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SUMMARY

Medical image analysis algorithms aim at increasing the speed, accuracy, and re-

liability by which medical images are processed and ultimately understood. Active

contour and energy minimization techniques are commonly used in medical image

analysis applications. The results of these techniques are optimal under certain as-

sumptions and provide meaningful clinical insights.

In this thesis, we develop energy minimization techniques for medical image anal-

ysis. The primary focus of this thesis is the construction of a theoretical and applied

framework for:

• Geodesic Tractography: In this work, we develop a mathematical framework

for finding optimal paths in oriented domains. In oriented domains, image

data depends both upon position and upon direction. In other words, for each

position and direction in the domain there exists a unique voxel intensity. The

use of a Finsler metric is shown to be particularly suited for this type of problem.

In fact, we show that the Finsler condition is necessary to ensure that the flow

is well-posed. The development of this theory is couched in an application to

diffusion-weighted magnetic resonance imagery (DW-MRI). It is shown that

representative or anchor tracts are found which optimally connect two regions

of interest in the brain.

• Tractography Segmentation: In this work, we show how these optimal paths

may be used to initialize a volumetric segmentation which captures neural fiber

bundles. We present a key problem for volumetric segmentation along with

two approaches for overcoming this problem: via either a local constraining of

x



statistics or a tensor warping preprocessing step.

Also, in this work, we present medical image analysis algorithms using Bayesian

segmentation frameworks. In the first, we present our work on the segmentation of

brain MRI tissue into tissue classes. In the second, we present the construction of a

model of colon haustra for use in computer-aided detection (CAD) within a Bayesian

framework.

The core software components of this thesis are being made available in the NA-

MIC toolkit (see http://www.na-mic.org).
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CHAPTER I

INTRODUCTION

Geodesic Tractography Segmentation is the two component approach presented in this

thesis for the analysis of imagery in oriented domains, with emphasis on the appli-

cation to diffusion-weighted magnetic resonance imagery (DW-MRI). The computer-

aided analysis of DW-MRI data presents a new set of problems and opportunities

for the application of mathematical and computer vision techniques. The goal is to

develop a set of tools that enable clinicians to better understand DW-MRI data and

ultimately shed new light on biological processes.

This thesis presents a few techniques and tools which may be used to automatically

find and segment major neural fiber bundles from DW-MRI data. For each technique,

we provide a brief overview of the advantages and limitations of our approach relative

to other available approaches.

1.1 Organization of this Thesis

This thesis is organized into the following chapters:

• Chapter 2: In this chapter, we propose an image segmentation technique based

on augmenting the conformal (or geodesic) active contour framework with di-

rectional information [59]. In the isotropic case, the Euclidean metric is locally

multiplied by a scalar conformal factor based on image information such that

the weighted length of curves lying on points of interest (typically edges) is

small. The conformal factor which is chosen depends only upon position and

is in this sense isotropic. While directional information has been studied pre-

viously for other segmentation frameworks, here we show that if one desires to
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add directionality in the conformal active contour framework, then one gets a

well-defined minimization problem in the case that the factor defines a Finsler

metric. Optimal curves may be obtained using the calculus of variations or dy-

namic programming based schemes. Finally we demonstrate the technique by

extracting neural tracts from diffusion-weighted magnetic resonance imagery.

• Chapter 3: In this chapter, we present a novel approach for the segmentation

of white matter tracts based on Finsler active contours [57]. This technique

provides an optimal measure of connectivity, explicitly segments the connecting

fiber bundle, and is equipped with a metric which is able to utilize the directional

information of high angular resolution data. We demonstrate the effectiveness

of the algorithm for segmenting the cingulum bundle.

• Chapter 4: In this chapter, we present an approach for the volumetric segmen-

tation of neural fiber bundles from DW-MRI data [58]. We describe a method

for segmenting fiber bundles from diffusion-weighted magnetic resonance images

using a locally-constrained region based approach. From a pre-computed opti-

mal path, the algorithm propagates outward capturing only those voxels which

are locally connected to the fiber bundle. Rather than attempting to find large

numbers of open curves or single fibers, which individually have questionable

meaning, this method segments the full fiber bundle region. The strengths of

this approach include its ease-of-use, computational speed, and applicability to

a wide range of fiber bundles. In this work, we show results for segmenting

the cingulum bundle. Finally, we explain how this approach and extensions

thereto overcome a major problem that typical region-based flows experience

when attempting to segment neural fiber bundles.

• Chapter 5: In this chapter, we present an approach for the segmentation of

brain MRI tissue into gray matter, white matter, and cerebral spinal fluid [55].
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Bayesian classification methods have been extensively used in a variety of im-

age processing applications, including medical image analysis. The basic proce-

dure is to combine data-driven knowledge in the likelihood terms with clinical

knowledge in the prior terms to classify an image into a pre-determined number

of classes. In many applications, it is difficult to construct meaningful priors

and, hence, homogeneous priors are assumed. In this chapter, we show how

expectation-maximization weights and neighboring posterior probabilities may

be combined to make intuitive use of the Bayesian priors. Drawing upon in-

sights from computer vision tracking algorithms, we cast the problem in a tissue

tracking framework. We show results of our algorithm on the classification of

gray and white matter along with surrounding cerebral spinal fluid in brain

MRI scans. We show results of our algorithm on 20 brain MRI datasets along

with validation against expert manual segmentations. In particular, the white

matter segmentation may be used as a mask for the guidance and constraint

of the geodesic tractography segmentation algorithms presented in the previous

chapters.

• Chapter 6: In this chapter, we present a bayesian probabilistic model for haus-

tral curvatures with applications to colon CAD [56]. Among the many features

used for classification in computer-aided detection (CAD) systems targeting

colonic polyps, those based on differences between the shapes of polyps and

folds are most common. We introduce here an explicit parametric model for

the haustra or colon wall. The proposed model captures the overall shape of the

haustra and we use it to derive the probability distribution of features relevant

to polyp detection. The usefulness of the model is demonstrated through its

application to a colon CAD algorithm.
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CHAPTER II

FINSLER ACTIVE CONTOURS

In this chapter, we propose an image segmentation technique based on augmenting the

conformal (or geodesic) active contour framework with directional information [59].

In the isotropic case, the Euclidean metric is locally multiplied by a scalar conformal

factor based on image information such that the weighted length of curves lying on

points of interest (typically edges) is small. The conformal factor which is chosen de-

pends only upon position and is in this sense isotropic. While directional information

has been studied previously for other segmentation frameworks, here we show that if

one desires to add directionality in the conformal active contour framework, then one

gets a well-defined minimization problem in the case that the factor defines a Finsler

metric. Optimal curves may be obtained using the calculus of variations or dynamic

programming based schemes. Finally we demonstrate the technique by extracting

neural tracts from diffusion-weighted magnetic resonance imagery.

2.1 Introduction

Geodesic active contours [43, 14] have proven to be a very useful tool for a number of

segmentation tasks. Basically, the idea is to define an active contour model based on

the theory of conformal metrics and on Euclidean curve shortening evolution. This

type of curve evolution defines the gradient direction to be that for which a curve

will shrink as fast as possible relative to its Euclidean arc-length. One multiplies

the Euclidean arc-length by a conformal factor defined by the features of interest

which one wants to extract and then computes the corresponding gradient evolution

equations. The features which one wants to capture therefore lie at the bottom of

a potential well to which the initial contour will flow. The key point is that the

4



conformal structure defines a Riemannian metric in the plane for which the features

of interest appear as closed geodesic curves.

In this chapter, motivated by certain problems in pattern detection and medical

imaging, we develop a version of geodesic active contours in a Finsler metric [4, 96].

See our discussion in Section 2.3 below for the formal mathematical definition. The

basic idea is that directionality is added to the active contours which allows for the

segmentation of image data in oriented domains. As alluded to above, isotropic active

contour models have been used to segment image data in isotropic domains, meaning

that the value of each voxel depends only upon its position in the domain and not

upon an associated direction. However, in oriented domains, image data depends both

upon position and direction. In other words, for each position and direction in the

domain there exists a unique voxel intensity. It is then that the concept of the Finsler

metric becomes crucial. In fact, if one desires to add directionality to the geodesic

active contour framework, we show that the Finsler condition is necessary to ensure

that the flow is well-posed. 1 We show that there are some applications for which

the Finsler metric outperforms the Riemannian metric, but certainly there are others

for which the Riemannian metric may be more desirable. For oriented domains, as

long as the metric satisfies the Finsler condition, the choice of a particular metric is

subject to the given application.

Flows relative to anisotropic metrics have been studied in the mathematics and

physics literature; see [2, 25] and the references therein. A very simple directional

flow was proposed in some of our earlier work; see [80].

There are many applications of image data in oriented domains. Examples include

diffusion-weighted magnetic resonance imaging in which the magnetic field is biased

in several directions in order to measure the water diffusivity of biological tissue. In

this case, for each position in the tissue and for each direction of the bias field, the

1Note that the Riemannian metric satisfies the Finsler conditions and is well-posed.

5



corresponding image intensity provides a measure of water diffusivity at that position

and direction.

Furthermore, this technique may be used in pattern detection. Consider a small

image pattern patch which we desire to match to our image. Through translations and

rotations of the patch throughout the image, we can evaluate a measure of similarity

between the patch and the image for the given patch position and direction. Thus,

this is also a problem in an oriented domain because for each position and rotation

of the patch there exists a unique measure of similarity.

Geodesic active contours in the Finsler framework provide a mechanism for the

minimization of energy functionals defined on oriented domains. We derive both the

curve evolution and dynamic programming based implementations for Finsler active

contours. The latter is necessary since we will want to consider the evolution of open

curves for which the level set methodology is not appropriate. Preliminary results for

directional-dependent segmentations may be found in [82, 81].

The idea of using Finsler type metrics for various purposes is of course not orig-

inal in this work. First of all regarding curve shortening, Gage [25] has considered

curvature driven flows in a Minkowski space. General mean curvature flows relative

to Finsler metrics are studied in [8]. Gurtin and Angenent have proposed the use of

anisotropic Finsler flows for problems in crystal growth in [2]. In the computer vision

literature such directionally-dependent metrics have appeared in [44, 110, 12, 46, 11].

In some nice work, the connections of graph cuts and such metrics have been described

in [12, 46, 11]. Geodesic active contours and graph cut methods have been combined

in [46, 12]. Further, in [46] the explicit connection between Finsler distances and the

flux methods of [110] is considered in some detail.

This chapter continues the above line of research. Here we describe Finsler flows

in a completely continuous setting valid for both open and closed curves embedded

in a Euclidean space of any dimension. The key observation is that if one defines a

6



conformal active contour flow for a direction-dependent conformal factor, then in or-

der for the flow to be well-defined, one needs the standard Finsler convexity condition

(see Section 2.3). Without this condition, the flow will be a backwards heat equation.

Thus, this present work extends the results of [43, 14] who consider conformally Eu-

clidean metrics which only depend on position, and are in this sense isotropic. (In this

chapter, we will follow the standard terminology of the mean curvature flow literature

in which isotropic flows are defined relative to a Riemannian metric while anisotropic

flows are defined relative to a direction-dependent Finsler metric; see [4].) It is im-

portant to note that while one can get directionality in the Riemannian framework

for image segmentation by a suitable choice of metric (ellipses have directionality),

nevertheless, we believe that the Finsler geodesic active contour approach gives a

natural way of performing segmentation in oriented domains.

We now summarize the contents of this chapter. In Section 2.2, we review the

theory of energy minimizing flows and geodesic active contours as well as dynamic

programming. Section 2.3 is the key part of this chapter. Here we define the notion

of a Finsler metric and derive the geodesic active contour flow relative to such a

structure. In Section 2.4, we describe the dynamic programming based solution and

the numerical implementation of such an approach. In Section 2.5, we show results of

experiments using these techniques on both MRI tractography and pattern detection

applications. In Section 2.6, we draw some conclusions and describe some future

research directions. Finally, we have included two mathematical appendices. The

first justifies the use of dynamic programming in our situation in which we have a

data driven anisotropic conformal factor, and the second gives another derivation of

the Finsler geodesic flow which also captures some of its interesting properties.
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2.2 Energy Minimizing Curves

Energy minimization approaches to image segmentation have been very popular; see

[63, 73, 92, 89] and the references therein. These approaches allow one to define a

meaningful energy for a given application and to systematically construct contours

which minimize the energy. In this section, we describe two of the key approaches

for the minimization of such energy functionals: conformal active contours (based on

gradient descent) and dynamic programming. The former works for closed curves,

while the latter method is valid for curves in which we fix seed and target regions as

well.

2.2.1 Geodesic (Conformal) Active Contours

In the conformal (or geodesic) active contour model, a local cost, ψ : R2 → R+, is

defined based on image information [43, 14]. For a given curve Γ the total cost L(Γ)

is defined as the integration of local costs along the curve:

Lψ(Γ) ,
∫

Γ

ψ(Γ) ds. (1)

This energy can be interpreted as the ψ-weighted length of the curve. Minimal

curves will therefore tend to go through regions where ψ is small while at the same

time constraining the total conformal Euclidean length to be as small as possible.

Convergence of this flow is studied in [43, 14]. It is important to note that s is the

arc-length parameterization and, therefore, this energy is purely geometric.

If the curve is closed or has fixed end points, a partial differential equation is

obtained by calculus of variations that continuously deforms an initial curve Γ(t = 0)

in a way that optimally minimizes its total cost L. This can be interpreted as a

gradient descent on the infinite dimensional space of curves.

In the case of the functional (1), the PDE that deforms a given curve in order to

minimize the energy as fast as possible in the L2 sense is
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∂Γ

∂t
= −(∇ψ ·N)N + ψΓss, (2)

where N denotes the unit inward normal.

As is standard, this may be implemented using level set methods [73, 92].

2.2.2 Dynamic Programming

Mortensen et al. [66] have proposed the live-wire segmentation technique that also

determines optimal curves for the same kind of functional. Their framework is based

on dynamic programming and is applicable to curves with one end fixed in a given

seed region S.

The underlying principle of dynamic programming is the principle of optimality

verified by minimum-cost problems such as (1) (assuming an optimal curve exists).

The principle is that any subpath p of an optimal path P is itself optimal (otherwise

the P could be improved by following another subpath p′ instead of p). This leads

to the definition of the value function L∗ which is the minimal cost to reach the seed

region S from any point x of the domain.

L∗(x) , min{ L(Γ),Γ(0) = x,Γ(1) ∈ S }

In problems such as (1), the value function satisfies the Eikonal equation |∇L∗(x)| =
ψ(x) with boundary condition L∗ = 0 on S. This equation can be solved numerically

using the fast marching algorithm [106, 92] or can be discretely approximated using

Dijkstra’s algorithm.

From any point in the domain, an optimal curve in the sense of (1) can then be

determined by gradient descent on the scalar field L∗.
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2.3 Geodesic Active Contours in a Finsler Metric

In this section, we introduce the notion of direction-dependent active contours. This

is essentially a version of active contours defined relative to a Finsler rather than

a Riemannian metric. If one thinks of a Riemannian metric as being defined by

a continuously varying family of inner products on the tangent bundle of a given

manifold, a Finsler metric is given by a continuously varying family of Banach space

norms. The strict convexity property given below is then an expression of the fact

that these norms must satisfy the triangle inequality. More mathematical details

about Finsler flows may be also be found in Appendix B.

For an excellent exposition of the Finsler property and comparisons to the Rie-

mannian structure, we refer the interested reader to [96]. Finally, we should note

that versions of curve shortening relative to the Finsler structure have been studied

in [25, 2, 3, 70].

2.3.1 Evolving space curves

In this section, we set up notations and define the notion of the Finsler metric.

Consider a family of evolving curves of the form Γ : [0, 1]× [0, T )→ Rn. For any

curve Γ(x, t) we denote

T =
Γx
|Γx| ,

∂

∂s
=

1

|Γx|
∂

∂x
, ds = |Γx| dx.

The curvature vector of Γ is

K = Γss =
∂2Γ

∂s2
.

We say that the curve evolves normally if

V =
∂Γ

∂t
⊥ T

holds always. For such curve evolutions one has

∂tT = ∂sV, [ ∂
∂t
, ∂
∂s

] = (K ·V) ∂
∂s
, and

∂

∂t
ds = −(K ·V) ds. (3)

10



For any given function

ψ : Rn × Sn−1 → R+,

we let

L(Γ) =

∫ L

0

ψ(Γ,T)ds =

∫ 1

x=0

ψ
(
Γ,

Γx
|Γx|

)|Γx| dx,

where L is the length of Γ. The infinitesimal length function ψ is only defined on unit

vectors, but one can extend it naturally to all vectors by requiring it to be positively

homogeneous of degree 1. We denote this extension by

F (p, v) = |v|ψ(
x,

v

|v|
)

so that the anisotropic length of Γ is

L(Γ(·, t)) =

∫ 1

0

F (Γ,Γx) dx. (4)

Because of the homogeneity of F , i.e.,

F (p, tv) = tF (p, v) for all x, v ∈ Rn and t ≥ 0,

the anisotropic length is invariant under orientation preserving reparametrizations of

the curve [96]. However, L(Γ) may change if one reverses the orientation of Γ.

The extended anisotropic length function F (p, v) is never a strictly convex function

of v, because it is homogeneous of degree 1. If F (p, v)2 is strictly convex, then F

defines a Finsler metric on Rn [4, 96]. A necessary and sufficient condition for this

to occur is that ∇2
θF (p, θ) be positive definite on the subspace {v ∈ Rn : v ⊥ θ}. We

compute this second derivative at the particular vector θ = (1, 0, . . . , 0) in terms of

ψ. (See [18] for a proof.)

LEMMA 1. If f : Sn−1 → R is a C2 function, and if F (v) = |v|f(v/|v|), then for

any v ∈ Sn−1 and any pair of tangent vectors X, Y ∈ TvSn−1 one has

∇2
X,Y F (v) = (X,Y )f(v) +∇2

X,Y f(v)
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where ∇2f is the second covariant derivative of f : Sn−1 → R.

If v 6= 0 is not necessarily a unit vector, then one has

∇2
X,Y F (v) =

1

|v|
{
(X,Y )f(v) +∇2

X,Y f(v)
}
.

It follows that ψ defines a Finsler metric if and only if the quadratic form defined

by gijψ +∇i∇jψ is positive definite.

2.3.2 First variation

We can now compute the first variation of our anisotropic length functional, and

derive the flow for the Finsler geodesic active contours. In this discussion, we assume

that the curves are closed or that curves under consideration have fixed end-points.

Assuming the curve Γ evolves normally, one has

d

dt
L(Γ) =

d

dt

∫
ψ(Γ,T) ds

=

∫ {
V · ψp(Γ,T) + (∂tT) · ψv(Γ,T)− ψ(Γ,T)K ·V}

ds,

where ψp and ψv denote derivatives with respect to the first and second variables in

ψ(p, v). The derivative with respect to v ∈ Sn−1 is a covariant derivative. We use (3)

to conclude

d

dt
L(Γ) =

∫ {
V · ψp(Γ,T) + Vs · ψv(Γ,T)− ψ(Γ,T)K ·V}

ds

=

∫ {
V · ψv(Γ,T)−V · ∂s (ψv(Γ,T))− ψ(Γ,T)K ·V}

ds

= −
∫

V · {∂s
(
ψv(Γ,T)

)
+ ψ(Γ,T)K− ψp(Γ,T)

}
ds,

so that you get steepest descent with

V =
[
∂s (ψv(Γ,Γs))− ψp(Γ,Γs)

]⊥
+ ψ(Γ,Γs)Γss. (5)

Here X⊥ denotes the component of X which is perpendicular to Γs = T.

Note that ψv(Γ, v) ∈ TvS
n−1 is a vector perpendicular to v since it is the gra-

dient of a function on Sn−1 at the point v ∈ Sn−1. If you expand the derivative
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∂s (ψv(Γ,Γs)) you will get two terms, one of which contains second derivatives of Γ,

namely, ψvv(Γ,Γs) · Γss.
The steepest descent flow, then leads to the following quasilinear PDE

V =
[
Γs · ∇vpψ(Γ,Γs)− ψp(Γ,Γs)

]⊥
+

[
ψ(Γ,Γs) + ψvv(Γ,Γs)

]
Γss. (6)

Here ψvv(Γ,T) is the linear map on TvS
n−1 defined by the second covariant derivative

of ψ(Γ, v). Thus for any pair of vectors X,Y ∈ TvSn−1 one has by definition

∇2
X,Y ψ(p, v) =

(
X,ψvv · Y

)
.

One sees that (6) is a parabolic equation exactly when ψ defines a Finsler metric.

This equation defines our model for the Finsler geodesic active contours.

The above derivation works for closed curves. In the planar case, one may im-

plement such a flow using level set techniques. We, however, are also in interested

direction-dependent flows for curves in which we fix seed and target regions, and for

this we will propose (in Section 2.4) the use of dynamic programming. This is es-

sential for diffusion tensor imaging in which we want to discover white matter tracts

starting from some point in the image.

Finally, in Appendix B below, we derive the first variation of the Finsler functional

in terms of the homogeneous extension F which leads to another numerical scheme.

2.4 Direction-Dependent Dynamic Programming

In this section, we show how dynamic programming can be used to determine optimal

curves. The Finsler metric condition on the anisotropic factor ψ will be assumed

throughout this discussion (so that optimal paths will indeed exist).
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2.4.1 Optimal control and the principal of optimality

Consider the optimal control problem of determining a trajectory x : [0, 1]→ Rn that

is optimal with respect to the functional

J(x(·),u(·)) =

∫ 1

0

L(x(t),u(t)) dt.

We assume in the discussion below that L is homogeneous of degree 1 in the u variable.

The control u(·) is defined by:

ẋ(t) = u(t).

For any given starting point x0, define the value function as the minimum cost for

reaching a seed region S ⊂ Rn from x0:

J∗(x0) = inf
u(·),x(0)=x0,x(1)∈S

J(x(·),u(·)).

When an optimum exists, it may be found using Bellman’s principle of optimality

[22]. Basically, this states that if x∗(·) is an optimal trajectory, then all subpaths are

also optimal. This can be expressed by the following relation:

J∗(x0) = inf
u(·),x(0)=x0,x(1)∈S

{
∫ r

0

L(x(t),u(t)) dt+ J∗(x(r)) }.

This means that if an optimal trajectory x∗(·) is found such that x∗(0) = x0 and

x∗(1) ∈ S, then for any r ∈]0, 1[ the sub-trajectories x∗|[0,r] and x∗|[r,1] are also optimal.

See [22] for a detailed proof.

In our case, using xt = u and x(0) = x0, the following Hamilton-Jacobi-Bellman

equation is obtained:

0 = inf
u(0)
{ L(x0,u(0)) +∇J∗(x0) · u(0) }. (7)

In general the value function may not be differentiable. In that case the differential

equation (7) holds in the sense of viscosity theory. See [95].
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Under our above assumptions, this can be applied to the Finsler cost functional:

L(Γ) =

∫ L

0

ψ(Γ(s),Γs(s)) ds (8)

=

∫ 1

0

F (Γ,Γx/|Γx|)|Γx| dx =

∫ 1

0

F (Γ,Γx) dx,

where s is arclength and L is length of the curve.

The resulting Hamilton-Jacobi-Bellman equation is

0 = inf
Γx(0)

{
ψ

(
Γ(0),

Γx(0)

|Γx(0)|
)|Γx(0)|+∇L∗(Γ(0)) · Γx(0)

}
,

and finally, 



0 = inf
d̂∈Sn−1

{ ψ(p, d̂) +∇L∗(p) · d̂ },

L∗(s) = 0 for s ∈ S,
(9)

where anticipating our discussion in Section 2.5 for images, we denote the given voxel

location (i.e. point in Rn) as p and direction as d̂.

2.4.2 Numerics

This equation can be solved numerically in a straightforward manner. Several numeric

approaches may be used, such as those given in [93, 40, 39]. We use the Fast Sweeping

approach proposed in [39]. From any point p0 ∈ Rn an optimal path in the sense of (8)

can then be determined by following locally the vector d̂∗ for which the minimum is

attained in (9).

Algorithm 1 Sweeping algorithm to solve the Hamilton-Jacobi-Bellman equation (9);
see [40]

Require: seed region S, direction-dependent local cost ψ
1: Initialize L∗(·)← +∞, except at starting points s ∈ S where L∗(s)← 0
2: repeat
3: sweep through all voxels p, in all possible grid directions
4: d̂′ ← arg mind∈Sn−1 fL∗,ψ(p, d̂)

5: if fL∗,ψ(p, d̂′) < L∗(p) then L∗(p)← fL∗,ψ(p, d̂′) and d̂∗(p)← d̂′ end if
6: end sweep
7: until convergence of L∗
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The algorithm sweeps through all points p in search of the least expensive direc-

tion. The cumulated cost to reach p from direction d̂ is fL∗,ψ(p, d̂) , (
∑n−1

k=0 αkL∗(p+

δk) + ψ(p, d̂))/(
∑n−1

k=0 αk), where the n neighbors p + δ0, . . . ,p + δn−1 of p in direc-

tion d̂ are interpolated using the components of the vector α , [δ0 | . . . | δn−1]
−1d̂.

Thus in three dimensions, this would be n = 3 neighbors among 26. If we take

then, for example, d̂ = (0.912, 0.228, 0.342)t, one could choose the 3 neighbors δ0 =

(1, 0, 0)t, δ1 = (1, 0, 1)t, δ2 = (1, 1, 1)t, and the corresponding weights would be

α = (α0, α1, α2) = (0.228, 0.114, 0.570). One interpretation is that the value for

reaching p from direction d̂ will be influenced most by the value at p + δ2, which

is the neighbor as much in direction d̂ as the grid allows. Since in general it is not

exactly in that direction, the final result will also be interpolated using the two other

most aligned neighbors p + δ0 and p + δ1.

One sees that if the continuous direction d̂ is exactly defined by one of the neigh-

boring voxels, i.e., d̂ = δk/‖δk‖, then f = L∗(p+δk)+ψ(p, d̂)‖δk‖, which is the cost

for reaching voxel p from voxel p + δk. This same quantity would be computed in

Dijkstra’s algorithm. Unlike Dijkstra’s algorithm however, the search for the optimal

direction is not restricted to discrete grid directions, and the minimization is per-

formed continuously over the sphere Sn−1. In our implementation, the minimization

is performed over 100 directions sampled uniformly on the sphere2 and the coefficients

α(d̂) are pre-computed. Mathematical details and a convergence proof are available

in [40].

Note that the number of iterations (where one iteration is defined as one set of

all possible directional sweeps) required for convergence depends upon the number

of turns in the curve. Each iteration, therefore, can flow information through one

complete turn of the curve. In the Applications and Simulations of Section 2.5, we

found all the curves in 3 iterations or less.

2For the algorithm to initialize properly, discrete grid directions have to be present.
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2.5 Applications and Simulations

Having developed the theory behind Finsler active contours, we now illustrate these

via several experiments. First, we demonstrate curve shortening with respect to cer-

tain anisotropic conformal factors as opposed to isotropic curve shortening. Second,

we provide a synthetic example which demonstrates a particular case where Finsler

active contours capture a corner in directional data. Third, these methods are ap-

plied to a pattern detection problem, specifically to detect roads and vessels in 2D

imagery. Fourth, we show 3D results of these techniques applied to diffusion-weighted

magnetic resonance imagery for white matter brain tractography.

2.5.1 Closed curves evolving according to the Finsler flow

In this section, in order to compare the proposed direction-dependent framework to

the isotropic framework, we examine the evolution of a closed bean-shaped curve with

respect to three separate conformal factors.

In order to isolate the effect of directional information, we study local costs that

do not depend on position but only on the direction N = [n1 n2]
t (we use the unit

normal instead of the unit tangent in defining the conformal factors; for planar curves

this is clearly equivalent):

1. ψ = 1;

2. ψ = max( 1√
2
|n1 + n2|, 1√

2
|n2 − n2|)3/0.75;

3. ψ = max(|n1|, |n2|)3/0.75.

The first cost is isotropic. In that case, the global cost of the curve is its Euclidean

length and the minimizing flow is the Euclidean curvature flow [26, 29]. This flow

shrinks any planar shape to a circular shaped point. This is illustrated on the first

column of Figure 1. The second and third costs are defined using direction infor-

mation. In particular, the second cost favors portions of the curve that are either
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(a)
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 1: Synthetic 2D example. These three different local costs depend only
on direction. They are represented as polar plots (first row). The corresponding
deforming shapes are presented on the following rows (black). The initial curve (gray
dashed) is bean-shaped. See text.
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horizontal or vertical. The third costs does exactly the opposite and favors portions

of the curve that are diagonal. The corresponding evolutions can be observed on the

second and third columns of Figure 1. The influence of direction information is very

visible in these figures.

2.5.2 Simulated Example

Finsler active contours extend the isotropic geodesic active contours by adding direc-

tionality to the distance functional. Therefore, in oriented domains where direction-

ality is important, Finsler active contours capture important directional information

unavailable to isotropic geodesic active contours.

Furthermore, Finsler active contours extend Riemannian active contours by min-

imizing with respect to the more general Finsler metric. It will be shown that, in

some cases, minimization with respect to a Riemannian metric will yield a smoothed

version of the result obtained via the Finsler metric.

In order to analyze these properties of Finsler active contours, we have devised

a synthetic simulation. We constructed a simple 2D (64x64 pixel) image with an

’L’ shaped corner as seen in Figure 2(a). The goal of this simulation is to find an

open curve which extends from the top yellow marker to the bottom yellow marker

and which follows the ’L’ shape. We performed this simulation using the dynamic

programming numerical scheme. The yellow markers are given as known inputs to

the algorithm.

The synthetic directional data was created by randomly drawing samples from

the uniform distribution on the interval [0,0.5] for evenly spaced directions on the

unit circle. Then, we added the signal by giving directions of high diffusion slightly

stronger values, as shown in Figure 2(c). This figure shows a zoomed-in view of the

directional image for 9 pixels surrounding the corner. The red arrows correspond

to the high diffusion directions (i.e. the signal), the green arrows correspond to a

19



diffusion process contrary to the signal flow, and the blue arrows are the randomly

drawn background samples.

(a) Synthetic image (b) Results

(c) Directional image (d) Riemannian image

Figure 2: Simulated 2D example: (a) The synthetic baseline ’L’ shaped corner,
(b) Finsler results (red), Riemannian results (green), Isotropic results (blue), (c) A
zoomed-in view showing the directional data of 9 pixels surrounding the corner, (d)
A zoomed-in view showing the Riemannian image of 9 pixels surrounding the corner,
created by applying the Stejskal-Tanner equation to the directional data

Using the Finsler active contour framework, we are able to capture the ’L’ shaped

corner accurately, as pictured in red in Figure 2(b). We will now compare this to two

other methods.

First, we show that adding directional information is critical to capturing the

corner. We proceed by comparing the Finsler active contour approach to the isotropic

geodesic active contour approach implemented using the Fast Marching Method [73,

92]. At each point in the image, the strongest diffusion value (without respect for

directionality) was chosen as the scalar to be used in the isotropic approach. Since,

by construction, the strongest diffusion value at each point is the same (i.e. the
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magnitude of red arrows is the same as the magnitude of green arrows), it is obvious

that the optimal path for the isotropic geodesic active contour is a straight line

connecting the yellow markers, as shown by the blue line in Figure 2(b). This example

illustrates the need for directionality and the difficulties which arise from attempting

to discard the directionality via a pointwise scalar function (in this case the maximum

diffusion at each point).

Second, we compared the Finsler active contour approach to the Riemannian

active contour approach. In this simulation, we created tensors from the directional

data using the Stejskal-Tanner equation, as shown by the zoomed-in view of the corner

in Figure 2(d). This figure shows a zoomed-in view of the Riemannian image for 9

pixels surrounding the corner. The resulting Riemannian optimal path is shown in

green in Figure 2(b). This figure reveals the smoothing effect which the Riemannian

metric tends to have on the result. This is due to the directional averaging which

occurs in the construction of the tensors by imposing the elliptical diffusion profile

on the data.

These simulations reveal that, for this particular case, the Finsler active contour

is desirable due to the fact that it is capable of capturing a sharp corner in an

oriented domain. In other cases, the scalar geodesic active contour or Riemannian

active contour approaches may have attributes which render them more suited to the

particular task.

2.5.3 Curve Detection in Imagery

Given a sample image I for which a portion of a curve Γ∗ is given (for example, by a

human expert), imagine sliding a small rectangular window along the curve in such

a way that the center of the window is always on the curve and the long axis of

the window is aligned with the tangent to the curve. Computing the average value

of image intensities at each point inside the window as the window slides along the
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curve, one obtains an average pattern of what the image looks like locally around the

curve Γ∗. A location and direction-dependent pattern detector can then be defined

by translating and rotating the average pattern and determining how well it matches

the image.

This protocol was applied to a road detection task. Figure 3 shows the portion of

the road that was used to learn the pattern detector. The dimension of the window

along its long axis (i.e., in the direction of the road) was chosen to be four times the

width of the road, and the dimension of the window along its short axis (i.e., normal

to the road) was chosen to be two times the width of the road. The pattern detector

was then obtained for any position and direction by translating and rotating the

average window and computing the sum of the square of the difference between the

intensity of the image and that of the average window. Curves that will be minimal

for this metric will then be those for which the image locally matches the pattern of

a road.

Curves were deformed using a straightforward particle-based approach. Figures 4

show two different initial curves converging to the same portion of the road. Figure 4

show the evolution of a self-intersecting initial curve. Finally, Figure 5 illustrates the

use of dynamic programming. Note that for very low SNR, the dynamic programming

fails.

The same experiments were performed on a medical image to track blood vessels.

As before the metric was defined by an initial manual segmentation step. Figure 6

shows the result of the curve evolution approach. Figure 7 shows the result of the

dynamic programming approach. In that case noise was artificially added.

2.5.4 High angular diffusion MRI tractography

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) measures the diffusion of

water in biological tissue [5]. The utility of this method stems from the fact that
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Figure 3: Road image and manually determined curve used for learning the pattern
detector.

tissue structure locally affects the Brownian motion of water molecules and will be

reflected in the DT-MRI diffusion measurements. In classical theory, diffusion follows

a Gaussian process which can be described locally by a second order tensor.

A simple and effective method for tracking nerve fibers using DT-MRI is to follow

the direction of maximum diffusion at each voxel [64, 16, 113, 6]. Although this

method is wide-spread and used in various ways the fiber trajectory is based solely on

local information which makes it very sensitive to noise. Moreover the major direction

of diffusion can become ill-defined for example at fiber crossings.

As an application of our framework, tractography is set in a continuous minimum

cost framework. This is different from [30, 13]. Indeed in these works, the authors

do not propose variational (cost minimizing) techniques. Local costs are defined for

every direction on the unit sphere based on high angular resolution diffusion imagery.

Equivalently, this can be considered a minimum arrival time framework in which the

speed of fictitious particles would be the inverse of the cost.

2.5.4.1 Constructing the Direction-Dependent Cost

Most front propagation techniques for diffusion tensor tractography use some ad hoc

function f of the quadratic form d̂tDd̂, whereD is the diffusion tensor. If the Gaussian
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(a) Initial curve 1 (b) Initial curve 2 (c) Initial curve 3

(d) Evolving curve 1 (e) Evolving curve 2 (f) Evolving curve 3

(g) Steady state 1 (h) Steady state 2 (i) Steady state 3

Figure 4: Particle-based Curve Evolution with Different Initializations

(a) Recovered curve
(original)

(b) Recovered curve
(SNR=0.50)

(c) Recovered curve
(SNR=0.25)

Figure 5: Results of road detection on noisy images using dynamic programming.
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(a) Initial curve (b) Evolving curve (c) Steady state

Figure 6: Curve evolution on a real image. The local cost is determined using a
pattern detector.

(a) Original image (b) Recovered curves (c) Recovered curves
(SNR=0.25.)

Figure 7: Vessel detection using dynamic programming. The procedure was run
independently for two seed points (large discs) and several target points (small discs).
On the right, noise was added. This changes the recovered curves as one of the
branches at the bottom is no longer visible.
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assumption holds, the diffusion weighted images follow

S(p, d̂) ' S(p,0) exp(−b d̂tD(p)d̂). (10)

Tensor based techniques can formally be extended to high angular resolution dif-

fusion datasets by setting (see [82] and references therein for details):

ψ(p, d̂) , f(−1

b
log(

S(p, d̂)

S(p,0)
)). (11)

However, in the experiments below we employed the following metric:

ψ(p, d̂) ,
(

S(p, d̂)∫
v̂⊥d̂

S(p,v̂)
S(p,0)

dv̂

)3

. (12)

This quantity will be small if there is diffusion in direction d̂ (numerator small) and

limited diffusion in directions normal to d̂ (denominator large). The main advantage

of this formulation is that several data points are used to compute the denominator

which improves the signal to noise ratio. We chose f(x) = x3 experimentally to

accentuate the anisotropy of the data. Because experimentally only a few dozen

directions are used for acquisition, interpolation was also performed.

It is very important to note that the anisotropic conformal factor ψ is constructed

from the data, and for example in the DW-MRI case we have no proof that the

corresponding F 2 is always strictly convex. However, in Appendix A below we include

for completeness a standard argument which shows that using a scheme such as fast-

sweeping, one computes the optimum relative to the convexification of F 2. This type

of convexification argument is well-known in the optimal control literature (see the

classical text [117] for details). Thus we are computing in fact geodesic active contours

relative to the Finsler metric defined by the convexification of the defining function.
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(a) b = 500 (b) b = 1000 (c) b = 1500

Figure 8: Cost per unit length of end points of optimal curves for different b-values
is a validity index. Best results are achieved for the highest b-value.

(a) (b)

Figure 9: Fiber tracking from high angular resolution dataset (b=1500 s/mm2).

Figure 10: Proposed technique on high angular resolution data (blue) compared
with streamline technique on tensor field (red) (b=1500 s/mm2).
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2.5.4.2 Results

Here we show results obtained by applying the methodology described in the above

sections to diffusion weighted data sets acquired using a single-shot diffusion-weighted

EPI sequence, with 31 different gradient directions with b-values (see equation (10))

of 500, 1000, and 1500s/mm2, on a 1.5 Tesla GE Echospeed system. The data was

acquired with different b-values to enable comparisons of the results. Traditional

eigenvector based tractography is normally carried out in data with b-values in the

range of 700 − 1000s/mm2. Higher b-values give data with higher angular contrast,

but at the expense of more noise.

Cost per unit length, which can be interpreted as a validity index for the putative

tracts was determined for all b-values as shown in Figure 8.

All curves are optimal given their starting point. The cost per unit length is a

measure of the likelihood that a tract from the seed region passes through a given

point in the domain. The best contrast (corresponding to the most coherent set of

“super-optimal” tracts for a given seed point posterior of the corpus callosum) was

obtained at the highest b-value available. This could indicate that the algorithm was

was able to take advantage of the higher angular contrast in spite of the lower SNR.

Tract results for several user defined seed points are presented in Figure 9.

Finally, the proposed technique was compared to a streamline technique (see [64,

16, 113, 6]) which requires the computed tensor field as shown in Figure 10.

While validation is a very challenging task due to the lack of ground truth, it

can be noted that both algorithms give similar results even though their inputs are

different. The tracts of the proposed technique tend to be more coherent as any noise

in the data might set the streamline off course whereas the proposed technique is

more global.

28



2.5.5 A Note on Timings

Here we present a note on the timings for each of the experiments. All of the ex-

periments were performed on a common PC. We used a Dell Optiplex GX270 with

an Intel Pentium 4 single core chip and 2GB of memory. Each of the experiments

above was conducted using Matlab code with C mex functions for the Fast Sweeping

implementation. And, while this code was sufficiently fast for our purposes, we are

in the process of porting the code to the freely available Insight Toolkit (ITK) [33].

All of the particle based approaches, on 2D roads and vessels, converged quickly

and in negligible time. Also, all of the Fast Sweeping approaches converged in 3

iterations or less (where one iteration consists of all of the possible directional sweeps

through the image), see 2.4.2 for more discussion on Fast Sweeping convergence. For

example, it took 0.13 seconds for the experiment in Section 2.5.2 to converge on a

64x64 grid, and it took 20 seconds for the experiment in Section 2.5.3 to converge on

a 787x787 grid. Also, with simple masking of irrelevant voxels, the time to converge

for the 3D DWMRI experiment in Section 2.5.4 was under 5 minutes. The time to

compute a path from a target point back to the seed point is negligible compared to

the time required to run the Fast Sweeping portion of the algorithm.

2.6 Conclusions

In this chapter, we proposed a natural approach for adding directionality to the

conformal active contour technique. The cost of a curve is defined as the length

of the curve weighted by some position and direction-dependent local costs based on

image information. This allows for the asymmetric processing of information based on

direction. The local costs can be defined from a direction-dependent pattern detector,

which can be obtained after a learning step.

The techniques described in the chapter are very general and could be used to

extract information from many different types of imagery. They have been applied
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mostly to medical imaging datasets and, in particular, to images of the brain. In fact,

it was the problem of extracting white matter tracts that initially motivated this line

of research. In the medical area, it could be also be applied to the extraction of blood

vessels from various imaging modalities such as magnetic resonance or computed

tomography.

Finally, we have only described the Finsler framework in the case of curves. One

can derive and study a similar flow for surfaces. This will be the topic of our future

research in studying directional-based segmentation methods.
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CHAPTER III

FINSLER TRACTOGRAPHY

In this chapter, we present a novel approach for the segmentation of white matter

tracts based on Finsler active contours [57]. This technique provides an optimal mea-

sure of connectivity, explicitly segments the connecting fiber bundle, and is equipped

with a metric which is able to utilize the directional information of high angular res-

olution data. We demonstrate the effectiveness of the algorithm for segmenting the

cingulum bundle.

3.1 Introduction

Since the advent of diffusion weighted magnetic resonance imaging (DW-MRI), a great

amount of research has been devoted to finding and characterizing neural connections

between brain structures. Image resolution is typically high enough that white matter

tracts, or bundles of densely packed axons, pass through several voxels [65]. In this

chapter, we present a novel approach for the segmentation of white matter tracts

based on Finsler active contours [59]. Furthermore, we show results of the algorithm

for segmenting the cingulum bundle (CB) 1.

Early tractography methods were based on streamlines which employed local

decision-making based on the principal eigenvector of diffusion tensors [64, 99, 6, 16].

Recently, tractography advances have been made which provide full brain optimal

connectivity maps from predefined seed regions. These methods are more robust to

noise and depending upon the underlying metric, may be able to more fully use the

complete DW-MRI data. These approaches can be subdivided into stochastic and

1Data provided by the Brigham and Women’s Hospital, Psychiatry Neuroimaging Laboratory,
Boston, MA
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energy-minimization approaches.

In these techniques, tracts are propagated from a starting point until the tracts

reach some termination criterion. Due to the local decision-making process, these

methods have been shown to perform poorly in noise and often stop prematurely, as

we depict later in Fig. 11(b) for the case of the cingulum bundle. These techniques do

not provide a measure of connectivity for the resulting tracts. Furthermore, several

of these methods do not use the full tensor, reducing the data to the principal eigen-

vectors, and subsequently are unable to handle fiber crossings, branchings,“kissings”,

etc.

Stochastic approaches produce probability maps of connectivity between a seed re-

gion and the rest of the brain. Parker et al. developed PICo, a probabilistic index for

standard streamline techniques [76]. Perrin et al. presented probabilistic techniques

for untangling fiber crossings using q-ball fields [78]. In other work, Friman et al.

proposed a method for probabilistically growing fibers in a large number of random

directions and inferring connectivity from the resulting percentages of connections be-

tween seed and target regions [24]. While providing a measure of connectivity between

brain regions, these stochastic approaches do not provide an explicit segmentation of

the fiber bundle itself.

Energy-minimization techniques have also been developed. Parker et al. proposed

fast marching tractography which minimizes an energy based on both the position

and direction of the normal to a propagating front [77]. O’Donnell et al. cast the

tractography problem in a geometric framework finding geodesics on a Riemannian

manifold based on diffusion tensors [74]. Similarly, Prados et al. and Lenglet et al.

demonstrated a Riemannian based technique, GCM (Geodesic Connectivity Map-

ping), for computing geodesics using a variant of fast marching methods adapted

for directional flows [85, 51]. Jackowski et al. also find Riemannian geodesics using

Fast Sweeping methods as given by Kao et al. [34, 39, 40]. In cases of high angular
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diffusion data, these Riemannian based approaches do not take advantage of the full

directional resolution due to the loss of information incurred by the construction of

diffusion tensors.

In this chapter, we present a technique which provides an optimal measure of

connectivity, explicitly segments the connecting fiber bundle, and is based on the

richer Finsler metric. Rather than following the traditional approach of finding a large

number of fibers (which individually have questionable meaning), clustering them,

and then performing statistical analyses on the clusters, we present an alternative

approach. We first find the optimal connection, which we term the anchor tract,

on the Finsler manifold between the seed and target regions. Then, we initialize an

expanding surface level set evolution on the anchor tract which grows until it stops at a

local minima on the edge of the fiber bundle. Finally, since the fiber bundle extraction

does not rely upon standard statistical measures, such as fractional anisotropy (FA),

for the segmentation, we are free to use these measures to statistically compare fiber

bundles in clinical studies.

In Section 3.2, we motivate our interest in segmenting the cingulum bundle. In

Section 3.3, we describe the algorithm for extracting the anchor tracts. Then, in

Section 3.4, we present our surface evolution algorithm for extracting the full cingulum

bundle. Finally, in Section 3.5, we show results for extracting the anchor tracts and

the corresponding cingulum bundle.

3.2 The Cingulum Bundle

The cingulum bundle is a 5-7 mm in diameter fiber bundle that interconnects all

parts of the limbic system. It originates within the white matter of the temporal

pole, and runs posterior and superior into the parietal lobe, then turns, forming a

”ring-like belt” around the corpus callosum, into the frontal lobe, terminating ante-

rior and inferior to the genu of the corpus callosum in the orbital-frontal cortex [90].
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Moreover, the cingulum bundle consists of long, association fibers that directly con-

nect temporal and frontal lobes, as well as shorter fibers radiating into their own gyri.

The cingulum bundle also includes most afferent and efferent cortical connections of

cingulate cortex, including those of prefrontal, parietal and temporal areas, and the

thalamostriate bundle. In addition, lesion studies document a variety of neurobehav-

ioral deficits resulting from a lesion located in this area, including akinetic mutism,

apathy, transient motor aphasia, emotional disturbances, attentional deficits, motor

activation, and memory deficits. Because of its involvement in executive control and

emotional processing, the cingulum bundle has been investigated in several clinical

populations, including depression and schizophrenia. Previous studies, using DW-

MRI, in schizophrenia, demonstrated decrease of FA in anterior part of the cingulum

bundle [47, 112], at the same time pointing to the technical limitations restricting

these investigations from following the entire fiber tract.

3.3 Anchor Tracts on a Finsler Manifold

In this section, we present our algorithm for extracting the optimal path, or anchor

tract, between two regions in the brain. In this formulation, the optimal path is

defined with respect to a Finsler metric. In the case of data acquired with only 6

gradient directions, this reduces to a Riemannian metric because there are 6 indepen-

dent elements of the diffusion tensor. However, in the case of high angular data, the

Finsler metric is more flexible than the Riemannian metric as it is not restricted to

an ellipsoidal diffusion profile which results from the Gaussian diffusion assumption.

In order to find the anchor tract, we construct a dynamic programming based

approach which uses a Fast Sweeping method, see [82, 39, 40] for algorithmic details.

Also, see the work by Jackowski et al. for a formulation of this algorithm based on

the Riemannian metric [34]. For the sake of completeness, we include a brief overview

of the algorithm.
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For any given starting point p0, define the value function as the minimum cost

for reaching a seed region S ⊂ Rn from p0. The resulting Hamilton-Jacobi-Bellman

equation is 



0 = inf
d̂∈Sn−1

{ ψ(p, d̂) +∇L∗(p) · d̂ },

L∗(s) = 0 for s ∈ S,
(13)

where ψ is the local cost at each point, p, and for each direction, d̂, and L∗ is the

optimal Finsler length. Numerically, this equation may be solved via Fast Sweeping

as shown in Algorithm 2.

Algorithm 2 Sweeping algorithm for the HJB equation (13)

Require: seed region S, direction-dependent local cost ψ
1: Initialize L∗(·)← +∞, except at starting points s ∈ S where L∗(s)← 0
2: repeat
3: sweep through all voxels p, in all possible grid directions
4: d̂′ ← arg mind∈Sn−1 fL∗,ψ(p, d̂)

5: if fL∗,ψ(p, d̂′) < L∗(p) then L∗(p)← fL∗,ψ(p, d̂′) and d̂∗(p)← d̂′ end if
6: end sweep
7: until convergence of L∗

The Fast Sweeping algorithm results in optimal connectivity maps and character-

istic vectors at every point in the domain. The anchor tract is then determined by

following the characteristic vectors from the target region back to the seed region,

not by gradient descent as is standard in direction-independent schemes [52].

There are many numerical schemes which may be used to solve the Hamilton-

Jacobi-Bellman equation given above. The number of sweeping iterations required

by the Fast Sweeping algorithm depends upon the number of turns in the optimal

path. Since neural tracts tend to have few total turns, the Fast Sweeping algorithm

is efficient for extracting tracts. We also note that the connections of graph cuts

and such directional metrics have been described in [12, 46, 11]. Of particular note,

in [46] the explicit connection between Finsler distances and the flux methods of [110]

is considered in some detail.
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3.4 Level Set Fiber Bundle Segmentation

In this section, we discuss the level set surface evolution which we have used to extract

the volumetric cingulum bundle. This level set surface is initialized on the anchor

tract described in Section 3.3. By using the calculus of variations, the minimizing

flow for a directional cost ψ(p, d̂) is obtained as,

Σt = −{∇pψ ·N + Tr(∇d̂d̂ψ) + (n− 1)ψH}N, (14)

where Σ is the evolving hypersurface, N is the unit normal to the hypersurface, and

H denotes the mean curvature. A derivation of this flow can be found in [79]. The

expression for the evolution of the level set function ’u’ is obtained as,

ut = {∇pψ · ∇u}+ {Tr(∇d̂d̂ψ) + (n− 1)ψH} ‖ ∇u ‖ . (15)

We use the sparse field method of Whitaker et al. to efficiently implement this level

set surface evolution [114]. We also use the angular interpolation algorithm presented

by Tao et al. [103].

In order to find the edge of the cingulum bundle, we construct a cost, ψ, which

aligns the tangent plane of the hypersurface with edges in the directions of diffusion

of the image volume. To produce a measure of these diffusion edges, we compute the

positional gradient of each diffusion direction. We then construct ψ as a function of

these positional gradients.

Mathematically the form of the cost function that we desire to extremize can be

written as follows.

ψ(p, d̂) = ψ(p, N(p)) = f(∇pφ(p, d1) ·N,∇pφ(p, d2) ·N · · ·∇pφ(p, d̂ns) ·N) (16)

where d1 through dns denote the ns diffusion directions, φ denotes the DWI data,

N(p) denotes the normal to the hypersurface at position p, and f is a linear function

of the arguments.
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There are many possible choices for the function ψ. In this chapter, we choose ψ

to be the following:

ψ = { 1

ns
·
ns∑
i=0

∇pφ(p, di) ·N(p)

‖ ∇pψ(p, di) ‖ } − 1. (17)

This cost ranges from [-1,0] and is maximized (at 0) when the normal to the hyper-

sphere is aligned with the mean gradient direction.

3.5 Experiments & Results

In this section, we present segmentation results for anchor tracts of the right and left

cingulum bundles of 12 schizophrenic and 12 normal patients. Further, we present

a first implementation of the level set surface flow introduced in Section 3.4. Scans

were acquired on a 3 Tesla GE system (General Electric Medical Systems, Milwaukee,

WI). We acquired 51 directions with b = 700 s
mm2 , 8 baseline scans with b = 0 s

mm2 .

The following scan parameters were used: TR 17000 ms, TE 78 ms, FOV 24 cm,

144 x 144 encoding steps, 1.7 mm slice thickness. We acquired 81 axial-oblique slices

parallel to the AC-PC line covering the whole brain.

Manually selected endpoints were provided by experts for each case. Masking is

necessary to ensure that the tract does not take shortcuts through cerebral spinal

fluid (CSF). We used a simple thresholding on the trace of the tensors to mask out

CSF regions. Furthermore, we applied a threshold on strong left-right diffusion to

mask out the corpus callosum which runs inferior to the cingulum bundle.

First, we show results of extracting the cingulum bundle anchor tract. In each

figure, the tracts are superimposed upon the diffusion data which has been colored by

direction (e.g. green signifies high anterior-posterior diffusion). The tensors, shown

for convenience, are colored by FA. In Fig. 11, we depict the advantage of this

algorithm in segmenting the cingulum bundle. The cingulum bundle curves around

the ventricles on both the anterior and posterior ends. In Fig. 11(a), we show how

the anchor tracts follow the smoothly varying tensor field around the bend of the
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ventricles. In Fig. 11(b), we share an example of a streamline based approach (freely

available in the 3D Slicer tool) which fails in the same bend around the ventricles.

This is the area where large tracts are joining the main bundle from both medial and

lateral parts of the parietal lobes. Using the full directional data, our method is able

to resolve the cingulum bundle in the presence of the merging fibers. In Fig. 12, we

show anterior and posterior zoomed-out views of the anchor tracts.

(a)

(b)

Figure 11: Cingulum Bundle Anchor Tracts from: (a) detailed view of a normal
control case, (b) streamline example on a schizophrenic case.
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(a) (b)

Figure 12: Cingulum Bundle Anchor Tracts: (a) anterior and (b) posterior views of
a normal control case.

Figure 13: Cingulum bundle level set segmentation result on a schizophrenic case.

Next, we show the result of an edge-based surface level set evolution on a portion

of the cingulum bundle. We present here a proof of concept implementation of the

theory from Section 3.4. In our experiment, the level set flow converged to the edge

of the bundle as depicted in the image.

3.6 Conclusions & Future Work

In this work, we have introduced a novel approach for the segmentation of white

matter tracts. We have shown an application of the method for the segmentation of

the cingulum bundle. Given manually selected endpoints, the algorithm automatically

extracts the cingulum bundle.
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We have shown how the method was able to find centerlines, or anchor tracts

of the cingulum bundle on 24 cases. We have also shown a first implementation of

the edge-based level set surface extraction. In the future, we will run the edge-based

level set segmentation on all 24 cases. We will also explore the use of other cost

functions, especially region-based costs, for the level set segmentation. Finally, we

will be able to compute statistics across the resulting segmented cingulum bundles

for the population of schizophrenics and normal controls.
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CHAPTER IV

DW-MRI VOLUMETRIC SEGMENTATION

In this chapter, we present an approach for the volumetric segmentation of neural fiber

bundles from DW-MRI data [58]. Through a local constraining of standard region-

based segmentation methods, a key problem of defining characteristic statistics on

curving fiber bundles is avoided.

4.1 Introduction

Region-based approaches to image segmentation constitute a key methodology for

numerous applications. In these approaches, the objective is to find the segmenta-

tion which optimally separates features exterior to a closed curve or surface from

features contained in the interior. These approaches have been shown to accurately

segment datasets with low signal to noise ratio, frequently outperforming edge-based

techniques.

For example, in the work by Chan and Vese, a flow is proposed which optimally

separates the first moments of the intensity distributions [15]. In more recent work,

Rathi et al. demonstrate a method based on the Bhattacharyya distance for separat-

ing entire distributions [87]. In both of these cases, features from the entire interior

of the curve are compared against features from the entire exterior.

In this present work, we propose a region-based algorithm for the segmentation of

neural fiber bundles from diffusion weighted magnetic resonance imagery (DW-MRI).

Specifically, we describe why classical approaches (i.e. those which compare features

across the full interior with features from the full exterior) may not be well-suited

for DW-MRI fiber bundle segmentation. Then, we explain how one can leverage

the results of optimal or geodesic path algorithms to locally constrain region-based
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approaches in such a manner which will both retain the beneficial attributes of region-

based methods while also handling the challenges posed by DW-MRI data. Starting

from an optimal path (or anchor tract), a fiber bundle is segmented using a Bayesian

framework. The priors are based on anatomical knowledge of the bundle being seg-

mented, for instance, a simple nonlinear anatomically derived function of the distance

to the anchor tract works well for the cingulum bundle. The likelihoods are based

on local measures of tensor compatibility (local uniformity), adapting a Chan and

Vese approach to active contours without edges. The Bayesian formulation is cast as

an energy minimization problem which is solved using a greedy flood fill motivated

algorithm.

We now briefly describe the remainder of this chapter. First, in Section 4.2, we

provide a literature review and background of tractography and fiber bundle segmen-

tation algorithms. Second, in Section 4.3, we motivate our interest in applying this

algorithm to the segmentation of the cingulum bundle. Third, in Section 4.4, we

describe the algorithm for locally constraining the region-based method. Fourth, in

Section 4.5, we provide initial results on the segmentation of the cingulum bundle

using a simplistic implementation. Finally, in Section 4.7, we provide an extensive

explanation of how these ideas and results may be adapted for use in a variety of

implementations and algorithms.

4.2 Background

Since the advent of diffusion weighted magnetic resonance imaging, a great deal of

research has been devoted to finding and characterizing neural connections between

brain structures. Image resolution is typically high enough so that major white mat-

ter tracts, or bundles of densely packed axons, are several voxels in cross-sectional

diameter [65]. The goal of tractography algorithms is to segment these fiber bundles

from the DW-MRI datasets.
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Early tractography methods were based on streamlines which employed local

decision-making based on the principal eigenvector of diffusion tensors [64, 99, 6, 16]1.

In these techniques, tracts are propagated from a starting point until the tracts

reach some termination criterion. Due to the local decision-making process, these

methods have been shown to perform poorly in noise and often stop prematurely.

These techniques do not provide a measure of connectivity for the resulting tracts.

Furthermore, several of these methods do not use the full tensor, reducing the data

to the principal eigenvectors, and subsequently are unable to handle fiber crossings,

branchings,“kissings,” etc.

Despite the shortcomings of this approach, due to its ease-of-use, streamlining

has quickly become the most popular method for fiber segmentation. To infer fiber

bundles from streamline tractography results, several groups have successfully worked

on methods for fiber clustering. The goal of clustering is to capture group behavior

of a population of streamlines and to use this group behavior to drive fiber bundle

segmentation. The end result of clustering algorithms has been shown to accurately

capture many neural fiber bundles, see for example [71, 62].

Recently, another line of work has emerged which seeks to avoid the use of the

problematic streamlines. Tractography advances have been made which provide full

brain optimal connectivity maps from predefined seed regions. These methods are

more robust to noise and depending upon the underlying metric, may be able to

more fully use the complete DW-MRI data. These approaches can be subdivided

into stochastic and energy-minimization approaches.

Stochastic approaches produce probability maps of connectivity between a seed re-

gion and the rest of the brain. Parker et al. developed PICo, a probabilistic index for

1The diffusion tensor is one of the simplest diffusion models. It is estimated from a set of
diffusion weighted images, each probing the water diffusion in a different spatial direction. In the
three-dimensional case the diffusion tensor is a 3× 3 symmetric, positive definite tensor. For details
see [7].
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standard streamline techniques [76]. Perrin et al. presented probabilistic techniques

for untangling fiber crossings using q-ball fields [78]. In other work, Friman et al.

proposed a method for probabilistically growing fibers in a large number of random

directions and inferring connectivity from the resulting percentages of connections

between seed and target regions [24]. While providing a measure of connectivity

between brain regions, these stochastic approaches do not provide an explicit seg-

mentation of the fiber bundle itself and often do not explicitly provide the optimal

connection between regions of the brain.

Energy-minimization techniques have also been developed. Parker et al. proposed

fast marching tractography which minimizes an energy based on both the position

and direction of the normal to a propagating front [77]. O’Donnell et al. cast the

tractography problem in a geometric framework finding geodesics on a Riemannian

manifold based on diffusion tensors [74]. Similarly, Prados et al. and Lenglet et al.

demonstrated a Riemannian based technique, GCM (Geodesic Connectivity Map-

ping), for computing geodesics using a variant of fast marching methods adapted

for directional flows [85, 51]. Jackowski et al. find Riemannian geodesics using Fast

Sweeping methods as given by Kao et al. [34, 39, 40]. Pichon et al. and Melonakos et

al. use the more general Finsler metric to find optimal connections [79, 82, 59, 57].

Finally, Fletcher et al. propose a new Hamilton-Jacobi-Bellman numeric solver on the

graphics processing unit to find Riemannian geodesics in near real-time speeds [23].

In each of these cases, an optimal path is found which represents the best connection

between the two regions under the given metric.

4.3 The Cingulum Bundle

In this section, we motivate the problem of segmenting the cingulum bundle. The

cingulum bundle is a 5-7 mm in diameter fiber bundle that interconnects all parts of

the limbic system. It originates within the white matter of the temporal pole, and
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runs posterior and superior into the parietal lobe, then turns, forming a ”ring-like

belt” around the corpus callosum, into the frontal lobe, terminating anterior and

inferior to the genu of the corpus callosum in the orbital-frontal cortex [90]. More-

over, the cingulum bundle consists of long, association fibers that directly connect

temporal and frontal lobes, as well as shorter fibers radiating into their own gyri.

The cingulum bundle also includes most afferent and efferent cortical connections of

cingulate cortex, including those of prefrontal, parietal and temporal areas, and the

thalamostriatae bundle. In addition, lesion studies document a variety of neurobehav-

ioral deficits resulting from a lesion located in this area, including akinetic mutism,

apathy, transient motor aphasia, emotional disturbances, attentional deficits, motor

activation, and memory deficits. Because of its involvement in executive control and

emotional processing, the cingulum bundle has been investigated in several clinical

populations, including depression and schizophrenia. Previous studies, using diffusion

tensor imagery, in schizophrenia, demonstrated decrease of fractional anisotropy in

the anterior part of the cingulum bundle [47, 112], at the same time pointing to the

technical limitations restricting these investigations from following the entire fiber

tract.

4.4 The Algorithm

In this section, we present our method for applying local constraints to region-based

flows, using the optimal paths generated by any of the optimal path approaches

mentioned in Section 4.2.

First, in Subsection 4.4.1, we motivate the need for the local constraints. Then, in

Subsection 4.4.2, we describe prior work in volumetric fiber bundle segmentation and

point out where our approach can offer improvements to these algorithms. Finally,

in Subsection 4.4.3, we explain how the local constraints may be cast in a Bayesian

framework leveraging the optimal connections, or anchor tracts, to achieve the desired
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result.

4.4.1 Motivation for Local Constraints

An implicit assumption of classical (i.e., those which compare features across the full

interior with features from the full exterior) region-based approaches is that the entire

interior of the contour contains fairly homogeneous features, such as mean intensity.

Under this assumption, these algorithms proceed by evolving the closed curve or

surface to minimize an energy defined over these features.

However, if there are no homogeneous features across the entire interior or exterior

of the object of interest, it becomes difficult to define a region-based approach which

will accurately segment the image. For instance, in the case of the cingulum bundle

which curves around the ventricles, the tensors across the fiber bundle vary in both

anisotropy and orientation across the length of the bundle, as shown in Figure 14. In

this sagittal view, we see that it is difficult to define a feature on the space of tensors

which uniquely separates the entire interior of the cingulum bundle from the exterior.

However, we also notice that the tensor shape and anisotropy vary smoothly across

the bundle. Hence, locally across the fiber one can define tensor features which are

distinguishable from the exterior.

4.4.2 Prior Work

Surface evolution approaches have been described for fiber bundle segmentation.

Rousson et al. [88] use a multi-variate Gaussian distribution of the tensor components

in a geodesic active region model to drive a surface evolution towards the segmentation

of fiber bundles. The method is applied to the segmentation of the corpus callosum,

but is unable to fully capture its curved character as discussed by the authors. In a

follow-up paper [50] a similar segmentation framework in combination with a geodesic

distance between tensors is shown to yield superior segmentation results, in particu-

lar, when segmenting curved fiber bundles. Jonasson et al. propose two different ways
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Figure 14: Example of the need for local constraints on region-based segmenta-
tion algorithms which attempt to segment the cingulum bundle. Notice that tensor
anisotropy and orientation vary across the length of the cingulum bundle.

to address the segmentation of curved fiber bundles in a surface evolution setting: (i)

a local approach [37], where the surface evolution speed is influenced by the similarity

of a tensor in comparison to its interior neighbors, and (ii) a region-based approach,

where the similarity measure is based on the notion of a most representative tensor

within the segmented region [38]. In the latter case, capturing highly curved fiber

bundles will be problematic. In both cases the segmentation algorithm is combined

with a surface regularization to prevent leaking. The approach proposed in this chap-

ter is related to Jonasson’s work [37] in as much as it uses local tensor similarities to

drive the segmentation, however, no surface evolution is used and a tensor similarity

measure is combined with prior information as given by an initially computed anchor

tract (also preventing large-scale leaking). The extension of the approach proposed

in this chapter (see Section 4.7) can be seen as complementary to the method by

Lenglet et al. [50]. Instead of disentangling tensor shape and orientation through an

appropriate tensor distance (and statistic) the anchor tract may be used to warp the

space initially, thus effectively removing large orientation differences2. Further, due

to the absence of a surface evolution, our approach is computationally very efficient.

2Our approach may also be combined with the method proposed in [50].
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4.4.3 Bayesian Framework

In this section, we describe how the algorithm can be formulated in a Bayesian frame-

work. We follow the approach by Mumford [68] and cast the Bayesian estimation

problem into an energy minimization. The probability of observing the classification

C, consisting of points belonging to the fiber and points belonging to the background

given the tensor information T is (using Bayes’ formula):

p(C|T ) =
p(T |C)p(C)

p(T )
∼ p(T |C)p(C), (18)

where C is an element of the set of all possible assignments of voxels to the fiber

and the background respectively, p(T |C) is the likelihood of observing T given the

classification C and p(C) is the prior. By taking the logarithm on both sides and

noting that p(T ) is independent of the classification C, Equation (18) can be written

as an energy minimization problem [68]

E(C) = − log(p(C, T ))

= − log(p(T |C))− log(P (C))

= Ed(T,C) + Ep(C), (19)

where Ed(T,C) denotes the data energy and Ep(C) the prior (or regularization) en-

ergy. Instead of solving the Bayesian estimation problem (18) directly we may thus

instead minimize the energy (19). Which leaves us with defining these energies. We

use a flood-fill algorithm approach that solves the energy minimization problem (19)

for an individual point only considering its local neighborhood N . In what follows we

first describe the continuous setting, to make connections with existing approaches,

and then describe the discrete implementation in the context of the proposed Bayesian

flood-fill algorithm. Given the local neighborhood N of a point x we want to decom-

pose it into a subregion belonging to the fiber and a subregion belonging to the

background. The goal of our algorithm is to make each of these two subregions
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individually as uniform as possible, while at the same time using anatomically mean-

ingful prior information. The prior information is encoded based on the distance of

the pre-computed anchor tract, which is the lowest cost path connecting two maxi-

mally spaced-out, pre-defined regions of interest of the fiber bundle of interest (in our

case the cingulum bundle). Specifically, we choose p(C) as

p(x) = sG(d(x)), (20)

where d(x) is the distance of point x from the anchor tract and

sG(r) = Gσ ∗





1 for |r| > µmin

1
2

for µmin ≤ |r| ≤ µmax

0 otherwise,

where Gσ is a Gaussian with standard deviation σ and ∗ is the convolution operator;

µmin and µmax are set to the range of expected radius values. Note, that the prior

could also be replaced by a probabilistic atlas. Equation (20) describes an initial

zone of high fiber confidence close to the anchor tract, a transitioning region (where

p(C) = 1/2) where the prior information will not be used3, and an anatomically

implausible region, where the prior probability decreases to zero. The prior energy is

then defined as

Ep(C) =
1

|N |

(∫

Nf

1− p(x) dΩ +

∫

Nb

p(x) dΩ

)
, (21)

where Nf is the region belonging to the fiber Nb is the region belonging to the back-

ground and | · | denotes cardinality, i.e., |N | is the volume of the neighborhood. Given

a measure of uniformity D : T ×SN 7→ R+
0 mapping from the space of tensors T and

the space of neighborhood sets of tensors SN 3 T (N) := {T (x) ∈ T |x ∈ N} to a

3If p(C) = 1/2, the prior energy (21) is independent of assigning the candidate flood-fill point to
the fiber or the background.
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non-negative real value, we write the data energy as

Ed(T,C) =
1

|N |
( ∫

Nf

D(T (x), T (Nf )) dΩ +

∫

Nb

D(T (x), T (Nb)) dΩ

)
,

where T (x) denotes a tensor at position x and T (N) denotes the set of tensors in the

region N . This is an energy similar to the one proposed by Chan and Vese [15] for the

segmentation of intensity images4. Note, however, that instead of using this energy

globally to perform tensor segmentation, we are proposing to use this energy in a local

neighborhood to make a local decision for a flood-fill algorithm, thus avoiding global

tensor orientation issues for strongly curving fiber bundles. To minimize this energy

in the discrete flood-fill setting, we simply compute the difference of the energies

when adding the voxel in question to either the fiber (resulting in energy Ef ) or

to the background (resulting in energy Eb). The difference of these energies ∆E =

Eb−Ef corresponds to a discretized gradient. Since our goal is to minimize the overall

energy, a voxel x will be added to the set of fiber voxels if ∆E > 0. All integrals

in Equations (21) and (4.4.3) become sums in the discretization. Many uniformity

measures are possible (see for example [38, 37, 1] for some ideas on how-to compare

tensors), we constructed a simple one based on fractional anisotropy and the major

diffusion direction:

D(T (x), T (N)) =
1

2

(
DFA(T (x), T (N)) +De1(T (x), T (N))

)
,

where

DFA(T (x), T (N)) = |FA(T (x))− FA(T (N))|

measures the uniformity in fractional anisotropy and

De1(T (x), T (N)) = 1−
√
FA(T (x))FA(T (N))× e1(T (x))T

λ1(T (N))e1(T (N))

‖λ1(T (N))e1(T (N))‖
measures the uniformity in direction. Fractional anisotropy (FA) is defined as [7]

FA =

√
3

2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

√
λ2

1 + λ2
2 + λ2

3

4To favor “smooth” discrete boundaries, a local boundary length term can be added.
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where e1(T ) denotes the major unit eigenvector of the tensor T , λi(T ) its eigenvalues

(with λ1 ≥ λ2 ≥ λ3 ≥ 0), and the overhead bar signifies the mean5. De1 is scaled by

fractional anisotropy to discard tensors that are close to being isotropic, since in these

cases eigenvector computations become numerically problematic. The continuous

approach could alternatively be implemented using fast marching or level sets. In

this work, we use a very simple flood-fill approach which propagates away from the

anchor tract. Certainly other methods would offer a more continuous and numerically

accurate approach. However, our simple flood-fill implementation is sufficient as a

proof-of-concept.

The algorithm proceeds in the following steps:

(i) Declare all voxels on the anchor tract as fiber voxels.

(ii) Consider all 6-connected neighbors to the fiber voxels that are not fiber voxels

themselves as candidate voxels.

(iii) Decide whether a candidate voxel should belong to the fiber based on the simple

local energy minimization described above (where the neighborhoods Nf and

Nb are given by the voxels in the current neighborhood N that already belong

to the fiber or are so far classified as background respectively). If a candidate

voxel should be part of the fiber according to the local energy minimization,

add it as a fiber voxel.

(iv) Repeat from step (ii) until no more new fiber voxels are found.

Using the Bayesian framework, the outward propagating front stops once the

Bayesian detection threshold is reached, i.e., once all boundary voxels are in locally

minimal energy configurations.

5FA may be computed directly from the tensor components without computing the tensor eigen-
values first [7].
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4.5 Experiments

In this section, we show results of the algorithm applied to DW-MRI datasets of 51

sampling directions. We used the Finsler tractography method proposed by Melon-

akos et al. to compute the anchor tracts or optimal paths between two input seed

regions [57]. The seed regions were manually segmented, one under the anterior tip

of the ventricles and the other under the posterior tip of the ventricles.

Using precomputed anchor tracts, we were able to construct our priors using

the function shown in Figure 15, as previously described (mean radius r = 3 mm,

µmin = 1
2
r = 1.5 mm, µmax = 3

2
r = 4.5 mm, σ = 1

8
r = 3

8
). Applying this function

to a distance map from the anchor tract, the prior image is as shown on the left side

of Figure 16. The white colored area is where the uniform priors are centered on the

mean value of the cingulum bundle radius, which we take to be 3 mm as described

in Section 4.3. In the middle of Figure 16, we show the likelihood energy gradient

computed from the evolution (where positive values are likely to belong to the bundle

and negative values are not likely to belong to the bundle). Notice how the likelihood

energy function captures an appropriate boundary across a majority of the cingulum

fiber bundle. The orientation dependent terms had the strongest influence on the

inferior edge against the corpus callosum. The anisotropy dependent terms had the

strongest influence on the superior edge. On the right side of Figure 16, we show the

posterior energy gradient, which results from the combination of likelihood energy

and prior energy terms.

In Figure 17, we show a 3D model view of the resulting segmentation. Then,

in Figure 18, we show three separate time steps in the flood-fill evolution. The first

column is at 1 iteration, the second column is at 3 iterations, and the final column is at

18 iterations-where all three methods had converged. The top row shows the evolution

using only the priors. Notice how the result is a smooth tube exactly matching the

prior that is too wide for this individual and ends up overlapping proximal anatomy,
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Figure 15: The prior profile: Blue is the initial step function, Red is the actual
profile after smoothing. Note the region of uniform priors (0.5), centered around the
clinically defined mean fiber radius.

such as the corpus callosum. The middle row shows the evolution using only the

likelihoods. While this result appropriately captures the majority of the bundle,

it is subject to a few leaks as shown. The bottom shows the evolution using the

Bayesian combination of the likelihoods and priors. This result shows an appropriate

combination of the likelihood boundary stopping and the prior leakage constraints.

We also note that the few parameters used in this method can be chosen given

anatomical information about the mean radius of the fiber bundle. The prior energy

function is only dependent upon this parameter, as mentioned previously. Also,

the neighborhood size is chosen to be large enough so that at least 20% of the

neighborhoods on the first iteration include voxels exterior to the fiber bundle. In

this case, we chose a neighborhood radius of 7 mm. No other parameters were needed

in this computation.
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Figure 16: The prior energy (left), likelihood energy (middle), and posterior energy
(right).

Figure 17: A 3D view of the result.
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Figure 18: Front evolution time steps: Top Row is the evolution with only the
priors. Middle Row is the evolution with only the likelihoods. Bottom Row is the
evolution from the Bayesian inclusion of both the likelihoods and priors.
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4.6 Tensor Warping

In this section, an alternative method is presented for volumetric segmentation based

on a warping of the tensor field about a representative fiber tract [69]. This section

proposes a new segmentation method for near-tubular fiber bundles. It is based on

reorientation of diffusion measurements resulting in more uniform data distributions

inside the fiber bundle of interest. Segmentation is performed by an efficient convex

approximation of the probabilistic Chan-Vese energy using region-based directional

statistics. The approach compares favorably to streamline approaches for bundle

segmentation.

4.6.1 Motivation and Algorithm

Figure 19 illustrates diffusion tensors changing direction along a fiber bundle and

the same set of diffusion tensors when realigned relative to a representative fiber

tract. This realignment process is at the core of the approach proposed in this pa-

per. Realignment simplifies the original problem by making it spatially stationary.

Segmentation methods for vector-valued images can then be employed for fiber bun-

dle segmentation. Note that standard streamline tractography usually incorporates

a weak, implicit form of spatial realignment by disallowing orientation changes con-

sidered too drastic.

The proposed approach is:

1) Find a representative fiber tract (e.g., by streamlining, by an optimal path

approach, or through atlas warping of a predefined representative fiber tract).

2) For every candidate point in the image volume, find the closest point on the

representative fiber tract.

3) Regard the candidate point as part of the fiber bundle if its diffusion information

is similar to the diffusion information at the closest point.
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(a) Original fiber bundle. (b) Realigned fiber bundle.

Figure 19: Tensor reorientation concept. The spatially varying tensor orientation
can largely be removed by reorientation with respect to a representative fiber tract
(blue).

4) Create a spatially consistent segmentation based on the similarities of 3).

4.6.2 Results

This subsection gives results for the tensor warping segmentation approach. Synthetic

examples are discussed in Section 4.6.2.1. Section 4.6.2.2 presents results for a real

DW-MRI of the brain and compares them to segmentation results obtained through

streamline tractography based on the major eigenvectors of the diffusion tensors and

Runge-Kutta numerical integration.

4.6.2.1 Synthetic example

A synthetic tensor example was generated. Tensors are assumed of uniform shape

with eigenvalues (1.5, 0.5, 0.5)e−3 oriented along a circular path to model a fiber bun-

dle. Tensors oriented orthogonally to the circular path model the outside. Diffusion

weighted images were generated using the Stejskal Tanner equation Sk = S0e
−bgT

k Tgk ,

where Sk denotes the diffusion weighted image acquired by applying a gradient di-

rection gk with b-value b, and T the diffusion tensor. Parameters were S0 = 1000,

b = 1000 with 46 gradient directions distributed on the unit sphere using an electric

repulsion model and enforcing icosahedral symmetry. Rician noise of σ = 70 was in-

troduced to the baseline image S0 (non-diffusion weighted) and the diffusion weighted
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images Sk. Figure 20 shows the original data and the resulting segmentation on the

top row (with the streamline indicating the computed representative tract) and the

reoriented data with associated segmentation on the bottom row. For this synthetic

example, reorientation results in an almost perfectly uniform tensor distribution on

the inside and the outside of the simulated fiber bundle. Consequently, while the pro-

posed approach fails at segmenting the original data, it segments the reoriented data

well. Note, that the failure to segment the original data is not merely a result of the

segmentation method employed. Any segmentation relying purely on region-based

statistics will either have to include some of the background in its bundle segmenta-

tion or will severely under-segment the bundle itself, since background and foreground

are not clearly separable based on global statistics. While including edge-based terms

may improve the segmentation of the original data, regional terms will be of limited

use and will locally counteract the edge influence requiring a delicate balance between

region-based and edge-based energies to faithfully segment the simulated fiber bundle.

4.6.2.2 Real example

The real example was computed for the cingulum bundle using a 3T DW-MRI up-

sampled to isotropic resolution (0.93 mm3) with 8 baseline images and 51 gradient

directions distributed on the sphere by electric repulsion (b=586). The representative

tract was computed using streamline tractography.

Figure 21 shows color by orientation representations for a sagittal slice through

the brain with the cingulum bundle (mainly in green) before and after reorientation.

The reoriented image shows a consistently green cingulum bundle, whereas in the

original image the cingulum bundle is colored blue when wrapping posteriorly around

the corpus callosum, indicating a change of orientation from anterior-posterior to

superior-inferior. This result demonstrates the beneficial effect of reorientation on the

real data set (effectively removing large-scale geometry effects), which allows for fiber
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(a) Original, color by orienta-
tion.

(b) Original, tensors. (c) Original, segmentation.

(d) Reoriented, color by orien-
tation.

(e) Reoriented, tensors. (f) Reoriented, segmentation.

Figure 20: Segmentation of a synthetic example. Reorienting diffusion information
based on the representative streamline (top left) result in almost uniform tensor distri-
butions interior and exterior to the fiber bundle. While segmentation for the original
data is difficult and leads to unsatisfactory results, segmentation of the reoriented
data is much easier leading to a faithful segmentation with the proposed approach.
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(a) Before reorientation. (b) Before reorientation. (c) Original.

(d) After reorientation. (e) After reorientation. (f) Reoriented.

Figure 21: Sagittal slice of the cingulum bundle, before and after tensor reorien-
tation. The cingulum bundle appears more uniform in direction (green) after re-
orientation. Reorientation greatly improves the segmentation result of the proposed
approach.

bundle segmentation with a global statistical model. Example segmentation results of

the proposed approach are shown for the reoriented and the original data. The surface

models generated from the computed segmentations show that the segmentation for

the reoriented data approximates the cingulum bundle more faithfully.

Finally, to demonstrate the strength of the reorientation approach, Figure 22 gives

an example for the cingulum bundle segmentation at a posterior slice of the cingulum

bundle where the cingulum bundle wraps around the corpus callosum. While in

the reoriented case the segmentation is successful and the direction of the cingulum

bundle is uniform (green), the segmentation on the original data fails in this part of

the fiber bundle.

To compare the proposed methods to alternative segmentation approaches, the

cingulum bundle was segmented using a region of interest based approach (the same

regions of interest used to generate the representative fiber tract for reorientation).

Two small axial regions of interest were defined for the cingulum bundle (superiorly to
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(a) Original (O). (b) Segmented (O). (c) Reoriented (R). (d) Segmented (R).

Figure 22: Effect of reorientation on orientation and segmentation, depicted for a
posterior coronal slice. Reorientation results in a consistent orientation of the cingu-
lum bundle changing from blue to green, indicating a directional change from inferior-
superior to posterior-anterior. While segmentation using the proposed approach fails
for the original data it succeeds after reorientation.

the corpus callosum). Streamline tractography with voxelization, full brain streamline

tractography with voxelization, as well as segmentation on the original and reoriented

data using the proposed approach was performed. Figure 23 illustrates segmentation

results for these methods for coronal slices in the superior part of the cingulum bundle

(where the cingulum bundle is not strongly curved). As expected streamline tractog-

raphy and full brain streamline tractography mainly capture the interior of the fiber

bundle, with full brain tractography performing qualitatively better than standard

region of interest based streamline tractography (streamlines were seeded one per

voxel in the regions of interest). The proposed segmentation approach captures the

cingulum bundle well for the reoriented and for the original data, showing the utility

of segmenting in orientation space. However, the reoriented segmentation results are

better where the cingulum bundle curves strongly, as shown in Figure 22.

4.7 Conclusions

This chapter proposed a novel segmentation method for diffusion tensor images. The

approach is based on a Bayesian region growing, where the prior depends on the

distance to a pre-computed anchor tract. The anchor tract is given by the optimal

path in a Finsler metric (though any other robust method giving a representative fiber
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Original FBS S O RO

Figure 23: Superior coronal slices: Original data; results for streamline (S) and full
brain streamline (FBS) tractography, for the proposed segmentation on original data
(O) and on reoriented data (RO). Only the proposed approach segments up to the
perceived bundle boundary in orientation space.

62



path could be used), utilizing the full diffusion profile. The likelihood is determined

based on the consistency of a candidate voxel with its neighbors that are already

part of the segmentation. (i.e. the likelihood is dynamically updated as the region

is growing.) The Bayesian combination of likelihood and prior allows for a balanced

combination of local consistency and distance from the optimal path, which also

inhibits segmentation leakage. The approach is computationally efficient.

Region-based segmentation algorithms have been highly successful in segmenting

uniform (in a given measure) regions. In this work, we showed how translating this

global region-based approach to diffusion weighted imaging for the segmentation of

fiber bundles is accomplished. In particular, many fiber bundles in the brain curve

strongly (e.g. the cingulum bundle, the arcuate fasciculus, the corpus callosum) and

benefit from the approaches described in this work.
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CHAPTER V

BRAIN MRI TISSUE CLASSIFICATION

In this chapter, we present an approach for the segmentation of brain MRI tissue into

gray matter, white matter, and cerebral spinal fluid [55]. In particular, the white

matter segmentation may be used as a mask for the guidance and constraint of the

geodesic tractography segmentation algorithms presented in the previous chapters.

5.1 Introduction

Bayesian classification methods have been extensively used in a variety of image

processing applications, including medical image analysis. The basic procedure is to

combine data-driven knowledge in the likelihood terms with clinical knowledge in the

prior terms to classify an image into a pre-determined number of classes. There is

an extensive body of work which examines classification in this context using brain

atlases and other spatial and shape priors on the medical image data [84, 108, 41].

Frequently, however, algorithms are required to perform in the absence of sufficient

prior clinical knowledge and researchers revert to maximum-likelihood estimation

which assumes uniform priors on the data.

In Figure 24, a categorization is portrayed which depicts a grouping of classifica-

tion strategies which operate in the absence of clinical prior information. On the left,

we show our algorithm which makes use of the prior terms by casting the classification

problem in a slice-by-slice iterative framework. In the middle, we show our algorithm

with uniform priors in a volumetric non-iterative framework. On the right, we group

all other 3D classification algorithms which use uniform priors.

In this chapter, we explore the use of minimal prior information. Simply stated,

we wish to make use of the prior terms by incorporating useful information which
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Figure 24: Medical Image Classification Strategies

can be entirely derived from the image header and data itself. The prior informa-

tion we propose to use includes a combination of expectation-maximization weights

and neighboring posterior probabilities. This will be described in greater detail in

Section 5.2.3.

Before introducing our tissue tracking algorithm, we will discuss other Bayesian

classification algorithms in Section 5.2.1 and 5.2.2. Second, in Section 5.2.3, we

will outline our tissue tracking algorithm. Third, in Section 5.3, we will outline our

experiments on 20 brain MRI data-sets. And, finally, in Section 5.4, we will present

our results.

5.2 Bayesian Classification Algorithms

In the first two subsections, we present previous work on Bayesian classification algo-

rithms. First, we present work by Haker et al. [31] which outlines the general structure

of Bayesian classification for tracking applications. Next, we present similar work by

other groups which has been adapted for volumetric medical image segmentation.

Then, in the last subsection, we present our work which casts the medical image

segmentation into a tracking framework.
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5.2.1 2D Tracking Algorithms

Several groups have previously proposed Bayesian classification algorithms. Most

relevant to our work is the work by Haker et al. on the tracking of objects in 2D

time-lapsed sequences of Synthetic Aperture Radar (SAR) data [31].

At each time step in the tracking framework, the algorithm classifies the given 2D

image slice into N classes. The segmentation proceeds as follows:

First, the image data is used to generate likelihood probabilities, p(V |C ), for a

class C and an intensity value V . Typically, a normal distribution is assumed on the

data and the parameters of the distribution are estimated from the 2D slice.

Next, prior probabilities are constructed. In [31], it is suggested that good results

can be achieved by setting the priors of the current slice to the posteriors of the

previous slice. This has a smoothing effect across time and tends to help push through

noise which may occur on slices in time.

In the last step of the algorithm, the likelihood and prior probabilities are used to

compute the posterior probabilities, p(C |V ), via Bayes’ Rule. Following the appli-

cation of Bayes’ Rule, each of the N components of the posteriors are independently

spatially smoothed using the anisotropic smoother of Olver et al. [72]. Teo et al.

showed that such a smoothing of the posteriors results in a more effective noise re-

moval than a smoothing of the original data [104].

Finally, the segmentation is completed by assuming that each pixel belongs to the

class of maximum probability. It is well known that this “Maximum a posteriori test”

minimizes the probability of segmentation error. 1 Using this decision rule, a final

segmentation or label-map is constructed from the smoothed posterior probabilities.

1It is possible for one to assign various subjective costs for different types of segmentation errors
and to then generalize this MAP test to minimize the average Bayes risk; however, we do not wish
to penalize any type of error in particular, so the MAP test seems appropriate.
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5.2.2 Volumetric Medical Image Classification

Previously, Teo et al. [105] presented results of volumetric Bayesian segmentation

on brain MRI scans. Their Bayesian segmentation algorithm was used to detect

the white/gray matter boundary. Their algorithm is very similar to the algorithm

stated above in Section 5.2.1. However, instead of iterating through the slices, they

simply classified the entire volume in one shot. Therefore, they assumed homogeneous

priors. Like the algorithm above, they also smoothed the posteriors and applied a

MAP decision rule to achieve segmentation.

After applying the Bayesian classification algorithm, Teo et al. perform a surface

growing morphology operation to grow gray matter uniformly across the white matter

surface to a predetermined thickness. They explain the due partial volume effects it is

difficult to achieve accurate gray matter segmentations in MRI using this technique.

In other related work, Yang et al. [115] developed a Bayesian segmentation al-

gorithm for the segmentation of coronary arteries. In this case, homogeneous priors

are also employed. Furthermore, this algorithm works in conjunction with an active

contour model to achieve the final result.

5.2.3 Tissue Tracking

In this subsection, we present the details of our tissue tracking algorithm. Specifically,

we show how expectation-maximization weights and posterior probabilities may be

combined to make intuitive use of the Bayesian priors. Afterwards, we show results of

our algorithm on 20 brain MRI data-sets along with validation against expert manual

segmentations.

We proceed in a similar fashion as previously introduced in Section 5.2.1. However,

since the data in not time-lapsed, we view the scan axis as the axis of tracking. In

Figure 25, we present the basic idea. This algorithm works by iteratively sweeping

through the image volume and classifying the volume slice-by-slice. The resulting
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Figure 25: Tissue Tracking General Structure

classification is 3D due to the fact that information is passed between slices through

the iterative process.

As in the other algorithms, this algorithm depends upon the user choosing the

number, N , of predetermined classes into which the imagery is to be classified. As

before, at each step of the iteration through the data-set, our algorithm classifies the

given 2D image slice into N classes. The segmentation proceeds as follows, refer to

Figure 26 for an overview:

First, the image data is used to generate likelihood probabilities, p(V |C ), for a

class C and an intensity value V . We assume that the intensities in a given image

represent samples from a Gaussian mixture model comprised of N clusters. The

parameters for each Gaussian component of the mixture model can be estimated via

the expectation-maximization (EM) algorithm. We use the EM algorithm presented

by Bilmes et al. [10] to estimate the means and variances along with the component

weights which provide a measure of the prior probability for each given class.

Next, we construct the prior probabilities, p(C ). In many applications, it is

difficult to construct meaningful priors by bringing non-data-driven information into

the segmentation framework, and thus uniform priors are often employed. We suggest
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Figure 26: Tissue Tracking Algorithm

that there are meaningful data-driven priors one may use in these situations. For

instance, in [31] the authors reported success using the previous posteriors as the

current priors when classifying a time sequence of SAR images. Our method provides

a convenient way for one to combine the posteriors from previous medical image slices,

call these pPOST (C ), with the expectation-maximization weights computed from the

data, denoted by pEM (C ), on the current slice to form the prior probabilities on the

current slice.

We begin with an intuitive explanation. For a very small slice spacing, we expect

a high degree of correlation from one slice to the next and thus would likely benefit
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from using the posteriors of the previous slice to guide the choice of priors for the next

slice. On the other hand, for a large slice spacing, it is undesirable to use information

from previous slices to guide the segmentation of the next slice. In this case, we could

set our priors according to the weights derived from the expectation-maximization al-

gorithm. Hence, we use slice spacing, call this Z, to set the contributions of pPOST (C )

and pEM (C ) as follows:

p(C ) = e−Z/λpPOST (C ) + (1 − e−Z/λ)pEM (C ) (22)

where λ is a free parameter which allows the user to tune the weights appropriately.

As before, in the last step of the algorithm, the posterior probabilities are smoothed

and the MAP decision rule is applied to achieve the final segmentation.

5.3 Experiment

We have applied this algorithm to 20 normal brain MRI data-sets. We used publicly

available data-sets from the Internet Brain Segmentation Repository (IBSR) offered

by the Massachusetts General Hospital, Center for Morphometric Analysis [54, 86].

The IBSR data-sets are T1-weighted, 3D coronal brain scans after having been po-

sitionally normalized. Manual expert segmentations for these data-sets are publicly

available and represent the ground truth used in this work.

Also documented on the IBSR website are the details for a comparison of 6 sep-

arate classification algorithms on these 20 datasets. They use an overlap metric for

validation known as the Tanimoto coefficient [19] which will be discussed further in

Section 5.4. Using the Tanimoto coefficient, Rajapakse et al. compared the results

of 6 separate algorithms (each operating in the absence of clinical prior informa-

tion) on the classification of these 20 datasets into gray matter, white matter, and

CSF. These 6 algorithms include the following: Adaptive MAP, Biased MAP, Fuzzy

C-Means, MAP, Maximum-Likelihood, and Tree-Structure K-Means.
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These 20 coronal brain scans are convenient for comparison because they span

the spectrum of quality of imagery. The worst cases have low contrast and relatively

large intensity gradients. The best cases are more recently acquired and result in

better overlap scores.

Our code was written using the Insight Toolkit (ITK) [33]. ITK is quickly becom-

ing the imaging software of choice for researchers in the medical imaging community

and all of the functionality needed for this algorithm exists in the latest release of ITK

(version 3.0.0). In addition to ITK, we relied heavily upon various tools to perform

our experiment, such as 3D Slicer [27] and FreeSurfer [91].

The IBSR data is anisotropic (1mm x 1mm x 3mm), so we set the parameter

Z = 3. We experimented with a variety of settings for the parameter lambda and

found that the best results were achieved by setting λ = 3. This corresponds to using

36.7% of the neighboring posterior and 63.3% of the EM weights for our prior.

5.4 Results

Here we compare the results of our algorithm on the 20 IBSR datasets with the 6

algorithms discussed above in Section 5.3. We validate the results of our algorithm

against the expert manual segmentations using the Tanimoto coefficient. The Tani-

moto coefficient is defined by 1− (n1 + n2 − 2n12)/(n1 + n2 − n12) in which n1 is the

number of voxels of a particular class (e.g. the number of voxel of gray matter) in

manual result and n2 is number of voxels of that same class for the algorithm result.

n12 represents the number of voxels contained in the intersection of the particular

class from manual result and the algorithm result. The metric ranges from 0 to 1

while 1 signifies identical results and 0 indicates poor results. While other popular

validation methods exist, such as the DICE measure [118], the Tanimoto metric rep-

resents a good measure of overlap and is convenient for comparing against the IBSR

results.
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Figure 27: Overlap of Gray Voxels for Each Brain Scan

The results of our methods as compared to the 6 other algorithms is shown in

Figure 27 for gray matter voxels and in Figure 28 for white matter voxels. As can

be seen, our algorithm performs better than the competing algorithms, especially for

low quality imagery (note that the cases are ordered from poor quality on the left to

high quality on the right).

On average, the tissue tracking algorithm achieves a Tanimoto coefficient of 0.6236

for gray matter compared to 0.5609 for the 3D volumetric version and to 0.5254 for

the other methods shown in the plot. Likewise, the tissue tracking algorithm achieves

a Tanimoto coefficient of 0.6578 for white matter compared to 0.6039 for the 3D

volumetric version and to 0.5580 for the other methods shown in the plot.

In Figures 29, 30, and 31, we show snapshots of our results on various data-sets

and slices. In the left column, we show the original grayscale slice. In the middle
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Figure 28: Overlap of White Voxels for Each Brain Scan

column, we show the results of our classification algorithm. In the right column, we

show the expert manual segmentation results. Note that cases 5-8 and 4-8 were poor

quality cases while case 11-3 was a high quality case.

5.5 Conclusion

We have presented an algorithm for the Bayesian segmentation of imagery by casting

the problem in a tracking framework and using priors derived from the data. Using

slice thickness, we have proposed a combination of expectation-maximization weight-

ing and previous posterior updating to construct meaningful priors. The application

of this algorithm to brain MRI scans has shown positive results.
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(a) Raw (b) Algorithm (c) Manual

Figure 29: Case 5-8, Slice 36

(a) Raw (b) Algorithm (c) Manual

Figure 30: Case 4-8, Slice 12

(a) Raw (b) Algorithm (c) Manual

Figure 31: Case 11-2, Slice 44
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CHAPTER VI

BAYESIAN METHODS IN COLON CAD

In this chapter, we present a bayesian probabilistic model for haustral curvatures with

applications to colon CAD [56].

6.1 Introduction

With over half a million obits, colorectal cancer was ranked as the fourth leading

cause of cancer death worldwide in 2002 [20], and it is currently ranked as the second

leading cause of cancer-related deaths in the United States [35]. Most colorectal

cancers arise from benign colonic polyps, and their early detection can significantly

increase survival rates [21]. Optical colonoscopy is part of the standard screening

protocol for the detection of polyps in the colon [94], but the discomfort and long

duration of this procedure has negative impact on patient compliance [32].

Virtual colonoscopy (VC) or computed tomography colonography (CTC) has

shown promise as a less invasive method for detecting polyps, with performance at

least as good as that of optical colonoscopy [83]. Once computed tomography (CT)

imaging and advanced visualization tools were introduced, the natural second step

is the use of computer-aided detection (CAD) systems for automating the search

for colonic polyps, and a number of CAD techniques have been developed in recent

years. Early examples include the work of Yoshida et al [116], in which principal

curvatures were used to compute a shape index indicative of the roundness of polyps.

Curvatures were also used by Vos et al [111] and by Summers et al [102, 100]. More

recently, modeling through spherical harmonics [45], surface normal overlap [75] and

other curvature-based methods have been developed [9, 109]. The use of small to

moderate [28, 36, 109] and of large [107] feature sets followed by a more sophisticated
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classification mechanism have also been explored.

In the list above, curvature and curvature-based measures are the features most

commonly used for classification. In particular, [102, 116, 111, 101, 9, 109] built

explicit models with different degrees of complexity for the ranges of curvatures ob-

served in colonic polyps, folds, and, occasionally, the haustra (or colon wall) itself.

However, whereas folds and polyps are modeled through highly sophisticated schemes,

the haustra is either altogether omitted [111, 9, 109] or simply mentioned as a region

of low curvature [102, 116]. This chapter introduces a novel model for the haustra.

We use the same assumptions as [102, 116] regarding the shape of the haustra, but

we augment the model with a component driven by recent results in the theory of

Gaussian random fields [60]. This allows for an accurate estimation of the probability

distribution of curvatures of isosurfaces of the haustra, which can be naturally fed

into any curvature-based CAD system aimed at detecting colonic polyps. Results

with real data show the usefulness of the proposed model as applied to colon CAD.

6.2 Shape from Principal Curvatures

Let the volume image I (henceforth referred to simply as image) be defined as a

twice-differentiable mapping from V ⊂ R3 into R. For any given c, we define an

isosurface Mc ⊂ V at the isovalue c as the set of points x satisfying I(x) = c and

∇I(x) 6= 0. The principal curvatures of Mc at a point x are given by the eigenvalues

of the matrix H̃ = NTHN/‖∇I‖ [97, pg. 138], where ∇I is the gradient of I, H

is the Hessian of I, and columns of N form an orthonormal basis for the null space

of ∇I. This computation can be carried out as the concatenation of a linear and a

nonlinear step. As shown in Fig. 32, the linear step comprises the computation of

the gradient and the Hessian of the image input image. The nonlinear step involves

the matrix multiplications of H and N, the computation of and division by the scalar

‖∇I‖, and the actual computation of the eigenvalues of the resulting 2× 2 matrix.
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Figure 32: The Curvature Computation System

6.2.1 The Geometric Model

In [98], the haustra of the colon is defined as: “the sacculations of the colon, caused by

the teniae, or longitudinal bands, which are slightly shorter than the gut so that the

latter is thrown into tucks or pouches”. These sacculations are the curved segments

of the colon wall. The morphological models in Langer et al. [48] justify the adoption

by [102, 116] of a low curvature surface representation for the haustra. However, such

a model, by itself, is not enough to specify the distribution of curvatures that one

expects at the colon wall. In order to achieve this, we consider a volume image I0(x)

representing any particular low curvature geometric model of the haustra. Now let

h0(x) be a corruption of I0(x) by additive white noise η0(x). Following the pipeline

described in Fig. 32 with h0(x) as the input image, we obtain a smoothed volume

h(x) = I(x) + η(x), where I(x) and η(x) are smooth versions of I0(x) and η0(x).

In particular, η(x) is still Gaussian noise, but no longer white. Assuming that the

variance of the input (zero-mean) white noise is σ2
η, the autocorrelation function R(x)

of the filtered noise will be R(x) = σ2
η exp(−xTΣx/4) [17], where Σ is the covariance
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matrix of the smoothing kernel. For an isotropic kernel, we have Σ = σ2I.

Denoting the function that maps a matrix A to its eigenvalues by λ(A), the

nonlinear step of the curvature computation yields

Linear
System

Nonlinear
System

(x,y,z)η

h  (x,y,z)0

κ (x,y,z)
h(x,y,z)

∆

H

Figure 33: The Haustra Model

κ = λ
(−NTHhN

‖∇h‖
)

= λ
(−NT(HI + Hη)N

‖∇I +∇η‖
)
, (23)

where κ = (κ1, κ2) are the principal curvatures of h(x) at the point x.

6.2.2 Distribution of Curvatures

The stochastic differential equation in (23) can be simplified by making reasonable

assumptions about the shape and appearance of the haustra as observed in CT images.

First, the matrix NTHIN must have, on average, a small Frobenius norm compared to

that of NTHηN. To demonstrate this, observe that, per the discussion in section 6.2.1,

the magnitude of the eigenvalues of NTHIN is small, reflecting the low curvature of

the haustra. Since NTHIN is a symmetric matrix, its singular values must also

be small. This last observation indicates that a Taylor expansion of (23) around

NTHIN = 0 yields a good approximation for κ, i.e.,

κ ≈ λ
(−NT(Hη)N

‖∇I +∇η‖
)

+ vec(NTHIN)T ∂κ

∂ vec(NTHIN)T

∣∣∣∣
HI=0

(24)

≈ λ
(−NT(Hη)N

‖∇I +∇η‖
)

+ λ
( −NTHIN

‖∇I +∇η‖
)
, (25)

where vec(A) indicates the vector built out the matrix A by stacking its columns.

Indicating the Kronecker product by ⊗ and the i-th eigenvalue of the (symmetric)

matrix A by λi, the equality of (24) and (25) can be verified by using the relations
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vec(ABC) = (CT ⊗ A) vec(B) and ∂λi(A)/∂ vec(A)T = vi ⊗ vi, where vi is the

eigenvector associated to λi [53].

We further simplify (23) by assuming that the magnitude of ∇I is, on average,

large compared to that of ∇η. This assumption simply reflects the fact that the

haustra corresponds to a sharp interface between air and soft tissue. Hence, (23)

becomes,

κ ≈ λ(NTHηN)

‖∇I‖ + κ0, (26)

where κ0 = λ
(
−NTHIN
‖∇I+∇η‖

)
. Note that κ is a random variable, and, from (26), we can

see that its probability density p(κ) is given by

p(κ) = pλη((κ− κ0)‖∇I‖)‖∇I‖2, (27)

where pλη is the probability density of the random variable λη = λ(NTHηN).

In order to derive p(κ) we adapt recent results in the theory of Gaussian random

fields [60], which establish that λη is distributed according to a linear combination of

Gaussian and chi-distributed independent random variables. More precisely, for an

isotropic smoothing kernel with covariance matrix Σ = σ2I, λη ∼ α′[N(0, 2)∓X (2)],

with α′ = ση/(2σ
2), resulting in

pλη(λ) =
1

2α′2
pN(0,2)((λ2 + λ1)/(2α

′))pX (2)((λ2 − λ1)/(2α
′))

=
1

8
√

2πα′3
(λ2 − λ1)e

− 5λ1
2−6λ2λ1+5λ2

2

32α′2 (28)

Assuming a simple spherical model of radius R for the input image I, we have κ0 =

(−1/R,−1/R). Therefore, the final probability distribution of the haustral curvatures

is given by

p(κ) =
1

8
√

2πα3
(κ2 − κ1)e

−(5κ1
2−6κ2κ1+5κ2

2)R2+4(κ1+κ2)R+4

32R2α2 , (29)

with α = ση/(2σ
2‖∇I‖).
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6.3 Experiments and Results

As a first step to demonstrate the usefulness of the proposed model we captured prin-

cipal curvature data from random samples of pedunculated, sessile and flat polyps,

haustral folds, and haustra. In Fig. 34, we display this scatter data over the decision

boundaries generated from our haustra model (yellow) and models for pedunculated

(red), sessile and flat polyp (green), and haustral fold (blue), described in [9]. The

overlaid yellow scatter data points provide visual validation for the haustra model de-

cision boundary, as shown in Fig. 34(a). In Fig. 34(b), we show the decision bound-

aries obtained by considering only two model categories: for (polyps) and against

(haustra and folds).

Model−Based Partition of κ
1
−κ

2
 Space

κ
1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

(a)

Model−Based Detection Boundaries

κ
1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

(b)

Figure 34: Partitioning of κ1-κ2 space with overlying scatter plot data: (a)
Model-based partitioning of κ1-κ2 space, red = pedunculated polyps, green = sessile
and flat polyps, blue = haustral folds, yellow = haustra, (b) Binary partitioning of
κ1-κ2 space, red = polyp responses, blue=non-polyp responses

In Fig. 35, we provide another depiction of the benefit derived from the addition

of the haustra model to the colon CAD system. Figure 35(d) shows an image region

centered at an actual polyp. Figure 35(a) shows the result of a Bayesian competition

[42] between the combined polyp model (pedunculated, sessile and flat) against the

fold model, without inclusion of the haustra model in the same region. The strongest
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responses (magenta) are indeed in the polyp, but there are weaker responses (blue)

scattered all around the colon wall. Even though most of those can be discarded

through thresholding, such a “clean-up” algorithm can remove true positive detec-

tions. Figure 35(b) shows the same region as in Fig. 35(a), but now with the haustra

model included. The haustra model clearly plays a significant role in reducing the

polyp responses on the haustra without affecting the response at the polyp itself. In

effect, the haustra model eliminates many potential false positives. In Fig. 35(c) we

see the haustra responses alone, obtained by competing the haustra against all the

other models, and the reason for the differences between Fig. 35(a) and Fig. 35(b)

become clear.

(a) (b)

(c) (d)

Figure 35: Visual Haustra Results: (a) polyp responses without the haustra
model in a window centered at an actual polyp, (b) polyp responses with the haustra
model, (c) haustra responses alone, and (d) Raw image data

Finally, we show the application of our model to a the colon CAD system described

in [9]. The test data consisted of a subset of 36 CT volumes from the WRAMC
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dataset, from which 23 polyps with diameter above 6 mm were marked by expert

radiologists and confirmed by optical colonoscopy.1 The protocol for patient prepa-

ration consisted of oral administration of 90 ml of sodium phosphate and 10 mg of

bisacodyl, with a clear-liquid diet that included 500 ml of barium for stool tagging and

120 ml of diatrizoate meglumine and diatrizoate sodium for fluid tagging [83]. The

complete WRAMC dataset comprises many more images, but unfortunately ground

truth is provided as a distance from the rectum along the colon centerline only, and

the precise image location of polyps in this dataset must still be carried out by an

expert.

It is important to note that this dataset is significantly more challenging to CAD

than the “fully prepped” data commonly used throughout the literature (e.g., all

of the CAD work mentioned in the introduction with the exception of the work of

Summers et al, such as in [101]). However, if the use of CTC demands full cleansing of

the colon, patient compliance may still be an issue, since the strongest factor affecting

acceptance of colonoscopy is the extent of bowel preparation [32]. Minimally invasive

protocols such as the one applied to the collection of the WRAMC data mitigate

this problem [49], but pose new difficulties for the interpretation of the images [21].

In Fig. 36, we present a free-response receiver operating characteristic (FROC) curve

demonstrating the performance of a lung CAD system that makes use of the proposed

haustra model. A sensitivity of 83% is achieved at a cost of 6.2 false positive detections

per case, and running time is in the order of 10 min for a 512× 512× 700-voxel CT

volume with a research prototype implemented with ITK.

6.4 Conclusions and Future Work

In this work, we have introduced a novel probabilistic model for the curvature of

isosurfaces of the haustra. An expression of the probability density function of such

1This data has been provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Center, Walter
Reed Army Medical Center.
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Figure 36: FROC curve for the performance of a colon CAD system using the
proposed haustra model. A sensitivity of 83% is achieved ad a cost of 6.25 false
positive detections per case.

curvatures was provided by considering Gaussian random perturbation to a geometric

abstraction of the colon wall. The model augments the set of models developed in

[9] for applications in colon CAD, and was demonstrated in a specific colon CAD

application.

In the current formulation the radius R of the haustra is a fixed parameter repre-

sentative of the expected radius of the insufflated colon. However, we could account

for colonic haustra variations in size and shape by marginalizing over the parameter

R. The prior for this marginalization will depend upon either training data of prior

clinical knowledge of insufflated haustra radii. In [61] we have shown how to compute

the probability distribution of curvatures for a class of ellipsoidal surfaces, suggesting

a mechanism to achieve such generalization.

An interesting debate is presented in [67], which, although in the context of lung

CAD, is relevant to this work. From that discussion it is clear that many radiologist

see CAD not necessarily as a tool to improve upon the performance of the best

radiologists, but as a means to standardize or regularize results of radiologists with
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varying degrees of experience. To validate such expectation, however, it is necessary

to have data read my multiple radiologists, which is not the case with the WRAMC

data set.
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CHAPTER VII

CONCLUSION

In this dissertation , we presented our approach for geodesic tractography segmenta-

tion, a two component approach for the analysis of imagery in oriented domains, with

emphasis on the application to DW-MRI. This work is currently being integrated into

Slicer3, a part of the NA-MIC toolkit (see http://www.na-mic.org). In Figure 37, we

show our initial work in integrating this framework.

Figure 37: Slicer3 Integration. The Geodesic Tractography Segmentation module.
Currently under development.

This Slicer3 module is an ideal way for the work in this thesis to be disseminated.

We encouraged the interested reader to explore concepts in this thesis by using this
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Slicer3 module. This tool in conjunction with other tools is helpful in processing

DW-MRI images. It provides an easy-to-use extraction of optimal paths between two

regions of interest along with a volumetric segmentation of the associated fiber bun-

dles. Using these features, further population studies may be conducted to compare

various metrics across many patients, leading to greater clinical understanding.
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APPENDIX A

FINSLER FOR NON-CONVEX FUNCTIONS

As we noted above, there may be problems in the non-convex case for our directional

segmentation scheme. Nevertheless as we will indicate in this appendix the fast-

sweeping type numerical approach will automatically capture an approximation for

the convexification of the functional (in the sense to be made precise below.) We

abstract the situation to be studied as follows.

Let ψ : Sn−1 → R be a function and suppose one defines the cost of a curve Γ to

be

C(Γ) =

∫

Γ

ψ(T) ds.

Define F : Rn → R to be the homogeneous extension of degree one of ψ, so

F (v) = |v| ψ( v
|v|

)
.

This function need not be convex. We define its convex hull to be

F̃ (v) = sup
{
a · v + b : a ∈ Rn, b ∈ R,∀x a · x+ b ≤ F (x)

}
. (30)

Furthermore we define

E =
{
v ∈ Rn : F (v) = F̃ (v)

}
.

This is the set of extreme points.

The cost C(Γ) of any parameterized curve Γ : [0, 1]→ Rn is given by

C(Γ) =

∫ 1

0

F (Γ′(ξ)) dξ (31)

One can also define the relaxed cost as

C̃(Γ) =

∫ 1

0

F̃ (Γ′(ξ)) dξ. (32)
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Clearly one always has

C̃(Γ) ≤ C(Γ) (33)

since F̃ (v) ≤ F (v) for all v ∈ Rn.

For any given set Σ ⊂ Rn and point p ∈ Rn \ Σ one defines the cost to get to Σ

from p as

C∗(p) = inf
{
C(Γ) : Γ(0) = p,Γ(1) ∈ Σ

}
(34)

Here the infimum is taken over all curves from p to some point in Σ.

One can also define

C̃∗(p) = inf
{
C̃(Γ) : Γ(0) = p,Γ(1) ∈ Σ

}
, (35)

where the infimum is again taken over all curves from p to some point in Σ.

LEMMA 2. For any curve Γ : [0, 1] → Rn and any ε > 0 there exists a piecewise

linear curve Γ̃ : [0, 1]→ Rn with the same endpoints for which one has

C(Γ̃) = C̃(Γ̃) ≤ C̃(Γ) + ε.

This lemma says that any curve from p to Σ can be replaced by a curve with the

same endpoints whose velocities are extreme points for F (i.e. F̃ (Γ′(ξ)) = F (Γ′(ξ))

for all ξ), without increasing the cost by more than ε.

An immediate consequence of the lemma is:

LEMMA 3. C̃∗(p) = C∗(p).

It follows that any (correct) method which computes C∗ by propagating the front

∂Σ outwards with velocities given by F will actually compute C̃∗.

Proof of Lemma 2. First, it is clear that one can approximate the given curve Γ by a

piecewise linear (PL) curve Γ1 for which F̃ (Γ′1(ξ)) ≤ F̃ (Γ′(ξ))+ε holds for 0 ≤ ξ ≤ 1.

Thus C̃(Γ1) ≤ C̃(Γ) + ε.
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Next, the PL curve Γ1 is linear (i.e. Γ′1(ξ) is constant) on each interval (ξi−1, ξi)

from some partition 0 = ξ0 < ξ1 < · · · < ξn = 1. Let vi be the constant value of Γ′1

on (ξi−1, ξi). If vi 6∈ E (recall that E is the set of extreme points), then vi is a convex

combination of certain ṽ1
i , . . . , ṽni ∈ E, i.e.,

vi = α1ṽ
1
i + · · ·+ αnṽ

n
i , αi ≥ 0,

∑
αi = 1, (36)

while

F̃ (vi) = α1F̃ (v1
i ) + · · ·+ αnF̃ (vni ). (37)

Now define a PL curve Γ2 which has

Γ′2(ξ) = vki for ξ ∈ (
ξj−1
i , ξji

)
(38)

where ξji = ξi−1 + αj(ξi − ξi−1). Thus we replace the segments of Γ1 whose velocity

are not in the extreme set E of the function by PL zigzag curves with the same begin

and end points whose velocities are in E.

With this definition one has

Γ2(ξi)− Γ2(ξi−1) = Γ1(ξi)− Γ1(ξi−1)

Hence, if one sets Γ2(0) = Γ1(0) = p, then one ends up with Γ2(1) = Γ1(1) ∈ Σ.

Using (37) one can easily see that C̃(Γ2) = C̃(Γ1). Since Γ′2(ξ) ∈ E for all ξ one

also has C(Γ2) = C̃(Γ2). Hence Γ2 is a curve from p to Σ with C(Γ2) ≤ C̃(Γ)+ ε.

89



APPENDIX B

FINSLER FLOW IN TERMS OF F

In this appendix, we describe the Finsler flow in terms of the homogeneous extension

F and derive some of it properties.

B.0.1 First variation using F

Instead of writing L(Γ) in terms of ψ, we can also write L(Γ) as in (4). The first

variation is then given by the usual Euler-Lagrange equation

d

dt
L(Γ) =

∫ 1

0

{
Fp − (Fv)x

} · Γt dx. (39)

If one looks for a normal evolution equation (i.e. Γt ⊥ Γx) then one is led to an

equation of the form

β Γt =
{
(Fv)x − Fp

}⊥

for some positive scalar β. If one additionally wants the equation to be invariant

under reparametrization, then the only possible choice for β is β = G(Γ,Γx) in which

G(p, v) is positively homogeneous of degree one in v ∈ Rn. A possible choice would

be G(Γ,Γx) = |Γx|, which leads us to the evolution equation

Γt =
1

|Γx|
{
(Fv)x − Fp

}⊥
. (40)

This equation is equivalent with (5).

One could also choose G(p, v) = F (p, v) which would result in

Γt =
1

F (Γ,Γx)

{
(Fv)x − Fp

}⊥
.
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B.0.2 Some identities involving F

Since F (p, tv) = tF (p, v) for all t ≥ 0 one has

Fv(p, tv) = Fv(p, v) (∀t > 0) (41)

Fv(p, v) · v = 0 (42)

For the second derivative Fvv(p, v), which we regard as a symmetric linear transfor-

mation on Rn, this implies that

Fvv(p, v) · v = 0, (43)

and hence,

Fvv(p, v) · w ⊥ v (∀w ∈ Rn). (44)

We may also regard Fvp(p, v) as a linear transformation on Rn, and in this case

we have
{
v · Fpv(p, v)− Fp(p, v)

} ⊥ v. (45)

Indeed, in tensor notation this amounts to

viFpivj
(p, v)vj = Fpi

(p, v)vi

which one obtains by differentiating the Euler identity

Fvi
(p, v)vi = F (p, v)

with respect to p in the direction of v.

B.0.3 Steepest descent with F

We continue with equation (40)

|Γx|Γt =
{
Fvv(Γ,Γx)Γxx + Γx · Fpv(Γ,Γx)− Fp(Γ,Γx)

}⊥
.
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By (44) the combined terms on the right are already perpendicular to Γx. We therefore

find that (40) is equivalent with

Γt =
1

|Γx|
{
Fvv(Γ,Γx) · Γxx + Γx · Fpv(Γ,Γx)− Fp(Γ,Γx)

}
(46)

More generally, one gets the equation

Γt =
1

G(Γ,Γx)

{
Fvv(Γ,Γx) · Γxx + Γx · Fpv(Γ,Γx)− Fp(Γ,Γx)

}
(47)

No matter which G one chooses, this equation fails to be parabolic since Fvv always

has a zero eigenvalue, namely Fvv(p, v)v = 0.

B.0.4 Parabolic equation

The right hand side in (47) is invariant under reparametrizations, i.e. if Γ(x, t) =

γ(y(x, t), t), then γ satisfies

γt =
1

G(γ, γy)
Fvv(γ, γy)γyy + ytγy.

Choose the parametrization so that

yt(x, t) =
[
α[γ](γy · γyy)γy

]
y=y(x,t)

for some scalar α > 0 which can depend on Γ and Γy.

The resulting equation for γ is then

γt =
{Fvv(γ, γy)
G(γ, γy)

+ αγy ⊗ γy
} · γyy +

B(γ, γy)

G(γ, γy)
(48)

where by definition

B(p, v) = v · Fpv(p, v)− Fp(p, v).

As long as one chooses α(γ, γy) > 0, and as long as Fvv is positive definite on {v}⊥,

this equation is strictly parabolic. A particular choice for G and α would be

G = |γy|, α = |γy|−2,

which leads to

Γt =
{
Fvv(γ,T) + T⊗T

} · γyy|γy|2 +B(γ,T) (49)

where T = γy/|γy| is the unit tangent vector.
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B.0.5 Numerical scheme

We should note that using the above a simple approach can be employed to equa-

tion (49). For completeness, we sketch this here.

We set

γ(j∆x, k∆t) = γkj ,

and discretize (49) as follows

γk+1
j − γkj

∆t
= Akj

{
γk+1
j+1 − 2γk+1

j + γk+1
j−1

}
+Bk

j (50)

in which the n× n matrices Akj are defined by

Akj = 4
Fvv(γ

k
j ,T

k
j ) + Tk

j ⊗Tk
j

|γkj+1 − γkj−1|2

and one could define the unit tangents Tk
j by

Tk
j =

γkj+1 − γkj−1

|γkj+1 − γkj−1|
.

The vectors Bk
j could be discretized by

Bk
j = Tk

j · Fpv(γkj ,Tk
j )− Fp(γkj ,Tk

j ).

The system of equations (50) is tridiagonal vector valued system of equations.

If one puts the components of each vector γkj in one long vector, then (50) can be

written as a finite band system of equations, which can be solved very efficiently

(O(n) operations per time step).
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