4,325 research outputs found

    Solving Real-Life Hydroinformatics Problems with Operations Research and Artificial Intelligence

    Get PDF
    Many real life problems in the hydraulic engineering literature can be modelled as constrained optimisation problems. Often, they are addressed in the literature through genetic algorithms, although other techniques have been proposed. In this thesis, we address two of these real life problems through a variety of techniques taken from the Artificial Intelligence and Operations Research areas, such as mixed-integer linear programming, logic programming, genetic algorithms and path relinking, together with hybridization amongst these technologies and with hydraulic simulators. For the first time, an Answer Set Programming formulation of hydroinformatics problems is proposed. The two real life problems addressed hereby are the optimisation of the response in case of contamination events, and the optimisation of the positioning of the isolation valves. The constraints of the former describe the feasible region of the Multiple Travelling Salesman Problem, while the objective function is computed by a hydraulic simulator. A simulation–optimisation approach based on Genetic Algorithms, mathematical programming, and Path Relinking, and a thorough experimental analysis are discussed hereby. The constraints of the latter problem describe a graph partitioning enriched with a maximum flow, and it is a new variant of the common graph partitioning. A new mathematical model plus a new formalization in logic programming are discussed in this work. In particular, the technologies adopted are mixed-integer linear programming and Answer Set Programming. Addressing these two real applications in hydraulic engineering as constrained optimisation problems has allowed for i) computing applicable solutions to the real case, ii) computing better solutions than the ones proposed in the hydraulic literature, iii) exploiting graph theory for modellization and solving purposes, iv) solving the problems by well suited technologies in Operations Research and Artificial Intelligence, and v) designing new integrated and hybrid architectures for a more effective solving

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio

    Embracing Analytics in the Drinking Water Industry

    Get PDF
    Analytics can support numerous aspects of water industry planning, management, and operations. Given this wide range of touchpoints and applications, it is becoming increasingly imperative that the championship and capability of broad-based analytics needs to be developed and practically integrated to address the current and transitional challenges facing the drinking water industry. Analytics will contribute substantially to future efforts to provide innovative solutions that make the water industry more sustainable and resilient. The purpose of this book is to introduce analytics to practicing water engineers so they can deploy the covered subjects, approaches, and detailed techniques in their daily operations, management, and decision-making processes. Also, undergraduate students as well as early graduate students who are in the water concentrations will be exposed to established analytical techniques, along with many methods that are currently considered to be new or emerging/maturing. This book covers a broad spectrum of water industry analytics topics in an easy-to-follow manner. The overall background and contexts are motivated by (and directly drawn from) actual water utility projects that the authors have worked on numerous recent years. The authors strongly believe that the water industry should embrace and integrate data-driven fundamentals and methods into their daily operations and decision-making process(es) to replace established ìrule-of-thumbî and weak heuristic approaches ñ and an analytics viewpoint, approach, and culture is key to this industry transformation

    Advanced modelling and simulation of water distribution systems with discontinuous control elements

    Get PDF
    Water distribution systems are large and complex structures. Hence, their construction, management and improvements are time consuming and expensive. But nearly all the optimisation methods, whether aimed at design or operation, suffer from the need for simulation models necessary to evaluate the performance of solutions to the problem. These simulation models, however, are increasing in size and complexity, and especially for operational control purposes, where there is a need to regularly update the control strategy to account for the fluctuations in demands, the combination of a hydraulic simulation model and optimisation is likely to be computationally excessive for all but the simplest of networks. The work presented in this thesis has been motivated by the need for reduced, whilst at the same time appropriately accurate, models to replicate the complex and nonlinear nature of water distribution systems in order to optimise their operation. This thesis attempts to establish the ground rules to form an underpinning basis for the formulation and subsequent evaluation of such models. Part I of this thesis introduces some of the modelling, simulation and optimisation problems currently faced by water industry. A case study is given to emphasise one particular subject, namely reduction of water distribution system models. A systematic research resulted in development of a new methodology which encapsulate not only the system mass balance but also the system energy distribution within the model reduction process. The methodology incorporates the energy audits concepts into the model reduction algorithm allowing the preservation of the original model energy distribution by imposing new pressure constraints in the reduced model. The appropriateness of the new methodology is illustrated on the theoretical and industrial case studies. Outcomes from these studies demonstrate that the new extension to the model reduction technique can simplify the inherent complexity of water networks while preserving the completeness of original information. An underlying premise which forms a common thread running through the thesis, linking Parts I and II, is in recognition of the need for the more efficient paradigm to model and simulate water networks; effectively accounting for the discontinuous behaviour exhibited by water network components. Motivated largely by the potential of contemplating a new paradigm to water distribution system modelling and simulation, a further major research area, which forms the basis of Part II, leads to a study of the discrete event specification formalism and quantised state systems to formulate a framework within which water distribution systems can be modelled and simulated. In contrast to the classic time-slicing simulators, depending on the numerical integration algorithms, the quantisation of system states would allow accounting for the discontinuities exhibited by control elements in a more efficient manner, and thereby, offer a significant increase in speed of the simulation of water network models. The proposed approach is evaluated on a number of case studies and compared with results obtained from the Epanet2 simulator and OpenModelica. Although the current state-of-art of the simulation tools utilising the quantised state systems do not allow to fully exploit their potential, the results from comparison demonstrate that, if the second or third order quantised-based integrations are used, the quantised state systems approach can outperform the conventional water network simulation methods in terms of simulation accuracy and run-time

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    ADVANCED MODELING AND EFFICIENT OPTIMIZATION METHODS FOR REAL-TIME RESPONSE IN WATER NETWORKS

    Get PDF
    In response to a contamination incident in water distribution networks, effective mitigation procedures must be planned. Disinfectant booster stations can be used to neutralize a variety of contaminant and protect the public. In this thesis, two methods are proposed for the optimal placement of booster stations. Since the contaminant species is unknown a priori, these two methods differ in how they model the unknown reaction between the contaminant and the disinfectant. Both methods employ Mixed-Integer Linear Programming to minimize the expected impact over a large set of potential contamination scenarios that consider the uncertainty in the location and time of the incident. To make the optimal booster placement problem tractable for realistic large-scale networks, we exploit the symmetry in the problem structure to drastically reduce the problem size. The results highlight the effectiveness of booster stations in reducing the overall impact on the population, which is measured using two different metrics - mass of contaminant consumed, and population dosed above a cumulative mass threshold. Additionally, we also study the importance of various factors that influence the performance of disinfectant booster stations (e.g., sensor placement, contaminant reactivity and toxicity, etc.)

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Real-time Operational Response Methodology for Reducing Failure Impacts in Water Distribution Systems

    Get PDF
    Interruption to water services and low water pressure conditions are commonly observed problems in water distribution systems (WDSs). Of particular concern are the unplanned events, such as pipe bursts. The current regulation in the UK requires water utilities to provide reliable water service to consumers resulting in as little as possible interruptions and of as short possible duration. All this pushes water utilities toward developing and using smarter responses to these events, based on advanced tools and solutions. All with the aim to change network management style from reactive to a proactive, and reduce water losses, optimize energy use and provide better services for consumers. This thesis presents a novel methodology for efficient and effective operational, short time response to an unplanned failure event (such as pipe burst) in a WDS. The proposed automated, near real-time operational response methodology consists of isolating the failure event followed by the recovery of the affected system area by restoring the flows and pressures to normal conditions. The isolation is typically achieved by manipulating the relevant on/off valves that are located closely to the event location. The recovery involves selecting an optimal combination of suitable operational network interventions. These are selected from a number of possible options with the aim to reduce the negative impact of the failure over a pre-specified time horizon. The intervention options considered here include isolation valve manipulations, changing the pressure reducing valve’s (PRV) outlet pressure and installation and use of temporary overland bypasses from a nearby hydrant(s) in an adjacent, unaffected part of the network. The optimal mix of interventions is identified by using a multi-objective optimization approach driven by the minimization of the negative impact on the consumers and the minimization of the corresponding number of operational interventions (which acts as a surrogate for operational costs). The negative impact of a failure event was quantified here as a volume of water undelivered to consumers and was estimated by using a newly developed pressure-driven model (PDM) based hydraulic solver. The PDM based hydraulic solver was validated on a number of benchmark and real-life networks under different flow conditions. The results obtained clearly demonstrate its advantages when compared to a number of existing methods. The key advantages include the simplicity of its implementation and the ability to predict network pressures and flows in a consistently accurate, numerically stable and computationally efficient manner under both pressure-deficient and normal-flow conditions and in both steady-state and extended period simulations. The new real-time operational response methodology was applied to a real world water distribution network of D-Town. The results obtained demonstrate the effectiveness of the proposed methodology in identifying the Pareto optimal network type intervention strategies that could be ultimately presented to the control room operator for making a suitable decision in near real-time.Kurdistan Regional Government in Iraq, Ministry of High Education and Scientific Research, Human Capacity Development Program (HCDP)

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering
    • …
    corecore