
ASAI, Simposio Argentino de Inteligencia Artificial

Hybrid Control from Scratch: A Design
Methodology for Assured Robotic Missions

Tomás Liendro and Sebastián Zudaire

Instituto Balseiro, Universidad Nacional de Cuyo, Río Negro, Argentina,
{tomas.liendro, Sebastian.zudaire}@ib.edu.ar

Abstract. Robotic research over the last decades have lead us to dif
ferent architectures to automatically synthesise discrete event controllers
and implement these motion and task plans in real-world robot scenarios.
However, these architectures usually build on existing robot hardware,
generating as a result solutions that are influenced and/or restricted
in their design by the available capabilities and sensors. In contrast to
these approaches, we propose a design methodology that, given a specific
domain of application, allowed us to build the first end-to-end implemen
tation of an autonomous robot system that uses discrete event controller
synthesis to generate assured mission plans. We validate this robot sys
tem in several missions of our target domain of application.

Keywords: discrete event control, hybrid control, cyber-physical sys
tems, design methodology

1 Introduction

Hybrid controllers are gaining increasing attention as a way to translate discrete
mission specifications into continuous motion of robots [18], This is achieved
through planning techniques that allow us to synthesise correct-by-construction
discrete controllers from these specifications [25] using an adequate discrete ab
straction for the robot’s capabilities and workspace. Then, a hybrid control
layer [19] is responsible of interpreting these plans into a set of inputs for a
lower control level that commands the robot’s motion and other functionalities.
The result is an autonomous cyber-physical system guaranteed to satisfy the
original specifications if a set of assumptions holds.

Hybrid controllers are possible thanks to contributions from the fields of
Robotic, Control and Automated Software Engineering. On one hand, the robotic
and control community studies the control and automation of continuous and
discrete variable dynamic systems, developing design and implementation tech
niques for motion and control of robot systems [3], On the other hand, the
automated software community has developed many complex automated rea
soning tools to automatically generate plans from specifications expressed in
formal logic languages like Linear Temporal Logic (LTL) [1,11].

There has been extensive research on different architectures for hybrid con
trollers and their implementation on functioning autonomous systems [15, 21], In

49JAIIO - ASAI - ISSN: 2451-7585 - Página 1

ASAI, Simposio Argentine de Inteligencia Artificial

this work we focus on the inverse problem: if one were to design a robot system
to implement a hybrid controller for a set of mission patterns, what would this
design and implementation be?

In order to help answer this question, the main contributions of this work
are: (1) a design methodology for developing assured robotic missions, (2) the
first end-to-end design and implementation of an autonomous robot system that
uses discrete event controller synthesis to generate assured mission plans, using
the proposed methodology for a specific surveillance scenario.

For this, we build on a corpus of knowledge ranging from higher level plan
ning problems to the lower level mechanical and hardware design, effectively
building on all levels of abstraction. We show our hybrid control architecture
and design methodology in Sections 4 and 5, and use it to build a surveillance
robot (Section 6) that we validate in several mission scenarios (Section 7).

2 Background

We present in this section the basic formalism for the controller synthesis tech
nique we used and basic definitions of the rest of the concepts we work with. For
more insight into these concepts please refer to [24] and [12],

Labelled Transition Systems (LTS). The dynamics of the interaction
of a robot with its environment will be modelled using LTS [16], which are
automata where transitions are labelled with events that constitute the inter
actions of the modelled system with its environment. We partition events into
controlled and uncontrolled to specify assumptions about the environment and
safety requirements for a controller. Complex models can be constructed by LTS
composition. We use a standard definition of parallel composition (||) that models
the asynchronous execution of LTS, interleaving non-shared actions and forcing
synchronisation of shared actions.

Fluent Linear Temporal Logic (FLTL). In order to describe environ
ment assumptions and system goals it is common to use formal languages like
FLTL [14], a variant of linear-time temporal logic that uses fluents to describe
states over sequences of actions. A fluent fl is defined by a set of events that
make it true (Setp), a set of events that make it false (Setj_) and an initial value
(v) true (T) or false (±): fl = (Setp, Set±,v). We may omit set notation for sin
gletons and use an action label £ for the fluent defined as fl = (t, Act\ {£}, ±).
Thus, the fluent £ is only true just after the occurrence of the action £.

FLTL is defined similarly to propositional LTL but where a fluent holds at
a position i in a trace tf based on the events occurring in tf up to i. Temporal
connectives are interpreted as usual: Oa, D-y, and pWif mean that ip eventually
holds, always holds, and (weakly) holds until if, respectively.

Discrete Event Controller Synthesis. Given an LTS E with a set of
controllable actions L and a task specification G expressed in FLTL, the goal of
controller synthesis is to find an LTS C such that E||C: (1) is deadlock free, (2) C
does not block any non-controlled actions, and (3) every trace of E||C satisfies G.
We say that a control problem (E, G, E) is realizable if such an LTS C exists. The

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 2

ASAI, Simposio Argentino de Inteligencia Artificial

(a) Dynamic system (b) Feedback-controller scheme

Fig. 1: Continuous variable dynamic systems abstracted to design controllers.

tractability of the controller synthesis depends on the size of the problem (i.e.
states of E and size of G) and also on the fragment of the logic used for G. When
goals are restricted to GR(1) the control problem can be solved in polynomial
time [25], GR(1) formulas are of the form /\"=1 □OV’» KT=1 DO A» where V’»
and ip., are Boolean combinations of fluents that refer to assumptions and goals,
respectively. In this paper we use MTSA [9] for solving control problems.

Feedback-control. Continuous variable dynamic systems (e.g., a. robot wheel)
can usually be abstracted into a. system P with a. set of inputs zz (e.g., voltage
to the motor driving the wheel) and a. set of outputs y (e.g., angular speed of
the wheel) as shown in Fig. la. The typical control problem in this setting is de
fined as finding the set of inputs zz that drives the system P to a. certain desired
configuration of the output y, both in the final value of the variables as well as
in the transition period, which can be approached in a. open-loop or closed-loop
form. Open-loop control consists of generating the set of inputs for the system P
from a. model of the system’s behaviour. This approach doesn’t take into account
errors in the model or external perturbations to the system. A more robust ap
proach is closed-loop control (i.e., feedback-control), which uses direct or filtered
measurements of the output y to compute the input zz that helps minimise the
error e = r — y (see Fig. lb), according to a. set of specifications.

Hybrid Controller. In robotics, the difference in the continuous vs. discrete
description of the real world, and in the interaction between discrete event con
trollers and feedback-controllers (or other robot actuators and sensors) require a.
non-trivial translation task that is implemented in a. hybrid control layer [1,10],

To implement these plans, the hybrid control layer is responsible of taking
high-level commands (e.g., the camera.on action from [18]) and generating low-
level inputs for the robot (e.g., a. low-level voltage pulse train to trigger the cam
era. into capture mode). When this translation is specifically related to motion,
there is extensive work in the area, of motion planning (e.g., [2, 6, 8]). Translating
motion commands into continuous movement generally involves obtaining a. set
of discrete inputs that serve as a. reference signal r for the feedback-controllers,
which then produce controlled movement of the robot [10],

3 Related Work

The design of hybrid control architectures for end-to-end implementations, i.e.,
that integrate components ranging from planning to robot hardware, has been
approached by many (e.g., [1,10,18,19,15,21]). However, this process usually

49JAIIO - ASAI - ISSN: 2451-7585 - Pàgina 3

ASAI, Simposio Argentino de Inteligencia Artificial

A High-level

Fig. 2: Hybrid control architecture showing interaction between components.

Low-level

begins with partially or fully functional low-level robot hardware and software
(e.g., [15]). In these scenarios the design problem consists in finding a. discrete
abstraction for the planning layer that captures the robots capabilities and
workspace [21], and that is compatible with the desired domain of application.
The key challenge is that the state space of the chosen abstractions must not
be too big so as lead to intractability of the synthesis problem (e.g., increasing
number of discrete locations leads to polynomial growth in synthesis time [7]),
nor too small so as to fail to capture important aspects from the continuous
environment of the robot (e.g., the abstraction problems presented in [8]).

To the best of our knowledge, our work is the first to tackle the design of
hybrid controllers as a. whole, with the distinctive feature of building a. custom
robot that accommodates to various choices made during the design process.

4 Component Architecture

To approach an end-to-end design, we must first define a. component architecture
to identify the different elements of the system and their interaction. We build
on several architectures taken from the control [13], robotic [19] and software
communities [4] to define the architecture shown in Fig. 2, where arrows indicate
interaction between components. We will describe this architecture using an
alternative font when referring to elements in Fig. 2.

Planning Layer: This layer uses as an input high-level abstractions of the
environment in which the robot moves and interacts. This input can be divided

49JAIIO - ASAI - ISSN: 2451-7585 - Página 4

ASAI, Simposio Argentine de Inteligencia Artificial

into a Robot Workspace that provides a discretized notion of the capabilities of
the robot (see Section 6.1), a set of Assumptions about the robot’s environment
and capabilities (e.g., a camera.on action can only be followed by a camera.off)
and a User Specification that captures what the mission for the robot is. All
these elements can be encapsulated into a FLTL Formula and then use a Syn
thesis Algorithm to produce a correct-by-construction discrete event controller
guaranteed to satisfy mission, which is represented as an automata in LTS.

A component is then required to interpret the plan encoded in its LTS repre
sentation. The Enactor consists of an interpretation module that knows which
module to call from the available Hybrid Modules each time controllable ac
tions are enabled in the plan, and continuously listens for discrete events that
may be triggered during the mission.

Hybrid modules: These modules provide the main translation process be
tween the continuous and discrete representations of the environment. To imple
ment certain discrete actions, references may be trivially computed at this level
and sent to the Feedback-controllers (e.g., to implement a drill.fast action,
the reference angular speed of a feedback-controller controlling the drilling speed
may be set to 3000 rpm). For other actions, the Hybrid Modules may command
a Direct Actuator (e.g., turning on a led). The process becomes more compli
cated for motion capabilities, so a Motion Control or motion planner module
may be used to provide additional computation from the available motion data
to generate a set of references for the Feedback-controllers. From the avail
able sensor data, discrete events may be generated.

Robot: This layer includes the physical Robot Hardware as well as modules
that provide the basic capabilities of the robot through Feedback-controllers
and Direct Actuators. The difference between these two is that due to its
closed-loop nature, the first require filtered readings from the Sensors to gen
erate CONTROL SIGNALS.

5 Design Methodology

In Fig. 3 we show our methodology through the system design and implementa
tion. Comparing with Fig. 2, the design flows from the highest levels of abstrac
tion to the lowest, but the final component to be implemented is the Hybrid
Control Layer. Next we describe each stage of the process with more detail:

Planning Layer: Our design methodology is guided by the desired domain
of application, this means that we must first ensure that, for the missions we
wish to specify and run, we have a compatible discrete abstraction and tractable
synthesis algorithm. For example, common patrol or surveillance missions [8, 23]
may be reasonably abstracted using grid-based discretization of the movement
region of the robot, i.e., workspace. Multiple synthesis algorithms have shown
tractability for this kind of specifications and abstractions (e.g., [11, 27]), mean
ing that this is a reasonable approach for this family of missions. At this stage
we both design the Planning Layer and implement it by synthesising missions
and eventually enacting them in dummy environments.

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 5

ASAI, Simposio Argentino de Inteligencia Artificial

Fig. 3: Design methodology. A representative image for each stage is shown.

Hybrid Control Layer (design): When the discrete abstraction is defined,
we must provide a. hybrid controller and robot hardware capable of implementing
it. Common approaches usually involve using available working robot hardware
on top of which they doline a. hybrid control architecture (e.g., [15]), but has
the downside of incurring in complex architectures and components as a. result.
For instance, if we build on a. common car-like robot, movement from one point
to another will require at the very least the computation of a. Dubins path or
Reeds-Shepp path [17], For certain space discretizations, this may also require
sophisticated resynthesisation loops to lii id feasible trajectories (see [8]). All this
added complexity could have been avoided by selecting more adequate hardware
for movement in a. 2D plane such as omnidirectional wheels [26],

Our hypothesis is that many simplifications can be made by continuing the
design process at the hybrid control layer. Designing the robot motion capabili
ties will require first designing a. motion planning or motion control strategy to
move the robot according to the discrete abstraction used. The same goes for
other capabilities that require controlled command of the actuators.

Robot Hardware & Sensors: Once reasonable motion and actuator strate
gies have been designed for the hybrid control layer, only the bottom low-level
robot-related components are left. Robot hardware and sensors must be selected
to comply with the design requirements defined during the previous stage.

Feedback-Control & Direct Actuators: When the previous stage is im
plemented, the design of feedback-controllers and other actuators can commence,
since they both require a. real robot in which to validate their control algorithms.

Hybrid Control Layer (implement): The final stage of the methodology
involves integrating all the components into a. fully working hybrid controller.
For this, several Hybrid Modules must be implemented as well as the Motion
Control strategy designed earlier.

6 Example Use of the Design Methodology

In this section we use the design methodology described in Section 5 to build a.
robot system for a. surveillance mission scenario.

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 6

ASAI, Simposio Argentino de Inteligencia Artificial

(a) (b)

Fig. 4: (a) Grid-based discretization of a continuous region, (b) LTS for the
movement capabilities of the robot, (c) LTS for the alert capability. Note: dashed
lines are controllable actions while continuous lines denote uncontrollable events.

alert, off

(C)

6.1 Planning Layer

We first have to define our domain of application, i.e., the missions we want
to do. The work in [23] provides common mission specification patterns found
in the robotic literature, from which we aim to achieve all the Core Movement
Patterns (visiting and patrolling), Avoidance patterns (prohibited regions) and
the Reaction patterns (e.g., turning on a camera when inside a region). We
will work with low duration missions (< 30 min) on a small 2D plane (approx.
2 nr x 3 nr) and restrict the reaction patterns into an alert with sound and leds.

For surveillance and visiting missions, its common to use space discretization
of the robot’s workspace [1]. As the robot will be performing its tasks in an
rectangular area, it is reasonable to discretize the robot’s working area by using
an uniform rectangular grid containing N x M cells as in [27]. The minimum
size of the cells is limited by the ability of the robot to move fully contained in
it while manoeuvring to the next [2]. This allows us to avoid discrete regions by
specifying at the planning level never to take transitions that lead to prohibited
regions. Furthermore, we must only allow movement to adjacent cells, since
moving in diagonal may lead to entering forbidden cells along the way.

Fig. 4a and 4b show how we derive from the grid-based discretization of a
region a LTS modelling the motion behaviour of the robot. We abstract motion
into two actions: a controllable go.i.j action to command the robot to move to
the discrete location (z,J) of the grid, and the respective uncontrollable at.i.j
event to indicate that the robot arrived correctly at this location. This LTS also
includes certain assumptions about the movement of the robot: a go.1.2 action
can only be followed by a at. 1.2 event and between go.i.j and at.i.j no other go
can be issued. For the alert capability we may use a simple LTS abstraction as
shown in Fig. 4c, where each controllable action is modelled as instantaneous.
The environment E consists of the parallel composition of these two LTS.

We will use FLTL formulae to specify missions. For example, a patrol mission
between the discrete locations (0, 0) and (1,2), where the robot must turn on its

49JAIIO - ASAI - ISSN: 2451-7585 - Página 7

ASAI, Simposio Argentine de Inteligencia Artificial

(a)

-►•b

(b)

Fig. 5: (a) Adjacent movement capability of the robot, (b) Abstracted motion
planning problem, (c) Two-step solution to the problem.

alert in the bottom row locations and turn it off in the top row, and always avoid
location (0,2), can be specified with the fluents defined in (1) and the formula.
95 = (ipi Ay>2 Aips). This formula, relates to the Patrolling (ipi), Global avoidance
(952) and Prompt, Reaction (953) patterns in [23],

AtBot = ((at.1.0, at.1.1, at.7.7}, (go.0.0, go.0.1, go.0.2(, ±)
AtTop = ((at.0.0, at.0.1, at.0.2(, (go.1.0, go.1.1, go.l.2(,T) (1)
Alert = (alert.on, alert.off, ±)

ipi = (nOat.O.O) A (nOat.7.2)

Vz = (\J^at.0.2) (2)
953 = Q^((AtBot A -lAlerf) =4- Qalert.on) A ((AtTop A Alert) =4- Qalert.off))

We used the MTSA tool to solve the control problem derived from the envi
ronment E and the above specifications. This tool proved tractability on low-end
hardware (see Section 6.3) for hundreds of discrete locations. We use the obstacle
sensor described in Section 6.3 to automatically specify locations to avoid (952)-

An Enactor for these plans was implemented by parsing the output discrete
event controllers generated with MTSA into an equivalent data, structure in
Python to be able to integrate with the modules in the hybrid layer. A queue
mechanism allows it to run as an independent process, calling the controllable
actions of the plan (implemented in the Hybrid Modules) as they are enabled
and immediately processes any uncontrollable event that may be generated.

6.2 Hybrid Control Layer Design

Our target domain of application requires developing movement and non-movement
(i.e., alert capability) functionality for the robot. Implementing an alert capabil
ity is pretty straight forward for simple temporised alarms. However, command
ing movement of the robot is not, so we will focus on its design process.

Given the discrete abstraction we defined in Section 6.1 that handles at the
higher level static-obstacle avoidance, our motion planning problem reduces to
finding a. set of control inputs for the robot to go from one discrete location to

49JAIIO - ASAI - ISSN: 2451-7585 - Pagina 8

ASAI, Simposio Argentino de Inteligencia Artificial

Robot Hardware Sensor

Fig. 6: (a) Hardware components and connection scheme, (b) Main platform of
the robot showing the component layout.

an adjacent one. This simple problem can be solved without relying on sophis
ticated motion planners (e.g., RRT [5]) using either omnidirectional robots or
with a motion control solution over an unidirectional moving robot. The first
solution (e.g., [26]) just pushes the complexity and cost of the problem to a
lower level. Here we show that a carefully selected simple motion control strat
egy can simplify the design and implementation process of the lower mechanical
and hardware level, as stated in Section 5.

The motion problem is illustrated in Fig. 5a, were we see the robot wanting
to do a transition through a go action to an adjacent cell. The abstracted motion
planning problem is shown in Fig. 5b and a very simple solution to this problem
is presented in Fig. 5c for an unidirectional moving robot:

(I) Rotate until the “front” of the robot points in the direction of the target.
(II) Move forward along this direction until the target is reached.

This type of motion control solution requires both a robot with a unidirec
tional forward moving capability and the functionality of rotating around its
centre axis (i.e., without displacement of its centre of mass), which can be easily
satisfied and implemented with a low-cost two-wheel robot as in [3, 20, 22].

6.3 Robot Hardware and Sensors

In Fig. 6a we show an overview for our Robot Hardware and Sensor solution.
We selected a simple two-wheeled solution as the robot platform, similar to [22],
where we use a third pivoting wheel to have a stable platform (see Fig. 6b) and
avoid incurring in self-balancing control algorithms as in [20]. We defined the
size and shape of the robot to be able to accommodate all the electronic and
hardware components and have easy access to the battery.

A simplified connection schematics for the robot design is shown in Fig. 6a.
Due to the motion control algorithm defined in Section 6.2 we require indepen
dent motors to drive the wheels, for which we selected common DC motors and an
H-bridge to command them. An Arduino UNO board was used to communicate

49JAIIO - ASAI - ISSN: 2451-7585 - Página 9

ASAI, Simposio Argentino de Inteligencia Artificial

(a)

Fig. 7: (a) Overview of the ceiling mounted camera and image transmission, (b)
Color tags mounted on the robot for positioning and orientation.

(b)

with the H-bridge, and to later implement the low-level feedback- and motion
control logic. For synthesising and enacting the discrete event controllers, and
implementing the image processing modules we included a Raspberry Pi 3B+
single-board computer. For power we used 6 A A rechargeable batteries (with a
voltage regulator for the Raspberry Pi), generating an autonomy of over 1 hour.
Finally, for the alarm capability we connected to the Arduino leds and a speaker
to produce audible noise (not shown in Fig. 6a).

Our motion control algorithm requires to sense both the position and heading
of the robot, as well as automatic detection of static obstacles for the planning
layer. Since we are planning to do missions on the footprint of around 2 m x 3 m
(e.g., the floor of a small room), we used a camera mounted on the ceiling to track
the movement. We added color tags on top of the robot (see Fig. 7b) and used
blue obstacles to automatically detect from the images: position and orientation
of the robot and discrete regions that include obstacles. The images from the
ceiling-cam are transmitted via USB to an intermediary laptop and then via
WiFi to the onboard computer (see Fig. 7a), to be later processed onboard.

6.4 Feedback-controllers and Direct Actuators

For the alert system we implemented the following Direct Actuator: a function
on the Arduino that turns on the leds and the beeping noise depending on the
value of a input flag from the serial port.

For the motion capabilities we used a Feedback-controller for orientation
and an open-loop controller for forward movement. The latter is fairly straight
forward to implement if we don’t want a controlled velocity: we implemented at
the Arduino level a function to set the wheels into a forward movement through
a constant PWM signal for both wheels. This controller does not guarantee that
the robot will follow a straight path given that, due to slipping or friction, a

49JAIIO-ASAI - ISSN: 2451-7585 - Página 10

ASAI, Simposio Argentino de Inteligencia Artificial

Fig. 8: (a) Feedback-controller showing the identified system parameters, (b)
Example path generated by the motion controller going from a location A to B.

Initial
direction

tendency to turn can be present. We simply ignore this problem and expect the
orientation controller to fix the heading of the vehicle as it moves.

Based on [12], to design the feedback-controller we must first develop a model
of the dynamics of the system. In [12], a mathematical model is proposed with a
simplified electrical circuit and mechanical forces. Thus, we obtained the dynam
ical model (Laplace transformed) of the system shown in (3), where we group the
many circuit and mechanical related constants (rw,Kt, JmJ,Ke,Kt,Jm) into K
and D, 6 is the orientation of the robot and V is the applied voltage to the
motors (with different signs for each one).

M = = k m
K(s) 3(3+^) s(s + D) V)

Fig. 8a shows the identified parameters K and D using standard identi
fication control techniques. This system can be reasonably controlled using a
proportional controller as shown also in Fig. 8a, where Kp = 3.12.

6.5 Hybrid Control Layer Implementation

As recognised in [8], discretization for synthesis problems must take into account
the actual ability of the robot to transverse from a discrete cell to the next with
out invading nearby cells in the process. The main limitation of the motion
control strategy is at the feedback-control and hardware level, where from ex
perimental data we estimated that the robot requires 15 pixels (i.e., 100 mm)
of turn radius to be able to rotate, mainly because it doesn’t properly rotate
around its centre of mass. This makes us set the cell size for the discretization
at 60 pixels (i.e., 400mm), and as result gives us a rectangular grid of 4 x 5 cells
for the workspace defined by the mounted camera (see Fig. 7a).

The final step of our design methodology is implementing the different mod
ules in the Hybrid Control Layer. The developed modules were implemented
in Python 3.4 onboard the vehicle and behave as follows:

Alert Module: This module interprets the alert, on and alert, off commands
and sets the flag described in Section 6.4 accordingly.

Motion Handler Module: The motion handler takes as an input go.i.j
and translates it into a continuous (t,?/) position (in units of distance) to later

49JAIIO - ASAI - ISSN: 2451-7585 - Página 11

ASAI, Simposio Argentino de Inteligencia Artificial

Patrol Patrol with Obstacles Patrol with Obstacles & Alerting

Fig. 9: (a) Patrol of three locations, (b) Patrol of two locations with obstacles,
(c) Patrol of two locations with obstacles and alerting. Note: Patrol locations
are shown in green, obstacles in red and alert, zones with stripes.

command the Motion Control component. It also detects from the available
sensor data that the target discrete location has been reached, i.e., the robot’s
position is less than 15 pixels (i.e., 100mm) from the centre of the discrete
location, and outputs the discrete event at.i.j to the Enactor.

Motion Control: This module implements the algorithm described in Sec
tion 6.2, generating trajectories for the robot as shown in Fig. 8b. Since the
forward movement is generated through open-loop control, this module also
switches between the rotating and forward motion capabilities, to keep the robot
pointing to the target location. Part, of this logic is implemented on the Arduino.

7 Experimentation and Validation

We validated the correct, behaviour of the designed robot, by testing it. in three
different, missions taken from its domain of application (see Section 6.1). The
videos and the full FLTL specifications from which the discrete event, controllers
were synthesised can be found in the supplementary material.

Our first, validation mission was a. simple surveillance of three areas. For this
we selected three areas to visit, infinitely often (see Fig. 9a) and used a. similar
specification to ipi in equation (2) adjusted to these three locations. This mission
allowed us to test, the correct, behaviour of the overall system and analyse the
paths generated by the motion control strategy. We run the synthesised controller
on the vehicle, and it. generated as a. result, the trajectory shown in Fig. 9a,
successfully doing a. full patrol loop around the three locations.

For our second mission we chose to validate our automatic detection of ob
stacles. We chose for this a. patrol mission of two areas as shown in Fig. 9b and
included in the workspace several blue objects, that we can automatically de
tect. with simple image filtering techniques and tag them as locations to avoid
with a. similar specification as g?2 in equation (2). Fig. 9b shows that the robot,
successfully visits the two locations while avoiding the red areas.

Finally, we tested the alert, system by synthesising a. mission similar to the
last, one but. turning on the alarm sounds and leds while in the regions shown

49JAIIO - ASAI -1SSN: 2451-7585 - Página 12

ASAI, Simposio Argentino de Inteligencia Artificial

in Fig. 9c, using similar specification as y>g of (2). Fig. 9c shows the resulting
path for this mission. Note that although the path followed by the robot is quite
curvy at times, it successfully accomplishes the mission it was designed for.

8 Conclusions and Future Work

In this work we presented a design methodology and effectively used it to build
a robot system that successfully accomplishes a set of missions taken from a
surveillance domain of application. For this, we built on discrete event controller
synthesis techniques which allowed us to generate plans that are guaranteed to
accomplish high-level mission specifications if a number of assumptions about
the robot’s capabilities and workspace hold. We validated our system by run
ning three increasingly complicated tasks that involved both motion, obstacle
avoidance and the non-movement functionality of an alarm system.

In future work it would be interesting to incorporate into the domain of
application the use of more complex actuators (e.g., manipulating capabilities)
to see if the presented methodology is helpful in these scenarios. Another aspect
is to focus on improving the motion paths described by the robot, analysing
the balance between more sophisticated motion control/planning, more robust
feedback-controllers and different hardware/mechanical designs.

References

1. C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas.
Symbolic planning and control of robot motion [grand challenges of robotics], IEEE
Robotics Automation Magazine, 14(l):61-70, 2007.

2. C. Belta and L. C. G. J. M. Habets. Constructing decidable hybrid systems with
velocity bounds. In 200) IEEE Conference on Decision and Control (CDC),
volume I, pages 467-472 Vol.I, 2004.

3. X. Bin, G. Lei, W. Shimin, S. Yuan, and Z. Ying. Dynamics modeling and system
parameter identification experiment of a kind of two-wheeled robot. In 2015 IEEE
International Conf, on Information and Automation, pages 404-408, Aug 2015.

4. Victor Braberman, Nicolas D’Ippolito, Jeff Kramer, Daniel Sykes, and Sebastian
Uchitel. Morph: A reference architecture for configuration and behaviour self
adaptation. New York, NY, USA, 2015. ACM.

5. S. Carpin and Enrico Pagello. On parallel rrts for multi-robot systems. Proc. Sth
Conf. Italian Association for Artificial Intelligence, pages 834-841, 01 2002.

6. D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local potential functions
for global robot control and navigation. In Proceedings 2003 IEEE/RSJ Int. Conf,
on Intelligent Robots and Systems, volume 4, pages 3546-3551 vol.3, Oct 2003.

7. S. Dathathri and R. M. Murray. Decomposing gr(l) games with singleton live
ness guarantees for efficient synthesis. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 911-917, 2017.

8. J. A. DeCastro, V. Raman, and H. Kress-Gazit. Dynamics-driven adaptive ab
straction for reactive high-level mission and motion planning. In 2015 IEEE Inter
national Conference on Robotics and Automation (ICRA), pages 369-376, 2015.

49JAIIO - ASAI - ISSN: 2451-7585 - Página 13

ASAI, Simposio Argentino de Inteligencia Artificial

9. Nicolás Roque D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchitel.
Synthesis of live behaviour models. In Proceedings of the 18th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 77-86, USA, 2010.

10. G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion planning
for mobile robots. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 2020-2025, 2005.

11. C. Finucane, Gangyuan ding, and H. Kress-Gazit. Ltlmop: Experimenting with
language, temporal logic and robot control. In 2010 IEEE/RSJ International Con
ference on Intelligent Robots and Systems, pages 1988-1993, Oct 2010.

12. Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of
Dynamic Systems. Addison-Wesley, USA, 3rd edition, 1994.

13. Gan Yong, Sun Yushan, Wan Lei, and Pang Yongjie. Motion control system archi
tecture of underwater robot. In 2006 6th World Congress on Intelligent Control
and Automation, volume 2, pages 8876-8880, June 2006.

14. Dimitra Giannakopoulou and Jeff Magee. Fluent model checking for event-based
systems. ESEC/FSE-11, pages 257-266, New York, NY, USA, 2003. ACM.

15. Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-Gazit. An end-to-
end system for accomplishing tasks with modular robots: Perspectives for the ai
community. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pages 4879-4883, 2017.

16. Robert Keller. Formal verification of parallel programs. Communications of the
ACM, 19:371-384, 07 1976.

17. J. M. Kim, K. I. Lim, and J. H. Kim. Auto parking path planning system using
modified reeds-shepp curve algorithm. In 201-4 11th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), pages 311-315, Nov 2014.

18. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE Trans, on Robotics, pages 1370-1381, 2009.

19. Hadas Kress-Gazit, Georgios Fainekos, and George Pappas. Translating structured
english to robot controllers. Aduanced Robotics, 22:1343-1359, 10 2008.

20. T. A. Mai, T. S. Dang, D. N. Anisimov, and E. Fedorova. Fuzzy-pid controller for
two wheels balancing robot based on stm32 microcontroller. In 2019 International
Conf, on Engineering Technologies and Computer Science, pages 20-24, 2019.

21. S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-Gazit.
Reactive high-level behavior synthesis for an atlas humanoid robot. In 2016 IEEE
International Conf, on Robotics and Automation (ICRA), pages 4192-4199, 2016.

22. Augusto Masetti and Lucas Terissi. Prototype robot for computer vision and
control systems applications. In Concurso de Trabajos Estudiantiles - JAIIO f6,
pages 37-46, Sep 2017.

23. C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger. Specification
patterns for robotic missions. IEEE Trans, on Soft. Engineering, pages 1-1, 2019.

24. L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden, J. Kramer, K. Tei, and
S. Uchitel. Dynamic update of discrete event controllers. IEEE Transactions on
Software Engineering, pages 1-1, 2018.

25. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive (1) designs.
Lecture notes in computer science, 3855:364-380, 2006.

26. R. Wen and M. Tong. Mecanum wheels with astar algorithm and fuzzy pid algo
rithm based on genetic algorithm. In 2017 International Conference on Robotics
and Automation Sciences (IGRAS), pages 114-118, Aug 2017.

27. E. M. Wolff, U. Topcu, and R. M. Murray. Efficient reactive controller synthesis
for a fragment of linear temporal logic. In 2013 IEEE International Conference on
Robotics and Automation, pages 5033-5040, May 2013.

49JAIIO - ASAI - ISSN: 2451-7585 - Página 14

