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Abstract—In this paper, we propose an image segmentation technique based on augmenting the conformal (or geodesic) active contour

framework with directional information. In the isotropic case, the euclidean metric is locally multiplied by a scalar conformal factor based

on image information such that the weighted length of curves lying on points of interest (typically edges) is small. The conformal factor

that is chosen depends only upon position and is in this sense isotropic. Although directional information has been studied previously for

other segmentation frameworks, here, we show that if one desires to add directionality in the conformal active contour framework, then

one gets a well-defined minimization problem in the case that the factor defines a Finsler metric. Optimal curves may be obtained using

the calculus of variations or dynamic programming-based schemes. Finally, we demonstrate the technique by extracting roads from

aerial imagery, blood vessels from medical angiograms, and neural tracts from diffusion-weighted magnetic resonance imagery.

Index Terms—Directional segmentation, Finsler metric, dynamic programming, active contours, diffusion weighted imagery.

Ç

1 INTRODUCTION

GEODESIC active contours [1], [2] have proven to be a very
useful tool for a number of segmentation tasks. Basically,

the idea is to define an active contour model based on the
theory of conformal metrics and on euclidean curve-short-
ening evolution. This type of curve evolution defines the
gradient direction to be that for which a curve will shrink as
fast as possible relative to its euclidean arc length. One
multiplies the euclidean arc length by a conformal factor
defined by the features of interest that one wants to extract
and then one computes the corresponding gradient evolution
equations. The features that one wants to capture therefore lie
at the bottom of a potential well to which the initial contour
will flow. The key point is that the conformal structure defines
a Riemannian metric in the plane for which the features of
interest appear as closed geodesic curves.

In this paper, motivated by certain problems in pattern
detection and medical imaging, we develop a version of
geodesic active contours in a Finsler metric [3], [4]. See our
discussion in Section 3 below for the formal mathematical
definition. The basic idea is that we add directionality now to
the active contours that allows for the segmentation of image
data in oriented domains. As alluded to above, isotropic
active contour models have been used to segment image data
in isotropic domains, meaning that the value of each voxel
depends only upon its position in the domain and not upon an
associated direction. However, in oriented domains, image

data depends both upon position and direction. In other
words, for each position and direction in the domain, there
exists a unique voxel intensity. It is here that the concept of the
Finsler metric becomes crucial. In fact, if one desires to add
directionality to the geodesic active contour framework, we
show that the Finsler condition is necessary to ensure that the
flow is well posed. Note that the Riemannian metric satisfies
the Finsler conditions and is well posed. We show that there
are some applications for which the Finsler metric outper-
forms the Riemannian metric, but certainly, there are others
for which the Riemannian metric may be more desirable. For
oriented domains, as long as the metric satisfies the Finsler
condition, the choice of a particular metric is subject to the
given application.

Flows relative to anisotropic metrics have been studied
in the mathematics and physics literature; see [5], [6] and
the references therein. A very simple directional flow was
proposed in some of our earlier work; see [7].

There are many applications of image data in oriented
domains. Examples include diffusion-weighted magnetic
resonance imaging in which the magnetic field is biased in
several directions in order to measure the water diffusivity of
biological tissue. In this case, for each position in the tissue
and for each direction of the bias field, the corresponding
image intensity provides a measure of water diffusivity at
that position and direction.

Furthermore, this technique may be used in pattern
detection. Consider a small image pattern patch, which we
desire to match to our image. Through translations and
rotations of the patch throughout the image, we can evaluate a
measure of similarity between the patch and the image for the
given patch position anddirection. Thus, this is also aproblem
in an oriented domain because for each position and rotation
of the patch, there exists a unique measure of similarity.

Geodesic active contours in the Finsler framework
provide a mechanism for the minimization of energy
functionals defined on oriented domains. We derive both
the curve evolution and dynamic programming based
implementations for Finsler active contours. The latter is
necessary since we will want to consider the evolution of
open curves for which the level set methodology is not

412 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 3, MARCH 2008

. J. Melonakos and E. Pichon are with Department of Electrical and
Computer Engineering, Georgia Institute of Technology, 777 Atlantic
Drive, Atlanta, GA 30332-0250.
E-mail: jmelonak@ece.gatech.edu, epichon@gmail.com.

. S. Angenent is with the Mathematics Department, University of
Wisconsin, Madison, Madison, WI 53706.
E-mail: angenent@math.wisc.edu.

. A. Tannenbaum is with the Departments of Electrical and Computer and
Biomedical Engineering, Georgia Institute of Technology, 777 Atlantic
Drive, Atlanta, GA 30332-0250. E-mail: tannenba@ece.gatech.edu.

Manuscript received 12 Aug. 2006; revised 5 Feb. 2007; accepted 25 Apr.
2007; published online 6 June 2007.
Recommended for acceptance by G. Sapiro.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0598-0806.
Digital Object Identifier no. 10.1109/TPAMI.2007.70713.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4723484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


appropriate. Preliminary results for directional-dependent
segmentations may be found in [8], [9].

The idea of using Finsler type metrics for various purposes
is of course not original in this work. First of all, regarding
curve shortening, Gage [6] has considered curvature driven
flows in a Minkowski space. General mean curvature flows
relative to Finsler metrics are studied in [10]. Gurtin and
Angenent have proposed the use of anisotropic Finsler flows
for problems in crystal growth in [5]. In the computer vision
literature, such directionally dependent metrics have ap-
peared in [11], [12], [13], [14], [15]. In some nice work, the
connections of graph cuts and such metrics have been
described in [13], [14], [15]. Geodesic active contours and
graph cut methods have been combined in [13], [14]. Further,
in [14], the explicit connection between Finsler distances and
the flux methods in [12] is considered in some detail.

This paper continues the above line of research. Here, we
describeFinsler flowsinacompletelycontinuoussettingvalid
both for both openand closedcurves embeddedin a euclidean
space of any dimension. The key observation is that if one
defines a conformal active contour flow for a direction-
dependent conformal factor, then in order for the flow to be
well defined, one needs the standard Finsler convexity
condition (see Section 3). Without this condition, the flow
will be a backward heat equation. Thus, this present work
extends the results in [1], [2] who consider conformally
euclidean metrics that only depend on position and are in this
sense “isotropic.” (In this paper, we will follow the standard
terminology of the mean curvature flow literature in which
“isotropic” flows are defined relative to a Riemannian metric,
whereas “anisotropic” flows are defined relative to a direc-
tion-dependent Finsler metric; see [3].) It is important to note
that while one can get “directionality” in the Riemannian
framework for image segmentation by a suitable choice of
metric (ellipses have directionality), nevertheless, we believe
that the Finsler geodesic active contour approach gives a
natural wayof performing segmentation in oriented domains.

We now summarize the contents of this paper. In Section 2,
we review the theory of energy minimizing flows and
geodesic active contours, as well as dynamic programming.
Section 3 is the key part of this paper. Here, we define the
notion of a “Finsler metric” and derive the geodesic active
contour flow relative to such a structure. In Section 4, we
describe the dynamic programming based solution and the
numerical implementation of such an approach. In Section 5,
we show the results of the experiments using these
techniques on both MRI tractography and pattern detection
applications. In Section 6, we draw some conclusions and
describe some future research directions. Finally, we have
included two mathematical appendices. The first justifies the
use of dynamic programming in our situation in which we
have a data driven anisotropic conformal factor, and the
second gives another derivation of the Finsler geodesic flow,
which also captures some of its interesting properties.

2 ENERGY MINIMIZING CURVES

Energy minimization approaches to image segmentation
have been very popular; see [16], [17], [18], [19], and the
references therein. These approaches allow one to define a
meaningful energy for a given application and to system-
atically construct contours that minimize the energy. In this
section, we describe two of the key approaches for the

minimization of such energy functionals: conformal active
contours (based on gradient descent) and dynamic program-
ming. The former works for closed curves, whereas the latter
method is valid for curves in which we fix seed and target
regions as well.

2.1 Geodesic (Conformal) Active Contours

In the conformal (or geodesic) active contour model, a local
cost,  : R2 ! Rþ, is defined based on image information
[1], [2]. For a given curve �, the total cost Lð�Þ is defined as
the integration of local costs along the curve

L ð�Þ ¼�
Z

�

 ð�Þds: ð1Þ

This energy can be interpreted as the -weighted length of
the curve. Minimal curves will therefore tend to go through
regions where is small while, at the same time, constraining
the total conformal euclidean length to be as small as possible.
Convergence of this flow is studied in [1], [2]. It is important to
note that s is the arc-length parameterization and, therefore,
this energy is purely geometric.

If the curve is closed or has fixed end points, a partial
differential equation is obtained by calculus of variations
that continuously deforms an initial curve �ðt ¼ 0Þ in a way
that optimally minimizes its total cost L. This can be
interpreted as a gradient descent on the infinite dimensional
space of curves.

In the case of the functional (1), the PDE that deforms a
given curve in order to minimize the energy as fast as
possible in the L2 sense is

@�

@t
¼ �ðr �NÞNþ  �ss; ð2Þ

where N denotes the unit inward normal.
As is the standard, this may be implemented using level

set methods [17], [18].

2.2 Dynamic Programming

Mortensen et al. [20] have proposed the live-wire segmenta-
tion technique that also determines optimal curves for the
same kind of functional. Their framework is based on
dynamic programming and is applicable to curves with one
end fixed in a given seed region S.

The underlying principle of dynamic programming is
the principle of optimality verified by minimum-cost pro-
blems such as (1) (assuming an optimal curve exists). The
principle is that any subpath p of an optimal path P is itself
optimal (otherwise, the P could be improved by following
another subpath p0 instead of p). This leads to the definition
of the value function L�, which is the minimal cost to reach
the seed region S from any point x of the domain

L�ðxÞ ¼� minfLð�Þ;�ð0Þ ¼ x;�ð1Þ 2 Sg:

In problems such as (1), the value function satisfies the
Eikonal equation jrL�ðxÞj ¼  ðxÞ with boundary condition
L� ¼ 0 on S. This equation can be solved numerically using
the fast marching algorithm [18], [21] or can be discretely
approximated using Dijkstra’s algorithm.

From any point in the domain, an optimal curve in the
sense of (1) can then be determined by gradient descent on
the scalar field L�.
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3 GEODESIC ACTIVE CONTOURS IN A FINSLER

METRIC

In this section, we introduce the notion of direction-
dependent active contours. This will be seen to be essentially
a version of active contours defined relative to a Finsler rather
than a Riemannian metric. If one thinks of a Riemannian
metric as being defined by a continuously varying family of
inner products on the tangent bundle of a given manifold, a
Finsler metric is given by a continuously varying family of
Banach space norms. The strict convexity property given
below is then an expression of the fact that these norms must
satisfy the triangle inequality. More mathematical details
about Finsler flows may be also found in Appendix B.

For an excellent exposition of the Finsler property and
comparisons to the Riemannian structure, we refer the
interested reader to that in [4]. Finally, we should note that
versions of curve shortening relative to the Finsler structure
have been studied in [5], [6], [22], [23].

3.1 Evolving Space Curves

In this section, we set up our notation and define the notion
of Finsler metric.

Therefore, consider families of evolving curves of the form
� : ½0; 1� � ½0; T Þ ! Rn. For any curve �ðx; tÞ, we denote

T ¼ �x
j�xj

;
@

@s
¼ 1

j�xj
@

@x
; ds ¼ j�xjdx:

The curvature vector of � is

K ¼ �ss ¼
@2�

@s2
:

We say that the curve evolves normally if

V ¼ @�

@t
? T

holds always. For such curve evolutions, one has

@tT ¼ @sV;
@

@t
;
@

@s

� �
¼ ðK �VÞ @

@s
; and

@

@t
ds ¼ �ðK �VÞds:

ð3Þ

For any given function

 : Rn � Sn�1 ! Rþ;

we let

Lð�Þ ¼
Z L

0

 ð�;TÞds ¼
Z 1

x¼0

 �;
�x
j�xj

� �
j�xj dx;

whereL is the length of �. The infinitesimal length function 
is only defined on unit vectors, but one can extend it naturally
to all vectors by requiring it to be positively homogeneous of
degree 1. We denote this extension by

F ðp; vÞ ¼ jvj x;
v

jvj

� �

so that the anisotropic length of � is

Lð�ð�; tÞÞ ¼
Z 1

0

F ð�;�xÞ dx: ð4Þ

Because of the homogeneity of F , that is,

F ðp; tvÞ ¼ tF ðp; vÞ for all x; v 2 Rn and t � 0

the anisotropic length is invariant under orientation
preserving reparametrizations of the curve [4]. However,
Lð�Þ may change if one reverses the orientation of �.

The extended anisotropic length functionF ðp; vÞ is a never
a strictly convex function of v, because it is homogeneous of
degree 1. If F ðp; vÞ2 is strictly convex, then F defines a Finsler
metric on Rn [3], [4]. A necessary and sufficient condition for
this to occur is that r2

�F ðp; �Þ should be positive definite on
the subspace fv 2 Rn : v ? �g. We compute this second
derivative at the particular vector � ¼ ð1; 0; . . . ; 0Þ in terms
of  . (See [24] for a proof.)

Lemma 1. If f : Sn�1 ! R is a C2 function and if F ðvÞ ¼
jvjfðv=jvjÞ, then for anyv 2 Sn�1 and any pair of tangent vectors
X, Y 2 TvSn�1, one has

r2
X;Y F ðvÞ ¼ ðX;Y ÞfðvÞ þ r2

X;Y fðvÞ;

where r2f is the second covariant derivative of f : Sn�1 ! R.

If v 6¼ 0 is not necessarily a unit vector, then one has

r2
X;Y F ðvÞ ¼

1

jvj
�
ðX;Y ÞfðvÞ þ r2

X;Y fðvÞ
�
:

It follows that  defines a Finsler metric if and only if the
quadratic form defined by gij þrirj is positive definite.

3.2 First Variation

We can now compute the first variation of our anisotropic
length functional and derive the flow for the Finsler geodesic
active contours. In this discussion, we assume that the curves
are closed or that the family of curves under consideration
has fixed end points. Assuming the curve � evolves
normally, one has

d

dt
Lð�Þ ¼ d

dt

Z
 ð�;TÞds

¼
Z �

V �  pð�;TÞ þ ð@tTÞ �  vð�;TÞ

�  ð�;TÞK �V
�

ds;

where  p and  v denote derivatives with respect to the first
and second variables in  ðp; vÞ. The derivative with respect
to v 2 Sn�1 is a covariant derivative. We use (3) to conclude

d

dt
Lð�Þ ¼

Z �
V �  pð�;TÞ þVs �  vð�;TÞ

�  ð�;TÞK �V
�
ds

¼
Z �

V �  vð�;TÞ �V � @sð vð�;TÞÞ

�  ð�;TÞK �V
�

ds

¼�
Z

V �
�
@s
�
 vð�;TÞ

	
þ  ð�;TÞK�  pð�;TÞ

�
ds

so that you get the steepest descent with

V ¼


@s  vð�;�sÞð Þ �  pð�;�sÞ

�? þ  ð�;�sÞ�ss: ð5Þ

Here, X? denotes the component of X that is perpendicular
to �s ¼ T.

414 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 3, MARCH 2008



Note that  vð�; vÞ 2 TvSn�1 is a vector perpendicular to v
since it is the gradient of a function on Sn�1 at the point
v 2 Sn�1. If you expand the derivative @s  vð�;�sÞð Þ you will
get two terms, one of which contains second derivatives of
�, namely,  vvð�;�sÞ � �ss.

The steepest descent flow, then leads to the following
quasi-linear PDE

V ¼


�s � rvp ð�;�sÞ �  pð�;�sÞ

�?
þ


 ð�;�sÞ þ  vvð�;�sÞ

�
�ss:

ð6Þ

Here,  vvð�;TÞ is the linear map on TvS
n�1 defined by the

second covariant derivative of  ð�; vÞ. Thus, for any pair of
vectors X, Y 2 TvSn�1, one has by definition

r2
X;Y  ðp; vÞ ¼

�
X; vv � Y

	
:

One sees that (6) is a parabolic equation exactly when  
defines a Finsler metric. This equation defines our model for
the Finsler geodesic active contours.

The above derivation works for closed curves. In the
planar case, one may implement such a flow using level set
techniques. We, however, are also in interested direction-
dependent flows for curves in which we fix seed and target
regions, and for this, we will propose (in Section 4) the use
of dynamic programming. This is essential for diffusion
tensor imaging in which we want to discover white matter
tracts starting from some point in the image.

Finally, in Appendix B below, we derive the first variation
of the Finsler functional in terms of the homogeneous
extension F , which leads to another numerical scheme.

4 DIRECTION-DEPENDENT DYNAMIC PROGRAMMING

In this section, we show how dynamic programming can be
used to determine optimal curves. The Finsler metric
condition on the anisotropic factor  will be assumed
throughout this discussion (so that optimal paths will
indeed exist).

4.1 Optimal Control and the Principal of Optimality

Consider the optimal control problem of determining a
trajectory x : ½0; 1� ! Rn that is optimal with respect to the
functional

Jðxð�Þ; uuð�ÞÞ ¼
Z 1

0

LðxðtÞ; uuðtÞÞdt:

We assume in the discussion below that L is homogeneous
of degree 1 in the uu variable. The control uuð�Þ is defined by

_xðtÞ ¼ uuðtÞ:

For any given starting pointx0, define the value function as
the minimum cost for reaching a seed region S � Rn from x0

J�ðx0Þ ¼ inf
uuð�Þ;xð0Þ¼x0;xð1Þ2S

Jðxð�Þ; uuð�ÞÞ:

When an optimum exists, it may be found using Bellman’s
principle of optimality [25]. Basically, this states that ifx�ð�Þ is an
optimal trajectory, then all subpaths are also optimal. This
can be expressed by the following relation:

J�ðx0Þ ¼ inf
uuð�Þ;xð0Þ¼x0;xð1Þ2S

Z r

0

LðxðtÞ; uuðtÞÞdtþ J�ðxðrÞÞ
� 

:

This means that if an optimal trajectory x�ð�Þ is found such
that x�ð0Þ ¼ x0 and x�ð1Þ 2 S, then for any r 2�0; 1½, the
subtrajectories x�j½0;r� and x�j½r;1� are also optimal. See [25] for a
detailed proof.

In our case, using xt ¼ uu and xð0Þ ¼ x0, the following
Hamilton-Jacobi-Bellman equation is obtained:

0 ¼ inf
uuð0Þ

Lðx0; uuð0ÞÞ þ rJ�ðx0Þ � uuð0Þf g: ð7Þ

In general, the value function may not be differentiable. In
that case, the differential (7) holds in the sense of viscosity
theory. See [26].

Under our above assumptions, this can be applied to the
Finsler cost functional

Lð�Þ ¼
Z L

0

 ð�ðsÞ;�sðsÞÞds

¼
Z 1

0

F ð�;�x=j�xjÞj�xjdx ¼
Z 1

0

F ð�;�xÞdx;
ð8Þ

where s is arclength and L is length of the curve.
The resulting Hamilton-Jacobi-Bellman equation is

0 ¼ inf
�xð0Þ

 
�
�ð0Þ; �xð0Þ

j�xð0Þj
	
j�xð0Þj þ rL�ð�ð0ÞÞ � �xð0Þ

� 

and, finally,

0 ¼ inf
d̂d2Sn�1

f ðpp; d̂dÞ þ rL�ðppÞ � d̂dg;

L�ðsÞ ¼ 0 for s 2 S;

8<
: ð9Þ

where anticipating our discussion in Section 5 for images,
we denote the given voxel location (that is, point in Rn) as pp
and direction as d̂d.

4.2 Numerics

This equation can be solved numerically in a straightforward
manner. Several numeric approaches may be used, such as
those given in [27], [28], [29]. We use the Fast Sweeping
approach proposed in [29]. From any point pp0 2 Rn, an
optimal path in the sense of (8) can then be determined by
following locally the vector d̂d� for which the minimum is
attained in (9).

Algorithm 1. Sweeping algorithm to solve the Hamilton-
Jacobi-Bellman (9); see [28]
Require: seed region S, direction-dependent local cost  

1: Initialize L�ð�Þ  þ1, except at starting points s 2 S,
where L�ðsÞ  0

2: repeat
3: sweep through all voxels pp, in all possible grid

directions
4: d̂d0  arg mind2SSn�1 fL�; ðpp; d̂dÞ
5: if fL�; ðpp; d̂d0Þ < L�ðppÞ then L�ðppÞ  fL�; ðpp; d̂d0Þ and

d̂d�ðppÞ  d̂d0 end if
6: end sweep
7: until convergence of L�

The algorithm sweeps through all points pp in search of the
least expensive direction. The cumulated cost to reach pp from
direction d̂d is

fL�; ðpp; d̂dÞ ¼
�

Xn�1

k¼0

�kL�ðppþ ��kÞ þ  ðpp; d̂dÞ
 !� Xn�1

k¼0

�k

 !
;
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where the n neighbors ppþ ��0; . . . ; ppþ ��n�1 of pp in direction d̂d
are interpolated using the components of the vector
�� ¼� ½��0j . . . j��n�1��1d̂d. Thus, in three dimensions, this would
be n ¼ 3 neighbors among 26. If we take then, for example,
d̂d ¼ ð0:912; 0:228; 0:342Þt, one could choose the three neigh-
bors ��0 ¼ ð1; 0; 0Þt, ��1 ¼ ð1; 0; 1Þt, ��2 ¼ ð1; 1; 1Þt, and the
corresponding weights would be �� ¼ ð�0; �1; �2Þ ¼ ð0:228;
0:114; 0:570Þ. One interpretation is that the value for reaching
pp from direction d̂d will be influenced most by the value at
ppþ ��2, which is the neighbor as much in direction d̂d as the grid
allows. Since, in general, it is not exactly in that direction, the
final result will also be interpolated using the two other most
aligned neighbors ppþ ��0 and ppþ ��1.

One sees that if the continuous direction d̂d is exactly
defined by one of the neighboring voxels, that is, d̂d ¼ ��k=k��kk,
then f ¼ L�ðppþ ��kÞ þ  ðpp; d̂dÞk��kk, which is the cost for
reaching voxel pp from voxel ppþ ��k. This same quantity would
be computed in Dijkstra’s algorithm. Unlike Dijkstra’s
algorithm, however, the search for the optimal direction is
not restricted to discrete grid directions, and the minimiza-
tion is performed continuously over the sphere Sn�1. In our
implementation, the minimization is performed over 100 di-
rections sampled uniformly on the sphere,1 and the coeffi-
cients ��ðd̂dÞ are precomputed. Mathematical details and a
convergence proof are available in [28].

Note that the number of iterations (where one iteration is
defined as one set of all possible directional sweeps)
required for convergence depends upon the number of
turns in the curve. Each iteration, therefore, can flow
information through one complete turn of the curve. In the
Applications and Simulations in Section 5, we found all the
curves in three iterations or less.

5 APPLICATIONS AND SIMULATIONS

Having developed the theory behind Finsler active contours,
we now illustrate these via several experiments. First, we
demonstrate curve shortening with respect to certain
anisotropic conformal factors as opposed to isotropic curve
shortening. Second, we provide a synthetic example that
demonstrates a particular case where Finsler active contours
capture a corner in directional data. Third, these methods are
applied to a pattern detection problem, specifically to detect
roads and vessels in 2D imagery. Fourth, we show 3D results
of these techniques applied to diffusion-weighted magnetic
resonance imagery for white matter brain tractography.

5.1 Closed Curves Evolving According to the
Finsler Flow

In this section, in order to compare the proposed direction-
dependent framework to the isotropic framework, we
examine the evolution of a closed bean-shaped curve with
respect to three separate conformal factors.

In order to isolate the effect of directional information,
we study local costs that do not depend on position but only
on the direction N ¼ ½n1 n2�t (we use the unit normal
instead of the unit tangent in defining the conformal factors;
for planar curves, this is clearly equivalent):

1.  ¼ 1.
2.  ¼ maxð 1ffiffi

2
p jn1 þ n2j; 1ffiffi

2
p jn2 � n2jÞ3=0:75.

3.  ¼ maxðjn1j; jn2jÞ3=0:75.

The first cost is isotropic. In that case, the global cost of the
curve is its euclidean length, and the minimizing flow is the
euclidean curvature flow [30], [31]. This flow shrinks any
planar shape to a circular-shaped point. This is illustrated on
the first column in Fig. 1. The second and third costs are
defined using direction information. In particular, the second
cost favors portions of the curve that are either horizontal or
vertical. The third costs does exactly the opposite and favors
portions of the curve that are diagonal. The corresponding
evolutions can be observed on the second and third columns
in Fig. 1. The influence of direction information is very visible
in these figures.

5.2 Simulated Example

Finsler active contours extend the isotropic geodesic active
contours by adding directionality to the distance functional.
Therefore, in oriented domains where directionality is
important, Finsler active contours capture important direc-
tional information unavailable to isotropic geodesic active
contours.
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1. For the algorithm to initialize properly, discrete grid directions have to
be present.

Fig. 1. Synthetic 2D example. These three different local costs depend

only on direction. They are represented as polar plots (first row). The

corresponding deforming shapes are presented on the following rows

(black). The initial curve (gray dashed) is bean shaped. See text.



Furthermore, Finsler active contours extend Riemannian
active contours by minimizing with respect to the more
general Finsler metric. It will be shown that, in some cases,
minimization with respect to a Riemannian metric will yield a
smoothed version of the result obtained via the Finsler metric.

In order to analyze these properties of Finsler active
contours, we have devised a synthetic simulation. We
constructed a simple 2D (64� 64 pixel) image with an “L”
shaped corner, as seen in Fig. 2a. The goal of this simulation
is to find an open curve that extends from the top yellow
marker to the bottom yellow marker and that follows the
“L” shape. We performed this simulation using the
dynamic programming numerical scheme. The yellow
markers are given as known inputs to the algorithm.

The synthetic directional data was created by randomly
drawing samples from the uniform distribution on the
interval [0, 0.5] for evenly spaced directions on the unit circle.
Then, we added the signal by giving directions of high
diffusion slightly stronger values, as shown in Fig. 2c. This
figure shows a zoomed-in view of the directional image for
nine pixels surrounding the corner. The red arrows corre-
spond to the high-diffusion directions (that is, the signal), the
green arrows correspond to a diffusion process contrary to
the signal flow, and the blue arrows are the randomly drawn
background samples.

Using the Finsler active contour framework, we are able to
capture the “L”-shaped corner accurately, as pictured in red
in Fig. 2b. We will now compare this to two other methods.

First, we show that adding directional information is
critical to capturing the corner. We proceed by comparing the
Finsler active contour approach to the isotropic geodesic

active contour approach implemented using the Fast March-
ing Method [17], [18]. At each point in the image, the strongest
diffusion value (without respect for directionality) was
chosen as the scalar to be used in the isotropic approach.
Since, by construction, the strongest diffusion value at each
point is the same (that is, the magnitude of red arrows is the
same as the magnitude of green arrows), it is obvious that the
optimal path for the isotropic geodesic active contour is a
straight line connecting the yellow markers, as shown by the
blue line in Fig. 2b. This example illustrates the need for
directionality, and the difficulties that arise from attempting
to discard the directionality via a pointwise scalar function (in
this case, the maximum diffusion at each point).

Second, we compared the Finsler active contour approach
to the Riemannian active contour approach. In this simula-
tion, we created tensors from the directional data using the
Stejskal-Tanner equation, as shown by the zoomed-in view of
the corner in Fig. 2d. This figure shows a zoomed-in view of
the Riemannian image for nine pixels surrounding the
corner. The resulting Riemannian optimal path is shown in
green in Fig. 2b. This figure reveals the smoothing effect,
which the Riemannian metric tends to have on the result.
This is due to the directional averaging, which occurs in the
construction of the tensors by imposing the elliptical
diffusion profile on the data.

These simulations reveal that, for this particular case, the
Finsler active contour is desirable due to the fact that it is
capable of capturing a sharp corner in an oriented domain.
In other cases, the scalar geodesic active contour or
Riemannian active contour approaches may have attributes,
which render them more suited to the particular task.

5.3 Curve Detection in Imagery

Given a sample image I for which a portion of a curve �� is
given (for example, by a human expert), imagine sliding a
small rectangular window along the curve in such a way
that the center of the window is always on the curve, and
the long axis of the window is aligned with the tangent to
the curve. Computing the average value of image intensities
at each point inside the window as the window slides along
the curve, one obtains an average pattern of what the image
looks like locally around the curve ��. A location and
direction-dependent pattern detector can then be defined by
translating and rotating the average pattern and determin-
ing how well it matches the image.

This protocol was applied to a road detection task. Fig. 3
shows the portion of the road that was used to learn the
pattern detector. The dimension of the window along its long
axis (that is, in the direction of the road) was chosen to be four
times the width of the road, and the dimension of the window
along its short axis (that is, normal to the road) was chosen to
be two times the width of the road. The pattern detector was
then obtained for any position and direction by translating
and rotating the average window and computing the sum of
the square of the difference between the intensity of the image
and that of the average window. Curves that will be minimal
for this metric will then be those for which the image locally
matches the pattern of a road.

Curves were deformed using a straightforward particle-
based approach. Fig. 4 shows two different initial curves
converging to the same portion of the road. Fig. 4 shows the
evolution of a self-intersecting initial curve. Finally, Fig. 5
illustrates the use of dynamic programming. Note that for
very low SNR, the dynamic programming fails.
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Fig. 2. A simulated 2D example. (a) The synthetic baseline “L” shaped
corner. (b) Finsler results (red), Riemannian results (green), and
Isotropic results (blue). (c) A zoomed-in view showing the directional
data of nine pixels surrounding the corner. (d) A zoomed-in view
showing the Riemannian image of nine pixels surrounding the corner,
created by applying the Stejskal-Tanner equation to the directional data.



The same experiments were performed on a medical

image to track blood vessels. As before, the metric was

defined by an initial manual segmentation step. Fig. 6 shows

the result of the curve evolution approach. Fig. 7 shows the

result of the dynamic programming approach. In that case,

noise was artificially added.

5.4 High Angular Diffusion MRI Tractography

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)

measures the diffusion of water in biological tissue [32]. The

utility of this method stems from the fact that tissue structure

locally affects the Brownian motion of water molecules and

will be reflected in the DT-MRI diffusion measurements. In

classical theory, diffusion follows a Gaussian process which

can be described locally by a second order tensor.
A simple and effective method for tracking nerve fibers

using DT-MRI is to follow the direction of maximum diffusion

at each voxel [33], [34], [35], [36]. Although this method is

wide spread and used in various ways, the fiber trajectory is

based solely on local information, which makes it very

sensitive to noise. Moreover, the major direction of diffusion

can become ill defined, for example, at fiber crossings.
As an application of our framework, tractography is set

in a continuous minimum cost framework. This is different

from that in [37], [38]. Indeed, in these works, the authors do

not propose variational (cost minimizing) techniques. Local

costs are defined for every direction on the unit sphere

based on high angular resolution diffusion imagery.

Equivalently, this can be considered a minimum arrival

time framework in which the speed of fictitious particles

would be the inverse of the cost.
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Fig. 3. Road image and manually determined curve used for learning the

pattern detector.

Fig. 4. Particle-based curve evolution with different initializations.

(a) Initial curve 1. (b) Initial curve 2. (c) Initial curve 3. (d) Evolving

curve 1. (e) Evolving curve 2. (f) Evolving curve 3. (g) Steady state 1.

(h) Steady state 2. (i) Steady state 3.

Fig. 5. Results of road detection on noisy images using dynamic

programming. (a) Recovered curve (original). (b) Recovered curve

ðSNR ¼ 0:50Þ. (c) Recovered curve ðSNR ¼ 0:25Þ.

Fig. 6. Curve evolution on a real image. The local cost is determined

using a pattern detector. (a) Initial curve. (b) Evolving curve. (c) Steady

state.

Fig. 7. Vessel detection using dynamic programming. The procedure
was run independently for two seed points (large discs) and several
target points (small discs). On the right, noise was added. This changes
the recovered curves as one of the branches at the bottom is no longer
visible. (a) Original image. (b) Recovered curves. (c) Recovered curves
ðSNR ¼ 0:25:Þ.



5.4.1 Constructing the Direction-Dependent Cost

Most front propagation techniques for diffusion tensor
tractography use some ad hoc function f of the quadratic form
d̂dtDd̂d, where D is the diffusion tensor. If the Gaussian
assumption holds, the diffusion weighted images follow

S pp; d̂d
� �

’ Sðpp; 00Þ exp �b d̂dtDðppÞd̂d
� �

: ð10Þ

Tensor-based techniques can formally be extended to
high angular resolution diffusion data sets by setting (see
[8] and references therein for details)

 ðpp; d̂dÞ ¼� f � 1

b
log

Sðpp; d̂dÞ
Spp; 00Þ

 ! !
: ð11Þ

However, in the experiments below, we employed the
following metric:

 ðpp; d̂dÞ ¼� Sðpp; d̂dÞR
v̂v?d̂d

Sðpp;v̂vÞ
Sðpp;00Þdv̂v

0
@

1
A3

: ð12Þ

This quantity will be small if there is diffusion in
direction d̂d (numerator small) and limited diffusion in
directions normal to d̂d (denominator large). The main
advantage of this formulation is that several data points
are used to compute the denominator that improves the
signal to noise ratio. We chose fðxÞ ¼ x3 experimentally to
accentuate the anisotropy of the data. Because, experimen-
tally, only a few dozen directions are used for acquisition,
interpolation was also performed.

It is very important to note that the anisotropic
conformal factor  is constructed from the data, and for
example, in the DW-MRI case, we have no proof that the
corresponding F 2 is always strictly convex. However, in
Appendix A below, we include for completeness a standard
argument that shows that using a scheme such as fast
sweeping, one computes the optimum relative to the
convexification of F 2. This type of convexification argument
is well known in the optimal control literature (see the
classical text [39] for details). Thus, we are computing in fact
geodesic active contours relative to the Finsler metric
defined by the convexification of the defining function.

5.4.2 Results

Here, we show results obtained by applying the methodology
described in the above sections to diffusion weighted data
sets acquired using a single-shot diffusion-weighted EPI

sequence with 31 different gradient directions with b-values
(see (10)) of 500, 1,000, and 1,500s=mm2, on a 1.5 Tesla GE
Echospeed system. The data was acquired with different
b-values to enable comparisons of the results. Traditional
eigenvector based tractography is normally carried out in
data with b-values in the range of 700-1,000 s=mm2. Higher
b-values give data with higher angular contrast but at the
expense of more noise.

Cost per unit length, which can be interpreted as a
validity index for the putative tracts was determined for all
b-values, as shown in Fig. 8.

All curves are optimal given their starting point. The cost
per unit length is a measure of the likelihood that a tract
from the seed region passes through a given point in the
domain. The best contrast (corresponding to the most
coherent set of “superoptimal” tracts for a given seed point
posterior of the corpus callosum) was obtained at the
highest b-value available. This could indicate that the
algorithm was able to take advantage of the higher angular
contrast in spite of the lower SNR. Tract results for several
user-defined seed points are presented in Fig. 9.

Finally, the proposed technique was compared to a
streamline technique (see [33], [34], [35], [36]), which requires
the computed tensor field, as shown in Fig. 10.

Although validation is a very challenging task due to the
lack of ground truth, it can be noted that both algorithms
give similar results even though their inputs are different.
The tracts of the proposed technique tend to be more
coherent as any noise in the data might set the streamline
off course, whereas the proposed technique is more global.
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Fig. 8. Cost per unit length of end points of optimal curves for different

b-values is a validity index. Best results are achieved for the highest

b-value. (a) b ¼ 500. (b) b ¼ 1; 000. (c) b ¼ 1; 500.

Fig. 9. Fiber tracking from high angular resolution data set

ðb ¼ 1; 500s=mm2Þ.

Fig. 10. Proposed technique on high angular resolution data (blue)

compared with streamline technique on tensor field (red)

ðb ¼ 1; 500s=mm2Þ.



5.5 A Note on Timings

Here, we present a note on the timings for each of the

experiments. All of the experiments were performed on a
common PC. We used a Dell Optiplex GX270 with an Intel
Pentium 4 single core chip and 2 GB of memory. Each of the
experiments above was conducted using Matlab code with

C mex functions for the Fast Sweeping implementation.
Moreover, although this code was sufficiently fast for our
purposes, we are in the process of porting the code to the

freely available Insight Toolkit (ITK) [40].
All of the particle-based approaches, on 2D roads and

vessels, converged quickly and in negligible time. Also, all of
the Fast Sweeping approaches converged in 3 iterations or

less (where one iteration consists of all of the possible
directional sweeps through the image), see Section 4.2 for
more discussion on Fast Sweeping convergence. For example,
it took 0.13 seconds for the experiment in Section 5.2 to

converge on a 64� 64 grid, and it took 20 seconds for the
experiment in Section 5.3 to converge on a 787� 787 grid.
Also, with simple masking of irrelevant voxels, the time to

converge for the 3D DWMRI experiment in Section 5.4 was
under 5 minutes. The time to compute a path from a target
point back to the seed point is negligible compared to the time

required to run the Fast Sweeping portion of the algorithm.

6 CONCLUSIONS

In this paper, we proposed a natural approach for adding
directionality to the conformal active contour technique. The
cost of a curve is defined as the length of the curve weighted
by some position and direction-dependent local costs based
on image information. This allows for the asymmetric
processing of information based on direction. The local costs
can be defined from a direction-dependent pattern detector,
which can be obtained after a learning step.

The techniques described in the paper are very general
and could be used to extract information from many
different types of imagery. They have been applied mostly
to medical imaging data sets and, in particular, to images of
the brain. In fact, it was the problem of extracting white
matter tracts that initially motivated this line of research. In
the medical area, it could be also be applied to the
extraction of blood vessels from various imaging modalities
such as magnetic resonance or computed tomography.

Finally, we have only described the Finsler framework in
the case of curves. One can derive and study a similar flow
for surfaces. This will be the topic of our future research in
studying directional-based segmentation methods.

APPENDIX A

FINSLER COMPUTATION FOR NONCONVEX

FUNCTIONS

As we noted above, there may be problems in the nonconvex
case for our directional segmentation scheme. Nevertheless,
as we will indicate in this appendix, the fast-sweeping type
numerical approach will automatically capture an approx-
imation for the convexification of the functional (In the sense
to be made precise below.) We abstract the situation to be
studied as follows.

Let  : Sn�1 ! R be a function and suppose one defines
the cost of a curve � to be

Cð�Þ ¼
Z

�

 ðTÞ ds:

Define F : Rn ! R to be the homogeneous extension of
degree one of  , so

F ðvÞ ¼ jvj  v

jvj

� �
:

This function need not be convex. We define its convex hull
to be

~F ðvÞ¼sup
�
a � vþb : a 2 Rn; b 2 R; 8x a � xþb	F ðxÞ

�
: ð13Þ

Furthermore, we define

E ¼
�
v 2 Rn : F ðvÞ ¼ ~F ðvÞ

�
:

This is the set of extreme points.
The cost Cð�Þ of any parameterized curve � : ½0; 1� ! Rn

is given by

Cð�Þ ¼
Z 1

0

F ð�0ð�ÞÞ d�: ð14Þ

One can also define the relaxed cost as

~Cð�Þ ¼
Z 1

0

~F ð�0ð�ÞÞ d�: ð15Þ

Clearly, one always has

~Cð�Þ 	 Cð�Þ ð16Þ

since ~F ðvÞ 	 F ðvÞ for all v 2 Rn.
For any given set � � Rn and point p 2 Rn n � one

defines the cost to get to � from p as

C�ðpÞ ¼ inf
�
Cð�Þ : �ð0Þ ¼ p;�ð1Þ 2 �

�
: ð17Þ

Here, the infimum is taken over all curves from p to some
point in �.

One can also define

~C�ðpÞ ¼ inf
�

~Cð�Þ : �ð0Þ ¼ p;�ð1Þ 2 �
�
; ð18Þ

where the infimum is again taken over all curves from p to
some point in �.

Lemma 2. For any curve � : ½0; 1� ! Rn and any " > 0, there
exists a piecewise linear (PL) curve ~� : ½0; 1� ! Rn with the
same endpoints for which one has

Cð~�Þ ¼ ~Cð~�Þ 	 ~Cð�Þ þ ":

This lemma says that any curve from p to � can be replaced
by a curve with the same endpoints whose velocities are
extreme points for F (that is, ~F ð�0ð�ÞÞ ¼ F ð�0ð�ÞÞ for all �),
without increasing the cost by more than ".

An immediate consequence of the lemma is:

Lemma 3. ~C�ðpÞ ¼ C�ðpÞ.
It follows that any (correct) method that computes C� by

propagating the front @� outwards with velocities given by

F will actually compute ~C�.
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Proof of Lemma 2. First, it is clear that one can approximate

the given curve � by a PL curve �1 for which ~F ð�01ð�ÞÞ 	
~F ð�0ð�ÞÞ þ " holds for 0 	 � 	 1. Thus, ~Cð�1Þ 	 ~Cð�Þ þ ".

Next, the PL curve �1 is linear (that is, �01ð�Þ is
constant) on each interval ð�i�1; �iÞ from some partition
0 ¼ �0 < �1 < � � � < �n ¼ 1. Let vi be the constant value of
�01 on ð�i�1; �iÞ. If vi 62 E (recall that E is the set of extreme
points), then vi is a convex combination of certain
~v1
i ; . . . ; ~vni 2 E, that is

vi ¼ �1~v1
i þ � � � þ �n~vni ; �i � 0;

X
�i ¼ 1; ð19Þ

whereas

~F ðviÞ ¼ �1
~F ðv1

i Þ þ � � � þ �n ~F ðvni Þ: ð20Þ

Now, define a PL curve �2 that has

�02ð�Þ ¼ vki for � 2
�
�j�1
i ; �ji

	
; ð21Þ

where �ji ¼ �i�1 þ �jð�i � �i�1Þ. Thus, we replace the

segments of �1 whose velocity are not in the extreme

set E of the function by PL zigzag curves with the same

begin and end points whose velocities are in E.
With this definition, one has

�2ð�iÞ � �2ð�i�1Þ ¼ �1ð�iÞ � �1ð�i�1Þ:

Hence, if one sets �2ð0Þ ¼ �1ð0Þ ¼ p, then one ends up

with �2ð1Þ ¼ �1ð1Þ 2 �.
Using (20), one can easily see that ~Cð�2Þ ¼ ~Cð�1Þ.

Since �02ð�Þ 2 E for all � one also has Cð�2Þ ¼ ~Cð�2Þ.
Hence, �2 is a curve from p to � with Cð�2Þ 	 ~Cð�Þ þ ".tu

APPENDIX B

FINSLER FLOW IN TERMS OF F

In this section, we describe the Finsler flow in terms of the

homogeneous extension F and derive some of its properties.

B.1 First Variation Using F

Instead of writingLð�Þ in terms of , we can also writeLð�Þ as

in (4). The first variation is then given by the usual Euler-

Lagrange equation

d

dt
Lð�Þ ¼

Z 1

0

�
Fp � ðFvÞx

�
� �t dx: ð22Þ

If one looks for a normal evolution equation (that is,

�t ? �x), then one is led to an equation of the form

��t ¼
�
ðFvÞx � Fp

�?
for some positive scalar �. If one additionally wants the

equation to be invariant under reparametrization, then the

only possible choice for � is � ¼ Gð�;�xÞ in which Gðp; vÞ is

positively homogeneous of degree one in v 2 Rn. A possible

choice would be Gð�;�xÞ ¼ j�xj, which leads us to the

evolution equation

�t ¼
1

j�xj
�
ðFvÞx � Fp

�?
: ð23Þ

This equation is equivalent with (5).

One could also choose Gðp; vÞ ¼ F ðp; vÞ, which would
result in

�t ¼
1

F ð�;�xÞ
�
ðFvÞx � Fp

�?
:

B.2 Some Identities Involving F

Since F ðp; tvÞ ¼ tF ðp; vÞ, for all t � 0, one has

Fvðp; tvÞ ¼ Fvðp; vÞ ð8t > 0Þ; ð24Þ

Fvðp; vÞ � v ¼ 0: ð25Þ

For the second derivative Fvvðp; vÞ, which we regard as a
symmetric linear transformation on Rn, this implies that

Fvvðp; vÞ � v ¼ 0 ð26Þ
and, hence,

Fvvðp; vÞ � w ? v ð8w 2 RnÞ: ð27Þ

We may also regard Fvpðp; vÞ as a linear transformation
on Rn, and in this case, we have�

v � Fpvðp; vÞ � Fpðp; vÞ
�
? v: ð28Þ

Indeed, in tensor notation, this amounts to

viFpivjðp; vÞvj ¼ Fpiðp; vÞvi;
which one obtains by differentiating the Euler identity

Fviðp; vÞvi ¼ F ðp; vÞ
with respect to p in the direction of v.

B.3 Steepest Descent with F
We continue with (23)

j�xj�t ¼
�
Fvvð�;�xÞ�xx þ �x � Fpvð�;�xÞ � Fpð�;�xÞ

�?
:

By (27), the combined terms on the right are already
perpendicular to �x. We therefore find that (23) is equivalent
with

�t¼
1

j�xj
�
Fvvð�;�xÞ � �xx þ �x � Fpvð�;�xÞ � Fpð�;�xÞ

�
: ð29Þ

More generally, one gets the equation

�t ¼
1

Gð�;�xÞ
�
Fvvð�;�xÞ � �xx þ �x � Fpvð�;�xÞ � Fpð�;�xÞ

�
:

ð30Þ

No matter which G one chooses, this equation fails to be
parabolic since Fvv always has a zero eigenvalue, namely,
Fvvðp; vÞv ¼ 0.

B.4 Parabolic Equation

The right-hand side in (30) is invariant under reparame-
trizations, that is, if �ðx; tÞ ¼ �ðyðx; tÞ; tÞ, then � satisfies

�t ¼
1

Gð�; �yÞ
Fvvð�; �yÞ�yy þ yt�y:

Choose the parametrization so that

ytðx; tÞ ¼


�½��ð�y � �yyÞ�y

�
y¼yðx;tÞ

for some scalar � > 0, which can depend on � and �y.
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The resulting equation for � is then

�t ¼
Fvvð�; �yÞ
Gð�; �yÞ

þ ��y 
 �y
� 

� �yy þ
Bð�; �yÞ
Gð�; �yÞ

; ð31Þ

where by definition

Bðp; vÞ ¼ v � Fpvðp; vÞ � Fpðp; vÞ:

As long as one chooses �ð�; �yÞ > 0, and as long as Fvv is
positive definite on fvg?, this equation is strictly parabolic.
A particular choice for G and � would be

G ¼ j�yj; � ¼ j�yj�2;

which leads to

�t ¼
�
Fvvð�;TÞ þT
T

�
� �yy
j�yj2

þBð�;TÞ; ð32Þ

where T ¼ �y=j�yj is the unit tangent vector.

B.5 Numerical Scheme

We should note that using the above, a simple approach can
be employed to (32). For completeness, we sketch this here.

We set

�ðj�x; k�tÞ ¼ �kj
and discretize (32) as follows:

�kþ1
j � �kj

�t
¼ Ak

j �kþ1
jþ1 � 2�kþ1

j þ �kþ1
j�1

n o
þBk

j ð33Þ

in which the n� n matrices Ak
j are defined by

Ak
j ¼ 4

Fvvð�kj ;Tk
j Þ þTk

j 
Tk
j

j�kjþ1 � �kj�1j
2

and one could define the unit tangents Tk
j by

Tk
j ¼

�kjþ1 � �kj�1

j�kjþ1 � �kj�1j
:

The vectors Bk
j could be discretized by

Bk
j ¼ Tk

j � Fpvð�kj ;Tk
j Þ � Fpð�kj ;Tk

j Þ:

The system of equations (33) is a tridiagonal vector-
valued system of equations. If one puts the components of
each vector �kj in one long vector, then (33) can be written as
a finite band system of equations, which can be solved very
efficiently (OðnÞ operations per time step).
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