2,567 research outputs found

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Intelligent approaches in locomotion - a review

    Get PDF

    Genetic learning of fuzzy reactive controllers

    Get PDF
    P. 33-41This paper concerns the learning of basic behaviors in an autonomous robot. It presents a method to adapt basic reactive behaviors using a genetic algorithm. Behaviors are implemented as fuzzy controllers and the genetic algorithm is used to evolve their rules. These rules will be formulated in a fuzzy way using prefixed linguistic labels. In order to test the rules obtained in each generation of the genetic evolution process, a real robot has been used. Numerical results from the evolution rate of the different experiments, as well as an example of the fuzzy rules obtained, are presented and discussedS

    Determination of fuzzy relations for economic fuzzy time series models by neural networks

    Get PDF
    Based on the works /11, 22, 27/ a fuzzy time series model is proposed and applied to predict chaotic financial process. Thwe general methodological framework of classical and fuzzy modelling of economic time series is considered. A complete fuzzy time series modellling approach is proposed which includes: determining and developing of fuzzy time series models, developing and calculating of fuzzy relations among the observations, calculating and interpreting the outputs. To generate fuzzy rules from data, the neural network with SCL-based product-space clustering is used

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Hybrid Control from Scratch: A Design Methodology for Assured Robotic Missions

    Get PDF
    Robotic research over the last decades have lead us to different architectures to automatically synthesise discrete event controllers and implement these motion and task plans in real-world robot scenarios. However, these architectures usually build on existing robot hardware, generating as a result solutions that are influenced and/or restricted in their design by the available capabilities and sensors. In contrast to these approaches, we propose a design methodology that, given a specific domain of application, allowed us to build the first end-to-end implementation of an autonomous robot system that uses discrete event controller synthesis to generate assured mission plans. We validate this robot system in several missions of our target domain of application
    corecore