8,900 research outputs found

    Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs

    Full text link
    [EN] Most sensor networks are deployed at hostile environments to sense and gather specific information. As sensor nodes have battery constraints, therefore, the research community is trying to propose energyefficient solutions for wireless sensor networks (WSNs) to prolong the lifetime of the network. In this paper, we propose an energy-efficient multi-level and distance-aware clustering (EEMDC) mechanism for WSNs. In this mechanism, the area of the network is divided into three logical layers, which depends upon the hop-count-based distance from the base station. The simulation outcomes show that EEMDC is more energy efficient than other existing conventional approaches.This work has been partially supported by the 'Ministerio de Ciencia e Innovacion', through the 'Plan Nacional de I+D+i 2008-2011' in the 'Subprograma de Proyectos de Investigacion Fundamental', project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-15-11 multidisciplinary projectsMehmood, A.; Khan, S.; Shams, B.; Lloret, J. (2015). Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs. International Journal of Communication Systems. 28(5):972-989. https://doi.org/10.1002/dac.2720S972989285Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Bri D Garcia M Lloret J Dini P Real deployments of wireless sensor networks Third International Conference on Sensor Technologies and Applications (SENSORCOMM 2009) 2009 8 23GUI, L., VAL, T., & WEI, A. (2011). A Novel Two-Class Localization Algorithm in Wireless Sensor Networks. Network Protocols and Algorithms, 3(3). doi:10.5296/npa.v3i3.863Rajeswari, A., & P.T, K. (2011). A Novel Energy Efficient Routing Protocols for Wireless Sensor Networks Using Spatial Correlation Based Collaborative Medium Access Control Combined with Hybrid MAC. Network Protocols and Algorithms, 3(4). doi:10.5296/npa.v3i4.1296Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Liu, G., Xu, B., & Chen, H. (2011). Decentralized estimation over noisy channels in cluster-based wireless sensor networks. International Journal of Communication Systems, 25(10), 1313-1329. doi:10.1002/dac.1308Cheng, L., Chen, C., Ma, J., & Shu, L. (2011). Contention-based geographic forwarding in asynchronous duty-cycled wireless sensor networks. International Journal of Communication Systems, 25(12), 1585-1602. doi:10.1002/dac.1325Wang, X., & Qian, H. (2011). Hierarchical and low-power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513-1529. doi:10.1002/dac.1318Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An Energy-Efficient Routing Protocol Using Movement Trends in Vehicular Ad hoc Networks. The Computer Journal, 56(8), 938-946. doi:10.1093/comjnl/bxt028Chen, J.-S., Hong, Z.-W., Wang, N.-C., & Jhuang, S.-H. (2010). Efficient Cluster Head Selection Methods for Wireless Sensor Networks. Journal of Networks, 5(8). doi:10.4304/jnw.5.8.964-970Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2011). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114-126. doi:10.1002/dac.1336Zeynali, M., Mollanejad, A., & Khanli, L. M. (2011). Novel hierarchical routing protocol in wireless sensor network. Procedia Computer Science, 3, 292-300. doi:10.1016/j.procs.2010.12.050Heinzelman W Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks 33rd Hawaii International Conference on System Sciences (HICSS) 2000 3005 3014Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering, 38(3), 662-671. doi:10.1016/j.compeleceng.2011.11.017Gou H Yoo Y An energy balancing LEACH algorithm for wireless sensor networks Proceedings of the 7th International Conference on Information Technology: New Generations (ITNG) 2010Ding, P., Holliday, J., & Celik, A. (2005). Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks. Lecture Notes in Computer Science, 322-339. doi:10.1007/11502593_25Bandyopadhyay S Coyle E An energy-efficient hierarchical clustering algorithm for wireless sensor networks The 32nd IEEE International Conference on Computer Communication (INFOCOM 2003) 2003Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036-1048. doi:10.1016/j.adhoc.2010.11.003Zhu, Y., Wu, W., Pan, J., & Tang, Y. (2010). An energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Computer Communications, 33(5), 639-647. doi:10.1016/j.comcom.2009.11.008Khamfroush H Saadat R Khademzadeh A Khamfroush K Lifetime increase for wireless sensor networks using cluster-based routing International Association of Computer Science and Information Technology-Spring Conference (IACSIT-SC 2009) 2009Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256-268. doi:10.1016/j.comcom.2012.10.006Aslam N Phillips W Robertson W Sivakumar S A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks 4th IEEE Consumer Communications and Networking Conference, (CCNC 2007) 2007 650 654Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14-15), 2842-2852. doi:10.1016/j.comcom.2007.05.034Yong, Z., & Pei, Q. (2012). A Energy-Efficient Clustering Routing Algorithm Based on Distance and Residual Energy for Wireless Sensor Networks. Procedia Engineering, 29, 1882-1888. doi:10.1016/j.proeng.2012.01.231Chuan-Chi W A minimum transmission energy consumption routing protocol for user-centric wireless networks 2011 1143 1148Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662-667. doi:10.1016/j.comcom.2008.11.025Kim KT Moon SS Tree-Based Clustering (TBC) for energy efficient wireless sensor networks IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA) 2010 680 685Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU - International Journal of Electronics and Communications, 66(1), 54-61. doi:10.1016/j.aeue.2011.05.002Ye M Li C Wu J EECS: an Energy Efficient Clustering Scheme in wireless sensor networks 24th IEEE International Performance on Computing, and Communications Conference 2005 535 540Gautama N Lee W Pyun J Dynamic clustering and distance aware routing protocol for wireless sensor networks PE-WASUN'09 2009Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117-131. doi:10.1016/j.ins.2011.08.029Pantazis, N. A., Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). Energy efficiency in wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc Networks, 7(2), 322-343. doi:10.1016/j.adhoc.2008.03.006OMNeT++ Community Documentation and Tutorials of omnet++ http://www.omnetpp.org/Castallia Documentation and Tutorials of Castalia Simulator for WSN and BAN http://castalia.research.nicta.com.au/index.php/en/Research Group on Computer Networks and Multimedia Communication UFPA - Brazil Download-Leach-v2-for-Castalia http://www.gercom.ufpa.br/index.php?option=com_filecabinet&view=files&id=1&Itemid=31&lang=p

    Energy-efficient routing protocols in heterogeneous wireless sensor networks

    Get PDF
    Sensor networks feature low-cost sensor devices with wireless network capability, limited transmit power, resource constraints and limited battery energy. The usage of cheap and tiny wireless sensors will allow very large networks to be deployed at a feasible cost to provide a bridge between information systems and the physical world. Such large-scale deployments will require routing protocols that scale to large network sizes in an energy-efficient way. This thesis addresses the design of such network routing methods. A classification of existing routing protocols and the key factors in their design (i.e., hardware, topology, applications) provides the motivation for the new three-tier architecture for heterogeneous networks built upon a generic software framework (GSF). A range of new routing algorithms have hence been developed with the design goals of scalability and energy-efficient performance of network protocols. They are respectively TinyReg - a routing algorithm based on regular-graph theory, TSEP - topological stable election protocol, and GAAC - an evolutionary algorithm based on genetic algorithms and ant colony algorithms. The design principle of our routing algorithms is that shortening the distance between the cluster-heads and the sink in the network, will minimise energy consumption in order to extend the network lifetime, will achieve energy efficiency. Their performance has been evaluated by simulation in an extensive range of scenarios, and compared to existing algorithms. It is shown that the newly proposed algorithms allow long-term continuous data collection in large networks, offering greater network longevity than existing solutions. These results confirm the validity of the GSF as an architectural approach to the deployment of large wireless sensor networks

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Mengenal pasti masalah pemahaman dan hubungannya dengan latar belakang matematik, gaya pembelajaran, motivasi dan minat pelajar terhadap bab pengawalan kos makanan di Sekolah Menengah Teknik (ert) Rembau: satu kajian kes.

    Get PDF
    Kajian ini dijalankan untuk mengkaji hubungan korelasi antara latar belakang Matematik, gaya pembelajaran, motivasi dan minat dengan pemahaman pelajar terhadap bab tersebut. Responden adalah seramai 30 orang iaitu terdiri daripada pelajar tingkatan lima kursus Katering, Sekolah Menengah Teknik (ERT) Rembau, Negeri Sembilan. Instrumen kajian adalah soal selidik dan semua data dianalisis menggunakan program SPSS versi 10.0 untuk mendapatkan nilai min dan nilai korelasi bagi memenuhi objektif yang telah ditetapkan. Hasil kajian ini menunjukkan bahawa hubungan korelasi antara gaya pembelajaran pelajar terhadap pemahaman pelajar adalah kuat. Manakala hubungan korelasi antara latar belakang Matematik, motivasi dan minat terhadap pemahaman pelajar adalah sederhana. Nilai tahap min bagi masalah pemahaman pelajar, latar belakang Matematik, gaya pembelajaran, motivasi dan minat terhadap bab Pengawalan Kos Makanan adalah sederhana. Kajian ini mencadangkan penghasilan satu Modul Pembelajaran Kendiri bagi bab Pengawalan Kos Makanan untuk membantu pelajar kursus Katering dalam proses pembelajaran mereka

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method
    corecore