1,982 research outputs found

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan
    • …
    corecore