10 research outputs found

    Geometric complexity theory and matrix powering

    No full text
    Valiant's famous determinant versus permanent problem is the flagship problem in algebraic complexity theory. Mulmuley and Sohoni (Siam J Comput 2001, 2008) introduced geometric complexity theory, an approach to study this and related problems via algebraic geometry and representation theory. Their approach works by multiplying the permanent polynomial with a high power of a linear form (a process called padding) and then comparing the orbit closures of the determinant and the padded permanent. This padding was recently used heavily to show no-go results for the method of shifted partial derivatives (Efremenko, Landsberg, Schenck, Weyman, 2016) and for geometric complexity theory (Ikenmeyer Panova, FOCS 2016 and B\"urgisser, Ikenmeyer Panova, FOCS 2016). Following a classical homogenization result of Nisan (STOC 1991) we replace the determinant in geometric complexity theory with the trace of a variable matrix power. This gives an equivalent but much cleaner homogeneous formulation of geometric complexity theory in which the padding is removed. This radically changes the representation theoretic questions involved to prove complexity lower bounds. We prove that in this homogeneous formulation there are no orbit occurrence obstructions that prove even superlinear lower bounds on the complexity of the permanent. This is the first no-go result in geometric complexity theory that rules out superlinear lower bounds in some model. Interestingly---in contrast to the determinant---the trace of a variable matrix power is not uniquely determined by its stabilizer

    Explicit polynomial sequences with maximal spaces of partial derivatives and a question of K. Mulmuley

    Get PDF
    We answer a question of K. Mulmuley: In [Efremenko-Landsberg-Schenck-Weyman] it was shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this "no-go" result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with maximal space of partial derivatives, including the complete symmetric polynomials. We apply Koszul flattenings to these polynomials to have the first explicit sequence of polynomials with symmetric border rank lower bounds higher than the bounds attainable via partial derivatives.Comment: 18 pages - final version to appear in Theory of Computin

    No occurrence obstructions in geometric complexity theory

    Full text link
    The permanent versus determinant conjecture is a major problem in complexity theory that is equivalent to the separation of the complexity classes VP_{ws} and VNP. Mulmuley and Sohoni (SIAM J. Comput., 2001) suggested to study a strengthened version of this conjecture over the complex numbers that amounts to separating the orbit closures of the determinant and padded permanent polynomials. In that paper it was also proposed to separate these orbit closures by exhibiting occurrence obstructions, which are irreducible representations of GL_{n^2}(C), which occur in one coordinate ring of the orbit closure, but not in the other. We prove that this approach is impossible. However, we do not rule out the general approach to the permanent versus determinant problem via multiplicity obstructions as proposed by Mulmuley and Sohoni.Comment: Substantial revision. This version contains an overview of the proof of the main result. Added material on the model of power sums. Theorem 4.14 in the old version, which had a complicated proof, became the easy Theorem 5.4. To appear in the Journal of the AM

    Splitting Kronecker squares, 2-decomposition numbers, Catalan combinatorics, and the Saxl conjecture

    Get PDF
    While there has been some progress on the decomposition of Kronecker products of characters of the symmetric groups in recent times, results on the symmetric and alternating part of Kronecker squares are still scarce. Here, new results (and conjectures) are presented on this splitting of the squares that contribute to a refined understanding of the Kronecker squares. Furthermore, connections to 2-modular decomposition numbers, Catalan combinatorics, and to the Saxl conjecture are discussed which further motivate the study of these splittings

    Variety Membership Testing in Algebraic Complexity Theory

    Get PDF
    In this thesis, we study some of the central problems in algebraic complexity theory through the lens of the variety membership testing problem. In the first part, we investigate whether separations between algebraic complexity classes can be phrased as instances of the variety membership testing problem. For this, we compare some complexity classes with their closures. We show that monotone commutative single-(source, sink) ABPs are closed. Further, we prove that multi-(source, sink) ABPs are not closed in both the monotone commutative and the noncommutative settings. However, the corresponding complexity classes are closed in all these settings. Next, we observe a separation between the complexity class VQP and the closure of VNP. In the second part, we cover the blackbox polynomial identity testing (PIT) problem, and the rank computation problem of symbolic matrices, both phrasable as instances of the variety membership testing problem. For the blackbox PIT, we give a randomized polynomial time algorithm that uses the number of random bits that matches the information-theoretic lower bound, differing from it only in the lower order terms. For the rank computation problem, we give a deterministic polynomial time approximation scheme (PTAS) when the degrees of the entries of the matrices are bounded by a constant. Finally, we show NP-hardness of two problems on 3-tensors, both of which are instances of the variety membership testing problem. The first problem is the orbit closure containment problem for the action of GLk x GLm x GLn on 3-tensors, while the second problem is to decide whether the slice rank of a given 3-tensor is at most r

    What is in# P and what is not?

    Get PDF
    For several classical nonnegative integer functions, we investigate if they are members of the counting complexity class #P or not. We prove #P membership in surprising cases, and in other cases we prove non-membership, relying on standard complexity assumptions or on oracle separations. We initiate the study of the polynomial closure properties of #P on affine varieties, i.e., if all problem instances satisfy algebraic constraints. This is directly linked to classical combinatorial proofs of algebraic identities and inequalities. We investigate #TFNP and obtain oracle separations that prove the strict inclusion of #P in all standard syntactic subclasses of #TFNP-1

    Geometric Complexity Theory and Matrix Powering

    No full text
    corecore