3,539 research outputs found
Implementation and Development of Vehicle Tracking and Immobilization Technologies
Since the mid-1980s, limited use has been made of vehicle tracking using satellite communications to mitigate the security and safety risks created by the highway transportation of certain types of hazardous materials. However, vehicle-tracking technology applied to safety and security is increasingly being researched and piloted, and it has been the subject of several government reports and legislative mandates.
At the same time, the motor carrier industry has been investing in and implementing vehicle tracking, for a number of reasons, particularly the increase in efficiency achieved through better management of both personnel (drivers) and assets (trucks or, as they are known, tractors; cargo loads; and trailers).
While vehicle tracking and immobilization technologies can play a significant role in preventing truck-borne hazardous materials from being used as weapons against key targets, they are not a & ”silver bullet.” However, the experience of DTTS and the FMCSA and TSA pilot projects indicates that when these technologies are combined with other security measures, and when the information they provide is used in conjunction with information supplied outside of the tracking system, they can provide defensive value to any effort to protect assets from attacks using hazmat as a weapon.
This report is a sister publication to MTI Report 09-03, Potential Terrorist Uses of Highway-Borne Hazardous Materials. That publication was created in response to the Department of Homeland Security´s request that the Mineta Transportation Institute´s National Transportation Security Center of Excellence provide research and insights regarding the security risks created by the highway transportation of hazardous materials
Recommended from our members
Social Equity Impacts of Congestion Management Strategies
This white paper examines the social equity impacts of various congestion management strategies. The paper includes a comprehensive list of 30 congestion management strategies and a discussion of equity implications related to each strategy. The authors analyze existing literature and incorporate findings from 12 expert interviews from academic, non-governmental organization (NGO), public, and private sector respondents to strengthen results and fill gaps in understanding. The literature review applies the Spatial – Temporal – Economic – Physiological – Social (STEPS) Equity Framework (Shaheen et al., 2017) to identify impacts and classify whether social equity barriers are reduced, exacerbated, or both by a particular congestion mitigation measure. The congestion management strategies discussed are grouped into six main categories, including: 1) pricing, 2) parking and curb policies, 3) operational strategies, 4) infrastructure changes, 5) transportation services and strategies, and 6) conventional taxation. The findings show that the social equity impacts of certain congestion management strategies are not well understood, at present, and further empirical research is needed. Congestion mitigation measures have the potential to affect travel costs, commute times, housing, and accessibility in ways that are distinctly positive or negative for different populations. For these reasons, social equity implications of congestion management strategies should be understood and mitigated for in planning and implementation of these strategies
Al-Robotics team: A cooperative multi-unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge
The Al-Robotics team was selected as one of the 25 finalist teams out of 143 applications received to participate in the first edition of the Mohamed Bin Zayed International Robotic Challenge (MBZIRC), held in 2017. In particular, one of the competition Challenges offered us the opportunity to develop a cooperative approach with multiple unmanned aerial vehicles (UAVs) searching, picking up, and dropping static and moving objects. This paper presents the approach that our team Al-Robotics followed to address that Challenge 3 of the MBZIRC. First, we overview the overall architecture of the system, with the different modules involved. Second, we describe the procedure that we followed to design the aerial platforms, as well as all their onboard components. Then, we explain the techniques that we used to develop the software functionalities of the system. Finally, we discuss our experimental results and the lessons that we learned before and during the competition. The cooperative approach was validated with fully autonomous missions in experiments previous to the actual competition. We also analyze the results that we obtained during the competition trials.Unión Europea H2020 73166
Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services
This paper presents the development of ICAROUS-2 (Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services), the second generation of a software architecture that integrates several algorithms as distributed onboard services to enable robust autonomous UAS applications. In particular, the ICAROUS architecture defines a framework to perform detect and avoid, geofencing, path monitoring, path planning, and autonomous decision making to ensure safety and mission progress. Most of the core algorithms implemented in ICAROUS are formally verified using an interactive theorem prover. These algorithms are composed together using a plan execution engine, whose operational semantics is formally specified. A description of the integrated architecture, services currently available, and flight test results highlighting the capability of ICAROUS are presented
A Distributed Framework for Traffic Flow Management in the Presence of Unmanned Aircraft
The integration of unmanned aircraft systems (UAS) into the airspace system is a key challenge facing air traffic management today. An important aspect of this challenge is how to determine and manage 4-dimensional trajectories for both manned and unmanned aircraft, and how to appropriately allocate resources among different aircraft. An integrated approach requires solving the traditional Air Traffic Flow Management (ATFM) problem to balance the capacity and demand of airport and airspace resources, but at a significantly larger scale. In doing so, aircraft connectivity constraints of commercial flights must be satisfied. In addition to these and the resource capacity constraints, geofencing constraints for unmanned aircraft that keep them within or outside a certain region of the airspace, must also be incorporated. This paper presents a distributed implementation of an integer programming approach for solving large-scale ATFM problems in the presence of unmanned aircraft. Given desired mission plans and flight-specific operating and delay costs, the proposed approach uses column generation to determine optimal trajectories in space and time, in the presence of network and flight connectivity constraints, airport and airspace capacity constraints, and geofencing constraints. Using projected demand for the year 2030 from the United States with approximately 48, 000 passenger flights and 29, 000 UAS operations (on a wide range of missions) per day, we show that our implementation can find nearly-optimal trajectories for a 24-hour period in less than 4 minutes. Furthermore, a rolling horizon implementation (with 6-8 hour time windows) results in run times of less than a minute. In addition to being the largest instances of the ATFM problem solved to date, these results represent the first effort to incorporate UAS trajectories into airspace and airport resource sharing problems.United States. National Aeronautics and Space Administration (Small Business Innovative Grant
A Geofence Violation Prevention Mechanism for Small UAS
The ability to safely confine the trajectories of small UAS to a specific geographical area is a key enabler for capabilities that require operating in close proximity to populated areas as well as other users of the airspace. These capabilities require highly reliable geofencing algorithms. In particular, these algorithms must promptly alert imminent breaches of keep-in/keep-out geofences by considering factors such as the vehicle speed and uncertainties in the state of the aircraft. This paper presents a novel approach to the prevention of geofence boundary violation based on closure rate constraints. These constraints are incorporated into a control framework to effectively prevent fence breaches. Simulation results illustrating an example use case of this framework are presented
- …
