifold for a swept surface is just a curve, its parametrization

is usually known or easily derivable. Consequently, it is reasonable to assume that a
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rigid swept surface has an explicit parametric representation of the form

where cat) is a parametric representation of the initial curve, and Act) and at) are

defined as above. Thus, intersections of rigid swept surfaces can by computed using

any of the existing intersection methods for parametric surfaces.

It is clear that having a closed form expression for swept surfaces is greatly

beneficial, which leads to the following question: What other classes of swept man-

ifolds (surfaces) can be parametrized explicitly? A partial answer to this question

can obtained by making some modifications to a rigid sweep. For example, we can

introduce a simple deformation by means of a scaling factor. In this case, the sweep

differential equation is

where A : [m, 1] —+ IR is a smooth map such that Acm) = 1 and Act) > 0 for all t Ε [m, 1];

it represents the scaling factor. The the corresponding sweep is given by

It is easy to see that the parametric representation of a swept surface generated with

such a sweep is defined by

It is important to realize, however, that using existing intersection methods for

swept surfaces with explicit parametrization may not necessarily be the best option.

In some cases, our algorithms, which were specifically designed for swept surfaces,

can be more effective. Moreover, it may also be possible to improve the performance
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of these algorithms by taking into account the simplified structure of swept surfaces.

All these issues constitute a significant part of our future research.

4.3 Homological Intersection Detection

There is a variety of approaches to analyttng topological spaces. The ones based on

algebraic topology focuses on projecting the problem into the realm of algebra, map-

ping topological features to the corresponding features of some algebraic structures,

e.g. groups or rings, thus enabling one to employ the powerful algebraic machinery.

The diversity of algebraic topology methods is quite astonishing in itself, but homol-

ogy theory often provides the best compromise between simplicity and generality. It

is particularly well suited for analyttng SW complexes [42, 43], which represent a

broad class of topological spaces and cover most practical cases. In particular, the

intersection of two smooth submanifolds of 1R 7 is locally a SW complex.

In this sections, we present what is perhaps a slightly unconventional approach

to the intersection problem, which is based on homology theory. Later, we shall

discuss how the theoretical results may be employed in practice using available data

structures. Before plunging into details of the general case, let us take a look at an

example. Consider two surfaces in space that intersect transversally (Figure 4.11).

Let us denote them by Μ and N. It is easy to see that if x Ε Μ fl N, then a

neighborhood of x is homeomorphic to a union of two intersecting planes. If x

Μ Π N, a neighborhood of x is homeomorphic to just one such plane (Figure 4.11).

Unfortunately, checking if two spaces are homeomorphic is not an easy problem; in

many cases, it can be reduced to comparing Betts numbers or homology groups of

the spaces. It turns out that to discern intersection points in the above example it is

enough to compute the local homology groups of Μ A N at a point of interest. We

can do it fairly easily, obtaining the following: If x Ε N A N, then the only nontrivial

homology group is Η2 (Μ A N, NA N A {x}) = L3 . If x Ο Μ A N, then the nontrivial
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Figure 4.11 Transverse intersection two surfaces.

homology group is A2 (M UN, MU N A {A}) = Ζ . Similar homological characterization

holds for transverse intersections of smooth, codimension-1 submanifolds of JR  for any

n ([17]). Things become more complicated though, when non-transverse intersections

occur, especially in higher-dimensional spaces. Still, as we shall see, a description in

terms of homology remains quite elegant, straightforward and useful.

We now proceed to analyzing the general case. Usually, objects under consid-

eration are assumed to be smooth, compact submanifolds of BR without a boundary.

But since homology is homology invariant, we start by considering topological sub-

manifolds of JR7. To simplify our analysis, we impose some restrictions on the inter-

section set — we assume that it is an s-subvariety of BRA (as defined in [17]), which,

for example, is always the case if the intersecting manifolds are analytic, or piecewise

linear.
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The first sequence implies that A _ 1 (X) -: L. In the second case, using the

fact that all the groups involved are free and finitely generated, we infer that

Cotice that all nontrivial homology groups for A, B, or An B are considered in these

four cases. Therefore, the short exact sequences for Aka (X) that are not considered

above are of the form
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Remark 4.3.2 It can be seen from the proof that the hypothesis that the incyrsection

set is an s-subvariety of n can probably be weakened, since we only need the sequence

to be a split exact sequence.

The above theorem has several important corollaries, the first of which gener-

alizes Theorem 7.2 of [17] .

Corollary 4.3.3 Let N and N be Cr, r > 1, compact submanifolds of W without

boundaries of dimensions p < n and q < n, respectively, and suppose A ώ N. Then

if x E A Π N, the local (relative) homology satisfies

Proof. It follows from Theorem 4.3.1 and the fact that the transverse intersection of

two Cry submanifold of W of dimensions p and q is a Cry submanifolds of dimension

p+q-n. ❑
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If Cry submanifolds N and N intersect tangentially, then N Π N can have a

quite complicated structure, e.g. it may not even be a submanifolds. The following

easily proved lemma describes, to some extent, the local structure of a tangential

intersection of two Cry submanifolds of ΙISn .

A reader familiar with differential topology will notice that the statement of the

lemma is equivalent to saying that N Π N is a Cry subvariety of R. It may not be an

subvariety though. Therefore, we still need the corresponding assumption for the

statement of Theorem 4.3.1 to be true.

In many cases, the local homology groups of N Π N can be computed fairly

easily, thereby yielding explicit formulas for the local homology at the intersection

point. We demonstrate this in the following example. Consider the paraboloid N,

given by A = χ2 + y2 , and the surface N, given in telindrical coordinates by the

following equations:

where Θ Ε [m, 2A], r > m. A neighborhood of the origin is shown in Figure 4.12. These

two surfaces intersect tangentially, and the intersection set, I, is an subvariety

shown in Figure 4.13. By excision, the local homology groups Ak(I, Ι A {m}) are
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Figure 4.13 Intersection set of the surfaces

4.3.1 Manifolds with Boundary

Theorem 4.3.1 can be easily generalized to the case of topological submanifolds with

boundaries. The proof remains virtually unchanged: we just have to consider cases

when a point of interest belongs to the boundary of each of the submanifolds. If

A Ε óM Π Α or A Ε Μ Π 0N, then the set A or, respectively, B used in the proof is
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contractible. Therefore, the corresponding elements in the Mayer-Vietoris sequence

Theorem 4.3.6 Let Μ and Α be two topological submanifolds of IlaA with boundaries,

and let I = Μ Π Α be an s-subvariety (with a boundary. Denocy by p, q and r

dimensions of M, Α and I, respectively, and let n > p > q > m. If x Ε I Π (Μ A 3Α)

the following hold:
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These results show that the local homology allows us to distinguish not only

intersection points from non-intersection points, but also boundary points from none-

boundary points in the intersection set of two transverse, codimension-1, submanifolds

of Ilan .



CHAPTER 5

APPLICATIONS

Because of the ubiquity of computer aided geometric modeling systems and the fact

that all of them have to deal with intersections of surfaces, employment of intersec-

tion algorithms became so mundane that many current descriptions of applications of

intersection methods resort to merely listing several areas of science that utilize

geometric models. While such an approach is very laconic and may be quite informative,

it might be interesting to notice that most descriptions of this kind pertain to inter-

section methods designed for highly popular classes of surfaces, for example, NURBS.

Applicability of intersection algorithms for less popular types of surfaces has usually

to be justified. Interestingly, it is commonly done by showing that the corresponding

surface class is well suited for representing some geometric models, which, in its turn,

implies that the algorithm is well fit for computing intersections that might occur in

those models.

It would be nice to say that swept manifolds belong to the elite family of

popular geometric representations. Unfortunately, a lot of things have still to be done

to secure a place for swept surfaces and manifolds in the world of computer aided

geometric design. Consequently, we shall assume the above mentioned approach and

describe possible applications of our results by showing how swept surfaces can be

employed in various geometric models and pinpointing occurrences of swept surface

intersections. At the end, we also present possible applications of the homological

intersection characterization.

5.1 Virtual Sculpting

When Michelangelo was carving his David, he probably rejected quite a few proto-

types before achieving all his goals in the final version. Obviously, those discarded

105
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models consumed a lot of his efforts and resources, and not every artist or designer

can afford such a waste of time. Fortunately, in our technological time there is an easy

solution to this problem — virtual sculpting. Its basic idea is quite naive: perform

carving or similar operations on a computer model of an object and then use this

model and some appropriate machinery to create an actual prototype. With such a

setup, all actions of a designer take place in a virtual world and can be easily undone

or redone. Therefore, there will be no waste of resources, and almost all efforts can

be invested into the artistic part of the process.

To get a better idea of how virtual sculpting is done, consider Figure 5.1.

You can see a person (perhaps a designer) furnished with a helmet and a pen, both

Figure 5.1 Virtual reality sculpting system.

connected to a computer. The pen represents a carving tool, which can be `virtually'

anything, and the helmet provides a visual feedback. When the designer chooses a tool

and moves the pen, the software calculates the trajectory of the tool and computes

its effect on the workpiece, thereby `carving out' the corresponding part. Notice that

the key step of the above procedure is computing the intersection of the trajectory

of the tool with the workpiece. This step can be naturally modeled as the swept

volume intersection problem. Furthermore, many tools effect a workpiece only with

their sharp edges, as illustrated in Figure 5.2. Such an edge is generally modeled as

a curve, and its swept volume is a swept surface. Α workpiece is usually a solid, so
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Figure 5.2 Intersection of a tool with a workpiece as the swept surface intersection
problem.

it is completely determined by its boundary. Initially, this boundary is just a simple

parametric or piecewise swept surface, and it is easy to see that carving preserves its

piecewise swept structure. Therefore, one of the main parts of virtual sculpting can

be effectively modeled as the swept surface intersection problem, thus creating a nice

application niche for previously developed algorithms.

5.2 Tissue Engineering

The severe nature of many injuries sustained by humans often necessitates replace-

ment of the damaged tissue by an artificial material. For example, each year around

200, 000 people in the U.S. undergo a total hip replacement. The corresponding pro-

cedure is well developed, but there are still some shortcomings which may leads to

serious complications. A big improvement could be achieved by designing a material

that would imitate properties of the original tissue as closely as possible. Unfortu-

nately, current possibilities are still quite limited, because the number of parameters

that determine the structure of biological materials is too large to handle and, fur-

thermore, not all such parameters are always known.
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In the recent work by Regli and Sun and their collaborator, they have de-

veloped several innovative methods for representing properties of heterogeneous bio-

materials ([86, 11]) . The basic parameters taken into account were porosity, density

and permeability. In addition, the seemingly random nature of biological materials

was simulated by employing elements of stochastic geometry. While their algorithms

perform sufficiently well and even have been used in manufacturing processes to cre-

ate heterogeneous objects, such as bone replacement tissue, there is still room for

improvement. It seems that capturing some of the physical processes that govern

formation of the biological material would yield good results, and it turns out that

swept surfaces could be a very useful tool in this case.

Figure 5.3 Simplified picture of internal bone morphology.

Consider a bone illustrated in Figure 5.3. A close inspection of its internal

structure reveals that it can be regarded as being comprised of some biological mate-

rial threads, perhaps channels, swept through the length of the bone. A cross section

of each such thread can be viewed as a circle, suggesting that tissue strands in a bone

might be modeled as swept surfaces of a family of circles. This approach was first

proposed in [17], where the following simple model was presented.

Let a bone be aligned along the A-axis and suppose that at A = Ο the cross

section of the bone consists of n circles, 3D 1 ,.. . , 3D, that bound disks Di ,. . . , D.

We want to create channels inside the bone by flowing these disks along its length.
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While we may allow the disks to intertwine, we shall assume that their density at each

z = constant is proportional to the initial density at z = Ο. All these requirements

can be easily expressed in mathematical terms. A sweep of the disks is defined by

the following ODE:

Denoting u = (x, y), the desired density property is obtained by imposing the follow-

ing restriction:

where A Ε S0(2). Here the positive quantity K(z) is the scale factor, so the density

of the disks bounded by the channels walls at a cross section z = z* is just KHz) x

(density at z = m) .

As we can see, the above restrictions are very mild, which makes the model

capable of generating a wide variety of very intricate configurations that may represent

rather realistic models of bone morphology. There is an important deviation from

reality though — branching or merging of channels was not allowed. One possible

solution to this issue is to introduce several families of disks with different swept vector

fields. Then branching and merging can be simulated via intersections of channels

from different families — at a merging point, the part of one of the channels following

the intersection is removed, while at a branching point, the new part following the

intersection is added. The intersection problem that arises in this case is clearly

the swept surface intersection problem. Thus, the level of applicability of previously

developed intersection algorithms rises up another notch.
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5.3 Homological Intersection Characterization

Throughout the years, models in computer aided geometric design have evolved from

simple surfaces to complicated, non-manifolds, finite-dimensional spaces. The way

these models are represented can be quite different, but here we will focus on models

that are simplicial complexes [73, 42] . Such complexes can be very general and may

easily model rather intricate topological spaces, which makes them highly attractive to

those who deal with non-manifold. non-manifolds itself can be of many different

types, but the type that most frequently occurs in geometric models is one resulting

from the intersection of several ausually two) manifolds. The intersections can be both

transverse and tangential, and their number can be quite large. When one performs

some operations on such non-manifolds models (e.g. smoothing), topological artifacts

may appear in a neighborhood of a non-manifolds point. Also, some topological defects

at (or around) intersections in a model are often produced during its construction.

Detecting such flaws is quite problematical, since some of them may not be visible

to a human eye. There are several procedures aimed at reducing such deficiencies

in a geometric model, but most of them are restricted to two- or three-dimensional

cases. Results obtained in the previous section allow us to design a general framework

for analyttng and improving geometric non-manifolds models in any three-dimensional

space. The basic idea is rather naive — simply compute the local homology groups at a

point of interest. Such a point is usually a non-manifolds point, and the local homology

is usually known to a user, since a designer knows the number of manifolds and in

what way they should intersect at each point of the model. Therefore, as follows

from Theorem 4.3.1 and the corresponding corollaries, comparing the computed local

homology with the desired one should determine whether or not there is a defect in

the model at this point.

Besides detecting flaws, the foregoing results can often be used to determine

whether a given model is a manifold. Indeed, the local homology at a manifold point
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has only one non trivial homology group, which is isomorphic to L. In most models,

the nontrivial homology groups at a non-manifold point are different from Ζ. In fact,

many models turn out to be codimension-1 s-subvarieties. To detect non-manifoldness

in such a model, we can just browse through all vertices of the model and check if

the local homology group of the corresponding dimension is L. The browsing may

not be very efficient though, and we will elaborate on this later.

We now provide more details regarding actual implementation of the above

ideas. Obviously, any algorithm that does such computations depends in a funda-

mental way on the data structure used to describe the model. There are several

non-manifold data structures, e.g. Radial Edge Data Structure [94], Tricyclic Cusps

Data Structure [41], SGC Data Structure [87]. Though there are some significant

differences among them, all these data structures have an important common feature

- they provide means for local analysis of the topology of the model. For example, it

is always possible to compute the link of a point quite efficiently. This allows us to de-

scribe the basic steps of the intersection detection algorithm without getting involved

in tedious details. Suppose that a model is represented by a simplicial complex S

(described by one of the data structures). Then the primary steps are the following:

1. Choose (using some method) a vertex v E S and compute its link L(v).

2. Compute the homology groups of L(v). By excision, these are the local ho-
mology groups of S at v.

3. Using Theorem 4.3.1, try to determine what kind of intersection, if any, occurs
at the point v. If needed, go to step 1.

These steps are very general, and many intermediate steps that were skipped

require much work. For example, computation of homology groups is a big question

that has been addressed in many papers [49, 51, 50, 24] . Fortunately, the link of a

vertex in a simplicial complex does not usually contain a large number of simplifies.
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Therefore, even the most basic algorithms, say the reduction algorithm, can be used

without any real difficulties. Also, it is worth noting that Theorem 4.3.1 may not

provide an answer in some exotic cases. But, as we have already mentioned, this does

not usually happen in practice. Another important question is how to choose a point

in Step 1. Though existing data structures provide excellent means for analyttng local

topological structure of a simplicial complex, they do not incorporate any information

that would facilitate global analysis. As a result, it is impossible, for example, to figure

out a priori in what direction it is best to move if we wart to determine whether

there is a submanifolds point in the model. Therefore, an exhaustive search has to

be performed in such cases, and this is highly inefficient.

We also should point out that computing local homology groups (as indicated

in Step 2) may be an overkill in some cases. In fact, if one looks for a transverse

intersection in a simplicial complex that represents a codimension-l, s-subvariety, the

following lemma [17] is much easier to apply than the homological criteria developed

above.

Lemma 5.3.1 Let N and N be two codimension-1 submanifolds of ]An without bound-

aries, and suppose Τ is a triangulation of N A N. If v E Τ is a vertex that represents

a point of transverse intersection of N and N, then each (n-2)-simplex of Τ incident

to v is the face of exactly four (n — 1)-simplices.

Thus, identifying transverse intersections is much less computationally expen-

sive than locating non-transverse intersections, since adjacency information is readily

available in any submanifolds data structure. It is also possible to obtain similar

results for tangential intersections; but such results should be derived on a case-by-

case basis and would not provide the kind of uniform classification that is available

through the homology approach.



CHAPTER 6

CONCLUSIONS AND FUTUAE RESEARCH

This work is primarily devoted to a study of a new class of geometric objects called

swept manifolds, with a great emphasis on the problem of finding intersections of

swept surfaces. Although swept manifolds can be regarded as special case of swept

volumes, whose popularity and importance in geometric modeling has been constantly

growing, we have shown that distinguishing them in a separate class provides many

advantages. The very definition of a swept manifolds guarantees that its topology

is significantly simpler than the topology of a swept volume. Using this simplifica-

tion, we have been able to conduct a fairly deep analysis of topological and geometric

properties of swept manifolds. In the course of our investigation, we have introduced

several subclasses of swept manifolds, in particular, regular and critical swept mani-

folds. Assumptions governing these two types of swept manifolds are relatively mild

and satisfied in almost all practical applications, while the additional simplification

they provide allowed us to obtain a detailed topological description of the two types.

In fact, one of our main results gives a complete topological characterization of a

regular swept manifold if the topology of its initial manifold is known. Due to the

magnitude of potential applications, special attention has been paid to dimensionality

swept manifolds, that is, swept surfaces. Making advantage of their low dimensionality,

we have performed a more thorough analysis, elucidating several important features.

For instance, using the previously mentioned result we have completely resolved the

topology of regular swept surfaces. Obviously, this fact has a great practical value

since it delimits the range of modeling possibilities of swept surfaces. In an endeavor

to extend the nice structure of swept surfaces to higher dimensions, we have intro-

duced yet another subclass of swept manifolds — recursive swept manifolds. Our brief
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analysis of recursive swept manifolds has shown that they retain several important

properties specific to swept surfaces.

In addition to a theoretical study of swept manifolds, this work contains an

algorithmic part in which we focus on the important problem of computing intersec-

tions of swept surfaces. A brief description of existing intersection methods, provided

at the beginning of the corresponding chapter, shows that they are not directly ap-

plicable to swept surfaces. Therefore, we have developed new intersection algorithms

aimed specifically at swept surfaces. In the course of designing these algorithms, we

made extensive use of general ideas that underlie the most popular types of extant

intersection methods, modifying some of their features to satisfy conditions imposed

by the structure of swept surfaces. As a result of such an approach, we have obtained

three algorithms: the Simple Discretization Algorithm, the Subdivision Algorithm,

and the Marching Algorithm; each of them is based on one of the existing types

of intersection methods. We have provided detailed descriptions of our algorithms,

including complexity analysis, and have shown that they can be quite efficient, al-

though sometimes there may be a need for additional assumptions on swept surfaces.

Unfortunately, we have not been able to provide a quantitative comparison between

our intersection algorithms and existing methods, partly because of the lack of bench-

mark problems with a standard representation of the intersecting surfaces that would

be applicable in this case. It is possible to look at qualitative behavior though. As

we have mentioned, if objects under consideration are swept surfaces without explicit

parametrization, extant intersection methods would require some sort of conversion to

obtain an appropriate representation, which would considerably impair their perfor-

mance compared to the swept surface intersection algorithms. If, on the other hand,

intersecting surfaces are represented by sweeps in a closed form, some of the existing

intersection methods, for example the Gordon-Klein interjector, may perform better

than our algorithms, especially when the surfaces are algebraic. We hope that a more
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rigorous comparison will become possible in the near future and plan on establishing

several intersection problems that would allow us to obtain some quantitative data

for our algorithms as well as for existing intersection methods.

As an extension of our work on the intersection problem, we have also pre-

sented a novel approach to local characterization of intersections of manifolds and

s-subvarieties of a Euclidean space. The method is based on homology theory and

allows us to distinguish between intersection points of different kinds in an effectively

computable way, that is, one can algorithmically detect whether a point is an inter-

section point and whether it belongs to a transversal or tangential intersection. In

addition, it is often possible to determine when an intersection point is a boundary

point.

To show the practical side of the developed theory and algorithms, we have

indicated several possible applications of swept surfaces and their intersections. In

particular, we have described how swept manifolds can be used in virtual sculpting and

how the corresponding intersection problem becomes a crucial part of the `carving'

operations. Also, we have sketched a new method for modeling the heterogeneous

structure of biomaterials such as a bone. We use swept surfaces to model strands such

as canals that comprise the structure of a bone and employ intersections to allow for

branching and merging. Finally, we have indicated how the homological intersection

characterization can be applied to analyze and improve higher dimensional geometric

models.

It is important to understand that the progress we have achieved in our study

of swept manifolds and their intersections is only the first step in our continuing

research on swept volumes and their place in computational topology. Much more

work has to be done to obtain a complete topological classification of arbitrary swept

manifolds and to develop efficient tools for evaluating general swept volumes. For

example, finding possible topological structures of non-regular swept manifolds would
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be very helpful for proper assessment of regularity conditions. A related important

issue is a possibility of generalizing swept surfaces to cover a broader spectrum of

important topological configurations. The simple topology of regular swept surfaces

does not allow us to represent sophisticated geometric objects; for instance, we had to

simulate branching and merging when modeling strands of a bone. So, is it possible

to modify the definition of a (regular) swept surface to allow for forking or, more

generally, to encompass surfaces of genus greater than one? From a theoretical point

of view, this can be easily done by designing a sweep vector field with critical points of

the corresponding index. Indeed, considering such a vector fields as a gradient vector

field of some Morse function, the necessary topology of the generated swept surface is

provided by Morse theory. Unfortunately, carrying out computations around critical

points is a nontrivial task with serious obstacles, and a lot of additional analysis needs

to be done before this idea can be implemented in practice.

The swept surface intersection algorithms also have a lot of room for improve-

ment. For example, how can we guarantee that the correct topology of the intersection

set is resolved? Currently, this kind of question is usually tackled by employing in-

terval arithmetic ([2, 58] ), and it seems reasonable to investigate how well the same

approach works in the case of swept surfaces. Another issue that needs to be ad-

dressed, and which has been mentioned several times, is finding a universal (at least

to some extent) criterion for choosing discretization steps. Ad hoc approaches may

work quite well, but having a reliable, general method would clearly be beneficial.

In addition, improving the performance of our algorithms and finding a way to drop

some of the assumptions have a prominent place in our future research.

Obviously, answering all these questions and problems will take a lot of time

and resources, but the gain could be quite beneficial. We have mentioned several

times that the swept surface intersection problem is qualitatively different from the

standard surface-to-surface intersection problem and preserving the original swept
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representations is crucial for the efficiente of intersection algorithms. Derhaps an even

more important reason for developing methods that handle swept surfaces directly is

retaining the given information. Indeed, constructing algebraic approximations for

swept surfaces, which is required for most existing intersection methods, completely

disregards the underlying sweeps and therefore can lead to serious complications

when a thorough intersection analysis is needed. The intersection algorithms we

have developed provide a nice basis for further work on the swept surface intersection

problem, and we hope that findings that we have presented will entice some scientists

and inspire them to invest their efforts in the corresponding research directions.
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