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Abstract. Robotic research over the last decades have lead us to dif
ferent architectures to automatically synthesise discrete event controllers 
and implement these motion and task plans in real-world robot scenarios. 
However, these architectures usually build on existing robot hardware, 
generating as a result solutions that are influenced and/or restricted 
in their design by the available capabilities and sensors. In contrast to 
these approaches, we propose a design methodology that, given a specific 
domain of application, allowed us to build the first end-to-end implemen
tation of an autonomous robot system that uses discrete event controller 
synthesis to generate assured mission plans. We validate this robot sys
tem in several missions of our target domain of application.

Keywords: discrete event control, hybrid control, cyber-physical sys
tems, design methodology

1 Introduction

Hybrid controllers are gaining increasing attention as a way to translate discrete 
mission specifications into continuous motion of robots [18], This is achieved 
through planning techniques that allow us to synthesise correct-by-construction 
discrete controllers from these specifications [25] using an adequate discrete ab
straction for the robot’s capabilities and workspace. Then, a hybrid control 
layer [19] is responsible of interpreting these plans into a set of inputs for a 
lower control level that commands the robot’s motion and other functionalities. 
The result is an autonomous cyber-physical system guaranteed to satisfy the 
original specifications if a set of assumptions holds.

Hybrid controllers are possible thanks to contributions from the fields of 
Robotic, Control and Automated Software Engineering. On one hand, the robotic 
and control community studies the control and automation of continuous and 
discrete variable dynamic systems, developing design and implementation tech
niques for motion and control of robot systems [3], On the other hand, the 
automated software community has developed many complex automated rea
soning tools to automatically generate plans from specifications expressed in 
formal logic languages like Linear Temporal Logic (LTL) [1,11].

There has been extensive research on different architectures for hybrid con
trollers and their implementation on functioning autonomous systems [15, 21], In 

49JAIIO - ASAI - ISSN: 2451-7585 - Página 1



ASAI, Simposio Argentine de Inteligencia Artificial

this work we focus on the inverse problem: if one were to design a robot system 
to implement a hybrid controller for a set of mission patterns, what would this 
design and implementation be?

In order to help answer this question, the main contributions of this work 
are: (1) a design methodology for developing assured robotic missions, (2) the 
first end-to-end design and implementation of an autonomous robot system that 
uses discrete event controller synthesis to generate assured mission plans, using 
the proposed methodology for a specific surveillance scenario.

For this, we build on a corpus of knowledge ranging from higher level plan
ning problems to the lower level mechanical and hardware design, effectively 
building on all levels of abstraction. We show our hybrid control architecture 
and design methodology in Sections 4 and 5, and use it to build a surveillance 
robot (Section 6) that we validate in several mission scenarios (Section 7).

2 Background

We present in this section the basic formalism for the controller synthesis tech
nique we used and basic definitions of the rest of the concepts we work with. For 
more insight into these concepts please refer to [24] and [12],

Labelled Transition Systems (LTS). The dynamics of the interaction 
of a robot with its environment will be modelled using LTS [16], which are 
automata where transitions are labelled with events that constitute the inter
actions of the modelled system with its environment. We partition events into 
controlled and uncontrolled to specify assumptions about the environment and 
safety requirements for a controller. Complex models can be constructed by LTS 
composition. We use a standard definition of parallel composition (||) that models 
the asynchronous execution of LTS, interleaving non-shared actions and forcing 
synchronisation of shared actions.

Fluent Linear Temporal Logic (FLTL). In order to describe environ
ment assumptions and system goals it is common to use formal languages like 
FLTL [14], a variant of linear-time temporal logic that uses fluents to describe 
states over sequences of actions. A fluent fl is defined by a set of events that 
make it true (Setp), a set of events that make it false (Setj_) and an initial value 
(v) true (T) or false (±): fl = (Setp, Set±,v). We may omit set notation for sin
gletons and use an action label £ for the fluent defined as fl = (t, Act\ {£}, ±). 
Thus, the fluent £ is only true just after the occurrence of the action £.

FLTL is defined similarly to propositional LTL but where a fluent holds at 
a position i in a trace tf based on the events occurring in tf up to i. Temporal 
connectives are interpreted as usual: Oa, D-y, and pWif mean that ip eventually 
holds, always holds, and (weakly) holds until if, respectively.

Discrete Event Controller Synthesis. Given an LTS E with a set of 
controllable actions L and a task specification G expressed in FLTL, the goal of 
controller synthesis is to find an LTS C such that E||C: (1) is deadlock free, (2) C 
does not block any non-controlled actions, and (3) every trace of E||C satisfies G. 
We say that a control problem (E, G, E) is realizable if such an LTS C exists. The
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(a) Dynamic system (b) Feedback-controller scheme

Fig. 1: Continuous variable dynamic systems abstracted to design controllers.

tractability of the controller synthesis depends on the size of the problem (i.e. 
states of E and size of G) and also on the fragment of the logic used for G. When 
goals are restricted to GR(1) the control problem can be solved in polynomial 
time [25], GR(1) formulas are of the form /\"=1 □OV’» KT=1 DO A» where V’» 
and ip., are Boolean combinations of fluents that refer to assumptions and goals, 
respectively. In this paper we use MTSA [9] for solving control problems.

Feedback-control. Continuous variable dynamic systems (e.g., a. robot wheel) 
can usually be abstracted into a. system P with a. set of inputs zz (e.g., voltage 
to the motor driving the wheel) and a. set of outputs y (e.g., angular speed of 
the wheel) as shown in Fig. la. The typical control problem in this setting is de
fined as finding the set of inputs zz that drives the system P to a. certain desired 
configuration of the output y, both in the final value of the variables as well as 
in the transition period, which can be approached in a. open-loop or closed-loop 
form. Open-loop control consists of generating the set of inputs for the system P 
from a. model of the system’s behaviour. This approach doesn’t take into account 
errors in the model or external perturbations to the system. A more robust ap
proach is closed-loop control (i.e., feedback-control), which uses direct or filtered 
measurements of the output y to compute the input zz that helps minimise the 
error e = r — y (see Fig. lb), according to a. set of specifications.

Hybrid Controller. In robotics, the difference in the continuous vs. discrete 
description of the real world, and in the interaction between discrete event con
trollers and feedback-controllers (or other robot actuators and sensors) require a. 
non-trivial translation task that is implemented in a. hybrid control layer [1,10],

To implement these plans, the hybrid control layer is responsible of taking 
high-level commands (e.g., the camera.on action from [18]) and generating low- 
level inputs for the robot (e.g., a. low-level voltage pulse train to trigger the cam
era. into capture mode). When this translation is specifically related to motion, 
there is extensive work in the area, of motion planning (e.g., [2, 6, 8]). Translating 
motion commands into continuous movement generally involves obtaining a. set 
of discrete inputs that serve as a. reference signal r for the feedback-controllers, 
which then produce controlled movement of the robot [10],

3 Related Work

The design of hybrid control architectures for end-to-end implementations, i.e., 
that integrate components ranging from planning to robot hardware, has been 
approached by many (e.g., [1,10,18,19,15,21]). However, this process usually
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A High-level

Fig. 2: Hybrid control architecture showing interaction between components.

Low-level

begins with partially or fully functional low-level robot hardware and software 
(e.g., [15]). In these scenarios the design problem consists in finding a. discrete 
abstraction for the planning layer that captures the robots capabilities and 
workspace [21], and that is compatible with the desired domain of application. 
The key challenge is that the state space of the chosen abstractions must not 
be too big so as lead to intractability of the synthesis problem (e.g., increasing 
number of discrete locations leads to polynomial growth in synthesis time [7]), 
nor too small so as to fail to capture important aspects from the continuous 
environment of the robot (e.g., the abstraction problems presented in [8]).

To the best of our knowledge, our work is the first to tackle the design of 
hybrid controllers as a. whole, with the distinctive feature of building a. custom 
robot that accommodates to various choices made during the design process.

4 Component Architecture

To approach an end-to-end design, we must first define a. component architecture 
to identify the different elements of the system and their interaction. We build 
on several architectures taken from the control [13], robotic [19] and software 
communities [4] to define the architecture shown in Fig. 2, where arrows indicate 
interaction between components. We will describe this architecture using an 
alternative font when referring to elements in Fig. 2.

Planning Layer: This layer uses as an input high-level abstractions of the 
environment in which the robot moves and interacts. This input can be divided 
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into a Robot Workspace that provides a discretized notion of the capabilities of 
the robot (see Section 6.1), a set of Assumptions about the robot’s environment 
and capabilities (e.g., a camera.on action can only be followed by a camera.off) 
and a User Specification that captures what the mission for the robot is. All 
these elements can be encapsulated into a FLTL Formula and then use a Syn
thesis Algorithm to produce a correct-by-construction discrete event controller 
guaranteed to satisfy mission, which is represented as an automata in LTS.

A component is then required to interpret the plan encoded in its LTS repre
sentation. The Enactor consists of an interpretation module that knows which 
module to call from the available Hybrid Modules each time controllable ac
tions are enabled in the plan, and continuously listens for discrete events that 
may be triggered during the mission.

Hybrid modules: These modules provide the main translation process be
tween the continuous and discrete representations of the environment. To imple
ment certain discrete actions, references may be trivially computed at this level 
and sent to the Feedback-controllers (e.g., to implement a drill.fast action, 
the reference angular speed of a feedback-controller controlling the drilling speed 
may be set to 3000 rpm). For other actions, the Hybrid Modules may command 
a Direct Actuator (e.g., turning on a led). The process becomes more compli
cated for motion capabilities, so a Motion Control or motion planner module 
may be used to provide additional computation from the available motion data 
to generate a set of references for the Feedback-controllers. From the avail
able sensor data, discrete events may be generated.

Robot: This layer includes the physical Robot Hardware as well as modules 
that provide the basic capabilities of the robot through Feedback-controllers 
and Direct Actuators. The difference between these two is that due to its 
closed-loop nature, the first require filtered readings from the Sensors to gen
erate CONTROL SIGNALS.

5 Design Methodology

In Fig. 3 we show our methodology through the system design and implementa
tion. Comparing with Fig. 2, the design flows from the highest levels of abstrac
tion to the lowest, but the final component to be implemented is the Hybrid 
Control Layer. Next we describe each stage of the process with more detail:

Planning Layer: Our design methodology is guided by the desired domain 
of application, this means that we must first ensure that, for the missions we 
wish to specify and run, we have a compatible discrete abstraction and tractable 
synthesis algorithm. For example, common patrol or surveillance missions [8, 23] 
may be reasonably abstracted using grid-based discretization of the movement 
region of the robot, i.e., workspace. Multiple synthesis algorithms have shown 
tractability for this kind of specifications and abstractions (e.g., [11, 27]), mean
ing that this is a reasonable approach for this family of missions. At this stage 
we both design the Planning Layer and implement it by synthesising missions 
and eventually enacting them in dummy environments.
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Fig. 3: Design methodology. A representative image for each stage is shown.

Hybrid Control Layer (design): When the discrete abstraction is defined, 
we must provide a. hybrid controller and robot hardware capable of implementing 
it. Common approaches usually involve using available working robot hardware 
on top of which they doline a. hybrid control architecture (e.g., [15]), but has 
the downside of incurring in complex architectures and components as a. result. 
For instance, if we build on a. common car-like robot, movement from one point 
to another will require at the very least the computation of a. Dubins path or 
Reeds-Shepp path [17], For certain space discretizations, this may also require 
sophisticated resynthesisation loops to lii id feasible trajectories (see [8]). All this 
added complexity could have been avoided by selecting more adequate hardware 
for movement in a. 2D plane such as omnidirectional wheels [26],

Our hypothesis is that many simplifications can be made by continuing the 
design process at the hybrid control layer. Designing the robot motion capabili
ties will require first designing a. motion planning or motion control strategy to 
move the robot according to the discrete abstraction used. The same goes for 
other capabilities that require controlled command of the actuators.

Robot Hardware & Sensors: Once reasonable motion and actuator strate
gies have been designed for the hybrid control layer, only the bottom low-level 
robot-related components are left. Robot hardware and sensors must be selected 
to comply with the design requirements defined during the previous stage.

Feedback-Control & Direct Actuators: When the previous stage is im
plemented, the design of feedback-controllers and other actuators can commence, 
since they both require a. real robot in which to validate their control algorithms.

Hybrid Control Layer (implement): The final stage of the methodology 
involves integrating all the components into a. fully working hybrid controller. 
For this, several Hybrid Modules must be implemented as well as the Motion 
Control strategy designed earlier.

6 Example Use of the Design Methodology

In this section we use the design methodology described in Section 5 to build a. 
robot system for a. surveillance mission scenario.
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(a) (b)

Fig. 4: (a) Grid-based discretization of a continuous region, (b) LTS for the 
movement capabilities of the robot, (c) LTS for the alert capability. Note: dashed 
lines are controllable actions while continuous lines denote uncontrollable events.

alert, off

(C)

6.1 Planning Layer

We first have to define our domain of application, i.e., the missions we want 
to do. The work in [23] provides common mission specification patterns found 
in the robotic literature, from which we aim to achieve all the Core Movement 
Patterns (visiting and patrolling), Avoidance patterns (prohibited regions) and 
the Reaction patterns (e.g., turning on a camera when inside a region). We 
will work with low duration missions (< 30 min) on a small 2D plane (approx. 
2 nr x 3 nr) and restrict the reaction patterns into an alert with sound and leds.

For surveillance and visiting missions, its common to use space discretization 
of the robot’s workspace [1]. As the robot will be performing its tasks in an 
rectangular area, it is reasonable to discretize the robot’s working area by using 
an uniform rectangular grid containing N x M cells as in [27]. The minimum 
size of the cells is limited by the ability of the robot to move fully contained in 
it while manoeuvring to the next [2]. This allows us to avoid discrete regions by 
specifying at the planning level never to take transitions that lead to prohibited 
regions. Furthermore, we must only allow movement to adjacent cells, since 
moving in diagonal may lead to entering forbidden cells along the way.

Fig. 4a and 4b show how we derive from the grid-based discretization of a 
region a LTS modelling the motion behaviour of the robot. We abstract motion 
into two actions: a controllable go.i.j action to command the robot to move to 
the discrete location (z,J) of the grid, and the respective uncontrollable at.i.j 
event to indicate that the robot arrived correctly at this location. This LTS also 
includes certain assumptions about the movement of the robot: a go.1.2 action 
can only be followed by a at. 1.2 event and between go.i.j and at.i.j no other go 
can be issued. For the alert capability we may use a simple LTS abstraction as 
shown in Fig. 4c, where each controllable action is modelled as instantaneous. 
The environment E consists of the parallel composition of these two LTS.

We will use FLTL formulae to specify missions. For example, a patrol mission 
between the discrete locations (0, 0) and (1,2), where the robot must turn on its
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(a)

-►•b

(b)

Fig. 5: (a) Adjacent movement capability of the robot, (b) Abstracted motion 
planning problem, (c) Two-step solution to the problem.

alert in the bottom row locations and turn it off in the top row, and always avoid 
location (0,2), can be specified with the fluents defined in (1) and the formula. 
95 = (ipi Ay>2 Aips). This formula, relates to the Patrolling (ipi), Global avoidance 
(952) and Prompt, Reaction (953) patterns in [23],

AtBot = ((at.1.0, at.1.1, at.7.7}, (go.0.0, go.0.1, go.0.2(, ±)
AtTop = ((at.0.0, at.0.1, at.0.2(, (go.1.0, go.1.1, go.l.2(,T) (1)
Alert = (alert.on, alert.off, ±)

ipi = (nOat.O.O) A (nOat.7.2)

Vz = (\J^at.0.2) (2)
953 = Q^((AtBot A -lAlerf) =4- Qalert.on) A ((AtTop A Alert) =4- Qalert.off))

We used the MTSA tool to solve the control problem derived from the envi
ronment E and the above specifications. This tool proved tractability on low-end 
hardware (see Section 6.3) for hundreds of discrete locations. We use the obstacle 
sensor described in Section 6.3 to automatically specify locations to avoid (952)-

An Enactor for these plans was implemented by parsing the output discrete 
event controllers generated with MTSA into an equivalent data, structure in 
Python to be able to integrate with the modules in the hybrid layer. A queue 
mechanism allows it to run as an independent process, calling the controllable 
actions of the plan (implemented in the Hybrid Modules) as they are enabled 
and immediately processes any uncontrollable event that may be generated.

6.2 Hybrid Control Layer Design

Our target domain of application requires developing movement and non-movement 
(i.e., alert capability) functionality for the robot. Implementing an alert capabil
ity is pretty straight forward for simple temporised alarms. However, command
ing movement of the robot is not, so we will focus on its design process.

Given the discrete abstraction we defined in Section 6.1 that handles at the 
higher level static-obstacle avoidance, our motion planning problem reduces to 
finding a. set of control inputs for the robot to go from one discrete location to
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Robot Hardware Sensor

Fig. 6: (a) Hardware components and connection scheme, (b) Main platform of 
the robot showing the component layout.

an adjacent one. This simple problem can be solved without relying on sophis
ticated motion planners (e.g., RRT [5]) using either omnidirectional robots or 
with a motion control solution over an unidirectional moving robot. The first 
solution (e.g., [26]) just pushes the complexity and cost of the problem to a 
lower level. Here we show that a carefully selected simple motion control strat
egy can simplify the design and implementation process of the lower mechanical 
and hardware level, as stated in Section 5.

The motion problem is illustrated in Fig. 5a, were we see the robot wanting 
to do a transition through a go action to an adjacent cell. The abstracted motion 
planning problem is shown in Fig. 5b and a very simple solution to this problem 
is presented in Fig. 5c for an unidirectional moving robot:

(I) Rotate until the “front” of the robot points in the direction of the target. 
(II) Move forward along this direction until the target is reached.

This type of motion control solution requires both a robot with a unidirec
tional forward moving capability and the functionality of rotating around its 
centre axis (i.e., without displacement of its centre of mass), which can be easily 
satisfied and implemented with a low-cost two-wheel robot as in [3, 20, 22].

6.3 Robot Hardware and Sensors

In Fig. 6a we show an overview for our Robot Hardware and Sensor solution. 
We selected a simple two-wheeled solution as the robot platform, similar to [22], 
where we use a third pivoting wheel to have a stable platform (see Fig. 6b) and 
avoid incurring in self-balancing control algorithms as in [20]. We defined the 
size and shape of the robot to be able to accommodate all the electronic and 
hardware components and have easy access to the battery.

A simplified connection schematics for the robot design is shown in Fig. 6a. 
Due to the motion control algorithm defined in Section 6.2 we require indepen
dent motors to drive the wheels, for which we selected common DC motors and an 
H-bridge to command them. An Arduino UNO board was used to communicate
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(a)

Fig. 7: (a) Overview of the ceiling mounted camera and image transmission, (b) 
Color tags mounted on the robot for positioning and orientation.

(b)

with the H-bridge, and to later implement the low-level feedback- and motion 
control logic. For synthesising and enacting the discrete event controllers, and 
implementing the image processing modules we included a Raspberry Pi 3B+ 
single-board computer. For power we used 6 A A rechargeable batteries (with a 
voltage regulator for the Raspberry Pi), generating an autonomy of over 1 hour. 
Finally, for the alarm capability we connected to the Arduino leds and a speaker 
to produce audible noise (not shown in Fig. 6a).

Our motion control algorithm requires to sense both the position and heading 
of the robot, as well as automatic detection of static obstacles for the planning 
layer. Since we are planning to do missions on the footprint of around 2 m x 3 m 
(e.g., the floor of a small room), we used a camera mounted on the ceiling to track 
the movement. We added color tags on top of the robot (see Fig. 7b) and used 
blue obstacles to automatically detect from the images: position and orientation 
of the robot and discrete regions that include obstacles. The images from the 
ceiling-cam are transmitted via USB to an intermediary laptop and then via 
WiFi to the onboard computer (see Fig. 7a), to be later processed onboard.

6.4 Feedback-controllers and Direct Actuators

For the alert system we implemented the following Direct Actuator: a function 
on the Arduino that turns on the leds and the beeping noise depending on the 
value of a input flag from the serial port.

For the motion capabilities we used a Feedback-controller for orientation 
and an open-loop controller for forward movement. The latter is fairly straight
forward to implement if we don’t want a controlled velocity: we implemented at 
the Arduino level a function to set the wheels into a forward movement through 
a constant PWM signal for both wheels. This controller does not guarantee that 
the robot will follow a straight path given that, due to slipping or friction, a
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Fig. 8: (a) Feedback-controller showing the identified system parameters, (b) 
Example path generated by the motion controller going from a location A to B.

Initial 
direction

tendency to turn can be present. We simply ignore this problem and expect the 
orientation controller to fix the heading of the vehicle as it moves.

Based on [12], to design the feedback-controller we must first develop a model 
of the dynamics of the system. In [12], a mathematical model is proposed with a 
simplified electrical circuit and mechanical forces. Thus, we obtained the dynam
ical model (Laplace transformed) of the system shown in (3), where we group the 
many circuit and mechanical related constants (rw,Kt, JmJ,Ke,Kt,Jm) into K 
and D, 6 is the orientation of the robot and V is the applied voltage to the 
motors (with different signs for each one).

M = = k m
K(s) 3(3+^) s(s + D) V)

Fig. 8a shows the identified parameters K and D using standard identi
fication control techniques. This system can be reasonably controlled using a 
proportional controller as shown also in Fig. 8a, where Kp = 3.12.

6.5 Hybrid Control Layer Implementation

As recognised in [8], discretization for synthesis problems must take into account 
the actual ability of the robot to transverse from a discrete cell to the next with
out invading nearby cells in the process. The main limitation of the motion 
control strategy is at the feedback-control and hardware level, where from ex
perimental data we estimated that the robot requires 15 pixels (i.e., 100 mm) 
of turn radius to be able to rotate, mainly because it doesn’t properly rotate 
around its centre of mass. This makes us set the cell size for the discretization 
at 60 pixels (i.e., 400mm), and as result gives us a rectangular grid of 4 x 5 cells 
for the workspace defined by the mounted camera (see Fig. 7a).

The final step of our design methodology is implementing the different mod
ules in the Hybrid Control Layer. The developed modules were implemented 
in Python 3.4 onboard the vehicle and behave as follows:

Alert Module: This module interprets the alert, on and alert, off commands 
and sets the flag described in Section 6.4 accordingly.

Motion Handler Module: The motion handler takes as an input go.i.j 
and translates it into a continuous (t,?/) position (in units of distance) to later
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Patrol Patrol with Obstacles Patrol with Obstacles & Alerting

Fig. 9: (a) Patrol of three locations, (b) Patrol of two locations with obstacles, 
(c) Patrol of two locations with obstacles and alerting. Note: Patrol locations 
are shown in green, obstacles in red and alert, zones with stripes.

command the Motion Control component. It also detects from the available 
sensor data that the target discrete location has been reached, i.e., the robot’s 
position is less than 15 pixels (i.e., 100mm) from the centre of the discrete 
location, and outputs the discrete event at.i.j to the Enactor.

Motion Control: This module implements the algorithm described in Sec
tion 6.2, generating trajectories for the robot as shown in Fig. 8b. Since the 
forward movement is generated through open-loop control, this module also 
switches between the rotating and forward motion capabilities, to keep the robot 
pointing to the target location. Part, of this logic is implemented on the Arduino.

7 Experimentation and Validation

We validated the correct, behaviour of the designed robot, by testing it. in three 
different, missions taken from its domain of application (see Section 6.1). The 
videos and the full FLTL specifications from which the discrete event, controllers 
were synthesised can be found in the supplementary material.

Our first, validation mission was a. simple surveillance of three areas. For this 
we selected three areas to visit, infinitely often (see Fig. 9a) and used a. similar 
specification to ipi in equation (2) adjusted to these three locations. This mission 
allowed us to test, the correct, behaviour of the overall system and analyse the 
paths generated by the motion control strategy. We run the synthesised controller 
on the vehicle, and it. generated as a. result, the trajectory shown in Fig. 9a, 
successfully doing a. full patrol loop around the three locations.

For our second mission we chose to validate our automatic detection of ob
stacles. We chose for this a. patrol mission of two areas as shown in Fig. 9b and 
included in the workspace several blue objects, that we can automatically de
tect. with simple image filtering techniques and tag them as locations to avoid 
with a. similar specification as g?2 in equation (2). Fig. 9b shows that the robot, 
successfully visits the two locations while avoiding the red areas.

Finally, we tested the alert, system by synthesising a. mission similar to the 
last, one but. turning on the alarm sounds and leds while in the regions shown
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in Fig. 9c, using similar specification as y>g of (2). Fig. 9c shows the resulting 
path for this mission. Note that although the path followed by the robot is quite 
curvy at times, it successfully accomplishes the mission it was designed for.

8 Conclusions and Future Work

In this work we presented a design methodology and effectively used it to build 
a robot system that successfully accomplishes a set of missions taken from a 
surveillance domain of application. For this, we built on discrete event controller 
synthesis techniques which allowed us to generate plans that are guaranteed to 
accomplish high-level mission specifications if a number of assumptions about 
the robot’s capabilities and workspace hold. We validated our system by run
ning three increasingly complicated tasks that involved both motion, obstacle 
avoidance and the non-movement functionality of an alarm system.

In future work it would be interesting to incorporate into the domain of 
application the use of more complex actuators (e.g., manipulating capabilities) 
to see if the presented methodology is helpful in these scenarios. Another aspect 
is to focus on improving the motion paths described by the robot, analysing 
the balance between more sophisticated motion control/planning, more robust 
feedback-controllers and different hardware/mechanical designs.
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