42 research outputs found

    Nonlinear geometric analysis on Finsler manifolds

    Full text link
    This is a survey article on recent progress of comparison geometry and geometric analysis on Finsler manifolds of weighted Ricci curvature bounded below. Our purpose is two-fold: Give a concise and geometric review on the birth of weighted Ricci curvature and its applications; Explain recent results from a nonlinear analogue of the Γ\Gamma-calculus based on the Bochner inequality. In the latter we discuss some gradient estimates, functional inequalities, and isoperimetric inequalities.Comment: 37 pages, to appear in a topical issue of European Journal of Mathematics "Finsler Geometry: New Methods and Perspectives". arXiv admin note: text overlap with arXiv:1602.0039

    Finsler Active Contours

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70713In this paper, we propose an image segmentation technique based on augmenting the conformal (or geodesic) active contour framework with directional information. In the isotropic case, the euclidean metric is locally multiplied by a scalar conformal factor based on image information such that the weighted length of curves lying on points of interest (typically edges) is small. The conformal factor that is chosen depends only upon position and is in this sense isotropic. Although directional information has been studied previously for other segmentation frameworks, here, we show that if one desires to add directionality in the conformal active contour framework, then one gets a well-defined minimization problem in the case that the factor defines a Finsler metric. Optimal curves may be obtained using the calculus of variations or dynamic programming-based schemes. Finally, we demonstrate the technique by extracting roads from aerial imagery, blood vessels from medical angiograms, and neural tracts from diffusion-weighted magnetic resonance imagery

    Geodesic tractography segmentation for directional medical image analysis

    Get PDF
    Acknowledgements page removed per author's request, 01/06/2014.Geodesic Tractography Segmentation is the two component approach presented in this thesis for the analysis of imagery in oriented domains, with emphasis on the application to diffusion-weighted magnetic resonance imagery (DW-MRI). The computeraided analysis of DW-MRI data presents a new set of problems and opportunities for the application of mathematical and computer vision techniques. The goal is to develop a set of tools that enable clinicians to better understand DW-MRI data and ultimately shed new light on biological processes. This thesis presents a few techniques and tools which may be used to automatically find and segment major neural fiber bundles from DW-MRI data. For each technique, we provide a brief overview of the advantages and limitations of our approach relative to other available approaches.Ph.D.Committee Chair: Tannenbaum, Allen; Committee Member: Barnes, Christopher F.; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Vela, Patrici

    How does the contraction property fail for convex functions on normed spaces?

    Full text link
    On Euclidean and Hilbert spaces, Riemannian manifolds, and CAT(0)(0)-spaces, gradient flows of convex functions are known to satisfy the contraction property, which plays a fundamental role in optimization theory and possesses fruitful analytic and geometric applications. On (non-inner product) normed spaces, however, gradient flows of convex functions do not satisfy the contraction property. We give a detailed proof of this characterization of inner products, and discuss a possible form of a weaker contraction property on normed spaces.Comment: 13 page
    corecore