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ABSTRACT

Seth, Arpan PhD, Purdue University, December 2015. Advanced Modeling and Ef-
ficient Optimization Methods for Real-Time Response in Water Networks . Major
Professor: Carl D. Laird.

In response to a contamination incident in water distribution networks, e↵ective

mitigation procedures must be planned. Disinfectant booster stations can be used to

neutralize a variety of contaminant and protect the public. In this thesis, two methods

are proposed for the optimal placement of booster stations. Since the contaminant

species is unknown a priori, these two methods di↵er in how they model the unknown

reaction between the contaminant and the disinfectant. Both methods employ Mixed-

Integer Linear Programming to minimize the expected impact over a large set of

potential contamination scenarios that consider the uncertainty in the location and

time of the incident. To make the optimal booster placement problem tractable for

realistic large-scale networks, we exploit the symmetry in the problem structure to

drastically reduce the problem size. The results highlight the e↵ectiveness of booster

stations in reducing the overall impact on the population, which is measured using

two di↵erent metrics - mass of contaminant consumed, and population dosed above

a cumulative mass threshold. Additionally, we also study the importance of various

factors that influence the performance of disinfectant booster stations (e.g., sensor

placement, contaminant reactivity and toxicity, etc.).

The booster station placement is performed at the planning stage. Once a con-

tamination incident has taken place, knowledge of the contamination source loca-

tion is important to inform the control and cleanup operations. Since this source

identification problem needs to be solved in real time, computational speed on large-
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scale networks is of utmost importance. With this in mind, we propose a Bayesian

probability-based method for source identification and a greedy algorithm for select-

ing manual grab sample locations. Measurements obtained from the selected manual

sampling location can be used by the source identification method to further narrow

the possible set of source locations. Indeed, the case study performed on a large-scale

network (with over 12,000 nodes) highlights the computational speed of the proposed

techniques, where both the source identification and sampling location calculations

can be performed within seconds.

Various source identification strategies that have been developed by researchers

di↵er in their underlying assumptions and solution techniques. In this work, we

present a systematic procedure for testing and evaluating source identification meth-

ods. The performance of these source identification methods is a↵ected by various

factors including: size of water distribution network model, measurement error, mod-

eling error, time and number of contaminant injections, and time and number of

measurements. This work includes test cases that vary these factors and evaluates

the proposed Bayesian probability-based source identification method along with two

other methods from the literature. The tests are used to review and compare these

di↵erent source identification methods, highlighting their strengths in handling vari-

ous identification scenarios.
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1. INTRODUCTION 1

Public water distribution networks are critical infrastructures in the modern world.

According to the Organization for Economic Co-operation and Development’s envi-

ronmental outlook report (OECD, 2012), by year 2050, the global demand for water is

expected to increase by 130% for domestic use, 140% for electricity use, and 400% for

manufacturing use. Simultaneously, the fast growth of large urban centers is going

to require significant expansion in the existing public water distribution networks.

As these networks become larger and more complex, advanced modeling and e�cient

optimization techniques are necessary to help design and operate these networks, and

secure them against harmful contamination incidents.

Water distribution networks are large complex systems with many access points,

leading to the potential for accidental or intentional contamination. Rapid response

and mitigation of contamination incidents requires a three-part approach. First, im-

prove security at network interface points (e.g., physical security at treatment plants

and storage tanks, and backflow preventers at customer interfaces). Second, imple-

ment an event detection system (EDS) that includes contamination sensors to rapidly

alert system operators to the presence of contamination. Third, develop response

1Part of this section is reprinted with permission from “Testing Contamination Source Identification
Methods for Water Distribution Networks” by Seth, A., Klise, K.A., Siirola, J.D., Haxton, T., and
Laird, C.D., 2015. to appear in Journal of Water Resources Planning and Management, Copyright
2015 by American Society of Civil Engineers.
Part of this section is reprinted from “E�cient Reduction of Optimal Disinfectant Booster Sta-
tion Placement Formulations for Security of Large-Scale Water Distribution Networks” by Seth, A.,
Hackebeil, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., 2015. Submitted to Com-
putational Optimization and Applications.
Part of this section is reprinted from “Evaluation of Chlorine Booster Station Placement for Water
Security” by Seth, A., Hackebeil, G.A., Haxton, T., Murray, R., Laird, C.D., and Klise, K.A., 2015.
Submitted to Journal of Water Resources Planning and Management, American Society of Civil
Engineers.
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plans with a goal to rapidly contain and remove contamination from the system

using actions like closing isolation valves, flushing network pipes, or injecting disin-

fecting agents. This work focuses on developing modeling and optimization methods

for planning real-time response strategies to contamination incidents in water distri-

bution networks.

1.1 Real-time response to contamination incidents

Early-warning detection systems can be used to identify the presence of contam-

inant using a fixed grid of sensors throughout the network. Berry et al. (2005b);

Ostfeld and Salomons (2004a); Murray et al. (2010b) have extensively studied the

problem of optimal sensor layouts within these drinking water distribution systems.

However, adequate emergency response mechanisms must also be developed. In this

work, we study two important response actions that can be critical in reducing the

impact of potential contamination incidents:

• A typical response to a detected contaminant from an early warning system

includes laboratory confirmation. A manual water sample will be drawn and

sent for laboratory analysis. Following analysis (which can take several hours

or more), a positive confirmation of contaminant will likely result in a no-drink

order. However, during the time between the first detection and the laboratory

confirmation, contaminant continues to travel and spread through the network.

Disinfectant booster stations can help mitigate the e↵ect of potential contam-

ination by injecting additional (but safe) amounts of disinfectant immediately

following the initial warning (Parks and VanBriesen, 2009). Moreover, intelli-

gent placement of these booster stations can help in e�ciently providing incident

response.

• Once a contamination incident has occurred, real-time response strategies can

include closing valves to isolate contaminated parts of the network, and opening

selected fire hydrants to flush the contaminated water out of the network. For
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these type of response actions to be more e↵ective, an accurate understanding

of the extent of the contamination plume within the WDN is necessary; while

estimating the plume extent requires having an accurate real-time model of the

network and knowledge of the contamination source. Therefore, the accuracy

of a real-time source identification method can be crucial for e�cient response

actions.

In this work, we propose modeling and optimization techniques to e�ciently solve

the above two problems. Optimization provides a great tool for system design, op-

eration, and real-time response planning problems. Hence, a large body of work is

dedicated to using modeling and optimization techniques to solve a wide variety of

problems related to water distribution networks. To understand the challenges asso-

ciated with the two problems addressed in this work, we first provide a brief overview

the landscape of modeling and optimization problems related to water distribution

networks.

1.2 Modeling and optimization problems in water distribution networks

Water distribution systems are typically modeled as a network of nodes and links

where nodes include reservoirs, storage tanks, and junctions, while links include pipes,

pumps, and valves. Mass and energy conservations laws are then used to derived first-

principles models. Typically, the injection and flow of chemical or biological species

can be assumed to have negligible impact on the water flow rates and pressures in

the network, and therefore, the chemical/biological species mass balances can be de-

coupled from the conservation laws describing the flow of water. The set of equation

describing the water flow rates and system pressures are referred to as the Hydraulic

Model. Information calculated from the hydraulic model can be used as input param-

eters to write species mass balances that make up the so called Water Quality Model.

Next, we present the equation that describe these two models, highlighting their



4

key characteristics that need to be considered when using them in a mathematical

programming framework.

1.2.1 Hydraulic Model

The hydraulic model is primarily composed of mass balances at nodes, pressure

drop equations in pipes, pressure gain equation in pumps, and level dynamics in

tanks. The mass balances at all junctions and tanks are given by

X

p2N
in

Qp,t �
X

p2N
out

Qp,t = Dn,t, 8n 2 JN, t 2 T, (1.1)

X

p2N
in

Qp,t �
X

p2N
out

Qp,t = QIN
n,t , 8n 2 TN, t 2 T, (1.2)

where JN, TN, and T are set of junction nodes, tank nodes, and time steps being

considered in the model. Qp,t represents the volumetric flow rate of water in a link

p at a time step t. Link p can belong to a predetermined set of input links, Nin, or

output links Nout from a node n. Dn,t represents consumer demands at junctions that

are known inputs to the model. The net volumetric flow rate into a tank is denoted

by the variable QIN
n,t , which is used to calculate the change in pressure head (or level)

in the tank by using explicit Euler discretization of tank dynamics, AdHn/dt = QIN ,

as follows:

Hn,t � Hn,t�1 =
1

A
QIN

n,t�1, 8n 2 TN, t 2 T̂ (1.3)

where Hn,t is the water head in tank n at time t. For simplicity, here we assume a

constant cross-sectional area for the tanks, A. T̂ represents the set of all time steps

excluding the first time step.

Next, the head (or pressure) loss inside the pipes due to friction from the pipe walls

is typically modeled using one of three di↵erent formulas proposed in the literature:

1. Hazen-Williams formula
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2. Darcy-Weisbach formula

3. Chezy-Manning formula

The general equation to calculate the head loss inside pipes is given by

Hn
s

,t � Hn
e

,t = KQC
p,t, 8 p 2 P, t 2 T (1.4)

where ns and ne represent the start and end node of pipe p respectively. Similarly,

Hn
s

,t and Hn
e

,t represents the head at the start and end node of the pipe p. K is

called the resistance coe�cient and C is called the flow exponent, and they can be

calculated using any of the thee head loss formulas from above. The resistance coe�-

cient depends on the material, length, diameter, and friction factor of the pipe along

with the type of flow regime. The flow exponent is either 1.852 (Hazen-Williams) or

2.0 (Darcy-Weisbach or Chezy-Manning). Note that the above head loss equation is

one of the major sources of nonlinearity in the hydraulic model.

Pumps are often used to provide additional hydraulic head that is necessary to

fill storage tanks. They can either be constant energy devices or have variable speed

settings. The equations describing the head gain provided by pump are typically

nonlinear. A common form of the head gain equation is given by

Hn
s

,t � Hn
e

,t = ↵ � �Q�
pu,t, 8 pu 2 PU, t 2 T (1.5)

where ns and ne represent the start and end node of pump pu respectively. Similarly,

Hn
s

,t and Hn
e

,t represents the head at the start and end node of the pump pu. ↵, �,

and � are characteristic parameters for a particular pump.

Additionally, various types of valves can also be included in the hydraulic model

that can vary in their modeling complexity from being simple on/o↵ switches like

Shuto↵ or Check Valves to more complicated pressure reducing or general purpose

valve that can have a nonlinear flow-head relationship.
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To perform a hydraulic simulation, the inputs to the hydraulic model typically

include: network connectivity structure, time varying nodal demands, initial tank

and reservoir heads, and pipe, pump, and tank parameters. The nonlinear set of

equations described above can then be used to calculate flow rates in all links and

hydraulic heads at all nodes over a simulation duration. One caveat in running

hydraulic simulation is that often discrete decisions need to be taken at certain time

of day or when certain pressure of flow conditions are reached. These decisions are

referred to as “controls.” For example, pumps providing hydraulic head to a tank

have to be turned o↵ when a maximum level in the tank is reached. These controls

are typically handled in an event based simulation environments.

1.2.2 Water Quality Model

Dynamic water quality models are used to track the flow of a chemical or biolog-

ical species through the water distribution network. These models can be classified

as either Eulerian or Lagrangian (Rossman and Boulos, 1996). Eulerian models di-

vide the pipes into spacial elements of fixed size and track concentration changes

inside and at their boundaries over time. Lagrangian models track discrete packets

or parcels of water and their concentrations as they move through the pipes. The

water quality model used throughout this work is based on a Lagrangian approach

that was originally proposed by (Laird et al., 2005) and later extended by (Mann

et al., 2012a).

The first set of equations in the water quality model are the species mass balances

at the junctions and tanks:

cn,t =

P
p2N

out

Qp,tĉOp,t �
P

p2N
in

Qp,tĉIp,t +mn,tP
p2N

out

Qp,t �
P

p2N
in

Qp,t +Qext
n,t

, 8n 2 JN, t 2 T (1.6)
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Vn,t
dcn,t
dt

=
X

p2N
out

Qp,tĉ
O
p,t �

X

p2N
in

Qp,tĉ
I
p,t +mn,t

�
"

X

p2N
out

Qp,t �
X

p2N
in

Qp,t +Qext
n,t

#
cn,t, 8n 2 TN, t 2 T

(1.7)

where cn,t is the species concentration at the junction or tank node n at time t.

ĉOp,t and ĉIp,t are the species concentrations at the outlet and inlet of pipe p at time t

respectively. mn,t is the mass of species entering node n at time t from and external

source (i.e., a mass injection). Similarly, Qext
n,t is an external volumetric flow rate of

water entering the node. Vn,t is the volume of tank n at time t. All flow rates and tank

volumes calculated using the hydraulic model can be assumed to be constant over a

time step and then used as inputs to the above equations. Therefore, Equations 1.6

and 1.7 are linear in terms of the concentration variables cn,t, ĉOp,t, and ĉIp,t.

The remaining equations in the water quality model describe the species concen-

tration gradient inside pipes. Assuming plug flow with instantaneous cross-sectional

mixing and negligible longitudinal dispersion, species concentration inside a pipe is

described by the following partial di↵erential equation:

�ĉp(x, t)

dt
+ up(t)

�ĉp(x, t)

dx
= 0, 8 p 2 P (1.8)

where ĉp(x, t) represents species concentration along the pipe p at displacement x

and time t. up is the longitudinal velocity of water inside pipe p, which can also be

calculated from the hydraulic simulations.

Discretizing Equations 1.6 and 1.7, and using the origin tracking algorithm pro-

posed by (Laird et al., 2005; Mann et al., 2012a) to replace Equation 1.8, the water

quality model can be described as a set of linear equations that provide an input-
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output relationship between species mass injections at all nodes and time steps to

species concentrations at all nodes and time steps:

Gc = Dm (1.9)

where G and D are coe�cient matrices. c=[...cn,t...], 8n 2 N, t 2 T is the vec-

tor of concentrations at all nodes in the set N and all time steps in the set T .

m=[...mn,t...], 8n 2 N, t 2 T is the vector of mass injections at all nodes and time

steps.

The water quality model in Equation 1.9 is available in U.S EPA’s Water Security

Toolkit (WST) (EPA, 2014) under the Merlion package, and is used extensively in

the modeling and optimization formulations proposed in this work. Apart from the

assumptions already discussed, the following simplifications are also made. Pumps

and valves are modeled as zero-length pipes with inlet and outlet concentrations that

are the same. Mixing at all nodes is assumed to be complete and instantaneous.

Although, not included in the above equations, Merlion can also support first-order

linear decay.

1.2.3 Classification of Optimization Problems

Water utilities can use accurate water network models as a valuable tool for many

applications that facilitate safe and e�cient delivery of clean drinking water to the

public. These applications can be divided into three major categories: (1) Design,

(2) Operations, and (3) Safety and security. Optimization methods have been widely

used at the planning stage to design networks that are both cost-e↵ective and robust

(Eusu↵ and Lansey, 2003; Geem, 2009; Cunha and Sousa, 1999; Vasan and Simonovic,

2010; Zecchin et al., 2007). Minimizing operating cost associated with maintaining

pressure and water quality requirements has also been a major area of study (Jowitt

and Germanopoulos, 1992; Mackle et al., 1995; Yu et al., 1994; Van Zyl et al., 2004;

Constans et al., 2003; Munavalli and Kumar, 2003; Boccelli et al., 1998). The com-



9

plexity of optimization problems arising in water distribution networks depend on

three major factors: (1) Modeling requirements, (2) Scaling with network size, and

(3) Type of problem. Table 1.1 categorizes a variety of optimization problems based

on these three factors. It should be pointed out that in this table, we are categorizing

mathematical programming formulations of these problems that embed the hydraulic

or water quality model directly into the formulation. We do not consider methods

that use a simulation engine as a black-box linked to an external optimization routine.

Table 1.1: Classification of optimization problems in water distribution networks

Example Modeling
Scaling

Common
Problems Requirements Problem Class

Sensor Placement, Pre-simulation of
Node ⇥ Time MILP

Booster Placement Scenarios

Source Identification, Embedded Water Node ⇥ Space MILP
Booster Placement Quality Model ⇥ Time NLP

Pump Scheduling, Embedded Hydraulic
Node ⇥ Time

NLP
Pressure Management Model MINLP
Infrastructure Sizing

Hydrant Flushing, Embedded Hydraulic & Node ⇥ Space NLP
Contaminant Control Water Quality Model ⇥ Time MINLP

The first category is composed of problems like optimal sensor placement where

we are placing water quality sensors to detect contamination incidents and minimize

impact over a large set of possible contamination scenarios. In these type of prob-

lems, the decision variables (e.g., sensor locations) have no impact on the scenarios,

and therefore, we can pre-simulate the scenarios to generate data, which can then be

used in an optimization formulation. The second category is composed of problems

like source identification, where we can use historical hydraulic information as input

to build a water quality model, which can then be embedded into an optimization
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formulation. On the other hand, there are problems that only deal with the hy-

draulics of the network, and these include operational problems like pump scheduling

to minimize electricity cost or design problems like valve placement to manage pres-

sure requirements. Finally, there are more challenging problems like hydrant flushing

that requires selection of hydrant locations to flush contaminated water out of the

network as e�ciently as possible. These type of problems require manipulation of

the network hydraulics in order to improve the water quality. Therefore, for such

problems we need to embed both the hydraulic and water quality model into the

optimization formulation.

The second factor that influences the problem complexity is how the problem scales

with the size of a network. The optimization formulations that have an embedded

water quality model, involve tracking concentrations at not only the nodes and time

steps, but can also have a concentration gradient inside the pipes. And therefore,

these problems can have an extra spacial component that can grow significantly with

network size.

The class of mathematical programming problem that needs to be solved plays a

major part in problem tractability, especially for large-scale network models. Formu-

lations with an embedded hydraulic model typically require solving Nonlinear Pro-

gramming (NLP) or Mixed-Integer Nonlinear (MINLP) problems due to nonlinear

pressure-flow relationships in pipes and pumps (Equation 1.4 and 1.5). Integer vari-

ables in these formulations arise naturally from discrete decisions like available pipe

diameters for the network design problem or selected hydrant flushing nodes for the

hydrant flushing problem. Since the water quality can be modeled as a linear system

(Equation 1.9), most problems that only require an embedded water quality model

can be formulated as Mixed-Integer Linear Programming (MILP) or NLP problems.

Keeping the current solver technology in mind, in general MINLP problems are sig-

nificantly more challenging to solve compared to MILP or NLP problems even for

small-scale networks.
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The two problems that we address in this work - optimal booster station placement

and contaminant source identification - can be formulated as MILP problems that

may or may not require an embedded water quality model. As we will show through

the case studies on a range of network sizes, these MILP problems can very easily

become intractably large. In this work, we propose e�cient solution methods that take

advantage of the problem structure to make these problems tractable for large-scale

networks. The proposed techniques set a precedence for custom solution methods

that will need to be explored for the more challenging NLP or MINLP problems in

the future.

1.3 Booster chlorination for incidence response

Chlorine booster stations are commonly used in water distribution networks to

maintain drinking water standards because chlorine degrade as it reacts with microbes

and other chemicals as it moves through the system. Booster stations are designed

to inject chlorine at strategic locations, helping to maintain residual levels that can

prevent pathogen re-growth. Chlorine booster stations are typically installed at pump

stations or other facilities but could also be added throughout the water distribution

system. Several optimization methods have been suggested to place booster stations

and to schedule booster operations for water quality objectives (Boccelli et al., 1998;

Kang and Lansey, 2010; Lansey et al., 2007; Munavalli and Kumar, 2003; Ostfeld and

Salomons, 2006; Ozdemir and Ucaner, 2005; Prasad et al., 2004; Propato and Uber,

2004a,b; Tryby et al., 2002; Uber et al., 1998).

Disinfectant booster stations can also be used as a first line of response to a con-

tamination incident. In the event of a contamination incident, an e↵ective emergency

response plan could include injecting chlorine at fixed booster locations to inactivate

or destroy a potentially harmful contaminant. Unlike booster station placement for

water quality objectives, optimal booster station placement for water security should

take into account a wide range of possible contamination injection scenarios. Another
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major source of uncertainty associated with this problem is the unknown reaction be-

tween the chlorine and a contaminant species that is not known a priori.

In one optimal booster placement approach proposed by Ostfeld and Salomons

(2006), two di↵erent objective functions are recommended. The first objective, Min

Cost, minimizes the overall cost of pumping and disinfection. This objective is de-

signed to solve the residual maintenance problem. The second objective, Max Pro-

tection, maximizes the disinfectant concentration at all consumption nodes while

maintaining acceptable upper bounds. The authors note that this objective can be

used as a response to a contamination incident, however, the uncertainty in the con-

tamination location and time is not considered.

One of the biggest challenges associated with the booster placement problem for

water security is modeling the reaction kinetics between chlorine and an unknown

contaminant species. Booster stations are only e↵ective for response to water con-

tamination incidents if the contaminants ability to cause harm can be reduced by

chlorine. Many biological contaminants are inactivated in the presence of su�cient

chlorine; meaning that they are killed or damaged to the extent they cannot cause

human disease or death. Some chemical contaminants are oxidized in the presence of

chlorine, reducing the toxicity of the contaminant. However, dangerous byproducts

might be formed in reactions with chlorine. For example, chlorine can react with

some organophosphate pesticides to form oxons, which might be more toxic than

the original compound. Understanding these complex reactions is critical in order to

estimate the benefits of booster stations in the context of water security. However,

with limited knowledge at the planning stage, reasonable assumptions can be made

to approximate the unknown reaction kinetics. Additionally, during a real-world

contamination incident, the contaminant species is typically unknown at the time of

detection. Current contamination detection technologies rely on standard water qual-

ity parameters (i.e., pH, turbidity, residual chlorine), which do not indicate the type

of contaminant in the network. For this reason, the exact reaction kinetics between

the contaminant and chlorine cannot generally be modeled at the time of response. In
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this work, we propose two di↵erent MILP formulations to place booster stations for

the security problem. The formulations di↵er how they model the unknown chlorine-

contaminant reaction. These modeling assumptions have a major impact on the size

of the networks that are tractable for these formulations. Both formulations consider

uncertainty in the location and time of a contamination incident and our results show

that the optimal booster placement obtained can significantly reduce the expected

impact.

1.4 Contamination source identification

Identifying the source of a contamination incident is a critical step towards plan-

ning the cleanup and control operations. The source identification problem is typically

formulated as an inverse problem with the objective to find the source location of a

contamination incident using the limited measurement data available from a sparse

set of water quality sensors. Several researchers have proposed di↵erent methods to

solve this problem.

Early work assumed the availability of contaminant concentration measurements

from water quality sensors (Shang et al., 2002a; Laird et al., 2005, 2006; Preis and

Ostfeld, 2006). Since the contaminant species is not known a priori (chemical or

biological), recent developments in contamination detection technology utilize fault

detection approaches by monitoring standard water quality measures (e.g., pH, free

chlorine, turbidity, conductivity) to provide a binary yes/no indication of the pres-

ence or absence of contamination in the network (EPA, 2010a). Therefore, recent

source identification methods proposed in the literature incorporate these type of

measurements (De Sanctis et al., 2008; Zechman and Ranjithan, 2009; Mann et al.,

2012). Additionally, a variety of statistical approaches have also been proposed that

consider measurement error (Liu et al., 2011; Perelman and Ostfeld, 2012; Wagner

and Neupauer, 2013; Wang and Harrison, 2012).

In a real-time response scenario, on-line computational e�ciency of a source iden-

tification method is crucial to facilitate quick response actions. With this goal in
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mind, we propose a Bayesian probability-based method that takes advantage of the

Merlion water quality modeling framework (Mann et al., 2012a) to perform source

identification on large-scale water networks within seconds. Additionally, we also pro-

pose a fast greedy algorithm for the selection of manual sampling locations to further

assist in the source identification.

Given the diversity of source identification methods proposed in the literature,

there is the need for a common set of tests to evaluate their performance. Thus,

in this work we present a testing methodology for source identification techniques.

This methodology includes a comprehensive set of potential contamination scenarios

designed to cover a wide variety of factors that impact the e↵ectiveness of source

identification techniques. Using this testing methodology, the proposed Bayesian

probability-based source identification method is compared to two other techniques

from the literature.

1.5 Dissertation outline

The outline of this thesis is as follows. In Chapter 2, we introduce the optimal

booster station placement problem and provide a background of di↵erent methods

proposed in the literature. In Chapter 3, we propose a modeling technique for the

disinfectant booster placement problem that simplifies the reaction kinetics between

chlorine and an unknown contaminant. We assume that the chlorine instantaneously

and completely neutralizes a contaminant on contact. This assumption gives us the

ability to pre-simulate a large number of contamination and chlorine injection sce-

narios and use the resulting data in an MILP formulation. For large-scale network

the original formulation is intractably large, and therefore, we propose three reduc-

tions that decrease the size of these problem by up to five orders of magnitude. This

modeling and optimization technique for placing booster stations is referred to as the

Neutralization method.

In Chapter 4 we propose another formulation for the booster station placement

problem that lets us model di↵erent levels of contaminant reactivities by embedding
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the water quality model directly into an MILP formulation. This optimal booster

placement method is referred to as the Limiting Reagent method. Similar to the

Neutralization method, it assumes that the chlorine reacts instantaneously with the

contaminant, however, the reaction happens with respect to a stoichiometric ratio.

This chapter also provide several case studies that evaluate the performance of the

booster placements obtained using the two methods.

Booster chlorination can be used as a first line of defense to protect the public

against potential contamination. However, as a contamination incident unfolds, a

more targeted response requires identification of the source of the contamination as

quickly as possible. In Chapter 5, we define the source identification problem and

review the di↵erent classes of source identification methods proposed in the literature.

In Chapter 6, we propose a Bayesian probability-based source identification method

that identifies probable contamination source location upstream from the sensor lo-

cations. This method takes advantage of fast water quality simulations using Merlion

and several code optimizations that result in accurate source identification within sec-

onds for large-scale networks. Additionally, a greedy algorithm for selecting manual

sampling locations is proposed that is based on the optimization technique presented

by Wong et al. (2010).

Chapter 7 provides a testing methodology to compare the performance of source

identification methods under realistic scenarios (e.g., measurement and modeling er-

ror). In Chapter 8, the proposed methodology is used to compare three source iden-

tification methods highlighting the advantages and disadvantages of each.

Finally, Chapter 9 concludes this thesis with a summary and future research di-

rections.
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2. BOOSTER CHLORINATION IN WATER DISTRIBUTION NETWORKS

One of the first responses to a detected contamination incident from an early warning

system is laboratory confirmation. A manual water sample would be drawn and sent

for laboratory analysis. Following analysis (which can take several hours or more), a

positive confirmation of contaminant would likely result in a “Do Not Drink” order.

However, during the time between the first detection and the laboratory confirmation,

the contaminant would continue to travel and spread through the network.

Disinfectant booster stations can help mitigate the e↵ect of some type of contam-

ination by injecting additional (yet within acceptable range) amounts of disinfectant

into the water distribution network immediately following the initial warning (Parks

and VanBriesen, 2009). Moreover, intelligent placement of these booster stations can

improve the e�ciency of incident response. Optimal booster station placement can

be used to meet two primary objectives. First, following initial disinfection at the

main treatment facility, as the water flows through the water distribution network,

booster stations can be used to maintain specified disinfectant levels in the water.

Second, booster stations can also be used to raise the disinfectant concentration in

the water (within acceptable range) in response to a contamination incident.

2.1 Booster placement for chlorine maintenance

Typically, booster disinfection is used by utilities to reintroduce disinfectant into

the water distribution network in order to maintain acceptable disinfectant residual

levels in remote parts of the network. Most utilities in the United States use free

chlorine as their disinfectant while a few of them also use other alternatives like chlo-

ramine, ozonation, and Ultraviolet light (Uber et al., 2003; Ellison, 2003). In this
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thesis, the terms “disinfectant booster stations” and “chlorine booster stations” are

used interchangeably. A booster station generally is generally composed of a disin-

fectant storage tank, a small injector pump, and some type of control and safety unit

that could either be manually operated or automatically controlled via a Supervisory

Control Data Acquisition (SCADA) system (Isovitsch and VanBriesen, 2007). For a

large water distribution network serving over 1 million customers, the total capital

cost of installing a fixed booster disinfection station, which includes the equipment

cost as well as the physical building and installations cost, can be up to $50,000 (EPA,

2010b).

The majority of existing research on the optimal booster station placement prob-

lem focuses on the first objective of maintaining a safe and consistent disinfectant

residual throughout a water network. A number of di↵erent techniques have been

proposed to solve this residual maintenance problem. Boccelli et al. (1998)present a

Mixed Integer Linear Programming (MILP) formulation to determine optimal schedul-

ing and location of booster stations that minimize the total amount of disinfectant

needed to maintain specified disinfectant residual levels. The MILP formulation pre-

sented by Tryby et al. (2002) has a similar objective of minimizing the average dosage

needed. Uber et al. (1998) propose another approach that aims at decoupling the in-

fluence of each booster while maximizing the overall node-time coverage. While these

approaches maintain the residual concentration within acceptable bounds, they do

not explicitly tackle the residual variability. Propato and Uber (2004b) address this

issue by presenting a linear least-squares formulation that solves for the optimal in-

jection schedule by explicitly minimizing the deviation of residual concentration from

a required target. They later extend this approach by incorporating booster station

locations as decision variables leading to a Mixed Integer Quadratic Programming

(MIQP) formulation (Propato and Uber, 2004a). Ozdemir and Ucaner (2005) use a

Genetic Algorithm (GA) linked with water network simulation software (EPANET)

(Rossman, 2000) to optimize booster station locations and schedule. Lansey et al.

(2007) propose a two level approach where the booster location problem is solved
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at the top level (using GA, Branch & Bound, or enumeration), followed by a Linear

Programming (LP) scheduling problem at the lower level.

2.2 Booster placement for incident response

While considerable research has focused on solving the residual maintenance prob-

lem, the optimal booster station location and scheduling problem for emergency re-

sponse has been relatively less explored. This problem requires modeling the interac-

tion between the contaminant and disinfectant. Moreover, since there is stochasticity

associated with the location and time of a contamination, a multi-scenario approach

is necessary. Parks and VanBriesen (2009) evaluate the e↵ectiveness of disinfectant

booster stations in intrusion mitigation by performing extensive contamination inci-

dent simulations using EPANET. These simulations are done over a range of reaction

rate constants and a pre-selected set of possible booster locations (based on high

reachability and low-residual criteria). The volume of contaminated water consumed

(i.e., removed from the network for customer use) is used to gauge the impact of a

particular contamination scenario along with the corresponding booster injection(s).

This study also considers 5 di↵erent levels of response mechanisms: a combination of

no response, booster response at first or second detection, and a do not consume order

at first or second detection. The results show that using booster stations as the first

level response (while waiting for further confirmation in case of a false positive) to a

contamination incident can significantly reduce the overall impact (for contaminant

susceptible to disinfectant). More importantly, the authors conclude that the loca-

tion of booster stations can play a crucial role, and, therefore, an optimization-based

approach is needed.

In one optimization-based approach proposed by Ostfeld and Salomons (2006),

two di↵erent objective functions are recommended. The first objective, Min Cost,

minimizes the overall cost of pumping and disinfection. This objective is designed

to solve the residual maintenance problem. The second objective, Max Protection,

maximizes the disinfectant concentration at all consumption nodes while maintaining
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acceptable upper bounds. The authors note that this objective can be used as a re-

sponse to a contamination incident. Since the disinfectant concentration at consumer

nodes is dependent on the hydraulics in the network, both objectives consider four

types of decision variables: scheduling of existing pump stations, tuning of valves,

tuning injection rates at existing boosters stations, and the location and tuning of

new booster stations. Therefore, the fact that this formulation does not assume pre-

calculated hydraulics (scheduling of existing pumps and tuning of valves is a decision

variable), leads to a large Mixed-Integer Nonlinear Programming Problem (MINLP),

and the authors tackle this problem with a simulation-optimization based approach

that couples a GA with EPANET. The authors recognize the limitations of using a

GA that include computational cost and non-provable optimality. Also, the formula-

tion presented does not explicitly maximize the impact of booster disinfectants in the

case of a contamination incident and does not consider the stochasticity associated

with the location and time of these incidents. In contrast, in this thesis we present

stochastic programming formulations that considers interaction of contaminant and

disinfectant (albeit approximately), and provides an optimal booster station place-

ment that minimizes mass consumed (i.e., the mass of contaminant in the water that

is removed for customer use) over a large set of potential contamination scenarios.

Where the mass consumed at a node is defined as the demand times the contami-

nant concentration at that node. In order to solve the booster placement problem

for large-scale realistic networks, we make several simplifying assumptions that will

be discussed in the next two chapters. For example, in contrast to Ostfeld and Sa-

lomons (2006), additional benefit obtained from scheduling existing pumps are not

considered.
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3. THE NEUTRALIZATION FORMULATION FOR OPTIMAL BOOSTER

STATION PLACEMENT ON LARGE-SCALE NETWORKS 1

In this chapter, we address the optimal placement of fixed disinfectant booster stations

to mitigate the e↵ect of contamination incidents. This is a particularly challenging

problem for two reasons. First, nonlinear reaction kinetics are required in order

to accurately describe the interaction between the contaminant and the disinfectant.

Additionally, the nonlinear interaction is specific to the contaminant-disinfectant pair,

and the contaminant is likely unknown until after the laboratory analysis. Second,

as the water network itself is large, and the time and location of the contamination

incident is not known a priori, considering potential contamination incidents from

every network node and all possible time steps leads to an extremely large number of

potential contamination scenarios needed as inputs to the optimization problem.

Here, we assume a simplified contaminant-disinfectant interaction that allows us to

precompute the e↵ect of disinfectant booster stations and contaminant injection sce-

narios by independent simulation, thereby removing the need to embed a large-scale

water quality reaction model within the optimization problem formulation. These

simulations provide input data to two large mixed-integer linear programming for-

mulations with hundreds of thousands of scenarios and discrete decision variables

corresponding to the placement of booster stations within the network. The two

proposed formulations use two separate objectives - mass of contaminant consumed

as demand from nodes, and number of people that ingested the contaminant above

a mass threshold. While these initial formulations are intractably large, we show a

1Part of this section is reprinted from “E�cient Reduction of Optimal Disinfectant Booster Sta-
tion Placement Formulations for Security of Large-Scale Water Distribution Networks” by Seth,
A., Hackebeil, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., 2015. Submitted to
Computational Optimization and Applications.
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series of reductions that significantly decrease the problem size and yield an exact

mathematical transformation of the original stochastic programming problem. With

these techniques, we demonstrate e↵ective optimal booster station placement using

real water network models containing more than 3,000 nodes. We originally pro-

posed the first formulation discussed in this chapter (Mass Consumed formulation)

along with the problem size reductions in a short proceedings document (Hackebeil

et al., 2012). In this chapter, another formulation is proposed (Population Dosed

formulation), the modeling technique for unknown contaminant-disinfectant reaction

dynamics is described, and three case studies are performed analyzing the impact of

network size on both the scalability of the formulations and the e↵ectiveness of the

booster placement.

3.1 Simplified modeling of unknown contaminant-chlorine reaction

Here, we discuss some of the modeling challenges associated with optimal place-

ment of booster stations for response to contamination incidents. A water distribution

system is typically modeled as a network of nodes and links, where the nodes include

junctions, tanks, or reservoirs, and the links include pipes, pumps, and valves.

The optimal booster placement problem is discrete in nature: binary variables

indicate whether or not a booster station is located at the corresponding network

node. Realistic water network models can have thousands to hundreds of thousands

of nodes, which means the number of binary variables in any problem formulation

could be large. Inherent uncertainty also exists in the location and time of potential

contamination incidents. Because of this uncertainty, it is necessary to consider po-

tential contamination sources from di↵erent nodes and at di↵erent times. Here, we

consider individual contamination incidents from every node and every time during a

typical daily cycle of the water distribution network. In the absence of contaminant-

disinfectant interaction, and with reasonable assumptions on flow properties within

the water network, contaminant transport could be modeled as a linear system of

equations (Mann et al., 2012b; Shang et al., 2002b). However, for network models
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consisting of thousands of nodes, the water quality reaction model necessary to track

the transport of a single species through the network can require hundreds of thou-

sands to millions of variables and constraints depending on the time discretization

(time steps) and simulation period used. In this work, we use the Merlion water

quality modeling framework proposed by Mann et al. (2010), which provides a linear

input-output relationship between species injection at all nodes and all time steps to

the species concentration at all nodes and all time steps.

In the response problem, the specific contaminant and the reaction kinetics be-

tween the contaminant and the disinfectant will not be known at the time of detection.

For the design problem of booster station placement, this causes significant uncer-

tainty in the kinetic model form and the kinetic parameters. Furthermore, addressing

the uncertainty and including these kinetic expressions in the water quality reaction

model will give rise to a large-scale MINLP problem in which finding an optimal

solution is intractable using existing tools.

We propose a method to overcome these challenges by using simplifying assump-

tions about the reaction between the contaminant and disinfectant which eliminates

the complexities associated with modeling the reaction kinetics. These assumptions

also allow contamination and booster simulations to be precomputed so that the op-

timization formulation does not have the water quality reaction model embedded.

The resulting formulation is a stochastic MILP problem. Next, we list in detail the

simplifying assumptions made to set up the optimal booster placement problem:

• The injection of contaminant or disinfectant into the network is assumed to not

have an impact on the water flow rates. Therefore, the water quality reaction

model assumes that the hydraulics are know inputs.

• We assume that no existing disinfectant is present in the network. In other

words we assume that the existing disinfectant is only involved in maintaining

water quality under normal operation and has no impact during a contamination

incident.
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• In case of a biological contaminant, the disinfectant reacts with it to either kill

or damage the biological species to an extent that it cannot cause human disease

or death. In case of a chemical contaminant, the disinfectant neutralizes it so

that neither the contaminant nor its byproducts can cause harm.

• To remove the complexities associated with modeling the disinfection reaction,

the disinfectant concentration is assumed to be high enough to completely neu-

tralize the contaminant if they come into contact with a negligible change in

the disinfectant concentration. Furthermore, when the contaminant comes into

contact with the disinfectant at a particular node, the reaction proceeds to com-

pletion quickly enough (or at a timescale much smaller than the water quality

time step) so that the contaminant does not get consumed from that node and

does not travel to any downstream nodes.

• The booster stations start injecting disinfectants as soon as a contamination is

detected.

Figure 3.1a illustrates the true behavior of a contaminant-disinfectant mixture

while Figure 3.1b shows the impact of these assumptions on modeling the interac-

tion between the disinfectant and the contaminant. Once a contaminant comes into

contact with a disinfectant at node C, it is assumed to be completely and instantly

neutralized while the excess disinfectant flows to the downstream nodes D, E, and F.

The resulting booster placement problem has many important modeling advan-

tages which make the proposed formulation tractable for use with large networks.

Under these assumptions, the problem can be formulated independent of any specific

contaminant and disinfectant species, thereby removing the need to include nonlinear

reaction kinetic equations. The other important advantage is the ability to superim-

pose individual simulations to determine the nodes that are neutralized. In Figure

3.2, we show how the results of two independent simulations of boosters at di↵erent

locations can be superimposed over the contaminant simulation to obtain the overall

neutralization e↵ect of both boosters combined. This superposition principle holds at
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any point in time as long as the time points of individual simulations are the same. As

we will show, this property is important to formulate and solve stochastic programs

considering a large number of contamination scenarios.

(a) (b)

Figure 3.1.: Circles and arrows represent network nodes and links respectively. (a)
Simple schematic showing that separation of species never occurs after mixing of
contaminant and disinfectant streams, (b) Idealized reaction assumptions showing
the complete and instant neutralization of the contaminant while there is su�cient
amount of disinfectant to continue neutralizing downstream nodes.
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A B C

D E F

G H I

(a) A contaminant injection at node
A leads to contamination at all
nodes.

A B C

D E F

G H I

(b) Disinfectant booster placed at
node B will neutralize contaminant
over the right half of the network.

A B C

D E F

G H I

(c) Disinfectant booster placed at
node D will neutralize contaminant
over the lower half of the network.

A B C

D E F

G H I

(d) The e↵ect of contaminant injec-
tion at A and disinfectant booster
at B and D is simply an overlap of
booster impacts in Figure (b) and
(c).

Figure 3.2.: An illustration showing that multiple disinfectant boosters can be sim-
ulated individually and then their e↵ects can be superimposed to get the overall
neutralization e↵ect.
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3.2 MILP formulations for optimal booster placement

In this section we propose two stochastic MILP formulation for optimal place-

ment of fixed disinfectant booster stations. The first formulation is referred to as the

“mass consumed formulation” or the “MC formulation” and it minimizes the mass of

contaminant consumed in the form of demand from nodes. The second formulation

is referred to as the “population dosed formulation” or the “PD formulation” and it

minimizes the number of people that ingest the contaminant above a mass threshold.

These objectives have been commonly used as metrics to assess the threat of contam-

ination incidents and for optimal placement of water quality sensors (Murray et al.,

2010a).

3.2.1 Mass Consumed (MC) Formulation

Let cnts be a parameter that gives the concentration of contamination (in grams

per cubic meter) present at node n and time t resulting from contaminant scenario

s. This parameter is calculated by performing contamination simulations for each

scenario. Now let �nts be a variable that is set to 1 if and only if the current booster

station placement does not provide disinfectant to node n at time t for scenario s.

Under this notation, the expected mass consumed (in grams) over all scenarios, where

the mass consumed for each scenario is summed over all nodes and time steps can be

written as:

E =
X

s2S

↵s

X

n2N

X

t2T

�ntsvntcnts, (3.1)

where vnt is the volumetric water demand (in cubic meter) consumed from node n

during time step t (the same for each scenario) and ↵s is the probability of scenario

s. Here, N represents the set of nodes in the network, T represents the set of time

steps resulting from the discretization, and S represents the set of all contamination

scenarios. Let yb be a binary variable that is 1 if a booster station is installed at

node b and 0 otherwise. In later sections, we refer to B as the set of booster station
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candidate nodes which could be a subset of N . For any particular booster station

placement, the value of �nts can be constrained by

�nts � 1 �
X

b2D
nts

yb, (3.2)

where Dnts is the set of all booster station locations that supply disinfectant to node

n at time t for scenario s. Note that Dnts depends on the detection time of scenarios

s since additional disinfectant might not be added until contamination is suspected.

Given a known fixed sensor layout, we can compute the initial detection time for

each contamination scenario and we will assume that booster stations begin injecting

disinfectant at this detection time. Therefore, with knowledge of the sensor layout,

we can find the list of detection times over all scenarios as part of the contamination

simulations used to compute cnts. For each of these detection times, we perform a

disinfectant simulation from every candidate booster node. Using these simulation

results, we can determine set Dnts. This requires a disinfectant simulation for every

candidate booster node and every unique detection time (which is, at most, every

time step in the simulation). The booster station placement problem for the MC

objective can then be formulated as

min
X

s2S

↵s

X

n2N

X

t2T

�ntsvntcnts (3.3)

s.t. �nts � 1 �
X

b2D
nts

yb 8n 2 N, 8 t 2 T, 8 s 2 S (3.4)

X

b

yb  Bmax (3.5)

0  �nts  1 8n 2 N, t 2 T, s 2 S (3.6)

yb 2 {0, 1} 8 b 2 B (3.7)

Constraint 3.5 restricts the number of booster stations to be no more than Bmax.

Although �nts is given as a continuous variable, since the objective function exerts

pressure to minimize these variables, each �nts is guaranteed to have a value of 0
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or 1 at the solution as long as vntcnts > 0 (Berry et al., 2006). Otherwise, if the

volumetric demand vnt for the node is 0 or the concentration of contaminant cnts is 0,

those corresponding �nts variables will have no e↵ect on the problem. The fact that

we can avoid using discrete variables for �nts, which is defined over all scenario at all

nodes and at all time steps, helps us significantly in being able to solve the proposed

MILP problem e�ciently. The formulation given in Equations 3.3-3.7 is equivalent to

the weighted maximum coverage problem (Hochbaum, 1996) where we have to select

a maximum of Bmax sets from all Dnts sets in order to find the union that covers

maximum number of �nts (weighted by vntcnts).

3.2.2 Population Dosed (PD) Formulation

The booster station placement problem for the PD objective includes two addi-

tional constraints, and can be similarly formulated as

min
X

s2S

↵s

X

n2N

znspopn (3.8)

s.t. �nts � 1 �
X

b2D
nts

yb 8n 2 N, t 2 T, s 2 S (3.9)

dns =
X

t2T

�ntsInts 8n 2 N, s 2 S (3.10)

dns  zns(M � ⌧) + ⌧ 8n 2 N, s 2 S (3.11)
X

b2B

yb  Bmax (3.12)

0  �nts  1 8n 2 N, t 2 T, s 2 S (3.13)

yb 2 {0, 1} 8 b 2 B (3.14)

zns 2 {0, 1} 8n 2 N, s 2 S (3.15)

The PD formulation is similar to the MC formulation in that Equations 3.9, 3.12,

3.13, and 3.14 are the same as Equations 3.4, 3.5, 3.6, and 3.7 respectively. The

objective function in Equation 3.8 minimizes the population dosed across all nodes
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and for every scenario. Each scenario s has probability ↵s. Binary variable zns is used

to indicate whether the total dosage at node n for scenario s is above a user specified

dose threshold ⌧ . The total population at a node is given by popn. Equation 3.10

calculates the mass dosed by the population at node n for scenario s. The parameter

Ints represents the mass ingested by the population at node n for scenario s, over the

time step t. This parameter is also calculated from precomputed injection scenario

simulations. Equation 3.11 is the big-M constraint used to switch the binary variable

zns to 1 when the total mass dosed at node n for scenario s is above the threshold

⌧ . Equations 3.13, 3.14, and 3.15 limit the range for �nts and state that booster

placement, yb, and dose above threshold, zns, are binary decision variables.

3.3 Structure-based problem size reductions

For large water network models, the full MILP formulations can still be in-

tractable. For example, in the case of a 3,000 node network with 72,000 possible

contamination scenarios (all nodes and all hours in a 24 hour cycle) and 100 wa-

ter quality time steps, the MC formulation results in a problem with over 20 billion

variables and constraints. Fortunately, a number of reductions can significantly de-

crease the problem size, while still providing an exact mathematical transformation

of the full problem. In the next subsections, we describe these reductions for the two

formulations.

3.3.1 MC Formulation

First, we outline the reductions for the MC formulation:

1. All variables and constraints corresponding to nodes where the mass consumed

is 0 (i.e., vntcnts = 0) can be eliminated from the problem. In these cases,

we can remove �nts and its corresponding constraint from Equation 3.4. This

reduction can eliminate a significant portion of the problem space that needs to

be considered in the formulation. The reduction is particularly notable when
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contamination scenarios occur in the edge of the network with a small number

of downstream nodes, which means a large number of variables and constraints

corresponding to the rest of the network can be eliminated. This reduction will

also apply to all time steps prior to the start of the contamination.

2. The booster station simulations required to build Dnts also provide information

about the set of (nts) indices which will never be impacted by any of the candi-

date booster nodes. To further reduce the size of the problem, all corresponding

�nts variables can be replaced with a 1 in the objective function, and all corre-

sponding constraints from Equation 3.4 can be eliminated. This is equivalent

to the situation where Dnts = ;. At a minimum, this reduction is applicable

to all nodes and all times before the detection time for that scenario, tds. In

practice, this reduction might also apply to some nodes and times after tds in

the case where B ⇢ N (i.e., all nodes are not candidate booster stations).

3. Because this problem formulation is derived from a network flow model, there

is a tremendous amount of symmetry which occurs for the constraints in Equa-

tion 3.4 across di↵erent nodes, times, and scenarios. In particular, we consider

the case where two booster impact sets are equal, Dn1t1s1=Dn2t2s2 . Here, the

corresponding �n1t1s1 and �n2t2s2 variables can be aggregated into one, removing

one of the variables and the corresponding constraint from Equation 3.4 and

aggregating the coe�cients in the objective function. Note that this reduction

is substantial, and it allows us to dramatically reduce the number of contamina-

tion simulations required, in addition to reducing the size of the problem. If two

contamination scenarios, j and k, have the same detection time (i.e., tdj = tdk)

then the booster impact sets will be the same for all nodes and times. That is,

Dntj = Dntk, 8n 2 N, t 2 T . This allows us to aggregate all variables and

constraints corresponding to these two contamination scenarios. Furthermore,

the new coe�cient in the objective function is a sum of all the aggregated terms,

and because the water quality reaction model is linear, we can simply compute
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this aggregated coe�cient using a single contamination simulation where the

contaminant injection is a probability (↵s) weighted sum of the individual con-

taminant injections. This reduction can be applied across booster impact sets

until the final formulation consists entirely of unique sets Dp and disinfection

indicator variables �p for p 2 Q. Here Q is an indexing for the reduced prob-

lem with cardinality much smaller than the original number of constraints in

Equation 3.4 (i.e, |N | ⇥ |T | ⇥ |S|).

These reductions not only help make the size of the MC formulation tractable,

but they also reduce the number of contamination simulations required to generate

the necessary data. The numerical results presented in the next section show that

a significant reduction in the number of required contamination simulation can be

obtained from the contamination scenario aggregation performed in reduction (3).

Without reduction (3), an estimate of the number of booster and contamination

simulations required would be |S| ⇥ (|B| + 1) where S is the set of contamination

scenarios and B is the set of booster station candidate nodes. This expression is

explained by noting that, for each contamination scenario, we require one simulation

for the contaminant and a simulation for each candidate booster node (|B|). To insure

a high quality solution that accounts for uncertainty in the time and location of a

contamination source, it is reasonable to assume a contamination scenario is needed

for every node and at every hour during a demand cycle. In this case the number of

simulations required is |N |⇤ |T |⇤ (|B|+1), where N is the set of nodes in the network

and T is the set of hourly time steps over a typical demand cycle. In the case where

the set of candidate booster stations B is nearly the same as the entire set of nodes N ,

we have that the proposed mixed integer program requires O(|N |2) contamination and

booster simulations. As an example, consider the water network used in this study

which has roughly 3,000 nodes. Formulating an optimization problem considering

potential contamination from every node and at every hour over a 24 hour period

requires roughly 3000*24*(3000+1)= 216 million simulations. However, by using the

reductions discussed above, and assuming the water quality sensors sample every 15
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minutes, the required simulations can be reduced to be no more than |Ts| ⇤ (|B|+1),

which for the current example is roughly 96*(3000+1)=288,096 required simulations.

Where Ts is the set of unique detection times over a 24 hour period.

3.3.2 PD Formulation

For the PD formulation, a similar set of reductions can be made:

1. All �nts variables and constraints (Equation 3.9) corresponding to 0 mass in-

gested (i.e., Ints = 0) can be eliminated from the problem. Similarly, all vari-

ables and constraints corresponding to nodes with zero population can be re-

moved from the problem. This includes variables zns and dns and the relevant

constraints. Similar to the MC formulation, this reduction is particularly no-

table when contamination scenarios occur in the edge of the network with a

small number of downstream nodes, which means a large number of variables

and constraints corresponding to the rest of the network can be eliminated. This

reduction will also apply to all time steps prior to the start of the contamination.

2. Similar to the reduction proposed for the MC formulation, all �nts variables cor-

responding to (nts) indicies that will never be impacted by any of the candidate

booster nodes are replaced by 1. Consequently, all corresponding constraints

from Equation 3.9 can be eliminated. This is equivalent to the situation where

Dnts = ;. Ideally, this reduction is applicable to all nodes and all times be-

fore the detection time for that scenario, tds. In practice, this reduction might

also apply to some nodes and times after tds in the case where B ⇢ N (i.e.,

all nodes are not candidate booster stations). Additionally, a similar reduction

can be made by replacing binary variable zns by 1, for all nodes in a scenario

where the cumulative dose, dns, is already greater than the dose threshold, ⌧ ,

before the detection time. This reduction also results in the elimination of all

corresponding �nts variables and constraints from Equations 3.9, 3.10, and 3.11.
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Note that unlike the MC formulation, for the PD formulation we cannot combine

two variables �n1t1s1 and �n2t2s2 in the general case where the two booster impact

sets are equal, Dn1t1s1=Dn2t2s2 . This is because we need to calculate the cumulative

dose, dns, separately for all nodes and all scenarios. Therefore, the benefits of the

third reduction proposed for the MC formulation, that include reducing the number

of required simulations, are not applicable in the case of the PD formulation.

3.4 Numerical results and discussions

Given a particular water quality sensor layout, we can calculate the detection

time, tds, of a contamination scenario. At this time, the booster stations begins

injecting additional (but within acceptable range of) disinfectant into the network,

and a manual grab sample is drawn for lab testing and confirmation. The lab analysis

can take �tlab time to obtain the results, while the booster stations continue to

inject additional disinfectant. If lab results are negative, the booster stations cease

injecting additional disinfectant. If lab results are positive, further response actions

are required. To formulate the booster station placement problem, we are concerned

with finding placements that provide as much benefit as possible while waiting for

lab results.

The case studies performed in this manuscript assume random contamination

scenario detection times that are uniformly distributed between 2 to 8 hours following

the injections. Given the detection time tds for each contamination scenario, we can

simulate an injection from each individual booster station location, starting at tds and

ending at tds +�tlab. With these booster simulation results, we can collect all booster

station locations that a↵ect a particular node and time and build the sets Dnts for

each n 2 N, t 2 T, s 2 S.

We examined the optimal placement of booster stations using the MC formulation

on three water distribution networks of di↵erent sizes and the PD formulation on the

smallest network. Results presented later in this section show drastic reduction in

problem size for the MC formulation due to the third reduction presented in Section
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3.3. Since the PD formulation does not benefit from this reduction, the larger network

problems remain intractable. For each network, we altered the number of booster

stations being placed and show their e↵ectiveness in reducing the impact over a

large set of contamination scenarios. We also present the optimization problem size

statistics and the required computation time for each network.

Table 3.1 shows network size and contamination scenario statistics for each net-

work (EPANET Example Network 3 (Rossman, 2000), Micropolis (Brumbelow et al.,

2007), and Net6 (Watson et al., 2009)). For a particular network, the contamination

scenario set contained contaminant injections from every junction and starting at ev-

ery demand pattern time step during the first 24 hours of the simulation duration. For

example, the contamination scenario set for the Micropolis network contained con-

taminant injections at all 1,574 junctions starting at each hour of the first 24 hours

(24 ⇥ 1, 574 = 37, 776). The duration of all contaminant injections was assumed to

be 6 hours and all the contamination simulation durations were for 24 hours past the

detection time (�tlab = 24 hours). We used random contamination scenario detec-

tion times that are uniformly distributed between 2 to 8 hours following the injection

time (with hourly frequency). Therefore, for example, an injection taking place at 2

AM would have a detection time randomly assigned at any hour between 4 AM and

10 AM. Our assumptions of both injection duration and detection times impacted

the results presented in the following subsections and they will be discussed therein.

Due to the assumptions made about the contaminant-disinfectant reaction, the ac-

tual concentration of the contamination and booster injections has no impact on the

following results.

3.4.1 Problem Size Reductions

Figure 3.3 shows the size of the MC formulation (MILP problem) that needs to be

solved for each network (vertical axis is logarithmic scale). The size of the network

has a clear impact on the size of the optimization problem. The large number of

contamination scenarios also results in problem sizes that are prohibitively large.
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Table 3.1: Scenario setup for each network

Net3 Micropolis Net6

Junctions 92 1,574 3,323
Links 119 1,619 3,892

Hydraulic Time Step (min) 15 15 15
Quality Time Step (min) 15 15 15
Pattern Time Step (min) 60 60 60
Contamination Scenarios 2,208 37,776 79,752

Booster Duration �tlab (hrs) 24 24 24

For example, the original problem for Net6 had close to 25 billion variables and

constraints. Following the application of reductions (1) and (2), the problem size

for each network was reduced by more than an order of magnitude. However, the

problem size was still fairly large. For instance, in the case of Net6, we required

approximately 8 terabytes to store the nonzeros (as 8-byte doubles) in the constraints.

By applying reduction (3), the problem size was reduced another three to four orders

of magnitude, giving reasonably sized problems with approximately 5, 000 variables

for Net3, 100, 000 variables for Micropolis, and 1 ⇥ 106 variables for Net6. Figure

3.4 shows the size of the PD formulation that needs to be solved for Net3 before

and after reduction (1) and (2). The final problem size in this case is approximately

200, 000 variables. Note that reductions (1) and (2) have a bigger impact on the PD

formulation as compared to the MC formulation (Figure 3.3a and 3.4). This is because

for the PD formulation, when the cumulative dose for a particular node and scenario,

dn,s, goes above the dose threshold, ⌧ , before the scenario detection time, reduction

(2) replaces �n,t,s with 1 for all time steps for that node and scenario. However, in

the case of the MC formulation, only the �n,t,s variables before the detection time are

replaced by 1.
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All problems were solved using CPLEX 12.5 on a machine with 64 AMDOpteron(TM)

processors (6278 @ 2.4GHz). For each network, we solved multiple problems with the

number of booster stations ranging from 0 to 10.

Table 3.2 provides the original and reduced number of contamination and booster

simulations required, the mean simulation time, the mean solve time, and the peak

memory usage for each network using the MC formulation. For the PD formulation

on Net3, the original number of simulations were performed (204,972) that took 0.2

minutes and the MILP problems were solved with a mean solve time of 0.3 minutes

and a peak memory usage of 0.8 GB. All of the contamination and booster simulations

used the Merlion water quality reaction model (Mann et al., 2010). A preprocessing

step was performed to discard a small set of contamination scenarios that injected at

nodes with stagnant flow, since these scenarios had no impact.

It should be noted that, while commercial optimization and modeling softwares

like CPLEX have a presolve phase, the original problem was far too large to even fit in

memory on a reasonable workstation. Furthermore, even with smaller test problems,

we did not see significant reduction in the problem size using the presolve in CPLEX

12.5.
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(a) Net3

(b) Micropolis (c) Net6

Figure 3.3.: Problem size (log scale) of the original full space MC formulation, the
problem size following reductions (1) and (2), and the problem size following reduc-
tions (1), (2) and (3).
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Figure 3.4.: Problem size (log scale) for Net3 of the original full space PD formulation
and the problem size following reductions (1) and (2).

Table 3.2: Number of simulations required for the MC formulation along with timing
and memory usage statistics for solving the fully-reduced problem.

Original Reduced Simulation Mean Solve Peak Memory
Network Simulations Simulations Time (min) Time (min) Usage (GB)

Net3 204,972 2,790 0.01 0.0025 0.018
Micropolis 57,229,200 47,250 0.97 4.4 4.8
Net6 264,783,192 99,720 19.5 19.2 50

As mentioned earlier, the problem sizes depended not only on network size and

contamination scenario set size, but also on the assumptions of contaminant injection

length and detection time within the contamination scenario set. Longer injections

would generally mean that more nodes have nonzero concentrations over the simu-

lation period and therefore fewer variables and constraints can be eliminated using

reduction (1) (nodes where the mass consumed is zero for the MC formulation i.e.,

dntcnts = 0 or mass ingested is zero for the PD formulation i.e., Ints = 0). On the

other hand, shorter injection lengths generally mean that reduction (1) can eliminate
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more variables and constraints. Similarly, in the case of detection times, we assumed

that detection takes place randomly at any hour in a 2 to 8 hour window following the

injection. This assumption implied that for our contamination scenario set containing

injections at every node and starting at every hour during the first 24 hours, there

could be 31 unique detection times (detection time could range from 2 to 32 hours

as injection times ranged from 0 to 24 hours). Therefore, during reduction (3) when

we aggregated constraints and variables for contamination scenarios with the same

detection times, a di↵erent number of unique detection times could have impacted

the size of the reduced set Dnts.

3.4.2 Impact of Optimal Booster Placement

The e↵ectiveness of optimal booster placement in reducing the expected mass

consumed over the large set of contamination scenarios is shown in Figure 3.5. Figures

3.5a, 3.5b, and 3.5c illustrate the results for Net3, Micropolis, and Net6, respectively.

The horizontal axis in each plot represents the number of booster stations being placed

while the vertical axis represents the expected mass consumed over all contamination

scenarios normalized with respect to the overall expected mass consumed when no

booster is placed. The horizontal dashed line in each plot represents the normalized

expected mass consumed before detection, or in other words, the amount which cannot

be reduced. This line signifies the best possible performance that could be achieved

by placing boosters to completely neutralize all contamination as soon as an incident

is detected. All three plots in Figure 3.5 show that as we increase the number of

booster stations being placed, the normalized expected mass consumed asymptotically

progresses towards the best possible performance represented by the dashed line.

Similarly, Figure 3.6 shows the e↵ectiveness of optimal booster placement in reducing

the expected population dosed over a set of contamination scenarios on Net3.

Again the length of contaminant injections and their detection times used to build

our contamination scenario set plays an important role in determining the booster

performance shown in Figures 3.5 and 3.6. For instance, consider the position of the
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dashed lines in these two figures. Increasing the injection lengths while keeping the

detection times the same would mean that the fraction of impact before detection

decreases and, therefore, the dashed line would be lower on the plot. Likewise, an

increase in detection times would correspond to a larger fraction of impact before

detection and, therefore, the dashed line would be higher on the plot.

(a) Net3

(b) Micropolis (c) Net6

Figure 3.5.: The impact of optimal booster station placement on normalized expected
mass consumed. The horizontal dashed line represents the normalized expected mass
consumed before detection.
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Figure 3.6.: The impact of optimal booster station placement on normalized expected
population dosed on Net3. The horizontal dashed line represents the normalized
expected population dosed before detection.

All things considered, for all three networks, the optimal booster placement is able

to notably reduce the overall impact. For example, Figure 3.5c shows that, 40% of the

mass consumed is before detection. However, placing 10 boosters helps reduce 49%

of the remaining 60% mass consumed after detection. The population dosed metric

shows a more drastic reduction in Figure 3.6, even with a small number of optimally

placed booster stations. These results imply that booster stations can be used as an

e↵ective response strategy to reduce the impact of potential contamination incidents

in water distribution networks.
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4. THE LIMITING REAGENT FORMULATION FOR OPTIMAL BOOSTER

PLACEMENT 1

In Chapter 3 we proposed two MILP formulations to identify booster station lo-

cations that minimized two di↵erent objectives (mass consumed or the population

dosed). The MILP formulations were able to find optimal locations for boosters in

large networks by considering a large ensemble of contaminant scenarios, but the

Neutralization method greatly simplified the reaction by assuming that the chlorine

instantly and completely inactivates the contaminant when it comes in contact with

chlorine. In this chapter, we propose a new booster station optimization method that

is referred to as the “Limiting reagent method” and evaluate both the methods to

compare their results.

Since the contaminant species is unknown at the planning stage, both methods

need to make assumptions in order to approximately model the contaminant-chlorine

reaction. Simplifying assumptions also aid in keeping the optimization problems

tractable for large scale networks. The optimization formulations proposed in both

methods includes stochasticity in the location and time of the contamination incident.

The major di↵erence between the two methods lies in the fact that the Neutraliza-

tion method assumes that chlorine is always in stoichiometric excess as it neutralizes

contaminant through the network, while the Limiting reagent formulation proposed

in this chapter allows for modeling di↵erent stoichiometric ratios between the con-

taminant and chlorine. Di↵erent levels of contaminant-chlorine reactivities are ap-

proximated using the proposed formulation and their impact is studied on both the

1Part of this section is reprinted from “Evaluation of Chlorine Booster Station Placement for Water
Security” by Seth, A., Hackebeil, G.A., Haxton, T., Murray, R., Laird, C.D., and Klise, K.A., 2015.
Submitted to Journal of Water Resources Planning and Management, American Society of Civil
Engineers.
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booster placement layout and the e↵ectiveness of the booster stations in reducing im-

pact on the population. Additionally, we also investigate how sensor placement can

influence the performance of disinfectant booster stations. The booster station place-

ment case studies presented here considers all the di↵erent uncertainties associated

with the problem (location and time of incident, contaminant-chlorine reactivities,

and incident detection time) as realistically as possible.

4.1 Formulations based on di↵erent modeling techniques

The Neutralization and Limiting Reagent methods approximate the unknown re-

action between a contaminant and chlorine. For both methods, the contaminant and

chlorine concentrations are calculated using water network hydraulic and water qual-

ity models. For the results shown in this work, EPANET 2.0 (Rossman, 2000) is used

to perform the hydraulic simulations and Merlion (Mann et al., 2012b; Wong et al.,

2010) is used for the water quality calculations. Although not used in this work, our

implementation of the Neutralization method does support the use of EPANET as the

hydraulic and water quality simulator. However, as we will show in the next section,

the Limiting reagent method requires us to use the linear water quality equations

from Merlion. Both the Neutralization and the Limiting Reagent methods are in-

cluded in US EPA’s Water Security Toolkit (WST), a suite of software tools designed

to help evaluate and plan response strategies in the case of a contamination incident.

Additional information on these methods and on human health impact models used

to compute the population dosed can be found in the WST User Manual (EPA, 2014).

4.1.1 Neutralization method

The optimization formulation described in Equations 3.8-3.15 (PD formulation)

for the Neutralization method is studied in this chapter. Here, we reiterate some of

the major assumptions that are made. The Neutralization method assumes that the

chlorine completely and quickly inactivates all of the contaminant on contact. The
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Neutralization method takes advantage of several simplifying assumptions to model

the unknown contaminant-chlorine reaction. Firstly, it is assumed that the chlorine

remains in stoichiometric excess, and therefore the contaminant-chlorine reaction does

not e↵ect the chlorine transport in the network. Secondly, both the contaminant and

the chlorine are assumed to behave like tracers that do not decay as they flow through

the network. Finally, this method ignores residual chlorine already injected into the

network from water treatment facilities and only the chlorine injected from the booster

stations in considered. The advantage of these assumptions is that we no longer need

to embed a reaction model, which can be non-linear, within the problem formulation.

Another advantage of these assumptions is that now the booster chlorine injections

and contaminations injections can be pre-simulated and the resulting data can be

used to formulate an MILP problem for optimal booster placement.

4.1.2 Limiting Reagent Method

Similar to the Neutralization method, the Limiting reagent method also assumes

that the contaminant-chlorine reaction happens at a fast rate. However, unlike the

Neutralization method, the Limiting reagent method allows for the reaction to happen

with respect to a stoichiometric ratio. In this work, we define the stoichiometric ratio

as the mass of chlorine removed per the mass (mg) (if chemical) or colony-forming

units (CFU) (if biological) of contaminant rendered harmless after reacting with chlo-

rine. To illustrate the di↵erence between the Limiting Reagent and Neutralization

method, two examples are shown in Figure 4.1. For both examples, a stoichiometric

ratio of 1 mg chlorine/mg contaminant is used for the Limiting Reagent method. In

Example A, 100 mg of chlorine comes in contact with 80 mg of contaminant at a pipe

junction. Using the Neutralization method, all of the contaminant is inactivated and

the amount of chlorine remains unchanged. Using the Limiting Reagent method, 80

mg of chlorine is used to inactivate all of the contaminant. In this case, the contam-

inant is the limiting reagent and 20 mg of chlorine remains. Example B illustrates

a case where chlorine is the limiting reagent. In this case, 100 mg of chlorine comes



45

in contact with 120 mg of contaminant. Results using the Neutralization method are

unchanged. Using the Limiting Reagent method, 100 mg of chlorine can inactivate

100 mg of the contaminant with 20 mg of contaminant remaining.

Figure 4.1.: Neutralization and Limiting Reagent methods Example A and Example
B. Both examples assume a stoichiometric ratio of 1 mg chlorine (CL)/mg contami-
nant (Cont.)

The Limiting Reagent method assumes that the contaminant-chlorine reaction

proceeds to completion at a fast rate until the limiting reagent, which can either be

the chlorine or the contaminant, is exhausted. As the stoichiometric ratio approaches

zero, the Limiting Reagent method is equivalent to the Neutralization method. The

Limiting Reagent method also ignores the residual chlorine already present in the

network and that only chlorine injected from booster stations reacts with the con-

taminant. However, in order to model the contaminant-chlorine reaction, the Limiting

reagent model explicitly embeds the water quality model directly into the optimiza-

tion formulation. Using the linear water quality model introduced in Section 1.2.2,

the Limiting reagent method formulates the optimal booster placement problem as

an MILP as follows:
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min
X

s2S

P (s)
X

n2N

znspopn (4.1)

s.t. Gccons =D(mcon
s � rcons ) 8 s 2 S (4.2)

Gcdiss =D(mdis
s � ⇢rcons ) 8 s 2 S (4.3)

mdis
bts=ybLbts 8 b 2 B, t 2 T, s 2 S (4.4)

mdis
nts=0 8n 2 N\B, t 2 T, s 2 S (4.5)

dns=
X

t2T

cconnstvnst 8n 2 N, s 2 S (4.6)

dns  zns(M � ⌧) + ⌧ 8n 2 N, s 2 S (4.7)
X

b2B

yb  Bmax (4.8)

yb 2 {0, 1} 8 b 2 B (4.9)

zns 2 {0, 1} 8n 2 N, s 2 S (4.10)

cconnts , c
dis
nts, r

con
nts � 0 8n 2 N, t 2 T, s 2 S (4.11)

(4.12)

where S, N , T and B represent the sets of contamination scenarios, network

nodes, time steps, and potential booster station locations, respectively. The objec-

tive function in Equation 4.1 minimizes the population dosed at all nodes for every

contamination scenario in the simulation. Each scenario s has probability P (s). Bi-

nary variable zns is used to indicate whether the total dosage at node n for scenario

s is above a user specified dose threshold ⌧ . The total population at a node is rep-

resented by popn. Because the water quality model is formulated as a set of linear

equations, the forward tracing simulations can be included directly within the MILP.

The concentration of the contaminant and chlorine, cconnts and cdisnts, respectively, are

defined for each node n, time step t, and contamination scenario s. The variables

mcon
nts and mdis

nts are the mass injections for the contaminant and chlorine, respectively,
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at node n and time step t for contamination scenario s. Equations 4.2 and 4.3 in-

clude the embedded linear water quality model, Merlion, as stored in the G and D

matrices. The G and D matrices map the contaminant and chlorine mass injected

at all nodes and time steps for a scenario s (vectors mcon
s and mdis

s ) to contaminant

and chlorine concentration at all nodes and time steps for each scenario s (vectors

ccons and cdiss ). The contaminant mass removed at all nodes and time steps for con-

tamination scenario s, based on the reaction between the contaminant and chlorine,

is given by the vector rcons . The stoichiometric ratio, ⇢, defines the mass of chlorine

removed per mass of contaminant removed. Equations 4.4 and 4.5 set the booster

injection amount. The amount is Lbts if a booster station is placed at node b, other-

wise the injection amount is zero. The binary variable yb is 1 if node b is selected as

a booster station location and 0 otherwise. Equation 4.6 calculates the mass dosed

by the population,dns, at node n for scenario s. The parameter vnst represents the

volume of water ingested by the population at node n for scenario s, over the time

step t. Equation 4.7 is the big-M constraint used to switch the binary variable zns

to 1 when the total mass dosed at node n for scenario s is above the threshold ⌧ .

Equation 4.8 restricts the number of booster stations to be less than or equal to Bmax.

Equation 4.9 and 4.10 define yb and zns as a binary variable respectively. Equation

4.11 indicates that the contaminant and chlorine concentrations and the contaminant

mass removed are greater than or equal to zero.

4.2 Evaluation of the Neutralization and the Limiting reagent method

The case studies presented in this section cover several factors that can influence

the e↵ectiveness of booster chlorination as in incident response action. These include

the water network layout, the ensemble of potential contamination scenarios, the

sensor placement layout, and the parameters related to the booster station operation.

We first define the range of these parameters used in this case study, followed by a

discussion of the results.
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4.2.1 Case study design

This case study uses two example water distribution networks from the literature

- (1) The Example Network 3 distributed with EPANET 2.0 (Figure 4.2), which

we refer to as “Network 1,” and (2) A larger network, referred to as “Network 2”

(Figure 4.3) (Watson et al., 2009). Network 1 is composed of 92 junctions, 3 tanks,

and 2 reservoirs, and serves water to approximately 62,000 customers. Network 2

has 407 junctions, 2 tanks, and 1 reservoir, and serves water to approximately 6,400

customers.

The time delay between the contamination incident and the start of booster chlo-

rination depends on the incident detection time and the time it takes to activate the

boosters. The ability of a sensor placement layout to quickly detect a contamination

incident has a great impact on the e↵ectiveness of all mitigation actions including

booster chlorination. A late detection can result in the majority of the damage being

done before the booster can activate. To study the e↵ect of scenario detection time,

a range of sensor layout were studied in this work. Sensor locations were identified

using the sp (sensor placement) module in WST. For Network 1, three sensor place-

ment layouts were optimized to place 2, 5, and 10 sensors. For Network 2, the studies

were performed using one sensor placement layout with 5 optimally placed sensors.

Examples of the chosen sensor locations are shown in Figures 4.2 and 4.3.

The optimal sensor placement and the optimal booster placement are two inde-

pendent problems that require defining a set of possible contamination scenarios. For

simplicity, the same set of scenarios was used for the optimum placement of sensors

and booster stations in these case studies. The sensor placement was performed to

minimize the detection time. One contamination scenario was simulated from each

non-zero demand (NZD) node in the network. NZD nodes are defined as nodes with

positive customer demands. Network 1 has 59 NZD nodes and Network 2 has 105

NZD nodes. For all case studies performed in this chapter, injection strength and

dosage threshold values studied by Davis et al. (2014) were used. For each scenario,
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0.5 kg of contaminant was injected into the network, starting at midnight on the

second day of the simulation and ending an hour later. The impact of each contami-

nation scenario was calculated for 8 hours following the detection time. To calculate

population dosed, it was assumed that each person ingested 2 liters of water uniformly

throughout the day. Two dosage thresholds (⌧) were used to evaluate the population

dosed metric: 0.0001 and 0.1 mg. Although these threshold values can go lower for

certain contaminants, for the purposes of this work, a dose threshold of 0.0001 mg

represents high toxicity, while a dose threshold of 0.1 mg represents low toxicity. It

should be noted that the mass injection rate and the dose threshold are relative and

can be scaled as described in Davis et al. (2014).

The chlorine injected at the booster station was assumed to be at a concentration

of 4 mg/L (the MCL for chlorine) and in the injections were assumed to continue

for 8 hours. Only the chlorine supplied by the booster stations was considered by

the optimization methods while the residual chlorine was ignored. The set of NZD

nodes were used as feasible booster station locations for both networks. In order to

cover a wide range of contaminants, the following stoichiometric ratios were used to

approximate a strong to weak reaction with chlorine: 0 mg CL/mg contaminant, 1 mg

CL/mg contaminant, 10 mg CL/mg contaminant, and 100 mg CL/mg contaminant.

When the stoichiometric ratio is set to 0 mg CL/mg contaminant, the Neutralization

method is used to place boosters in the network.

4.2.2 Case Study Results

The following results compare the e↵ectiveness of booster station response to a

set of possible contamination scenarios in two networks given a range of detection

times (i.e., range of sensor layouts), contaminant toxicities, and stoichiometric ratios.

Since booster stations would not be turned on until after detection, it is important

to understand how a particular sensor layout impacts the population dosed at the

time of detection. For Network 1, 3 sensor layouts (2, 5, and 10 sensors) were used

to detect the possible contamination scenarios, while for Network 2 a single network
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design with 5 sensors was tested. Ideally, all scenarios would be detected by a given

sensor placement layout, but this is not the case (unless a sensor can be placed at

every node). The number of detected scenarios in Network 1 increased from 72%

with a 2-sensor layout to 85% with a 5-sensor layout to 93% with a 10-sensor layout.

For the detected scenarios, the corresponding average detection time decreased from

8.0 hours to 1.9 hours to 1.6 hour. The average population dosed at the time of

detection was 16,537, using a 2-sensor layout, 2,999 using a 5-sensor layout and 1,123

using a 10-sensor layout, assuming a highly toxic contaminant (dose threshold of

0.0001 mg). This impact cannot be reduced by adding chlorine at booster stations

because the boosters are not initiated until after detection. The percent of scenarios

detected in Network 2 was lower than Network 1, the average detection time and

population dosed at detection was also higher in Network 2. Based on a 5-sensor

layout, 78% of contamination scenarios was detected, the average detection time was

4.6 hours, and the population dosed at time of detection was 162 assuming a highly

toxic contaminant (dose threshold of 0.0001 mg). Using a 10-sensor layout, 86%

of contamination scenarios was detected, the average detection time was 2.9 hours,

and the population dosed at time of detection was 132, assuming a highly toxic

contaminant (dose threshold of 0.0001 mg).

The Neutralization and Limiting Reagent methods were used to optimally locate

1 to 10 booster station locations in both networks. Figures 4.2 and 4.3 illustrate

five optimally placed booster stations in Network 1 and Network 2 using two di↵er-

ent sets of parameters that include the number of sensors, the stoichiometric ratio

(Neutralization = 0, Limiting Reagent = 100), and the dose threshold. Both figures

show significant variability in the optimal booster station locations depending on

these parameters. Figures 4.2a and 4.2b show that going from 2 sensors to 5 sensors

can result in very di↵erent booster placements for both Neutralization and Limiting

Reagent methods. However, the Neutralization method shows no or very little sensi-

tivity to dose threshold as evident from comparing Figures 4.2c and 4.2d or Figures

4.3a and 4.3b. Overall, for both networks (Figures 4.2 and 4.3), the Limiting Reagent
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method (with a high stoichiometric ratio) resulted in the boosters being placed more

centrally in the network, while the Neutralization method resulted in the boosters

being placed more towards the edges of the network.

(a) 2 Sensors, High Toxicity (b) 5 Sensors, High Toxicity

(c) 10 Sensors, Low Toxicity (d) 10 Sensors, High Toxicity

Figure 4.2.: Example booster station placement for Network 1 with (a) a 2-sensor
layout and high toxicity contaminant, (b) a 5-sensor layout and a high toxicity con-
taminant, (c) a 10-sensor layout and a low toxicity contaminant, and (d) a 10-sensor
layout and a high toxicity contaminant. Five booster stations are placed using the
Neutralization method and the Limiting Reagent method with ⇢=100.
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(a) Low Toxicity (b) High Toxicity

Figure 4.3.: Example booster station placement for Network 2 with (a) a 5-sensor
layout and a low toxicity contaminant and (b) a 5-sensor layout and high toxicity
contaminant. Five booster stations are placed using the Neutralization method and
the Limiting Reagent method with ⇢=100.

Table 4.1 provides mean problem size and solution time statistics for all the op-

timization problems solved using the Neutralization and Limiting Reagent methods.

These results highlight the biggest advantage of the Neutralization method. While

the Limiting Reagent formulation can take several hours to solve for Network 2, the

Neutralization formulation solves within seconds. Instead of embedding the water

quality model into the formulation, the Neutralization method benefits from per-

forming simulations outside of the optimization that take less than a 10 seconds for

both networks.
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Table 4.1: Mean number of variables and solution times for the Neutralization and
Limiting Reagent formulations on Network 1 and Network 2.

Neutralization Method Limiting Reagent Method

Network Junctions Variables Solve Time (Hrs) Variables Solve Time (Hrs)

Network 1 92 6,114 0.002 461,928 1.23
Network 2 407 18,253 0.01 3,583,786 7.32

Figure 4.4 quantifies the impact of the number of sensors, the stoichiometric ratio,

and the contaminant toxicity on the performance of the optimally placed booster

stations on Network 1. The following set of observations can be made from Figure

4.4:

• With an increase in the number of booster stations, the population dosed asymp-

totically approached a minimum value.

• This minimum value was a function of the number of sensors, the stoichiometric

ratio, and the contaminant toxicity.

• A three orders of magnitude di↵erence in the dose threshold resulted in about an

order of magnitude di↵erence in the number of population dosed. For example,

the population dosed for the 10 optimally placed booster obtained using the

Neutralization method (⇢=0) with 2 sensors and a dose threshold of 0.0001

mg (high toxicity) was 17,498, while the population dosed for the same set of

parameters using a dose threshold of 0.1 mg (low toxicity) was 1,224.

• Going from 2 sensors to 5 sensors had a bigger impact in the performance of the

booster stations as compared to going from 5 sensors to 10 sensors. This was

because of a larger reduction in mean detection time going from 2 sensors to 5
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sensors (8.0 hours to 1.9 hours) as compared to the reduction in mean detection

time going from 5 sensors to 10 sensors (1.9 hours to 1.6 hours).

• The e↵ect of the stoichiometric ratio on the expected population dosed was

more significant in the presence of higher number of sensors. For example,

in Figure 4.4f (10 sensors, high toxicity), placing 10 boosters resulted in the

population dosed going from 1,433 for a stochiometric ratio of 1 to 7,021 for a

stochiometric ratio of 100. On the other hand, in Figure 4.4d (5 sensors, high

toxicity), placing 10 boosters resulted in the population dosed going from 3,467

for a stochiometric ratio of 1 to 7,239 for a stochiometric ratio of 100.

Figure 4.5 shows the impact of the stoichiometric ratio and the contaminant tox-

icity on the performance of the optimally placed booster stations on Network 2 with

five optimally placed sensors. For Network 2, the e↵ect of contaminant toxicity was

not as significant as observed in Network 1. It is conjectured that this behavior is due

to the fact that Network 2 has a much smaller population that is spread out over a

larger number of nodes, and, therefore the expected population dosed did not show a

big variation with respect to the contaminant toxicity even in the absence of booster

stations.

If booster stations are to be used as a part of water utilities response action

plan, then a single booster station placement would be used without knowing the

specific contaminant toxicity or its reaction with chlorine. The physical locations of

booster stations placed using the Neutralization and Limiting Reagent methods can

be evaluated given contamination scenarios with di↵erent toxicities and stoichiometric

ratios of reaction with chlorine. For example, if the water utility assumes the worst,

and places booster stations assuming that the contaminant is of high toxicity and

does not react strongly with chlorine, then the booster stations placed using the

Limiting Reagent method with a high stoichiometric ratio and low population dosed

threshold (high toxicity) can be used to evaluate other types of scenarios. Tables

4.2 and 4.3 list the expected population dosed given the optimal placement of 10
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booster stations for each toxicity level and stoichiometric ratio on Networks 1 and 2,

respectively. The performance of the optimal placement was then used to evaluate the

population dosed under the same range of contaminant toxicities and stoichiometric

ratios used for the optimal booster station placement. Each case used the 5-sensor

layout to detect contamination in the network. The last column in each table is the

mean of the expected population dosed over a row; the mean explains the average

number of people dosed if all 8 of the scenarios occurred and the specific set of

booster stations were installed. As expected, for a particular contaminant toxicity

and stoichiometric ratio, the optimal placement always gave a lower objective as

compared to the evaluation of all other placements on the same contaminant toxicity

and stoichiometric ratio. For instance, in Table 4.2 the expected population dosed

for the optimal placement considering high contaminant toxicity and a stoichiometric

ratio of 1 was 3,455. This value was lower than all the evaluated objective values

for high contaminant toxicity and stoichiometric ratio of 1 (4th column). Tables 4.2

and 4.3 also show that the overall performance of a booster placement, represented

as the mean of population dosed values over di↵erent levels of contaminant toxicity

and stoichiometric ratio (last column), improved as the stoichiometric ratio and the

contaminant toxicity increased. For Network 1 (Table 4.2), the lowest mean expected

population dosed was evaluated at 3,061 using contamination scenarios of high toxicity

and high stoichiometric ratio (⇢=100). On the other hand, the largest mean expected

population dosed was evaluated at 4,320 using contamination scenarios of high toxicity

and ⇢=0 (Neutralization method). Comparing these two numbers (minimum and

maximum mean) resulted in a di↵erence of 1,251 in the mean expected population

dosed on Network 1. Similarly, for Network 2 (Table 4.3), the lowest mean expected

population dosed was evaluated at 366 using contamination scenarios of high toxicity

and high stoichiometric ratio (⇢=100). These results imply that performing optimal

booster placement for the worst case scenario (high contaminant toxicity and high

stoichiometric ratio) resulted in a booster station placement that gave the best overall

performance measured in terms of expected population dosed.
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Table 4.2: Trade-o↵ analysis of optimal booster placements using Network 1 in terms
of population dosed (number of people). Each row represents the evaluation of 10 op-
timally placed booster stations selected based on a particular stoichiometric ratio (⇢)
and contaminant toxicity (first column) against seven other contamination scenarios
with di↵erent ratios and toxicities (column 3-10). Second column provides the optimal
objective value for the evaluated booster placement. ⇢=0 represents Neutralization
method.

Booster Design Evaluation Scenarios

High High High High Low Low Low Low

Toxicity, ⇢ Opt. ⇢=0 ⇢=1 ⇢=10 ⇢=100 ⇢=0 ⇢=1 ⇢=10 ⇢=100 Mean

High, ⇢ = 0 3,397 – 4,884 8,522 12,897 792 1,061 1,465 1,540 4,320
High, ⇢ = 1 3,455 3,445 – 4,529 12,670 821 868 1,199 1,540 3,566
High, ⇢ = 10 4,319 3,510 3,615 – 10,711 822 899 1,204 1,537 3,327
High, ⇢ = 100 7,239 3,555 4,147 4,666 – 892 1,290 1,327 1,370 3,061
Low, ⇢ = 0 767 3,611 4,365 8,739 12,879 – 1,067 1,480 1,547 4,307
Low, ⇢ = 1 823 3,692 4,166 8,569 12,287 820 – 1,396 1,531 4,161
Low, ⇢ = 10 1,161 3,821 4,273 5,378 12,248 912 949 – 1,528 3,784
Low, ⇢ = 100 1,300 3,838 3,919 4,717 10,694 919 974 1,244 – 3,451
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Table 4.3: Trade-o↵ analysis of optimal booster placements using Network 2 in terms
of population dosed (number of people). Each row represents the evaluation of 10 op-
timally placed booster stations selected based on a particular stoichiometric ratio (⇢)
and contaminant toxicity (first column) against seven other contamination scenarios
with di↵erent ratios and toxicities (column 3-10). Second column provides the optimal
objective value for the evaluated booster placement. ⇢=0 represents Neutralization
method.

Booster Design Evaluation Scenarios

High High High High Low Low Low Low

Toxicity, ⇢ Opt. ⇢=0 ⇢=1 ⇢=10 ⇢=100 ⇢=0 ⇢=1 ⇢=10 ⇢=100 Mean

High, ⇢ = 0 268 – 374 787 1,041 100 209 461 694 492
High, ⇢ = 1 297 290 – 632 1021 117 168 386 683 449
High, ⇢ = 10 351 285 337 – 924 118 161 238 587 375
High, ⇢ = 100 667 325 363 416 – 131 183 255 586 366
Low, ⇢ = 0 99 274 571 1,036 1,080 – 257 561 702 573
Low, ⇢ = 1 137 281 310 481 968 111 – 311 651 406
Low, ⇢ = 10 221 284 336 404 929 115 167 – 585 380
Low, ⇢ = 100 568 284 336 399 868 115 167 222 – 370
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� � = 100 � � = 10 � � = 1 ⇥ � = 0

(a) 2 Sensors, Low toxicity (b) 2 Sensors, High toxicity

(c) 5 Sensors, Low toxicity (d) 5 Sensors, High toxicity

(e) 10 Sensors, Low toxicity (f) 10 Sensors, High toxicity

Figure 4.4.: Reduction in expected population dosed on Network 1, Left column: PD
dose threshold (⌧) of 0.0001 (high toxicity), Right column: PD dose threshold (⌧)
of 0.01 (low toxicity), Top row: 2 sensors, Middle row: 5 sensors, Bottom row: 10
sensors. ⇢=0 represents Neutralization method.
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� � = 100 � � = 10 � � = 1 ⇥ � = 0

(a) Low toxicity (b) High toxicity

Figure 4.5.: Reduction in expected population dosed on Network 2 with 5 sensors,
Left: PD dose threshold (⌧) of 0.0001 (high toxicity), Right: PD dose threshold (⌧)
of 0.01 (low toxicity). ⇢=0 represents Neutralization method.
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5. A REVIEW OF CONTAMINATION SOURCE IDENTIFICATION METHODS

1

The optimal booster station placement problem discussed in the previous chapters is

solved at the planning stage. The next aspect of the water network security pertains

to devising a fast response system once a contamination event has been detected.

Therefore, di↵erent levels of event response techniques have been proposed that in-

clude: (a) curtailing the spread of contaminant by isolating parts of the network,

and (b) optimal flushing schemes to quickly and e�ciently remove the contaminated

water from the network. The e↵ectiveness of these response techniques hinges on

the information available about the source and extent of a contamination incident.

Therefore, identification of the source of a contamination incident is a critical step to

stop further ingress of the contaminant and begin control and cleanup.

The source identification problem is typically formulated as an inverse problem of

finding the source of a contamination incident using the limited measurement data

available from a sparse set of water quality sensors. Several researchers have proposed

di↵erent methods to solve this problem. Almost all of these methods can be broadly

categorized based on the following characteristics:

• Modeling Approach: There are variety of techniques used to model the water

quality or input-output behavior in the water distribution network. These can

consist of explicit model equations embedded directly into the problem formu-

lation, use of existing simulator as a black-box model (e.g. EPANET (Rossman,

2000)), or surrogate models like binary trees or neural networks.

1Part of this section is reprinted with permission from “Testing Contamination Source Identification
Methods for Water Distribution Networks” by Seth, A., Klise, K.A., Siirola, J.D., Haxton, T., and
Laird, C.D., 2015. to appear in Journal of Water Resources Planning and Management, Copyright
2015 by American Society of Civil Engineers.
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• Formulation Framework: Various solution strategies and theoretical frameworks

can be used to formulate and solve the inverse problem. These can be very

diverse including optimization based methods, probability based methods, and

data-mining and pattern matching techniques.

• Underlying Assumptions: Methods may also di↵er on the basis of various under-

lying assumptions they make. These can include whether they assume single

or multiple simultaneous injections during a contamination scenario, type of

measurement data available, length of candidate injections, reaction rate of the

contaminant, etc.

A significant body of research exists describing di↵erent approaches for the source

identification problem. Early work proposed optimization based methods that as-

sumed the availability of concentration measurements form water quality sensors

(Laird et al., 2005, 2006; Preis and Ostfeld, 2006). Simulation-optimization ap-

proaches that use a water quality simulator (e.g., EPANET) linked to a pattern-search

method or a Genetic Algorithm (GA) have also been proposed (Preis and Ostfeld,

2007, 2008; Guan et al., 2006). Shang et al. (2002a) present a water quality modeling

framework called the Particle Backtracking Algorithm (PBA) and suggest its appli-

cation in the identification of unknown contamination sources in water distribution

networks.

Laird et al. (2005) present a least-squares formulation that seeks to find the con-

tamination source profile that minimizes the sum of squares of the di↵erence between

calculated and measured contaminant concentrations observed at water quality sen-

sors. A major challenge associated with contaminant source identification is dealing

with the non-uniqueness of the solution inherent in such kind of inverse problems.

Given limited measurement information, there may be many nodes and contamina-

tion profiles that are able to reproduce the observed measurements. The authors later

extend this approach to identify multiple contamination sources (Laird et al., 2006)
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and to deal with the non-uniqueness inherent in the inverse problem (Laird et al.,

2005).

An alternate approach is introduced in Preis and Ostfeld (2006), where a large

number of contamination simulations are performed using EPANET to build an ap-

proximate model in the form of hybrid model trees. Once contamination has been

detected, the source identification algorithm involves “climbing backwards” in the

model tree and solving a Linear Programming (LP) problem at each step. Although

this technique is shown to be accurate for source identification on small ( 10 Node)

networks, the number of simulations required to build adequate model trees can be-

come extremely large for realistic networks (e.g. 10,000 EPANET simulations required

for 10 Node network).

There are also a number of simulation-optimization approaches where a water

quality simulator (e.g. EPANET) is used as a black-box to perform contaminant

source identification. Pattern-search methods, or Genetic Algorithms are common

approaches for solution of these black-box problems. Evolutionary Algorithms (EAs)

or Genetic Algorithms (GAs) are combinatorial search heuristics that operate on Dar-

win’s evolutionary principles of selection, crossover and mutation. In the context of

contaminant source identification, a candidate set of injection scenarios with di↵erent

characteristics or genes (node, start time, duration, strength) is selected, which then

undergoes a mixing and re-selection process based on the concept of survival of the

fittest. Preis and Ostfeld (2007) demonstrate a method to perform source identifi-

cation which links EPANET with a GA. The fitness function used for the selection

process is sum of squares error between measured and modeled concentrations at

sensor nodes. The real-time e�ciency of this algorithm is highly dependent on the

initial candidate set and therefore the authors later extend their work by building

an input-output relationship matrix through an o✏ine simulation process (Preis and

Ostfeld, 2008). This matrix can then be used to get much better starting populations

for the GA. In the later work, the authors also analyze the accuracy of the algorithm

in the presence of imperfect sensors. Alternatively, Guan et al. (2006) provide an



63

online simulation-optimization approach where EPANET is employed as a black-box,

however gradient information is provided using finite di↵erence approximation, that

can then be used to solve a least-squares optimization problem.

The ability of an source identification technique to correctly determine the true

injection scenario is significantly limited by the accuracy, reliability, and placement of

sensors in the contamination warning system (Tryby et al., 2010). Due to the lack of

prior knowledge about the contaminant (chemical or biological), recent developments

in contamination detection technology utilize fault detection approaches by monitor-

ing standard water quality measures (e.g., pH, free chlorine, turbidity, conductivity)

to provide a binary yes/no indication of the presence or absence of contamination in

the network (EPA, 2010a; Oliker and Ostfeld, 2014; Zhao et al., 2014). Unlike most of

the source identification methods discussed earlier in this chapter that assume avail-

ability of accurate contaminant concentration data, more realistic techniques that

handle these limitations are necessary. The aforementioned EPANET-GA based al-

gorithm of Preis and Ostfeld (2008) does consider three types of measurements -

concentration, fuzzy (low, medium, high), and binary (yes/no) - and concludes that

finding unique solutions to the source identification problem becomes more di�cult

going from complete concentration information to only binary information. Cristo

and Leopardi (2008) provide a input-output model based source identification tech-

nique where the model is built by running large number of EPANET water quality

simulations (the use of PBA is also suggested). Although this work assumes the

availability of concentration information, the adverse e↵ect of measurement error is

considered to verify the robustness of the overall algorithm. Liu et al. (2011) extend

the work of Zechman and Ranjithan (2009) by a presenting an adaptive evolutionary

strategy linked with EPANET that considers binary measurements in the form of

detection thresholds. This work also introduces hot-start capabilities in an EA to

perform source identification for a real-time response application. The Contaminant

Status Algorithm (CSA) of De Sanctis et al. (2009) utilizes binary measurement data

and the input-output model generated from PBA to identify possible candidate in-
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jection nodes as being safe, unsafe or unknown. CSA is one of the algorithms tested

using the framework presented in this manuscript and the details of this algorithm

are discussed in Chapter 8. Another source identification method tested in Chap-

ter 8 was presented by Mann et al. (2012). This method uses an MILP formulation

for performing source identification that incorporates a detection threshold to model

discrete measurements.

Apart from the challenges associated with contaminant measurement, network

modeling errors can also be introduced due to demand variability, inaccurate es-

timation of pipe friction factors, and contaminant reaction dynamics. In order to

address these uncertainties, various researchers have proposed statistical approaches

to this problem. Given a prior probability of a node being a contamination node,

the Bayesian methodology developed by Propato et al. (2009) is designed to calcu-

late the corresponding posterior probability by minimizing an entropy function that

represent the amount of information available. Using a reduced version of the linear

input-output model generated from PBA as constraints to the entropy minimization

problem, the authors provide an analytical solution along with confidence intervals

on posterior probabilities that capture the uncertainty and non-uniqueness associated

with source identification. Liu et al. (2011) propose a similar entropy minimization

approach that builds a Logistic Regression Model by running a large number of con-

tamination simulations and then use this model to calculate probability values re-

quired to evaluate the entropy function. The technique demonstrated by Perelman

and Ostfeld (2012) uses network clustering to represent a water distribution network

as an acyclic graph. This simplified representation of the network requires smaller

number of water quality simulations to calculate detection probabilities (probability

that a particular sensor will detect a candidate contamination scenario) than are re-

quired in the minimization of an entropy function. See Wagner et al. (2015), Wagner

and Neupauer (2013), and Wang and Harrison (2012) for more recent advancements

in probabilistic approaches for contamination source identification.
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A data mining approach that requires building a large database containing his-

torical or simulated contamination scenario characteristics is proposed by Huang and

McBean (2009). This database can be used in a real-time situation to estimate detec-

tion probabilities that are then used in a likelihood maximization method to identify

the contamination source(s). Shen and McBean (2011) extend this work by imple-

menting the simulation-based data mining process on a large-scale parallel computing

architecture to perform thousands of Monte Carlo simulations that account for mea-

surement and model uncertainties.

The majority of the source identification methodologies proposed in the litera-

ture assume measurement information coming from sensors placed at fixed locations

around the network. Instead, using mobile sensors or manual sampling teams to dy-

namically choose measurement locations during a response to a contamination event

has shown promising results (Mann et al., 2012; Eliades and Polycarpou, 2011). Mann

et al. (2012) present two Mixed Integer Linear Programming (MILP) formulations

where one performs source identification and the other is used in selection of manual

sampling nodes that improve the performance of source identification.

5.1 Source identification problem definition

Here, we define the source identification problem being considered in this work.

Measurement data is assumed to be available from a fixed number of sensors located

at specific nodes in a network. An Event Detection System (EDS) provides discrete

yes/no measurements that indicate the presence or absence of contamination in the

water. One probable response to the initial detection can be to obtain additional

grab sample measurements to confirm the contamination. We assume that these grab

sample measurements are also discrete (yes/no). Therefore, using measurements from

fixed continuous sensors and manual grab samples, the goal of performing source

identification is to identify the candidate locations where contamination could have

taken place. This inverse problem is solved considering a fixed historical time period

called the time horizon, providing a measure of likeliness for all nodes. This measure
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Table 5.1: Measurement data from the 5 sensor locations for the example source iden-
tification problem shown in Figure 5.1. Dots show continuous incoming measurements
to EDS.

Time (HH:MM) Node 15 Node 35 Node 109 Node 219 Node 253

23:45 . . . . .
24:00 0 0 0 0 0
24:15 0 0 0 0 0
24:30 0 0 1 0 0
24:45 0 0 1 0 0
25:00 0 0 1 0 0
25:15 . . . . .

is used to provide a ranking of all nodes where a higher value indicates a greater

chance of being the contamination source. It is assumed that contaminant ingress

can take place at any node (junctions, tanks, and reservoirs) in the entire network.

An example of how we formulate a typical source identification problem is demon-

strated using the Net3 distribution network shown in Figure 5.1 (an example network

from EPANET (Rossman, 2000)). This example network has 92 junctions, 3 tanks,

and 2 reservoirs. The example shows a scenario where a contamination injection takes

place at node 111 (at time 24:00). The EDS, which has 5 fixed water quality sensors

(marked as squares in Figure 5.1) gathers binary measurements at a 15 minute fre-

quency as shown in Table 5.1. A positive measurements at sensor node 109 indicate a

contamination incident. Given the measurement information in Table 5.1 and a can-

didate injection time horizon of 10 hours, we define the goal of source identification

to determine the list of possible source locations and values by which to rank their

likeliness. For instance, the probability-based source identification method described

in the next chapter produces the results shown in Table 5.2. The table contains a

list of possible injection nodes sorted by their corresponding probability of being the

true injection node.
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Figure 5.1.: An example of a typical source identification problem using EPANET
Net3.
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Table 5.2: A typical example of source identification results obtained for the example
problem shown in Figure 5.1.

Node Probability

109 0.17
111 0.17
113 0.17
115 0.17
117 0.17
120 1E-8
193 1E-8
195 1E-8
. .
. .
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6. BAYESIAN PROBABILITY-BASED SOURCE IDENTIFICATION METHOD

AND OPTIMAL SAMPLING

Unlike the optimal booster station placement problem, which is solved at the plan-

ning stage, source identification needs to be performed in real-time as an incident

unfolds. Therefore, computational speed of a source identification technique is crit-

ical. Keeping this in mind, in this chapter we propose a Bayesian probability-based

source identification method that takes advantage of the fast water quality simu-

lation framework proposed by Mann et al. (2012a). A case study performed on a

large-scale network with over 12,000 nodes highlights the computational speed of

the Bayesian-probability based method. The performance of a source identification

method depends on many factors including size of network model, measurement er-

ror, modeling error, time and number of contaminant injections, and sensor density

and placement. Therefore, in the next chapter (Chapter 7), we propose a testing

methodology to compare the performance of the Bayesian probability-based method

and two other methods from the literature.

6.1 Bayesian probability-based method

This method operates by simulating all candidate contaminant injections and

then calculating the probability of each injection based on how well the simulated

measurement profile matches the true measurements obtained from the sensors. The

probability calculations are performed using Bayes theorem:

P (i|m) =
P (m|i)P (i)

P (m)
8 i 2 C (6.1)
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Where C is a set of all possible contamination incidents. An incident can start at

any node and any time step, and is assumed to continue for the complete simula-

tion duration (i.e., continuous injections are assumed). P (i|m) is the probability of

incident i given a vector of measurements m. P (i) is the prior probability of con-

tamination incident i. This formulation assumes that only a single injection incident

is possible, and therefore P (i) is set to a uniform prior that is the inverse of the

cardinality of C given by 1/|C|. Since an estimate of P (m) (the prior probability of

the observed measurement) is generally not available, it is common to replace this

calculation by normalizing the calculated values of P (i|m) so that they sum up to

one. Finally, P (m|i) is the probability of measurement m given injection incident i.

It is calculated using the following equation:

P (m|i) = (1 � pf )
match(i)pnum meas�match(i)

f (6.2)

Where, pf is a user specified estimate of measurement failure probability (false positive

or false negative), num meas is the total number of available measurements, and

match(i) is the number of actual discrete measurements that match the discrete

measurements obtained by simulating incident i.

The overall algorithm for this method is as follows. Following detection, hydraulic

simulations are performed (using EPANET) for a specified time window preceding

the detection time and the flow data is used to build the linear input-output water

quality model, Merlion (Equation 1.9). Next, the set of candidate injections, C, is

populated by analyzing the input-output model and choosing injection node-time

pairs that are hydraulically connected only to the positive measurements. Next, all

the candidate injections are simulated using Merlion to obtain simulated measurement

profiles that are then compared to the actual measurement profile to get the number

of matches. The posterior probability of each injection node-time pair is calculated

using Equations 6.1 and 6.2. Finally, the probability of each node being the injection

node is chosen as the highest posterior probability value over all injection node-time
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pairs containing that particular node. This posterior probability is used as a measure

of likeliness of a node being the true injection node.

The majority of the computational time in the above algorithm is spent on per-

forming simulations of the candidate injections in set C. We harness the fast simu-

lation capabilities of Merlion water quality modeling framework proposed by Mann

et al. (2012a) to perform these simulations. The framework provides a custom linear

solver that is optimized for performing a large ensemble of water quality simulations.

6.2 Greedy grab sampling algorithm

Immediately following the initial detection of a contamination incident, measure-

ment information is typically very limited. Given the limited measurement infor-

mation, the source identification problem is often non-unique, with many possible

solutions. Since the source identification problem is ill-posed, using limited measure-

ment information can result in a large number of likely source locations. To further

refine the results of source identification, water utilities can send out manual sam-

pling teams to obtain additional measurements. Since the utilities are constrained

by the number of sampling teams and the time it takes to mobilize them, intelligent

selection of sampling locations is important. Wong et al. (2010) propose an opti-

mization formulation that selects grab sampling locations to maximize the pair-wise

distinguishability between candidate incidents. In this work, an analogous greedy

algorithm is proposed to iteratively select grab sampling locations that provide max-

imum pair-wise distinguishability.

The greedy algorithm can be explained with the help of a simple example network

shown in Figure 6.1.

The first part of the algorithm, which involves data generation, is identical to the

optimization-based method proposed by Wong et al. (2010). It involves simulating

the candidate incidents to generate an Impact matrix, which is then used to create sets

of pairwise incidents that are distinguished by each sample location. For example,

if we consider candidate incidents at all six nodes in Figure 6.1, then the Impact
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Figure 6.1.: Illustrative six node example network. Arrows represent flow direction.

matrix can be generated as shown in Table 6.1. The rows in the Impact matrix

represent incident locations and the columns represent candidate sampling locations.

Each incident is simulated up to an estimated future sample time when the manual

samples will be drawn. If a simulated incident results in a positive measurement at a

candidate sampling node (base on a concentration threshold), then the corresponding

value in the impact matrix is 1, otherwise it is 0.

Using the Impact matrix (Table 6.1), the set of distinguishable pairs for each

sampling location can be identified as shown in Table 6.2. The basic idea here is that

a sampling location will be able to distinguish between two incidents if one incident

will lead to a positive measurement while the other will result in a negative.

The greedy sampling algorithm proceeds by selecting the sampling location that

will distinguish the highest number of incident pairs. Ties are broken arbitrarily. For

instance, in our example node 4 can distinguish 9 pairs of incidents and is selected

as the first sampling location. Next, all the pairs of events distinguished by node

4 are removed from Table 6.2 to obtain Table 6.3. Again, the next sampling team

can select node 3, 4, or 5 because they will all distinguish the highest number of

remaining incident pairs. The algorithm continues to select sampling location until
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Table 6.1: Impact matrix for injection at all nodes in Figure 6.1

Incident Sampling Locations
Locations 1 2 3 4 5 6

1 1 1 1 1 1 1
2 0 1 0 1 1 0
3 0 0 1 0 0 1
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

Table 6.2: Sets of distinguishable incident pairs based on Impact matrix in Table 6.1.

Sampling Locations
1 2 3 4 5 6

1-2 1-3 1-2 1-3 1-3 1-2
1-3 1-4 1-4 1-5 1-4 1-4
1-4 1-5 1-5 1-6 1-6 1-5
1-5 1-6 1-6 2-3 2-3 2-3
1-6 2-3 2-3 2-5 2-4 2-6

2-4 3-4 2-6 2-6 3-4
2-5 3-5 3-4 3-5 3-5
2-6 3-6 4-5 4-5 4-6

4-6 5-6 5-6

# of pairs 5 8 8 9 9 9
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Table 6.3: Sets of distinguishable incident pairs after node 4 has been picked as the
first sampling location.

Sampling Locations
1 2 3 5 6

1-2 1-4 1-2 1-4 1-2
1-4 2-4 1-4 2-4 1-4

3-5 3-5 3-5
3-6 5-6 3-6

# of pairs 2 2 4 4 4

all the sampling teams have been deployed. Note that before the algorithm begins,

pairs distinguished by fixed water quality sensors are removed from the analysis to

avoid double counting.

6.3 Source identification case study on large-scale network

The Bayesian-probability based source identification method and the greedy sam-

pling algorithm have been incorporated in US EPA’s Water Security Toolkit (WST).

Along with results of the case study performed in this section, we provide the details

of the parameters necessary to reproduce this case study with WST.

The ability of the proposed Bayesian-probability based source identification method

and the greedy sampling algorithm to quickly narrow down the contamination source

is demonstrated with a simulated case study on a large-scale water network model.

A mass injection is simulated at Junction-6632 of the BWSN (Battle of the Water

Sensor Networks) Network 2 (12,523 Nodes) (Ostfeld et al., 2008) shown in Figure

6.2. The injection takes place at 8:00 AM in the morning, which is 8 hours from the

simulation start time, and gets detected at 9:45 AM when a fixed water quality sensor
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goes o↵ at Junction-12325. An additional positive measurement is obtained at 10:00

AM before the source identification procedure is started.

Figure 6.2.: BWSN Network 2 diagram with contamination location and sensor loca-
tions.

For this case study, the EDS is composed of 130 fixed water quality sensor that

were placed using the sp module of WST. This module provides an optimization-
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Table 6.4: Parameters used for placing fixed water quality sensors in BWSN Network
2.

Specification Parameter Value(s)

Injection Scenario Locations Non-zero demand nodes
Injection Scenario Start Time 12 AM
Injection Scenario Duration 24 Hours
Injection Scenario Strength 10 grams/minute
Hydraulic Time Step 1 Hour
Water Quality Time Step 15 min
Objective Total Population Exposed

based sensor placement techniques that can be used to minimize impact over a set

of contamination scenarios. The population exposed impact metric was used for the

optimal sensor placement. Details of all the parameters used for the sensor placement

are provided in Table 6.4. The measurement frequency of these sensors is assumed

to be fixed (15 minutes) and for simplicity, the detection threshold is set to 0 mg/L.

At 10:00 AM source identification is performed using the Bayesian probability-

based method, which results in 72 potential source locations. The parameters used

for the Bayesian probability-based source identification method and the greedy grab

sampling algorithm are provided in Table 6.5.

For this case study, we assume that it takes 1 hour for three teams to gather

and analyze manual samples. Therefore, using the greedy algorithm, the sampling

locations are determined for a sample time 1 hour into the future. At 11:00 AM, new

measurements are available from three sampling locations along with additional mea-

surements from fixed sensors. This new information is used to again perform source

identification resulting in 30 candidate source locations. The source identification

and sampling cycle is repeated every hour until 1:00 PM, when the possible source

locations have been narrowed down to 4 nodes that include the true source location

- Junction-6632.
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Table 6.5: Parameters used for the Bayesian probability-based source identification
method and the greedy grab sampling algorithm.

Specification Parameter Value(s)

Time Horizon 24 Hours
Measurement Failure Probability (pf ) 0.1
Measurement Detection Threshold 0 mg/L
Feasible Source Nodes All nodes
Cumulative Probability Cuto↵ 0.95
Manual Sampling Time Delay 1 Hour
Feasible Sampling Locations Non-zero demand nodes

Figure 6.3 provides the number of candidate source locations, and the computa-

tion times for the source identification and grab sample selection calculations during

each cycle. All computations were done in serial on a machine with 24 Intel(R)

Xeon(R) processors (E5-2697 v2 @ 2.70GHz). The computational speed is made pos-

sible by selection of appropriate data structures to avoid cache misses. As we can

observe from Figure 6.3, only 3 sampling cycles were necessary to su�ciently narrow

down the candidate source locations. As more measurement data was gathered, the

computational time of the Bayesian probability-based method went up and as the

number of candidate injections went down, the computational time of the greedy

grab sampling algorithm also went down. However, the overall time for both these

calculations between each cycle, which needs to be performed as soon as new mea-

surement data is available to quickly deploy the sampling teams, was less than 3

minutes. These results imply that the proposed methodology for source identification

and grab sampling location selection are a viable approach for real-time response to

a contamination incident in large-scale networks.
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Figure 6.3.: Performance of the Bayesian probability-based method and the greedy
grab sampling algorithm. Left axis indicates number of candidate source locations.
Right axis indicates overall computation time for the source identification (SI) and
grab sampling (GS) calculations.
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7. TESTING METHODOLOGY FOR CONTAMINATION SOURCE

IDENTIFICATION METHODS 1

In Chapter 5 we discussed a significant body of research describing di↵erent ap-

proaches for the source identification problem. In order to contrast and compare the

variety of source identification methods available in the literature, each having there

own advantages and disadvantages, in this chapter we propose a testing methodology

for source identification methods. Using this testing methodology in the next chapter,

the performance of three di↵erent type of source identification methods is evaluated

on a wide range of realistic scenarios (e.g., measurement and modeling errors).

7.1 Performance Metrics

In this chapter, the following assumptions are made in regards to the source iden-

tification problem. It is assumed that an EDS provides discrete yes/no measurements

that indicate the presence or absence of contamination in the water. All sensors in

the network are assumed to provide measurements at the same constant frequency.

Note that although this assumption is used here, it is easy to relax this assumption for

any of the tests. For example, the source identification methods studied in this work

can make use of the information provided from manual grab sample measurements,

however, the test scenarios discussed in this chapter do not consider these kind of

measurements. It is assumed that contaminant ingress can take place at any node

(junctions, tanks, and reservoirs) in the entire network, and both single and multiple

injections can occur. Additionally, it is assumed that source identification methods

1Part of this section is reprinted with permission from “Testing Contamination Source Identification
Methods for Water Distribution Networks” by Seth, A., Klise, K.A., Siirola, J.D., Haxton, T., and
Laird, C.D., 2015. to appear in Journal of Water Resources Planning and Management, Copyright
2015 by American Society of Civil Engineers.
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output a list of possible injection nodes along with their corresponding measure of

likeliness. The likeliness measure is dependent on the source identification method

being used. For example, for a probability-based method that reports a probability

of a node being the true injection node, this probability value is used as the measure

of likeliness. The measure of likeliness used for each source identification methods

studied in this chapter is described later in the section describing these methods.

To measure the performance of a source identification method, two important

criteria must be considered. First and foremost, a method should be able to correctly

identify the true injection location(s) as the most likely location(s). Secondly, a

method should be able to distinguish the true injection location(s) from the rest of

the candidate nodes as e↵ectively as possible. To this end, Yang and Boccelli (2014)

introduce two performance metrics - Accuracy and Specificity - and this work uses

modified versions of these metrics as shown in Equations 7.1 and 7.2.

Accuracy (%) =
Likeliness measure of the true injection node

Highest likeliness measure over all candidate nodes
⇥ 100 (7.1)

Specificity (%) =
Number of nodes with lower likeliness than true injection node

Total number of candidate nodes
⇥100

(7.2)

Here, a 100% accuracy indicates that the true injection node had the highest

likeliness value, while a high value of specificity indicates a high rank of the true

injection node among all the candidate nodes. For example, if the true injection node

is given a likeliness value of 5, and the remaining nodes are 2, then the accuracy

is 100%, and the specificity is as close to 100% as possible. However, it is possible

to have a high accuracy with low specificity. For example, if a method returns a

likeliness value of 2 for all nodes, the accuracy value is still 100%, but the specificity

value is zero. Although Equations 7.1 and 7.2 are defined for scenarios with only a

single true injection node, in the case of multiple injection nodes, multiple values of

both metrics are calculated with respect to each true injection node.
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Table 7.1: Standard specifications used for generating test sets.

Specification Parameter Value(s)

Network EPANET example Net3
Injection Nodes 111, 151, 189, 183, 229
Sensor Locations 149, 117, 167, 213, 253
Injection Start Time 24 hours into simulation
Injection Length 10 hours
Measurement Start Time 10 hours before detection
Measurement End Time 2 hours after detection
Sensor Frequency 2 measurements per hour
Time Horizon 24 hours

7.2 Factors e↵ecting source identification and testing methodology

In this section, some of the challenges inherent for source identification methods

in a real-time response system are introduced. The following subsections describe

a category of test cases designed to demonstrate the e↵ectiveness or identify limi-

tations of di↵erent source identification methods. Most of the test cases presented

in this chapter are created using Net3 (an example network from EPANET). Table

7.1 provides the standard specifications used in generating these test cases. Some

test cases require varying these standard specifications, while most of the test cases

require additional specifications discussed in the corresponding subsections.

7.2.1 Preliminary Tests

The testing framework provides a couple of preliminary tests using small simple

networks. For these tests, the analytical solution to source identification problem

is known, and therefore, these tests can be used to validate the behavior a source

identification method during or after its development process.

The first test in this set is created using the simple four node linear network shown

in Figure 7.1a. The demand patterns in this network are calibrated to ensure that
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the time delay between each node is equal to 10 minutes. A continuous injection is

simulated starting at node A at time zero, which is detected at sensor node D at 40

minutes. For this test, with a single sensor, all nodes are equally likely candidates

and indistinguishable. For this test, the accuracy should be 100%, and the specificity

should be 0%. The second test in this set comprises a seven node binary tree network

shown in Figure 7.1b. A contaminant is injected at node 3 at time step 3 and detected

at node 7 at time step 4. Here, the solution to the source inversion problem should

indicate node 3 and 7 as the most likely source nodes. For this test, the accuracy and

specificity should be 100% and 71% respectively.

A B C D,S 
10 min 10 min 10 min 

(a) A four node network linear network. A
contaminant injection is simulated at node A
and is detected at the sensor placed at node
D.
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(b) A seven node tree network. A contami-
nant injection is simulated starting at node 3
and is detected at the sensor at node 7.

Figure 7.1.: Simple network structures used to create basic source identification tests
with know analytical solutions.
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7.2.2 Measurement Error

Various researchers have demonstrated the impact of measurement error on their

source identification method’s performance. Water quality sensors can encounter

measurement error in the form of both false positives and false negatives. In general,

false positives can lead an source identification calculation to identify an unnecessarily

large number of candidate nodes, while false negatives could decrease the likelihood

of identifying the true contamination node(s).

In order to test whether an source identification method is reliable in the likely

occurrence of both false positive and false negative measurements, a set of tests with

a range of false positive and false negative rates is used. These tests are generated by

simulating contamination scenarios in EPANET Net3 at five di↵erent nodes located in

di↵erent parts of the water distribution network. The specifications provided in Table

7.1, with modified measurement start and end times, are used in designing this test

set. For each scenario, the binary measurements from five sensors (optimally placed

using the sp module in WST) are collected over a 12-hour span starting 8 hours before

the detection time and ending 4 hours after the detection time. Next, measurement

error is artificially introduced by randomly selecting which measurements are in error

based on the specified false positive rate (FPR) and false negative rate (FNR). All

permutations of FPR and FNR values in the set - [0, 0.1, 0.2, 0.3, 0.4] are chosen

in designing these tests. Finally, each combination of FPR and FNR is sampled 50

times to obtain statistics. To summarize, each test is identified by an injection node,

an FPR value, an FNR value, and a sample number, giving a total of 6005 tests

(FNR=FPR=0 does not require multiple samples).

7.2.3 Modeling Error

Due to the limited availability of data for model tuning and a lack of real-time

demand information, error can be expected between a network model and the true

flow fields in the distribution system. Therefore, it is important to include test cases
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that are designed to assess the performance of a source identification method in the

presence of network modeling errors.

Demand variability is a naturally stochastic phenomenon that is challenging to

estimate especially with the lack of real-time data. Typically, source identification

methods incorporate a hydraulic model that uses estimated demand patterns to model

the flow rates and directions inside each pipe in the water distribution network. There-

fore, errors in demand estimates are propagated to errors in modeled flow rates and

directions. Furthermore, errors in flow direction can have a drastic impact on the

results by potentially switching the set of upstream nodes which could contain the

true injection node(s). Inaccurate flow rates can also impact source identification

results by shifting the estimated time profile of the contaminant at a sensor node. To

evaluate a method in the presence of modeling error, a set of test cases are generated

with di↵erent levels of demand variability between the model used to simulate the

contamination incident and the model used to perform source identification. This

produces error between the model used by the source identification method and the

measurement data. Details of the specifications used in designing this test set are

provided in Table 7.1. In this set of tests, a base case model is used to generate

the measurement data. To form the base case, the demands of all nodes of Net3 are

reduced by 20%. This is done to avoid infeasibly high demand values when random er-

ror is added to the system. Base cases are formed from each of the five contamination

scenarios described earlier, and the simulations are used to obtain the measurement

data. Next, random demand error over a range of error percentages - [1, 2, 4, 8,

10, 20] - is added to this base case to form “erroneous” models given to the source

identification methods. This is achieved by generating model input files (EPANET

INP format) containing error in the base demand values at each node. Finally, for

every error range value, multiple samples (50) are taken to generate a number of

di↵erent input files. Hence, each test in this set consists of measurements obtained

for a particular injection scenario, a model input file with a particular error range,

and a sample number, giving a total of 1500 test cases.
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7.2.4 Injection Characteristics

Because of the limited number of sensor measurements, the source identification

problem is inherently non-unique (many possible locations and/or injection profiles).

Most source identification methods acknowledge these limitations and some methods

impose additional constraints on the characteristics of a possible solution. Two such

characteristics are the number of simultaneous injection locations considered during

a contamination scenario, and the length of the contaminant injection at a node.

While an algorithm that assumes a single injection location might be able to more

accurately identify the source in a single source test, it is important to know how it

performs if multiple injections occur. The accuracy of methods that do not make this

assumption should be evaluated. Therefore, this study includes test cases where the

number of injection nodes in a scenario is varied from a single injection node to three

injection nodes in Net3. Details of the specifications used in designing this test set

are provided in Table 7.1. Three injection scenarios are generated - single injection at

node 151, two simultaneous injections at nodes 111 and 151, and three simultaneous

injections at nodes 111, 151, and 189. In the case of multiple injections, the time

horizon is chosen in reference to the longest detection time of any of the individual

injections.

This study also incorporates tests to investigate the capabilities of a source iden-

tification method in identifying contamination scenarios of varying injection lengths.

In the presence of measurement and modeling errors, longer injections are generally

more distinguishable compared with shorter injections, which could be completely

missed by periodic sampling of the sensors or produce a short pulse of positive mea-

surements that can be more di�cult to assess. The details of the first set of tests are

provided in Table 7.1 with the exception of the injection length, which is varied over a

range. For each injection node, this range contains the following injection lengths (in

minutes) - [60, 120, 240, 480, 720]. In order to capture the di↵erence in measurement

profiles produced by the injections of di↵erent lengths, the measurement end time
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is increased to include 12 hours following the initial detection. Another set of tests

that contain the same simulated injections (nodes and injection lengths) but with

added measurement error (FPR=10%, FNR=10%) is also included in this test set.

The test cases with measurement error are run 50 times with di↵erent random seeds

to obtain performance statistics. Each case in both injection length test sets (with

and without error) is identified by an injection length, an injection node, and (in case

of measurement error) a sample number. Therefore, this category contains a total of

1275 tests.

7.2.5 Time Horizon

In order to keep the size of the source identification problem reasonable, the cal-

culations are typically performed by limiting the window of time under consideration.

This is generally called the analysis time horizon or the time horizon. While reducing

the time horizon can save computational expense, if it is too short, it falsely limits

the space of potential injection locations. The impact of the time horizon on source

identification calculations is explained using a simple example shown in Figure 7.2.

The figure shows a four node linear network with a sensor at the terminal node D

and a table listing connections between injection node-time pairs and the sensor de-

tection times. For example, the top left entry in the table indicates that an injection

at node A at time 0 hours will be witnessed at the sensor node D at time 3 hours,

and so forth. To illustrate the significance of analysis time horizon, two cases should

be considered. In the first case, an injection takes place at node D at time 4 hours

and is detected by the sensor at node D at the same time. If the time horizon is 1

hour and the table in Figure 7.2 is used to investigate a detection at node D at 4

hours, the possible injections can be determined to be C at 3 hours and D at 4 hours.

Using the same injection and detection scenario, the second case uses a time horizon

of 3 hours and determines the candidate injections as node D at 4 hours, node C at 3

hours, node B at 2 hours and node A at 1 hours. Notice that in the second case, the
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larger time horizon has lead to a larger number of candidate nodes, thereby a↵ecting

the specificity of the source identification calculations.

A B C D,S 

A,0$!D,3$ A,1!D,4$ A,2!D,5$ A,3!D,6$

B,0!D,2$ B,1!D,3$ B,2!D,4$ B,3!D,5$

C,0!D,1$ C,1!D,2$ C,2!D,3$ C,3!D,4$

D,0!D,0$ D,1!D,1$ D,2!D,2$ D,3!D,3$

Figure 7.2.: Four node linear network with a sensor at Node D. Time delay between
each node is assumed to be 1 hour. Table shows the node-time relationships between
all nodes and the sensor node.

Picking the right time horizon is not straight forward, ideally it should be at least

as big as the longest flow path to any sensor in the network. However, for realistic

large-scale networks this can limit the e�ciency of real-time source identification

calculations. Therefore, good algorithms need to be aware of the limitations imposed

by a selected time horizon and indicate these limitations in the results they produce.

This study includes tests that vary the time horizon used by a method. Details of

this test set are provided in Table 7.1, with the exception of the time horizon that is

varied over the set - [1, 2, 4, 8, 16, 24] (hours). Each case in this test set consists of

an injection node and a time horizon used to perform source identification for that

injection, giving a total number of 30 tests.

7.2.6 Network Size

The size and complexity of the water distribution network can impact the per-

formance of a source identification method. One major factor is the non-uniqueness

of the solution, which, for a fixed number of sensors, increases significantly with the

network size. Not only can the quality of the solution to the source identification

problem be negatively impacted as the network size increases, but the computational
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e↵ort in terms of solution time and memory requirement can also increase substan-

tially. A set of tests are provided that contains water distribution networks of three

di↵erent sizes - EPANET Net3 (97 Nodes), Network2 (3,358 Nodes) (Watson et al.,

2009) and BWSN (Battle of the Water Sensor Networks) Network 2 (12,523 Nodes)

(Ostfeld et al., 2008).

Figures 7.3, 7.4, and 7.5 provide a graphical representation on EPANET Net3,

Network2, and BWSN Network 2 respectively. All three figures show the fixed sensors

placed using U.S. EPA’s Water Security Toolkit and the injection locations used to

obtain average performance statistics when performing source identification.
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Figure 7.3.: EPANET Net3 with fixed sensor locations and injection locations.
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Figure 7.4.: Network2 with fixed sensor locations and injection locations.
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Figure 7.5.: BWSN Network 2 with fixed sensor locations and injection locations.

To obtain average performance statistics for each of these networks, injection

scenarios are simulated by injecting a contaminant at several nodes selected from

di↵erent parts of that network. Note that for each of these scenarios, all the nodes
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Table 7.2: Specifications used for generating the network size test set.

Specification Parameter Value(s)

Number of Nodes 97, 3,358, 12,523
Number of Injection Scenarios 5, 30, 30
Number of Sensors 5, 30, 130
Injection Start Time 12 hours into simulation
Injection Length 10 hours
Measurement Start Time 10 hours before detection
Measurement End Time 2 hours after detection
Sensor Frequency 2 measurements per hour
Time Horizon 12 hours
Total Number of Test Cases 65

in a network are considered as candidate injection nodes for the source identification

methods. The number of injection scenarios selected for each network is provided in

Table 7.2 along with other specifications used in designing this test set.

7.2.7 Sensor Placement

The cost of buying, operating, and maintaining water quality sensors limits the

number of sensors that can be installed in a water distribution network. Therefore,

researchers have proposed optimal placement of fixed sensors to minimize the im-

pact on the population or the network infrastructure due to a contamination incident

(Berry et al., 2005a; Ostfeld and Salomons, 2004b; EPA, 2010a). Although optimal

sensor placement is a separate problem to source identification, the location of these

sensors can have a major impact on the performance of source identification methods.

Only a few papers have investigated sensor placement for better source identification.

Tryby et al. (2010) provide a sensor placement technique that is designed to reduce

the ill-posedness of the source identification problem. An approach of dynamically

selecting manual grab sample locations to improve distinguishability between can-
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didate source nodes has also been proposed in Mann et al. (2012). However, other

objectives typical for sensor placement might not be appropriate for source identi-

fication. For example, a typical maximum coverage objective would place a sensor

that detects multiple scenarios, which would reduce a source identification methods

ability to distinguish between those scenarios.

The sensor density in a network is defined as the percentage of nodes where a

water quality sensor is located. This corresponds to the amount of information avail-

able for source identification. A good source identification method should be able

to accurately identify candidate contamination nodes with limited information. To

investigate the impact of sensor density and layout, two di↵erent sets of tests are

provided. The first test set varies the density of optimally placed sensors, while the

second test set varies the density of sensors that are randomly placed at nodes around

the network. Two networks of di↵erent sizes are used for this test set: EPANET Net3

(97 Nodes) and Network2 (3,358 Nodes). For Net3, apart from the sensor nodes, the

rest of the specifications used in designing the optimal and random sensor placement

test sets are provided in Table 7.1. The tests for Network2 use the same set of pa-

rameters with di↵erent injection nodes. The list of sensor placements are selected by

varying the sensor density over the set [2%, 4%, 6%, 10%, 20%] for Net3 and [0.2%,

0.4%, 0.6%, 0.8%, 1%] for Network2.

For the test set with optimally placed sensors, sensor placement is performed

using WST with the objective set to minimize population exposed. To summarize,

each case in both test sets (optimal and random) is identified by a network, a sensor

density and an injection node, for a total of 100 test cases.
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8. COMPARATIVE STUDY AND SENSITIVITY ANALYSIS OF SOURCE

IDENTIFICATION METHODS 1

The testing methodology described in the previous chapter (Chapter 7) is used to

compare the performance of three di↵erent source identification methods. Addition-

ally, pairwise sensitivity analysis is performed for some of the tests cases to analyze

the e↵ect of two factors (described in Section 7.2) at a time.

8.1 Overview of methods studied

The Bayesian probability-based method proposed in Chapter 6 is the first method

studied. The following subsections describes the Contaminant Status Algorithm (De

Sanctis et al., 2009) and an optimization-based method (Mann et al., 2012). These

two methods are briefly overviewed and readers are referred to their respective pub-

lications for more details. The underlying assumptions of each method is highlighted

to help explain the performance results presented later.

8.1.1 Contaminant Status Algorithm

The Contaminant Status Algorithm (CSA), proposed by De Sanctis et al. (2009),

performs source identification by assigning status to each candidate node-time pair as

either being safe (not an injection candidate), unsafe (possible injection candidate), or

unknown. Since the performance metrics calculation requires the results of a source

identification method to be in the form of a list of candidate nodes with their corre-
1Part of this section is reprinted with permission from “Testing Contamination Source Identification
Methods for Water Distribution Networks” by Seth, A., Klise, K.A., Siirola, J.D., Haxton, T., and
Laird, C.D., 2015. to appear in Journal of Water Resources Planning and Management, Copyright
2015 by American Society of Civil Engineers.
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sponding measure of likeliness, the CSA was modified to assign a likeliness measure

of 1 to a node if it is contained in the list of unsafe node-time pairs, while all other

nodes are assigned a likeliness measure of 0. Essentially, CSA operates by iterating

over all measurements and pruning out (marking as safe) upstream node-time pairs

that are hydraulically connected to negative measurements. Consequently, CSA al-

lows for multiple simultaneous injections, however, it assumes perfect measurements

when marking candidate injections as safe.

8.1.2 Optimization-Based Method

The third method used for this comparative study is the MILP based technique

from Mann et al. (2012). This method incorporates the linear input-output water

quality model Laird et al. (2005); Mann et al. (2012a) directly into an optimization

formulation that seeks to find an injection source profile that minimizes the mismatch

between yes/no measurements and those in the model. This formulation assumes that

a sensor yields a positive measurement if the contaminant concentration is above a

specified detection threshold concentration and a negative measurement otherwise.

Therefore, if a sensor yields a positive measurement, any corresponding calculated

concentration from the water quality model above the threshold is in agreement with

this measurement data. Hence, while constructing an objective for estimation, only

calculated concentrations below this threshold are penalized. Likewise, if a sensor

yields a negative measurement, only the corresponding calculated concentration above

the threshold is penalized. To identify a number of possible source candidates, the

method repeatedly solves the MILP problem, each time adding integer cuts to remove

previously found solutions until the objective value at the solution has deteriorated

significantly. Note that for each candidate solution, the corresponding inverse of the

objective value is used to represent the measure of likeliness of all nodes identified in

that solution. Also note that this method allows for multiple simultaneous injections.
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8.2 Performance results and sensitivity analysis of three methods

In this section, the performance of the three source identification methods is com-

pared on the test cases proposed in Chapter 7. Each of the following subsections

provides the performance plots for the three methods using a particular test set.

8.2.1 Preliminary Tests

All the three source identification methods produced the expected results for the

two preliminary tests.

8.2.2 Measurement Error

An increase in the false positive and false negative rate is expected to degrade the

performance of all three source identification methods. Figures 8.1 and 8.2 highlight

how the three source identification methods behave di↵erently in the presence of false

positives versus false negatives.

Figures 8.1a and 8.2a show that the Bayesian probability-based method performs

worse in the presence of false positive measurements as opposed to false negative

measurements (both in terms of accuracy and specificity). This behavior can be

attributed to the fact that the probability-based method starts o↵ by selecting a

list of initial candidate injections that contains upstream node-time pairs that are

hydraulically connected to positive sensor measurements. These candidate injections

are then simulated to obtain measurement profiles, which are then matched against

the true measurements. Therefore, a higher number of false positives leads to more

candidate injections and also increases the possibility of finding injections that match

the measurement data better than the true injection, hence degrading both accuracy

and specificity.

In Figure 8.2b, the CSA shows a dramatic decrease in specificity with increased

false positive rate. This is because the CSA selects, as injection location candidates,

all node-time pairs that are hydraulically connected to any positive measurements.
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(a) Probability-based (b) CSA (c) Optimization-based

Figure 8.1.: Mean accuracy of the three source identification methods as a function
of FPR and FNR calculated over 5 injection nodes and 50 samples.

(a) Probability-based (b) CSA (c) Optimization-based

Figure 8.2.: Mean specificity of the three source identification methods as a function
of FPR and FNR calculated over 5 injection nodes and 50 samples.

Therefore, an increase in the number of positive measurements leads to an increase

in the size of the candidate set. Figure 8.1b also shows that the CSA maintains

100% accuracy across all levels of negative and positive measurement error. The

CSA removes node-time pairs from the candidate set (marks node-time as safe) only

when a negative measurement confirms the absence of contamination. Within the

framework of this study, the CSA was modified to aggregate over time, including a

candidate node if it appears in at least one node-time pair. Therefore, while the CSA
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will remove a node-time pair in the face of a false negative measurement, as long as

the true node is hydraulically connected to at least one positive measurement, the

accuracy will be 100%.

The optimization-based method is generally more balanced in the trade-o↵ be-

tween accuracy and specificity even in the presence of large amounts of measurement

error. A trend to notice in Figure 8.1c is that an increase in the FNR has a higher

impact on the accuracy of this method compared with a similar increase in the FPR.

This is likely due to the fact that a typical test scenario has a fewer number of positive

measurements (often from a single location of initial detection) compared with the

number of negative measurements taken from all sensors over the complete 12 hour

time horizon.

8.2.3 Modeling Error

Figure 8.3 shows a decrease in performance for all three methods as the amount

of demand error is increased. For instance, the mean specificity of the optimization-

based method at 0% demand error is 90%. This means that considering the average

performance over the 5 simulated scenarios, 10 nodes will have to be investigated

before finding the true injection node. However, when the demand error is increased

to 10%, the specificity reduces to 80%, which means that 20 nodes will have to

be investigated. Therefore, for the optimization-based method the percentage of

candidate nodes to be investigated doubles with only a 10% increase in the demand

error. Similar conclusions can be made about the other two source identification

methods. This highlights the need for accurate demand estimation when performing

source identification.

8.2.4 Injection Characteristics

In the first set of tests, multiple simultaneous injections are simulated and the

performance of the three methods is measured based on their ability to identify each
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(a) Accuracy (b) Specificity

Figure 8.3.: Mean accuracy and specificity of the three source identification methods
as a function of demand error calculated over 5 injection nodes and 50 samples. The
error bars represent ± standard deviation of the mean.

individual injection node. Tests are run with a single injection, two simultaneous

injections, and three simultaneous injections.

The Bayesian probability-based method assumes only a single injection node when

performing source identification. This method uses a binomial distribution to calcu-

late the prior source probabilities. For a large number of measurements, the binomial

distribution has a sharp peak, which means that small changes in the number of

matching measurements can lead to big di↵erences in the probability values. This

results in a big drop in probability values over the ranked list of candidate nodes.

This means that even though the true injection node(s) can be high in rank (high

specificity), it can still have low accuracy. Hence, while the test results show that this

method has 100% accuracy for a single injection location, for two simultaneous injec-

tions the method can only identify one true injection node with 100% accuracy, while

the other injection node has 1% accuracy and 80% specificity. For three simultaneous

injections, the accuracy for all injection nodes drop to 1% while the specificities are

90%, 70%, and 60%. In contrast, the CSA allows for multiple injections and has 100%

accuracy going from one to three simultaneous injections. However, the specificity

deteriorates quickly from being 90% for one injection, to 75% for two injections, to
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30% for three injections. The optimization-based method performs reasonably on

these tests even though the maximum number of injections were set to one in the

optimization formulation. The accuracy value(s) for one injection is 100%, for two

simultaneous injections is 100% and 60%, and for three simultaneous injections is

100%, 70%, and 40%. The specificity values for the optimization-based method are

very similar to the Bayesian probability-based method. These go from 90% for a

single injection, to 90% and 60% for two simultaneous injections, to 95%, 80%, and

78% for three simultaneous injections.

Tables 8.1, 8.2, and 8.3 show results from a pairwise sensitivity study analyzing

the e↵ect of multiple simultaneous injections ranging from 1 to 3 injection nodes

along with two levels of hydraulic uncertainty (demand error). As expected, low

demand error (5%) did not have much impact on the accuracy and specificity of

the three SI methods, while high demand error (20%) had more impact in reducing

the performance of all three methods especially in the case of three simultaneous

injections.

Table 8.1: Performance of the Bayesian-probability based method in the presence of
multiple simultaneous injections and low (5%) and high (20%) demand error.

Demand 1 Injection 2 Injection 3 Injection

Error (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%)

0 100 90 100, 1 95, 80 1, 1, 1 90, 70, 60
5 100 88 67, 1 93, 79 1, 1, 1 86, 70, 60
20 100 87 66, 1 93, 77 1, 1, 1 86, 66, 40
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Table 8.2: Performance of the CSA in the presence of multiple simultaneous injections
and low (5%) and high (20%) demand error.

Demand 1 Injection 2 Injection 3 Injection

Error (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%)

0 100 90 100, 100 75, 75 100, 100, 100 30, 30, 30
5 100 87 100, 100 72, 72 100, 100, 100 22, 22, 22
20 100 86 100, 100 66, 66 100, 100, 100 18, 18, 18

Table 8.3: Performance of the optimization based method in the presence of multiple
simultaneous injections and low (5%) and high (20%) demand error.

Demand 1 Injection 2 Injection 3 Injection

Error (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%)

0 100 90 100, 60 95, 80 100, 70, 40 95, 80, 78
5 100 88 100, 60 95, 79 100, 69, 38 95, 78, 76
20 100 87 100, 60 95, 77 97, 69, 20 95, 76, 42

Source identification techniques often make assumptions about the length of can-

didate injections. The probability-based method assumes continuous injections and

therefore performs poorly for tests that involve short injection durations. For injec-

tion lengths below 4 hours, both mean accuracy and specificity values are under 50%.

As expected, both metrics have high mean values (⇠100%) when the injection length

is over 8 hours.

On the other hand, CSA does not make any assumption regarding the injection

length and is therefore more capable of identifying short injections. The method shows

100% mean accuracy and close to 60% mean specificity for all injection lengths. The
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optimization-based method also shows 100% mean accuracy for all injection lengths,

while the mean specificity goes from 60% for 1 hour injections to 80% for 12 hour

injections. The optimization-based method does assume continuous injections, but

it is still able to accurately identify short injections since an injection at the true

node matches the measurement better than any other injection node, even if it is a

poor match (many negative measurements do not match). However, short injections

are more di�cult to identify in the presence of measurement error. Therefore, as

expected, adding 10% measurement error (FNR=10%, FPR=10%) leads to an extra

20% reduction in mean accuracy for both optimization-based method and Bayesian

probability-based method on injection lengths less than 4 hours, while the CSA still

shows 100% mean accuracy on these tests. Adding measurement error results in

similar trends in mean specificity for all three methods over all injection lengths.

8.2.5 Time Horizon

As expected, the performance of all three methods improves as the time horizon

is increased from 1 to 24 hours. For some cases, the true incident time is outside

the time horizon. In those cases, the source identification method can identify the

true source node, but with an incorrect incident time. Since the node-time pairs were

aggregated to only identify nodes in the metrics, in some cases, the correct node will

be identified. Nevertheless, on average, small time horizons are expected to result in

poor performance. The mean accuracy of Bayesian probability-based method ranges

from 1% for 1 hour horizon to 100% for 24 hour horizon, while the mean specificity

ranges from 35% to 90%. The mean accuracy for both CSA and optimization-based

method ranges from 20% to 100%, while the mean specificity for CSA has a slightly

lower range (15% to 80%) as compared to the optimization-based method (40% to

100%).

Tables 8.4, 8.5, and 8.6 show results from a pairwise sensitivity study analyzing

the e↵ect of time horizon ranging from 1 to 24 hours and two levels of hydraulic

uncertainty (demand error). As expected, low demand error (5%) did not have much
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impact on the accuracy and specificity of the three SI methods, while high demand

error (20%) had more impact in reducing the performance of all three methods. The

trends are consistent with the Time Horizon results reported above.

Table 8.4: Impact of time horizon along with low (5%) and high (20%) demand error
on the performance of the Bayesian-probability based method.

Time 0% Demand Error 5% Demand Error 20% Demand Error

Horizon (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%)

1 1 35 1 35 1 35
2 1 52 1 52 1 52
4 44 72 43 72 43 67
8 100 90 94 88 88 87
16 100 90 94 88 88 87
24 100 90 94 88 88 87

Table 8.5: Impact of time horizon along with low (5%) and high (20%) demand error
on the performance of the CSA.

Time 0% Demand Error 5% Demand Error 20% Demand Error

Horizon (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%)

1 20 15 20 15 20 15
2 40 30 40 34 40 30
4 80 64 80 64 80 63
8 100 75 100 75 80 64
16 100 78 100 78 80 66
24 100 80 100 80 80 71
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Table 8.6: Impact of time horizon along with low (5%) and high (20%) demand error
on the performance of the optimization based method.

Time 0% Demand Error 5% Demand Error 20% Demand Error

Horizon (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%) Acc. (%) Spe. (%)

1 20 40 20 40 20 40
2 28 54 28 54 28 54
4 72 72 70 71 68 66
8 100 90 98 87 92 82
16 100 90 98 87 92 82
24 100 90 98 87 92 82

8.2.6 Network Size

Figure 8.4 shows an increase in the specificity values as the size of the network

increases, however this is di�cult to compare since the size of the networks di↵er.

Therefore, the figure also includes the numeric values above each specificity bar to

indicate the mean number of nodes that need to be investigated before the true

injection node is identified. For instance, using CSA on the BWSN2 network on

average involves investigating 214 nodes before the true node is identified. On the

other hand, for the same network the Bayesian probability-based method requires

only 45 nodes to be investigated. This is primarily because the CSA allows for the

possibility of multiple injections and also because it produces a relatively large list

of all equally likely candidate incidents. All methods showed 100% accuracy on all

tests.

8.2.7 Sensor Placement

As expected, for both optimal and random sensor placement, the specificity of all

three source identification methods (as shown in Figure 8.5 and Figure 8.6) improves
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Figure 8.4.: The e↵ect of network size on the performance of all three source identifi-
cation methods. Each bar represents a mean specificity over the number of injection
locations provided in Table 7.2. Error bars represent ± standard deviation of the
mean. The number above each bar represents the absolute specificity value (i.e., the
number of nodes with higher or equal likeliness to the true injection node).

with higher sensor density due to the increase in the amount of measurement infor-

mation available from a larger number of locations around the network. All methods

showed 100% accuracy on all test cases. It is interesting to see that the optimal

sensor placement does not perform as well as the random sensor placement. This

is due to the fact that optimal placement of sensors is typically done based on an

objective (e.g., minimize population impact, maximum coverage) that is not designed

for source identification. Typical optimal sensor placement results in sensors being

placed at locations that detect larger number of scenarios, which can have a negative

impact on a source identification method’s ability to distinguish between possible in-

jection scenarios. A pairwise sensitivity study that simultaneously considers hydraulic

uncertainty is provided in the supplemental data (Figures S4 and S5).

Figures 8.7 and 8.8 show results from a pairwise sensitivity study considering

sensor placement and hydraulic uncertainty. In general, low demand error (5%) did

not have much impact on the performance of the three SI methods, while high demand
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Figure 8.5.: The e↵ect of sensor density and sensor placement on the specificity of all
three source identification methods using Net3 (97 nodes). Each bar represents the
mean specificity over 5 di↵erent injection locations. Error bars represent ± standard
deviation of the mean.

Figure 8.6.: The e↵ect of sensor density and sensor placement on the specificity of all
three source identification methods using Network2 (3,358 nodes). Each bar repre-
sents the mean specificity over 5 di↵erent injection locations. Error bars represent ±
standard deviation of the mean. The number above each bar represents the absolute
specificity value (i.e., the number of nodes with higher or equal likeliness to the true
injection node).

error (20%) had more impact in reducing the performance of all three methods. The

trends are consistent with the Sensor Placement results reported above.
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(a) 5% Demand error (b) 20% Demand error

Figure 8.7.: The e↵ect of sensor density of optimally placed sensors and modeling
error on the specificity of all three SI methods using Net3 (97 nodes). Each bar
represents the mean specificity over 5 di↵erent injection locations and 20 random
samples of demand error. Error bars represent ± standard deviation of the mean.

(a) 5% Demand error (b) 20% Demand error

Figure 8.8.: The e↵ect of sensor density of randomly placed sensors and modeling
error on the specificity of all three SI methods using Net3 (97 nodes). Each bar
represents the mean specificity over 5 di↵erent injection locations and 20 random
samples of demand error. Error bars represent ± standard deviation of the mean.

8.3 Conclusions form comparative study

In general, the test cases presented in this work were e↵ective at illustrating key

di↵erences in the methods and the following basic conclusions can be drawn. Note
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that these results are not necessarily indicative of the performance of all methods of a

particular class (i.e., all Bayesian probability-based methods, all optimization-based

methods, or all CSA type methods).

• The Bayesian probability-based method assumes only single candidate injec-

tions and therefore performs poorly (at least in terms of accuracy) in the pres-

ence of multiple simultaneous injections. This method does not explicitly con-

sider hydraulic connections between the sensor and candidate nodes (uncon-

nected nodes-time pairs can match negative measurements). Furthermore, this

method has poor accuracy in the presence of a large amount of false positive

measurements. However, with reasonably good information (low measurement

error, low demand error) this method shows higher accuracy and specificity in

identifying single injections compared with the other two methods.

• The Contaminant Status Algorithm has higher accuracy than the other two

methods, but typically shows lower specificity since it provides an exhaustive

list of hydraulically connected node-time pairs with no negative measurement

to mark them as safe. Unlike the other two methods, CSA does not make

any assumptions about the length of candidate injections and therefore shows

better performance in identifying short injection lengths. The specificity of

this algorithm becomes worse as the number of positive measurements are in-

creased, since more candidate injections are hydraulically connected to these

measurements. Nevertheless, the fact that this method has good accuracy in

the presence of large amount of measurement and modeling error can be used to

shortlist the candidate set for further source identification calculations. More

recent work by De Sanctis et al. (2008) extends this method to a Bayesian

probabilistic approach.

• The optimization-based method shows good performance in most test cases,

especially in the presence of large amount of measurement error. However,

this method has tuning parameters (e.g., detection threshold) that could af-
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fect performance in a real system, is more di�cult to implement, and can be

computationally intensive.
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9. SUMMARY, CONCLUSIONS, AND FUTURE WORK 1

Water distribution networks are vulnerable to inadvertent or intentional intrusion

of chemical or biological species that can cause significant harm to a city popula-

tion and the network infrastructure. E�cient design of detection, planning, and

response systems can aid in minimizing the negative consequences of such incidents

and speed up the mitigation process. In this thesis, we address two critical aspects

of the response planning: (1) early mitigation of a potential contamination incident

by injecting additional disinfectant into the network, and (2) identification of the

source of the contamination stop contamination and begin cleanup operations. Sys-

tems modeling and optimization techniques provide a great tool for addressing these

problems. Additionally, these techniques can be used to rigorously account for various

uncertainties that need to be considered when planning for potential contamination

incidents in the future (e.g., location of contaminant injection, time of contaminant

injection, etc.). However, there are significant challenges associated with using sys-

tems modeling and optimization techniques for large and complex water distribution

networks. As these networks become larger, the size of the models describing the flow

of chemical or biological species also grows considerably. Multiplied by the fact that

1Part of this section is reprinted with permission from “Testing Contamination Source Identification
Methods for Water Distribution Networks” by Seth, A., Klise, K.A., Siirola, J.D., Haxton, T., and
Laird, C.D., 2015. to appear in Journal of Water Resources Planning and Management, Copyright
2015 by American Society of Civil Engineers.
Part of this section is reprinted from “E�cient Reduction of Optimal Disinfectant Booster Sta-
tion Placement Formulations for Security of Large-Scale Water Distribution Networks” by Seth, A.,
Hackebeil, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., 2015. Submitted to Com-
putational Optimization and Applications.
Part of this section is reprinted from “Evaluation of Chlorine Booster Station Placement for Water
Security” by Seth, A., Hackebeil, G.A., Haxton, T., Murray, R., Laird, C.D., and Klise, K.A., 2015.
Submitted to Journal of Water Resources Planning and Management, American Society of Civil
Engineers.
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large networks have a high number of potential contamination locations, considering

this uncertainty in a optimization framework results in tremendously large and often

intractable problems. In this thesis, we propose e�cient optimization and modeling

techniques that can tackle the two problems mentioned above for large-scale water

distribution network.

In the first part of this thesis, we propose two optimization methods for the

placement of disinfectant booster stations that can inject additional chlorine (but

within safe limits) into the network as an early response to a potential contamination

incident. When planning for potential contamination incidents, we do not have a

priori knowledge of the contaminant species. Therefore, reasonable assumptions need

to be made in order to model the contaminant-chlorine reaction. The two proposed

methods provide two di↵erent ways of modeling the unknown reaction.

In Chapter 3, the first method for the optimal placement of disinfectant booster

stations is proposed, which we call the “Neutralization method.” The following con-

tributions are made in this chapter:

• A model for the chlorine-contaminant reaction is proposed that makes two as-

sumptions: (1) the reaction rate is assumed to be fast, and (2) the chlorine is

assumed to be in stoichiometric excess, i.e., chlorine completely neutralizes a

contaminant and remains in excess as it flows through the network. Addition-

ally, we use a linear water quality model to describe the flow of the contaminant

and chlorine in a network (Mann et al., 2012a). These assumptions allow us to

decouple the linear chlorine and contaminant simulations and use superposition

to calculate the chlorine and contaminant concentrations in the network for all

the possible injection combinations (e.g., multiple booster injections, booster

and contaminant injections). This modeling technique also lets us pre-simulate

the booster and contaminant injections and use the resulting data in an opti-

mization formulation, removing the need to embed the water quality model into

the formulation.
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• Two stochastic Mixed-Integer Linear Programming (MILP) formulations are

proposed for placement of booster stations. These scenario-based formulations

account for uncertainty in both the location and the time of a contamination

incident. The objective in the first formulation is to minimize the expected

mass consumed by the public in the form of demand from junctions (MC for-

mulation). The objective of the second formulation is to minimize the expected

number of people that ingest the contaminant above a dose threshold (PD for-

mulation).

• Considering large-scale networks with potential contamination scenarios at ev-

ery node and at every hour over a 24 hour demand cycle, the extensive form

of the stochastic program is intractably large. However, a tremendous amount

of structure in the problem is induced by the contamination scenario-based for-

mulation and the network model itself. We propose three reduction techniques

that dramatically decrease the size of the formulations. In the case studies con-

sidered in this chapter, the problem sizes were reduced as much as five orders of

magnitude. With the proposed reductions the solution is possible considering

realistic network models with more than 3,000 nodes.

• We analyze the e↵ectiveness of booster stations in reducing the expected impact

of contamination incidents. Case studies performed on three di↵erent networks

highlight the significant benefits of using booster disinfection as an early re-

sponse strategy.

In Chapter 4, the second method for the optimal placement of disinfectant booster

stations is proposed, which we call the “Limiting reagent method.” The following

contributions are made in this chapter:

• We propose a stochastic MILP formulation that lets the user provide a stoichio-

metric ratio (Mass Chlorine/Mass Contaminant) as a parameter to approximate

di↵erent kinds of contaminant-chlorine reactions. This is in contrast to the
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Neutralization method, which assumes that chlorine remains in stoichiometric

excess as it neutralizes the contaminant through the network. Therefore, the

Limiting reagent method requires us to embed the linear water quality models

describing the chlorine and contaminant flow into the optimization formulation.

• We provide a comparison of the Neutralization and Limiting reagent methods

and show how these two methods can result in significantly di↵erent booster

station placements on two di↵erent network models. In general, the Neutral-

ization method gave an optimal placement that was closer to the upstream and

downstream edges of the network, whereas the Limiting Reagent method re-

sulted in booster stations being placed more centrally in the network as the

stoichiometric ratio was increased.

• The e↵ect of contaminant toxicity, sensor placement, and stoichiometric ratio

was analyzed on the performance the two methods in terms of reduction in ex-

pected population dosed. Furthermore, each optimal booster station placement

obtained using di↵erent levels of contaminant toxicity and stoichiometric ratios

was evaluated over the same range of toxicities and stoichiometric ratios. The

results show that under the assumption that the probability of contaminant tox-

icities and stoichiometric ratios are uniformly distributed, the optimal booster

station placement obtained assuming the worst case scenario of high contami-

nant toxicity and high chlorine to contaminant stoichiometric ratio, resulted in

the lowest overall expected population dosed.

In conclusion, the Neutralization method makes two simplifying assumptions

about the contaminant-chlorine reaction that enable us to solve the optimal booster

placement problem for large-scale water networks. The Limiting reagent method is

more realistic and lets us model the contaminant-chlorine reaction with respect to a

stoichiometric ratio, however, it can only tackle moderately size networks with limited

number of scenarios. As a policy maker, one would need to quantify the probability

of a range of possible contaminant species to make a more informed decision. Under
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the assumption that the probability of di↵erent contaminants (with di↵erent reaction

stoichiometric ratios) is uniformly distributed, our results indicate that the booster

placement done using the Limiting reagent method will give the best overall perfor-

mance. However, we know that for certain type of contaminants (e.g. E. Coli) the

stoichiometric ratio for reaction to chlorine is very small and for those contaminants

using the Neutralization method would make more sense. Keeping this in mind, the

following future research directions are proposed:

• It should be straightforward to modify the scenario-based optimization formu-

lation for the Limiting reagent method to account for the stochasticity in the

stoichiometric ratio. Additionally, the uncertainty in the contaminant toxicity

(dose threshold) can also be included in the formulation. As previously men-

tioned, quantifying the probability of possible contaminant species can also be

explore in the future.

• Tools like EPANET-MSX (Shang et al., 2011) that enable modeling complex

reactions between multiple chemical and biological species can also be used

in the future to evaluate the e↵ectiveness of the booster chlorination in the

presence of more complex reaction kinetics.

• Scenario reduction schemes can be explored in the future to make the Limiting

reagent method more tractable for larger networks.

The optimal booster station placement problem is solved at the planning stage

before a contamination incident has taken place. Once a contamination has been

confirmed, identifying its source location as quickly as possible can help in stopping

further contamination. Additionally, response and cleanup operations can greatly

benefit from an accurate understanding of the contaminant plume, which in turn

requires knowledge of the contamination source location.

In the second part of this thesis, we address the problem of source identification

that needs to be solved in real-time as a contamination incident unfolds. For this

problem, the following contributions are made:
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• In Chapter 6, we propose a Bayesian probability based method that uses sen-

sor data to assign a source probability to all upstream nodes from the sensor

locations that flag a contamination incident. This method benefits from a fast

water quality simulation framework, Merlion (Mann et al., 2012a), to e�ciently

simulate a large number of possible contamination scenario. A simulation case

study performed on a large-scale (above 12,000 nodes) network with more than

100 sensor locations, highlights the computational speed and accuracy of the

proposed method, which performs the source identification calculations within

seconds.

• Due to a limited number of measurements obtained from fixed water qual-

ity sensors, the source identification problem is ill-posed, which can result in

many possible source locations. Wong et al. (2010) proposed an optimization

formulation for selection of manual grab sampling locations to get additional

measurements that can help distinguish between potential source locations. As

a corollary to the optimization method proposed by Wong et al. (2010), in

Chapter 6 we propose a greedy algorithm that is shown to be computationally

e�cient for large-scale networks with similar e↵ectiveness.

• Due to the wide range of source identification methods proposed in the litera-

ture, there is a need for a testing framework to contrast and compare di↵erent

methods. In Chapter 7 a systematic testing methodology for contamination

source identification methods is proposed. This methodology includes perfor-

mance metrics and a set of test cases designed to analyze a variety of factors

that can influence the performance of source identification methods (e.g., mea-

surement error, modeling error, sensor placement, network size, etc.).

• In Chapter 8, the proposed testing methodology is used to perform a compar-

ative study of the Bayesian probability-based method and two source identi-

fication methods from the literature. The study highlights the strengths and

weaknesses of each method.
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Decision makers must be aware of the underlying assumptions that a source iden-

tification method makes. The testing methodology proposed in Chapter 7 is designed

to identify common issues that may arise due to these assumptions. To further extend

this testing methodology the following future work is proposed:

• Random noise on individual measurement points was added to show that the

performance of source identification methods can start to degrade at high false

negative and false positive rates. In the future, it will be interesting to study

the impact of more systematic sensor failures.

• While higher sensor density generally leads to better performance of source iden-

tification methods, typical criteria used for optimal sensor placement are not

ideal for source identification. Identifying sensor placements to improve source

identification performance is an interesting topic for future study. Additionally,

multi-objective approaches that consider both minimizing the impact of con-

tamination incidents and improving source identification should be explored in

the future.

• The source identification methods studied in this work do not make use of the

specific identity of the contaminant (e.g., to model decay/reactions). In gen-

eral, the source identification methods should be e↵ective immediately, before

the contaminant may be identified through laboratory analysis. If the specific

compound is known, then the water quality models could be modified to include

kinetic models. This is a reasonable direction for future work.

• With the simultaneous development of real-time data collection systems, real-

time modeling tools, and real-time source identification tools, there is a need to

study and optimize their interactions, which opens up new challenges associated

with monitoring and protecting drinking water networks.
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