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A Hybrid Multi-Objective Evolutionary Algorithm-Based Semantic Foundation for Sustainable
Distributed Manufacturing Systems
Reprinted from: Appl. Sci 2021, 11, 6314, doi:10.3390/app11146314 . . . . . . . . . . . . . . . . . . 185

v



Khurshid Aliev and Dario Antonelli

Proposal of a Monitoring System for Collaborative Robots to Predict Outages and to Assess
Reliability Factors Exploiting Machine Learning
Reprinted from: Appl. Sci 2021, 11, 1621, doi:10.3390/app11041621 . . . . . . . . . . . . . . . . . . 217

Hsiung-Cheng Lin, Bo-Ren Yu, Jen-Yu Wang, Jun-Ze Lai and Jia-Yang Wu

Achievement of Accurate Robotic Arm-based Bike Frame Quality Check Using 3D Geometry
Mathematical Model
Reprinted from: Appl. Sci 2019, 9, 5355, doi:10.3390/app9245355 . . . . . . . . . . . . . . . . . . . 237

Leszek Gil, Krzysztof Przystupa, Daniel Pieniak, Edward Kozłowski, Katarzyna Antosz,

Konrad Gauda and Paweł Izdebski

Influence of Contamination of Gear Oils in Relation to Time of Operation on Their Lubricity
Reprinted from: Appl. Sci 2021, 11, 11835, doi:10.3390/app112411835 . . . . . . . . . . . . . . . . 255

Youngkyun Seo, Jung-Yeul Jung, Seongjong Han and Kwangu Kang

Availability Estimation of Air Compression and Nitrogen Generation Systems in LNG-FPSO
Depending on Design Stages
Reprinted from: Appl. Sci 2020, 10, 8657, doi:10.3390/app10238657 . . . . . . . . . . . . . . . . . . 269
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Aleja Powstańców Warszawy 8, 35-959 Rzeszow, Poland

2 MEtRICs Research Center, Department of Mechanical Engineering, School of Engineering, University of
Minho, 4800-058 Guimarães, Portugal; jmachado@dem.uminho.pt

3 Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
d.mazurkiewicz@pollub.pl

4 Department of Management and Production Engineering, Polytechnic University of Turin,
Corso Duca degli Abruzzi 24, 10138 Torino, Italy; dario.antonelli@polito.it

5 Centro Algoritmi, Campus of Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
fsoares@dei.uminho.pt

* Correspondence: katarzyna.antosz@prz.edu.pl

1. Introduction

Current trends in Industry 4.0 are largely related to issues of reliability and availability.
As a result of these trends and engineering systems’ complexity, research and development
needs now refer to new solutions in the integration of intelligent machines or systems, with
emphasis on changes in production processes aimed at increasing production efficiency or
equipment reliability. The emergence of innovative technologies and new business models
based on innovation, cooperation networks, and the enhancement of endogenous resources
is assumed to be a strong contribution to the development of competitive economies all
around the world. Innovation and engineering, focused on sustainability, reliability, and
availability of resources, have a key role in this context. The scope of this Special Issue is
closely associated with that of the ICIE’2020 conference. This conference and the journal’s
Special Issue aims to present the current innovations and engineering achievements of top
world scientists and industrial practitioners in the thematic areas related to:

• Reliability and risk assessment;
• Innovations in maintenance strategies;
• Production process scheduling, management and maintenance;
• Systems analysis, simulation, design and modeling.

The rapid development of industry, especially observed in recent decades, has sig-
nificantly complicated the functioning of production systems and thus intensified the
maintenance process. Nowadays, the reliability of hardware resources and employee safety,
as well as low environmental risk, is required while implementing production processes
with maximum efficiency, effectiveness and flexibility. At the same time, the awareness
of the role of maintenance services in preventing breakdowns and early detection of ini-
tial problems with machines and systems is growing, which, in turn, increases the life of
production systems, affecting the achievement of a high level of productivity.

Detecting and diagnosing faults in the early stages of damage is necessary to prevent
the incorrect operation of the machine park and its breakdowns during operation. Hence,
the growing role of availability and reliability research. Regular monitoring of the actual
technical condition of the equipment and the operational efficiency of technological sys-
tems allows ensuring the maximum interval between repairs, thus extending the time of
effectively using the existing hardware resources. It also minimizes the number and cost
of unplanned downtime caused by machine failures, increasing the availability of both
individual machines and entire production lines. It also allows making the right decision—
repair or replacement—using cost–benefit analysis methods using appropriate optimization
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tasks, for example, when determining the maintenance strategy of the machine as a whole
or separately for each category of its structural elements. The implementation of such tasks,
also based on the methodology of optimal maintenance, requires appropriate knowledge
about the course of operation of a given machine or its element in the past, currently and
in a certain forecast of future use and its impact on potential failures and overall service
life. Measurement systems monitoring the operation of machines and their parameters as
well as diagnostic systems are thus extremely helpful. They all record significant amounts
of data that require appropriate processing into knowledge and inference. An extremely
dynamic digital transformation is taking place here.

2. Reliability and Risk Assessment

With the rapid development of high integrations in large complex systems, such as
aircraft, satellite and railway systems, due to the increasingly complex coupling relationship
between components within the system, local disturbances or faults may cause global effects
on the system by fault propagation. Therefore, there are new challenges in safety analysis
and risk assessment for complex systems. Some of them with their proposed solutions are
described below.

As presented in [1], to this day, research articles highlighting analytical methods
on small data sets are practically limited. From the literature review presented [1], it is
revealed that most of the studies conducted thus far using scarce failure data are less.
The methods used for reliability analyses for small number data are mostly the Bayesian
approach, FMECA and Monte Carlo method. Using these methods, the small failure data
of any machine or system can be grouped and easily used for further reliability analysis.
Maintenance philosophies involve performing maintenance after given time intervals,
typically after a fixed running hour for an engine. In spite of the scheduled maintenance,
failure of the engine is inevitable, thereby decreasing the availability of dumpers and
reducing the production cost. Reliability analysis of engine subsystems is essential for
formulating the maintenance strategies that will reduce the downtime of the engine and
enhance its availability. The main obstacle was the deficiency of adequate data for the
appropriate statistical analyses. A data set containing a small sample size of failure data
limits the possibility of precise decision-making. The study [1] gives specific guidelines
for using CBH and meta-analysis testing, which emphasizes the failure data to predict
reliability and MTBF. The researchers perform the reliability assessment using the grouped
TBF data, during which suitable maintenance strategies could be formed. It provides a
roadmap of reliability analysis for any machinery having fewer failure data.

For the development of the technical solution—a reliable robotic system to facilitate
precision and safety—the ISO 14971 standard for risk management in healthcare devices
was followed in [2]. This paper presents the risk management strategy for the development
of the technical solution. Moreover, by evaluating the associated risks of the procedure, the
medical and technical requirements for the proposed technical solution are defined. It also
presents an analytical hierarchy process that is introduced subsequently in a four-phase
quality function deployment, which, in turn, leads to the HeRo conceptual design, showing
the advantages of the design with respect to risk reduction. The residual risks introduced
by the robotic system were also evaluated, showing a reduction in hazard occurrence and
severity, which validates the HeRo concept as a possible technical solution.

An approach based on the hidden Markov model is proposed [3] for risk performance
reasoning. The unobservable state process in the approach aims to model the underlying
risk performance, while the observation process was formed from the time series of risk
factors. Within the framework, the log-likelihood probability was used as the measure of
similarity between historical and current data of risk reasoning factors. Based on scalar
quantization regulation and risk performance quantization regulation, the risk perfor-
mance reasoning approach with different step sizes was conducted on the operational
case, the performance of which was evaluated in terms of effectiveness and accuracy. The
results obtained show significant improvement in the reasoning capacity and satisfactory
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performance for numerical risk reasoning and categorical performance reasoning. The
proposed model is able to provide a reference for risk performance monitoring and threat
pre-warning during the bauxite shipping process. The risk performance analyzed in [3] is
essential in relation to the bauxite shipping process, whose associated risk remains to be of-
ficially recognized. The output of this paper can support quantitative risk decision-making,
as opposed to previously used empirical decision-making, thereby laying a foundation for
risk pre-warnings and process safety.

Aiming at analyzing and evaluating the inherent risks of the complex system with cou-
pling correlation characteristics objectively, Jiang et al. [4] propose a novel risk assessment
and analysis method for correlations in the complex system based on multi-dimensional
theory. Firstly, the formal description and coupling degree analysis method of the hi-
erarchical structure of complex systems is established. Moreover, considering the three
safety risk factors of fault propagation probability, potential severity, and fault propagation
time, a multi-dimensional safety risk theory is proposed in order to evaluate the risk of
each element within the system affecting the overall system. Furthermore, critical safety
elements are identified based on Pareto rules, As Low as Reasonably Practicable and safety
risk entropy to support the preventive measures. Finally, an application of an avionics
system is provided to demonstrate the effectiveness of the proposed method. Compared
with the current methods and technologies, the method proposed [4] mainly reflects the
advantages of two aspects. On the one hand, the hierarchical model is modeled in a matrix
manner, and the association relationship of each element in the complex system is quickly
and accurately analyzed, which reduces the skill requirements of analysts. On the other
hand, it provides a feasible and multi-faceted analysis method for the risk assessment of
systems in view of fault propagation, which is the core judgment criterion for identifying
critical risk factors and is of great significance for ensuring system safety.

3. Innovations in Maintenance Strategies

The key issue in the use of technical facilities is the problem of making optimal
decisions. Along with the development of computer aiding techniques and the progressive
digitization of production, numerous tools have appeared to facilitate the work of technical
services, allowing for the collection and processing of data, information and knowledge
about objects and operational processes, thus enabling and facilitating effective decisions
regarding the technical systems in use. This applies to both the technical, organizational
and economic areas.

Optimally made decisions are one of the key conditions for the proper functioning
of maintenance services, which means the necessity to determine the value of selected
features. Correct exploitation of technical infrastructure facilities requires linking decision-
making processes with the performance of maintenance or repair work. There are many
mathematical models that constitute the basis for the quantitative assessment of the method
and scope of the operation of technical objects. However, there are still several research
challenges requiring innovations in maintenance strategies.

For example, as mentioned in [5], the supply chain of petroleum products faces major
challenges, i.e., demand growth and the complexity of fluid transportation. The petroleum
supply chain contains multiple stations extending from oil wells in exploration and produc-
tion areas to the final destination. Each station has its own difficulties and challenges in the
contribution towards the success of the safe and continuous supply. Undoubtedly, meeting
a regional demand for petroleum products requires an uninterrupted, safe operation. In
addition, the unloading of petroleum products is a complex and potentially dangerous
operation since the unloading system contains complex interdependency components. Any
failures in one of its components lead to a cut in the petroleum supply chain. Therefore, it is
important to assess and evaluate the reliability of the unloading system in order to improve
its availability. In this context, Mohammed et al. [5] present the operation philosophy of
the truck unloading system, failure modes of the components within the system, and a
bottom-up approach to analyze the reliability of the system. In addition, it provides reliabil-
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ity data, such as failure rates and the mean time between failures of the system components.
Furthermore, the reliability of the whole system was calculated and is presented for dif-
ferent time periods. The critical components, which are major contributors towards the
system’s reliability, were identified. To enhance the system’s reliability, a reliability-based
preventive maintenance strategy for the critical components was implemented. In addition,
the preventive maintenance scheduling was identified based on the reliability plots of
the unloading system. The best schedule for preventive maintenance of the system was
determined based on the reliability function to be every 45 days for maintaining the system
reliability above 0.9.

In order to maximize inventory benefits or minimize costs, the reliability and cost of
inventory control models need to be identified and analyzed. These importance measures
are one important approach to recognize and evaluate system weaknesses. However, the
importance measures have fewer applications in inventory systems’ reliability. Considering
the cost, Chen et al. [6] discuss the reliability change of performance parameters with
the importance measures in inventory systems. The calculation methods of differential
importance and Birnbaum importance are studied in the inventory control model with
shortages. By comparing the importance values of various parameters in the model, the
optimization analysis of the inventory model can be used to identify the key parameters so
as to effectively reduce the total inventory cost. The importance order and the identification
of key parameters are helpful to increase the operational efficiency of the inventory control
and provide effective methods for improving inventory management. Lastly, a case study
with a shortage and limited inventory capacity is used to demonstrate the proposed model.
One of the most important contributions of this paper [6] is that based on the research of
inventory systems, it was found that there was almost no literature on the reliability of
an inventory system. Combining the concept of reliability with the inventory system, an
inventory system reliability model was proposed. It could enrich the research in the field
of inventory system reliability.

The growing competitiveness of the market, coupled with the increase in automation
driven by the advent of Industry 4.0, highlights the importance of maintenance within
organizations. At the same time, the amount of data capable of being extracted from
industrial systems has increased exponentially due to the proliferation of sensors, trans-
mission devices and data storage via the Internet of Things. These data, when processed
and analyzed, can provide valuable information and knowledge about the equipment,
allowing a move towards predictive maintenance being considered one of the most innova-
tive maintenance strategies. Maintenance is fundamental to a company’s competitiveness
since actions taken at this level have a direct impact on aspects such as cost and quality of
products. Hence, equipment failures need to be identified and resolved. Artificial Intelli-
gence tools, in particular Machine Learning, exhibit enormous potential in the analysis of
large amounts of data, now readily available, thus aiming to improve the availability of
systems, reduce maintenance costs and increase operational performance and support in
decision making. This is why Cardoso and Ferreira [7] apply Machine Learning to a set
of data made available online and the specifics of this implementation are analyzed, as
well as the definition of methodologies, in order to provide information and tools to the
maintenance area. Although the results obtained compare well with those presented so
far in the literature, the biggest disadvantage in using the presented methodology lies in
the definition of the features. If the selection of features is not the most correct, the results
obtained can lead to wrong predictions. For future work, the application of feature learning
concepts will be considered instead of feature engineering, which appears to be promising
to improve the results obtained [7]. This section may be divided into subheadings. It should
provide a concise and precise description of the experimental results, their interpretation,
as well as the experimental conclusions that can be drawn.
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4. Production Systems Scheduling, Management and Maintenance

Advancements in technology, such as information and communication technologies,
have changed the traditional manufacturing systems practices. This is especially true for
different manufacturing systems due to their ability to cater to their needs such as Big Data,
interoperability, timely delivery, etc.

Production and maintenance tasks apply for access to the same resources. Maintenance-
related machine downtime reduces productivity, but the costs incurred due to unplanned
machine failures often outweigh the costs associated with predictive maintenance. Costs
incurred due to unplanned machine failure include corrective maintenance, reworks, de-
lays in deliveries, breaks in the work of employees and machines. Therefore, scheduling
production and maintenance tasks should be considered jointly.

The problem of generating a predictive schedule with given constraints is considered
by Paprocka et al. [8], with an objective to develop a scheduling method that reflects
the operation of the production system and the nature of disturbances. The original
value research results presented is the development of the method of a basic schedule
generation with the application of Ant Colony Optimization. A predictive schedule is built
by planning the technical inspection of the machine at the time of the predicted failure-free
time. The numerical simulations are performed for job/flow shop systems. In the future,
the presented method for generating predictive schedules will be compared with the genetic
algorithm, as well as immune and clonal selection algorithms. The presented algorithm
may, however, contribute to the development of a method that reflects the operation of the
production system and the nature of disturbances and improves the system operation.

In production systems maintenance, fault propagation behavior analysis is the basis
of fault diagnosis and health maintenance. As presented by Mu et al. [9], traditional fault
propagation studies are mostly based on a priori knowledge of a causality model combined
with rule-based reasoning, disregarding the limitations of experience and the dynamic char-
acteristics of the system that cause deviations in the identification of critical fault sources.
Thus, the authors [9] propose a dynamic analysis method for fault propagation behavior
of machining centers that combines fault propagation mechanisms with model structure
characteristics. They use the design structure matrix to establish the fault propagation
hierarchy structure model. Considering the correlation of fault time, the fault probability
function of a component is obtained, and the fault influence degree of nodes are calculated.
By introducing the Copula and Coupling degree functions, the fault influence degree of the
edges between the same level and different levels are calculated, respectively. As a result, a
fault propagation intensity model was constructed by integrating the edge betweenness
and then used as an index to analyze real-time fault propagation behavior. Finally, a certain
type of machining center is taken as an example for a specific application. This study
can provide a reference for the fault maintenance and reliability growth of a machining
center. According to the fault propagation intensity of the components, the critical fault
propagation paths and nodes of a machining center can be identified, provide a reference
for the fault maintenance and encourage reliability growth of machining centers. This
paper [9] demonstrates the effectiveness and practicability of the proposed method through
the application of the specific case.

Ramakurthi et al. [10] point out that rising energy prices, increasing maintenance
costs and strict environmental regimes have augmented the already existing pressure
on the contemporary manufacturing environment. Although the decentralization of the
supply chain has led to rapid advancements in manufacturing systems, finding an efficient
supplier simultaneously from the pool of available ones as per customer requirements and
enhancing the process planning and scheduling functions are the predominant approaches
that still need to be addressed. Therefore, they have decided [10] to address this important
issue by considering a set of gear manufacturing industries located across India as a case
study. An integrated classifier-assisted evolutionary multi-objective evolutionary approach
is proposed for solving the objectives of makespan, energy consumption and increased
service utilization rate, interoperability and reliability. To execute the approach initially,
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text-mining-based supervised machine-learning models were adopted for the classification
of suppliers into task-specific suppliers. Following this, with the identified suppliers as
input, the problem was formulated as a multi-objective Mixed-Integer Linear Programming
model, and finally, a Hybrid Multi-Objective Moth Flame Optimization algorithm was
proposed to optimize process planning and scheduling functions. Numerical experiments
have been carried out with the formulated problem as well.

5. Systems Analysis, Simulation, Design and Modeling

The activities performed by the maintenance department are usually a combination of
technical, administrative and management activities carried out during the life cycle of a
given technical object. The effective implementation of these activities requires appropriate
data management—data collection, proper analysis and the use of appropriately effective
models to support decision making. We use the data for many different purposes, e.g.,
to determine the moment of generating service orders, monitor the quality of performed
activities, optimize and plan activities or develop plans for the delivery dates of materials
and spare parts, i.e., in the field of broadly understood logistics for the operation of technical
facilities and systems.

This is why proper data management and knowledge management are extremely
important issues for the implementation and effective maintenance strategies when it is
possible not only to determine the current wear of devices or their structural elements
but also to predict whether and when a failure or catastrophic wear will occur. It is also
possible to effectively detect the cause of a failure or identify performance or product quality
problems. To achieve this, adequate analysis, design and modeling methods are required.

This is why Aliev and Antonelli [11] have focused on developing a framework using
I4.0 enabling technologies to improve reliability and safety in human–robot collaboration
applications. The proposed framework allows a robot’s condition to be continuously moni-
tored during human–robot collaboration. The monitoring deploys IoT connectivity, a data
acquisition system, physical cyber-systems and ML tools to perform analytics. The paper is
divided as follows: the relevant equipment parameters are first identified, a description
of the data acquisition framework is then given, an application to an assembly case study
in which all the necessary data are collected is presented, and finally, the analysis results
of the considered case study are presented and discussed. The case study was performed
on benchmark tasks for collaborative assembly processes. An automatic machine learning
tool was used to perform online monitoring and predict outages of the industrial robots
during a human–robot collaboration process. Such an online monitoring system allows
more reliable human–robot collaboration applications to be created, unplanned down-
time during task execution to be eliminated, and the trust of humans during interaction
with a robot and the lifetime of the robot to be maximized. The proposed framework
demonstrates data management techniques on an industrial robot that is considered as a
physical=cyber system.

Achievements of accurate robotic arm-based bike frame quality checks with the use
of a 3D mathematical model are discussed by Lin et al. [12]. Unlike the traditional way
to find coefficients of a space sphere, the proposed model requires only three check point
coordinates to achieve the sphere axis coordinate and its radius. In the practical work,
the contact sensor combined with the robotic arm is used to realize the compliance items
measurement in shaft length, internal diameter, verticality, parallelism, etc. The proposed
model is validated based on both mathematic verification and an actual bike frame check.
The stylus probe used in the proposed model presents a simple and accurate performance.
However, successful measurement depends on the activity range of the robotic arm that
certain features of bike frames should be reached by the stylus probe. In future work,
the optical sensors may provide an alternative solution, although more complex signal
processing algorithms should be addressed.

The quality and reliability of consumables, including gear oils, resulting in the failure-
free operation of the transmission components in heavy trucks are discussed by Gil et al. [13].
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As oil viscosity is essential for all lubricated tribopairs for wear and friction reduction in all
vehicles with a gearbox, it may be influenced by the contamination that wear products can
impart on the oil. Oil contamination can also affect lubrication efficiency in the boundary
friction conditions in gearboxes where slips occur (including bevel and hypoid gearboxes).
Therefore, the present research [13] focused on this issue. An obvious hypothesis was
adopted, where it was theorized that exploiting the contaminants that are present in gear
oil may affect how the lubricating properties of gear oils deteriorate. Laboratory tests were
performed on contaminants that are commonly found in gear oil. The study was designed
to identify a number of different solid particles that are present in oil. The quantitative
contamination of the gear oils that contained solid particles and the curves representing the
friction coefficients of fresh oils with a history of exploitation were compared. Exploitation
was shown to have a significant impact on the contamination of gear oils. It was revealed
that the contamination and the mileage had no effect on the tested oils. The research [13]
showed that the presence of contaminants is not catastrophic and that in order to fully
examine the oils and to determine the critical moment, the oils with a much greater
operational mileage should be tested in order to establish the relationship between the
number of particles and their tribological properties.

Various factors are considered in system design, such as efficiency, costs, safety, and
environmental effect. Availability is also one of the important issues in system design. The
availability indicates how much a system approaches ideal operation without production
loss caused by equipment failures or undesired external events. Availability estimation is
frequently performed in the oil and gas, chemical and power plant industries to find the
optimum design option, to predict the production level and to evaluate maintenance and
operating policies. Precise availability estimation is important because it directly influences
the owner’s decision. This is why Seo et al. [14] have investigated the availability gap
between the early and late design stages by estimating it with the design stages to find a
practical manner of availability estimation in the early design stage. The sensitivity analysis
was conducted to analyze the key factors in the results. The most crucial factor was the
redundant equipment. Although this study [14] did not consider the whole system, this
gives an important guide to progress the next step for the accurate availability estimation
in the early design stage.

Steel tapes with certain special markings generated on their surface are often used
for metrological and technological purposes, for example, to measure displacement. The
smoothness of the movement of a moving precision tape and the stability of the tape area
where symbols are generated are very important factors that affect the quality parameters of
a generated tape. One of the most important characteristics of the raster generation device is
the smoothness of the stretching of the tape, which is important for the overall operation of
the system. The smoothness of the stretching of the tape affects errors in the position of the
raster element being generated and the control of activation of the laser beam. Determining
not only the amplitude but also the frequency of the belt stretching oscillations is important.
For this purpose, [15] analyzes the tape movement system consisting of electromechanical
tape pulling and its constant stretching mechanisms as well as a tape deflection mechanism,
which operates in sliding friction. This system was mounted on a massive granite base
placed on a foundation using passive vibration insulation supports. A research and data
processing method together with the results of experimental research of a mock-up system
were developed and presented to examine the raster generation method and the generation
device. This method may be used to produce a precision metrological scale on stainless
steel tape. The generation process takes place in the dynamic mode because both the steel
tape and the laser raster generation head are constantly moving during the process. The
main aim of the research [15] was to develop a system for measuring the displacement
of the tape in the raster generation device, to examine the model of that system and to
evaluate the possible impact of external and internal factors on raster generation in the
dynamic mode.

7



Appl. Sci. 2022, 12, 2504

The use of numerical methods for simulation, design or modeling, such as finite
element analysis (FEA), has proven to be an advantageous tool to predict the mechanical
behavior of many materials. Up to now, the application of FEA related to elastomers
and other cork composites has been utilized to access static, dynamic loading and impact
behavior. One of the first requirements for the application of isolation pads is to evaluate
their capacity to support static loadings. Regarding elastomers, one of the crucial steps
during FEA is the definition of material properties. Typically for large strains, elastomer’s
properties are defined through the application of non-linear models. However, if a linear
stress–strain relationship at small strains is observed, Hooke’s Law can be adopted for that
strain range. As expressed by Lopes et al. [16], like other types of elastomers, different
geometries of the same cork–rubber material present different mechanical behavior when
subject to compression between bonded plates. To validate the application of Hooke’s Law
on cork–rubber materials, under compression at small strains, a set of experimental and
numerical analyses has been conducted [16]. Using finite element analysis, a methodology
is described to relate frictionless and frictional compression between a cork–rubber sample
and loading plates. Based on that, the performance of square cross-section blocks with
other dimensions can be evaluated. The results obtained by this approach [16] showed a
good agreement with experimental compression tests and with outputs from other models
available in the literature relating Young and apparent compression moduli. However,
future research should address the effect of higher shape factors, other cross-section shapes
(rectangular and other polygons), and the friction coefficient between sample and loading
surfaces. Moreover, applying this knowledge and relating it to the dynamic compression
behavior of isolation pads could be a topic of interest.

6. Conclusions

The availability and reliability of engineering systems is an important issue for modern
companies, especially from the Industry 4.0 challenges and requirements. In addition, in
recent years, the concept of sustainable development has also been gaining importance, as
sustainable, intelligent production should be taken into account. This means developing
products manufactured through production processes that have a minimal negative impact
on the environment, save energy and natural resources and are safe for workers and the
community and economically viable. This means that the goal of sustainable production is
to achieve a balance between the environmental, social and economic dimensions. Creating
a sustainable production environment also requires the elimination of breakdowns and
energy waste and, as a concept, is strongly associated with sustainable maintenance. From a
practical point of view, this requires changes in the activities performed in the maintenance
area. Overall, this means the ability to monitor, control and process data combined to
create intelligent, learning, self-diagnosing and self-adapting technology machines. This
kind of technological intelligence in maintenance can reduce the need for operators to act,
improving safety and reducing unnecessary costs; however, they can be still considered an
important research challenge in systems engineering.
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Abstract: Dumpers or dump trucks are used all over the world to move overburden from many
opencast mines. Diesel engines are the main driving force behind the trucks. The frequency of
damage due to the failure of diesel engines is enormous. Therefore, efforts are necessary to analyze
failure to reduce the downtime periods. A detailed analysis of engine failure at the subsystem level
needs to be done. Reliability analysis and maintenance planning remain the norm in this regard. The
obstacle faced while analysing the reliability of dumpers was the availability of a large number of
data failures. In this paper, this issue is addressed by using Common Beta Hypothesis test and Meta-
analysis test. The engine is divided into five subsystems. The result shows that all five subsystems
pass the CBH test and Meta-analysis test. Accordingly, the failure data is grouped. The trend test of
grouped failure data shows that the Failure data of two subsystems follows the independent and
identically distributed characteristics while the remaining three do not follow it. The reliability is
estimated for all five subsystems. Finally, fuel supply subsystems show the highest reliability while
the lowest value is seen for self-starting subsystems.

Keywords: time between failure (TBF); common beta hypothesis (CBH) test; meta-analysis; level of
heterogeneity; reliability; mean time between failure (MTBF)

1. Introduction

The main drive units used in dump trucks are diesel engines. Dump trucks or dumpers
are used to transport heavy materials around the world. The frequency of breakdown
causing the failure of diesel engines is adequate. A vital concern in the engine system’s
performance under certain operational conditions is to guarantee the satisfactory uninter-
rupted operation of the equipment [1–7]. However, failure of components is unescapable
and takes place due to the ongoing wear and tear process in working parts of the system.
This deterioration can result in unexpected failures of the system which will incur a signifi-
cant increase in repair cost than in scheduled maintenance or repair. To control the impact
of cost, it is necessary to evaluate the reliability of the equipment and its components. Such
a study will be useful for making maintenance decisions and incorporate adaptive changes
in maintenance policies. The main hurdle is the availability of a large amount of failure
data [6–9]. The general pattern is that the small sample is not representative of the data and
there is every possibility that any statistical treatment is misleading when a small number
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of failures are used. In the present study, a roadmap is provided using which reliability
analysis could be possible for a small amount of failure data for any machinery.

To this day, research articles highlighting analytical methods on small data sets are
practically limited. D.H. Olwell et.al [10] completed limited data with advanced informa-
tion using the Weibull probability distribution. The paper conducted a firing analysis of
2000 motors used in missiles in field conditions using the Maximum Likelihood Estimation
(MLE) method and the Bayesian method [10–12]. R M Mayer et.al [13] pooled the data
from multiple data sets to get a large amount of failure data for statistical interpretation.
The paper emphasizes that grouping of failure data is valid only when the data is collected
with sufficient reliability. G. Wang et al. [14] used Failure mode effects and critical analysis
(FMECA) for analyzing small sample of failure data of diesel engines. L. Qin et al. [15] ana-
lyzed the reliability of bearings based on performance attenuation data. E. J. Ahn et al. [16],
described the methods used in systematic reviews and meta-analyses in medical sciences.
W. Dai et al. [17] made an effective method for reliability assessment using signal features
of the machining process. W. Si et al. [18] suggested reliability model for repairable systems
having incomplete failure time data. X. Xintao et al. [19] proposed a model of improved
maximum entropy probability distribution for estimation of reliability of bearings. F.V.
Garcia et al. [20] discussed in their paper the methods to improve failure data used for
high-speed marine diesel engine using Failure Modes, Effects, and Criticality Analysis. L.
Zhang et al. [21] used Bayesian method for reliability evaluation of very few failure data.
The researchers performed the reliability analysis on wet friction plate used in hydraulic
control. S. Darmanto et al. [22] analyzed the reliability of diesel engines as a driver for the
fire water pump. The researchers have determined reliability and the rate of failure of the
diesel engine [22–28].

Recently, Y. He [25] suggested using a combined forecasting model to increase the
amount of fault data samples. This increase in data is utilized for reliability analysis of
Sanitation vehicles having Small Sample Data.

From the above literature review, it is revealed that most of the studies so far conducted
using scarce failure data are less. The methods used for reliability analyses for small number
data are mostly the Bayesian approach, FMECA and Monte Carlo method. Studies on
reliability analysis with a very small sample amount of failure data on engine subsystems
have been carried out. The present study uses CBH which has not been addressed so far
for statistical treatment of small failure data. Additionally, the Meta-analysis test used in
this paper has been used only in the medical field and not in the industrial field. Using the
methods mentioned above the small failure data of any machine or system (in this case
diesel engine) can be grouped and easily used for further reliability analysis.

Maintenance philosophies involve performing maintenance after given time intervals,
typically after a fixed running hour for an engine. In spite of the scheduled maintenance,
failure of the engine is inevitable, thereby decreasing the availability of dumpers and
reducing the production cost. Reliability analysis of engine subsystems is essential to
formulate the maintenance strategies which will reduce the downtime of the engine and
enhance its availability. The main obstacle was the deficiency of adequate data for the
appropriate statistical analyses. A data set containing a small sample size of failure data
limits the possibility of precise decision-making. The current study gives specific guidelines
for using CBH and meta-analysis testing, which emphasizes the failure data to predict
reliability and MTBF. The researchers perform the reliability assessment using the grouped
TBF data using which suitable maintenance strategies could be formed. It provides a
roadmap of reliability analysis for any machinery having less failure data.

2. Research Methodology

An engine is made up of components, each of which is vital to the operation of an
entire engine. There are certain major failures which can be prevented by replacing certain
parts of the engine in the work site itself. The High oil consumption which is commonly
caused by the hose pipe burst or hose pipe leakage can be prevented by replacing the hose
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pipe timely. The presence of metallic pieces in a lube oil filter can heavily damage the
condition of an engine. Hence, lube oil should be replaced along with the bearing oil filters
regularly. If the lubrication oil is not changed timely its viscosity will increase leading to
overheating. Overheating will cause expansion of the piston liners which will ultimately
leads to engine seizure. Hence, timely replacement of lube oil can prevent engine seizure.
The problem of overheating is the most common problem occurring in the engine. It may
also occur due to insufficient working of the cooling fan and radiator. Proper and timely
maintenance of the radiator will prevent the overheating problem. The reliability analysis
is desired to prevent any catastrophic failure which may be fatal. Chart 1 shows all the
steps used in this paper for reliability analysis. The following methodology is used to
perform reliability analysis of an appreciably small amount of failure data.

Chart 1. Steps followed for estimating reliability analysis.

The TBF data from the three engines is collected from the management log book of the
surface mine. All three engines are of the same type. For statistical analysis, the engine is
divided into main subsystems such as air supply, lubrication, self-starting, fuel supply and
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cooling subsystems. The number of TBF data collected from the project was found to be
low. TBF data are pooled to increase the number of failure data. Grouping of failure data
magnifies the sample size of each subsystem of three engines. Before aggregating TBF data,
a CBH test and a meta-analysis test are applied on the TBF data of all five subsystems to
examine the difference between the failure data of individual engines. In the CBH test, the
consistency of an inter-arrival failure rate of each subsystem is evaluated [6]. If the failure
rate is consistent between the three engines of each subsystem, then the failure data can be
grouped. To combine the findings (in this case failure data) for independent studies (in
this case three engines) meta-analysis test is used. In this analysis level of heterogeneity
is checked among the three engines failure data of each subsystem. Heterogeneity in
meta-analysis refers to the variation in the three engines failure data of each subsystem.
Next iid characteristics of the TBF data of all five subsystems are tested. The relationship
between cumulative time and cumulative number failures is considered for trend tests
using group TBF data from all five subsystems. For the serial correlation test, the graph
between the failure of i th number and (i-1) th number is considered. Based on the results of
the trend test, Reliability and MTBF is determined for all five subsystems using either the
MLE method or Power Law Process (PLP) model. The Power Law Process (PLP) model is
basically a popular infinite NHPP model utilized to determine the reliability of repairable
systems on the basis of the analysis of the observed failure data [29,30].

3. Experimentation

3.1. Collection of Field Data

The engines under study are turbocharged compression ignition (C.I.) engines with
12 cylinders, V-type and a maximum power rating of 900 H.P, rotating at 2100 rpm. In CI
engines, air is compressed in the combustion chamber such that the injected liquid fuel can
easily catch fire and burn progressively for power generation. Figure A1 shows a view of
the dumper engine under study (see Appendix A). TBF data of each subsystem is collected
for a period of three years from the mechanical register book of the mechanical open pit
mine. The failure data in Table 1 were found to be less than 7 for each subsystem.

Table 1. TBF data (in hours) of engine subsystems of three engines.

Sl.No.
The Sub
System

Failed
Component

TBF for
Engine 1

Failed Component
TBF for

Engine 2
Failed Component

TBF for
Engine 3

1 Air suppl
Compressor

Dryers
Oil Remover

2655
633

4112

Dryers
Electric motor

Pressure Gauge
Motor

422
600
2036
1479

Condensate Trap
Moisture Separator

Turbo charger
Electric motor

77
3585
1673
646

2 Self-starting

Battery
Filter

Starter gear
Solenoid

Motor
Gear pump

1246
44

856
2328
3913
759

Solenoid
Motor
Filter

Gear pump
Battery

Starter gear

423
185
761

1197
1116
3450

Starter gear
Battery

Gear pump
Filter
Motor

Solenoid

1920
797
550
191
917

1595

3 Fuel supply

Pulsation
damper

Magnetic
screen

Injector
Throttle

Cam

423
240
525
934

3856

Shut down valve
Fuel tank

Magnetic screen
Injector

96
346
914
2036

Cam
Pulsation damper
Shut down valve

Fuel tank
Magnetic screen

112
1449
290
225

2828

4 Lubrication

Turbocharger
bearings
Valves

Tappets and
push-rods

2566
2278
426

Oil pump parts
Tappets and push-rods

Valves
Camshaft and bearings

Timing Gears

1584
757
238
991
916

Oil pump parts
Turbocharger bearings

Timing Gears
Cylinder walls

Piston rings
Valves

855
1115
1503
1367
990

2926
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Table 1. Cont.

Sl.No.
The Sub
System

Failed
Component

TBF for
Engine 1

Failed Component
TBF for

Engine 2
Failed Component

TBF for
Engine 3

5 Cooling

Radiator
Cooling Fans
Pressure Cap
and Reserve

Tank
Water Pump

3827
2356
577

Thermostat
Bypass System
Freeze Plugs

Head Gaskets and
Intake Manifold

Gaskets
Heater Core

1823
1177
680

1424
3236

Fins
Radiator

Hoses
Water Pump
Freeze Plugs

Radiator Cooling

170
108
219
934
329
2149

The occurrence of failures has been calculated and shown in Table 2. The pie chart
has been drawn to depict the frequency of failure. Figures 1–3 show pie charts for all five
subsystems of three engines.

Table 2. Data of occurrence of failures for three engines.

Sub-Systems
TBF (hours) of
Engine-1 in %

TBF (hours) of
Engine-2 in %

TBF (hours) of
Engine-3 in %

Air Supply 21% 16% 20%
Self-starting 27% 26% 20%
Fuel supply 17% 12% 17%
Lubrication 15% 16% 30%

Cooling 20% 30% 13%

 

Air Supply 
System

21% Self-starting 
System

27%

Fuel Supply 
System

17%Lubrication 
System

15%

Cooling System
20%

Air Supply System Self-starting System Fuel Supply System

Lubrication System Cooling System

Figure 1. TBF Hours in percentage in comparison to total time for Engine 1.
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Air Supply System
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Self-starting System
26%

Fuel Supply System
12%

Lubrication System
16%

Cooling System
30%

Air Supply System Self-starting System Fuel Supply System

Lubrication System Cooling System

Figure 2. TBF Hours in percentage in comparison to total time for Engine 2.

 

Air Supply System
20%

Self-starting System
20%

Fuel Supply System
17%

Lubrication System
30%

Cooling System
13%

Air Supply System Self-starting System Fuel Supply System

Lubrication System Cooling System

Figure 3. TBF Hours in percentage in comparison to total time for Engine 3.

3.2. Grouping of Data
3.2.1. Common Beta Hypothesis Test

The TBF data have been collected for dumper engine subsystems of three engines
of three years duration are used to have pictorial representation in the form of the pie
chart [27–29]. To increase the number of TBF data, the TBF data of three same types of
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engines for each subsystem are grouped together. The grouping of data is validated by
using Common Beta Hypothesis (CBH) test [2].

In the CBH test, all three engines are under test. An intensity function of each
subsystem is given by Equation (1).

μq(t) = λqβq tβq−1 (1)

where q is the number of engines, i.e., 1, 2, and 3. The intensity functions of each engine is
compared by comparing the βq of each system. Let β̃q denote the conditional maximum
likelihood estimate of βq, which is given by [31–33]:

βq =
∑k

q=1 Mq

∑k
q=1 ∑

Mq
t=1 ln

[
Tq
Xtq

] (2)

βq is the shape parameter of each subsystem
K = 1, 2 and 3 is the number of engines.
Mq = number of subsystem failures of each engine.
Tq = total working hours of each engine.
Xiq is the i th time-to-failure on the q th engine system
The shape parameter β∗ average value is given by

β∗ =
M

∑K
q=1

Mq
βq

(3)

where,

M =
K

∑
q=1

Mq (4)

For calculation of yield statistics D,

L =
K

∑
q=1

Mq ln
(

β̃q

)
− M ln(β∗) (5)

a = 1 +
1

6(K − 1)

⌈
K

∑
q=1

1
Mq

− 1
M

⌉
(6)

Calculate the statistic D, such that:

D =
2L
a

(7)

The statistic D is distributed as a chi-squared random variable with a degree of
freedom (3 − 1) = 2. It is estimated using Equation (7). The chi-squared tables are referred
to to find the critical points.

3.2.2. CBH Test of Engine Subsystems

The data used to calculate the chi-squared value D for the CBH test are given in
Table 3. “Start” refers to the time the engine was first put into service, which is 0. The
cumulative time between failure hours of all subsystems of individual engines is calculated
(from the values given in Table 1). For a given engine, the maximum cumulative time of its
subsystem failures (between all five subsystems) is considered to be the life of the engine
during data collection. This is shown in Table 3 below the “End” event. “Failures” mention
cumulative TBF of individual subsystem taken from Table 1.
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Table 3. Common Beta Hypothesis test failure data in hours.

S.No.
The

Subsystems
Event Failures for Engine 1 Failures for Engine 2 Failures for Engine 3

1 Air supply

Start 0 0 0

End 9146 8340 8756

Failures
• 2655
• 3288
• 7400

• 422
• 1022
• 3058
• 4537

• 77
• 3662
• 5335
• 5981

2 Self-starting

Start 0 0 0

End 9146 8340 8756

Failures

• 1246
• 1290
• 2146
• 3741
• 4474
• 8387

• 423
• 608
• 1369
• 2566
• 3682
• 7132

• 1920
• 2717
• 3267
• 3458
• 4375
• 5970

3 Fuel supply

Start 0 0 0

End 9146 8340 8756

Failures

• 423
• 663
• 1188
• 2122
• 5978

• 96
• 412
• 1326
• 3362

• 112
• 1561
• 1851
• 2076
• 4904

4 Lubrication

Start 0 0 0

End 9146 8340 8756

Failures
• 2566
• 4844
• 5270

• 1584
• 2341
• 2579
• 3570
• 4486

• 855
• 1970
• 3473
• 4840
• 5830

5 Cooling

Start 0 0 0

End 9146 8340 8756

Failures
• 3827
• 6183
• 6760

• 1823
• 3000
• 3680
• 5104

• 170
• 278
• 497
• 1431
• 1760
• 3909

3.2.3. Meta-Analysis Test Steps

To check the level of heterogeneity meta-analysis test is used. It is a statistical technique
for combining findings from independent studies. In the present study, variability of the
failure data among the three engines for each subsystem is tested using Meta-analysis.
Variability means differences in statistical results obtained between the individual failed
data and pooled failure data for a particular subsystem [31–33].

In Table 4, the column “downtime hours” describes the total downtime hours of a
particular engine for the problem related to a specific subsystem mentioned at the top of
the table. The total run of the engine column indicates the total time in hours the engine
has worked.
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Table 4. CBH test values of all five subsystems.

Values of D

The Subsystems
Values

Numerically
Calculated

Software
Calculated

Lower Critical
Value

Upper Critical
Value

Results

Air supply 0.88 0.88 0.10 5.99 Passed CBH test
Self-starting 0.78 0.79 0.10 5.99 Passed CBH test
Fuel supply 0.26 0.22 0.10 5.99 Passed CBH test
Lubrication 0.21 0.21 0.10 5.99 Passed CBH test

Cooling 4.45 4.45 0.10 5.99 Passed CBH test

The outcome or Effect size (E.S) column is calculated [12] as

Downtime hours
total run o f engine

(8)

Standard Error (SE) for each engine is calculated using the formula,

SE =

√
Downtime hours

total run o f engine
(9)

Rate of outcome = Outcome × 100 (10)

The failure data for each subsystem has been weighed (w) against its variance, and it
is calculated using

w =
1

SE2 (11)

weighted effected size for each engine is a computed by-product of effect size and study
weight, i.e.,

(w × es) (12)

Other important variables, w × es2 is calculated for each engine required for calculat-
ing Q statistics. Q test measures the diversity of studies and t acts as a test. It is calculated
as the weight of the squared differences between the individual effects of the collected
failure data and the effects collected across the failure data using Equation (13).

The formula is

Q = ∑
(

w × es2
)
− ∑

(W × ES)2

∑ W
(13)

Finally, the level of heterogeneity, i.e., i2 is calculated using Equation (14). The i2 is a
percentage of the total variability between the failure data.

The formula is

i2 =
(Q − df)

Q
× 100 (14)

where “df” is degrees of freedom which is equal to n − 1, and where n is the number of
engines under study (in this case, it is 3 − 1 = 2).

4. Results and Discussions

After going through the recent studies on reliability analysis on small failure data, it is
evident that the CBH test and Meta-analysis test has not been seen as a possible solution for
small failure data. Although Meta-analysis has been considered for medical studies, it has
not been considered for machines. This paper uses CBH that has not been considered so far
as statistical treatment for a small amount of failure data. Additionally, the Meta-analysis
used in this paper has been used only in the medical field and not in the industrial sector.
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4.1. CBH Test

The values of D of the five subsystems were calculated using the CBH test. The
three engines together are shown in Table 4. Mathematically calculated values, as well
as software values, are shown in the table. The test values for all five subsystems falls
between the lower (0.10) and upper value (5.99). Hence, the TBF data for each subsystem
of three engines pass CBH suggesting pooling of TBF data for further analysis.

4.2. Meta-Analysis Test

It can be observed from Table 5 that the level of heterogeneity was a negative value for
self-starting, fuel supply, lubrication and cooling subsystems. Negative level of heterogene-
ity values can be treated as equal to zero [11]. The level of heterogeneity value for the air
supply subsystem is 2.23% which is very low [12]. The zero value for four subsystems and
the low level of heterogeneity value for one subsystem indicated that there is no variability
among the failure data of three engines for all the five subsystems. It suggests that all the
samples came from the same underlying distribution thereby supporting the result of the
CBH test, which allows the pooling of failure data of three engines for each subsystem.

Table 5. Level of Heterogeneity (i2) values of all five subsystems.

Air Supply Subsystem

Engines
Downtime

Hours
Total Run
of Engine

Outcome S.E. Rate W W × ES W × ES2
Level of

Heterogeneity
(i2)

1 18.5 30,641 0.000604 0.00014 0.06 50,749,777.35 30,641 18.5
2.23%2 26 27,857 0.000933 0.000183 0.09 29,846,632.65 27,857 26

3 21 29,520 0.000711 0.000155 0.07 41,496,685.71 29,520 21

Self–Starting subsystem

Engines
Downtime

Hours
Total run
of engine

Outcome S.E. Rate W W × ES W × ES2
Level of

Heterogeneity
(i2)

1 46.5 30,641 0.001518 0.000223 0.15 20,190,772 30,641 46.5 −170.23%
which is taken

as 0
2 47.5 27,857 0.001705 0.000247 0.17 16,337,104 27,857 47.5
3 42 29,520 0.001423 0.00022 0.14 20,748,343 29,520 42

Fuel supply subsystem

Engines
Downtime

Hours
Total run
of engine

Outcome S.E. Rate W W × ES W×ES2
Level of

Heterogeneity
(i2)

1 33 30,641 0.001077 0.000187 0.10 28,450,633 30,641 33 −452.77%
which is taken

as 0
2 25.5 27,857 0.000915 0.000206 0.09 23,515,529 2,1525.86 19.70
3 28.5 29,520 0.000965 0.000195 0.09 26,406,982 25,494.55 24.61

Lubrication subsystem

Engines
Downtime

Hours
Total run
of engine

Outcome S.E. Rate W W × ES W × ES2
Level of

Heterogeneity
(i2)

1 34 30,641 0.00111 0.00019 0.11 27,613,849 30,641 34 −52.67% which
is taken as 0

2 38.5 27,857 0.001382 0.000223 0.13 20,156,168 27,857 38.5
3 41.3 29,520 0.001399 0.000218 0.13 21,100,010 29,520 41.3

Cooling subsystem

Engines
Downtime

Hours
Total run
of engine

Outcome S.E. Rate W W × ES W × ES2
Level of

Heterogeneity
(i2)

1 25 30,641 0.000816 0.000163 0.08 37,554,835 30,641 25 −58.85% which
is taken as 0

2 28.1 27,857 0.001009 0.00019 0.10 27,616,101 27,857 28.1
3 32 29,520 0.001084 0.000192 0.10 27,232,200 29,520 32
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The failure data of all five subsystems of the engine showed consistency by confirming
CBH test. Additionally, meta-analysis test supports the result of CBH test which allows the
pooling of failure data of three engines. The pooled data for each subsystem are shown in
Table 6. This pooled data can be further successfully used for reliability analysis.

Table 6. Grouped TBF data for engine subsystems.

Sl. No. Subsystem TBF (hours)

1 Air supply 2655, 633, 4112, 422, 600, 2036, 1479, 77, 3585, 1673, 646.

2 Self-starting 1246, 44, 856, 2328, 3913, 759, 423, 185, 761, 1197, 1116, 3450,
1920, 797, 550, 191, 917, 1595

3 Fuel supply 423, 240, 525, 934, 3856, 96, 316, 914, 2036, 112, 1449, 290,
225, 2828

4 Lubrication 2566, 2278, 426, 1584, 757, 238, 991, 916, 855, 1115, 1503, 1367,
990, 2926.

5 Cooling 3827, 2356, 577, 1823, 1177, 680, 1424, 3236, 170, 108, 219, 934,
329, 2149.

4.3. Trend Test and Serial Correlation Test

The graph is plotted for all five subsystems of the engine between cumulative time
between successive failures and the cumulative number of failures using Grapher software.
The linearity of the graph will validate that collected data has no trend and they are
independent and identically distributed. Next, with TBF data, a plot between (i − 1) th
TBF and i th TBF is drawn for all five subsystems. The scattered plot will reveal whether
that the data have no trend and no serial correlation exists [7]. The grouped TBF data of
Table 6 is considered for plotting the graph. The trend test plots of five subsystems. They
are shown in Figure 4a–e.

  
(a) (b) 

Figure 4. Cont.
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(c) (d) 

 
(e) 

Figure 4. (a). Trend test of TBF data for air supply subsystem; (b). Trend test of TBF data for self-stating subsystem;
(c). Trend test of TBF data for fuel supply subsystem; (d). Trend test of TBF data for lubrication subsystem and (e). Trend
test of TBF data for cooling subsystem.

The plots in Figure 5a–e show the serial correlation tests of all five subsystems. From
the plots above, no trend is observed in air supply and lubrication subsystems as the plotted
points are in a straight line. The trend is seen for self-starting, fuel supply and cooling
subsystems. No serial correlation is found for all five subsystems due to the scattered
nature of the graphs (Figure 5a–e). Hence, self-starting, fuel supply and cooling subsystems
do not follow iid characteristics whereas the air supply and lubrication subsystem follows it.

4.4. Reliability Analysis

The grouped TBF data of self-starting, fuel supply and cooling subsystems are iden-
tified as not independently and identified distributed. The TBF data of the air supply
and the lubrication subsystems were distributed independently and evenly. The MLE
method is used to estimate the reliability and MTBF. PLP model is used for reliability
estimation of subsystems having non-IID data. The reliability is estimated at an arbitrary
value after 1000 h (for comparison) and also Mean Time Between Failure (MTBF) is cal-
culated. Table A1 shows the values of reliability and MTBF for all five subsystems (See
Appendix A).
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 5. (a). Serial correlation test of TBF data for air supply subsystem; (b). Serial correlation test of TBF data for
self-starting subsystem; (c). Serial correlation test of TBF data for fuel supply subsystem; (d). Serial correlation test of TBF
data for lubrication subsystem and (e). Serial correlation test of TBF data for cooling subsystem.

Figures 6 and 7 show the value of reliability and MTBF for all five subsystems. The
value of reliability is highest for fuel supply subsystems and lowest for self-starting sub-
systems. The lowest MTBF value is of Self-starting subsystem which is 1186.47 h and the
highest is of the air supply subsystem which is 1525.50.
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Figure 7. MTBF for five subsystems.

5. Conclusions

The problem associated with reliability analysis using a very small number of failure
data has been solved in this paper. This research work provides a guide which can be
used for reliability analysis of any repairable system and its subsystems when a very small
sample size of failure data is available. Using CBH, the consistency of failure data of the
system can be checked. Further to support the CBH test results, using meta-analysis the
level of heterogeneity can be found out for systems and subsystems. After passing the
above two tests, the very small failure data can be pooled. The pooled TBF data can be
effectively further tested for trend analysis.

By using the MLE method and PLP model reliability analysis can be carried out.
The values of reliability and MTBF are estimated. The value of MTBF can be utilized in
scheduling the maintenance of the engine. Additionally, the subsystem with the lowest
reliability, i.e., self-starting subsystems should be taken extra care of during maintenance.

The test values for all five subsystems falls between the lower (0.10) and upper value
(5.99). Hence, the TBF data for each subsystem of three engines pass CBH suggesting
pooling of TBF data for further analysis.

The zero value for four subsystems and the low level of heterogeneity value for one
subsystem indicated that there is no variability among the failure data of three engines for
all the five subsystems. It suggests that all the samples came from the same underlying
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distribution, thereby supporting the result of CBH test which allows the pooling of failure
data of three engines for each subsystem.

The failure data of all five subsystems of the engine showed consistency by confirming
the CBH test. Additionally, meta-analysis test supports the result of the CBH test which
allows the pooling of failure data of three engines.

The trend is seen for self-starting, fuel supply and cooling subsystems. No serial
correlation is found for all five subsystems and thus, self-starting, fuel supply and cool-
ing subsystems do not follow iid characteristics whereas the air supply and lubrication
subsystem follows it.

The value of reliability is highest for fuel supply subsystems and lowest for self-
starting subsystems. The lowest MTBF value is of the Self-starting subsystem which is
1186.47 h, and the highest is of the air supply subsystem which is 1525.50 h.

Due to reliability analysis and a reliability-based maintenance schedule, the downtime
and catastrophic failure of dumpers can be reduced.
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Appendix A

 

Figure A1. Dumper engine under study.
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Table A1. Reliability and MTBF for all five subsystems.

S.No. Defective Sub-System Reliability at 1000 h MTBF (hours)

1 Air supply subsystem 0.592 1525.50
2 Lubrication subsystem 0.618 1325.10
3 Self-starting subsystem 0.581 1186.47
4 Fuel supply subsystem 0.785 1263.62
5 Cooling subsystem 0.731 1456.51
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Abstract: Hepatic cancers represent an important worldwide health issue where surgery alone in
most cases is not a feasible therapeutic solution since most tumors are non-resectable. Despite targeted
therapies showing positive results in other areas of cancer treatment, in the case of liver tumors,
no low-risk delivery methods have been identified. Based on a risk assessment approach, this paper
proposes a technical solution in the form of a robotic system capable of achieving a reliable delivery
method for targeted treatment, focusing on the patient safety and therapeutic efficiency. The design
of the robotic system starts from the definition of the design constraints with respect to the medical
protocol. An analytical hierarchy process is used to prioritize the data correlated with the technical
characteristics of a new robotic system, aiming to minimize risks associated with the medical
procedure. In a four-phase quality function deployment, the technical solution is evaluated with
respect to the quality characteristics, functions, subsystems, and components aiming to achieve a
safe and reliable system with high therapeutic efficiency. The results lead to the concept of HeRo,
a parallel robotic system for the reliable targeted treatment of non-resectable liver tumors.

Keywords: risk management; safety assurance; medical parallel robot; robotic assisted cancer treatment

1. Introduction

One of the most lethal forms of cancer in the world is hepatocellular carcinoma (HCC),
which represents the most common primary malignant liver tumor. HCC represents more than 5% of all
cancer localizations on a world scale, being the fifth most common malignant localization in males and
the ninth in females [1]. The number of HCC deaths per year is almost equal to the incidence with 0.93/1
lethality index. The best curative options, involving the complete removal of the malignant cells from
the body, are surgical resection of the tumor and liver transplant [2]. However, only 20% of patients
with HCC can be subjected to one of these procedures due to various reasons related to the disease
(localization, size, vascularization, number of tumors, spread) or patient (general state, other associated
diseases, i.e., cirrhosis) [1]. When resection and liver transplant are not viable options, there are
multiple locoregional treatments (curative or palliative ones) which have been investigated in medical
centers all over the world, including TACE (trans-arterial chemoembolization), HDR (high-dosage
radiation) brachytherapy, RFA (radiofrequency ablation), and delivery of chemotherapeutic drugs
injected directly inside the tumor [3]. According to a team of clinicians from the “Iuliu Hatieganu”
University of Medicine and Pharmacy in Cluj-Napoca, the palliative locoregional treatments may
increase the survival time of the patient by “down-staging” the disease (and improving the patient
condition), allowing them to become liver transplant candidates. With all the recent advancements
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in nuclear medicine and medicinal chemistry, these targeted approaches have a high potential to
increase the patient survivability and quality of life, but they are hindered by a common constraint:
the placement accuracy of the therapy delivery tool is critical, with a maximum acceptable positioning
error of 2 mm which in most cases cannot be achieved manually [4]. According to [5] the combined
positioning error, assuming 1◦ angular positioning error and 1 mm Cartesian positioning error from
the zero compensation position (values that may be exceeded when the needle is inserted manually,
leading to worse outcomes), of a needle inserted in the patient body (with zero needle deflection) is
approximately 2.5 mm for 50 mm depth and approximately 5 mm at 200 mm depth.

An efficient solution that can overcome the human limitations in such techniques is represented
by the use of robotic systems which, based on careful preplanning of the procedure, enable tumor
targeting with increased accuracy [6]. The most promising results have been achieved in the treatment
of tumors located in the prostate [7], lung [8], or breast [9], but all studies reflected that the procedure
difficulty increases as the tumors are located deeper in the body (as the access path is longer and needle
orientation errors, especially, multiply) and is more complicated for organs with complex vascular
structure. In fact, the therapeutic feasibility of HDR brachytherapy for HCC treatment is not yet proven,
mostly due to the lack of accurate technical solutions capable of delivering the therapeutic agent in a
reliable manner which facilitates patient safety and decreases the overall risk of the medical procedure.

When considering the development of a technical solution designed to facilitate targeted treatment
of HCC, besides accuracy, other characteristics should be considered which are strongly related to the
patient safety. The technical solution (e.g., a robotic system) must comply with various technical and
medical requirements (e.g., the robot must be able to properly manipulate the medical instruments with
minimum risk of causing harm; some critical components must be sterilized and, therefore, modularity
is required, etc.). The accuracy and patient safety, considering the robotic assisted medical procedure,
should also be enhanced by using a real-time imaging technique. Since the proposed procedure is
minimally invasive, a pneumoperitoneum is created beforehand, and most likely, the liver position
will change (relative to the position defined preoperatively based on the volumetric data). For the
proposed technical solution, another robot will be used to guide an intra-operatory ultrasound probe
(I-US) to visualize the tumor and the needle insertion (a robotic solution is desired to have an optimum
positioning control between the I-US imaging plane and the needle trajectory). The end result (in the
form of a modular robotic system) must be validated by showing that the benefits (of the technical
solution) outweigh the risk, i.e., by using the robotic system for the medical procedure, the risk of patient
harm must be minimized, whereas the therapeutic efficiency must be maximized. Therefore, to design
a robotic system that complies with the safety and therapeutic efficiency needs, the authors identified
the risks associated with the medical procedure and designed the robotic system by using engineering
tools such as analytical hierarchy process (AHP) and quality function deployment (QFD).

Due to the promising outcomes in some areas of medial robotics (especially in percutaneous
procedures [4,6–9]) some medical experts (from the “Iuliu Hatieganu” University of Medicine and
Pharmacy in Cluj-Napoca) believe that future advances in surgery and oncology may come also from
the development of technical solutions that help the clinicians in performing the therapies. On the one
hand, present advances in nuclear medicine and medicinal chemistry may provide increasingly better
therapeutic agents, but on the other hand, technical solutions (e.g., robotic systems) may provide better
ways to deliver the therapeutic agents. In fact, there is a tendency of growth in the robotics market
towards non-industrial robots, which will attract more than 160 billion USD by 2021 [10]. One major
area of non-industrial robotics is healthcare robotics according to The European Commission [11]
through the Eurobotics AIBSL forum, which identified three major areas of interest where medical
robotics would play an important role and included them in the strategic development agenda for the
next five years. The first area is clinical robotics, defined as robotic systems that interact directly with
the patient supporting the “care” and “cure” processes. An important category of clinical robots is
represented by the surgical ones. Depending on the specifics of the application, the requirements for
surgical robots are expressed in terms of safety involving risk analysis and essential performances.
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The risk and effectiveness should be rigorously specified because a robotic device is a machine that can
hurt the operators and the patient, being in close contact with the latter.

This paper is structured as follows: Section 2 presents the risk management strategy for the
development of the technical solution. Moreover, by evaluating the associated risks of the procedure,
the medical and technical requirements for the proposed technical solution are defined. Section 3
presents an analytical hierarchy process which is introduced subsequently in a four-phase quality
function deployment which, in turn, leads to the HeRo conceptual design, showing also the advantages
of the design with respect to risk reduction. Section 4 presents the discussion of the obtained results,
and finally, Section 5 presents the conclusions and further work.

2. Materials and Methods

For the development of the technical solution (a reliable robotic system to facilitate precision
and safety) which may enable the use of HDR brachytherapy in HCC treatment, the ISO 14,971 [12]
standard for risk management in healthcare devices was followed. Figure 1 shows a flow chart which
describes the risk management for the early stages of device (or technical solution) development
(before prototyping).

Figure 1. Risk management flowchart.

The general strategy detailed in Figure 1 is to establish the limitations of the medical procedure
(as if it was performed manually) by analyzing the risks and to proceed to determine whether the
risks can be diminished or not by developing a technical solution design to facilitate the medical
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procedure. The process starts with the risk assessment, which has three main steps. The first step refers
to defining the intended use and the safety characteristics of the medical procedure, which in turn helps
to identify all the known and foreseeable hazards (which is the second step in the risk assessment).
At this point, it is important to distinguish between risks associated with the HDR brachytherapy
procedure (for the HCC therapy) and other health-related risks (e.g., diabetes imposes risks for the
surgical procedure but should not be considered in this analysis). The third step is the estimation of
the risk of each hazard, which serves at the ground base for the risk reduction in the risk management
process. Since HDR brachytherapy is not a feasible therapeutic method for HCC treatment (despite its
positive results in treating cancers in other body areas), a strong assumption is made which states that
by reducing the current risks associated with the procedure, HDR brachytherapy may become a viable
therapeutic tool for HCC; consequently, risk reduction is necessary. Assuming that the risk associated
with the medical procedure may be reduced by using a technical solution, the risk reduction process
(focused on implementing risk control measures and evaluating thereafter the residual risk) is related to
determining the medical and technical characteristics of the emerging technical therapeutic solution.
Therefore, a medical protocol for the technical solution (the medical characteristics) and the design
constraints (the technical characteristics) must be established. In the later stages of the risk management,
the technical solution is evaluated in order to determine if new hazards were introduced or if there exist
any modified hazards (hazards which were not eliminated but changed in various aspects). At the end,
if the overall residual risks are managed (in acceptable ranges), if the benefits outweigh the residual
risks, the risk management process ends with an acceptable medical device as a result.

2.1. Definition of the Medical Task

The first step in the risk management process (see Figure 1) is to define the intended use and
safety characteristics, i.e., the medical task. The proposed therapeutic procedure aims to achieve an
efficient and reliable treatment (which minimizes the risk) of non-resectable HCC tumors by taking into
account all the existing medical and technical constraints, focusing on three targeted treatment options:
HDR brachytherapy (using, e.g., a 1.6 mm gauge needle), intratumoral chemotherapy (using, e.g., a 1.6
mm gauge needle), and RFA (using, e.g., a 2 mm gauge needle). All these procedures are performed
percutaneously by inserting a specific needle through the skin, on a linear trajectory, inside the tumor.
In order to enable safe and accurate needle positioning, the authors propose the use of an intraoperative
ultrasound probe that can monitor in real time the needle placement. Thus, the procedure has three
main stages:

1. Preoperative: the patient is investigated using non-invasive molecular imaging techniques that
determine the tumor location and characteristics (size, density, proximity to blood vessels),
the most efficient treatment option, and possible safe needle trajectories;

2. Intraoperative: the therapy is performed in the operating room, by surgeons, using a total of three
medical instruments [13]: (1) an endoscopic camera, guided manually by a surgeon, that enables
the fast transfer of the intraoperative ultrasound (I-US) probe in the targeted area of the liver
and the continuous evaluation of the surgical field; (2) the I-US probe, guided by a robotic arm,
used to locate the tumor and monitor in real time the needle insertion in the liver parenchyma; (3)
the therapeutic needle(s), guided by a second robotic arm used to insert the needle on a linear
safe trajectory from outside the body into the live tumor;

3. Postoperative: the patient evolution is monitored by assessing the procedure results and the
patient evolution.

The procedure takes place in an operating room (Figure 2) where the necessary equipment
is provided: an operating table adjustable on three axes, a vital signals monitoring system
(respiration, cardiac rhythm), and anesthesiology equipment. On the lateral side the laparoscopic
tower is positioned, and in its proximity, the ultrasound tower.
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Figure 2. Typical operating room with the necessary medical equipment for the procedure.

2.1.1. Remote Center of Motion Concept for the Guiding of the I-US Probe

In 1995, Russell Taylor [14] introduced the concept of the remote center of motion (RCM), defining it
as the point of entrance in the abdominal cavity, a fixed point which should not be displaced during the
medical task. In minimally invasive surgery (MIS), it is used for instrument insertion into the body, and
for our procedure this concept is used for the manipulation of the I-US probe. Based on Figure 3, it can
be stated that with respect to point B (RCM), the instrument can achieve four independent motions:

• In spherical coordinates: two rotations that would position the point E on a surface of a “sphere”
with radius BE, one translation along the A-B-E segment or the longitudinal axis of the instrument,
and one rotation around the same axis;

• In Cartesian coordinates: three translations which enable the positioning of the point E in space
with respect to the point B and one rotation around the longitudinal axis of the instrument.

Figure 3. The remote center of motion (RCM) concept [14].

When it comes to technical solutions based on robotic systems, the RCM can be achieved in two
ways: by using the tissue around the insertion point as guidance or by mechanically constraining that
point in space. Additionally, a third category of RCM can be added that combines the simplicity of
the first with the capabilities of the second, namely, architecturally constrained. The first approach
imposes a simple mechanical construction at the anchor point of the instrument to the robotic guiding
device (in the form of a 2-DOF, degrees of freedom, passive Cardan joint), but its usability is limited
to the manipulation of instruments that do not come in intimate contact with the internal tissues
(e.g., a laparoscopic camera). The second approach, where the RCM is mechanically constrained,
imposes the use of an active 2-DOF joint at the anchor point of the instrument. This, in turn, determines
a much more complicated construction of the robotic device but it enables the manipulation of
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instruments that come into direct contact with the internal tissues (e.g., the surgical instruments).
The third approach imposes the development of the robotic device in such a way that without the
addition of any supplementary joint it would keep the location of the RCM fixed. Even though such an
approach will impose the use of a positioning mechanism that would adjust the position of the RCM in
space, an architectural constraint mechanism can be limited to only 2 DOF. This approach also has an
increased safety aspect because after the insertion of the instrument inside the patient, the positioning
mechanism will remain fixed, reducing to a minimum the pressure exerted on the tissue walls and
eliminating the risk of unwanted motions that could harm the patient.

2.2. Definition of Possible Hazards and Associated Risks

Steps 2 and 3 in the risk management process (see Figure 1) are intended to evaluate all the possible
hazards and estimate their occurrence risk. The possible hazards were determined (and detailed in
Table 1) with the help of nine clinicians from the “Iuliu Hatieganu” University of Medicine and Pharmacy,
Cluj-Napoca. Furthermore, each clinician filled in a questionnaire (see Appendix A) regarding the
severity and occurrence probability of each hazard, and the mean values are also presented in Table 1
(in Section 3, the risks associated with the robotic assisted procedure are reevaluated based on the
proposed technical solution). The severity and probability scales were derived from a typical risk
assessment matrix and the overall score definition was chosen to allow a simple yet comprehensive
evaluation of the risks (which was also used in [15]).

Table 1. Identified hazards and associated risks for the targeted therapy of hepatocellular carcinoma (HCC).

No. Hazard Associated Risk Severity *
Probability

**
Overall

Score ***

H1
Needle positioning error
beyond acceptable value

Linear positioning error (the error
remains constant at any depth) 85 60 150

Orientation positioning error (the
error multiplies with the depth) 90 95 195

Insertion depth error 80 50 130

H2
I-US (intraoperatory
ultrasound) probe
positioning error

I-US probe positioning does not respect
the predefined trajectory 50 50 100

I-US probe is pressing too hard on the
liver 90 70 160

I-US cannot reach the targeted area 40 40 80

H3
I-US entry port (RCM) is

not preserved
The I-US probe applies pressure on the

abdominal wall 100 80 180

The I-US probe movements are different
than intended 90 80 170

H4
The targeted area cannot be

reached

Incapability of performing the
procedure (the instruments cannot

reach the specific liver area)
100 50 150

Incapability of achieving the necessary
orientation for the I-US probe 60 45 105

Incapability of achieving the necessary
orientation for the therapeutic needle 95 45 140

H5

The operating table has to
be repositioned to ensure

better access to the targeted
area of the liver

The relative patient–robot position is
changed 100 60 160

H6
The patient state

deteriorates during the
procedure

The patient cannot be resuscitated in
due time 100 40 140

H7
The needle cannot be

viewed inside the liver
parenchyma

The needle insertion cannot be
monitored 90 90 180

H8 Improper sterilization Infection risk 80 10 90

* Severity scale: (0–29) minor, (30–89) moderate, (90–99) serious, (100) catastrophic; ** Probability scale: (0–29)
remote, (30–69) unlikely, (70–99) likely, (100) very Likely; *** Overall score: Severity + Probability.
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2.3. Identifying Risk Control Measures for the Treatment of Non-resectable HCC Tumors

The necessity of a technical solution that enables targeted treatments such as HDR brachytherapy
for HCC in a safe manner emerges from the relatively high probabilities of hazards (see Table 1).
A parallel robotic system is proposed as the technical solution, and to proceed further into its design,
an integrated medical protocol was developed with the aim to achieve the targeted treatment of
non-resectable tumors performed in the operating room as a minimally invasive procedure. This also
enables the definition of the technical characteristics of the robotic system and the specific motions for
the guidance of instruments involved.

The robotic assisted medical protocol for the MIS procedure is as follows:

A. Diagnosis and preplanning stage:

1. Diagnostic: This step refers to the patient’s preliminary analysis where it is determined
whether or not a hepatic tumor is non-resectable (the inclusion criterion). This step may
require various diagnosis methods such as medical imaging, biopsies, etc.;

2. Establishing the optimal treatment: The optimal treatment approach is established,
which may be targeted brachytherapy, targeted chemotherapeutic agent delivery, or RFA;

3. Trajectory definition: The coordinate points of interest (e.g., insertion and target points)
are established relative to an external system of markers (fixed on bone mark). The relative
positioning of the liver and the markers will not change once the carbon dioxide is insufflated.
Based on previously obtained imaging data, the I-US probe insertion coordinates are
determined together with the insertion coordinates of the needles, the needle trajectories,
and the target points. Note: Due to possible displacement of the liver, most likely from
the pneumoperitoneum described in point B.2. below (the difference in position from the
volumetric information and the position in the real-time procedure), in most of the cases
the predefined trajectories are only an idealization (some corrections are required during
the actual medical procedure).

B. Procedure Preparation stage:

1. Patient and robotic system registration: The patient is positioned on the operating table,
the markers are identified, and the robotic system is fixed such that the trajectories of
interest are in the central zone of its workspace. The mathematical correlation between
the robot coordinate system and the patient coordinate system is determined to achieve
patient–robot registration. Note: The robot–patient registration serves only as an initial
guideline; during the procedure, the clinician will actively search the tumor using the
I-US probe.

2. Pneumoperitoneum creation: The patient is prepared for the intervention by insufflating
CO2 up to a certain pressure that is maintained constant through the whole procedure.
The pressure will create an empty volume inside the abdominal cavity, enabling instrument
manipulation inside the patient body. The first incision is created to allow the insertion of a
10 mm trocar for the insertion of the laparoscopic camera (manually guided) which will
monitor the whole procedure.

C. The robotic assisted procedure:

1. Ultrasound probe insertion and tumor location: After the patient is prepared and the
laparoscopic camera is introduced, the robotic system guides the tip of the I-US probe such
that it touches the patient’s skin. At this point, the surgeons fix a 10 mm trocar, this being
registered as the RCM point for the I-US probe guiding module, and the US probe is
inserted until it makes contact with the hepatic parenchyma. After contact, the clinician
actively searches and locates the tumor, and by knowing the approach plane of the needle

35



Appl. Sci. 2020, 10, 52

trajectory and the tumor depth, the US probe is fixed in the same plane to enable needle
monitoring during its insertion into the hepatic tissue.

2. Therapeutic needle insertion: The needle guiding module positions the needle on the
defined trajectory (confirmed with possible minor corrections after tumor location with the
I-US probe). The needle is then positioned on the desired trajectory above the patient’s
skin, but as close as possible to it. After the trajectory validation, the robot will remain in
the current position and the needle will be inserted using the insertion module, monitoring
in real time the resistive force to avoid needle deflection;

3. Therapeutic needle insertion into the hepatic parenchyma: The needle is inserted
continuously up to the proximity of the hepatic parenchyma. When the needle touches
it, the trajectory is once more validated and the needle insertion into the hepatic tissue is
initiated. From this point on, the needle can be seen by means of the US probe that confirms
reaching of the target point.

• Multiple needle insertion: When the treatment requires the use of multiple needles,
those are inserted by following Steps C.2 and C.3 until all the required therapeutic
needles are inserted. The insertion order is established such that the I-US probe may be
repositioned without affecting the already inserted needles. Note: Since multiple needle
insertions increase the risk of hepatorrhagia, further research (in vivo) is intended to
determine the maximum number of needles allowed.

4. Delivery of the treatment: After all needles are inserted, their position is confirmed by the
medical personnel and the treatment is delivered. For brachytherapy treatment, the patient
should be transferred to a controlled room specialized for brachytherapy treatment;

5. Needle extraction and operating field check: After completing the procedure, the needles
are extracted either by the robot or manually (depending on the procedure). After extraction,
the operating field is checked for eventual hemorrhages;

6. Ultrasound probe extraction: After validating the position of all needles, the US probe is
retracted, followed by extracting the laparoscopic camera and suturing the incision points
of the two trocars.

The analysis of the possible hazards and their estimated occurrence, together with the procedure
protocol, led to the definition of the main design constraints for the new robotic system which should
be accounted for and implemented as risk control measures:

i. The needle guiding module must operate with high precision, due to the fact that the robot
must insert therapeutic needles within the tumors (a maximum error of 2 mm is accepted [3,4]);

ii. The robot workspace should have no singularities (robot configurations where the mechanism
is not well behaved, losing or gaining degrees of freedom). A singularity-free workspace may
be achieved through mechanism design;

iii. Since the medical procedure requires the manipulation of two medical tools (therapeutic
needles and I-US) in a distinct manner, the robotic system must have two independent modules.
The first module is designed to insert and manipulate the US probe, whereas the second

module is designed to insert the therapeutic needles. The relative positioning of the two
guiding modules is always known; therefore, while the clinician actively locates the tumor,
the needle will also adjust its position such that the needle targets the tumor;

iv. Because the procedure is to be minimally invasive, the US probe guiding module needs to
work based on the RCM concept;

v. Based on the liver size and the multiple trajectories that need to be used to target tumors
located in all areas of the liver, the robot should have workspace of 500(X) × 300(Y) × 500(Z)
and orientation capability of 90◦ around Y and 150◦ around Z;
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vi. A low weight is desired since the robot needs to be mounted on the lateral sides of the
operating table;

vii. The robotic system mounting needs to be adapted to the surgical environment as the procedure
takes place in an operating room;

viii. Due to the intimate interaction between the robot and the patient, safety is a critical aspect,
including also the required ability to quickly remove the instruments from the patient’s body;

ix. The robotic system should occupy a volume as small as possible in the operating room.

2.4. Implementing the Risk Control Measures for the New Technical Solution

In order to achieve the design of a safe robotic system for the treatment of non-resectable HCC,
a roadmap was developed and is presented in Figure 4. Starting with the design constraints, an AHP
(analytic hierarchy process) was performed in order to prioritize the importance of the technical
characteristics of the robot (with respect to enhancing safety and decreasing the associated risks).

 
Figure 4. Roadmap for the design of a new robotic system of the treatment of HCC.

In a four-phase QFD, an importance analysis of the measurable quality characteristics, functions,
technical subsystems, and individual robot components is performed along with the identification
of the unique selling points of the proposed solution. The design methods were implemented using
Qualica software [16]. Usually there are three scales for the numerical correlations among the analyzed
parameters in the QFD (1, 3, 9). However, the authors chose an extended scale (1, 3, 9, 27, 81) to
allow a better “resolution” of the analysis. Furthermore, the correlation number was chosen by
clinicians and engineers based on their professional experience: for QFD-I, the clinicians attributed
the correlation values based on the previously presented risk assessment (Table 1); for QFD-II, -III,
and -IV, the engineers attributed correlation values by closely considering fundamental theoretical
aspects (from mechanism science, such as kinematics and singularity analysis) and the predefined
robotic assisted medical protocol (see Section 2.4).

3. Results

The medical protocol and the design constraints led to the definition of 10 critical technical
characteristics of the robotic system which, through adequate implementation, should lead to a reliable
technical solution minimizing the risks associated with the medical procedure. An analytical hierarchy
process (AHP) analysis was performed to determine the relative importance and criticality of these
characteristics with respect to the medical task and is presented in Figure 5.

AHP imposes the completion of a comparison matrix where each of the technical characteristics is
compared in terms of importance with the others based on the specific requirements of the procedure.
A five-level comparison scale was used, while for the final sorted results, the most important item was
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made to be 3 (three) times more important than the least important one. The analysis revealed that
the procedure accuracy is the most critical characteristic of the robotic system, with weight 15.9% in
the final importance (see Figure 6). This is due to the fact that accuracy is actually the main technical
challenge of the medical procedure (i.e., the accuracy was the reason for appealing to robotic systems for
the medical procedure in the first place). The patient safety is the second most important characteristic,
with a weight of 15.1%. Safety is strongly correlated with the accuracy of the robotic system (since high
accuracy reduces the risk associated with the needle penetrating unwanted tissue), the mechanical
design of the robotic system (e.g., if the mechanism has no singularities, the safety in operation of
the robotic system is in turn increased), and the control reliability (e.g., fine-tuned intelligent control
may have faster reaction times than a human when anomalies are encountered during the medical
procedure). The stiffness of the structure had weight 14.4%, and it is again correlated with the accuracy
and safety (a perfectly stiff robotic device will have no parasite motion in its mechanical joints).
The motion repeatability of the robotic system had weight 13%, and it is correlated with the robotic
system accuracy and stiffness and, in turn, influences the safety in operation. The workspace of the
robotic system has a total weight of 10%, and it determines the spectrum of insertion trajectories and
RCM manipulation of the medical tools. All other factors (dimensions, number of components, etc.)
have less than 10% weight (individually); therefore, in simple terms, the robot design should focus
more on attaining the imposed accuracy level and safety rather than reducing its weight to a minimum
or having a high degree of universality.

Figure 5. AHP comparison matrix between the technical characteristics.

The technical characteristics defined for the robotic system were used as input data in the first
QFD matrix (Figure 7) and compared with the quantifiable quality characteristics (CTQs) which are
imposed by the design constraints. For a reliable solution, the patient safety, robotic system accuracy,
and stiffness have a combined weight of above 50% (in the Phase 1 QFD analysis of relative importance).
Following the critical correlations between these three characteristics and the design constraints shows
that the development of the robotic system should mostly focus on a kinematic design that ensures the
RCM architecturally, a kinematic design that has no singularities in the workspace, a technical solution
that ensures stiffness such that the targeting needle positioning error is less than 2 mm, and a fail-safe
control to facilitate the robotic system operation.
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Figure 6. AHP sorted results.

 
Figure 7. QFD Phase 1—Analysis of technical characteristics with quantifiable quality ones.

The next step in the analysis refers to the evaluation of the functions that the robotic system has
to achieve with respect to the quantifiable characteristics defined in the first step. The functions are
elaborated in Table 2 to underline their relevance in the robotic system design. The second QFD phase
is illustrated in Figure 8, and among the critical functions identified are those associated with the I-US
probe motion inside the body (RCM principle) and the needle insertion on linear trajectories (pair of
points), followed by decoupled positioning and orientation motions. For the medical procedure,
decoupled motions have the advantage that they increase the precision (e.g., while the medical tool is
orientated the position of the RCM is fixed, which, in turn, may reduce positioning errors).
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Figure 8. QFD Phase 2—The evaluation of the robotic system functions.

The next step in the analysis refers to the evaluation of the functions that the robotic system
has to achieve and the technical subsystems of the robotic system. Table 3 describes the subsystems
which compose the robotic system, whereas Figure 9 illustrates the Phase 3 QFD. The technical
subsystems which have the most influence in achieving the predefined accuracy and safety aspects are
the instrument mounting subsystems and the actuation subsystem, followed closely by the positioning
subsystems (for the XYZ positioning and YZ orientation).

Table 3. Defined subsystems for the robotic system.

Subsystems Observations

Operating table mounting solution
The subsystem fixes the robot base to the lateral side of the
operation table such that the two modules operate in
symmetry to each other.

Modular XYZ positioning subsystem Due to the decoupled motion, the subsystem positions the
insertion point or the RCM point in Cartesian space.

Modular YZ orientation subsystem
Due to the decoupled motion, the subsystem provides the
orientation of the medical tool (I-US probe or therapeutic
needle).

Instrument mounting subsystem
The subsystem provides the ability to mount the needle or
the I-US probe instrument on the robotic system, increasing
modularity.

Actuation subsystem The subsystem provides the motions (the DOFs) of the
robotic system.

Sensorial subsystem The system that allows fine control of the robotic system.

The final step in the analysis refers to the evaluation of the technical subsystems of the robotic
system and its component parts. Among the most important parts of the robotic structure (see Figure 10)
resulting from the analysis are the vertical and horizontal pulley boxes, the linear modules, and the

41



Appl. Sci. 2020, 10, 52

circular rails. All these components are closely related with the robot architecture and they affect the
accuracy of the robotic system as a whole.

 

Figure 9. QFD Phase 3—Robot subsystems analysis.

 
Figure 10. QFD Phase 4—Component analysis.
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3.1. HeRo Design Concept

Based on the medical protocol and the design constraints (the main purpose of which was to
minimize the risk while increasing the therapeutic efficiency and reliability), a set of QFD analyses
was conducted and the design of the HeRo parallel robotic system [17] emerged. Figure 11a
illustrates the HeRo concept augmented into the relevant medical environment (in the operating room),
whereas Figure 11b illustrates the CAD (computer aided design) of one guiding module. The following
components with their technical characteristics are highlighted:

• The parallel robotic system is composed of two modules, Module 1 and Module 2, which are
attachable by the operating bed (via modular attaching mechanisms) with each module being
capable of guiding the needle instrument or the I-US instrument;

• The main components of each module have a total of 5 DOFs and are composed of two
main mechanisms: one gantry mechanism with 3 Cartesian DOFs for the insertion point/RCM
positioning (having three linear drives) and one spherical mechanism with 2 orientation DOFs
for the needle trajectory or I-US probe manipulation (having two circular drives);

• The characteristics of the main components are defined by reliable motion with low friction due
to the 3 linear guides and 2 circular guides (with rails based on bearing balls and carriages) and
5 servo motors with high rotation motion resolution. Each module allows a quick plug/unplug of
the medical tools (needles, I-US probe) to facilitate fast intervention times, for the clinicians, in the
case of unexpected patient trauma.

  

(a) (b) 

Figure 11. The concept of the HeRo parallel robotic system: (a) augmented into the medical environment;
(b) CAD (computer aided design).

3.2. HeRo Concept Residual Risk Estimation

After the HeRo parallel robotic system design, the residual risks were evaluated together with
other forms of risk which may be introduced by the robotic system. Table 4 defines the risks as well as
their severity and probability.
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4. Discussion

Since targeted HDR brachytherapy and targeted chemotherapeutic agent delivery do not offer a
therapeutic solution by today’s standards, the implementation of a technical solution (which minimizes
the drawbacks of the medical procedure) may be valuable for the medical community. Based on the
estimated hazards of the medical task and their occurrence risks (see Table 1), the authors proposed
the HeRo concept (which resulted from an AHP and a multiphase QFD) and estimated the residual
risks thereafter (see Table 4). One question still stands, which is “do the benefits of the medical
procedure outweigh the residual risks?” The authors attempt to answer this from a technical point of
view (since there are no relevant medical data about the therapeutic index of HDR brachytherapy and
targeted chemotherapy for non-resectable HCC, one can only assume that these therapies would do
more good than harm due to their positive results in other areas of the body).

The safety aspect regarding HeRo robotic system exploitation refers to the mechanical aspects
of the robot and the control of the robot. Since the HeRo robotic system is composed of one gantry
mechanism and one spherical mechanism, it follows that the robotic system has no singularities in the
workspace. Moreover, throughout the QFD analysis, the correlation between various characteristics
(e.g., accuracy, stiffness, etc.) was emphasized. Consequently, choosing technical solutions that increase
accuracy (such as linear and circular guides and high-quality actuation solutions) has a positive impact
on the safety as well. The mechanical solutions together with state-of-the-art automation solutions and
sensors should lead to the development of a reliable experimental model for the HeRo concept.

The two modules of the HeRo parallel robotic system operate “mirrored” relative to each other,
a fact that provides multiple advantages. A variety of insertion points and trajectories may be achieved
since the insertion instruments (for the needle and I-US probe) may be mounted on either Module 1
or Module 2 of the robotic system. Furthermore, the simple design with decoupled motions has the
advantage that it allows optimal technical maintenance of the robotic system since the robot becomes
easy to assemble or disassemble.

From the three ways in which RCM manipulation may be achieved (see Section 2.1.1), following the
systematic development of HeRo, the authors chose a mechanical constraint using a spherical
mechanism which is located outside the patient body. Consequently, the RCM will be fully constrained,
and using this approach should imply lower overall errors (with respect to other technical approaches).
The errors for this case are correlated with the radius of the sphere. The advantage of a larger radius is
that it increases the orientation precision. The disadvantage is that the mechanism may suffer from
component elasticity, vibrations, and mechanical stress. However, the circular guides used for the HeRo
design are commercially available (well calibrated and with well-known mechanical characteristics),
and the elasticity of the material is insignificant.

As previously stated, assuming a 1◦ angular error and 1 mm linear error results in (combined) errors
of 2.5 mm and 5 mm at 50 mm depth and 200 mm depth, respectively (not taking into account any needle
deflection) [5], and according to [4], these values are not acceptable for the targeted treatments. Figure 12
illustrates point clouds to show the error distribution for the mentioned values in Cartesian coordinates
(where the points within the point clouds are not due to a random distribution but rather computed
with incrementally numerical data for the input). To evaluate the accuracy of the gantry mechanism
is straightforward since there is a one-to-one dependency between the Cartesian position of the RCM
point and the values of the gantry mechanism actuators. Each actuator changes only one coordinate in
the Cartesian space; therefore, the error in this case will be mainly due to the quality of the mechanical
design of the gantry subsystem. An example of this error propagation is illustrated in Figure 13a, where a
0.7 mm error is assumed (due to high-resolution motors and 2◦ maximum backlash due to the gearheads)
for the actuators of the gantry mechanism. These errors are, however, minimized by using the linear
guides in the robotic system design (which are well calibrated). The results are different when the errors
of the spherical mechanism are considered. Assuming a maximum ±2◦ (angular degrees) error as the
actuator backlash (which is appropriated for gearheads nowadays—see, for example, gearheads from
Maxon Motors [18]) the associated error (using belts and pulleys for the motion of the carriage on the
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circular guides, which inherently have no backlash) is approximately 0.34 mm (due to a radius of the
rails of 200 mm). This, in turn, will translate to an angular error at the center of the sphere of about 0.076◦
(which, by using the similar triangle rule, may double at a 200 mm insertion depth). Figure 13 shows this
error distribution at two insertion depths (100 mm and 200 mm), showing the accuracy of the HeRo
parallel robotic system (e.g., at 200 mm depth, the error is less than 1 mm).

  
(a) (b) 

Figure 12. Error dispersion depending on the targeted depth for the needle target point for different
insertion depths: (a) 50 mm depth; (b) 200 mm depth.

   
(a) (b) (c) 

Figure 13. Estimated error distributions for the needle tip using the HeRo robotic system: (a) linear
error; (b) angular error at 50 mm insertion depth; (c) angular error at 200 mm depth.

An interesting solution for needle insertion was presented in [19], where the authors used US
images to determine the target volume for the needle tip directly from the graphical user interface
which, in turn, served as input for the robotic system actuators. This strategy is also being considered
for the further development of the HeRo robotic system, specifically for the needle insertion, since
it may be valuable for the accuracy of the procedure. Consequently, the needle insertion should be
automated, as opposed to other medical robotic systems where the insertion of the needle is manual
(see, for example, the 7-DOF robotic system found in [20]). Moreover, the authors intend to use robust
control solutions (e.g., B&R automation [21]) to ensure high reliability, even though it has been proven
in the past that cheaper controlling solutions may also be used (see, for example, the medical robot
proposed in [22] which is controlled by a PI controller). It is also important to note that the HeRo is
designed to use commercially available medical tools (such as needles and the I-US probe), which were
also common in [23]. This approach (in contrast to implementing medical tools directly in the robotic
system) has the advantage of reduced development cost and increased modularity (since the robotic
system may be designed to work with multiple variants of the medical tools).
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5. Conclusions

Due to today’s medical standards, targeted therapies such as HDR brachytherapy and
chemotherapeutic agent delivery are not viable for the treatment of non-resectable HCC since the
procedure involves large amounts of risks. Through a process of risk management in accordance
with the ISO 14,971 standard for healthcare devices, the authors identified the risk associated with
the medical procedure and proposed a new technical solution in the form of a parallel robotic system
(the HeRo concept) which has the potential to facilitate patient safety during the targeted therapy of
HCC. For the design of the HeRo parallel robotic system the medical protocol was defined, which,
in turn, helped to establish the design constraints for the new robotic system. By considering the design
constraints (with respect to the medical requirements), an AHP analysis was conducted which led
to a four-step QFD. The resulting robotic system is composed of two identical independent modules
(for needle and I-US probe guidance) both having RCM manipulation imbedded due to the spherical
mechanism of the robotic system architecture, which has better precision of insertion (with respect
to other modalities of obtaining the RCM which are not fully constrained). Moreover, the robotic
system has no singularities and has decoupled motions between the positioning of the RCM and/or
insertion point and the orientation of the medical tool, and these two aspects should also contribute to
the overall risk reduction. The residual risks introduced by the robotic system were also evaluated,
showing a reduction in hazard occurrence and severity which validates the HeRo concept as a possible
technical solution for the treatment of un-resectable HCC. Future work aims to develop the first
experimental model of HeRo and continue the risk management through risk evaluation (e.g., defining
foreseeable sequences of events that lead to hazards) and optimization of the robotic system until it
reaches the maturity level of TRL5 (technology readiness level where the prototype is evaluated in
relevant environments), which will prepare the technical solution for technological transfer.
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Appendix A

The following questionnaire aims to assess the risks associated with the therapy of non-resectable
HCC by means of HDR brachytherapy or targeted chemotherapeutic agent delivery. The subject that
fills this questionnaire will not be required to provide any sensitive personal data; thus, confidentiality
is a priority.

1) Please state your medical expertise (surgeon, oncologist, etc.):
2) Please state your experience in the medical field (months/years):

Please fill the following table (according to your opinion strictly based on your experience in the
medical field) which describes possible hazards, their associated risks, and the severity of each hazard,
and please estimate their probability of occurrence. The following scales should be used as guidelines:
Severity scale: (0–29) minor, (30–89) moderate, (90–99) serious, (100) catastrophic. Probability scale:
(0–29) remote, (30–69) unlikely, (70–99) likely, (100) very likely.
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Hazard Associated Risk Severity * Probability **

Needle positioning error
beyond acceptable value

Linear positioning error (the error remains
constant at any depth)
Orientation positioning error (the error
multiplies with the depth)
Insertion depth error

I-US probe positioning error

I-US probe positioning does not respect the
predefined trajectory
I-US probe is pressing too hard on the liver
I-US cannot reach the targeted area

I-US entry port (RCM) is not
preserved

The I-US probe applies pressure on the
abdominal wall
The I-US probe movements are different
than intended

The targeted area cannot be
reached

Incapability of performing the procedure
(the instruments cannot reach the specific
liver area)
Incapability of achieving the necessary
orientation for the I-US probe
Incapability of achieving the necessary
orientation for the therapeutic needle

The operating table has to be
repositioned to ensure better
access to the targeted area of
the liver

The relative patient–robot position is
changed

The patient state deteriorates
during the procedure

The patient cannot be resuscitated in due
time

The needle cannot be viewed
inside the liver parenchyma

The needle insertion cannot be monitored

Improper sterilization Infection risk

Are there other hazards which are not mentioned in the above table? (If yes, please fill in the
table below.)

Hazard Associated Risk Severity * Probability **

References

1. Couri, T.; Pillai, A. Goals and targets for personalized therapy for HCC. Hepatol. Int. 2019, 13, 125–137.
[CrossRef] [PubMed]

2. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of
hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [CrossRef] [PubMed]

3. Inchingolo, R.; Posa, A.; Mariappan, M.; Spiliopoulos, S. Locoregional treatments for hepatocellular carcinoma:
Current evidence and future directions. World J. Gastroenterol. 2019, 25, 4614–4628. [CrossRef] [PubMed]

4. Podder, T.K.; Beaulieu, L.; Caldwell, B.; Cormack, R.A.; Crass, J.B.; Dicker, A.P.; Fenster, A.; Fichtinger, G.;
Meltsner, M.A.; Moerland, M.A.; et al. AAPM and GEC-ESTRO guidelines for image-guided robotic
brachytherapy: Report of Task Group 192. Med. Phys. 2014, 41, 101501. [CrossRef] [PubMed]

5. Birlescu, I. Studies Regarding the Safe Operation of Innovative Medical Parallel Robots. Ph.D. Thesis,
Technical University of Cluj-Napoca, Cluj-Napoca, Romania, 20 September 2019; pp. 31–32.

49



Appl. Sci. 2020, 10, 52

6. Pisla, D.; Galdau, B.; Covaciu, F.; Vaida, C.; Popescu, D.; Plitea, N. Safety Issues in the Development of
the Experimental Model for an Innovative Medical Parallel Robot used in Brachytherapy. Int. J. Prod. Res.
2016, 55, 684–699. [CrossRef]

7. de Battisti, M.B.; de Senneville, B.D.; Hautvast, G.; Binnekamp, D.; Lagendijk, J.J.W.; Maenhout, M.;
Moerland, M.A. A novel adaptive needle insertion sequencing for robotic, single needle MR-guided
high-dose-rate prostate brachytherapy. Phys. Med. Biol. 2017, 62, 4031–4045. [CrossRef] [PubMed]

8. Dou, H.; Jiang, S.; Yang, Z.; Sun, L.; Ma, X.; Huo, B. Design and validation of a CT-guided robotic system for
lung cancer brachytherapy. Med. Phys. 2017, 44, 4828–4837. [CrossRef] [PubMed]

9. Poulin, E.; Gardi, L.; Barker, K.; Montreuil, J.; Fenster, A.; Beaulieu, L. Validation of a novel robot-assisted
3DUS system for real-time planning and guidance of breast interstitial HDR brachytherapy. Med. Phys.
2015, 42, 6830–6839. [CrossRef] [PubMed]

10. Tractica. Robots Market Forecasts; Tractica: Boulder, CO, USA, 2018.
11. Multi Annual Roadmap, euRobotics AISBL. 2017. Available online: https://www.eu-robotics.net/cms/upload/

topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf (accessed on 26 November 2019).
12. ISO 14971—Medical Devices—Application of Risk Management to Medical Devices. Available online:

https://www.iso.org/standard/72704.html (accessed on 26 November 2019).
13. Vaida, C.; Al Hajjar, N.; Lazar, V.; Graur, F.; Burz, A.; Elisei, R.; Mois, E.; Pisla, D. Robotics in Minimally

Invasive Procedures: History, Current Trends and Future Challenges. In 6th International Conference on
Advancements of Medicine and Health Care through Technology—IFMBE Proceedings; Vlad, S., Roman, N., Eds.;
Springer: Singapore, 2019; pp. 267–273.

14. Taylor, R.H.; Funda, J.; Eldridge, B.; Gomory, S.; Gruben, K.; LaRose, D.; Talamini, M.; Kavoussi, L.;
Anderson, J. A Telerobotic Assistant for Laparoscopic Surgery. IEEE Eng. Med. Biol. 1995, 14, 279–287.
[CrossRef]

15. Tucan, P.; Vaida, C.; Plitea, N.; Pisla, A.; Carbone, G.; Pisla, D. A Risk-Based Assessment Engineering of a
Parallel Robot Used in Post-Stroke Upper Limb Rehabilitation. Sustainability 2019, 11, 2893. [CrossRef]

16. Qualica. Available online: https://www.qualica.net/software.html (accessed on 24 November 2019).
17. Vaida, C.; Pisla, D.; Plitea, N.; Gherman, B.; Tucan, P. Parallel Modular Robotic System for the Ultrasound

Intraoperatory Probe Guidance and the Manipulation of Instruments for the Treatment of Hepatic Tumors.
Patent Pending No. A01143/24.12.2018, 24 December 2018.

18. Maxon Motors. Available online: https://www.maxongroup.com/ (accessed on 24 November 2019).
19. Megali, G.; Tonet, O.; Stefanini, C.; Boccadoro, M.; Papaspyropoulos, V.; Angelini, L.; Dario, P. A

Computer-Assisted Robotic Ultrasound-Guided Biopsy System for Video-Assisted Surgery. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI, 2001; Springer: Berlin/Heidelberg, Germany, 2001;
Volume 2208, pp. 343–350.

20. Kettenbach, J.; Kronreif, G.; Figl, M.; Fürst, M.; Birkfellner, W.; Hanel, R.; Bergmann, H. Robot-assisted biopsy
using ultrasound guidance: Initial results from in vitro tests. Eur. Radiol. 2005, 15, 765–771. [CrossRef]
[PubMed]

21. B&R Automation. Available online: https://www.br-automation.com/ (accessed on 24 November 2019).
22. Mallapragada, V.G.; Sarkar, N.; Podder, T.K. Robot assisted real-time tumor manipulation for breast biopsy.

IEEE Trans. Robot. 2009, 25, 316–324. [CrossRef]
23. Fichtinger, G.; Fiene, J.P.; Kennedy, C.W.; Kronreif, G.; Iordachita, I.; Song, D.Y.; Burdette, E.C.; Kazanzides, P.

Robotic assistance for ultrasound-guided prostate brachytherapy. Med Image Anal. 2008, 12, 535–545.
[CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

50



applied  
sciences

Article

Approach to Risk Performance Reasoning with
Hidden Markov Model for Bauxite Shipping
Process Safety by Handy Carriers

Jianjun Wu 1, Yongxing Jin 1,*, Shenping Hu 1,*, Jiangang Fei 2 and Yuanqiang Zhang 3

1 Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China; jjwu@shmtu.edu.cn
2 Australia Maritime College, University of Tasmania, Launceston 7248, Australia; jiangang.fei@utas.edu.au
3 Faculty of Maritime and Transportation, Ningbo University, Zhejiang 315211, China;

zhangyuanqiang@nbu.edu.cn
* Correspondence: yxjin@shmtu.edu.cn (Y.J.); sphu@shmtu.edu.cn (S.H.)

Received: 31 December 2019; Accepted: 11 February 2020; Published: 13 February 2020

Abstract: An approach based on the hidden Markov model (HMM) is proposed for risk performance
reasoning (RPR) for the bauxite shipping process by Handy carriers. The unobservable (hidden) state
process in the approach aims to model the underlying risk performance, while the observation process
was formed from the time series of risk factors. Within the framework, the log-likelihood probability
was used as the measure of similarity between historical and current data of risk reasoning factors.
Based on scalar quantization regulation and risk performance quantization regulation, the RPR
approach with different step sizes was conducted on the operational case, the performance of which
was evaluated in terms of effectiveness and accuracy. The reasoning performance of the HMM
was tested during the validation period using three simulated scenarios and one accident scenario.
The results showed significant improvement in the reasoning capacity, and satisfactory performance
for numerical risk reasoning and categorical performance reasoning. The proposed model is able
to provide a reference for risk performance monitoring and threat pre-warning during the bauxite
shipping process.

Keywords: risk performance reasoning; hidden Markov model; Handy bauxite carrier; process safety;
performance evaluation

1. Introduction

Bauxite is abundant, totaling 30 billion tons globally in 2018, according to the data from the United
States Geological Survey (USGS). The natural distribution of bauxite is extremely uneven, mainly
concentrated in Africa, Oceania, South America, and Southeast Asia. China’s demand for imported
bauxite increased sharply from about 2.3 million tons in 2007 to 82.62 million tons in 2018 [1]. Panamax
and Handy carriers transport 90% of the bauxite via shipping [2]. Here, Handy carrier is the collective
term that refers to Handysize and Handymax bulk carriers. Handy carriers play an important role in
bauxite shipping, accounting for 48% of the total industry. Meanwhile, 74% of deaths in the industry
were linked to accidents involving Handy bulk carriers [3–6]. The liquefaction of bauxite during
transportation is an important cause of ship accidents, directly responsible for more than 80 casualties
of seafarers [7].

The basic reason for liquefaction is that the moisture content of bauxite exceeds the transportable
moisture limit (TML). Influenced by the effect of the ship’s stability and its cargo properties in a
complex shipping process, bauxite with a high moisture content carried by Handy carriers tends
to liquefy, which threatens the stability and safety of the ship. The bauxite performance, dynamic
ship stability, and maritime environment have important effects on the risk level of the carrier during
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the transportation process. Risk identification and monitoring can improve the capacity for risk
prevention on bauxite carriers. The study of risk reasoning of the transportation process based on
cargo information and uncertain weather and sea conditions may allow more time for an emergency
response, thus reducing the risk of loss or damage. A hidden Markov model (HMM)-based approach
is introduced here to reveal the factor and time correlations of the observation index and hidden risk,
thereby achieving risk reasoning for the bauxite transportation process.

The organization of this paper is as follows: recent studies related to bauxite liquefaction and its
risk reasoning are reviewed in Section 2. The research theory and the model for reasoning are presented
in Section 3. The model is applied to specific cases in Section 4, where the results are analyzed for
effectiveness and accuracy. Section 5 presents the analysis and discussion of this study, encompassing
scenario planning. Conclusions are drawn in Section 6.

2. Literature Review

2.1. System of Maritime Transportation

Maritime transportation is a complex process, which involves many factors such as human, ship,
environment, management, and cargo. In order to carry out risk reasoning for the transportation process,
it is necessary to determine any accident mechanisms related to cargo. Cargo has a complex correlation
with the other subsystems in the operation safety of a ship. For example, Li [8] studied the safety
evolution of seaborne dangerous chemicals under various uncertain conditions. The aforementioned
research paved the way for a new mode of operation safety research for specific cargo ships. Unlike
dangerous chemicals, cargoes that may liquefy are not inherently dangerous. Nevertheless, danger can
occur when cargoes start moving on the carrier. Ma [9] studied the shipping risk of ore concentrate
powder and revealed the accident mechanisms through risk identification of the system, with factors
including human, ship, environment, management, and cargo. Bauxite is different from ore concentrate
powder. The potential risk of bauxite liquefaction during shipping is more prominent. Seaborne
bauxite presents potential danger when interacting with the carrier in a specific environment, and it is
necessary to develop an approach to study the transportation safety of bauxite on the basis of a safety
system engineering method.

2.2. Risk of Cargo Liquefaction

• Effect of moisture content

There are many influencing factors for transportation accidents involving cargoes that may liquefy.
It is necessary to identify and monitor the accident factors according to the mechanism of cargo
liquefaction, the ship’s stability, and the marine environment. Shen [10] found that the actual moisture
content of the cargo must not exceed the transportable moisture limit (TML) in order to prevent
liquefaction. However, bauxite with an initial moisture content lower than the TML may still exceed
the TML and liquefy due to changes in temperature and humidity during the transportation process.
Wang [11] found that observable indexes such as saturation and compactness can be used as key
indexes to measure the degree of liquefaction. A higher moisture content or saturation increases the
risk of liquefaction. The initial saturated or unsaturated state of cargo is disturbed by internal and
external factors; thus, the actual moisture content of cargo exhibits temporal fluctuation. It is critical to
avoid an increase in moisture content during the process of cargo production, storage, loading, and
navigation of the ship [2]. In order to strengthen the control of moisture content in the loading and
post-loading stages, Popek [12,13] proposed that biodegradable thermoplastic polymer material be
added to the concentrate to absorb moisture from granular pores, thereby preventing slippage and
transfer of concentrate during storage and transportation. Altun [14] proposed that the application of
suitable chemical filter aids in the filtration process of concentrate production could effectively reduce
the water content of different mineral products to be 10%–15% lower than the TML. By reducing
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the initial moisture content of the cargo, the liquefaction resistance of the cargo during shipping can
be improved.

• Effect of weather or sea

Heavy weather and adverse sea conditions are the main cause of many accidents involving Handy
bauxite carriers. Once the impact of the external environment on the ship and cargo deteriorates
into force majeure beyond the ship’s disaster resistance [15], disaster eventually occurs. Therefore,
special attention should also be paid to the complexity and variability of the environment of a sea
route [16,17]. Air humidity increases the risk of liquefaction and movement of highly absorbent solid
bulk cargo [18]. Furthermore, seawater often sweeps over the ship deck in heavy weather conditions,
resulting in water penetrating cargo holds, which may increase the cargo moisture content and affect
the safety of the ship’s operation. Moreover, wind affects the speed and rolling angle of the ship [19].
In the case of random waves, especially on heavy seas, ships roll at large angles, which can easily
lead to capsizing [20,21]. At the same time, ship rolling leads to cargo shifting. The initial shifting of
cargo after liquefaction and the heeling moment of external wind and wave eventually lead to the ship
capsizing [22]. Ship acceleration and kinematic waves affect cargo stability [23]. The hull vibration
caused by rolling and machinery operation is not only harmful to the safety of the ship structure [24],
but it can also change the characteristics of the cargo on board [25], even aggravating the liquefaction
of cargo [26].

2.3. Risk Response for Shipping Process

At present, some achievements were obtained in the monitoring and reasoning of cargo liquefaction.
Ju [27] quantitatively assessed the risk of liquefaction and its impact on ship stability by analyzing
time-domain characteristics for different amplitudes and frequencies and initial saturations of cargo.
Based on the effect of liquefaction on the ship’s intact stability, Andrei [28] proposed a method to
measure the heeling moment and the probability of cargo shifting caused by liquefaction. Munro [29]
investigated the relationship between resistivity changes and pore pressure in an equivalent cargo hold
model to monitor cargo liquefaction risks. Daoud [30] established a dynamic model through a static
numerical simulation to monitor the ship movement posture and cargo state at all times, and studied
the nickel liquefaction mechanism under swell using a nonlinear model [31]. Liu [32] developed a
transport risk system framework for navigation safety in heavy weather in collaboration with the
China Meteorological Administration for ships carrying cargoes that may liquefy in different seas.
However, there are still gaps in risk monitoring and reasoning for bauxite carriers in current research
and practice. For bauxite shipping, strengthening risk management in the whole process of shipping
is critical.

2.4. Accident History of Bauxite Carriers

At present, bauxite is not formally listed in Group A (cargo that may liquefy) by the International
Maritime Organization (IMO). The international maritime community still has doubts about its
liquefaction characteristics. Depending on the particular circumstances of any given shipment,
it would appear that bauxite may come with the risk of liquefaction and shift during shipping, which
can cause a vessel to capsize at a moment’s notice. Fortunately, up until 2 July 2013, none of the
incidents resulted in losses to vessels or crew members, according to data from the North P&I Club.
However, on 2 January 2015, M.V. Bulk Jupiter with 46,400 tons of bauxite capsized and sank in strong
winds and swells off the coast of Vietnam, killing 18 crew members. The disaster of Bulk Jupiter,
a Handy bauxite carrier, aroused a series of responses related to risks of the bauxite shipping process.

IMO requested that the global bauxite industry undertake research into the behavior and
characteristics of bauxite cargoes during ocean transportation. From 14 to 18 September 2015,
the second meeting of the Subcommittee on Cargo and Container Transport (CCC) of the Maritime
Safety Committee approved CCC.1/Circ.2 to remind people of the potential risks of bauxite in maritime
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transport [33]. Considering that Handy carriers do not have a special structural design for cargoes that
may liquefy, IMO recommends that the captain, on the basis of experience and relevant certifications,
may refuse to carry the cargo if the carrying of such cargo may fail to ensure the absolute safety of the
voyage; if the captain decides to carry it, necessary measures must be taken to ensure the safety of
the vessel.

In recent years, the Global Bauxite Working Group (GBWG) designated by the IMO carried out a
series of research studies on bauxite properties. From 11 to 15 September 2017, the fourth meeting of the
CCC Subcommittee adopted CCC.1/Circ.2/Rev.1 in the draft amendment to classify certain bauxite as
cargo that may liquefy, submitting it to the Maritime Safety Committee for consideration [34]. The 2019
amendments of the International Maritime Solid Bulk Cargoes (IMSBC) code was adopted by the 101st
session of the Maritime Safety Committee. The new individual schedule for bauxite fines as a Group A
cargo is expected to be implemented on 1 January 2021.

2.5. Risk Performance Reasoning for Bauxite Shipping Process

According to the research of the GBWG and the authors, an atypical motion of the ship (wobbling)
may also be indicative of cargo instability. Extreme care and appropriate action must be taken, taking
into account the provisions of relevant IMO instruments when handling and carrying bauxite in
bulk. Bauxite may suffer instability due to its moisture content, resulting in dynamic separation and
formation of liquid slurry (water and fine solids) above the solid material, resulting in a surface effect
which may significantly affect the ship’s stability. If left unchecked, this movement of cargo has the
potential to further reduce the stability of the ship, and the risk of capsizing will significantly increase.
Based on the knowledge of bauxite and its carrier, Wu [35] carried out a risk simulation on the first stage
of the bauxite maritime transportation process using the Markov chain cloud model, and obtained
spatial correlation between transportation risk and ship positions. This allowed risk reasoning of the
transportation process of bauxite carriers to be achieved through combining with weather and sea
forecast information.

The hidden Markov model has high applicability in reasoning. Chen [36] proposed a hidden
Markov model (HMM) framework for modified analogue forecasting (MAF) of meteorological droughts
to improve reasoning capacity and performance for a time series of the standardized precipitation index.
Joshi [37] used the Baum–Welch algorithm to optimize the parameters of a hidden Markov model for
temperature forecasts to reduce root-mean-square errors and improve reliability. Wu [15] introduced
a hidden Markov model to analyze the causes of accidents involving ships carrying liquefiable
cargoes and found that environmental deterioration was a direct cause and cargo liquefaction was
a fundamental cause. This study laid the foundation for risk reasoning of the bauxite shipping
process. Fabbri [38] carried out navigation risk assessment using meteorological and oceanographic
(METOC) methods, which provided a useful reference for the risk reasoning of Handy bauxite carriers,
embodying the performance of cargo.

Based on the initial state of bauxite, the carrier, and the meteorological dynamics of the routing,
the risk reasoning of bauxite carriers can be realized using real-time maneuvering data as input. This
paper attempts to establish an HMM-based approach for risk performance reasoning, which aims to
determine cargo performance and ship posture.

3. Methods

3.1. Theroy of Hidden Markov Model

3.1.1. Hidden Markov Model

An HMM is a probabilistic model describing double stochastic processes [39] with parameters,
which include Markov processes of hidden states and observation processes associated with hidden
states. The process of hidden state transition is not observed directly. The change in hidden state can
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be inferred by observing the sequence of indexes. Objective indexes can be divided into observed
variables which are convenient for direct measurement and hidden variables which cannot be directly
observed. That is to say, the risk state of the hidden variable needs to be judged using observed indexes.
The application of HMM can reduce the dependence on experts’ subjective experience. There is a
hierarchical independent mapping relationship between these observed indexes and hidden variables.
The correlation process between the hidden risk state and the observed state in the model is shown in
Figure 1.

......S1 SmSjSiS2

O O OOO

Emission probability

Transition probability

Hidden state

Observation

Figure 1. Relationship between hidden states and observations in the hidden Markov model (HMM).

3.1.2. HMM Parameter Learning

The parameter learning algorithm is called the Baum–Welch algorithm [40], which iteratively
optimizes the parameters of the HMM. Let (Ω, F, P) be the probability space and {Yt}1 ≤ t ≤ T
and {Xt}1 ≤ t ≤ T be sequences of random variables of observable and hidden states, where
Xt : Ω→ S1, S2, . . . , Sm and Yt : F→ N or any set of possible states.

The specific implementation steps are as follows:
Step 1: In the given sample training space, the first observation sequence y = (y1, y2, . . . , yT)

is trained and the initial model parameters are re-estimated to obtain the model parameters
λ1 = (π1, A1, B1), where π1 stands for the distribution of hidden states, A1 is the transition probability
matrix, and B1 represents the distribution of observable states.

Step 2: The observation sequence y = (y1, y2, . . . , yT) is trained using the new re-estimated
parameters λ1 = (π1, A1, B1) to obtain the next new model parameters λ2 = (π2, A2, B2).

Step 3: Step 2 is repeated until the model converges. Using the three re-estimation equations
mentioned below, the initial parameters of the HMM model are updated from λ0 = (π0, A0, B0) to
λ = (π, A, B), satisfying P(y

∣∣∣λ) ≥ P(y
∣∣∣λ0).

The parameter re-estimation equations are as follows.

π′ = γ1(i) =
α1(i)·β1(i)∑m

i = 1 α1(i)·β1(i)
. (1)

at(i, j)′ =
ξt(i, j)
γt(i)

. (2)

bi(yt)
′ =

αt(i)·βt(i)∑m
i = 1 αt(i)·βt(i)

. (3)
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In Equation (1), π′ is the estimation of initial probability π, and it stands for the probability of the
hidden risk state Si at time t = 1; αt(i) represents the forward probability function of the observation
O = (y1, y2, . . . yt) at time t in state i, and βt(i) stands for the backward probability of the partial
observation sequence from time step t + 1 to the end. In Equation (2), at(i, j)′ is the estimation of state
transition probability at(i, j), and it stands for the quotient of frequency of the risk state transition
from state Si to Sj divided by the frequency of the hidden state transition from state si to others;
ξt(i, j) = P

(
Xt = Si

∣∣∣Xt+1 = Sj
)

is the probability of being in state Si at time t and state Sj at time t +
1, while γt(i) = P(Xt = Si) is the probability of being in state Si at time t. In Equation (3), bi(yt)′
is the estimation of observation probability bi(yt), and it stands for the quotient of frequency of the
observed state Oi from hidden state Si divided by the frequency of observation from the hidden state
Si.

3.2. The Application of Hidden Markov Model

3.2.1. Description of Bauxite Shipping

• Process Risk

The process risk is a dynamic characterization of the risk state at any time during the system’s
operation. It is the output of the coupling effect of uncertain (random) events under the influence of
risk factors [41]. The process risk of bauxite shipping describes the development and evolution of the
bauxite shipping system between the safety and accident subsystems of Handy bauxite carriers, where
bauxite continuously interacts with the traffic environment over time.

• Risk performance

The risk performance indicates the general status of the risk at a particular time, as well as the
properties and characterization of the mechanism of the risk variation. The performance introduced in
risk research highlights the temporal processes and spatial spread. Based on the severity of consequence
and response, the risk performance of a process is quantified and classified as normal, medium, high, or
uncontrolled. The responses of the four-state sequence are undesired intervention, partial intervention,
consistent intervention, and invalid intervention, respectively.

3.2.2. Risk Performance Transition of Bauxite Shipping

The factors of risk reasoning include static variables, dynamic variables, and voyage variables.
Once a bauxite carrier is identified as a convenient bulk carrier, its ship parameters mostly represent static
variables, such as ship age and ship technical status, while dynamic variables are environmental, such
as relative length of ship (Length overall (LOA)/wavelength), wave, current, wind, and temperature.
Voyage variables refer to bauxite attributes and ship maneuvering. These variables are the components
of the risk evaluation system, and a change in their index values is related to the degree of system risk.
However, this degree of risk cannot represent the degree of risk of the whole system. Through the
risk evaluation index (observation variable), the expression of the risk state is established to indirectly
show the level of total risk.

The elements in the structural model of risk reasoning for the bauxite shipping process involve
objective indexes of the cargo, ship, and environment. The transition process between the risk state
of the Handy bauxite carrier and the reasoning indexes constitutes an HMM. The requirements of
parameter input and output in the hidden Markov model and its operation mechanism are shown in
Figure 2.

56



Appl. Sci. 2020, 10, 1269

Hidden Risk Transfer Model for Bauxite Shipping Process by Handy Carrier
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Figure 2. HMM-based mapping of risk transfer for bauxite shipping process.

3.2.3. HMM-Based Approach to Risk Performance Reasoning

The risk reasoning approach in an HMM framework can be achieved in several steps: data
learning, modeling of HMM for risk reasoning, reasoning of risk performance, and performance
evaluation of reasoning. The flowchart of the proposed model is shown in Figure 3.
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Figure 3. Flowchart of the risk performance reasoning for bauxite shipping process.

Firstly, the risk factors of the bauxite shipping process were identified based on the accident
data of “M.V Bulk Jupiter”, i.e., the Report of the Marine Safety Investigation into the Loss of
a Bulk Carrier. The principal factors were obtained using principal factor analysis (PFA) from a
dimensionality reduction of the risk factor set. The risk classification criteria were established after
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scalar quantification of the principal factors. Based on the first 50 groups of operational data of a
Handy bauxite carrier, the HMM was trained using the Baum–Welch algorithm. After the steps of
feature extraction, dimensionality reduction using PFA, and scalar quantization, the last nine groups of
operational data were input as test data into the HMM to obtain the log-likelihood probability, which
was then used for similarity recognition and risk performance reasoning. Then, the reasoned risk
performance of each factor was compared with the test data from the last nine groups to evaluate
the performance of risk reasoning in terms of classification effectiveness, measurement accuracy, and
reasoning sensitivity.

3.3. Modeling of HMM for Risk Performance Reasoning

3.3.1. Principal Factor Analysis

Based on the risk identification of the risk of bauxite shipping process, a total of 15 risk
factors (RFs) were obtained for the three types of factors: bauxite, Handy carrier, and environment.
After experimental analysis of the coupling effect of the bauxite and Handy carrier under complicated
marine conditions, seven principal factors (PF) were selected from the RFs, including static factors,
voyage factors, and dynamic factors, for risk reasoning of the bauxite shipping process. System of
principal factors is present in Figure 4.
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Figure 4. System of principal factors for risk performance reasoning.

3.3.2. Scalar Quantization

• Factors and classification criteria

With the rapid development of big data, much more information in maritime safety needs to be
processed quickly. Studies on the quantitative risk analysis of ships are becoming more important [42].
Quantifying the factor values that can characterize the risk performance is helpful to explain their
impact on the bauxite shipping process. In order to facilitate the application of the original data in the
hidden Markov reasoning model, continuous values are discretized [43] and the risk grade is divided
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by the interval value for the quantitative factors. The other qualitative factors can be transferred into
grades, as shown in Table 1.

Table 1. Factors and criteria of risk reasoning for Handy bauxite carrier. TML—transportable moisture
limit, FMP—Flow moisture point.

Observed Factor Factor Value Normal Risk Low Risk High Risk Uncontrolled

Origin (P1) Risk property Better Good Bad Worse
Moisture (P2) Absolute value <0.8 × TML 0.8 × TML–TML TML–FMP >FMP
Vibration (P3) Intensity scales Weak General Strong Violent

Technology (P4) Reliability Better Good Bad Worse
Wind (P5) Beaufort Scale 1–3 3–6 7–9 >9
Wave (P6) Wave scale 1–2 3–4 5–6 >7

Wind angle (P7) Intersection angle 0–30 or 150–180 30–60 or 120–150 60–80 or 100–120 80–100

Here, the range of risk grade values is based on the consideration of facilitating seafarers to classify
and control the aforementioned risk indexes. Considering the complexity of ship maneuvering, it is
difficult to accurately determine the risk level in the risk range of continuity for crews. For example,
clear risk guidance is necessary for emergencies in Beaufort 8 wind. Although the risk level of the
index changes when the actual index value is at the critical value of the adjacent risk level, the variables
are still insufficient to achieve the degree of mutation in the total risk reasoning. When the risk level is
very high, a sudden change in some key indexes may lead to a significant increase in the total risk of
the ship, which highlights the need to control disaster-causing factors in bauxite shipping.

• Quantization regulation of factors of risk performance

Based on the risk scale criteria of principal factors, each grade risk is defined as a standard value
of 1–4, representing normal, low risk, high risk, and uncontrolled risk, respectively. After the total
risk value is obtained by quantization and combination of the risk performance of principal factors,
the total risk scale can be obtained by scalar quantization. The risk value belonging to any risk scale
interval can be defined as the standard value of risk. When the total risk value Rtε(i, i + 1], then we
accept its risk scale St = i + 1 at moment t, where 0 < i < N, 1 ≤ t ≤ T (see Figure 5).

0 1 432Rt=1.4

S=2Risk scale 

Risk value 

S=1 S=3 S=4

Figure 5. Quantization regulation of factors of risk performance.

3.4. Risk Performance Reasoning

3.4.1. Similarity Recognition

HMM parameters were trained using actual data of Handy bauxite carriers under normal
conditions, representing a better cargo state, satisfactory ship conditions, and a good environment.
Similarity recognition was performed using the Viterbi algorithm to obtain the maximum of
log-likelihood probability, which is expressed as follows:

LLPt = log P(Yt = O|λ), (4)

where LLPt is the log-likelihood probability of the observations {Yt} at the current time t under the
HMM of λ.

The next step is to detect the closest LLPt0 from the LLPt−max of the historical data and obtain the
risk performance at time t0. This function is expressed as follows:

Di f f (LLPt) =
∣∣∣log P(Yt = OFt|λ) − log P(Yt = OH |λ)

∣∣∣, (5)
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where Di f f (LLPt) is the difference between log P(Yt = OFt|λ) and log P(Yt = OH |λ),
log P(Yt = OFt|λ) indicates the max log-likelihood probability of the forecasted O at the current
time t under the HMM of λ, and log P(Yt = OH |λ) expresses the log-likelihood probability of the
historical O at the under the HMM of λ.

The series of Di f f (LLPt) was sorted in ascending order by the MATLAB function “[LLsort,
LLpos] = sort []”, from which the original element position was returned. Given n as the number of
steps, the n closest LLPt0 was obtained based on the n smallest Di f f (LLPt).

The above approach is called similarity recognition.

3.4.2. Risk Performance Reasoning of Factors

For each principal factor, the difference between the current risk value and the next reasoned
value is the same as the difference between the two adjacent risk values discovered using similarity
recognition. The reasoned value at time t + 1 can be obtained from the former risk value. The approach
can be expressed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F1 −HK = 1

N
∑N

n = 1

(
H(n)

k+1 −H(n)
k

)
, k ∈ [1, K − 1]

Ft − Ft−1 = 1
N

∑N
n = 1

(
H(n)

k+1 −H(n)
k

)
, t ∈ [2, T]

(6)

where T is the length of series reasoned, K is the length of historical series, N is the number of the
closest LLP of HMM for the carrier at the current time, F1 is the first value, HK is the last historical risk
value which is also the benchmark of risk reasoning, Ft is the risk value reasoned at time t, Ft−1 is the
risk value reasoned at time t− 1, H(n)

k is the n closest historical risk value compared with the LLPt of

the benchmark and Ft−1, H(n)
k+1 is the next historical risk value of H(n)

k .
Nevertheless, it must be noted that, if F1 −HK > 0, then the reasoned (forecasted) risk value Ft

grows linearly at every moment based on Equation (6); therefore, the output of every step is normalized
using the quantization regulation.

3.4.3. Risk Performance Reasoning of Ship

The reasoned risk value of principal factors and the total risk value were set as intervals of the
risk state value ranging from 0–4. The risk performance of principal factors was reasoned through a
quantization of the risk grade using scalar quantization regulation. The quantization regulation of the
risk performance can be used to gain the total risk performance reasoning at any future time.

Reg. 1: when the risk grade of the moisture content (K2) is 1, that is, SK2 = 1, the total risk value
of the bauxite carrier is Rt = Average(SK1 : SK7), and then the total risk grade St can be obtained using
quantization regulation.

Reg. 2: when the risk grade of K2 is 2, that is, SK2 = 2, and the risk grade of vibration (K3) or
wind (K5) is between 2 and 3, that is, 2 ≤ ( SK3 or SK5) ≤ 3, the total risk value of the bauxite carrier is
St = max(S3, Average(SK1 : SK7)).

Reg. 3: when the risk grade of K2 is 2, that is, SK2 = 2, and the risk grade of K3 or
K5 is between 2 and 3, that is, SK3 or SK5 = 4, the total risk value of the bauxite carrier is
St = max(S4, Average(SK1 : SK7)).

Reg. 4: when the risk grade of K2 is 3, that is, SK2 = 3, the total risk value of the bauxite carrier is
St = max(S3, Average(SK1 : SK7)).

Reg. 5: when the risk grade of K2 is 4, that is, SK2 = 4, the total risk value of the bauxite carrier is
St = max(S4, Average(SK1 : SK7)).
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3.5. Performance Evaluation of Reasoning

3.5.1. Effectiveness Evaluation

The effectiveness evaluation of the risk performance reasoning can be expressed using the degree
of bias (DOB) and degree of detection (DOD), defined as follows:

DOB = Fij − Fji =

∑4
i = 1

(
fi j − f ji

)
T

, (7)

DOD = Fii − Fji =

∑4
i = 1

(
fi j − f ji

)
T

, (8)

where i and j denote the ordinal values of the risk category, satisfying i and j ∈ (1, 2, 3, 4); T is the
length of series to be reasoned, and Fij is the relative frequency of the forecast risk category i while the
observed risk category is j (a non-i interger value), which can be calculated as the count of fi j occasions
in all four risk categories divided by the length of the reasoned series. Fji can be similarly obtained.
Fii is the relative frequency of the forecast risk category equal to the observed risk category i which
can be calculated as the count of fii occasions in all four risk categories divided by the length of the
reasoned series.

The degree of bias compares the number of times a risk category was forecast to the number of
times the risk category was observed. It indicates that the forecast categories were over-forecast or
under-forecast with a value greater or less than 0, respectively, while a value of 0 describes unbiased
forecasts. The degree of detection is the fraction of occasions when the risk forecast category occurred
for occasions when it was also forecast. This value represents the success rate for detecting different
risk categories and ranges from −1 as completely wrong to 1 as completely accurate.

3.5.2. Accuracy Evaluation

The accuracy evaluation of the risk performance reasoning is expressed using the root-mean-square
error (RMSE) and modified Nash–Sutcliffe model efficiency coefficient (MNSE) [36], defined as follows:

RMSE =

√√√
1
T

T∑
t = 1

(O(t) − F(t))2, (9)

MNSE = 1−
∑T

t = 1(O(t) − F(t))2

∑T
t = 1

(
O(t) −O

)2 , (10)

where O(t) and O are the observations and the mean values of the observations, respectively; F(t)
stands for the reasoned values, while T is the length of series to be reasoned.

RMSE is mainly used to represent the standard deviation of the differences between observations
and forecasts. The range of the RMSE lies between 0 and infinity. A value of 0 for the RMSE indicates
that the forecasts are as accurate as the mean of the observations, while bigger values show that the
reasoning model is worse than the observed expectation.

MNSE is used to measure the evaluation accuracy and is defined as one minus the sum of the
absolute squared differences between the observed and reasoned values divided by the sum of the
absolute squared differences between the observations and observed expectation. The range of the
MNSE lies between negative infinity and 1.0 (perfect match). A value of 0 for MNSE denotes that the
value reasoned is the same as the observed expectation, while negative values for MNSE show that the
reasoning model is worse fitted to the observation or explains relationships poorly compared to the
model defined using the mean value of observations.
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3.5.3. Sensitivity Evaluation

The data from the simulation scenarios and the accident scenario were used for a sensitivity
evaluation to judge the deviation of those scenarios from the normal state of bauxite shipping. The
deviation of the HMM-based risk reasoning approach is defined as the degree of sensitivity (DOS),
which is modified from the concept of the discrete degree of classification [44], in order to avoid invalid
measurements due to some LLPs being minus infinity. DOS is expressed as follows:

DOSi =
1
2
×

(
log Pmax(Oi|λ) − log Pmax(O0|λ)

log Pmax(Oi|λ) +
log P2nd max(Oi|λ) − log P2nd max(O0|λ)

log P2nd max(Oi|λ)
)
× 100 (11)

where log Pmax(O0|λ) and log P2nd max(O0|λ) are the maximum and the secondary maximum of LLP
under the HMM of the normal scenario, respectively, while log Pmax(Oi|λ) and log P2nd max(Oi|λ) are
the maximum and the secondary maximum of LLP under the HMM for the i scenario, respectively.
Furthermore, the maximum and the secondary maximum of LLP are the first and second values of the
LLP series listed in descending order.

DOS ranges from 0 to 100. As DOS approaches zero, the total performance becomes more normal.
A greater DOS value denotes greater deviation of the risk performance from the normal.

4. Results

4.1. Data of Handy Bauxite Carrier

4.1.1. Ship Parameters

In order to verify the approach to risk performance reasoning, two Handy bauxite carriers were
selected: one still in service, and another which previously sank. Their general parameters are listed in
Table 2.

Table 2. Parameter of Handy bauxite carrier.

Ship Name LOA Breadth Depth Service Speed Total Cargo Weight

M.V. Yuming 189.9 m 32.36 m 15.7 m 14.2 kn 42,700 t
M.V. Bulk Jupiter 189.99 m 32.26 m 17.9 m 14.5 kn 46,400 t

4.1.2. Operational Case

The No. 1509 voyage of M.V. Yuming carried bauxite from Guandan Port, Malaysia, on 28 July
2015. The weather at the loading port was fine a few days before arrival and during the loading
period. It took 10 days to reach the destination port of Laizhou, China. There was no water leakage in
the sewage well during the voyage of the ship, and the actual performance of the cargo was stable.
The annual mean wave height is 1.62 m and the average wave period is 6.62 s in the waters of the
Taiwan Strait [45]. Here, 94% of the wave lengths are less than 100 m, and 15% of them are between 70
and 100 m. During the voyage, the weather was good, the visibility was medium, the pressure was
stable, the temperature was 20–32 ◦C, and the meteorological wind and wave levels were 3◦–4◦. Wind
direction was mostly in the bow and stern direction. Except for the first day when the wind pressure
difference was as high as 7◦, the voyage flow pressure difference did not exceed 3◦.

4.1.3. Accident Case

M.V. Bulk Jupiter sailed from Guantan Port, Malaysia, to Qingdao, China. During the loading
period, the eastern coast of Malaysia suffered record-breaking rainy weather. The loading operation
was delayed repeatedly due to heavy rain. Rainfall on 21 and 23 December during the subsequent
loading periods was as high as 240 mm and 258 mm, respectively. After consulting the accident
investigation report [46], it was found that the total weight of bauxite in Bulk Jupiter’s voyage was
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46,400 tons, with an average water content of 21.3%. After sailing on 30 December, the sea weather
deteriorated gradually. On 31 December, the northeasterly wind was 6–7, the sea condition was 4–6,
and the average wave height was 2.2 m. On 1 January 2015, the northeasterly wind was 8, while the
wave height was 2.5–4 m. The swell direction was from the northeast (NE), the vessel’s route placed
the sea on the port bow as the vessel sailed east-northeast on a heading of 060◦. In the final moments
prior to sinking, the vessel’s speed was 4.3 knots.

4.1.4. Data Collection

The factors value of time series with length of 59 were from the 4-hour interval records of No. 1509
voyage in Logbook onboard M.V. Yuming. According to the criteria of risk reasoning for Handy
bauxite carriers, the risk performance rating of factors are obtained in style of PFA and FA, which is
shown in Figures 6 and 7. The first 15 groups of data of principle factor analysis of M.V. Yuming is set
as Scenario No.1. Scenarios No.2 to No.4 are simulated conditions based on the worse cargo condition,
unsatisfied ship condition and terrible environment respectively, and Scenario No.5 is an accident
condition based on the last voyage of M.V. Bulk Jupiter.

Figure 6. Data of normal scenario No. 1 (M.V. Yuming).

Figure 7. Data of scenario simulated and accident case (principle factor analysis (PFA)).
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4.2. Parameter Training

The approach to selecting 15 factors for risk performance was factor analysis (FA). The approach
to selecting seven principal factors for risk performance reasoning based on the bauxite model test
and FA with 15 factors was principal factor analysis (PFA). Both FA and PFA were used to establish
the HMM in order to reason the risk performance of bauxite shipping. In the process of parameter
learning, logarithmic likelihood values were used to represent the matched degree between parameters
and models. As the number of iterations increased, the matched degree tended to converge. The model
parameters obtained from the training were valid because they satisfied the local optimal characteristics
of the parameters.

Figure 8 indicates that the HMM tended to converge until the 37th and 34th iterations for PFA
and FA, respectively. Nine groups of data were used to test the HMM and get a converged likelihood.
Taking the PFA as an example, the trained and optimized HMM parameter was π = [1.0 0 0 0].

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000 0.0000 0.0000 1.0000
0.2936 0.2711 0.1408 0.2945
0.0000 0.0019 0.0000 0.9981
0.1460 0.2830 0.5710 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000 1.0000 0 0.0000
0.0006 0.9994 0 0.0000
0.6020 0.3474 0 0.0505
1.0000 0.0000 0 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Figure 8. Parameter training and validation of HMM for risk reasoning.

4.3. Selection of Approach to Reasoning

Taking the risk reasoning of M.V. Yuming as an example, the best approach to reasoning was
selected as shown in Figure 9.

The RMSE values indicate that the best forecast was performed with 3K (three steps and seven
principal factors). The MNSE values indicate that the best forecast was performed with 2F (two steps
and 15 factors).

4.4. Result of Reasoning

By using the reasoning approach for the risk performance of the factors, every factor was reasoned
within a risk grade boundary of 1–4. Risk grades were obtained for 15 factors (FA approach) and
seven principal factors (PFA approach). According to the abovementioned quantization regulation of
risk performance, the time series of the total risk performance of the bauxite shipping process was
obtained. Likewise, the same approach could be used to obtain the observed sequence of the total risk
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performance. Taking M.V. Bulk Jupiter as an example, the risk performance reasoning model based
on a three-step PFA approach was adopted. The first 12 sets of data were used to train the model
parameters, and the last three sets of data were used for reasoning and testing; the results are shown in
Figure 10.

Figure 9. Root-mean-square error (RMSE) and modified Nash–Sutcliffe model efficiency coefficient
(MNSE) with various combinations of numbers and step sizes.
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Figure 10. Comparison between calculated and observed risk performance of principal factors and the
total process of M.V. Bulk Jupiter.

The comparison with the observed risk performance shows that the reasoned risk performance
with seven principal factors was mostly accurate. The risk performance of the factors was transformed
into an overall risk performance using the quantification regulation. The last three periods of the
whole shipping process had the highest risk rating. In fact, the accident report showed that the actual
moisture content of bauxite severely exceeded the transportable moisture limit (TML), and the carrier
encountered strong winds and moderate swells along the coast of Vietnam. Consequently, capsizing
occurred. Therefore, the calculated risk was consistent with the actual situation. Therefore, the model
constructed is effective in forecasting risk performance for the bauxite shipping process.

4.5. Effectiveness and Accuracy

Figure 11 shows the comparison of the effectiveness evaluation of reasoning using the FA and PFA
approaches, where the evaluation was conducted on M.V. Yuming for the risk performance of a bauxite
shipping process. It can be seen that the calculated risk rating was completely consistent with the
observed risk rating, and the effectiveness of the performance reasoning was ideal. The effectiveness
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of the risk reasoning based on FA or PFA was also quantitatively evaluated using DOB and DOD.
The degree of deviation for the risk reasoning model was DOB = 0, indicating no deviation in the
reasoning for the four risk ratings. The degree of detection was DOD = 1, showing that the reasoned
risk rating was completely accurate.

Figure 11. Effectiveness evaluation of reasoning for risk performance.

Accuracy evaluation was conducted on the calculated nine-step risk performance matrix and the
actual observed risk performance matrix, as shown in Figure 12. The RMSE of reasoning based on the
FA approach was 0.336 on average with a maximum of 0.516 and a minimum of 0.0, while the RMSE of
the PFA approach was 0.36 on average with a maximum of 0.655 and a minimum of 0.0. The error of
reasoning was small; thus, the accuracy was better evaluated. The average of the MNSE calculated
using the FA approach was −0.459, ranging from 1.0 to −2.0. The average of the MNSE calculated
using the PFA approach was −1.20 with a maximum of 1.0 and a minimum of −4.40. The MNSE values
based on the two approaches were slightly smaller than zero; therefore, the reasoned performance was
slightly conservative due to the values being lower than the actual risk performance.

Figure 12. Accuracy evaluation of reasoning for risk performance.
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5. Analysis and Discussion

5.1. Sensitivity Analysis

Five groups of test data of the bauxite shipping process were selected for sensitivity evaluation.
Scenario No. 1 featured normal conditions based on the No. 1509 voyage of M.V. Yuming. Quantitative
analysis was carried out on the conformity of risk performance under each scenario. The sensitivity
function of the risk reasoning model established previously was used to obtain the degree of sensitivity
(DOS) for each scenario relative to normal scenario No. 1.

Table 3 indicates that the effects of scenarios No. 2 and No. 5 were relatively close, representing
the worst risk performance deviated from the normal scenario for bauxite shipping. Compared with
the FA-based DOS, the PFA-based DOS was more sensitive. The risk assessment and classification of
scenarios No. 2 and No. 5 were the best, with sensitivity values above 95, meaning that any abnormal
risk performance of bauxite shipping can be detected more accurately. The sensitivity of scenario
No. 4 was very small, showing that the model could not effectively distinguish the risk performance of
bauxite shipping using the benchmark model. When the environment was poor, the risk performance
of scenario No. 4 was consistent with that of normal scenario No. 1, and the risk was very low.

Table 3. Degree of sensitivity (DOS) of HMM for risk performance reasoning.

Scenario Scenario No. 2 Scenario No. 3 Scenario No. 4 Scenario No. 5

FA-based DOS 88.962 35.789 3.118 89.567
PFA-based DOS 96.234 80.398 0.001 96.854

5.2. Pre-Warning of Threat

The risk performance reasoning model constructed in this paper is based on the normal conditions
of cargo, ship, and environment for Handy bauxite carriers. The data of factors for scenarios No. 2 to
No. 5 were input into the HMM for risk performance reasoning based on Scenario No. 1, where the
log-likelihood probability of the output could provide a guide to abnormal risk monitor. A larger
log-likelihood would denote a greater probability of low risk performance. Figure 13 demonstrates the
log-likelihood value of 15 time series for scenarios No. 1 to No. 5.

Figure 13. Sensitivity evaluation of reasoning for risk performance.

The logarithm likelihood values of scenario No. 3 with unsatisfactory ship conditions and of
scenario No. 4 with a terrible environment were close to those of the normal scenario No. 1.
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The log-likelihood value of scenario No. 2 with worse cargo conditions more obviously deviated
from that of scenario No. 1 than that of Scenario No. 3 and Scenario No. 4, indicating that the risk
performance of the Handy bauxite carrier in scenario No. 2 was worse, and that the deterioration of
cargo with respect to ship conditions and the environment had a greater impact on the total safety of
the bauxite shipping process.

Scenario No. 5 had a more serious deviation from the normal condition. This deviation was more
significant than the worst scenario of single-category factors such as the cargo, ship, or environment,
which all contribute to the total risk of bauxite shipping process. It was found that the coupling effect
of risk factors produced a coupling risk, which aggravated the total risk performance during the
shipping process.

When using the PFA-based risk reasoning model to detect the performance, the log-likelihood
value of individual time points was negative infinite, indicating that the risk behavior at this time
was seriously inconsistent with the normal scenario. The risk performance at this time point can be
determined as the highest rating, which is unacceptable.

In scenarios No. 3, 4, and 5, the log-likelihood probability decreased gradually, showing that the
total performance deviated from the normal condition and deteriorated gradually, thereby achieving
the state monitoring and issuing a pre-warning threat during the shipping process.

5.3. Risk Performance Reasoning with Hidden Markov Model

• The influencing factors of the reasoning performance were obtained through the demonstration,
thereby providing a reference for optimizing the model parameters and the reasoning approach.
According to the results and analysis of the risk performance reasoning, increasing the training
data and identifying principal factors can improve the reasoning performance.

• Due to the great influence of cargo performance on the total risk performance of Handy bauxite
carriers, high-risk cargo factors should be avoided. In particular, when the size of a bauxite carrier
and the shipping environment or ship routing cannot be changed, the cargo quality related to
shipping safety must be closely monitored, and a moisture content audit must be performed
before loading, while rainproof measures should be ensured during loading and navigating.

• Compared with the effect of any single factor, the effect of the cargo, ship, and environment is
more significant, leading to a transition of the total risk performance of Handy bauxite carriers.
The process between subsystems is an important part of the shipping process risk control of Handy
bauxite carriers. In order to ensure safety of shipping, it is essential to respond to risks timely and
effectively based on accurate multi-source risk data, such as ship maneuvering, environmental
information, and dynamic cargo information from the water ingress alarm system and the radar
fluid-level meter fixed in the cargo hold. Therefore, it is essential to make full use of the Internet
of things and artificial intelligence to develop intelligent risk monitoring sensors and forecasting
equipment for shipping processes on Handy bauxite carriers.

• Based on the accurate historical data of principal factors and a more detailed classification of
risk performance, short-term process risk reasoning with high-quality can be realized. Detailed
shipping data of bauxite and Handy carriers include, but are not limited to, information from
the logbook, which can be used in parameter learning to obtain more accurate parameters of
the HMM. This will allow real-time monitoring and pre-warnings of cargo liquefaction and ship
stability for the navigator onboard and ship manager ashore.

• In total, 91% of the accidents on international routes caused by the liquefaction of solid bulk cargo
involve Handy carriers [47], which are usually between 80 m and 190 m in length. When a Handy
carrier navigates at sea with a wavelength of 90–150 m and the speed is close to the wave speed,
the ship ends up hogging and sagging, threatening the structural strength of the ship. The stability
of the ship is, thus, greatly reduced.

• If possible, Handy carriers with bauxite should avoid sailing in heavy seas. In the stormy season,
some special voyages of bauxite shipping could be conducted by larger bulk carriers or special ore
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carriers, which would have strong stability even when bauxite is liquefied. Appropriate working
conditions of the main engine and ballast water can reduce the vibration intensity in the cargo
hold, thereby reducing the risk of early cargo liquefaction, and obtaining earlier pre-warnings and
for a better response time.

6. Conclusions

The paper constructed a hidden Markov model of risk performance reasoning for bauxite shipping.
Based on the HMM parameters, a transfer matrix between observation variables and the hidden risk
status was obtained. The relationship between risk performance and principal factors was determined,
and quantification of the total risk performance was carried out. The model and algorithm of risk
performance reasoning was verified using cases of bauxite shipping processes. The effectiveness
evaluation indexes of the total risk performance, the accuracy evaluation indexes of the factor risk
performance, and the sensitivity evaluation index of the reasoning model were used to measure the
performance of the HMM-based risk reasoning approach.

Some conclusions are proposed. Firstly, the approach to risk performance reasoning with HMM can
effectively forecast the risk performance of bauxite shipping processes for Handy carriers. Furthermore,
increasing the amount of training data and identifying key risk factors can help improve reasoning
performance. The risk performance of cargo factors is critical to the overall risk state of Handy bauxite
carriers. Compared with the influence of cargo factors, the coupling effect of multiple factors has a
great influence, which leads to a leap in the overall risk scale onboard the ship. A benchmark model
of risk assessment for the bauxite shipping process was built to monitor the risk threat due to the
coupling effect of the cargo, environment, and ship; this is especially applicable to Handy carriers
which do not have a special structural design for cargoes that may liquefy.

As with the global bauxite industry undertaking research into the behavior and characteristics
of bauxite cargoes during ocean transportation, the crews and managers of Handy bauxite carriers
can be armed with the knowledge of process risk and risk control; therefore, the risk performance
analyzed in this paper is essential in relation to the bauxite shipping process, whose associated risk
remains to be officially recognized by the IMO. The output of this paper can support the captain with
quantitative risk decision-making, as opposed to previously used empirical decision-making, thereby
laying a foundation for risk pre-warnings and the process safety of bauxite cargo.
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Abstract: With the rapid development of high integrations in large complex systems, such as
aircraft, satellite, and railway systems, due to the increasingly complex coupling relationship between
components within the system, local disturbances or faults may cause global effects on the system
by fault propagation. Therefore, there are new challenges in safety analysis and risk assessment
for complex systems. Aiming at analyzing and evaluating the inherent risks of the complex system
with coupling correlation characteristics objectively, this paper proposes a novel risk assessment
and analysis method for correlation in complex system based on multi-dimensional theory. Firstly,
the formal description and coupling degree analysis method of the hierarchical structure of complex
systems is established. Moreover, considering the three safety risk factors of fault propagation
probability, potential severity, and fault propagation time, a multi-dimensional safety risk theory is
proposed, in order to evaluate the risk of each element within the system effecting on the overall
system. Furthermore, critical safety elements are identified based on Pareto rules, As Low As
Reasonably Practicable (ALARP) principles, and safety risk entropy to support the preventive
measures. Finally, an application of an avionics system is provided to demonstrate the effectiveness
of the proposed method.

Keywords: safety; coupling correlation; risk assessment; multi-dimensional theory

1. Introduction

In recent years, due to the complex correlation of components in complex systems, local faults
may have a great effect on the overall system by fault propagation [1–3]. Therefore, the safety and
risk analysis of such complex systems has attracted more and more attention. Safety analysis and
risk assessment aims to eliminate and control various hazards through the design system and take
preventive measures to prevent accidents that will cause personal injury, equipment damage, and task
failure during system operation. With the development of science and technology, a series of analysis
methods for evaluating system failures and risk events have been developed, especially in high-risk
fields such as aerospace, chemical, nuclear, and other industrial fields [4,5]. However, there are still a
number of safety problems in these methods caused by the coupling and correlation characteristics in
complex systems.

Traditional safety modeling and analysis methods are mainly based on the logical process of
induction and deduction to carry out system safety analysis. From the local characteristics of the
system or the direct relationship between internal components, these methods are used to find the root
cause of safety problems and carry out safety work such as analysis, verification, assurance, etc. Typical
analysis methods are Fault Tree Analysis (FTA) [6], Event Tree Analysis (ETA) [7,8], Failure Mode
and Effects Analysis (FMEA) [9–11], Hazard and Operability Analysis (HAZOP), Probability Risk
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Assessment (PRA) [12,13], etc. These methods have applications in nuclear power, chemical, and even
aerospace. Zhou, X. [14] proposed a modified FMEA based on Dempster–Shafer evidence theory to
analyze safety of aircraft turbine rotor blades. Rhee, Seung J. [15] used a Monte Carlo simulation and
cost-based FMEA to account for the uncertainties in: detection time, fixing time, occurrence, delay
time, down time, and model complex scenarios. Hyeon-ae Jang [16] proposed a time-dependent
probabilistic approach of FMEA to evaluate safety of automotive-manufacturing. Liu, Yang [17]
proposed an FTA-based method for risk decision-making in emergency response and applied it in
H1N1 infectious diseases. Cheraghi, M. [18] proposed a fuzzy multi-attribute HAZOP technique and
Analytic Hierarchy Process (AHP) to determine the weight of risk factors and to prioritize the hazards.

Moreover, with the development of the accident theory, a large number of modern methods for
safety analysis, such as Markov process, Analysis and Design Language (AADL), Petri nets, Bayesian
networks, etc., have also been invented. Feng, Q. [19] proposed the staged Bayesian failure model for
girth welds of a pipeline, using the tree-type accident theory and Bayesian survival analysis method.
Zhao, C. [20] applied the continuous-time Markov chains to analyze reliability of the reconfigurable
integrated modular avionics. Singh, P. [21] applied Petri nets to estimate performability to ensure
system dependability requirements and did the performance analysis of safety critical and control
systems that helps to estimate the risk. Baouya, A. [22] presented AADL based on model-driven
specification and probabilistic model checking to automatically analyze safety-based availability before
synthesizing the embedded software product. John McDermid’s team at the University of York in the
United Kingdom proposed the theory and analysis techniques of safety case [23–26] to confirm that the
system reaches an acceptable level of safety by establishing a correlation between safety requirements
and safety evidence. The Functional Resonance Accident Model (FRAM) [27,28] was proposed by Erik
Hollnagel, based on the principle of stochastic resonance in the system. However, the above safety
analysis methods mainly focused on a qualitative description and the study of coupling mechanisms,
and lack the quantitative analysis and evaluations of coupling and correlation relationships between
components in the system.

Internationally, aviation criteria ARP 4754 (A) [29,30] recommended by the American Society of
Automotive Engineers defines safety as a state where the risk is lower than the border risk. The domestic
GJB 900A defines safety as the ability of a product not to cause personal injury or death, system
damage, major property damage, or damage human health and the environment. For the measurement
of risk, risk model of probability and severity is the most widely used, such as the civil aviation
standard ARP 4761 [31], the US military standard MIL-STD-882E [32], the national military standard
GJB 900A, etc., FTA, FMEA, ETA, and other reliability and safety analysis methods all use the models
to evaluate risks. However, with the further understanding of the concept of risk, people have more
research and cognition of the elements involved in risk. Mazzuchi T A. [33] developed a relationship
for the probability of wire failure as a function of influencing factors in an aircraft environment in
order to analyze wire failure in aircraft. Cour-Harbo A L. [34] presented a method for quantifying the
probability of fatalities resulting from an uncontrolled descent of an unmanned aircraft conducting a
beyond visual line-of-sight (BVLOS) flight so as to solve the major challenges to make a realistic and
effective risk assessment of conducting operation of BVLOS. Li L. [35] proposed a new risk assessment
method based on the cloud model, aiming to make an effective risk assessment method for subway
operation by considering five aspects. Fayaz, M. [36] proposed an integrated risk index model based
on hierarchical fuzzy logic for underground risk assessment to avoid occurrence of accidents due to
underground facilities. Duan, Y. [37] presented a novel network security risk assessment approach by
combining subjective and objective weights under uncertainty to effectively evaluate computer network
security. Most of the above risk assessment methods focus on the analysis of accident probability and
severity, and lack of multi-dimensional safety risk assessment methods by taking time factor related
fault into consideration.

In view of the above considerations, this paper proposes a novel risk assessment and analysis
method for correlation in complex system based on multi-dimensional theory, aiming at analyzing
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and evaluating the risk of complex system considering the coupling correlation, so as to identify the
critical risk elements. Firstly, the formal description and coupling correlation analysis method of
the hierarchical structure of complex systems based on the typical task-function-resource model is
proposed, aiming to achieve a formal description of the coupling correlation between components
within complex systems, providing the foundation for and analysis and evaluation of risk. Moreover,
considering the three safety risk factors of propagation probability, potential severity, and propagation
time, a multi-dimensional safety risk theory is proposed, in order to evaluate the risk of each element
in the system effecting on the overall system from multiple perspectives. Furthermore, critical safety
elements are identified based on Pareto rules, ALARP principles, and safety risk entropy to support
the preventive measures.

The remainder of the paper is organized as follows. Section 2 describes the hierarchical model of
complex systems and coupling correlation between elements in system. In Section 3, multi-dimensional
safety risk theory and assessment are proposed. Section 4 introduces an application of avionics system.
Section 5 presents the conclusions.

2. Coupling Correlation of Complex System

In a general sense, the adjective “complex” describes a system or component that by design or
function or both is difficult to understand and verify [38]. Complex system is any system featuring a
large number of interacting components that is often difficult to understand, and hard to solve [39,40].
Compared with simple systems, complex systems are usually characterized by more components and
a high degree of coupling [41,42]. In the real world, there are a large number of systems that show the
characteristics of complexity, such as ecosystem, social organization system, complex social technology
system, complex electromechanical system, and complex equipment system [43–45]. The complex
system concerned in this paper is mainly located in the complex engineering technology system, that is,
a kind of complex system with engineering technology characteristics.

Coupling correlations refer to all kinds of association relationships between various elements
in the system due to task and function requirements, such as resource reuse, information transfer,
data sharing, etc. The strength of the coupling correlation can be quantified by the degree of coupling.
For complex systems, the internal coupling correlations are more complicated. The complex coupling
correlations increase the risk of fault propagation in the system. The establishment of a system model
based on the coupling correlation is the basis for analyzing and quantifying the risk of system for
fault propagation.

2.1. Hierarchical Model and Description of Complex Systems

2.1.1. Hierarchical Model

Generally, a system is built on the background of specific task requirements, that is, the use case
scenarios of the system are planned in advance through requirements analysis. These planned use case
scenarios can be defined as the task view or task layer of the system. Then, based on the system task
planning, the necessary functional decomposition is needed, namely, what basic functions need to be
established in order to achieve a specific task. Therefore, this paper defines such decomposed functions
as the functional view or function layer of the system. However, the tasks and functions are in the
design of the system logic layer. The final implementation still needs the support of the physical layer
such as typical computing, storages, communication resources, etc. In other words, the configuration
and mapping relationships from logic layer to the physical layer in the system require to be clarified
and completed. This paper defines these general physical resources as the resource view or resource
layer of the system.

In summary, when analyzing from the perspective of hierarchical decomposition, a hierarchical
system model based on the task-function-resource layer can be established [46–48]. Then, the coupling
relationships between the elements in the task-function-resource layer and between the layers
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can be considered. Based on the topology modeling theory, a topology model with elements
as nodes and correlation relationships as connections can be formed. Finally, combined with
hierarchical decomposition and coupling analysis, a complex system hierarchy model based on
task-function-resource architecture is synthesized, as shown in Figure 1 and different colors and shapes
are applied to present the elements in different layers for distinguishing. It is based on the assumption
that the number of tasks, functions, and resources is unchanged during the time and the correlation
relationships in systems are constant during the time.
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Figure 1. Typical task-function-resource architecture of complex systems. The straight lines represent
the coupling correlation of elements in the same layer, and dashed lines represent coupling correlation
across layers of elements in the different layers. Lines (connections) are bi-directional.

It is assumed that the destructive event of the system only originates from the fault of the element
of resource layer, and the element of function layer exists as the use of the element of resource layer
and the role of the caller. Therefore, in this paper, based on the fault propagation problem introduced
by resource layer, the fault of the resource element is the fault trigger point, and the function element
provides the propagation medium.

2.1.2. Formal Description of Hierarchical Model

For the task-function-resource hierarchy architecture of the system, from the perspective of the
element set, the system’s task element set, function element set, and resource element set can be
defined separately. The task element ti is a task unit established by the system requirement analysis.
It is supported by a series of basic function elements. The task element set T can be expressed as
a set of several task elements: T = {t1, t2, . . . , tk}. Similarly, the function element fi is the basic
function unit that supports the task implementation in the system. It is supported by a series of basic
resource elements. The function element set F can be expressed as a set of several functional elements:
F =

{
f1, f2, . . . , fm

}
. The resource element ri is a physical or logical unit that supports the realization
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of function in the system. The system resource element set R can be represented as a set of several
resource elements: R = {r1, r2, . . . , rn}.

Through the analysis of the system hierarchy architecture, in order to describe specific relational
information, adjacency matrix can be used for the most direct formal record, that is, the mapping
correlation matrix between task-function elements can be expressed as shown in Matrix (1).

Mt f = (Mt f
ij )k×m

=

t1

t2
...
tk

f1 f2 . . . fm⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mt f
11 Mt f

12
Mt f

21 Mt f
22

· · · Mt f
1m

Mt f
2m

...
. . .

...

Mt f
k1 Mt f

k2
· · · Mt f

km

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where Mt f
ij = 1 means there is a direct correlation between task element ti and function element f j;

Mt f
ij = 0 means no direct correlation.

Similarly, the function-resource element mapping correlation matrix can be expressed shown as
Matrix (2).

M f r = (M f r
ij )m×n

=

f1
f2
...

fm

r1 r2 . . . rn⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M f r
11 M f r

12
M f r

21 M f r
22

· · · M f r
1n

M f r
2n

...
. . .

...

M f r
m1 M f r

m2
· · · M f r

mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

where M f r
ij = 1 means there is a direct correlation between function element fi and resource element rj;

M f r
ij = 0 means no direct correlation.

If requiring to further record the cross-layer correlation relationship between task and resource
elements, we can define and obtain it by matrix operation Mtr = Mt f ×M f r shown in Matrix (3).
However, in general, the practical significance of this cross-layer correlation is not obvious. It is the
focus on the system design to clarify the software-hardware configuration mapping relationships from
functions to resources. Therefore, this paper will focus on correlations from functions to resources.

Mtr = Mt f ×M f r =

t1
...

tn

r1 · · · rn⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Mt f

11 ×M f r
11 + . . .M

t f
1m ×M f r

m1 · · · Mt f
11 ×M f r

11 + . . .M
t f
1m ×M f r

mn
...

. . .
...

Mt f
k1 ×M f r

k1 + . . .M
t f
km ×M f r

mn . . . Mt f
k1 ×M f r

k2 + . . .M
t f
km ×M f r

mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where Mtr
ij ≥ 1 means there is a direct correlation between task element ti and resource element rj.

Mtr
ij = 0 means no direct correlation.

2.2. Analysis of Coupling Degree

As the physical layer within the system, the form of coupling between the resource layer is also the
most obvious: on the one hand, this coupling may result from the functional/logical coupling generated
by each resource element serving the same function; on the other hand, it may also cause direct material
or information transfer between resource elements, thus introducing specific coupling relationships.
Both of the above two coupling forms can be defined as direct coupling. In contrast, a more complex
form of indirect association between groups of coupled resource elements is generated due to the
addition of the resource-sharing form. This form of coupling can be defined as indirect/cascading
coupling. In order to quantitatively describe the direct and indirect coupling relationships within the
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system hierarchy, this study takes the resource layer as an example to define and distinguish the two
coupling concepts.

1. Direct coupling degree matrix

The direct coupling degree is used to characterize the direct coupling relationship between
elements. It represents the situation where there are direct information interactions, material exchanges
or being occupied by the same other layer elements in the layer. The direct coupling degree matrix Cd

is represented in Matrix (4):

Cd = (Cd
ij)n×n

=

r1

r2
...

rn

r1 r2 . . . rn⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cd
11 Cd

12
Cd

21 Cd
22

· · · Cd
1n

Cd
2n

...
. . .

...
Cd

n1 Cd
n2 · · · Cd

nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where Cd
ij = 0 means no direct correlation; Cd

ij = 1 means correlation degree between resource element
ri and resource element rj is 1, that, is, the fault propagation from resource element ri to resource
element rj only needs 1 step.

2. Indirect coupling degree matrix

According to the fault propagation theory and cascading failure theory, the fault of a single
element will not only affect the element itself, but also cause a cascading effect by the correlation
between elements, causing the fault propagation and diffusion, and the more serious situation may
affect the normal operation of the whole system. Thus, simply establishing the concept of direct
coupling degree is insufficient to assess the potential risk introduced by multiple coupling correlation
of elements. In contrast, the indirect coupling degree is more efficient to reflect the degree of such risk.

The indirect coupling degree matrix Cc
ij characterizes the indirect coupling relationships between

elements, which is an extension of the direct coupling degree. It can be represented by the indirect
coupling degree matrix Cc as presented in Matrix (5).

Cc = (Cc
ij)n×n

=

r1

r2
...

rn

r1 r2 . . . rn⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cc
11 Cc

12
Cc

21 Cc
22

· · · Cc
1n

Cc
2n

...
. . .

...
Cc

n1 Cc
n2 · · · Cc

nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Based on the direct coupling degree matrix Cd, the shortest fault propagation path order is
calculated based on the Floyd algorithm, and that means the indirect coupling degree matrix Cc is
generated. Among them, the element Cc

ij in the matrix is a natural number. When Cc
ij = 0, it means

no indirect coupling relationship. When Cc
ij = n, it means that coupling correlation degree between

resource element ri and resource element rj is n, indicating that fault propagation from resource element
ri to resource element rj needs n steps.

The basic process of the Floyd algorithm is to start from the direct coupling matrix Cd and
recursively update n times. Each update process introduces a new transition node to compare whether
the path optimization can be achieved, until all nodes are introduced. Meanwhile, by using Floyd
algorithm, the shortest path matrix Cr is obtained, where Cr

ij represents the next resource element that
fault propagation from resource element ri to resource element rj should go through. Then, the order of
the resource elements which the shortest path of fault propagation from resource element ri to resource
element rj should go through can be deduced in turn.
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2.3. Related Factors of Risk

2.3.1. Potential Severity

Further, when a risk quantification is required in view of coupling correlations, a potential severity
matrix Sp can be established as Matrix (6):

Sp =
(
Sp

)
n×n

=

r1

r2
...

rn

r1 r2 . . . rn⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12

S21 S22
· · · S1n

S2n
...

. . .
...

Sn1 Sn2 · · · Snn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

The potential severity between resource elements will decrease non-linearly with the indirect
coupling degree (such as the impact of radio waves, noise, etc.), that is, due to the natural elasticity
and robustness of the system, the more propagation steps a potential fault needs, the lower its effect
will be. Therefore, a function relationship between the potential severity and the indirect coupling
degree is required to be established. According to the characteristics of the membership relationship
between the two factors in the shape of the graph. The typical mapping relationship function is
divided into normal type, Γ type, and Cauchy type [49–51], and each type is divided into smaller-type,
middle-type, and larger-type [52,53]. Because the degree of propagation effect decreases nonlinearly
with the coupling degree, a typical smaller-type of Cauchy type membership function [54,55] Sp(Cc) is
used for fitting in this paper shown in Equation (7).

Sp(Cc) =

⎧⎪⎪⎨⎪⎪⎩
1

1+a(Cc−c)2 , Cc > c

1, Cc ≤ c
(7)

where Cc represents the coupling degree (positive integer) which can be obtained from the indirect
coupling degree matrix. Sp is the potential severity; a and c are constant, and need to be
further quantified.

Moreover, the factor of safety critical degree SCG =
{
g1, g2, . . . , gn

}
of resource elements requires

to be considered. In other words, there is difference in the fault effect strength in different resource
elements. Therefore, the SCG factor needs to be added to the potential severity matrix, S = Sp × SCG
forming updated potential severity matrix S.

2.3.2. Propagation Probability and Propagation Time

Ideally, the original data should be determined by experimental statistics. However, in the case of
insufficient experimental data, the expected data can be obtained by simulation complex system or
modified by referring to expert experience. For example, for the direct propagation probability and
direct propagation time, from the perspective of related faults, based on the analysis of the fault effect
mechanism between elements, fault correlation effect (simulation) test work can be carried out. Based
on the test data, the frequency and average time of fault propagation are calculated and counted as the
expected values of the direct propagation probability matrix CP

d and the direct propagation time matrix
CT

d . In the paper, fault injection [56,57] is applied in the simulation system for a large number of times
(usually 10,000) to record and obtain average propagation probability and propagation time [58,59].
In general, if the sample size is large enough, then the average value can be regarded as the actual
value [60–62].

If fault propagation from resource element ri to resource element rj needs n steps (can be obtain
from the shortest path matrix), the probability of each propagation step is p1, p2, . . . , pn (can be obtained
from the direct propagation probability matrix CP

d ). Indirect propagation probability CP
c(i j) that fault in
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element ri to element rj can be calculated by Equation (8) and then indirect propagation probability
matrix CP

c is formed.

CP
c(i j) =

n∏
m=1

pm (8)

Similarly, if the fault propagation from resource element ri to resource element rj needs n steps
(it can be obtained from the shortest path matrix), and the time of each propagation step is t1, t2, . . . ,
tn (it can be obtain from the direct propagation time matrix CT

d ), indirect propagation time CT
c(i j) that

fault propagation takes from element ri to element rj can be calculated by Equation (9). Then indirect
propagation time matrix CT

c is formed.

CT
c(i j) =

n∑
m=1

pm (9)

3. Multi-Dimensional Safety Risk Theory

3.1. Multi-Dimensional Safety Risk Model

Generally, the safety risk of a system is measured in two dimensions, which is to quantify the
safety risk from two dimensions: the probability of a dangerous event and the severity of the potential
effect as shown in Equation (10). However, it is incomprehensive to fully characterize the safety risk
characteristics of the system by analyzing and evaluating safety risks from only two dimensions.
Therefore, this paper takes another dimension (propagation time) into consideration and proposes a
new theory to quantify safety risk from three dimensions: probability, severity and time, and compare
the effect weight and correlation of each element, in order to analyze and evaluate the safety risk
comprehensively. Combined with the risk concept of Terje Aven [63], the multi-dimensional safety risk
model can be formalized as presented in Equation (11).

R = f (P, S) (10)

where P is the probability of a dangerous event, S is the severity of the potential effect.

R = f (P, S, T) (11)

where P is the fault propagation probability, S is the potential severity, and T is the fault propagation time.

3.2. Calculation of Multi-Dimensional Safety Risk Model

Traditional risk assessment often adopts qualitative/semi-quantitative methods. The basic rule
is to classify risk factors into different levels qualitatively based on experience, and then refer to
the risk assessment model for semi-quantitative risk assessment. The core reason for using the
qualitative/semi-quantitative risk assessment method is that the risk factors have different dimensional
units, and the resulting risk values can be considered as the normalized result after empirical
classification. In GJB 900A [64], the probability and severity are classified into five levels and four levels,
respectively, and based on expert scoring method [65,66], different probability levels and severity levels
corresponding to different risk values are shown in Table 1.
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Table 1. Risk index matrix based on GJB 900A.

Probability Level
Severity Level

1 2 3 4

1 1 3 7 13
2 2 5 9 16
3 4 6 11 18
4 8 10 14 19
5 12 15 17 20

Therefore, risk value in Table 1 mapping to the two-dimensional space, then Euclidean distance
between the risk assessment point R(P, S) as shown in Figure 2 and the space origin is introduced to
calculate risk evaluation values as shown in Equation (12). a, b is the preference correction factors.

R =
2
√
(a ∗ P)2 + (b ∗ S)2 (12)

Figure 2. Traditional risk model space of risk factors.

According to Table 1, R = f (P, S), 1 = f (1, 1), 2 = f (2, 1), 3 = f (4, 1) . . . , and based on
Equation (12), ‘regress’ function in MATLAB is applied to implement multiple linear regression fitting,
obtaining a = 2.2, b = 3.3.

Similarly, based on the multi-dimensional safety risk theory, this paper uses a five-level risk factor
level method based on expert experience [67]. In other words, the degree from light to heavy is level 1
to level 5. Similarly, based on GJB 900A and expert scoring method, different risk values corresponding
to different propagation probability, severity and propagation time are obtained as shown in Table 2.
Therefore, the actual parameter values of the safety risk factor propagation probability P, potential
severity S, and propagation time T can be quantified into risk factor level.

Table 2. Risk index of multi-dimensional safety risk model.

Risk Probability Level Severity Level Propagation Time

1 1 1 1
1 2 1 1
1 1 1 2
1 1 2 1
1 3 1 1
2 2 1 2
. . . . . . . . . . . .
13 3 3 3
. . . . . . . . . . . .
25 5 5 5
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Based on multi-dimensional safety risk model, the risk factors P, S, T are mapped to the
three-dimensional space shown as Figure 3. The improved Euclidean distance between the risk
assessment point R(p, s, t) and the space origin is introduced to calculate risk evaluation values as
shown in Equation (13).

R =
2
√
[a ∗ f1(p)]2+[b ∗ f2(s)]2 + [c ∗ f3(t)]

2 (13)

where f1(p), f2(s), f3(t) are risk factor levels, which actual parameter values of risk factors P, S, T are
classified into, respectively; a, b, c is the preference correction factors. Based on Table 2 and Equation
(13), ‘regress’ function in MATLAB is applied to implement multiple linear regression fitting, obtaining
a = 2.2, b = 3.3, c = 2.7.

Figure 3. The three-dimensional model space of risk factors.

In addition, total safety risk value RN of the system and safety risk ratio ηi of element i is calculated
as shown in Equations (14) and (15).

RN =
n∑

i=1

Ri (14)

ηi =
Ri
RN
× 100% (15)

3.3. Evaluation of Multi-Dimensional Safety Risk Model

1. Pareto rule

The safety risk ratio characterizes the extent to which each element in the system contributes
to the total safety risk value of the system, and from this, the critical safety factor in the system can
be intuitively identified. According to Pareto rule [68,69], when distinguishing safety-critical links,
it can be considered that 80% of accidents are originated from 20% of dangerous sources. Therefore,
the value of the safety risk ratio ηi is sorted in descending order, and the first 20% of the values of ηi
are defined as safety-critical elements, and the last 80% are defined as general safety elements.

2. ALARP principle

As a project risk criterion generally adopted by domestic and foreign institutions, the principle of
ALARP (As Low As Reasonably Practicable) [70,71] sets two risk “boundaries” based on the value of
safety risk and related experience: intolerable boundary and negligible boundary [70], meanwhile
forming three risk region and level: serious risk region, ALARP region and negligible region, and the
top extreme of the principle is “accident”, and the bottom extreme is “safety”. ALARP rule is shown
as Figure 4. The values of the regions and boundaries of ALARP principle are all relative, and there
is no standard of definition [72,73]. In practice, expert evaluation method considering potential
severity, propagation probability, and propagation time can be applied to determine final values of
the boundaries [70,74,75]. Meanwhile, alternative values of the boundaries are also obtained. Finally,
compared and analyzed results of final values and alternative values of boundaries, final results can
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be determined. ALARP region means risk value in this region is reasonably acceptable. Therefore,
according to the ALARP principle, this paper classifies risk value of each element into different regions,
in order to make further research to propose preventive measurements, so as to reduce the risk level
and improve system safety.

Figure 4. As Low As Reasonably Practicable (ALARP) model.

3. Safety risk entropy

The essence of entropy [76,77] is considered as a measure of the degree of disorder in the system.
Currently, there are three typical definitions: Clausius entropy, Boltzmann entropy, Shannon entropy.
Therefore, in this paper, safety risk entropy is defined as the measure of all random factors in system
safety risk. Through the previous system’s safety risk analysis, it was found that the randomness
mainly derives from the probabilistic characteristics of each step of the fault propagation process.
Therefore, according to the definition of Shannon entropy, it is assumed that the fault propagation from
resource element ri to resource element rj requires n steps, and the probability of fault propagation
for each step is p1, p2, . . . , pn (based on the direct propagation matrix CP

d ). Then, based on Shannon
entropy, Hij means the effect of safety risk entropy that from resource element resource ri to the resource
element rj, as shown in Equation (16). In other words, Hij represents the uncertainty risk of fault
propagation from resource element ri to resource element rj. Moreover, total safety risk entropy Hi of
resource element ri, which effects the overall system calculated in Equation (17). The higher the safety
risk entropy value is, the greater the uncertainty risk caused by the fault in this element effects on the
system is.

Hij = −
n∑

m=1

pm ln pm (16)

Hi =
n∑

j=1

Hij (17)

According to comprehensive analysis on results of Pareto rule, ALARP principle and safety
risk entropy, aimed at the serious risk region and critical risk factors, the coupling correlations are
further researched to propose preventive measurements, so as to reduce the risk level and improve
system safety.
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4. Case Study and Discussion

4.1. Coupling Correlation of Complex System

4.1.1. Hierarchical Model and Description

1. Hierarchical model

Integrated modular avionics (IMA) [78,79] is a shared set of flexible, reusable, and interoperable
hardware and software resources. When integrated, these resources can form a platform that provides
service, designed and verified to a defined set of safety and performance requirements, to host
applications performing aircraft functions [80]. Based on ASAAC criterion [81], IMA system is
managed by a three-layer model: Aircraft Level (AL), Integration Area Level (IAL) and Resource
Element Level (REL). This three-level hierarchy of IMA is typical task-function-resource model.

On the basis of the initial design plan of a certain aircraft, this integrated modular avionics (IMA)
system contains three functions: navigation, communication, and integrated management; nine system
resources: GPM (Graphics Processing Module), GPM, DPM (Data Processing Module), DPM, SPM
(Signal Processing Module), SPM, PCM (Power Conversion Module), PCM, NSM (Network Support
Module). The IMA system task-function-resource mapping relationship and details of function-resource
mapping relationship are shown in Figure 5 and Table 3.

 

Figure 5. Task-function-resource model of the Integrated modular avionics (IMA) system. GPM,
Graphics Processing Module; DPM, Data Processing Module; SPM, Signal Processing Module; PCM,
Power Conversion Module; NSM, Network Support Module.

Table 3. Details of function-resource mapping relationship of the IMA system.

Function Layer
Resource Layer/Resource Serial Number

GPM DPM SPM PCM NSM

navigation 1, 2 3, 4 / / /
communication / 3, 4 5, 6 8 /

integrated management / 5, 6 7, 8 9

It is generally considered that in the IMA system, the top-level system functional entities are
unique, and it can be considered that there is only one element in the IMA system task set T = {t1},
which is aimed to complete the management of the entire IMA system to support the operation of the
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system. Therefore, it can be ignored. Then, function element set F =
{
f1, f2, f3

}
; resource element set

R = {r1, r2, . . . , r9}.
The safety critical grade SCG of the resource elements is divided into 3 levels (larger numbers

indicate higher SCG), and based on experience set SCG1×9 = {1, 2, 3, 3, 2, 1, 2, 2, 3}.
2. Coupling degree Matrix

Function-resource element mapping coupling matrix M f r is presented in Matrix (18).

M f r = (M f r
ij )3×9

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 0 1 0
0 0 0 0 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

4.1.2. Coupling Degree and Related Factors

1. Direct coupling degree matrix

Direct coupling relationship caused by different resource elements serving same function can be
presented by direct coupling degree matrix Cd shown in Matrix (19).

Cd = (Cd
ij)9×9

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

1 0 0
1 0 0
1 1 1

0 0 0
0 0 0
0 1 0

1 1 1
0 0 1
0 0 1

0 1 1
1 0 1
1 1 0

0 1 0
1 1 1
1 1 1

0 0 0
0 0 1
0 0 0

0 1 1
1 1 1
0 1 1

0 1 1
1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

2. Indirect coupling degree

Based on Floyd algorithm, fault propagation path order is calculated referring to direct coupling
matrix Cd, and then, the indirect coupling degree matrix Cc and the shortest path matrix Cr of fault
propagation are generated as shown in Matrix (20) and Matrix (21), respectively.

Cr
ij represents the next element that the fault propagation from element i to element j should pass.

For instance, fault propagation from element 1 to element 9, according to Cr
19 = 3, it can be inferred

that fault in element 1 will propagate to element 3 first. Then, according to Cr
39 = 5, it can be inferred

that fault will propagate from element 3 to element 5 second. Finally, according to Cr
59 = 9, it can be

seen that fault will propagate from element 5 to element 9. Therefore, the fault propagation path from
element 1 to element 9 is formed: 1→ 3→ 5→ 9. So, other fault propagation paths can be deduced
by analogy.

Cc = (Cc
ij)9×9

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

1 2 2
1 2 2
1 1 1

3 2 3
3 2 3
2 1 2

1 1 1
2 2 1
2 2 1

0 1 1
1 0 1
1 1 0

2 1 2
1 1 1
1 1 1

3 3 2
2 2 1
3 3 2

2 1 1
1 1 1
2 1 1

0 1 1
1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
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Cr = (Cr
ij)9×9

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 2 3
1 2 3

4 3 3
4 3 3
4 5 6

3 3 3
3 3 3
5 8 5

1 2 3
3 3 3
3 3 3

4 5 6
4 5 6
4 5 6

5 8 5
7 8 9
7 8 9

5 5 5
3 3 3
5 5 5

5 5 6
4 5 6
5 5 6

7 8 9
7 8 9
7 8 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

3. Potential severity

The potential severity effect is greatest when there is a direct coupling correlation relationship
between the elements (the coupling degree is 1), so the corresponding potential severity value is set to
1. In addition, when the coupling degree is 5 or above, the degree of effect is the smallest, and the
corresponding potential severity value is set to 0.1. Based on Equation (7), Sp(1) = 1

1+a(1−c)2 = 1,

Sp(5) = 1
1+a(5−c)2 = 0.1, as shown in equation set (22), and then solving equation set (22), obtaining

c = 1, a = 0.56. Then, based on Equation (7), obtaining Sp(2) = 0.64,Sp(3) = 0.31,Sp(4) = 0.17.
Therefore, potential severity matrix Sp is shown as Matrix (23).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1+a(1−c)2 = 1
1

1+a(5−c)2 = 0.1
(22)

S = (Sp)9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 1.00 1.00 1.00 0.64 0.64 0.31 0.64 0.31
1.00 0.00 1.00 1.00 0.64 0.64 0.31 0.64 0.31
1.00 1.00 0.00 1.00 1.00 1.00 0.64 1.00 0.64
1.00 1.00 1.00 0.00 1.00 1.00 0.64 1.00 0.64
0.64 0.64 1.00 1.00 0.00 1.00 1.00 1.00 1.00
0.64 0.64 1.00 1.00 1.00 0.00 1.00 1.00 1.00
0.31 0.31 0.64 0.64 1.00 1.00 0.00 1.00 1.00
0.64 0.64 1.00 1.00 1.00 1.00 1.00 0.00 1.00
0.31 0.31 0.64 0.64 1.00 1.00 1.00 1.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

In addition, considering the safety critical grade of the resource elements SCG1×9 =

{1, 2, 3, 3, 2, 1, 2, 2, 3}, and based on Equation (7), the final potential severity matrix S is presented
as Matrix (24).

S = S9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 2.00 3.00 3.00 1.28 0.64 0.62 1.28 0.93
1.00 0.00 3.00 3.00 1.28 0.64 0.62 1.28 0.93
1.00 2.00 0.00 3.00 2.00 1.00 1.28 2.00 1.92
1.00 2.00 3.00 0.00 2.00 1.00 1.28 2.00 1.92
0.64 1.28 3.00 3.00 0.00 1.00 2.00 2.00 3.00
0.64 1.28 3.00 3.00 2.00 0.00 2.00 2.00 3.00
0.31 0.62 1.92 1.92 2.00 1.00 0.00 2.00 3.00
0.64 1.28 3.00 3.00 2.00 1.00 2.00 0.00 3.00
0.31 0.62 1.92 1.92 2.00 1.00 2.00 2.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)
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4. Propagation probability

Fault injection is applied in simulation of the IMA system for 10,000 times, and the direct
propagation probability matrix CP

d and the direct propagation time matrix CT
d are obtained as shown in

Matrix (25) and Matrix (26).

Cp
d = (Cp

d)9×9
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 1.0 0.8 0.9 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.8 1.0 0.0 0.0 0.0 0.0 0.0
0.8 0.8 0.0 1.0 0.8 0.7 0.0 0.9 0.0
0.9 1.0 1.0 0.0 0.8 0.8 0.0 0.7 0.0
0.0 0.0 0.8 0.8 0.0 1.0 0.9 0.7 0.9
0.0 0.0 0.7 0.8 1.0 0.0 0.7 0.8 0.9
0.0 0.0 0.0 0.0 0.9 0.7 0.0 0.8 1.0
0.0 0.0 0.9 0.7 0.7 0.8 0.8 0.0 1.0
0.0 0.0 0.0 0.0 0.9 0.9 1.0 1.0 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

CT
d = (CT

d )9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 0.5 0.7 0.6 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.8 0.4 0.0 0.0 0.0 0.0 0.0
0.7 0.8 0.0 0.6 0.7 0.7 0.0 0.9 0.0
0.6 0.4 0.6 0.0 0.8 0.7 0.0 0.8 0.0
0.0 0.0 0.7 0.8 0.0 0.5 0.6 0.7 0.4
0.0 0.0 0.7 0.7 0.5 0.0 0.7 0.5 0.6
0.0 0.0 0.0 0.0 0.6 0.7 0.0 0.6 0.5
0.0 0.0 0.9 0.8 0.7 0.5 0.6 0.0 0.8
0.0 0.0 0.0 0.0 0.4 0.6 0.5 0.8 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

where the unit in CP
d and CT

d is percentage (%) and second (s), respectively.
Based on direct propagation probability matrix CP

d , referring to propagation path, indirect
propagation probability is calculated by Equation (8). For example, fault propagation path from
element 1 to element 9 is 1→ 3→ 5→ 9. The propagation probability from element 1 to element 3,
and element 3 to element 5, and element 5 to element 9 is 0.8, 0.8, 0.9, respectively, based on CP

19 = 0.8,
CP

39 = 0.8, CP
59 = 0.9 in the direct propagation probability CP

d . Then, fault propagation probability from
element 1 to element 9 is 0.8 × 0.8 × 0.9 = 0.576. Similarly, whole indirect propagation probability
matrix CP

c is formed as shown in Matrix (27).

Cp
c = (Cp

c )9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 1.00 0.80 0.90 0.64 0.56 0.576 0.72 0.576
1.00 0.00 0.80 1.00 0.64 0.56 0.576 0.72 0.576
0.80 0.80 0.00 1.00 0.80 0.70 0.72 0.90 0.72
0.90 1.00 1.00 0.00 0.80 0.80 0.72 0.70 0.72
0.64 0.64 0.80 0.80 0.00 1.00 0.90 0.70 0.90
0.56 0.56 0.70 0.80 1.00 0.00 0.70 0.80 0.90
0.576 0.576 0.72 0.72 0.90 0.70 0.00 0.80 1.00
0.72 0.72 0.90 0.70 0.70 0.80 0.80 0.00 1.00
0.576 0.576 0.72 0.72 0.90 0.90 1.00 1.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

5. Propagation time

Similarly, based on direct propagation time CT
d , referring to propagation path, indirect propagation

time is calculated by Equation (9). For instance, fault propagation path from element 1 to element 9 is
1→ 3→ 5→ 9. The fault propagation time from element 1 to element 3, and element 3 to element 5,
and element 5 to element 9 is 0.7, 0.7, 0.4, respectively, based on CT

19 = 0.7(s), CT
39 = 0.7(s), CT

59 = 0.4(s)
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in the direct propagation time CT
d . Then propagation time from element 1 to element 9 is 0.7 + 0.7 + 0.4

= 1.8(s). Similarly, the whole indirect propagation time matrix CT
c is formed as shown in Matrix (28).

CT
c = (CT

c )9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 0.5 0.7 0.6 1.4 1.4 2.0 1.6 1.8
0.5 0.0 0.8 0.4 1.5 1.5 2.1 1.7 1.9
0.7 0.8 0.0 0.6 0.7 0.7 1.3 0.9 1.1
0.6 0.4 0.6 0.0 0.8 0.7 1.4 0.8 1.2
1.4 1.5 0.7 0.8 0.0 0.5 0.6 0.7 0.4
1.4 1.5 0.7 0.7 0.5 0.0 0.7 0.5 0.6
2.0 2.1 1.3 1.4 0.6 0.7 0.0 0.6 0.5
1.6 1.7 0.9 0.8 0.7 0.5 0.6 0.0 0.8
1.8 1.9 1.1 1.2 0.4 0.6 0.5 0.8 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

4.2. Risk Assessment

1. Classification of risk factors

Considering numerical ranges within the indirect propagation probability matrix CP
c , the potential

severity matrix S, and the indirect propagation time matrix CT
c , qualitative risk factor level rules are

given (from light to heavy, respectively 1 to 5), as shown in Table 4 based on experience.

Table 4. Classification level of risk factor.

Risk Factor Level CP
c S CT

c /s

1 (0, 0.3) (0, 0.6) (2, +∞)
2 (0.3, 0.5) (0.6, 1.2) (1.5, 2)
3 (0.5, 0.7) (1.2, 1.8) (1, 1.5)
4 (0.7, 0.9) (1.8, 2.4) (0.5, 1)
5 (0.9, 1) (2.4, +∞) (0, 0.5)

2. Calculation of multi-dimensional safety risk

Based on Table 2, the safety risk factors P, S, T are converted into uniform safety risk level.
Equation (13) is used to calculate multi-dimensional safety risk value, as shown in Matrix (29). Total
risk value that element i effect on the overall system is calculated as shown in Matrix (30).

P = R9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 21.85 21.59 21.59 14.39 12.36 10.78 14.30 10.78
18.62 0.00 21.59 23.99 14.39 12.36 9.72 14.30 10.78
15.42 19.19 0.00 22.58 19.19 14.27 15.53 19.19 17.81
15.42 21.85 22.58 0.00 19.19 15.42 15.53 18.29 17.81
12.36 14.39 21.59 21.59 0.00 18.62 19.19 18.29 23.06
12.36 14.39 20.80 21.59 21.85 0.0 18.29 20.83 21.59
9.14 9.72 17.81 17.81 19.19 14.27 0.0 19.19 23.9
12.25 14.30 21.59 20.80 18.29 17.41 19.19 0.0 22.58
9.14 10.78 17.81 17.81 20.83 15.42 21.85 20.29 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

Ri = [127.66, 125.76, 142.18, 143.08, 149.11, 151.71, 134.13, 144.42, 136.95] (30)

System total safety risk assessment value RN = 1255, and based on Equation (15), safety risk ratio
is shown in Matrix (31).

ηi = [10.17, 10.02, 11.33, 11.40, 11.88, 12.09, 10.69, 11.51, 10.91] (31)
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3. Results of risk

• Pareto rule

The results of Ri and ηi are sorted in descending order as shown in Table 5. Then Pareto chart is
presented as Figures 6 and 7.

Table 5. Results of Pareto rule.

Rank Element Number Ri ηi Accumulated Value

1 6 151.71 12.09 12.09%
2 5 149.11 11.88 23.97%
3 8 146.42 11.51 35.48%
4 4 146.08 11.40 46.88%
5 3 143.18 11.33 58.21%
6 9 133.95 10.91 69.12%
7 7 131.13 10.69 79.81%
8 1 127.66 10.17 89.98%
9 2 125.76 10.02 100.00%

 

(a) (b) 

Figure 6. Chart of Pareto rule of the risk value R. (a) the risk value R of the single element in descending
order; (b) the accumulated risk value R.

 

(a) (b) 

Figure 7. Chart of Pareto rule of ηi. (a) the safety risk ratio ηi of the single element in descending order;
(b) the accumulated the safety risk ratio ηi.
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• ALARP principle

Under the ALARP principle, two risk “boundaries” are set based on expert experience: the intolerable
boundary and the negligible boundary are 145 and 130, respectively, and the alternative values of
the boundaries are 140 and 130, respectively. On the condition of alternative values, element 3, 4, 5,
6, 8 are all in the serious risk region. According to Pareto rule, when distinguishing safety-critical
links, it can be considered that 80% of accidents are originated from 20% of dangerous sources, but the
accumulated risk value of the elements in the serious risk region is well over 20%, which is a violation
of the Pareto rule. Therefore, value of the boundaries 145, 130 are determined. The risk level of each
element is presented in Figure 8.

Figure 8. Results of ALARP model chart.

• Safety risk entropy

Based on Equation (16), entropy matrix H is presented as Matrix (32).

H = H9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.00 0.17 0.09 0.35 0.42 0.45 0.27 0.45
1.00 0.00 0.17 0.00 0.35 0.42 0.45 0.27 0.45
0.17 0.17 0.00 0.00 0.17 0.24 0.27 0.09 0.27
0.09 0.00 0.00 0.00 0.17 0.17 0.27 0.24 0.27
0.35 0.35 0.17 0.17 0.00 0.00 0.09 0.24 0.09
0.42 0.42 0.24 0.17 0.00 0.00 0.24 0.17 0.09
0.45 0.45 0.27 0.27 0.09 0.24 0.00 0.17 0.00
0.27 0.27 0.09 0.24 0.24 0.17 0.17 0.00 0.00
0.45 0.45 0.27 0.27 0.09 0.09 0.00 0.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

Based on Equation (17), total safety risk entropy Hi of element i which effects on the overall system
is calculated as shown in Matrix (33). The safety risk entropy of the single element in descending order
and the accumulated the safety risk entropy are presented in Figure 9.

Hi = [2.24, 2.14, 1.43, 1.25, 1.51, 1.81, 1.97, 1.49, 1.64] (33)

90



Appl. Sci. 2020, 10, 3007

  

(a) (b) 

Figure 9. Chart of results of safety risk entropy H. (a) the safety risk entropy of the single element in
descending order; (b) the accumulated the safety risk entropy.

4.3. Discussion

1. According to the sorting results in Figure 6, Figure 7, and Pareto Rule, elements 5 and 6 can
be defined as the safety-critical elements; and elements 1, 2, 3, 4, 7, 8, and 9 are defined as
safety-general elements.

2. Based on Figure 8, element 5 and 6 are in the serious risk region; elements 3, 4, 7, 8, and 9 are in
the ALARP region; and elements 1 and 2 are in the negligible region.

3. From Figure 9, elements 1 and 2 have higher uncertainty; elements 6, 7, and 9 have moderate
uncertainty; and elements 3, 4, 5, 8 are with lower uncertainty.

4. In summary, elements 5 and 6 are the safety-critical elements and located in a serious risk region,
which has a serious effect on the overall system. Simultaneously, it has a certain degree of
uncertainty. Therefore, corresponding measures must be taken to ensure the safety of elements 5
and 6 in order to decrease the system risk. In other words, more attention must be paid to Signal
Processing Module in this avionics system. Elements 3, 4, 7, 8, and 9 are in the ALARP region
and have lower uncertainty. This means that the risk caused by these elements in the region are
acceptable. As a consequence, Data Processing Module, Power Conversion Module, and Network
Support Module should be given due attention if the conditions permit. Although elements 1
and 2 have higher uncertainty, they are located in the negligible region. Consequently, Graphics
Processing Module can be ignored under limited conditions. If the conditions permit, in view
of the higher uncertainty of elements 1 and 2 (Graphics Processing Module), by increasing the
reliability of elements 1 and 2 and ensuring the reliability of the element’s correlation with other
elements, such as ensuring the reliability of the data transmission channel between elements 1
and 2 and other elements, and the reliability of the information transmission bus, etc. Based on
these measures, the fault propagation from elements 1 and 2 to other elements can be reduced,
so as to reduce risk to overall systems of high uncertainty of elements 1 and 2.

5. Conclusions

While aiming to address the insufficiency of traditional safety risk analysis and risk assessment
technology to solve coupling problems between components in complex systems, this study
proposed a novel risk assessment and analysis method for correlation in complex systems based
on multi-dimensional theory. Firstly, a matrix-based hierarchical model for the complex system is
presented and correlation relationships between elements in the system were established. Furthermore,
based on correlation relationship, the multi-dimensional theory and model are proposed in order
to evaluate risk more objectively. Moreover, based on the Pareto rule, ALARP principle, and safety
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risk entropy, the critical risk elements are identified, which provides a theoretical basis for putting
forward preventive measures, so as to ensure and improve system safety. Compared with the current
methods and technologies, the method proposed in this paper mainly reflects the advantages of two
aspects. On the one hand, the hierarchical model is modeled in a matrix manner, and the association
relationship of each element in the complex system is quickly and accurately analyzed, which reduces
the skill requirements of analysts. On the other hand, it provides a feasible and multi-faceted analysis
method for the risk assessment of systems in view of fault propagation, which is the core judgment
criterion for identifying critical risk factors and of great significance for ensuring system safety.
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Abstract: The unloading of petroleum products is a complex and potentially dangerous operation
since the unloading system contains complex interdependency components. Any failures in one of its
components lead to a cut in the petroleum supply chain. Therefore, it is important to assess and evaluate
the reliability of the unloading system in order to improve its availability. In this context, this paper
presents the operation philosophy of the truck unloading system, failure modes of the components
within the system, and a bottom-up approach to analyze the reliability of the system. In addition,
it provides reliability data, such as failure rates, and mean time between failures of the system components.
Furthermore, the reliability of the whole system was calculated and is presented for different time
periods. The critical components, which are major contributors towards the system reliability, were
identified. To enhance the system reliability, a reliability-based preventive maintenance strategy for
the critical components was implemented. In addition, the preventive maintenance scheduling was
identified based on the reliability plots of the unloading system. The best schedule for preventive
maintenance of the system was determined based on the reliability function to be every 45 days for
maintaining the system reliability above 0.9. Findings reveal that the reliability of the unloading system
was significantly improved. For instance, the system reliability at one year improved by 80%, and this
ratio increased dramatically as the time period increased.

Keywords: reliability; truck unloading system; petroleum equipment; preventive maintenance

1. Introduction

The supply chain of petroleum products faces major challenges, i.e., demand growth and the
complexity of fluid transportation. The petroleum supply chain contains multiple stations extending
from oil wells in exploration and production areas to the final destination. Each station has its own
difficulties and challenges in the contribution towards the success of the safe and continuous supply.
Undoubtedly, meeting a regional demand of petroleum products requires an uninterrupted safe
operation. In the last station, the petroleum products pass through a process called Custody Transfer
in which the ownership of the products transfers from one party to another. These massive quantities
need to be measured accurately when their possession is being transferred to reserve the rights of
each party. Nevertheless, fluid measurements are complex due to multiple factors which, when they
deviate, may have a significance impact of the genuineness of the measurements. For instance, if the
fluid volume is measured directly in a Custody Transfer process, then fluid pressure and temperature
have to be maintained at certain levels to have an accurate volume measurement.

In bulk plants and distribution points, the petroleum products are transferred from truck tanks
to storage tanks through the truck unloading system, in which the fluid passes through multiple
mechanical components and instruments, among which is the flow meter where the quantity of the
fluid is being measured in a process called truck unloading. The truck unloading system is a vital part
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of any supply chain and can be available in many applications such as airports, petroleum distribution
plants and some other stations, where the high traffic requires large quantities of fuel. Apparently,
any failure in these systems leads to a cut in the petroleum supply chain. Therefore, it is important to
enhance the reliability of unloading systems by performing a deeper study of the reliability of their
components to find out how each component contributes to the system reliability.

The truck unloading system is an integration of a large number of different mechanisms working
as one unit to simultaneously unload the petroleum products and genuinely measure its quantity with
high measurement accuracy and high reliability to have an uninterrupted operation. It contains a
variety of interacting mechanical, piping, electrical, and instrumentation components. The sequence of
operation starts when trucks arrive to unload the petroleum product to storage tanks. The unloading
arms are then connected to the bottom of the truck and the vapor arm is connected to the top of the truck
to prevent a vacuum, which might cause the truck to collapse. Through the effect of the gravitational
force and the difference in elevation, the fluid will start flowing slowly from the truck tank into the
unloading arms until it reaches the pump, and then fluid will be pumped in the desired predefined rate
in the pre-set controller, which is considered the brain of the system. Passing through the system piping,
the fluid eventually reaches the outlet with the same quantity measured by the flow meter.

Because petroleum products are dangerous and flammable, they require special attention from
their extraction until they reach the final customer. The unloading system is an important part of the
long petroleum supply chain, which plays a connecting role between different modes of transportation.
The unloading system contains many linked, sophisticated and complex components. Any failures in
one of its components may lead to a cut in the whole petroleum supply chain. Therefore, it is important
to evaluate the reliability of the unloading system by performing a deep study of the reliability of
its components to find out how each component contributes to the system reliability. In this context,
this paper presents the operation philosophy of the truck unloading system, failure modes of the
components within the system, and a bottom-up approach to analyze the reliability of the system.

Despite the importance of the truck unloading systems, and to the best of our knowledge, the reliability-
based preventive maintenance analysis has not been carried out on the unloading systems. As will be
discussed in the literature review section, most of the studies have generally considered the failure rates
and reliability of pipeline transportation applications. In fact, most of these studies have been carried
out for reliability analysis of the component levels, regardless of the system effect of the behavior of
these components.

In this context, this paper assesses the current level of the overall truck unloading system reliability
and the failure modes of the components of the unloading system. It assesses the truck unloading
system reliability during the lifetime of the unloading system, investigates the effect of the preventive
maintenance on the truck unloading system reliability. Then, it establishes a reliability-based preventive
maintenance strategy for the truck unloading systems and identifies the major contributors to the
system reliability for design improvement purposes.

The rest of this paper is organized as follows; the relevant studies are reviewed in Section 2,
followed by a description of the materials and methods in Section 3. Section 4 presents the results
and discussion. Finally, the paper is concluded and directions for further research are highlighted in
Section 5.

2. Literature Review

In this paper, the main concern is the reliability of unloading systems, which includes a variety of
pipeline components. Reliability of oil and gas pipelines and equipment has always been identified as
a major problem in the industry. These systems work continuously for a long period of time. Thus,
a minor failure of operation in any of their parts can have a major impact on the overall system
performance. Safety and availability of pipeline components are the most important factors contributing
to the overall system quality. Consequently, reliability is crucial for achieving the objectives of any
industrial system. This section focuses on the reliability of pipeline sources and the reliability of
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applications similar to truck loading/unloading systems. In addition, it reviews the state-of-the-art
papers related to reliability-based maintenance of similar applications.

During the design process of any systems, reliability is usually evaluated and assessed [1].
Several published papers have focused on the reliability of system components and units and their
improvement [2–4]. The reliability of many systems has been evaluated [5–7]. It is mentioned that
systems reliability is diminishable. Therefore, a minimum reliability threshold must be set to maintain
(restore) a system and enhance its reliability. The repair process can be broken down into further
unique subtasks and delays, and various maintenance measures, which include mean repair time
(MTTR), the median repair time, mode, most likely repair time, and maintenance durations.

Nataša at al. [8] addressed the spare parts inventory in aircraft maintenance. The authors proposed
a decision-making process for planning and controlling the non-repairable aircraft spare parts inventory
by evaluating the reliability of non-repairable aircraft components. In addition, a reliability model was
proposed to assess the subcomponents reliability. They also presented a new approach to determine
the required amount of aircraft spare parts available in the inventory over a given period of time.
Hou et al. [9] described the reliability relationship between components in complex systems. They
developed a preventive maintenance action model for series and parallel systems to determine the
optimal cost and timing. A case study is presented to prove the practicality of the developed model.

Vishnu and Regikumar [10] proposed a generalized method for reliability centered maintenance (RCM)
where the maintenance is scheduled based on reliability of equipment in process plants. The maintenance
strategy was developed based on two factors: criticality score and reliability parameters of the equipment.
These factors derived from historical data of equipment failure and previous maintenance schedules.
Consequently, a new maintenance strategy for each component was constructed using the analytical
hierarchy process (AHP) method with the help of maintenance experts and practitioner opinions. Tee
and Ekpiwhre [11] presented a reliability-centered maintenance analysis, carried out on key assets of
a newly built Nigerian road junction infrastructure. The adaptation of the classical RCM succeeded
in enforcing the different assets allocated to preventive maintenance (PM) strategies and showed
that its implementation in the road industry can minimize unnecessary maintenance and regular
reactive maintenance by optimizing its preventive maintenance interval in an effective way. In addition,
Yssaad et al. [12] proposed a reliability-based centered maintenance for the distribution of a power
system. The authors discussed the two major goals of RCM; ensuring protection through preventative
maintenance measures; and preserving functionality in the most cost-effective way when protection is
not important.

Li et al. [13] expressed the importance of reducing machine failures to have an uninterrupted
operation and emphasized the poor efficiency of the conventional preventive maintenance method,
which sometimes causes unnecessary costs because it does not consider the current state of the
equipment. In this study, the researchers developed a dynamic preventive maintenance model based
on the reliability of the current of the equipment rather than the conventional fixed maintenance.
In addition, they proved in a case study that the proposed model can reduce the unavailability of the
equipment and increase the efficiency of its operation throughout its useful life.

Rafael and Shamsi [14] considered the decision-making process in maintenance strategy for water
distribution systems. The probability of having a functional network system upon demand was calculated
based on the current level of components reliability based on which maintenance need could be prioritized
in low reliability areas. They also took into account the severity of impact on the entire system from the
failure of every component.

In addition, a report was published by Stiftelsen for industriell og teknisk forskning (SINTEF)
along with the cooperation of multiple global organizations in the oil and gas industry [15]. It mainly
provides an estimation with regards to the reliability data for selected equipment normally used in
control systems within the oil and gas industry. The reliability data can support organizations to
analyze reliability levels in line with the international standards IEC 61508 and IEC 61511. Generally,
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the study took the reliability approach to investigate the root causes of failures in equipment and to
analyze the effect level in terms of failure on demand and critical safety failures.

The biggest documented and published project by oil and gas exploration and production organization
evaluated, assessed, recorded, and analyzed failures of a huge number of piping components and
mechanical machines used in these industries over a defined period of time. The project considered
both the operational and calendar time in the assessment of the failure rates that took place in the
normal operating lifecycle rather than the infant mortality or burn-in phase. The main purpose of this
project is to provide the stated industry with a comprehensive reliable data to ensure cost-effective
and safe process improvement. To minimize the effect of variation in the collected failure data, we
considered a 90% uncertainty interval for the lower and upper limits. Additionally, the failure modes
of each component are categorized based on their severity; allowing the readers to understand the
likelihood of a critical failure in each of these components [16].

The previous two studies, SINTEF and Offshore Reliability Data (OREDA), are the best documented
sources of oil and gas equipment reliability data due to their practical nature, which came from the
collaboration of a number of large operation organizations in that field. The data are also reliable because
of the wide range of involvement within the operation organizations and outside of these organizations.
Some of the components in the oil and gas transportation systems are highly reliable, which makes it
extremely hard to estimate a failure rate for them. These two studies fill this gap by applying long periods
of tests to these particular components. Furthermore, a study has been conducted by Sun et al. [17] to
improve the long-term preventive maintenance decisions using a reliability prediction approach. A case
study of water pipelines was developed to collect real failure data of two main segments: exposed pipelines
and buried pipelines. The case study was developed on the basis that each one of the two pipeline
segments had its own failure distribution, which helps one come up with an overall system reliability.
In addition, the study investigates the improvement of the preventive maintenance on the system reliability
to develop a cost-effective system maintenance strategy. Subsequently, a mathematical reliability formula
was derived from the exponential distribution to optimize the need for preventive maintenance.

The above study, unlike this research, focuses on water pipelines rather than oil and gas pipelines.
However, its analytical approach of the preventive maintenance can be used in this research to recommend
a planning framework for the preventive maintenance of the unloading system. Rimkevicius et al. [18]
developed a comprehensive method for assessing reliability in energy pipeline systems scientifically,
which can be applied to oil and gas systems. Basically, the failure in different mechanisms and the pipes
structural integrity are considered as the base to assess system reliability. The study is centered around
three types of analyses: mathematical, thermal-hydraulic, and pipeline structure analyses. The authors
used homogeneous and non-homogeneous Poisson distributions with a constant failure rate assumption
to give a better insight into the likelihood of future failures in the pipeline network system. Interestingly,
they are confident that the developed method can be applied under any environmental condition.
It was found that pipe corrosion constitutes around 30–40% of the total pipeline failures. Moreover,
the frequency of failures in pipelines increases when they exceed 30 years in service. The assumption of a
constant failure rate throughout the pipeline is the main assumption of this research. The approaches
taken in this study assumed a constant failure rate and consideration of different mechanisms, like what
we have done in the unloading application, that has enlightened the context of this research.

Shalay et al. [19] discussed the reliability distributions, such as exponential, normal, Rayleigh,
logarithmic, and Weibull. The authors highlighted that despite the fact that the usage of exponential
distribution under the assumption of constant failure rate of equipment is beneficial during the normal
operation life, it is important to apply other distributions to further study the failure behavior of wearing
and change of properties of the equipment by applying normal and Weibull distributions. Moreover,
this gives a better understanding of the failure prediction under varying working conditions and
changing loads on the equipment. An algorithm has been developed that analyzes the technological
parameters, which helps in the selection of the appropriate distribution function. The main purpose of
this study is to provide operating entities in the pipeline transportation industry with mathematical
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model to better predict the likelihood of failure of their equipment under dynamic operating conditions.
Kong et al. [20] proposed a reliability-based maintenance approach for the deterioration of civil
infrastructure systems addressing different uncertainties. These uncertainties include resistances and
time loads changes, and interventions of the maintenance series that are used to save the systems.
The authors used computer software for this analysis.

Wu et al. [21] introduced a new model of cost effective maintenance strategies to identify an
acceptable period of the monitoring conditions and level of deterioration after incomplete preventive
repairs. The models on maintenance optimization for the production system were developed by Barata
and Tong respectively using the various methods [22,23].

Rao et al. [24] proposed an opportunity maintenance model for the production line to carry out
preventive maintenance on several machines simultaneously, when one machine in the production
line fails. Nonetheless, the maintenance technique is difficult to use for a complicated line consisting
of a large number of machines. Zhang et al. [25] developed an opportunistic maintenance strategy
for wind turbines addressing an inconsistent maintenance plan dependent on reliability. The authors
characterized this maintenance and illustrated the consequences of corrective maintenance action
using a hybrid model based on the hazard rate. The findings show the effect that different maintenance
costs have on the economic benefits of an opportunistic maintenance strategy. Xie et al. [26] established
an efficient strategy in view of accessibility for offshore wind turbines to decrease maintenance
costs. A failure rate based on minimal data has been estimated using the Weibull distribution with a
three-parameter process approach. The opportunistic maintenance plan was implemented to minimize
maintenance costs by optimizing the preventive maintenance age and an acceptable maintenance age.

Arunraj et al. [27] used the analytical hierarchy method and the other planning approaches for
implementing maintenance plans based on analysis of the failure rate of the system and maintenance
costs, respectively. Zhao et al. [28] also suggested a delay-time model to prevent system failure during
the preventive maintenance cycle when the machines were damaged. Li et al. [29] proposed a strategy
based on preventive maintenance for the manufacturing plant. The authors measured the criticality
of the machines in the line and then categorized the machines. Hadidi and Alkhaldi [30] presented
several practical solutions for enhancing reliability in the systems of arm loading. The purpose of this
study is to prevent oil shipment delay.

The previous study gives an insight about the normal behavior of similar equipment under the
effect of aging. In other words, it shows the effect of wear out of such equipment. Additionally,
it gives the impact of the changing operating conditions that might be experienced throughout the
lifecycle of the unloading system. Reis et al. [31] simulated the tank truck loading operations in a fuel
distribution terminal to generate a theoretical simulation of the tank truck loading operation, which
helps in improving the efficiency and effectiveness of the tank truck loading systems. Probability
theories have been used to simulate tanks queuing for different fuel types aiming to improve the
queuing policy. A simulation of varying fuel flow rates and number of fuel loading arms has been
tested to come up with the new queuing policy. The results show that the simulation of the new
optimum queuing policy has a more efficient use of resources than the previous policy, which was
based on first-come-first-served.

Jamshidi and Esfahani [32] dealt with a maintenance-based reliability approach for a machine-
scheduling problem. The authors proposed a nonlinear mixed-integer model to simultaneously increase
efficiency, and reduce maintenance, delay, and interrupting costs. Navarro et al. [33] introduced an
optimization model based on a reliability-based maintenance approach for the preventive design of
corrosion, addressing the environmental effects and costs of the life cycle. The findings of their study
showed a reduction in environmental impacts and life cycle costs using the proposed model.

Based on the above literature review, it is clear that no study has assessed and evaluated the
reliability of truck unloading systems. Even though international standards cover the minimum
requirements for these systems, the design improvement and the maintenance scheduling to maintain
uninterrupted operation needs to have a clear assessment of the effect of each component to the overall
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system reliability. Consequently, the aim of this study is to fill the gap of the previous works. In addition,
this paper presents an operation strategy of the truck unloading system, the failure modes of the
components within the system, and a bottom-up approach to the reliability of the system. It assesses the
truck unloading system reliability during the operating lifecycle to the end of its useful life, investigates
the effect of the preventive maintenance on the truck unloading system reliability, and identifies the
major contributors to the system reliability for design improvement purposes.

3. Materials and Methods

In this section, the operation philosophy of the unloading system is explained and the followed
approaches are summarized. In general, the truck unloading system is a piping system that absorbs
liquid fuel from trucks and measures the quantity as accurately as possible before transferring it to the
storage tanks. The characteristics of the devices are listed in Table 1.

Table 1. Device characteristics.

Features

Low pressure drop—less than 3.2 psi at extended maximum flow

Relatively low initial cost and minimum maintenance

High accuracy

Accuracy

Repeatability Less than or equal to ±0.02%.

Linearity
±0.15% over the normal flow range

±0.25% over the extended flow range

Stability Better than ±0.05% per 10 million gallons (38 million liters).

Range
Normal Range 17 m3/h–170 m3/h

Extended Range 10 m3/h–204 m3/h

In the following section, a process sequential overview is discussed to understand the role of main
components in the system. Table 2 shows the list of components of the truck unloading system and
their associated symbols. Figure 1 shows the truck unloading system showing the symbols.

Table 2. Unloading system components list.

Component Symbol

Unloading Arms UA

Ball Valves BV

Strainers ST

Differential Pressure Transmitter DPT

Positive Displacement Pump PDP

Check Valve CV

Air Eliminator AE

Level Switch LS

Gate Valves GV

Pressure Relief Valve PRV

Positive Displacement Flow Meter FM

Pressure Transmitter PT

Plug Valve PV

Flow Control Valve FCV
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The unloading arms are connected to the bottom of a truck and the vapor arm is connected to
the top of a truck to prevent a vacuum, which might cause the truck to collapse. The fluid starts
flowing slowly from the truck to the unloading arms due to the gravitational force and difference in the
elevation, which can be noticed through the visual flow glass in each of the two arms. The ball valves
in each arm will be normally open so that fluid can pass through the two inlet streams. After that,
the fluid will merge into the main streamline via a tee joint. The fluid then flows through a strainer
that includes a differential pressure transmitter to monitor the difference in pressure between the inlet
and outlet. This is mainly designed to filter the liquid in order to protect the rotating parts of the
unloading pump against solid particles. Once the unloading pump starts working, the fluid will flow
in the desired predefined rate in the pre-set controller, which is considered as the brain of the system.
Downstream of the pump there is a check valve to prevent fluid from flowing in the opposite direction.
Up to this point of the process, the fluid contains air, which needs to be removed to have an accurate
measurement of the liquid quantity. Therefore, the fluid will pass through an air eliminator vessel
where the air and liquid are separated. The air will flow back to the top of the truck through the vapor
arm, while the liquid will continue its flow in the mainstream. There are two pressure relief valves;
one valve is located in the vent line of the air eliminator and the other valve is available downstream of
the air eliminator. The function of these valves is to protect the system from excess pressure with a
predesigned pressure set point. Subsequently, the fluid will pass through another strainer equipped
with a differential pressure transmitter for filtration purposes before entering the positive displacement
meter to protect its rotating parts from solid particles, giving a more authentic measurement reading.
The positive displacement meter then will measure the volumetric flow rate by displacement of the
flowing fluid. The volume flow rate depends on the pressure of the fluid so that it passes into a pressure
transmitter to ensure that the fluid being measured is within the desired pressure range. Otherwise,
a signal will be sent to the system controller to notify any observed unwanted changes. Just before the
outlet, there is a flow control valve through which the entire system flow is being controlled. The outlet
point is directly connected to the storage tank.

The following are the assumptions and parameters of the system analysis:

• Piping spools failure rates are not considered as part of the system due to their short length and
ease of replacement.

• Electrical boxes and terminations are not considered as part of the system due to the ease
of replacement.

• System study is under the normal operating phase of the system lifecycle; burn-in and wear-out
phases are not considered.

• System useful life is 20 years, which is common for such systems in the same field and under
similar operating conditions.

• There is a constant failure rate (random failures) for each piece of equipment; proven to be very
close to the actual failure rate during normal operating lifecycle.

• Difference in sample size in the determination of the failure rate is negligible.

3.1. System Reliability

The system reliability is the probability that the entire system will function successfully at any
time. The system performance is dependent on the performance of its sub-systems (or its components).
In other words, each component contributes in one way or another to the overall system performance.
Consequently, the failure of any part of the system will either partially affect the overall system
performance or it will cause a failure to the system. In this study, the focus is on the components of
the system that have a major contribution to the system performance, and it is either impossible or
not safe to operate without them. During the design stage of any system, it is necessary to decide
which components are in series and which should be in parallel. A series system means that the whole
system will fail if any components fail. A parallel system fails if all of its components fail. In the truck
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unloading system, there are two inlet streams, each one consists of an unloading arm and a ball valve
connected in series, each one of these two streams are connected in parallel. In other words, if one
stream fails, the other one can still be functional. The remaining components are connected in series.
For instance, if the positive displacement pump fails to absorb the fluid, then the entire system will fail.
A reliability block diagram of an unloading system is shown in Figure 2.

 

Figure 2. Unloading system reliability block diagram.

3.2. Data Collection

Reliability assessment studies are mainly dependent on failure rates data. The more reliable and
valid the data, the better the reliability can be assessed. Specifically, in this case, it is necessary to have
a large sample size to investigate random failures of a particular component, unlike other components
where failures are not random. To satisfy this point, the components failure rates are extracted from the
offshore and onshore reliability data (OREDA) [16] project, which is a large scale project under similar
conditions in the same industry. For the remaining components, more valid samples were taken from
one of the largest oil and gas operation companies in the Middle East. Some of the components have
high reliability and failure rarely happens. For these components, using historical data from a truck
unloading system was not feasible, instead, the data were taken from OREDA. These data include the
number of tested units, number of failures and duration for a number of items such as ball valve, gate
valve, pressure relief valve, flow control valve, differential pressure transmitter, pressure transmitter,
level switch, and air eliminator. Table 3 shows the number of units tested, number of failures of
tested units, test duration, and the mean time to failure (MTTF) for each component. Unloading
arms, positive displacement pump, check valve, flow meter (positive displacement meter), plug valve,
and strainer, where investigated under identical truck unloading system, were included, while the
remaining were taken from the OREDA project. On the other hand, lambda (λ) and mean time to
failure (MTTF) were calculated using Equations (1) and (2), respectively. Mean time between failures
yielded clear figures on the random failure behavior of a particular component and ultimately it was
essential for reliability calculations.

λ =
Number o f Failures

Number o f Units Tested × Duration o f Test
(1)

MTTF =
1
λ

(2)
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Table 3. Unloading system component test details and results.

Component Units Tested Number of Failures Duration (hours) λ (1/hours) MTTF (hours)

UA 14 1 25,920 2.75573 × 10−6 362,880

BV 316 328 9,324,700 1.11315 × 10−7 8,983,552

PDP 7 3 25,920 1.65344 × 10−5 60,480

CV 14 2 25,920 5.51146 × 10−6 181,440

GV 177 240 3,852,300 3.5198 × 10−7 2,841,071

PZV 278 272 7,169,800 1.36464 × 10−7 7,327,957

FM 7 4 25,920 2.20459 × 10−5 45,360

PV 7 1 25,920 5.51146 × 10−6 181,440

FCV 316 328 9,324,700 1.11315 × 10−7 8,983,552

DPT 55 4 1,467,500 4.95586 × 10−8 20,178,125

LS 76 37 1,862,400 2.61406 × 10−7 3,825,470

PT 55 4 1,467,500 4.95586 × 10−8 20,178,125

AE 50 174 3,725,900 9.34003 × 10−7 1,070,661

ST 14 8 25,920 2.20459 × 10−5 45,360

4. Data Analysis and Results

The aim of this study was to assess the truck unloading system reliability, which will allow the
system users to know which part of the system is essential for preventive maintenance and the availability
of spare parts to ensure continuous operation. Furthermore, the study will provide valuable insights to
the system manufacturers, such as in which part of the system they should concentrate during the design
improvement process, which will help produce a more reliable system that can be available and durable
for a long period of time. In this section, mean time between failures, failure modes, and reliability of the
system will be analyzed and discussed.

4.1. Mean Time between Failures

The mean time between failures plays a major role in the reliability investigations. It has a
significant contribution to the maintenance scheduling and cost prediction. Figure 3 shows the mean
time between failures of each component in the unloading system. Clearly, the differential pressure
transmitter and the pressure transmitter have the longest time intervals without failures. This is of no
surprise to the industry practitioners due to the nature of the instrumentation operation and material
of construction. On the other hand, the positive displacement pump and the positive displacement
flow meter have the shortest time intervals between consecutive failures due to the design complexity
of the rotating mechanisms within the two components. Most importantly, any failure of the flow
meter needs to be detected as early as possible to avoid uncertainty variation in fluid measurements.
In addition, the strainer has a short period between consecutive failures because usually, such filtration
systems need a continuous cleaning of its internal parts and the failures of these components can be
observed without a regular frequent cleaning. Therefore, the frequent cleaning of the strainer will lead
to an increase in the mean time between the failures. It is noted that all the valves have a medium
time between failures, while piping spools have long time intervals between failures. According to
some studies discussed earlier in the literature review section, the air eliminator has a relatively low
mean time between failures due to the complex design in the separation process that takes place in this
portion of the system. In addition, the unloading arms also have a relatively low mean time between
failures compared to the piping spools due to the dynamic nature of the swivel joints that connects the
arm parts together and the excessive movement they experience externally.
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Figure 3. Mean time between failures of unloading system components.

4.2. Failure Modes

Table 4 shows the failure modes of each individual component that was observed in accordance
with the same study of the failure rate of respective components. For instance, the three failures that
usually happen in the positive displacement pump are vibration, parameter deviation, and failure to
start on demand. Looking profoundly into the failure modes of the critical components, the positive
displacement pump and positive displacement meter, it is noticed that these failures particularly,
unlike other component failures, could be caused by deficiency of more than one part of the component
construction, therefore the root cause of the failures could be very difficult to detect. On the other hand,
unloading arm failures can easily be detected. Practically, valves are extremely important components
in the system to either isolate or control the fluid flow. It has been found that almost all of the valve
failures are a result of their construction integrity or excessive operation conditions; both of these
failures cause an internal or an external leakage. Failure detection is out of the scope of this study;
however, knowing the failure moods and their root causes are essential to reliability improvement.

Table 4. Unloading system component failure modes.

Component Failure Mode

Unloading Arms Rupture & Leak

Ball Valve

Leakage in closed position

Internal leakage

External leakage

Low output

Structural deficiency

Positive Displacement Pump

Vibration

Parameter deviation

Fail to start on demand

Check Valve
External leakage

Opposite direction flow
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Table 4. Cont.

Component Failure Mode

Gate Valve
Internal leakage

External leakage

Pressure Relief Valve

External leakage

Fail to close on demand

Fail to open on demand

Spurious operation

Valve leakage in closed position

Delayed operation

Positive Displacement Flow Meter

Parameter deviation

Low output

Vibration

Plug Valve External & Internal leakage

Flow Control Valve

Leakage in closed position

Internal leakage

External leakage

Low output

Structural deficiency

Differential Pressure Transmitter Leakage

Level Switch

High output

Low output

Erratic output

Fail to function on demand

Spurious operation

Pressure Transmitter Leakage

Air Eliminator—Separator

Parameter deviation

Plugged/Choked

Structural deficiency

Strainer
External leakage

Plugging

4.3. Unloading System Reliability

Since the components and the whole system are assumed to have constant failure rates (random
failures), the reliability figures must be investigated in multiple time intervals. For each component,
the reliability of the system is calculated at the end of the first year, the fifth year, the tenth year, and the
twentieth year using Equation (3). Table 5 shows the reliability of each component in the system.

Ri(t) = e−λt (3)

Rp(t) = 1− F(t) = 1−
np∏

i=1

[1−Ri(t)] (4)

where Ri(t) is the component i reliability, Rp(t) is the reliability of components connected in parallel, F(t)
is the cumulative probability distribution, and np is the number of components connected in parallel.
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For the other components connected in series, individual reliability was calculated using Equation (3).
Considering each sub-system with its redundant as a single component that has a single reliability
value as illustrated in the streams 1 and 2 combined row as given in Table 3 will validate the concept
of a complete series system. Streams 1 and 2 combined reliability was calculated using Equation (4),
considering stream 1 and stream 2 in parallel connection. As a result, the system’s components shown in
Figure 2 become one line of series components from start to end. Consequently, the total system reliability
can be calculated using Equation (5). It is important to note that neither the unloading arms nor the ball
valves were directly considered in the system reliability calculations, instead, their subsystem (stream 1
and 2 combined) was directly considered in the system reliability calculations and this will account for
both unloading arms and the ball valves connected to them.

Rs(t) = r1(t)r2(t) . . . rn(t) =
n∏

i=1

ri(t) (5)

where ri(t) is the reliability of component i and n is the number of components connected in series.
Figure 4 shows the total system reliability at different time periods (e.g., t = 0, 1, 5, 10, and 20

years) during the normal operating phase. During this phase, it is certain that the system is currently
fully functional; therefore, the reliability equals 1 at time 0. Based on the system reliability plot, it is
noticed that the reliability decreases dramatically with the highest slope between 0 and 2 years. Then,
the slope (2–5 years) tends to be much smaller. After 5 years, as time increases, the system probability
is very low and almost constant, which means that the probability that the system is functional after
five years is close to the probability that the system is functional after ten and twenty years.

Figure 4. Unloading system reliability.

The reliability plot helps to determine the best schedule for preventive maintenance of the system,
which will improve the system reliability. In this study, the unloading system reliability needs to be
maintained above 90%, which means that the system components should be maintained every 45 days
as shown in Figure 4. In the next section, the impact of critical component preventive maintenance on
the whole system reliability will be investigated.
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4.4. Reliability Enhancement

From the system reliability plot, the preventive maintenance schedule for the unloading system
is specified in order to maintain the reliability of the system above a certain level. In the previous
sections, the critical components of the systems were identified. Therefore, preventive maintenance of
these critical items will have a huge impact on the total system reliability. In this study, preventive
maintenance of the strainer, positive displacement pump, and positive displacement meter will be
considered due to their design nature. Practically, rotating part failures are relatively easier to detect
before they occur, compared to static part failures. For example, if there is a slight alignment deviation
in the pump coupling it will remain functional for a small period of time before the breakdown. While,
for static components like valves, the failures happen within seconds without prior signals. In addition,
the strainer is considered as a critical component because of the cleaning process that should take place
during the maintenance, which will improve the system reliability.

Figure 5 shows the system reliability when preventive maintenance for the critical components
is conducted every 45 days. It is noted that preventive maintenance of the three critical components
significantly enhances the reliability of the unloading system. In other words, the probability that
any of these components are functional for the next one and a half months is constant throughout the
lifecycle of these components.

Figure 5 shows the improvements reflected on the system reliability due to conducting preventive
maintenance. It is clear that the preventive maintenance has a large impact on the total system
reliability improvement.

 

Figure 5. Unloading system reliability before and after preventive maintenance.

The analysis shows that the reliability of the unloading system reached approximately zero after
5 years of continuous operation, while after conducting the preventive maintenance, system reliability
significantly improved. In addition, the results indicated that implementing preventive maintenance
improves the system reliability by 80% in the first year, and this ratio increases dramatically as the
period increases.

5. Conclusions and Future Work

The truck unloading system is a complicated integration of components with different levels of
reliability. This study assessed and evaluated the reliability of the truck unloading system, explored and
identified the components that have the lowest reliability within the system. The mean time between
failures, failure modes of each component, and reliability of the system are analyzed. In addition,
this study established a preventive maintenance strategy for improving the reliability of the truck
unloading systems. Since the current level of the reliability of the truck unloading system is not
satisfactory, it can be greatly enhanced through focusing on a few critical components.
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According to reliability analysis, the best schedule for preventive maintenance to maintain system
reliability above 90% is 45 days. Moreover, the positive displacement pump and the positive displacement
meter are the most critical items. Therefore, it is recommended to avail spare parts for these two
components and conduct preventive maintenance on regular basis; preferably every one and a half
months as found from the reliability analysis. In addition, it is highly recommended that the operators
should report any unusual observations at the earliest to avoid any further damage or poor function.
Furthermore, the results indicated that implementing preventive maintenance improves the system
reliability by almost 80% in the first year, and this ratio increases radically as the period increases.

Furthermore, the replacement of the positive displacement meter with a more advanced Coriolis
meter should be considered. Comparatively, it has a lower failure rate due to the lower number of
internal components and the simpler mechanism of its operation. Second, filtration components such
as a strainer should be periodically inspected and cleaned to avoid plugging. Third, although valves
have medium failure rates, it is important to keep spare parts for the frequently failing parts such as
seals. Finally, further studies are highly recommended for design improvement of the truck unloading
system to enhance the system reliability and having a longer uninterrupted safe operation.
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Abstract: In order to maximize inventory benefits or minimize costs, reliability and cost of inventory
control models need to be identified and analyzed. These importance measures are one important
approach to recognize and evaluate system weaknesses. However, importance measures have fewer
applications in inventory systems’ reliability. Considering the cost, this paper mainly discusses the
reliability change of performance parameters with the importance measures in inventory systems.
The calculation methods of differential importance and Birnbaum importance are studied in the
inventory control model with shortages. By comparing the importance values of various parameters
in the model, the optimization analysis of the inventory model can be used to identify the key
parameters, so as to effectively reduce the total inventory cost. The importance order and the
identification of key parameters are helpful to increase the operational efficiency of the inventory
control and provide effective methods for improving the inventory management. Lastly, a case study
with a shortage and limited inventory capacity is used to demonstrate the proposed model.

Keywords: reliability; importance measure; cost; inventory systems

1. Introduction

Importance measures refer to the influence on system reliability when a single or multiple
components of a system fail or change state, which is a function of component reliability parameters
and system structure. As one of the important branches and basic theories of reliability, importance
measures penetrate all stages of products, including design, production, inspection, sale, maintenance,
and so on. Identifying the factors influencing system reliability is most important [1,2]. In the phase
of design, importance measures are used to identify weaknesses and support the improvement and
optimization of system. During the system operation, importance measures can allocate enterprise
resources reasonably to constituent part of a system to ensure that it is operating properly. By identifying
and evaluating system weaknesses, importance measures have been widely applied in system reliability,
decision making and risk analysis [3–7].

Since Birnbaum [8] firstly proposed the concept of importance analysis, importance measures
have wide applications in the domains of fault analysis, model simulation, and network planning.
Borgonovo and Apostolakis [9] introduced a new importance measure, the differential importance
measure, for probabilistic safety assessment. Considering the transition rates of component states,
Dui et al. [10–13] discussed the influence of importance measures on system performance and its
applications in aviation and other fields. Kim and Song [14] proposed a generalized reliability
importance measure that can deal with multiple critical failure regions, large curvatures of limit-state
surfaces and the correlation between the input random variables. Li et al. [15] proposed a power flow
element importance measure, which can improve cascading failure prevention, system backup setting,
and overall resilience. Dui et al. [16] analyzed the applications of importance measures in the reliability
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of inventory systems and extended the importance measure to the three-echelon inventory systems.
Dui et al. [17] studied the cascading failure in an inventory network from the perspective of the payoffs
of nodes in a multi-strategy evolutionary game. Nguyen et al. [18] proposed opportunistic maintenance
decision rules based on the criticality level of components and the availability of spare parts. Adak and
Mahapatra [19] developed a cost-effective ordering inventory model where the increase in reliability of
the item lead to a rise in demand and decreases the rate of deterioration. Maji et al. [20] found the
optimal number of transportation cycles and components, which can maximize the total business
profit and system reliability with volume, weight, and cost of the system as constraints. Huang [21]
studied the system reliability of a stochastic delivery-flow distribution network with an inventory.
Manna et al. [22] studied an imperfect production inventory model with production system reliability
under two-layer supply chain management. Abdel-Aleem et al. [23] proposed an optimal solution of
the reliability model by a generalized reduced gradient algorithm.

Currently, the competitive environment is drastically changing, which will lead to the adaptation
of system resilience design and maintenance in dynamic environments [24,25]. There are too many
uncertainty factors involved in inventory models. With the interference of various uncertainties, the
problem of stock shortage occurs frequently. In situations where enterprises operate normally and
minimize inventory, how to realize the optimization of inventory models out of stock, has become a
hot topic for scholars from all circles [26]. Cárdenas-Barrón and Sana [27] proposed an economic order
quantity inventory model of multi-items in a two-layer supply chain where demand was sensitive
to promotional effort, and they compared collaborative and non-collaborative systems in terms of
their average profits. Shekarian et al. [28] developed a reverse inventory model where the recoverable
manufacturing process was affected by the learning theory. Chao et al. [29] characterized the optimal
policies that simultaneously determine the optimal ordering and pricing decisions in each period over a
finite planning horizon. Meanwhile, the impacts of supply source diversification and supplier reliability
on the firm and on its customers are studied. Yu et al. [30] considered the optimal production, pricing,
and substitution policies of a continuous-review production–inventory system with two products: a
high-end product and a low-end product. Lee et al. [31] examined vendor-managed inventory systems
with stockout-cost sharing between a supplier and a customer with shortages allowed under limited
storage capacity, where a stockout penalty was charged to the supplier when stockouts occurred with
the customer. Jia and Cui [32] analyzed the reliability of supply chain systems by using copulas.
Flynn et al. [33] developed a theoretical conceptualization of supply chain uncertainty and reliability.
He et al. [34] built a logistics service supply chain model under the stochastic demand to consider
the feature of non-storage and reliability. Chen et al. [35] evaluated the supply chain reliability and
resilience for the complexity of supply chain structures.

The inventory models provide an effective means for companies to carry out inventory management
and reduce inventory costs. Scholars have continuously improved and optimized the models from
various perspectives and fields, however, have neglected the application of importance measures to
effectively identify and optimize systems in this field. Different parameters in the inventory system
have different effects on the inventory system. Issues which have become the focus of research are:
How to use the system reliability and importance measure to study the influence of the parameters in
the inventory system on the inventory system? How to calculate the importance of different parameters
and determine the parameters that have the greatest impact on the system? Therefore, this paper
analyzes the reliability of the inventory system. According to the reliability of the inventory system,
a cost-based inventory system importance model is proposed to study the importance of different
parameters, which provides some support and reference for enriching importance measures and
optimizing inventory models.

The rest of the paper is as follows. Section 2 analyses the reliability of inventory systems. The cost
of inventory systems reliability is briefly described in Section 3. Section 3 also derives the computational
methods of importance measures about various parameters of cost function. A numerical example is
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presented to illustrate importance values and changes in cost parameters in Section 4. Section 5 gives
the conclusions and future work of this paper.

2. Reliability Analysis in Inventory Systems

Many logistics units constitute the logistics system organically according to a certain link mode.
The premise of analyzing the reliability of the whole logistics system is to determine the calculation
method of the reliability of a single logistics unit.

The reliability of a logistics unit refers to the probability that the service provided by logistics units
remains within the specified error limit under certain conditions and time. In the service capacity curve
of the logistics unit in Figure 1, the M curve represents the standard service curve that the logistics unit
is expected to achieve, the N curve represents the error limit of the logistics service specified for the
logistics unit, and the P curve represents the real logistics service curve provided by the logistics unit.

Figure 1. Service capacity curve of a logistics unit.

In Figure 1, L is the level of the service capacity of the logistics unit. In the intervals [t1− t2],[t3− t4],
[t5− t6], the logistics service provided by the logistics unit exceeds the specified error limit. Therefore,
it is considered that the work of the logistics unit in this situation is unreliable. In the intervals [t2− t3],
[t4− t5], the logistics service provided by the logistics unit does not exceed the specified error limit.
Therefore, it is considered that the operation of the logistics unit is reliable here. Assuming that the
reliability of the logistics unit is MU, then

MU = 1−

n∑
k=1

(tk2 − tk1)

T

where tk1, tk2 are the starting and ending time, respectively, of the kth observation that the logistics
service provided by the logistics unit exceeds the allowable deviation range, (k = 1, 2, 3, . . . , n). T is the
total observation time, and n is the number of times that the logistics service provided by the logistics
unit exceeds the allowable deviation range.

In a typical tandem logistics system, such as the one shown in Figure 2, the reliability of the five
logistics units of transportation, storage, circulation processing, loading and unloading handling, and
distribution are MY, MC, ML, MZ and MP, respectively.

Figure 2. Structural diagram of a typical tandem logistics system.
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This logistics system is composed of five logistics units in series. According to the mathematical
reliability model of series system, the reliability of typical series logistics system is

MT = MYMCMLMZMP

The logistics system cannot be fully paralleled; therefore the reliability calculation can only be
carried out for one parallel subsystem. The reliability of circulation processing, L1, and circulation
processing, L2, are ML1 and ML2, respectively, as shown in Figure 3.

Figure 3. Structural diagram of a typical parallel logistics system.

Taking the parallel subsystem of circulation processing as an example, according to the
mathematical reliability model of the parallel system, the reliability of the parallel subsystem is

MLT = 1− (1−ML1)(1−ML2) = ML1 + ML2 −ML1ML2

In a typical series parallel logistics system, as shown in Figure 4, the reliability of transportation Y1,
transportation Y2, storage C1, storage C2, circulation processing L1, circulation processing L2, loading
and unloading handling Z1, loading and unloading handling Z2, distribution P1 and distribution P2
are MY1, MY2, MC1, Mc2, ML1, ML2, MZ1, MZ2, MP1, and MP2, respectively.

Figure 4. Structural diagram of a typical series parallel logistics system.

The first group series system consists of five logistics units: transportation Y1, storage C1,
circulation processing L1, loading and unloading handling Z1, and distribution P1. According to the
mathematical reliability model of series systems, the reliability of the first series system is

MT1 = MY1MC1ML1MZ1MP1

The second group of series systems consists of five logistics units: transportation Y2, storage
C2, circulation processing L2, loading and unloading handling Z2 and distribution P2. Therefore,
according to the mathematical reliability model of series system, the reliability of the second series
system is

MT2 = MY2MC2ML2MZ2MP2
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The reliability of two series systems in parallel is

MT = 1− (1−MT1)(1−MT2) = MT1 + MT2 −MT1MT2

= MY1MC1ML1MZ1MP1 + MY2MC2ML2MZ2MP2 −MY1MC1ML1MZ1MP1MY2MC2ML2MZ2MP2

In a typical series parallel logistics system, as shown in Figure 5, the reliability of transportation Y1,
transportation Y2, storage C1, storage C2, circulation processing L1, circulation processing L2, loading
and unloading handling Z1, loading and unloading handling Z2, distribution P1 and distribution P2
are MY1, MY2, MC1, MC2, ML1, ML2, MZ1, MZ2, MP1, and MP2, respectively.

Figure 5. Structural diagram of a typical parallel series logistics system.

The first group of parallel subsystems is composed of transportation Y1 and transportation Y2 in
parallel. According to the mathematical reliability model of the parallel system, the reliability of the
first group of parallel subsystems is

MY = 1− (1−MY1)(1−MY2) = MY1 + MY2 −MY1MY2

Similarly, the reliability of the second group of parallel subsystems is

MC = 1− (1−MC1)(1−MC2) = MC1 + MC2 −MC1MC2

The reliability of the third group of parallel subsystems is

ML = 1− (1−ML1)(1−ML2) = ML1 + ML2 −ML1ML2

The reliability of the fourth group of parallel subsystems is

MZ = 1− (1−MZ1)(1−MZ2) = MZ1 + MZ2 −MZ1MZ2

The reliability of the fifth group of parallel subsystems is

MP = 1− (1−MP1)(1−MP2) = MP1 + MP2 −MP1MP2

The reliability of a typical parallel series logistics system is the reliability of the five parallel
subsystems in series.

MT = MYMCMLMZMP

= (MY1 + MY2 −MY1MY2)(MY1 + MY2 −MY1MY2)(ML1 + ML2 −ML1ML2)

(MZ1 + MZ2 −MZ1MZ2)(MP1 + MP2 −MP1MP2)
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3. Cost-Based Importance Measures of Inventory Systems Reliability

3.1. Birnbaum Importance Measure

From a mathematical perspective, Birnbaum importance [8] analyzes the influence of changes

in variables on the whole function as I(xi) =
∂ f (x1,x2,...,xn)

∂xi
, where f (x1, x2, . . . , xn) means a function

consisting of n variables x1, x2, . . . , xn.
For various systems, xi and f (x1, x2, . . . , xn) have different meanings. For example, xi represents

the reliability of component i, and f (x1, x2, . . . , xn) shows the reliability of whole system.

3.2. Differential Importance Measure

The differential importance measure [9] is DIM(xi) =

∂ f (x1,x2,...,xn)
∂xi

dxi∑
j

∂ f (x1,x2,...,xn)
∂xj

dxj
, in which, f (x1, x2, . . . , xn)

represents the risk metrics associated with various parameters, and xi means the parameters.
In inventory management, f (x1, x2, . . . , xn) means the total cost of the inventory control system,

and xi shows each parameter in inventory control, such as the order quantity, demand quantity, storage
cost, shortage cost and so on.

3.3. Discussions on Importance Measures Based on the Inventory Systems Cost

In the inventory control model, the optimal lot size, Q∗, is obtained by minimizing the total cost.
The function expression of the total cost is as follows.

ϕ(Q,α) =
(u + a/2)Q + γ

1− e−ρQ/R

where Q is the selection variable, α = (u, a, R,γ,ρ) is a parameter variable, u is the unit price of the
goods in stock, a is the unit holding cost, R is the demand speed, γ is the order cost, and ρ is the
capital cost.

Among them, an increase in u, a, R and γ will cause an increase in the total cost. An increase in ρ
will cause a decrease in total cost.

The total cost function takes the first-order derivative of Q and sets the result to 0, then

ϕQ(Q∗,α) =
(1

2
a + u

)(
e(Q

∗/R)ρ − 1
)
R− ρ

(
γ+ Q∗

(1
2

a + u
))

= 0.

For the importance of several parameter variables with respect to function Q∗(α), the implicit
importance can be applied to the optimization problem of the model. The final results are shown in
Table 1. Assuming that u = 10 (yuan/piece), a = 1 (yuan/piece), R = 8000 (piece), γ = 30 (yuan/time),
and ρ = 8%, the comparative static (CS) can be used to analyze the results as follows.

Table 1. Results analysis of comparative static.

Parameter CS Expression Mark Value

u Qu − R(e(Q/R)ρ−1)−Qρ

ρ( 1
2 a+u)(e(Q/R)ρ−1)

− 36

a Qa −
1
2 R(e(Q/R)ρ−1)− 1

2 Qρ

ρ( 1
2 a+u)(e(Q/R)ρ−1)

− 18

R QR −
1
R (

1
2 a+u)(R(e(Q/R)ρ−1)−Qρe(Q/R)ρ)
ρ( 1

2 a+u)(e(Q/R)ρ−1)
+ 0.047

γ Qγ − −ρ
ρ( 1

2 a+u)(e(Q/R)ρ−1)
+ 13

ρ Qρ −Q( 1
2 a+u)(e(Q/R)ρ−1)−γ
ρ( 1

2 a+u)(e(Q/R)ρ−1)
− 4725

From Table 1, the results can be obtained as follows.
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(1) The increase in u, a and ρ leads to a decrease in Q∗ in the EOQ model.
(2) The increase in R and γ will cause an increase in Q∗ in the EOQ model.
(3) It can be seen from the table that ρ is the most influential parameter in the EOQ results, and its

influence degree is far greater than other parameters.

On the other hand, the partial derivatives of each parameter have different units of measurement,
so they cannot be compared with each other. Similarly, because there are different measurement
standards between parameters, assumption 1 of differential importance is not tenable in the application
of differential importance. Even if the parameters have the same unit of measurement, but the direction
of change is different, and the results of static analysis technology cannot be used as the standard
of measurement.

According to the relationship between comparative static analysis technology and differential
importance, the expression of differential importance measures in implicit models is proposed, and
expressed as follows.

Γ(x∗,α∗) =
⎡⎢⎢⎢⎢⎣γ j,s : γ j,s =

∣∣∣Φ js
∣∣∣∣∣∣Φ j
∣∣∣
⎤⎥⎥⎥⎥⎦, j = 1, . . . , m, s = 1, . . . , n.

Γ(x∗,α∗) is a matrix, and the elements in the matrix represent the differential importance of the
parameter αs with respect to xj. Φ js =

[
J1
x J2

x . . . J
j−1
x Js

αdαs J j+1
x . . . Jm

x

]
, Φ j =

[
J1
x J2

x . . . J
j−1
x dJα J j+1

x . . . Jm
x

]
.

According to the relationship between comparative static analysis technology and the expression of
differential importance in the implicit model, the expression of Birnbaum importance is

ΓB(x∗,α∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
γ j,s : γ j,s =

∣∣∣∣∣∣
[
J1
x J2

x . . . J
j−1
x Js

α
α

xj
s
J j+1
x . . . Jm

x

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
⎡⎢⎢⎢⎢⎣J1

x J2
x ...J

j−1
x Js

α
α

x
j
s

J j+1
x ...Jm

x

⎤⎥⎥⎥⎥⎦
∣∣∣∣∣∣α

xj
s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In an implicit multivariate function, the change of the whole function is caused by the change

of one of the independent variables. The importance degree is used to rank the parameters, and the
problems caused by different measurement units of each parameter are considered.

The change of the related variables needs to be calculated. According to the result of Γ(x,α), the
optimal order quantity can be taken as the selection variable, and five parameters can be selected at
the same time. In this case, Γ(Q∗,α) =

[
γ j,s

]
, j = 1, s = 1, 2, . . . , 5. The results of the two importance

analyses are presented in Tables 2 and 3. Columns 5 and 6 in Tables 2 and 3 represent the importance
of the parameter and the resultant ranking, respectively.

Table 2. Analysis results of differential importance measure.

Parameter Importance Expression Mark Value Order

u Γ2u(Q∗,α∗) [R(e(Q/R)ρ−1)−Qρ]u∑5
j=1 Q∗jα j

+ 8.02× 103 4

a Γ2a(Q∗,α∗) [ 1
2 R(e(Q/R)ρ−1)− 1

2 Qρ]a∑5
j=1 Q∗jα j

+ 4.01× 102 5

R Γ2R(Q∗,α∗) ( 1
2 a+u)(R(e(Q/R)ρ−1)−Qρe(Q/R)ρ)∑5

j=1 Q∗jα j

− 8.4427× 103 2

γ Γ2γ(Q∗,α∗) −ργ∑5
j=1 Q∗jα j

− 8.421× 103 3

ρ Γ2ρ(Q∗,α∗) [Q( 1
2 a+u)(e(Q/R)ρ−1)−γ]ρ∑5

j=1 Q∗jα j

+ 8.4433× 103 1
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Table 3. Analysis results of Birnbaum importance measure.

Parameter Importance Expression Mark Value Order

u ΓBu(Q∗,α∗) [R(e(Q/R)ρ−1)−Qρ]u
Q∗

+ 3.028× 10−3 4

a ΓBa(Q∗,α∗) [ 1
2 R(e(Q/R)ρ−1)− 1

2 Qρ]a
Q∗

+ 1.514× 10−4 5

R ΓBR(Q∗,α∗) ( 1
2 a+u)(R(e(Q/R)ρ−1)−Qρe(Q/R)ρ)

Q∗
− 3.187× 10−3 2

γ ΓBγ(Q∗,α∗) −ργ
Q∗ − 3.179× 10−3 3

ρ ΓBρ(Q∗,α∗) [Q( 1
2 a+u)(e(Q/R)ρ−1)−γ]ρ

Q∗
+ 3.1872× 10−3 1

It can be seen from Table 2 that the proportional increase in parameters R, γ or ρ has almost
the same effect on the results. At the same time, the importance of u is only slightly lower than R, γ
and ρ, while a is almost an unimportant parameter relative to the other parameters. Although the
results of Birnbaum importance obtained in Table 3 are different from those in Table 2, the relationship
between the values is roughly the same in both tables, that is, the ranking results of differential
importance and Birnbaum importance are the same. That is to say, compared with the influence of
other parameters on the EOQ considering financing, the change of EOQ considering financing caused
by a is almost negligible.

4. Numerical Example

In this section, a shortage and limited inventory capacity is used to demonstrate the proposed
model. The inventory models are assumed, and displayed in Table 4.

Table 4. Case assumptions of the inventory models.

Case Assumptions Case Assumption Contents

Assumption 1 A small amount of stockout will not cause much damage to customers and
companies. The loss of unit goods per unit time is C4.

Assumption 2
Companies can store products in their own warehouses or leased warehouses.
C2 is the storage fee of unit goods per unit time stored in their own warehouses,

C3 is the storage fee in leased warehouses, and C2 < C3.

Assumption 3 The capacity of their own warehouses is Q0.

Assumption 4 When storing, companies firstly store products in their own warehouses until
they are full, and then in leased warehouses.

Assumption 5 When selling, companies will firstly sell the products in leased warehouses
until they are empty, and then from their own warehouses.

Assuming that [0, T] is a time cycle, and when t = 0, the instant purchase is Q1, the inventory
capacity is Q0, so the capacity of leased warehouses is Q1 −Q0. Q2 is the allowable shortage quantity,
R is the demand rate, and it is decreasing constantly during [0, T].

Therefore, the change of inventory volume during [0, T] is shown in Figure 6.
Assuming the total cost of an inventory is C, then

C =
C3(Q1 −Q0)

2

2Q
+

C2Q0(2Q1 −Q0)

2Q
+

C4(Q−Q1)
2

2Q
+

C1R
Q

where R means the demand speed, Q is the order quantity, and Q1 and Q0 represent the total inventory
volume, so the inventory capacity of leased warehouses is Q1 −Q0. Q2 is the shortage quantity, so
Q = Q1 + Q2. C1 is the order cost, C2 is the inventory cost of unit goods per unit time when using
their own warehouses, C3 means the inventory cost of unit goods per unit time when using leased
warehouses, and C4 represents the shortage cost of unit goods.
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Figure 6. The storage volume changes over time.

In order to obtain the optimal solution of total cost, that is the minimal cost C* and the optimal
ordering quantity Q∗, taking the partial derivatives of Q, Q1, Q2 separately, then Q∗, Q∗1, and Q∗2 can be
obtained as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∗ =
[

2C1R(C3+C4)
C3C4

+
(C3−C2)(C2+C4)Q2

0
C3C4

] 1
2

Q∗1 =
[

2C1C4R
C3(C3+C4)

+
C4(C3−C2)(C2+C4)Q2

0

C3(C3+C4)
2

] 1
2
+

(C3−C2)Q0
C3+C4

Q∗2 =
[

2C1C3R
C3(C3+C4)

+
C4(C3−C2)(C2+C4)Q2

0

C4(C3+C4)
2

] 1
2
+

(C3−C2)Q0
C3+C4

Birnbaum importance can be used to analyze the importance of parameters in this model.
The expressions are as follows:

I(Q0) =

⎡⎢⎢⎢⎢⎣ (C3−C2)(C2+C4)Q0
C3C4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦Q0

Q∗

I(R) =

⎡⎢⎢⎢⎢⎣C1(C2+C4)
C3C4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦R

Q∗

I(C2) =

⎡⎢⎢⎢⎢⎣ (C3−2C2−C4)Q2
0

2C3C4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦C2

Q∗

I(C3) =

⎡⎢⎢⎢⎢⎣C2C4(C2+C4)Q2
0−2C1RC2

4
2C2

3C2
4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦C3

Q∗

I(C4) =

−
⎡⎢⎢⎢⎢⎣ 2C1RC2

3+C2C3(C3−C2)Q2
0

2C2
3C2

4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦C4

Q∗

The parameters (Q0, R, C2, C3, C4) can be selected for analysis in the inventory models with
stockout. There are different metrics among the parameters, therefore differential importance measures
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can be applied to identify the importance of each parameter in this model. The expressions are
as follows:

DIM(Q0) =

⎡⎢⎢⎢⎢⎣ (C3−C2)(C2+C4)Q0
C3C4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦Q0

∑6
j=1 Q∗jα j

DIM(R) =

⎡⎢⎢⎢⎢⎣C1(C2+C4)
C3C4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦R∑6

j=1 Q∗jα j

DIM(C2) =

⎡⎢⎢⎢⎢⎣ (C3−2C2−C4)Q2
0

2C3C4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦C2

∑6
j=1 Q∗jα j

DIM(C3) =

⎡⎢⎢⎢⎢⎣C2C4(C2+C4)Q2
0−2C1RC2

4
2C2

3C2
4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦C3

∑6
j=1 Q∗jα j

DIM(C4) =

−
⎡⎢⎢⎢⎢⎣ 2C1RC2

3+C2C3(C3−C2)Q2
0

2C2
3C2

4

(
2C1R(C3+C4)+(C3−C2)(C2+C4)Q2

0
C3C4

)− 1
2
⎤⎥⎥⎥⎥⎦C4

∑6
j=1 Q∗jα j

Assuming that C1 = 30, C2 = 1, C3 = 2, C4 = 3, Q0 = 500, and R = 8000, when combining the
inventory models with shortage and the formula of each parameter above in the model, the results of
Birnbaum importance and the differential importance measures of various parameters are as shown in
Table 5.

Table 5. The results of importance measures.

Parameter Birnbaum Importance Order Differential Importance Order

Q0 0.2940 2 0.4545 2

R 0.3528 1 0.5455 1

C2 −0.1103 4 −0.1705 4

C3 −0.0647 5 −0.1000 5

C4 −0.1779 3 −0.2750 3

From Table 5, firstly, although the Birnbaum importance and differential importance measure of
parameters have a certain difference in values, the sorting results are identical. Secondly, the values of
importance are positive or negative, but the parameters are sorted by their absolute value. When the
value is positive, it indicates that the optimal order quantity increases when the parameter is increasing,
otherwise, it decreases with the increase in the parameter. Thirdly, according to the magnitude of
values, the order of R, Q0, C4, C2, C3 decreases in sequence. In other words, when these parameters
change proportionally, the optimal order quantity has the largest change caused by R, and C3 is the least
important among these variables. Therefore, the changes of R and Q0 are most important. The demand
speed and inventory capacity are the key parameters for reducing the total cost and optimizing the
inventory model.

In order to improve analysis of the dynamic effects caused by various parameters on Birnbaum
importance and differential importance measure, each parameter can be set for the changes of Birnbaum
importance and the differential importance measure, as parameters change within the intervals. For
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each parameter, the variation of Birnbaum importance and the differential importance measure are
shown in Figure 7.

Figure 7. Cont.
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Figure 7. Importance changes with various parameters.

Figure 7 shows that Birnbaum importance and differential importance measures have similarities
in the variation law. The plus-minus and direction of curves are consistent, but the slopes are not
the same. In Figure 7e, when the shortage cost is less than 0.5, Birnbaum importance changes almost
linearly, otherwise its change is quite slow and tends to be stable. However, the curve of the differential
importance measure keeps a steady change rate within the interval. In Figure 7a,e, the two curves even
appear to be intersected. At the intersection, the values of Birnbaum importance and the differential
importance measure are equivalent. In addition, the differential importance measure is above the
Birnbaum importance in Figure 7b, while the exact reverse is the case in Figure 7c,d; the Birnbaum
importance of the parameter lies above the differential importance measure. The two importance
measures show different changes with the varying parameters, which suggests that there are certain
differences between the two importance measures in practice. Meanwhile, when applying the additivity
of the differential importance measure, let S = {R, C2, C3, C4}, then

DIMS(Q∗,α∗) = DIMR(Q∗,α∗) + DIMC2(Q
∗,α∗) + DIMC3(Q

∗,α∗) + DIMC4(Q
∗,α∗) = 0

Based on the analysis above, in the optimization analysis of inventory models with stockout,
Birnbaum importance and the differential importance measure are different in calculation method and
values, but the orders of importance are ultimately identical. This hints that Birnbaum importance and
differential importance measures can effectively identify the importance of each parameter in a model,
however, due to their own advantages and disadvantages, it is better to combine them together to
provide a better solution for decision-makers in practice.

5. Conclusions and Future Work

Based on the theory of importance measures and inventory models, this paper mainly discusses
the diagnosis and recognition of performance parameters in inventory control models with stockout.
After a brief introduction about the inventory models that allows stockout, the concepts and calculation
method of importance measures were applied into the models to analyze the application of Birnbaum
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importance and the differential importance measure. By comparing and analyzing the calculations and
results of the two importance measures, the importance order was obtained, and the key parameters
were identified to optimize the inventory control and management from the view of system reliability.
The main contributions of this article are as follows.

(1) Based on the research of inventory systems, it was found that there was almost no literature on
the reliability of an inventory system. Combining the concept of reliability with the inventory
system, an inventory system reliability model was proposed in this paper. It could enrich the
research in the field of inventory system reliability.

(2) Based on the inventory system reliability model, cost-based importance measures of inventory
systems’ reliability were proposed. The purpose was to study the impact of the changes of
different parameters in the inventory system on the inventory system.

(3) Based on the analysis of numerical examples, it was concluded that Birnbaum importance and
differential importance measures can effectively determine the importance of each parameter in
the inventory system. According to the calculation result, the order of parameter importance is
R, Q0, C4, C2, C3.

In future work, we will consider the impact of the relationship between different parameters on
the inventory system.
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Abstract: The growing competitiveness of the market, coupled with the increase in automation driven
with the advent of Industry 4.0, highlights the importance of maintenance within organizations.
At the same time, the amount of data capable of being extracted from industrial systems has increased
exponentially due to the proliferation of sensors, transmission devices and data storage via Internet of
Things. These data, when processed and analyzed, can provide valuable information and knowledge
about the equipment, allowing a move towards predictive maintenance. Maintenance is fundamental
to a company’s competitiveness, since actions taken at this level have a direct impact on aspects
such as cost and quality of products. Hence, equipment failures need to be identified and resolved.
Artificial Intelligence tools, in particular Machine Learning, exhibit enormous potential in the analysis
of large amounts of data, now readily available, thus aiming to improve the availability of systems,
reducing maintenance costs, and increasing operational performance and support in decision making.
In this dissertation, Artificial Intelligence tools, more specifically Machine Learning, are applied to
a set of data made available online and the specifics of this implementation are analyzed as well as
the definition of methodologies, in order to provide information and tools to the maintenance area.

Keywords: predictive maintenance; Industry 4.0; Internet of Things; artificial intelligence; ma-
chine learning

1. Introduction

Maintenance is a relevant factor for the competitiveness of an organization, since the
actions carried out at this level have a direct impact on aspects such as the cost, deadlines and
quality of the products produced or services provided [1,2]. Maintenance is a support to the
operational area of a company and cannot be dissociated from it, given the implication it has
in terms of the efficiency of productive assets. These two areas, operation and maintenance,
must operate in parallel in order to guarantee the availability and the rapid response of
human and material resources to operational problems, thus ensuring the achievement
of objectives with the maximization of available resources. Thus, it becomes important
not only to achieve the proposed objectives, but also to achieve them with the minimum
consumption or use of resources [2].

It is in this context of constant transformation that Industry 4.0 arises [1]. Industry 4.0
implements the tools provided by advances in information and communication technologies
in order to increase the levels of automation and digitalization in industrial and production
processes [1,3]. The objective is to manage the entire value chain process, improving
production efficiency and creating superior products and services. One of the key points of
this technological evolution is the data, which is now more easily read, processed, stored,
analyzed and shared between machines and human beings [4]. Additionally, the Internet of
Things (IoT) is defined as an ecosystem in which the objects and equipment inserted in it
are equipped with sensors and other digital devices, thus being able to gather and exchange
information with each other, in a networked system [1].

In recent years, a drop in cost and an increase in the reliability of sensors, data
transmission and storage devices have promoted the emergence of condition monitoring
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systems for industrial equipment. Simultaneously, the IoT allows real-time transmission
of this information about the conditions of the systems captured by different monitoring
devices. This development offers an excellent opportunity to use condition monitoring
data intelligently within predictive maintenance, combining the ability to collect data with
an effective and integrated analysis of it [5].

In this sense, the potential of Artificial Intelligence tools, more specifically Machine
Learning, allows us to aim for an improvement in the availability of systems, reducing
maintenance costs, increasing operational performance and safety, and the ability to support
decision making in relation to the ideal time and the ideal action for carrying out the
maintenance intervention [4–7].

Machine Learning can be defined as “the field of study that gives the computer
the ability to learn without being explicitly programmed”. It can be said that “Machine
Learning algorithms use computational methods to learn information directly from data
without using predefined equations as a model” [8].

The main objective of this work is to apply Artificial Intelligence tools, more specifically
Machine Learning, to a set of data, coming from different sources, available online [9].
Furthermore, we seek to analyze the specificities of this implementation and the definition
of methodologies, in order to provide information and tools to the maintenance area.

2. Machine Learning Process Workflow and Techniques

One of the main difficulties of applying a Machine Learning process to maintenance
data is the choice of the right workflow, as in literature there are many different approaches
to this problem, depending on the origin of the data and the objectives of the analysis [10–13].
As the different applications are difficult to compare, in this work it was decided to explore
a simple but complete framework and to use a set of data that can be used by other
researchers, as the data set is publicly available.

In the present work, the workflow presented in [14], represented in Figure 1, will be
followed. From our point of view, a Machine Learning project must always start with
the establishment of rigorous and clear definition of the objectives, since such a system
fulfills a very specific task and the definition of vague objectives can mean that the model
developed is not able to predict exactly what it is intended to.

Quite possibly, the most important part of a Machine Learning project is the ability to
understand the data used and how it relates to the task we want to solve. It will not be
effective to randomly choose an algorithm, use the data set we have available and expect
good results [15]. It is necessary to understand what is happening in the data set before
starting to build a model. When building a Machine Learning solution, we must answer or
at least keep in mind the following questions: What questions are we trying to answer?
Does the available data set allow you to answer these questions? What is the best way to
paraphrase my question as a Machine Learning problem? Is the available data set sufficient
to represent the problem we are trying to solve? What features (or attributes) have been
extracted and will they be able to lead to the correct predictions? How to measure the
success of the application of Machine Learning? How will the Machine Learning solution
interact with the rest of the process?

Machine Learning algorithms and methods are only part of a larger process for solving
a specific problem, and it is important to keep that in mind. Sometimes, a lot of time is
spent building complex Machine Learning solutions, only to discover in the end that they
do not solve the problem that we were waiting for [16]. By deepening the technical aspects
of Machine Learning, it is easy to lose sight of the final goals. It is important to keep in
mind all the assumptions created, either explicitly or implicitly, when building Machine
Learning models.
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Figure 1. Machine Learning process workflow [14].

Typical machine learning algorithms, such as the hidden Markov models [17], hidden
semi-Markov models [18], self-organizing neural network [19], SVM [20], multimodal deep
support vector classification [21], deep random forest [22], genetic algorithms [23], blind
source separation [24], fuzzy logic [25], k-nearest neighbor algorithms [26] and Bayesian
algorithms [27], etc., have been applied in fault diagnosis of dynamic equipment. To the
best of our knowledge, there are two main categories of approach for fault diagnosis of
gearboxes: Data-driven and physical model-based methods. Although these methods have
been successfully applied in many applications, it is very difficult to know what is the best
algorithm to apply to a particular data set.

A systematic review of the scientific literature was carried out in [28], from which it is
possible to draw several conclusions. Predictive maintenance strategies are being applied
to the most diverse equipment, in multiple areas. The equipment where these methods are
applied include, but are not limited to, turbines, engines, compressors, pumps. About 89%
of the published papers use a set of real data, with 11% using synthetic data. Regarding the
use of Machine Learning algorithms in scientific publications, the most used is Random
Forest (RF)—33%, followed by methods based on Neural Networks (NN), such as Artificial
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NN, Convolution NN, Long Short-Term Memory Metwork (LSTM) and Deep Learning—
27%, Support Vector Machine (SVM)—25% and k-means—13%. There was also a greater
tendency to use vibration signals.

3. Application Example

3.1. Data Applied

Throughout this paragraph, the process of implementing Machine Learning algo-
rithms to a set of maintenance data will be detailed and explained.

First, the data set is presented and the choice is justified. Then, the objectives of this
Machine Learning application are rigorously and clearly established. Subsequently, the
data set is processed through feature engineering, creating new features in order to seek
better performance from the models. The data set used is key to solving Machine Learning
problems. A sensible choice of what data to use and how to handle it is crucial to improving
the performance of the algorithms. According to Domingos [29], feature engineering is the
key to Machine Learning projects and that, often, the measured signals are not suitable for
the learning process, and it is necessary to build features from those that are.

Then, the data set is divided into training, validation and testing subsets and the first
application of Machine Learning models was carried out, where a variety of algorithms
were trained and evaluated. The training process of the algorithms is carried out in the
training subset and the validation subset provides an impartial assessment of the fit of the
models to the training data, while simultaneously fine-tuning the model and its hyper-
parameters in order to seek better performance. Finally, the test set is used to obtain an
estimate of the model’s performance, simulating its behavior for future data.

The implementation described in this chapter will be carried out using the Python pro-
gramming language, using the packages Matplotlib, Numpy, Pandas and Scikit-Learn [30,31].

3.2. Data Sources

Despite the growth of this area, due to business competitiveness, sharing sensitive
information of this nature is rare, which means that the number of publicly available
datasets (relevant to this application) is very scarce.

Within an industrial environment, there is a very complete data set, made available by
Microsoft, published in [9], of relevance to the present project.

This dataset contains data from five different sources:

• real-time telemetry;
• error log;
• maintenance history;
• fault history; and
• information about machines

The data were acquired over a year (2015) for one hundred machines, except for the
maintenance history, which also contains records for the year 2014.

For a total of one hundred machines, from four different models, the data set contains
876,100 hourly telemetry records, that is, 8761 records per machine. The failure records
contain 3919 entries and the maintenance history 3286. The failure history has 761 records,
that is, on average, about 8 failure records per machine, throughout 2015. Each machine has
4 components of interest for analysis and also 4 sensors, which measure tension, pressure,
vibration and rotation. A controller monitors the system and is able to alert you to the
occurrence of 5 types of errors.

Thus, real-time telemetry data consists of measurements from different sensors
(4 per machine), with the associated date and time. The measurements of voltage (“volt”),
rotation (“rotate”), pressure (“pressure”) and vibration (“vibration”) are acquired in real
time and the average of these measurements over an hour is recorded in Table 1.
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Table 1. Typical example of real-time telemetry recording.

Datetime machineID Volt Rotate Pressure Vibration

0 2015-01-01 06:00:00 1 176.217853 418.504078 113.077935 45.087686
1 2015-01-01 07:00:00 1 162.879223 402.747490 95.460525 402.747490
2 2015-01-01 08:00:00 1 170.989902 527.349825 75.237905 34.178847
3 2015-01-01 09:00:00 1 162.462833 346.149335 109.248561 41.122144
4 2015-01-01 10:00:00 1 157.610021 435.376873 111.886648 25.990511

To better understand the behavior of each sensor, a simple statistical analysis is
performed in Table 2, where the mean, the standard deviation, and the minimum and
maximum values are calculated for the parameters voltage (“volt”), rotation (“rotate”),
pressure (“pressure”) and vibration (“vibration”) during 2015. As an example, Figure 2
shows the graphical evolutions of the Tension signals (Figure 2a), Rotation (Figure 2b),
Pressure (Figure 2c) and Vibration (Figure 2d), over the first fifteen days of January 2015,
for machine 1 (machineID = 1).

Table 2. Statistical analysis of telemetry data in real time.

Volt Rotate Pressure Vibration

count 876100 876100 876100 876100
mean 170.777736 446.605119 100.858668 40.385007

std 15.509114 52.673886 11.048679 5.370361
min 97.333604 138.432075 51.237106 14.877054
25% 160.304927 412.305714 93.498181 36.777299
50% 170.607338 447.558150 100.425559 40.237247
75% 181.004493 482.176600 107.555231 43.784938
max 255.124717 695.0209841 185.951998 76.791072

The second source of information is the error log. These are errors that did not
immediately lead to a failure, as the machine remained operational. There are 5 types of
errors: error1, error2, error3, error4, error5. The date and time are rounded to the nearest
time. Each record consists of a date/time, machine and type of error—Table 3. The total
number of error records over the year 2015 is 3919. In Figure 3 it is possible to observe the
number of errors per type over the year 2015.

The maintenance records contain data of component replacements resulting from
a scheduled or unscheduled maintenance intervention, periodic inspections, or perfor-
mance degradation. In case of maintenance intervention due to the failure of a component,
a fault record is also generated, see next paragraph. For each machine, this data set contains
information about 4 types of components: comp1, comp2, comp3, comp4. The date and
time are rounded to the nearest time. Each record consists of a date/time, machine and the
type of component replaced—Table 4. The total number of maintenance records throughout
2015 is 3286. As previously mentioned, the maintenance records also contain entries for
2014. Figure 4 shows the number of components replaced, by type. It is possible to observe
that in this case the number of substitutions is similar for the 4 types of components.

The fault records contain the component replacement records, resulting from the
maintenance intervention, due to the occurrence of a fault. The data is for the 4 types of
components: comp1, comp2, comp3, comp4. The date and time are rounded to the nearest
time. Each record consists of a date/time, machine and the type of replaced component—
Table 5. The total number of failure records during 2015 is 761. In Figure 5, it is possible
to observe the number of replacements, by type of component, during 2015, due to the
occurrence of a failure.
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Figure 2. Evolution of Telemetry data over the first fifteen days of January 2015, for the machine 1.
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Table 3. Typical error logging example.

Datetime machineID errorID

0 2015-01-03 07:00:00 1 error1
1 2015-01-03 20:00:00 1 error3
2 2015-01-04 06:00:00 1 error5
3 2015-01-10 15:00:00 1 error4
4 2015-01-22 10:00:00 1 error4

Figure 3. Representation of the number of errors by type.

Table 4. Typical example of maintenance records.

Datetime machineID comp

0 2014-06-01 06:00:00 1 comp2
1 2014-07-16 06:00:00 1 comp4
2 2014-07-31 06:00:00 1 comp3
3 2014-12-13 06:00:00 1 comp1
4 2015-01-05 06:00:00 1 comp 4

Figure 4. Representation of the number of components replaced, by type.
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Table 5. Typical example of failure records.

Datetime machineID Failure

0 2015-01-05 06:00:00 1 comp 4
1 2015-03-06 06:00:00 1 comp 1
2 2015-04-20 06:00:00 1 comp2
3 2015-06-19 06:00:00 1 comp4
4 2015-09-02 06:00:00 1 comp 4

Figure 5. Representation of the number of components replaced, by type, due to the occurrence of
a failure.

Finally, this data set contains information about the model and number of years of
service for each of the 100 machines—Table 6. Figure 6 shows a histogram showing the
distribution of the number of machines and service time, by model.

Table 6. Typical example of information for each machine.

machineID Model Age

0 1 model3 18
1 2 model4 7
2 3 model3 8
3 4 model3 7
4 5 model3 2
5 6 model3 7
6 7 model3 20
7 8 model3 16

3.3. Definition of Objectives

As already mentioned, a Machine Learning project must start with the rigorous and
clear establishment of objectives. In this case, the main objective of the models used will
be to predict the probability of a failure occurring within the defined time window. More
specifically, the probability of a machine failure occurring in the next 24 h (duration of the
time window chosen for this application) related to one of the components (components 1,
2, 3 or 4).
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Figure 6. Histogram representing the number of machines and service time, by model.

Then, given that a particular and clear objective has already been set, more specific
questions can be asked about Machine Learning itself: (1) Should supervised, unsupervised,
or reinforcement learning models be chosen or, possibly, combinations of learning modes?
(2) Whether supervised learning, classification, or regression? (3) Are models intended to
train immediately as new data is obtained (batch learning or online learning)?

After analyzing the problem, and bearing in mind the proposed objective, we opted
for supervised learning and, in particular, classification. Furthermore, taking into account
the existence of 4 different components under analysis, the problem will be multi-class clas-
sification (“Multiclass Classification”). It was also considered that it will not be necessary,
given the scope of the problem and the nature of the data, for models to train immediately
as new data is obtained. Therefore, we are facing a problem of batch learning.

3.4. Feature Engineering

A feature is a predictive attribute for the model. The purpose of feature engineering
is to seek to increase the predictive power of Machine Learning algorithms, creating new
features from the available data. As a rule, feature engineering is carried out in the first
place and then the selection of features occurs, eliminating irrelevant, redundant or highly
correlated features. Starting from the different sources of information presented in the
previous paragraphs, a single dataset will be created, which will be used for the application
of predictive models.

The historical data that models have access to are individual moments in the past.
In particular, for telemetry data, disturbances resulting from measurements, such as noise,
are possible, thus making the predictive task more difficult. In this way, the data can be
aggregated in time windows, thus allowing to “smooth” the values, minimizing the effects
of noise on the features used by the models.

Bearing in mind how far in the future the model should be able to predict, according
to the requirements of the project, it is important to define how far it should “look” to make
these predictions. This interval of time passed to where the model should “look back” is
called lag. Several features can be extracted from these time intervals—lag features. The
data set used to generate lag features usually has a date/time associated with it.

For each record, a time window of dimension N is created and the lag features are
calculated for the period N before the date/time of that record. Figure 7 shows an example
of this application for a ti measurement with N = 3. The value of N is typically in minutes
or hours, depending on the nature of the data.
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Figure 7. Lag Features [9].

Thus, two temporal windows were created. The first, of 3 h, in order to allow us to
portray the behavior of telemetry data in the short term (Table 7) and the second, of 24 h,
in order to represent the long-term evolution (Table 8). In each of these time intervals, two
new parameters were calculated every 3 h for each of the features: the moving average and
the standard deviation. Note that, in the case of N = 24 h (Table 8), naturally the two new
parameters are not available for the initial moments (first 24 h).

Table 7. Example of Lag Features for telemetry data in real time, with N = 3.

machineID Datetime Voltmean_3h Rotatemean_3h Pressuremean_3h Vibrationmean_3h

0 1 2015-01-01 09:00:00 170.028993 449.533798 94.592122 40.893502
1 1 2015-01-01 12:00:00 164.192565 403.949857 105.687417 34.255891
2 1 2015-01-01 15:00:00 168.134445 435.781707 107.793709 41.239405
3 1 2015-01-01 18:00:00 165.514453 430.472823 101.703289 40.373739
4 1 2015-01-01 21:00:00 168.809347 437.111120 90.911060 41.738542

Table 8. Example of Lag Features for telemetry data in real time, with N = 24.

machineID Datetime Voltmean_24h Rotatemean_24h Pressuremean_24h Vibrationmean_24h

7 1 2015-01-02 06:00:00 169.733809 445.179865 96.797113 40.385160
8 1 2015-01-02 09:00:00 170.614862 446.364859 96.849785 39.736826
9 1 2015-01-02 12:00:00 169.893965 447.009407 97.715600 39.498374
10 1 2015-01-02 15:00:00 171.243444 444.233563 96.666060 40.229370
11 1 2015-01-02 18:00:00 170.792486 448.440437 95.766838 40.055214

As with telemetry data, the error log also has a date/time associated with it. However,
these data are categorical and not numerical. In this case, the number of errors of each type
is added, every 3 h, for the time window N = 24 (Table 9). Each line in the table represents
the sum of the number of errors of each type in the 24 h prior to the indicated datetime.

Table 9. Example of Lag Features for error logging.

machineID Datetime Error1count Error2count Error3count Error4count Error5count

15 1 2015-01-03 06:00:00 0.0 0.0 0.0 0.0 0.0
16 1 2015-01-03 09:00:00 0.0 0.0 0.0 0.0 0.0
17 1 2015-01-03 12:00:00 1.0 0.0 0.0 0.0 0.0
18 1 2015-01-03 15:00:00 1.0 0.0 0.0 0.0 0.0
19 1 2015-01-03 18:00:00 1.0 0.0 0.0 0.0 0.0
20 1 2015-01-03 21:00:00 1.0 0.0 0.0 0.0 0.0
21 1 2015-01-04 00:00:00 1.0 0.0 1.0 0.0 0.0
22 1 2015-01-04 03:00:00 1.0 0.0 1.0 0.0 0.0
23 1 2015-01-04 06:00:00 1.0 0.0 1.0 0.0 0.0
24 1 2015-01-04 09:00:00 1.0 0.0 1.0 0.0 1.0
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The maintenance log, which contains information related to the replacement of com-
ponents, allows the generation of new potentially important features, such as, for example,
how long ago a component was last replaced—Table 10. It is expected that this feature
relates well to the possible failures of the components, since, the longer the time of use of
a component, the greater the expected degradation.

Table 10. Time since the last replacement, by type of component.

Datetime machineID comp1 comp2 comp3 comp4

0 2015-01-01 06:00:00 1 19.000000 214.000000 154.000000 169.000000
1 2015-01-01 07:00:00 1 19.041667 214.041667 154.041667 169.041667
2 2015-01-01 08:00:00 1 19.083333 214.083333 154.083333 169.083333
3 2015-01-01 09:00:00 1 19.125000 214.125000 154.125000 169.125000
4 2015-01-01 10:00:00 1 19.166667 214.166667 154.166667 169.166667

It is relevant to note that the creation of features based on maintenance data is not as
linear as in the previous cases. However, this type of case-specific feature engineering is
very common in predictive maintenance, where domain knowledge and experience play
a crucial role in understanding and creating relevant features.

Finally, information about the machines can be used without further modifications,
that is, information related to the model and number of years in service of each machine—
Table 6.

3.5. Feature Selection

An analysis of the linear correlation between the variables was performed (Figure 8).
The correlation coefficient varies between −1 and 1. This coefficient makes it possible to see
whether one variable justifies the linear variation of another. When it is close to 1, it means
that there is a strong positive correlation, that is, if a given feature A increases, then feature
B also increases and if A decreases, B it also decreases.

In this case, it appears that the correlation between the features is mostly low or nonex-
istent (correlation coefficient close to zero). Even so, in the case of the features pressure-
mean_3h and pressuremean_24h, the value of the correlation coefficient is approximately
0.5 and a more detailed analysis will be relevant.

Thus, Figure 9 shows the failures, by type of components, according to the evolution
of the features pressuremean_3h and pressuremean_24h. It is possible to observe that, for
components 1 and 3, there are clusters of points.

Figure 8. Features correlation.
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Figure 9. Detailed analysis of the correlation between features pressuremean_3h and pressure-
mean_24h.

However, the same is not true for components 2 and 4. It is likewise possible to
observe that most failures for component 3 occur for higher pressuremean_3h and pres-
suremean_24h values, when compared with the other components. Thus, it was decided to
keep both features, since there is a clear relationship between these and the occurrence of
failures in at least some of the components

3.6. Classification of Data and Construction of Labels

As previously mentioned, the problem of predictive maintenance under analysis is
a case of Supervised Learning. In order to train a model to predict failures, it is necessary
for not only examples of failure but also a time series of observations that led to that
failure. Furthermore, the model needs examples of “normal” operating periods in order
to be able to see the difference between the two. The classification between these two
states is binary (stable or without failure/unstable or with failure). With this information
available (stable/unstable), the model is only useful if it is able to promptly alert you to the
imminence of a failure.

In order to fulfill this early warning criterion, it is necessary to modify the definition of
the failure event label, which occurs at a specific time, to a time interval where the failure
event may occur. The time until the failure occurs, which delimits the boundary between
the two categories, must be chosen according to operational criteria. Is the knowledge that a
failure will occur within 12 h sufficient to prevent it? And what about 24 h? And two weeks?
The model’s ability to predict a failure will also depend on the duration of this time window.

This process is illustrated in Figure 10. In order to achieve the reset from unstable to
pre-unstable, observations within the time window (represented by “X” in Figure 9) before
the occurrence of a failure have been labeled as pre-instable, while records outside this time
interval X have been labeled as stable.

Figure 10. Data classification and label construction—adapted from [9].

142



Appl. Sci. 2021, 11, 18

The main objective of the Machine Learning models used will be to predict the
probability of a failure occurring within this time window. In this case, more specifically,
the probability of a machine failure occurring in the next 24 h (duration of the time window
chosen for this application) related to one of the components (components 1,2,3 or 4). Thus,
a new categorical feature “failure” was created, where all records in the 24 h prior to
the occurrence of a failure in component 1 have the value failure = comp1 and so on for
components 2,3 and 4. Records that do not check these conditions have the value of failure
= none. This leads to the problem turning from a binary problem (stable/pre-unstable) to
a multi-class classification problem (stable/n pre-unstable component). It should also be
noted that, henceforth, due to this redefinition of failure event, when it is mentioned that
a certain algorithm predicts a failure, in fact, what is being mentioned is that the algorithm
predicts the occurrence of a failure within this time window.

Table 11 shows examples of failure in component 2. Note that the first 8 records occur
in the 24 h prior to the occurrence of the first failure of component 2. The next 8 records in
the 24 h prior to another failure of component 2.

3.7. Data Splitting

When working with associated day and time data, as is the case here, the division
between the training, validation and test sets must be carried out carefully, in order to ensure
that the evaluations obtained correspond to the actual performance that should be expected
of the models, since there is an inherent temporal correlation between observations (high
similarity between temporally close data). This validation technique is called Holdout.

In problems of predictive maintenance, in most situations, the best option is to perform
a division based on time, that is, choose a point in time, train the model with all records
prior to that point, using the later records to validate the model. This methodology also
allows to simulate how the model will actually behave in practice.

Table 11. Example of failure representation in component 2.

machineID Datetime Model Age Failure

857 1 2015-04-19 09:00:00 model3 18 comp2

858 1 2015-04-19 12:00:00 model3 18 comp2

859 1 2015-04-19 15:00:00 model3 18 comp2

860 1 2015-04-19 18:00:00 model3 18 comp2

861 1 2015-04-19 21:00:00 model3 18 comp2

862 1 2015-04-20 00:00:00 model3 18 comp2

863 1 2015-04-20 03:00:00 model3 18 comp2

864 1 2015-04-20 06:00:00 model3 18 comp2

2297 1 2015-10-16 09:00:00 model3 18 comp2

2298 1 2015-10-16 12:00:00 model3 18 comp2

2299 1 2015-10-16 15:00:00 model3 18 comp2

2300 1 2015-10-16 18:00:00 model3 18 comp2

2301 1 2015-10-16 21:00:00 model3 18 comp2

2302 1 2015-10-17 00:00:00 model3 18 comp2

2303 1 2015-10-17 03:00:00 model3 18 comp2

2304 1 2015-10-17 06:00:00 model3 18 comp2
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Thus, in the present application, the registrations until 08/31/2015 1:00:00 were
assigned to the test set, the registrations between 01/09/2015 1:00:00 and 31/10/2015
1:00:00 to the validation set and registration from 01-11-2015 1:00:00 to the test set. In order
to guarantee that the data in different sets do not share time windows, the records at the
borders, that is, the records of the 24 h preceding the date of division, have been removed.
Thus, Table 12 shows the amount of data that was attributed to each of the sets and the
percentage that corresponds to failures.

Table 12. Amount of data attributed to each of the sets and the percentage corresponding to failures.

Quantity /% Failure/%

Training 66.52 2.02

Validation 16.57 1.89

Test 16.91 1.92

3.8. Class Imbalance in Maintenance Problem Applications

Something to take into account in predictive maintenance is the fact that the occurrence
of failures is rare during the life cycle of a given machine, when compared to normal operation.
This leads to an imbalance between classes (Table 13), which usually leads to an illusory
performance on the part of the algorithms, which tend to classify the most common example
more often at the expense of the less common, since the total number of incorrect classifications
are thus less. Therefore, the Recall and Precision values can be low, although the Accuracy
value is high. A clear example of this phenomenon is, in the validation set (where most of the
evaluation metrics will be calculated), where 98.11% (Table 12) of the data correspond to the
Stable category (failure = none), that is, a model (without any use) that provides functioning
stable values at all times would have an Accuracy of 98.11%. It is therefore essential to look at
other evaluation metrics.

Table 13. Example of the imbalance between the different classes for the ‘failure’ feature in the total
data set.

Failure %

none 285,684 98.06

comp2 1985 0.68

comp1 1464 0.50

comp4 1240 0.43

comp3 968 0.33

For a considerable number of critical equipment applications, the model’s inability to
predict a failure can be exorbitantly expensive. In predictive maintenance, as a general rule,
the most important is the number of real failures that the model is capable of predicting,
that is, the model’s Recall3. This parameter becomes even more important as the conse-
quences of false negatives, that is, true failures that the model was unable to predict, exceed
the consequences of false positives, that is, a false prediction of a failure. This phenomenon
is known as “incorrect classification cost” and can be estimated by companies according
to the cost of repair, parts and labor. Generally, it is preferable that the model errs as a pre-
caution, since it will be more economical to carry out a maintenance check than a partial
or total interruption of the operation. However, the wrong prediction of a failure, that is,
a false positive, can also lead to a loss of time and resources. In this case, the model must
be adjusted to a high Precision. However, as mentioned earlier, the Recall and Precision
metrics are not independent: Increasing one implies decreasing the other.
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3.9. Application of Models in the Validation Set

In this first application, the validation set is used in order to understand how a wide
variety of models behave, as well as to look for the tuning of the hyper-parameters of
certain models. Such an approach is due to the fact that it is not possible, at the outset,
to determine which algorithm is most suitable for a given problem. When training and
evaluating a wide variety of models at an early stage, it is possible to see which ones have
the greatest potential, however, for this step to be successful, it is necessary that the metrics
for evaluating the models have been chosen in accordance with the established objectives.

The models tested were K-Nearest Neighbors, Decision Tree, Random Forest, Naïve
Bayes and Artificial Neural Networks. The best results were obtained by Random Forest
and Artificial Neural Networks models [32].

3.10. Test Set Behavior

The validation set has been used, so far, to fine-tune the models and respective hyper-
parameters, in order to seek better performance. It is now important to check how the
models behave in the test set. Although, in a real case, it is advisable to evaluate only the
model that is intended to be implemented [8], this section presents the results obtained for
the evaluation of the two best models (in the validation set), in this case, Random Forest
and Artificial Neural Networks, with min-max scaling normalization.

Tables 14 and 15 show the values obtained for Precision, Recall and F1 Score, for the
Random Forest and Artificial Neural Network model, respectively, in the validation and
test sets.

Table 14. Performance for the Random Forest model in the validation and test sets, with ’n_estimators = 70.

None comp1 comp2 comp3 comp4

Precision 0.9997 0.9244 0.9916 1.0000 0.9812

Conj. Develop. Recall 0.9999 0.9578 0.9861 0.9514 0.9543

F1 Score 0.9998 0.9408 0.9889 0.9751 0.9676

Precision 0.9988 0.9718 0.9711 0.9855 0.9830

Conj. Test Recall 0.9998 0.8150 0.9882 0.9189 0.9611

F1 Score 0.9993 0.8865 0.9796 0.9510 0.9719

Table 15. Performance for the Artificial Neural Network model in the validation and test sets, with
100 hidden layers (hidden layers = 100) and min-max scaling normalization.

None comp1 comp2 comp3 comp4

Precision 0.9997 0.9451 0.9917 1.0000 0.9520

Conj. Develop.Recall 0.9998 0.9337 0.9972 0.9167 0.9954

F1 Score 0.9997 0.9394 0.9945 0.9565 0.9732

Precision 0.9990 0.9030 0.9941 0.9858 0.9725

Conj. Test Recall 0.9995 0.8425 0.9853 0.9392 0.9833

F1 Score 0.9993 0.8717 0.9897 0.9619 0.9779

As expected, there is a generalized decrease in performance of the evaluation metrics
in the test set. Still, the results remain satisfactory. As previously mentioned, in predictive
maintenance, as a general rule, the most important is the number of real failures that the
model is capable of predicting, that is, the value of the model’s Recall parameter [28]. This
parameter becomes even more important as the consequences of false negatives, that is, true
failures that the model was unable to predict, exceed the consequences of false positives,
that is, a false prediction of a failure [33,34].
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For both models, there is a drop in the value of Recall (and, consequently, of F1Score)
to values below 90% for component 1 in the test set. In the present application, the four
components were considered to be of equal importance.

In a real application, where it may be possible to know more information about
each one of them (such as cost, importance in the process, location in the equipment,
ease of replacement), the analysis may involve trying to optimize certain metrics that are
considered to be of greater relevance.

4. Conclusions

In this paper, Machine Learning models were applied to a dataset available online. The
data set used was published by Microsoft, in [9], in a Notebook for Predictive Maintenance
and Machine Learning. The use of this data set was justified. In the implementation carried
out in the present project, until the final phase of feature engineering, the steps presented in
that Notebook were followed. However, from that moment on, as it is considered that the
approach presented in [9] is too simplistic (no validation technique is used and only a single
model is applied), it was decided to deepen the analysis with the implementation of the
Holdout validation, which divides the data set into three subsets (Training, Validation and
Test), as well as various Machine Learning models, thus showing how to fine-tune the
models and respective hyper-parameters using the validation set.

The fact that it is a multi-class classification problem added complexity to the analysis
and, perhaps, starting with a binary classification problem may be advisable for a better
understanding of the basic concepts of Machine Learning, fundamental to the success of
any application.

It is possible to address the imbalance between classes, very common in maintenance
applications, since the occurrence of failures is rare during the life cycle of a given machine,
when compared to its normal operation.

At the outset, and knowing that a sensible choice of which data to use and how to
handle it is crucial for the performance of Machine Learning algorithms, good results
would be expected based on the result obtained. However, more important than any result
was the demonstration of a methodology, starting from data of different types and sources
(very common in maintenance applications), that allowed us to show how it is possible
to visualize and treat them in order to apply Artificial Intelligence tools in the analysis of
maintenance data, in this case, Machine Learning.

Although the results obtained compare well with those presented so far in the litera-
ture, the biggest disadvantage in using the presented methodology lies in the definition of
the features. If the selection of features is not the most correct, the results obtained can lead
to wrong predictions. For future work, the application of feature learning concepts will be
considered instead of feature engineering, which appears to be promising to improve the
results obtained [35,36].
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Abstract: Production and maintenance tasks apply for access to the same resources. Maintenance-
related machine downtime reduces productivity, but the costs incurred due to unplanned machine
failures often outweigh the costs associated with predictive maintenance. Costs incurred due to
unplanned machine failure include corrective maintenance, reworks, delays in deliveries, breaks
in the work of employees and machines. Therefore, scheduling of production and maintenance
tasks should be considered jointly. The problem of generating a predictive schedule with given
constrains is considered. The objective of the paper is to develop a scheduling method that reflects
the operation of the production system and nature of disturbances. The original value of the paper is
the development of the method of a basic schedule generation with the application of the Ant Colony
Optimisation. A predictive schedule is built by planning the technical inspection of the machine at
time of the predicted failure-free time. The numerical simulations are performed for job/flow shop
systems.

Keywords: maintenance; predictive scheduling; flow shop; job shop; ant colony optimisation

1. Introduction

The criteria of cost, quality and time availability are always contradictory. En-
trepreneurs look for solutions that will not be reflected in the loss of quality or extension of
deadlines for the implementation of tasks. Entrepreneurs are looking for organizational,
technological and IT solutions that will allow for improvements in these areas.

Consider the problem of scheduling production tasks and planning technical inspec-
tions of machines. Production and maintenance tasks apply for access to the same resources,
machines. Production and maintenance managers have divergent goals. Machines immobi-
lization for maintenance decrease productivity. Boudjelida [1] investigated the robustness
of joint production and maintenance scheduling in the problem of flow permutation and
proved that the loss of efficiency due to the insertion of maintenance tasks into the pro-
duction schedule increases. But costs incurred due to unplanned machine failure often
outweigh the costs associated with predictive maintenance. Costs incurred due to un-
planned machine failure include corrective maintenance, reworks, delays in deliveries,
breaks in the work of employees and machines. Therefore, scheduling of production and
maintenance tasks should be considered jointly.

The related literature distinguishes three approaches to production and maintenance
planning in disturbance conditions: predictive, proactive and reactive. The goal of the
predictive approach is to obtain a schedule that can absorb the disturbance without affecting
planned external activities, while maintaining high system efficiency [2,3]. The proactive
approach examines the influence of the disturbance on a schedule, using the criteria of
stability. The schedule obtained for the best sequence of tasks related to maintenance and
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production is assumed for implementation [4]. The objective of the reactive approach is to
adapt the schedule to the current situation [5].

There are two proactive approaches: proactive without or with prediction (Figure 1).
In the first approach, only the impact of a disturbance on the schedule using robustness
measures is examined. Researchers search for the best sequence of idle times between
production tasks or batches taking the advantage of the simulation process [6,7]. Con-
sidering only the relationship between production and maintenance tasks as a conflict
in management decisions may cause unmet demand or unexpected machine failures. A
common objective is to maximize a system productivity and efficiency. Usually, the time
interval for maintenance task and the number of maintenance tasks are fixed in advance.
The mentioned deficiencies of proactive-reactive approaches are eliminated in predictive-
reactive approaches.

Figure 1. Classification of production and maintenance scheduling approaches.

The predictive-reactive approach is regarded as a combination of predictive and
proactive scheduling techniques. Researchers predict maintenance time and then evaluate
the effect of a disturbance on the predictive schedule using robustness measures [8,9]. Using
the probability theory to describe machine conditions allows for more reliable maintenance
planning. However, accepting the assumption that machine conditions are observable at
the beginning of each period is not sufficient. Popular maintenance strategies are based
on the periodic inspection of a machine and age dependent inspection and are also not
sufficient. Attributes to describe the machine age and the influence of maintenance should
be drawn from analysis of historical data on failure-free times and observation of dynamic
machine conditions. The predictive-reactive method is considered in the presented paper.

Benbouzid-Sitayeb et al. [10] propose the joint production and preventive mainte-
nance scheduling problem in permutation flowshops with the objective of minimizing the
makespan. The insertion of the maintenance tasks is done according to several heuristics.
Fei and Ma [11] propose a joint optimization on a hybrid flow shop system. A preven-
tive maintenance strategy is based on reliability. The multi-objective is to minimize the
makespan and total production cost. The authors proved that joint optimization is superior
compared with independent decision-making. Nourelfath and Châtelet [12] present the
integrating preventive maintenance and tactical production planning method for a par-
allel production system. The authors assume two possible causes for system failure: the
independent failure of single components, and the simultaneous common cause failure of
all components. The objective is to minimize the sum of preventive and corrective main-
tenance costs, setup costs, holding costs, backorder costs and production costs. Berrichi
et al. [13] propose the Ant Colony Optimization algorithm to solve the joint production
and maintenance scheduling problem. The trade-off solutions between objectives of pro-
duction and maintenance is searched. Reliability models are used to take into account the
maintenance aspect.

This paper faces the problem of generating a predictive schedule with given constrains
in the conditions of disturbances for job shop/flow shop systems. The objective of the
article is to develop an effective method of task scheduling, reflecting the operation of the
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production system and the nature of the disturbances. The method of estimation unknown
system parameters such as Mean Time to Failure, Mean Time of Repaier is based on the
theory of probability. The original value of the paper is the development of the method of a
basic schedule generation with the application of the Ants Colony Optimisation (ACO). A
predictive schedule is built by planning the technical inspection of the machine at time of
the predicted failure-free time. Flexible operations are allocated to the machine during an
increased risk of a failure. Three algorithms: genetic (GA) [14], immune (MOIA) [15] and
clonal selection (CSA) [16] have been developed and compared for the presented problem
of predictive schedules generation.

In this paper the concept of the ACO is presented and numerical examples are given
for predictive scheduling. The ant colony optimization algorithm is applied to the problem
of makespan minimization and schedule stability maksimisation. Comparative analyses of
parameter variants of the ant colony optimization algorithm are performed.

The paper is organized as follows: The job shop scheduling problem for experimental
study is presented in Section 2. The general concept of ACO is presented in Section 3. The
application of ACO for the problem of production and maintenance task scheduling is
described in Section 4. Section 5 contains numerical simulations and experimental test
results related to the research. The paper concludes with a brief summary of the results
(Section 6).

2. Production and Manitenance Scheduling Model

The scheduling problem in a job shop system where production tasks are allocated
to resources with performance constraints due to maintenance is considered. Production
systems are described by: (a) production tasks, (b) machines, (c) routes of production tasks,
(d) operation times, (e) task completion dates. Production tasks are executed in exclusive-
like mode and operations are not preempted. After a machine failure, the disrupted
operations can be performed on parallel machines.

Data on the failure-free operation of the machine is collected. Knowledge about the
machine reliability characteristics for the future planning horizon is acquired in five stages:

1. Adoption of the hypothesis that the time of failure-free operation is described by the
reliability distribution depending on the phase of the machine’s life cycle.

2. Application of methods for estimating distribution parameters.
3. Prediction of distribution parameters for the future planning period.
4. Calculation of the reliability characteristics (e.g., mean time to failure (MTTF)) for the

future planning period.
5. Assessment of the impact of variable dates of failure on the values of stability and

robustness criteria for given values of machine reliability characteristics.

The analyzed historical period is divided into i equal scheduling periods, [(i − 1)T, iT),
i = 1, ..., m + 1. For each of them, Ni events are observed, i.e., machine failures with
failure-free times Xi,1, ..., Xi,Ni . For each historical period i, the distribution parameters are
estimated in order to describe the phenomenon of failure rate. Let us assume the hypothesis
that the failure-free times Xi,1, ..., Xi,Ni in period i [(i − 1)T, iT), i = 1, ..., m+ 1 are described
by the exponential distribution with parameter μi > 0 with a density function:

fi(t) =
{

μi exp(−μit), t > 0,
0, t ≤ 0,

(1)

Parameters μi are estimated in the second stage. Values of μi generally differ in
subsequent historical periods i. Using the maximum likelihood method, the parameter

∼
μ1

for the first period is estimated:
∼
μ1 =

n1

∑n1
k=1 x1,k

(2)
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In the empirical moment method, value
∼
μ1 is determined comparing the equations:

m1(x1) =
1
n1

n1

∑
k=1

x1,k (3)

where:
m1(x1) =

1
μ1

(4)

and the formula for the estimated parameter
∼
μ1 (2) is obtained.

After obtaining the estimated values of the distribution parameters for each historical
period, parameter

∼
μm+1 is predicted for the future planning period using classical regres-

sion technique. Defining the function describing the parameters consists in eliminating
fluctuations and identifying trends of the analyzed data on failure-free times. The least
squares method is used for smoothing time series in linear and quadratic functions. To
confirm the hypothesis that the scatter plot of a given function is the most reliable, two
coefficients are calculated: (a) coefficient of determination (R2) which measures the trend
fit to the failure-free data and (b) the function of losses (SSE) which is the sum of squared
deviations residues. The hypothesis with the function with the highest R2 value and the
lowest SSE value is selected.

In the fourth stage, we determine the reliability characteristics, such as [16]:

• Mean Time Between Failures = Mean Time To Failure + Mean Time of Repair, (MTBF
= MTTF + MTTR),

MTBF = E{Xm+1,1 + Ym+1,1} =
1

μm+1
+

1
αm+1

, (5)

where: αm+1 > 0 is predefined.
• Probability P that in the interval [ f , g] ∈ [mT, (m + 1)T) there occurs at least one fail-

ure,
• Period of increased risk of failure [a, b + MTTR], where: a on the assumption that the

probability of the failure-free time of the bottleneck is higher than a equalling 30%, b
on the assumption that the probability of the failure-free time of the bottleneck is less
than b equalling 70%.

In the fifth stage, the predictive schedule is generated for the reliability characteristics
using the ant colony optimisation algorithm. The procedure of generating predictive
schedules is presented in Section 4. The stability of schedule k is measured using the quality
robustness and solution robustness criteria. The reactive schedule k* is generated in a
situation where the predictive schedule k can not absorb the impact of the disturbance.
The newly generated schedule should reproduce the previous one as much as possible
according to the stability criterion:

SR(k∗) =
J

∑
j=1

Vj

∑
vj=1

∣∣∣stj,vj(k)− stj,vj(k∗)
∣∣∣, (6)

where: stj,vj(k) is start time of operation vj of task j in predictive schedule k; stj,vj(k∗) is
start time of operation vj of task j in reactive schedule k*.

After the disturbance, the value of the criterion used to evaluate the predictive sched-
ule should not be significantly influenced. The quality robustness of schedule k is assessed
by calculating the difference between the makespan criterion C before and after the ma-
chine failure:

QR(k∗) = |C(k)− C(k∗)|. (7)
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3. Basics on Ant Colony Optimization

Modeling how ants behave and interact helps solve many optimization problems. The
first ant algorithm (Ant Colony Optimization) was presented by Marco Dore in 1992 [8].
The strength of ants lies in their numbers and the cooperation. The cooperation between
individuals ensures the survival of the entire community. Each ant can find the shortest
path from the anthill to the food source without analyzing the visible terrain that surrounds
it. Ants easily adapt to new conditions. When the road is blocked by an obstacle, they can
avoid it, when the place where the food was located becomes inaccessible, they will start
looking for a new source of food.

An ant that has reached the food and returns to the anthill leaves a pheromone trail
behind. Depending on what signal the ant wants to send to others, the smell and the
intensity of the pheromone varies. Any other ant, sensing the pheromone in its immediate
neighbourhood and analyzing its intensity, is able to determine which direction to go in
order to reach the food. The more ants pass along the path from food to the anthill, the
stronger the smell of the pheromone will remain on that path, making it the most attractive
path. The paths that are less traveled are forgotten over time, and even if they led to food,
the pheromone will not be enough to guide the ants to their destination.

The structure of the ant algorithm consists of three parts: main transition rule, global
update rule, local update rule.

3.1. Main Transition Rule

Each ant follows the pseudo—random—proportional rule taking the next step. The
rule determines whether the ant is focused on exploration (random path selection) or
exploitation (determinism) moving from point r to point s (Equation (8)).

If an ant is focused on exploration, it does not react to the pheromone trace in its
environment. This makes it more likely that the ant will pass over to an area that may
be more attractive. If an ant is focused on exploitation, it only goes where it senses the
pheromone trail, which makes the paths from the anthill to the food more abundant in
pheromone.

S =

⎧⎨⎩ arg max
u∈Nk(r)

{ [τ(r, u)] · [η(r, u)]β
}

, for q ≤ q0

pk(r, s), for q > q0,

(8)

where: q0—a parameter, q0 ∈ 〈0, 1〉 , q—a random number from 〈0, 1〉 , τ—size of the
pheromone trace on the edge u, between points r and s, η = 1

δ —reciprocal of the distance
δ(r, u) representing heuristics, β—the parameter of the relative importance between the
pheromone trace and the reciprocal of the distance, Nk(r)—the set of those points that ant
k (located at point r) has not yet visited, pk(r, s)—a random variable selected according to
the formula:

pk(r, s) =

⎧⎪⎨⎪⎩
[τ(r,s)]·[η(r,s)]β

∑
u∈Nk(r)

[τ(r,s)]·[η(r,s)]β
, for s ∈ Nk(r)

0, for s /∈ Nk(r)
(9)

If parameter q ≤ q0, the ant is driven by the desire to exploit already discovered areas.
The most attractive point s for an ant is the one to which the distance from r is the shortest,
and the pheromone value on the path from r to s is the highest.

If parameter q > q0,, the ant is driven by the desire to discover new areas—exploration.
In this case point s is a random point from all available points connected to point r. Each
ant exploring a new area learns about it, which, if useful, passes on to other ants by means
of the pheromone left behind. Any available point can be chosen, not only the best one.

Appropriate selection of parameter q0 results in the quality improvement of solutions
generated by the algorithm. By lowering parameter q0, ants may start to pay too much
attention to explore new areas. Already discovered routes leading to the target are quickly
forgotten by other ants.

153



Appl. Sci. 2021, 11, 171

On the other hand, when parameter q0 is overestimated, it is likely that ants focus on
the suboptimal solution. There is not enough ants to explore new areas in search of a new,
perhaps better solution.

3.2. Local Update of the Pheromone Trace

Local updating of the pheromone trace takes place every iteration, for each ant [8].
Looking for solutions, ants move between points on the edges connecting these points.
At the same time, ants update the value of the pheromone, even if they have not found
the best solution. Updating the pheromone trace locally aims to reduce the value of the
pheromone on each visited edge in each iteration. Updating the pheromone trace locally
prevents ants from accumulating on one path only, and introduces some variation in the
results obtained:

τ(r, s) ← (1 − ρ) · τ(r, s) + ρ·Δτ(r, s), (10)

where: ρ—pheromone evaporation factor ρ ∈ 〈0, 1〉, τ(r, s)—the amount of pheromone on
the way from point r do s, ΔτK(r, s)—reduction of the pheromone trace:

ΔτK(r, s) = τ0 =
1

n·Lnn
(11)

where: n—number of possible points to visit from the point r, Lnn—minimum distance
between two adjacent points.

3.3. Global Pheromone Update

The global update of the pheromone consists in updating the pheromone value at the
edges of the relatively optimal path from the anthill to the food. The relatively optimal
path is the best solution to the problem from the beginning of the algorithm’s operation or
determined for each iteration [8]:

τ(r, s) ← (1 − α)·τ(r, s) + α·
m

∑
k=1

ΔτK(r, s), (12)

where: α—pheromone evaporation rate, (1 − α) ε <0,1> is the glow of the pheromone,
τ(r, s)—the amount of pheromone on the way from point r to s, m—the number of ants
that have passed from point r to point s, ΔτK(r, s)—the increase of the pheromone trace is
calculated from:

ΔτK(r, s) =

{
1

LK
, for (r, s) ∈ LK

0, for (r, s) /∈ LK
(13)

where: (r, s) ∈ LK—edge belonging to the global best solution, K—index of the ant that
discovered the best solution, LK—the length of the globally best solution.

4. ACO for Scheduling Production and Maintenance Tasks

The presented predictive-reactive method uses the advantage of computer simulation
by repeating three steps:

(1) generating a population of best ants,
(2) conversion of basic schedules (represented by ants) into predictive schedules using

the Minimal Impact of Disrupted Operation on the Schedule (MIDOS) rule.
(3) assessment of the impact of a disruption on reactive schedule/s using criteria: solution

robustness (SR) and quality robustness (QR) [15].

In the following the ACO implementation for generating basic schedules (first step) in
job shop scheduling problems is presented.

Pheromone and heurisitic information initialization is inspired by Boudjelida [1]. The
same ant coding procedure was presented in [1] as in this article. But the ACO algorithms
differ in the procedure for improving the solution and the number of parameters controlling
the intensity of the pheromone and the visibility of the pheromone. The main difference
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is also the approach to scheduling maintenance tasks. In this paper a predictive-reactive
approach is considered, the author [1] proposes a proactive-reactive approach. Both articles
also consider different types of scheduling problems.

4.1. Ants Coding

Ant k is positioned on a randomly selected task j from a randomly selected vector of
tasks Vk. The selected task is placed on the ant taboo list Tk. The size of the taboo list is
equal to the number of tasks J (j = 1, 2, ..., J) in a scheduling problem. The neighbourhood
size for each selected task is two, n = 2. In other words, the ant can select two adjacent tasks
of j from list Vk in the next step.

4.2. Solution Construction

Ant k selects a task to schedule by selecting parameter q and calculating a transition
probability for exploration or exploitation (1 and 2). The task sekected from the neighbour-
hood is inserted in the Tabu list Tk. The selected task is scheduled. Ant k moving from task
r to task s reduces the value of the pheromone information on the track (r, s) (3). In the
scheduling problem, Lnn is the minimum deadline for completing a task after scheduling
all neighborhood tasks and n is the number of tasks in the neighborhood. The process of a
task selection is repeated until vector Vk is empty. The final solution achieved by ant k is
presented by the production task sequence in Tabu list Tk.

4.3. The Best Solution Selection

The best solution selection is repeated after each ant has constructed a production
task sequence. The best solution obtains the minimum value of makespan criterion C.
Makespan represents the end time of the last operation in a schedule. The pheromone
information is updated for each track that the best ant has followed (5). LK is the value of
criterion (Cmax) in the presented scheduling problem.

4.4. The Predictive Schedule Generation

Predictive schedules take the advantage of prognostic analysis in the Minimal Impact
of Disrupted Operation on the Schedule (MIDOS) rule. The MIDOS rule transforms
schedules to be more robust and stable in the event of disruptions. In the MIDOS rule, the
job which is predicted to be disturbed is rescheduled. The most flexible operation of the
job is assigned to the bottleneck. The backward and forward scheduling are applied for
remaining operations [12].

4.5. The Predictive-Reactive Schedule Generation

The predictive and reactive schedules are generated for the basic schedules achieved
by the ACO. Predictive schedules are generated using the MIDOS rule. The MIDOS rule
modifies the basic schedules so that they are more reliable and stable when there is a risk of
disruption. Following the MIDOS rule, a task that is predicted to be disrupted is analyzed
for the flexibility of its operations. The most flexible operations are assigned to the critical
machine. For the remaining operations, the back and forth scheduling rule applies. There
are two variants of the MIDOS rule. The MIDOS I rule uses a left-shifting heuristic of
operations preceding a critical operation, and a right-shifting of operations following a
critical operation. In the MIDOS II rule, forward and backward scheduling depends on the
availability of parallel machines. Operations are scheduled appropriately on the earliest
available parallel machines for the upstream and downstream operations of the critical
operation, respectively.

After the disturbance, two rescheduling procedures are applied for disrupted opera-
tions: Right Shifting (RS) and Reschedule on Parallel Machines (RPM). SR assesses how
much the current schedule differs from the previously adopted one. QR assesses how
much the current value of the quality indicator differs from the value of the previously
adopted schedule.
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4.6. Update of the Pheromone Trace for Makespan Optimisation

The formula for updating the pheromone trace locally is modified in order to perform
makespan optimisation. The reduction of the pheromone trace is calculated using.

ΔτK(r, s) = τ0 =
1

n·C(nn)
(14)

where: C(nn) is the end date of the last task in the schedule (makespan):

C(nn) = max
[
tzVj

]
(15)

tzvj is the completion time of operation vj of job j, vj = 1, . . . , Vj, j = 1, . . . , J.
The increase of the pheromone trace is calculated from

ΔτK∗∗(r, s) =

{
1

C(nn) , for (r, s) ∈ LK∗∗

0, for (r, s) /∈ LK∗∗
(16)

where: (r, s) ∈ LK∗∗—job sequence belonging to the global best schedule, K**—index of the
ant that discovered the best schedule.

The steps of the ACO are presented in Figure 2. The next Section presents a job shop
(JS) scheduling problem for experimental study to better understood the steps of the ACO.

Figure 2. The steps of the ACO.
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5. Predictive-Reactive Scheduling Case Study

This section introduces various ACO parameter data sets to verify the performance of
ACO and MIDOS I or MIDOS II for predictive scheduling in various job shop sizes.

Job shop scheduling problems are investigated to fine-tune the parameters where 9
jobs have to be performed on 8 machines (9 × 8) and 11 jobs have to be performed on 10
machines (11 × 10). The first machine is the most heavily loaded. The failure-free time
of the bottleneck MTTF equals 66. The repair time of the bottleneck MTTR equals 6. The
increased probability of the bottleneck failure occurs in time horizon [a, b + MTTR] where:
a = 60 and b = 72. The objective is to find an approach which is able to generate stable and
robust schedules in the event of the bottleneck failure. The objective is to achieve a robust
and stable schedule for the problem, Cmax(k)→ min (15).

Computer simulation of the Ant Colony Optimisation is run for the parameter of
the relative importance between the pheromone trace and the reciprocal of the distance
β = 1; pheromone evaporation factor α = ρ = {0.2, 0.4, 0.6, 0.8}; number of ants, K = {10,
15, 20, 25}; number of iterations, E = {10, 20, 30, 40} and parameter q0 which decides abot
exploration or exploatation selection by an ant, q0 = {0.3, 0.4, 0.5, 0.6}. The ACO is run 10
times for each set of input parameters {ρ, K, E, q0}.

First, the influence of the number of iterations, E = {10, 20, 30, 40} over the quality of
basic schedules generation for single criterion problem is investigated and for unchanging
pheromone evaporation factor α = ρ = {0.6} and number of ants K = {10}. The parameter
q0 is equal to 0.5 to get an equal chance of choosing to explore and exploit by ants. By
observing the first and third quartiles of Cmax and the best schedules achieved the following
conclusion can be drawn that a larger number of iteration is, the higher chances of achieving
a better solution are in scheduling problem (11 × 10) (Figure 3b). By observing the first
and third quartiles of Cmax and the best schedules achieved for the scheduling problem (9
× 8), the opposite phenomenon can be observed. The smaller the number of iterations is,
the greater the chances of achieving a better solution are (Figure 3a).

Figure 3. The Cmax of the basic schedules achieved by the ACO for different iteration numbers.

Next, the influence of the number of ants, K = {10, 15, 20, 25} over the quality of
basic schedules generation for single criterion problem is investigated for unchanging
pheromone evaporation factor α = ρ = {0.6}, number of iterations E = {20}, parameter q0
is equal to 0.5. Observing the results of the achieved value of the makespan criterion for
the basic schedules (Figure 4), the following conclusion can be drawn that a larger the ant
population is, the greater the chances of achieving a better solution are. This phenomenon
is noticed for both sizes of scheduling problems (9 × 8) and (11 × 10).

Then, the simulations are continued for the number of ants, K = {15}, iteration
size, E = {20}, parameter q0 = 0.5 and changing values of pheromone evaporation fac-
tor α = ρ = {0.2, 0.4, 0.6, 0.8}. Observing average values of Cmax and the best schedules
achieved (Figure 5) the following conclusion can be drawn that the higher values of
pheromone evaporation factors α = ρ are, the higer chances of achieving a better solution
are. Algthough the average quality of population does not increase with the parameter
values, better solutions are achieved for scheduling problem (9 × 8). The best scheduel is
achieved for Cmax equals 152 for scheduling problem (9 × 8), for the pheromone evapora-

157



Appl. Sci. 2021, 11, 171

tion factor α = ρ = 0.8 (Figure 5a). The best scheduel is achieved for Cmax equals 203 for
scheduling problem (11 × 10), for the pheromone evaporation factor α = ρ = {0.4, 0.6, 0.8}
(Figure 5b).

Figure 4. The Cmax of the basic schedules achieved by the ACO for different size of ant population.

Figure 5. The Cmax of the best basic schedules achieved by the ACO for different values of parameter α = ρ.

Then, the simulations are continued for the number of ants, K = {15}, iteration size,
E = {20}, parameter α = ρ = {0.2} and changing values of parameter q0 which decides
abot exploration or exploatation selection by an ant, q0 = {0.3, 0.4, 0.5, 0.6}. Observing
average values of Cmax and the best schedules achieved (Figure 6) the following conclusion
can be drawn that the lower values of parameter q0 are, the higer chances of achieving a
better solution are. The average quality of population does not increase with the parameter
values for scheduling problems (9 × 8) and (11 × 10) (Figure 6a,b).

Figure 6. The Cmax of the basic schedules achieved by the ACO for different values of parameter q0.

Next, the performance of the ACO and MIDOS I or MIDOS II is verified for predictive
scheduling for different datasets of job shops. The predictive and reactive schedules are
generated for the basic schedule achieved by the ACO for each set of input parameters {ρ,
K, E, q0}. Predictive schedules are generated using rules: the MIDOS I or MIDOS II.

For example, in the first simulation, the predictive and reactive schedules were gener-
ated for the basic schedule obtained by the ACO and MIDOS I for the sequence of tasks: {7
8 6 9 5 2 4 3 1} for scheduling problem (9 × 8) and {10 8 7 6 11 9 3 4 1 5 2} for scheduling
problem (11 × 10) (Table 1). The makespan function of the predictive schedule generated
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using the MIDOS I was Cmax(1) = 141. The makespan function of the reactive schedule
generated using the MIROS was also Cmax(1*) = 141. The solution robustness was SR(1)
= 48 and the quality robustness was QR(1) = 0 for the first scheduling problem (9 × 8).
Quality of the task sequences achieved for the remaining ants for scheduling problems
(9 × 8) and (11 × 10) is described in Table 1. Also, computer simulations were run for
generating predictive schedules using the MIDOS II. Quality of the predictive and reactive
schedules for scheduling problems (9 × 8) and (11 × 10) is described in Table 2. The
average solution robustness of predictive schedules generated using the ACO and MIDOS
I was 32.69 for scheduling problem (9 × 8) and 42.07 for scheduling problem (11 × 10)
(Table 1). The average solution robustness of predictive schedules generated using the
ACO and MIDOS II was 31.92 for scheduling problem (9 × 8) and 27.46 for scheduling
problem (11 × 10) (Table 2). All achieved schedules are robust taking into account the
quality robustness criterion for both scheduling problems (9 × 8) (Table 1) and (11 × 10)
(Table 2). By analyzing the minimum, maximum, first quantile, third quantile and the mean
values of solution and quality robustness, the following conclusion can be drawn: the
MIDOS II heuristic is better to apply to the basic schedules generated by ACO (Figure 7).

Table 1. The schedules generated using the MIDOS I and MIROS for the best basic schedules achieved by the ACO and
input parameters {ρ, K, E, q0}.

Scheduling Problem (9 × 8) Scheduling Problem (11 × 10)
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{10, 10, 0.6, 0.5} 159 141 141 48 0 207 177 177 0 0

{20, 10, 0.6, 0.5} 158 138 138 100 0 207 169 169 41 0

{30, 10, 0.6, 0.5} 160 144 144 75 0 204 168 168 97 0

{40, 10, 0.6, 0.5} 160 134 134 4 0 208 166 166 9 0

{20, 15, 0.6, 0.5} 159 140 140 2 0 207 175 175 8 0

{20, 20, 0.6, 0.5} 159 122 122 57 0 203 167 167 116 0

{20, 25, 0.6, 0.5} 158 136 136 2 0 206 174 174 14 0

{20, 15, 0.4, 0.5} 160 138 138 4 0 209 172 172 86 0

{20, 15, 0.6, 0.5} 159 130 130 61 0 203 165 165 156 0

{20, 15, 0.8, 0.5} 158 140 140 2 0 203 165 165 4 0

{20, 15, 0.2, 0.3} 158 147 147 23 0 205 174 174 12 0

{20, 15, 0.2, 0.4} 161 141 141 45 0 203 172 172 0 0

{20, 15, 0.2, 0.6} 159 140 140 2 0 203 174 174 4 0

average 32.69 42.077
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Table 2. The schedules generated using the MIDOS II and MIROS for the best basic schedules achieved by the ACO and input
parameters {ρ, K, E, q0}.

Scheduling Problem (9 × 8) Scheduling Problem (11 × 10)

{E, K, ρ, q0}
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{10, 10, 0.6, 0.5} 159 141 141 47 0 207 177 177 0 0

{20, 10, 0.6, 0.5} 158 138 138 100 0 207 169 169 6 0

{30, 10, 0.6, 0.5} 160 144 144 62 0 204 174 174 0 0

{40, 10, 0.6, 0.5} 160 134 134 4 0 208 166 166 9 0

{20, 15, 0.6, 0.5} 159 137 137 14 0 207 175 175 2 0

{20, 20, 0.6, 0.5} 159 122 122 56 0 203 167 167 182 0

{20, 25, 0.6, 0.5} 158 136 136 6 0 206 173 173 3 0

{20, 15, 0.4, 0.5} 159 138 138 4 0 209 172 172 13 0

{20, 15, 0.6, 0.5} 160 130 130 19 0 203 165 165 131 0

{20, 15, 0.8, 0.5} 158 139 139 47 0 203 165 165 4 0

{20, 15, 0.2, 0.3} 158 141 141 9 0 205 174 174 3 0

{20, 15, 0.2, 0.4} 161 141 141 45 0 203 172 172 0 0

{20, 15, 0.2, 0.6} 159 140 140 2 0 203 189 189 4 0

average 31.92 27.46

Figure 7. The SR of the predictive schedules achieved by the ACO and MIDOS rules for scheduling problems: (9 × 8) and
(11 × 10).

160



Appl. Sci. 2021, 11, 171

6. Conclusions

In the paper, the predictive-reactive (proactive with prediction) method for joint
scheduling of production and maintenance tasks was presented. The presented method
can improve the work of maintenance team. Machine failure causes great losses as a result
of downtime, the need to replace parts or even modiffication of the production plan to
take into account the fact that the given machine or device need to be repaired for a longer
period. The analysis of historical data on the machine uptimes allowes one to plan the
replacement of elements, machine inspection and may contribute to extending the machine
uptime.

The original value of the paper was the development of the method of a basic schedule
generation with the application of the Ant Colony Optimisation (ACO). A predictive
schedule was built by planning the technical inspection of the machine at time of the
predicted failure time. Flexible operations are allocated to the machine during an increased
risk of failure. Next, the influence of the disturbance on the predictive schedule using
robustness measures was examined.

In the future, the presented method for generating predictive schedules will be com-
pared with the genetic algorithm, immune and clonal selection algorithms. ACO algorithms
are alternative methods of searching the solution space for scheduling problems. The pre-
sented algorithm may, however, contribute to the development of a method that reflects
the operation of the production system and the nature of disturbances, and improves the
system operation.
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Abstract: Fault propagation behaviour analysis is the basis of fault diagnosis and health maintenance.
Traditional fault propagation studies are mostly based on a priori knowledge of a causality model
combined with rule-based reasoning, disregarding the limitations of experience and the dynamic
characteristics of the system that cause deviations in the identification of critical fault sources. Thus,
this paper proposes a dynamic analysis method for fault propagation behaviour of machining centres
that combines fault propagation mechanisms with model structure characteristics. This paper uses
the design structure matrix (DSM) to establish the fault propagation hierarchy structure model.
Considering the correlation of fault time, the fault probability function of a component is obtained
and the fault influence degree of nodes are calculated. By introducing the Copula and Coupling
degree functions, the fault influence degree of the edges between the same level and different levels
are calculated, respectively. This paper constructs a fault propagation intensity model by integrating
the edge betweenness and uses it as an index to analyze real-time fault propagation behaviour.
Finally, a certain type of machining centre is taken as an example for specific application. This study
can provide as a reference for the fault maintenance and reliability growth of a machining centre.

Keywords: machining centre; DSM; Copula function; fault propagation intensity; fault propaga-
tion behaviour

1. Introduction

CNC technology and CNC machine tools are enabling the development of technologies
and basic equipment towards emerging high-technology and cutting-edge industries [1].
Numerical control technology is extensively used in many countries worldwide to improve
the capacity and level of the equipment manufacturing industry, and to improve market
adaptability and competitiveness [2]. Machining centres are widely used because of
their strong flexible processing capabilities. They have a strong technical advantage in
the manufacturing field and have become the main processing equipment for various
manufacturing enterprises.

A machining centre is a complex system composed of multiple components. Given the
influence of system structure, working environment, human factors, and maintenance level,
the usage of a machining centre becomes more complex. The system fault is not only related
to the independent fault of the component but also to the propagation faults [3]. If the fault
cannot be eliminated in a timely manner, it will affect the progress of the entire production
and even cause the contract to fail to be performed as scheduled, resulting in irreparable
economic losses to a company [4]. Currently, many companies have low levels of fault
diagnosis and maintenance in their machining centres, especially in the fault diagnosis
of a machining centre [5]. The cost [6] and time [7] spent on locating a fault source of a
machining centre cannot be ignored and when the cause of the fault is determined, the time
for troubleshooting will be significantly shortened. Therefore, clarifying the real-time fault
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propagation behaviour of a machining centre is crucial for the prediction and elimination
of faults.

The current fault diagnosis methods can be summarized into four categories [8,9]:
knowledge-based fault diagnosis [10–12], model-based fault diagnosis [13–15], signal-
based fault diagnosis [16–18], and hybrid method-based fault diagnosis (a method that
combines two or more methods) [19–22]. Fault diagnosis for machining centres mainly
include diagnosis methods based on fault information monitoring, training models, and
fault trees.

The diagnosis method based on fault information monitoring is concerned with
monitoring information characteristics of each system component of a machining centre by
means of sensors [23]. Through the test analysis software and the corresponding model,
the fault information feature extraction is realized and the fault location is determined [24].
However, because the sensor is highly susceptible to the influence of the surrounding
environment, the collected signal is not accurate enough and leads to a certain deviation
of the diagnosis results. This method cannot detect all the usage information of a system;
hence, it is mostly used for the fault diagnosis of system components and cannot realize
the fault diagnosis of an entire system.

The diagnosis method based on training model is concerned with training models
such as support vector machines [25–27] and neural networks [28–30] on the basis of con-
structing a machine fault information database. Then, on the basis of the input information
that represents the fault symptom, the output information that reflects the fault cause is
directly derived to realize the judgment of the machine fault; However, this method cannot
accurately determine the fault location of a machine. Concurrently, when the machine is
very expensive, establishing test samples is difficult, hence collecting numerous samples to
train a model is impossible.

The diagnosis method based on fault trees is concerned with listing all the possible
causes of machine faults successively from top to bottom [31]. By establishing the fault
tree of a machining centre, faults can be checked individually [32]. However, this method
uses the dependency of each fault mode to construct the fault tree and realizes the fault
diagnosis on the basis of the simple logic gate and the average fault rate of the bottom
event. Due to the neglecting of the correlation of fault mode, a deviation in the calculation
of fault rate occurs and the structural characteristics of fault trees are not considered, thus
resulting in a wrong diagnosis.

Given the shortcomings of the above diagnosis methods, some scholars use a petri
net, cellular automaton, and complex networks with topological characteristics such as
regular networks, scale-free networks, small-world networks, and random networks to
establish fault propagation models to study fault propagation [33–36]. However, given the
dependence of a model on the structure and the correlation of faults, a deviation occurs in
the fault mechanism analysis and fault source location of a machining centre. In addition,
the fault influence degree of system components obtained by traditional methods is mostly
constant; in contrast, the fault influence degree of each system component will change over
time. Thus, achieving the ideal effect in the fault diagnosis strategy is difficult.

Therefore, this paper proposes a fault propagation intensity evaluation method that is
used to dynamically describe the fault propagation process of machining centre system
components. Compared with the existing methods, the DSM-based fault propagation
hierarchy structure model of machining centres established in this paper can more clearly
demonstrate the relationship between system components. The fault influence degree
of system components obtained in this paper are also time-varying, thereby more in
line with engineering practice. Moreover, for the calculation of the influence degree of
the edge between components, most of the previous studies used the same method to
calculate the fault influence degree of each level and did not consider the difference of
fault influence between different levels that will inevitably lead to the deviation in the
fault propagation analysis results. This paper considers the difference of fault influence
degree between different levels and uses the Copula function and coupling function to
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calculate the fault influence degree of the edges between the same level and different levels,
respectively. The structural characteristics of the model and fault mechanism of the system
is considered synthetically, thus the description is more reasonable. We use the value of
the fault propagation intensity as an index to study the fault propagation behaviour of
a machining centre, to identify the critical fault propagation path of a machining centre,
and to provide a theoretical basis and practical reference for later fault detection and
maintenance.

The remainder of this paper is organized as follows. Section 2 describes the method
for evaluating the fault propagation intensity of machining centres on the basis of a
fault propagation model. Section 3 introduces the dynamic analysis method of fault
propagation behaviour of machining centres on the basis of the fault propagation intensity.
Section 4 provides a case application of a machining centre to demonstrate the effectiveness
of the proposed method. Section 5 engages in a discussion. Lastly, Section 6 presents
our conclusions.

2. Method for Evaluating Fault Propagation Intensity of Machining Centres on the
Basis of the Fault Propagation Model

Based on the basic working process and principle of machining centres, a machining
centre is divided into modules and the relevant faults are identified in combination with
the field fault data. Considering the fault correlation of components, a hierarchy structure
model of machining centres’ fault propagation on the basis of DSM is established. The
Johnson method is applied to correct the component fault order and construct a time-
dependent component fault probability model. On this basis, the importance of component
nodes is calculated to reflect the fault influence degree of component nodes. Considering
the differences of fault influence degree of the edges at different levels, this paper uses
the Copula function to calculate the influence degree of the edges at the same level and
uses the coupling degree function to calculate the influence degree of the edges between
different levels. Then, the component fault probability model is integrated to calculate the
node’s probability of fault propagation. Given that the topology of the model will also
affect the propagation of the fault, the fault propagation intensity of machining centres can
be evaluated by fusing the probability of the fault propagation with the edge betweenness
of the structural model. The evaluation process of fault propagation intensity in machining
centres is shown in Figure 1.

Figure 1. Evaluation process of the fault propagation intensity in machining centres.
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2.1. Construction of the Hierarchy Structure Model of Fault Propagation in Machining Centres
Based on DSM
2.1.1. General System Hierarchy Structure Modelling Process

The system structure model describes the relationship structure between the com-
ponents of the system with the concept of set. The model is a diagram that reflects the
relationship between the components of the system. For machining centres, however, the
relationship diagram is difficult to utilize for clearly reflecting the relationships between the
components of the system. Through matrix and hierarchy processing, the related digraph
of each system component is transformed into a hierarchy structure model that can clearly
understand the structure of the system and relationship between the components of the
system. Its general modelling process is shown in Figure 2.

Figure 2. Schemes follow the same formatting.

2.1.2. Construction of the Hierarchy Structure Model of Fault Propagation in Machining
Centres on the Basis of DSM

In accordance with the general modelling process of the hierarchy structure model,
the machining centre is first divided into n system components on the basis of the working
process and principles of the machining centre, and the fault correlation analysis of the col-
lected fault data is conducted and aided by the relevant experience of the system structure
function and the fault diagnosis manual. Furthermore, the fault time of each system compo-
nent in the machining centre and the fault propagation relationship among the components
is determined. The system component is expressed as a node set: V = {v1, v2, · · · , vn}.
The fault propagation relationship and connection relationship between system component
nodes are represented by directed edge set E = {〈v1, v2〉, 〈v2, v3〉, · · · , 〈vm, vn〉}. Thus, a
digraph (G = (V, E)) of fault propagation of a machining centre can be obtained. Then,
according to the fault propagation digraph, the direct fault influence between the system
components is expressed with a relation matrix (A) and the reachable matrix is obtained
according to the relation matrix. In addition, the reachable matrix is decomposed to realize
the construction of the fault propagation hierarchy structure model.

To establish a clearer fault propagation hierarchy structure model, the design structure
matrix (DSM) method is introduced [37]. In the form of binary values, ‘0’ and ‘1’ or ‘×’
and a blank space represent the relationship between the row and column elements in the
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design structure matrix (M). The design structure matrix can be regarded as a reachable
matrix. The elements in the design structure matrix are defined as follows:

mij =

{
1, vi has at least one dependency on vj

0, vi has nothing to do with vj
(i = 1, 2, · · · , n; j = 1, 2, · · · , n) (1)

The fault influence relationship between the system components of a machining centre
can also be expressed as the dependency relationship between the elements in the design
structure matrix. At this time, the elements are defined as follows:

mij =

{
1, vi has at least one effect on vj

0, vi has no effect on vj
(i = 1, 2, · · · , n; j = 1, 2, · · · , n) (2)

The modelling principle of the hierarchy structure model is based on the design
structure matrix (M) and according to the knowledge of matrix, row–column transforma-
tion is conducted. In addition, the design structure matrix is converted into the lower
triangular matrix as much as possible to reduce the existence of positive and negative
transfer relations in the matrix. To eliminate feedback information between modules, the
risk of iteration is reduced [38]. The construction process of the fault propagation hierarchy
structure model based on DSM is shown in Figure 3.

Figure 3. Flow chart of the hierarchy structure model construction based on DSM.

Based on the hierarchy sequence obtained by the DSM-based hierarchy model con-
struction process, the appearance layer is classified as the fault absorption layer in the fault
propagation model, the root layer is classified as the fault initiation layer, and the remain-
ing layers are classified as the fault propagation layers. The number of fault propagation
layers may vary according to the needs of the research object. Based on this, the hierarchy
structure model of fault propagation of system components is drawn.

2.2. Calculation of Fault Propagation Probability of Machining Centre System Components
2.2.1. Calculation of Machining Centre System Components’ Fault Probability

All n data of machining centres’ fault data and right truncation data are sorted and
recorded as j(1 ≤ j ≤ n). Then, only m fault data of a certain component of a machining
centre are sorted from small to large and are recorded as i(1 ≤ i ≤ m). The order number n
of the i-th fault data is as follows:

ri = ri−1 +
n + 1 − ri−1

n + 2 − j
(3)

The corrected component fault time order number is substituted into the median rank
equation to obtain the empirical distribution function of the component, as follows:

ri =
ri − 0.3
n + 0.4

(4)

The Weibull distribution commonly used in engineering is taken as the hypothetical
distribution of the fault interval time of machining centre components. In this paper,
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Weibull distribution is used to construct the reliability model and the cumulative fault
distribution function is as follows:

F(t) = 1 − exp
[
−
(

t
β

)γ]
, t ≥ 0, (5)

where β represents scale parameter, β > 0, γ represents shape parameter, and γ > 0, t is a
time variable, t ≥ 0.

Equation (5) is transformed as follows:

ln [ln (1/(1 − F(t)))] = γ ln t + γ ln β (6)

The linear regression model is fitted between ln [ln(1/(1 − F(t)))] on the left side
of the equation and ln t on the right side. The Weibull model parameter value β̂ and γ̂
can be obtained on the basis of the fault information and empirical distribution function
value. The model test value (ρ) is calculated by the linear correlation coefficient test method.
Next, the minimum value (ρα) of the correlation coefficient is calculated on the basis of
the number of fault data (n) and significance level (α). When ρ > ρα, it is considered
that ln [ln(1/(1 − F(t)))] and ln t are linearly related and the fault data is subject to the
assumed distribution. Otherwise, the hypothesis is rejected.

2.2.2. Determination of the Influence Degree between Components of Machining Centres

Importance refers to the contribution to the fault probability of the whole machine
when a system component fails; it is a time-dependent function and can characterize both
the structure of the system and a parameter of the reliability of the system components [39].
The importance of system components is quantitatively described and called the importance
of system components. In this paper, it is regarded as the influence degree of a system
component to reflect the influence degree of a whole machine fault caused by the fault of a
certain system component.

(1) Calculation of Probability Importance of System Component Nodes

In the late 1960s, Birnbaum put forward the Birnbaum probability importance for
practical production [40]. The idea of probability importance is introduced by considering
the contribution of reducing the fault probability of system components to reducing the
fault probability of the whole system.

When any system component of a machining centre fails, it may cause the whole
machine to fail. Hence, the relationship between the system components of a machining
centre can be regarded as the series relationship. According to this structural relationship,
the fault probability function of the system components can be used to describe the fault
probability function of a whole machining centre. The fault probability function is a
function of time and their relationships are expressed in Equation (7):

FZ(t) = 1 − [(1 − F1(t))(1 − F2(t)) · · · (1 − Fi(t))]. (7)

In addition, the equation for calculating the probability importance of system compo-
nent nodes are shown in Equation (8):

IP(vi) =
∂FZ(t)
∂Fi(t)

i = 1, 2, · · · , n, (8)

where IP(vi) is the probability importance of the system component node, FZ(t) is the fault
probability function of the whole machine, and Fi(t) is the fault probability function of the
system component node. For any two-system component nodes, regarding vi and vj, if
IP(vi) > IP

(
vj
)

exists at some time then vi is more important than vj.
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(2) Calculation of the Criticality Importance of Nodes

The probability importance expresses that the fault probability of the system com-
ponent node changes by one unit, resulting in the change of the fault probability of the
whole system. Given that the probability of the fault of each system component node is
different, the difficulty of generating a unit change is also different. Therefore, the criticality
importance is introduced to describe the properties that the probability importance cannot
reflect. Criticality importance was first proposed by Lambert [41]. In the case of a given
fault of a whole system, the conditional probability that the whole machine is in a certain
state when the critical system component node vi fails at time t. The core idea is to improve
the non-reliable system components rather than to further improve the reliable system
components.

Therefore, the criticality importance (IC(vi)) of the system component node is de-
fined as:

IC(vi) =
Fi(t)
FZ(t)

· ∂FZ(t)
∂Fi(t)

=
Fi(t)
FZ(t)

· IP(vi). (9)

For a machining centre, when the system component node vi fails and the fault is
passed to the component node vj at a certain value, vj is affected by the fault and the
component node vi is also affected by the component node vj. There also exists a certain
influence value on the directed edge between the two component nodes. This value
represents the influence ability of the component node vi fault to cause the fault of its
connected component node vj. However, the fault influence degree of the edge of the same
level differs from that of the different layers, hence it should be considered separately.

2.2.3. Calculation of the Fault Influence Degree of Edges in the Same Level Based on the
Copula Function

In this paper, it is assumed that a whole machine has n fault-related system compo-
nents and its reliability function is R(ti), i = 1, 2, · · · , n and the joint reliability function
of these system components is R(t1, t2, · · · , tn). Based on the Copula theory and Sklar
theorem [42–44], a Copula function can be uniquely determined. It is expressed as follows:

C(R1(x), R2(x), · · · , Rn(x)) = exp

⎧⎨⎩−
[

n

∑
i=1

(−lnRi(t))
1/θ

]θ
⎫⎬⎭, (10)

where θ is the parameter of the Copula function to characterize the degree of association
between the system components (θ ∈ (0, 1]).

Given that the calculation process of the Copula function parameters is relatively
complex, this paper introduces a relatively intelligent artificial fish swarm algorithm [45]
and uses MATLAB software to solve the parameters of the Copula function.

The following relationship exists between the fault probability function and reliabil-
ity function:

F(t) = 1 − exp
[
−
(

t
β

)γ]
= 1 − R(t). (11)

As expressed in Equation (10), the degree of correlation between components obtained
from the perspective of the reliability function is represented by θ and as expressed in
Equation (11), F(t) = 1− R(t). Therefore, the fault influence degree of the edge at the same
level in a machining centre is I

(
vi, vj

)
= 1 − θ and the greater the value is, the greater the

fault influence degree of the edge will be.

2.2.4. Calculation of the Fault Influence Degree of Edges at Different Levels Based on the
Coupling Degree Function

In Reference [46], the effect function is used to describe the impact of a certain subsys-
tem change on the whole machine, while the coupling degree model is used to characterize
the coupling degree between subsystems. Thus, the importance of the node is taken as the
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effect function value and a model of the fault coupling degree is established to reflect the
fault influence value between the components. The calculation equation is expressed in
Equation (12):

I
(
vi, vj

)
= 2

[
IC(vi)IC

(
vj
)(

IC(vi) + IC
(
vj
))2

]1/2

, (12)

where I
(
vi, vj

) ∈ (0, 1) and is the fault influence degree between vi and vj. This value is
used to characterize the effect of this edge on fault propagation. IC(vi) and IC

(
vj
)

are the
critical importance values of vi and vj, respectively.

2.2.5. Construction of the Fault Propagation Probability Model for Machining Centre
System Components

Based on the hierarchy model of a machining centre and the fault propagation mecha-
nism, the state of a system component node depends on its own fault probability, which the
influence of upstream component node is dependant on. The fault influence between the
nodes reflects the possibility of a fault of the component node to cause another component
fault to be associated with it. Therefore, by integrating the fault probability (Fi(t)) of the
node and the fault influence degree (I

(
vi, vj

)
) between the system component nodes, the

value of the fault propagation probability between system components can be obtained.
The equation is as follows:

P
(
vi, vj

)
(t) = Fi(t)I

(
vi, vj

)
(13)

2.3. Evaluation of Fault Propagation Intensity of a Machining Centre Based on the Fault
Propagation Model

Given that the influence of the structural characteristics of the hierarchy model of fault
propagation cannot be disregarded, the edge betweenness that represents the structural
characteristics of the model is considered [47]. The larger the value is, the stronger its
influence on the whole model will be.

In this paper, the edge betweenness is defined as the proportion of the number of times
that all paths pass through the edge E

〈
vi, vj

〉
in the graph model. The edge betweenness of

the directed edge E
〈
vi, vj

〉
connecting vi and vj is denoted by L

(
vi, vj

)
that can be calculated

by the following equation:

L
(
vi, vj

)
= ∑

vi, vj, ve, v f
(e, f ) �= (i, j)

κe f E
〈
vi, vj

〉
κe f

, (14)

where κe f is number of paths between any of the nodes, and ve, v f , and κe f E
〈
vi, vj

〉
are the

number of paths between ve and v f passing through edge E
〈
vi, vj

〉
.

In this paper, the fault propagation intensity model of a machining centre is established
from two angles of the fault propagation probability and the edge betweenness of the
hierarchy model. This value of the fault propagation intensity is used as an index to
measure the severity of the impact of the fault on the whole machine through the path. The
calculation equation for defining the fault propagation intensity In

(
vi, vj

)
of a machining

centre is as follows:

In
(
vi, vj

)
=

1
2

(
P
(
vi, vj

)
∑ P

(
vi, vj

) + L
(
vi, vj

)
∑ L

(
vi, vj

)), (15)

where ∑ P
(
vi, vj

)
is the sum of the fault propagation probabilities of each directed edge.

∑ L
(
vi, vj

)
is the sum of the edge betweenness of each directed edge.
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3. Dynamic Analysis of the Fault Propagation Behaviour of a Machining Centre Based
on the Fault Propagation Intensity

To analyze the real-time fault propagation behaviour of a machining centre, the
propagation range of the fault should be clarified to determine whether the propagation of
the fault can be achieved. As expressed by the system and product safety manual [48], the
occurrence of the fault propagation is within a certain interval and when the probability
of fault propagation is greater than the threshold of 10−8, the case of fault propagation
may occur.

Therefore, the probability of vi fault to propagate to vj can be obtained as follows:

PE
(
vi, vj

)
=

w

∑
b=1

Pb
(
vi, vj

)
,
(

Pb
(
vi, vj

)
= ∏ P

(
vi, vj

))
, (16)

where b is one of the several paths in which a fault propagates from node vi to vj. Pb
(
vi, vj

)
is the fault propagation probability of the path. w is the number of paths from node vi to vj.

On the basis of Equation (16), it can be clarified whether the fault can propagate in the
fault propagation model and then realize the determination of critical nodes and the fault
propagation path. The process of the determination of critical nodes at each level is shown
in Figure 4.

Figure 4. Flow chart expressing how to determine critical nodes at each level.

As illustrated in Figure 4, to determine the system components of the fault initiation
layer, the product of component fault probability and its own criticality importance at time
t is calculated; in turn, the larger the value, the more critical it is. The critical component
of the fault initiation layer is considered as the fault source. To determine the system
components of the fault propagation layer, according to the hierarchy model of the fault
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propagation intensity of a machining centre, the system components in the propagation
layer connected with the fault source are determined at time t and the fault propagation
intensity values of the system components connected with the fault source are calculated;
in turn, the larger the value, the more critical it is. Similarly, the fault propagation intensity
values of each system component connected with the critical nodes of the fault propagation
layer in the fault absorption layer are calculated; in turn, the larger the value, the more
critical it is and the critical nodes of the fault absorption layer are determined.

The path composed of critical nodes is the critical fault propagation path, according to
which fault prevention and maintenance can be conducted.

4. Case Application of a Machining Centre

The fault propagation behaviour analysis method proposed in this paper has a certain
general applicability and can provide guidance for the analysis of fault propagation be-
haviour of other complex systems. This paper selects the machining centre commonly used
by various manufacturing companies as an example to illustrate the specific application.

4.1. Implementation

In this section, we take MDH series horizontal machining centres as the research object
that are mainly used for processing rotary parts. We collected 108 on-site fault information
details of 36 machining centres of this series during the course of one year. After fault
analysis, we can determine whether each component fault is an independent fault or a
related fault. If it is a related fault, the antecedent component that caused the component
fault will be determined through fault analysis. For example, when the workpiece cannot
be clamped, the tool magazine system (T) is the direct fault location but the root cause is
that the workpiece cannot be clamped due to insufficient pressure in the hydraulic system
(H). At this time, the faulty component is the tool magazine system (T) and its antecedent
component is the hydraulic system (H). Considering the existence of this propagation fault,
there is likely to be a directed arrow pointing from the hydraulic system (H) to the tool
magazine system (T). Similarly, when the servo motor fails, the fault location is the feed
system (F) but the root cause is the abnormality of the spindle system (B). Therefore, there
is likely to be a directed arrow from the spindle system (B) to the feed system (F). In this
manner, we can identify other related faults. The statistical analysis results of the related
faults are shown in Table 1.

Table 1. Statistical analysis of the related faults in machining centre system components.

Fault Component Antecedent Component Frequency

T B 3
F B 2
B NC 1
F NC 1
T H 1
B H 1
B D 1

NC D 1
W D 1
F R 1
T R 1
B R 1
F W 1
F K 1
B Q 2
T Q 1

As expressed in Table 1, combined with the knowledge of graph theory, the fault
propagation relationship of a machining centre is modelled. We do not consider compo-
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nents with uncorrelated faults such as the workbench (U). Thus, we can obtain the fault
propagation digraph of a machining centre as shown in Figure 5.

Figure 5. Fault propagation digraph of a machining centre.

As expressed in the fault propagation digraph of a machining centre in Figure 5, the
relationship matrix (A) and the design structure matrix (M) can be obtained as follows:

B T F NC H D Q R W K

A =

B
T
F

NC
H
D
Q
R
W
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B T F NC H D Q R W K

M =

B
T
F

NC
H
D
Q
R
W
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0 1 0
1 1 1 0 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The element 1 in the matrix M indicates that the fault of the system component i

impacts j. Contrarily, 0 indicates that no impact exists.
Thus, on the basis of the modelling process of the DSM fault propagation hierarchy

structure model, the fault propagation DSM model of a machining centre can be obtained
as shown in Figure 6. The diagonal elements in Figure 6 are represented by black squares.
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Figure 6. The fault propagation DSM model of a machining centre.

On the basis of Figure 6, we can derive the result of module division after the DSM
modeling processing: the first-layer system components are (T, F), the second-layer system
components are (B, W, K), the third-layer system components are (NC, H, Q, R), and the
fourth-layer system component is (D). The system components of the first layer, which is
the appearance layer, are classified as the fault absorption layer in the fault propagation
model. The system components of the fourth layer, the root layer, are classified as the fault
initiation layer and the remaining layers are classified as the fault propagation layers. Thus,
the fault propagation hierarchy structure model of a machining centre can be obtained as
shown in Figure 7.

Figure 7. Hierarchy structure model of fault propagation in a machining centre.

On the basis of obtaining the fault information of a machining centre, we calculated the
fault probability function of each component according to the calculation method presented
in Section 2.2.1. Considering the impact of the timing truncation test and the fault time
truncation on the sequence of the fault data, we use the Johnson method to modify it.
The parameters of the fault probability model are then estimated and the distribution
hypothesis test is passed. Finally, the fault probability function of each component can be
obtained as shown in Table 2 and the function curve is illustrated in Figure 8.

Similarly, the fault probability function of a whole machining centre is FZ(t) = 1 −
exp

[
−(t/620.984)0.951

]
.

According to Table 2 and Equations (9) and (10), the probability importance and criti-
cality importance of each system component node can be obtained at any time. The function
curves of probability importance and criticality importance of each system component
node are illustrated in Figures 9 and 10, respectively.
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Table 2. Fault probability function of system components in a machining centre.

Component Code Fault Probability Function

T FT(t) = 1 − exp
[
−(t/2791.105)1.015

]
B FB(t) = 1 − exp

[
−(t/7832.664)0.641

]
R FR(t) = 1 − exp

[
−(t/8161.512)0.791

]
H FH(t) = 1 − exp

[
−(t/8905.062)0.656

]
NC FNC(t) = 1 − exp

[
−(t/7912.399)0.542

]
D FD(t) = 1 − exp

[
−(t/7935.696)0.771

]
Q FQ(t) = 1 − exp

[
−(t/27503.400)0.524

]
F FF(t) = 1 − exp

[
−(t/2606.440)1.295

]
W FW(t) = 1 − exp

[
−(t/4145.720)0.910

]
K FK(t) = 1 − exp

[
−(t/5960.776)0.931

]
U FU(t) = 1 − exp

[
−(t/6869.766)0.773

]

Figure 8. Fault probability function curve of machining centre system components.

Figure 9. Probability importance function curve of system component nodes.
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Figure 10. Criticality importance function curve of system component nodes.

Given that the values of probability and the criticality importance of system compo-
nents are varied, this paper takes t = 1500 h as an example to illustrate this concept. By
substituting the fault probability values of system components obtained from Table 2 into
Equations (9) and (10), the probability importance and criticality importance of each system
component node at t = 1500 h can be obtained as shown in Table 3.

Table 3. Probability importance and criticality importance of each system component at 1500 h.

Component Code IP(vi) IC(vi)

B 0.1399 0.0455
T 0.1669 0.0754
K 0.1613 0.0692

NC 0.1485 0.0550
H 0.1350 0.0400
D 0.1305 0.0350
Q 0.1230 0.0267
R 0.1285 0.0329
W 0.1471 0.0534
K 0.1305 0.0350

On the basis of Equations (10) and (11), combined with Figure 7, the edge fault
influence value of the same level at 1500 h can be calculated as shown in Table 4.

Table 4. Fault influence degree of the edge at the same level at 1500 h.

Directed Edge I
(

vi,vj

)
E(vR, vB) 0.9870
E(vH , vB) 0.9876
E
(
vQ, vB

)
0.9808

E(vNC, vB) 0.9914

In reference to Equation (12), Table 3, and Figure 7, the edge fault influence value
between different levels in the fault propagation hierarchy structure model of a machining
centre at 1500 h is calculated. The results are detailed in Table 5.
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Table 5. Fault influence degree of the edge between different levels at 1500 h.

Directed Edge I
(

vi,vj

)
Directed Edge I

(
vi,vj

)
E(vD, vB) 0.9915 E(vB, vT) 0.9660
E(vR, vT) 0.9153 E(vB, vF) 0.9783

E(vD, vNC) 0.9751 E(vR, vF) 0.9344
E(vD, vW) 0.9781 E(vH , vT) 0.9484
E(vW , vF) 0.9917 E(vK , vF) 0.9446
E(vNC, vF) 0.9934 E

(
vQ, vT

)
0.8741

On the basis of Tables 4 and 5, the 1500 h fault propagation hierarchy model of a
machining centre based on fault influence degree can be obtained as shown in Figure 11.

Figure 11. Hierarchy structure model of fault propagation of a machining centre based on the fault
influence degree.

By substituting the data in Tables 2, 4 and 5 into Equation (13), the fault propagation
probability of each system component at any time can be obtained. In addition, the
calculation results of the 1500 h example are presented in Table 6.

Table 6. Fault propagation probability of the directed edge at 1500 h.

Directed Edge P
(

vi,vj

)
Directed Edge P

(
vi,vj

)
E(vR, vB) 0.3308 E

(
vQ, vB

)
0.2397

E(vD, vB) 0.3246 E(vB, vT) 0.2639
E(vNC, vB) 0.3315 E(vB, vF) 0.2358
E(vH , vB) 0.2830 E(vR, vT) 0.2365

E(vD, vNC) 0.2866 E(vR, vF) 0.2534
E(vD, vW) 0.2274 E(vH , vT) 0.2284
E(vW , vF) 0.2109 E(vK , vF) 0.1919
E(vNC, vF) 0.2153 E

(
vQ, vT

)
0.1711

On the basis of the fault propagation hierarchy model of a machining centre in Figure 7,
all the paths between any two nodes in the fault propagation digraph can be obtained
and the paths are listed in Table 7. In reference to Equation (14) and Table 7, the edge
betweenness of the fault propagation hierarchy model is calculated and the results are
presented in Table 8.
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Table 7. Statistical results of any two node paths.

Any Two Nodes Paths

D→F D→NC→F, D→B→F, D→W→F,
D→NC→B→F

D→B D→B, D→NC→B
NC→F NC→F, NC→B→F
D→T D→NC→B→T, D→B→T
Q→F Q→B→F
Q→T Q→T, Q→B→T
R→T R→T, R→B→T
R→F R→F, R→B→F
H→T H→T, H→B→T
D→W D→W
Q→B Q→B

D→NC D→NC
H→B H→B

NC→B NC→B
NC→T NC→B→T
H→F H→B→F
R→B R→B
B→T B→T
W→T W→T
K→F K→F
B→F B→F

Table 8. The edge betweenness of the fault propagation hierarchy model of a machining centre.

Directed Edge L
(

vi,vj

)
Directed Edge L

(
vi,vj

)
E(vR, vB) 1 E

(
vQ, vB

)
1.5

E(vD, vB) 0.75 E(vB, vT) 3.5
E(vNC, vB) 2.75 E(vB, vF) 3.5
E(vH , vB) 1.5 E(vR, vT) 0

E(vD, vNC) 1.5 E(vR, vF) 0
E(vD, vW) 0.25 E(vH , vT) 0
E(vW , vF) 0.25 E(vK , vF) 0
E(vNC, vF) 0.25 E

(
vQ, vT

)
0

Table 8 reveals that the edge betweenness of different directed edges differs. Therefore,
the influence of the structural characteristics of the model on the fault propagation also
must be considered. The larger the edge betweenness value is, the more important the
edge is in the fault propagation of a whole machine and greater consideration is required
when the probability of being selected as the fault propagation path increases.

Therefore, on the basis of Equation (15), Tables 6 and 8, the fault propagation intensity
of each directed edge at 1500 h can be obtained as shown in Table 9.

Table 9. Fault propagation intensity of each directed edge of a machining centre fault propagation
model at 1500 h.

Directed Edge In
(

vi,vj

)
Directed Edge In

(
vi,vj

)
E(vR, vB) 0.1396 E

(
vQ, vB

)
0.0775

E(vD, vB) 0.1400 E(vB, vT) 0.0314
E(vNC, vB) 0.1231 E(vB, vF) 0.0581
E(vH , vB) 0.0740 E(vR, vT) 0.0262

E(vD, vNC) 0.0521 E(vR, vF) 0.0267
E(vD, vW) 0.0486 E(vH , vT) 0.0368
E(vW , vF) 0.0686 E(vK , vF) 0.0477
E(vNC, vF) 0.0212 E

(
vQ, vT

)
0.0283
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In reference to Figure 11 and Table 9, a hierarchy structure model of the fault propaga-
tion intensity of a machining centre can be obtained as shown in Figure 12.

Figure 12. Hierarchy structure model of fault propagation intensity in a machining centre.

In reference to Equation (16) and Figure 11, the fault propagation probability values
of each path in the fault propagation hierarchy model of a machining centre at 1500 h can
be calculated as shown in Table 10.

Table 10. The fault propagation probability value of each path in the fault propagation model of a
machining centre at 1500 h.

Paths PE

(
vi,vj

)
D→NC→F 0.004799

D→NC→B→F 0.000342
D→NC→B→T 0.000338

D→B→F 0.004219
D→B→T 0.004178
D→W→F 0.004714

Q→T 0.042622
Q→B→F 0.003326
Q→B→T 0.003293

H→T 0.063015
H→B→T 0.004647
H→B→F 0.004692

R→T 0.052492
R→F 0.053345

R→B→T 0.003963
R→B→F 0.004001

K→F 0.056592

As expressed in Table 10, the fault propagation probability of each path is greater than
the threshold value of 10−8; thus, a fault propagation phenomenon exists in the model.

Based on Table 9 and the hierarchy structure model of fault propagation in a machining
centre, for the fault initiation layer there is only the electrical system component D. Hence,
the critical node of the fault initiation layer is D. For the fault propagation layer at 1500 h,
In(vD, vNC) = 0.0740 > In(vD, vB) = 0.0521 > In(vD, vW) = 0.0368, thus the critical
node currently is NC. This indicates that the fault is more likely to be transferred from the
electrical system to the numerical control system. Given that In(vNC, vB) = 0.1400 >
In(vNC, vF) = 0.1396, the critical node is B. Similarly, for the fault absorption layer system
component node, In(νB, νF) > In(νB, νT), thus the feed system F is the critical component
of this layer. Therefore at 1500 h, the critical nodes are D, NC, B, and F, and the path
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composed of critical nodes is the critical fault propagation path. At 1500 h, the most likely
propagation path of the fault is D→NC→B→F.

Similarly, the fault propagation intensity value of each directed edge of a machining
centre at any time can be determined; in turn, the critical fault nodes and paths of a
machining centre at any time can be obtained. This paper arbitrarily chooses the running
time of 200 h and 5000 h as examples and draws the comparison diagram of the fault
propagation intensity value of each directed edge as shown in Figure 13.

Figure 13. Comparison diagram of the fault propagation intensity of each directed edge at differ-
ent times.

In reference to Figure 13, the fault propagation intensity values of each directed edge
are varied at different times and the critical fault propagation paths of the machining centre
at different times are distinct. The critical fault propagation path of 200 h is D→NC→B→T,
at 1500 h the critical fault propagation path is D→NC→B→F, and at 5000 h the critical
fault propagation path is D→NC→B→T.

4.2. Comparison Analysis

The proposed method in this paper is compared with the importance evaluation
method proposed in Reference [49]. When evaluating the importance of machine tool
system components, the method in Reference [49] only evaluated the importance of com-
ponents from the perspective of the fault propagation mechanism and did not consider
the structural characteristics of the model. Combining the application examples in this
paper, when the model structure characteristics are not considered and only the fault
propagation mechanism is considered, the fault propagation probability value of each
directed edge at 1500 h can be calculated according to Equations (10)–(13). Combined with
the fault propagation hierarchy structure model of the machining centre in Figure 6, the
fault propagation hierarchy structure model of the machining centre based on the fault
propagation probability is drawn as shown in Figure 14. The model only considered the
fault propagation mechanism of the machining centre.
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Figure 14. Hierarchy structure model of the machining centre based on the fault propagation probability.

As expressed in Figure 14 at 1500 h, the fault source of the machining centre is
component D. The fault will propagate along the components with a high probability of
fault propagation. As P(vD, vB) = 0.2397 > P(vD, vW) = 0.2365 > P(vD, vNC) = 0.2358,
the fault will preferentially propagate along D→B and because P(vB, vF) = 0.2866 >
P(vB, vT) = 0.2830, the fault is more likely to propagate along B→F. The critical fault
propagation path at this time is D→B→F and the critical nodes are D, B, and F. That is,
at 1500 h, the fault is most likely to be transmitted as such: electrical system→spindle
system→feeding system. However, according to the method proposed in this paper,
the result of calculation and analysis is D→NC→B→F. There is a certain difference in
the critical fault propagation path obtained by the two methods that is mainly because
the method based on the fault propagation probability does not consider the structural
characteristics of the model. The component NC plays an important role in the fault
propagation structure model; when it fails, it will have a greater impact on the entire
system, thus requiring attention. The influence of the structural characteristics of the model
on the propagation of faults cannot be ignored. Therefore, the method proposed in this
paper is more conducive to the analysis of the fault propagation behaviour of a machining
centre and the analysis result is more reasonable.

5. Discussion

In reference to Tables 6 and 8, the edge betweenness of the edge with a high probability
of fault propagation is not necessarily large. For example, the fault propagation probability
of the directed edge E(νNC, νB) is the largest but its edge betweenness is not the largest.
The edges with the largest betweenness are E(νB, νT) and E(νB, νF). Through comparative
analysis of these examples, we can determine there is likely to be a certain deviation in the
analysis of the fault propagation behaviour of a machining centre based on a single index.
Therefore, the fault propagation mechanism and the structural characteristics of the model
should be integrated to identify the critical fault nodes and critical fault propagation paths.

This paper takes the machining centre running for 1500 h as an example to explain the
proposed method. We determine that the critical fault propagation path of a machining
centre at 1500 h is D→NC→B→F. Therefore, for a machining centre of the same model,
when the running time is 1500 h, the electrical system (D), numerical control system (NC),
spindle system (B), and feed system (F) must be considered. These system components are
more likely to fail and measures can be taken in advance to avoid faults.

Figure 13 illustrates that the critical system components and critical fault propagation
paths are different at different stages of a machining centre’s operation. Therefore, accord-
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ing to the fault propagation and evolution law of each system component of a machining
centre, staff can make corresponding adjustments to the degree of attention necessary
for the components of a machining centre during different stages of operation and can
formulate appropriate fault prevention strategies.

6. Conclusions

This paper presents a dynamic analysis method of fault propagation behaviour of
machining centres that can identify the critical fault propagation paths and nodes of a
machining centre at any time. On this basis, fault warning and preventive maintenance can
be conducted in a targeted manner, thereby reducing the economic loss and safety hazards
of manufacturing enterprises due to equipment fault.

The method proposed in this paper mainly embodies the following advantages:

(1) The DSM-based fault propagation hierarchy structure model of a machining centre
established in this paper can more clearly demonstrate the relationship between the
system components in the form of a design structure matrix.

(2) There are certain differences in the influence degree of the edge between the com-
ponents at the same level and the different levels. By introducing the Copula and
the Coupling degree functions, the fault influence degree of edges between the same
level and different levels are calculated, respectively. In this way, it is possible to more
accurately measure the impact of faults between components.

(3) Considering the structural characteristics of the model and the fault mechanism of
the system, a fault propagation intensity model of a machining centre is constructed
and a quantitative description of the severity of fault propagation on the components
is realized. According to the fault propagation intensity of the components, the
critical fault propagation paths and nodes of a machining centre can be identified,
can provide a reference for the fault maintenance, and encourage reliability growth of
machining centres.

This paper demonstrates the effectiveness and practicability of the proposed method
through the application of the specific case. In the future, the proposed fault propagation
behaviour analysis method can be extended to other complex electromechanical products
through sensor technology, rather than remaining at the level of theoretical guidance.
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Abstract: Rising energy prices, increasing maintenance costs, and strict environmental regimes
have augmented the already existing pressure on the contemporary manufacturing environment.
Although the decentralization of supply chain has led to rapid advancements in manufacturing
systems, finding an efficient supplier simultaneously from the pool of available ones as per customer
requirement and enhancing the process planning and scheduling functions are the predominant ap-
proaches still needed to be addressed. Therefore, this paper aims to address this issue by considering
a set of gear manufacturing industries located across India as a case study. An integrated classifier-
assisted evolutionary multi-objective evolutionary approach is proposed for solving the objectives of
makespan, energy consumption, and increased service utilization rate, interoperability, and reliability.
To execute the approach initially, text-mining-based supervised machine-learning models, namely
Decision Tree, Naïve Bayes, Random Forest, and Support Vector Machines (SVM) were adopted for
the classification of suppliers into task-specific suppliers. Following this, with the identified suppliers
as input, the problem was formulated as a multi-objective Mixed-Integer Linear Programming (MILP)
model. We then proposed a Hybrid Multi-Objective Moth Flame Optimization algorithm (HMFO) to
optimize process planning and scheduling functions. Numerical experiments have been carried out
with the formulated problem for 10 different instances, along with a comparison of the results with
a Non-Dominated Sorting Genetic Algorithm (NSGA-II) to illustrate the feasibility of the approach.

Keywords: text mining; network-based distributed manufacturing systems; moth flame optimization
algorithm; support vector machines; Naive Bayes; random forest; decision trees; supplier classification

1. Introduction

Increasing competition, coupled with advancing computing technologies and the ad-
vent of decentralization in the supply chain, has led to the attainment of a shorter product
life cycle, reducing production costs and responding to customer demands with greater
flexibility. Thus, manufacturing units are now leaning toward a distributed manufacturing
environment far from the traditional approach of promptly manufacturing products [1].
This involves multiple processes consisting of classification of manufacturing units, as-
signment of tasks as per product category on the basis of requirements, and information
exchange within various units of an enterprise and between firms. All these together
represent parameters of a compound scenario needed to be refined. In this paper, the
implications of the proposed classification and optimization-/simulation-based integrated
approach for the considered system is presented.

Managing supplier relationships and estimating the level of risk involved with various
categories of suppliers, their capabilities, core services, constraints, target industries, and
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customers are some of the parameters for classification and selection. Dealing with selection
of suppliers on such a large scale becomes tedious; thus, it is required to subsume advanced
techniques for supplier classification. This research incorporates text mining based on
supervised machine-learning models as one of the approaches for a better resolution of
the aforementioned supplier classification problem. Text mining is the operation through
which information from unstructured text documents is extracted by devising non-trivial
patterns and trends through statistical pattern learning. It contains various steps, viz.,
pre-processing, structuring of the input text data, extracting patterns, and classification of
information from various sources into a pre-defined genre [2]. Irrespective of any kind
of manufacturing system, the prominent functions are process planning and scheduling.
The former includes raw materials, semi-finished products, machine tools, and process
information. The latter includes the allocation of resources over a set of constraints for
manufacturing various entities [3]. The delay of time between planning and execution
phase demands the modification of process plans. In other words, it is estimated that
20–30 percent of the already-generated process plans has to be modified in a given life cycle
as a result of sequential processing of planning and scheduling in the existing systems [4].

This study seeks to address the following questions:

• How can supervised machine-learning models be employed to find an efficient method
for supplier classification, categorizing suppliers based on specific tasks?

• What type of mathematical model can be developed considering the optimization of
various conflicting objectives such as completion time, energy consumption, interop-
erability, machine utilization rate, service utilization, and utility?

• In what way can evolutionary algorithms be utilized to optimize scheduling
and planning?

• What are the benefits of the proposed approach on the considered problem, and how
would these effects influence the manufacturing system in a real-time environment?

• How can the effectiveness of the proposed Hybridized evolutionary (HMFO) algo-
rithm be validated?

In this paper, the context of the problem considered is a distributed manufacturing
environment where different enterprises are geographically distributed, in which coor-
dination and collaboration among such enterprises for mutual exchange of information
without any significant loss of data represent a challenge. Motivated by the nature of the
problem and the factors considered above, this study, in a distributed network manufac-
turing system, pursues the classification, coordination, and communication to optimize
scheduling and planning. This paper introduces three different steps which have been
duly scrutinized to achieve the desired optimization of parameters, i.e., makespan, energy
consumption, machine utilization rate, and reliability of services. Initially, a supplier
classification problem is explored under a manufacturing setup in which the suppliers
are classified into task specific suppliers using text mining. Thereafter, a many-objective
mathematical model is developed to achieve the above-mentioned competing objectives.
We then compared the effectiveness of the above propounded approach by equating the
outcomes with the proposed multi-objective Hybrid Moth Flame Optimization (HMFO)
algorithm with another benchmark algorithm such as NSGA-II.

The research contributions of this paper can be outlined as given below:

• Proposing an integrated text-mining assisted process planning framework for dis-
tributed manufacturing systems;

• Employing a machine-learning-based text-mining method to identify the potential
enterprises and sharing of resources effectively across the network and tested its
feasibility with various other machine-learning algorithms;

• A multi-objective evolutionary algorithm-based Hybridized Moth Flame Optimiza-
tion Algorithm (HMFO) is used to solve the considered problem in the scenario of
distributed gear manufacturing industries;
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The results of the proposed HMFO method are validated with the Non-Dominated
Sorting Genetic Algorithm (NSGA-II) to evaluate their usefulness by both experimental
and practical instances. Finally, the superiority of the proposed HMFO is confirmed with
the help of various performance indicators.

In this paper, Section 2 deals with the literature, Section 3 describes the problem and
the developed mathematical model developed. Section 4 explains the proposed framework
and algorithm for the text-mining approach. In Section 5, experimentation with a case
study of the gear manufacturing industry is presented, and the corresponding outcomes
are explained in Section 6. The paper is concluded in Section 7 by providing scope for
future work.

2. Literature Review

The section discusses a review of text mining, Integration of Process Planning and
Scheduling (IPPS), interoperability, and evolutionary algorithm-based approaches imple-
mented in the proposed methodology.

A review has been conducted for knowledge discovery and text-mining techniques
with data-mining attributes, namely depiction, explanation, classification, estimation,
grouping, and evolution in the domain of manufacturing [5]. An algorithm developed with
K-means and support vector machine (SVM) clustering algorithms to examine the polarity
of text and group the online hotspot detection forums into clusters depending upon their
similarities [6]. An ontology was implemented based on text-mining strategy to extract the
fault system information from the unstructured natural language text. All the information
regarding the manufacture of the product was represented as a knowledge with the help
of an ontology naming product to share this knowledge in any platform by achieving
interoperability [7]. At the same time, the Naive Bayes algorithm approach was adopted for
classification of manufacturing supplier. Later, Decision Trees and Random Forests were
utilized for supervised machine-learning model-based digit classification using Waikato
Environment for Knowledge Analysis (WEKA) and have performed comparison on multi-
ple performance parameters such as Kappa Statistic, Precision, Recall, and F-measure [8].
A resource allocation strategy with help of big data and Machine-Learning (ML) techniques
is proposed to find the perfect forecasting of energy consumption patterns [9]. A text-
mining technique was proposed for classification of sustainable environmental indices for
service and manufacturing system. They also established relationships between indicator
utility levels and company characteristics [10]. A support SVM classification algorithm was
presented to classify the supplier’s text data of various web pages into manufacturing and
non-manufacturing suppliers [11]. An e-commerce strategy was adopted for monitoring
specific features of the enterprises. It describes how the records are obtained automatically
from a corporate website using supervised classification algorithms [12].

Process Planning and Scheduling (PPS) mentions the requirement of manufacturing
resources, operations, and routes that are possible to manufacture a product and allocate
the operations of all the jobs on machines, without disturbing the actual precedence rela-
tionships in the process plans [13]. In traditional manufacturing system, process planning
and scheduling were carried out in a step-by-step process. To overcome the adverse effects
by a conventional way of PPS, researchers have identified the need to integrate both PPS
and have found the benefits of it in case of networked manufacturing environment. Man-
ufacturing decision making (MADEMA) approach was proposed for the assignment of
work center resources with multiple decision-making criteria in order to have an effective
utilization for IPPS problem [14]. Later, the modified above-proposed MADEMA model
consists of five basic steps and mainly focuses on finding alternative machines and solving
the Integration of Process Planning and Scheduling (IPPS) problem [15]. Furthermore,
a net-man strategic framework proposed where an operational mechanism is introduced
for manufacturing organizations that helps to change their operations on a timely basis
with the help of forming distributed manufacturing networks that help as a performance
enabler for manufacturers in the Networked Manufacturing System (NMS) [16]. The agent-
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based system has been proposed with the distributed ruler method for distributed manu-
facturing systems as a function-based decomposition method to accomplish the process
planning and scheduling, and the feasibility is illustrated through different case studies [17].
A Disruptive Innovation-Like Algorithm (DILA) is presented to minimize the tardiness
for the job and to obtain the optimal schedule for one machine by varying setup times at
irregular interval of time [18]. A novel way for formalizing datasets and concepts utilized
for ontology were embedded in the product itself and hence made it interoperable in
NMS. Furthermore, a two-level nested solution algorithm was implemented by developing
a hybrid adaptive genetic algorithm (HAGA) to achieve optimal process plans for multiple
jobs in NMS. The feasibility of the approach is investigated through numerical experi-
ments [19]. The Binary Spring Search Algorithm (BSSA) based on simulation of Hookes
law is employed to solve various optimization problems. Moreover, the results obtained
by BSSA are compared with other standard binary algorithms, namely the grasshopper
mechanism, bat algorithm, etc. [20]. The mobile-agent-based system, introduced for IPPS
in NMS to prove the consistency of the proposed model comparison, was made with the
Controlled Elitist Non-dominated sorting GA [21].

The effectiveness of the integration of production planning and scheduling approach
is compared and proved with conventional sequential scheduling approach. An evo-
lutionary algorithm-based GA approach was adopted for the scheduling of integrated
manufacturing and distribution systems [22]. A two-loop algorithm consists of the longest
processing-time rule-based tabu search, which is proposed to obtain the optimal schedule
in IPPS by minimizing the total cost for manufacturing and maintenance of machines
arranged in series in case of NMS [23]. A hybrid dynamic-DNA assisted an evolutionary
algorithm proposed to solve N-person non-co-operative game in context to produce various
optimal schedule for several jobs in a NMS [24]. A Chaotic Particle Swarm optimization
(C-PSO) algorithm for IPPS problem in network manufacturing and compared it with
other benchmark algorithms like Genetic Algorithm (GA), Simulated Annealing (SA), and
hybrid algorithm to prove its superiority [25]. A Hybrid Particle Swarm Optimization
(H-PSO) was described for IPPS and delivery route planning. This was implemented
utilizing multi-purpose machines to minimize the cost and earliness and tardiness of the
jobs [26]. A logic-based Benders decomposition (LBBD) algorithm mainly separates the
decision variables into two sub-categories, i.e., master problem deals with the process plan
and sub-problem deals with the sequencing has been emphasized that can solve the IPPS
problem for finding an exact solution [27]. A MILP formulation was proposed to minimize
the storage cost and workforce cost in the airline industry. This problem mainly deals with
the maintenance and repair operations allocation, and it is an NP-hard problem solved by
evolutionary algorithms [28]. A combination of algorithms, namely H-PSO and GA with
special operators, has been presented to deal with the existed uncertainty in IPPS problem.
Later, standard problems are considered to validate the effectiveness of the presented
hybrid approach [29]. To overcome the trapping of solutions to a local optimum while
solving the multi-modal functions by using several heuristic algorithms, a Comprehensive
Learning Particle Swarm Optimizer (CLPSO) has been proposed that combines the advan-
tage of Local Search (LS) strategy along with the excellent global search ability of Particle
Swarm Optimizer (PSO). In this work, several multi-modal benchmark functions such as
CEC2013 are tested for determining the effectiveness of CLPSO-LS algorithm [30].

A dynamic scheduling method based on event-triggered dynamic task scheduling
(EDS) proposed to get the optimal services times for cloud manufacturing systems. A case
study of numerical control machines has been considered to prove the effectiveness of
the proposed methodology. [31]. Furthermore, generic mediator architecture for effective
coordination and task planning in a Distributed Manufacturing Environment (DME) were
developed [32]. Moreover, a review has been presented on the articles related to game
theory and optimization methods for several applications of problems. Furthermore, there
was a classification into various categories where game theory is useful for increasing
the effectiveness of optimization; optimization methods are useful for solving the game
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theory problems; and a combination of game theory and optimization also may be useful
for efficient solving of other classes of problems. The proposed classification was based
on four criteria: mainly based on nature of optimization (classic or modern), based on
the number of objectives (single or multi), and based on the type of game theory [33].
Subsequently, the reduction of maximum completion time, tardiness, and production cost
along with the optimal schedule are generated with the help of GA integrated with Gantt
chart (GC) methodology for DMS. A case study of manufacturing scenario with six jobs and
twelve machines considered and solved with the proposed GA-GC method [34]. Likewise,
resource, management and part agents are considered in a multi-agent-based system to
make decisions in a timely manner with proper co-ordination to generate optimal process
plans in a distributed scheduling environment [35].

The question lies in how to make the proper choice of action without deviating
from the optimal strategy in an uncertain environment that exists in distributional robust
optimization problems where the decision maker is not sure about the distribution of
uncertainty that exists in the problem. In such a situation, this work gives insight into
exploring the alternative ways that help find the distribution of uncertainty by the decision
maker, based on the observations found from the experiments. Algorithms are proposed
to find the local optima and are derived from a common evolutionary stable strategy
to explore their convergence rate by using a mean estimate [36]. A memetic algorithm
was discussed for the minimization of makespan for a distributed assembly permutation
flow-shop scheduling problem to obtain accurate results [37]. A multi-objective-based
mixed-integer programming model was implemented with the consideration of makespan
and total traveling distance as objective functions, and a GA-based heuristic approach
was proposed to obtain the optimum results in virtual manufacturing cells (VMC) [38]. To
solve the scheduling and maintenance planning simultaneously in DMS, an evolutionary-
based GA is proposed, and the performance was validated by comparing with the other
algorithm [39]. An IPPS problem was solved with the Simulated Annealing (SA) approach
that contains the added flexibilities of process, operation, scheduling to optimize the
utilization of machines, and production cost in a DMS [40]. A GA was introduced to
identify a near-optimal configuration in a manufacturing network. The performance of
GA-derived alternate designs is held in comparison with the output of an intelligent
search algorithm. A new approach named hybrid of Estimation of Distribution Algorithm
(EDA) was employed to increase the profit in forwarding supply chain and to reduce
the carbon footprints in a closed-loop supply chain network system [41]. A framework
model was presented for the feasibility and merits and their applications of complex
networks in advanced manufacturing systems [42]. A particle swarm optimization with
a hill-climbing approach was proposed for minimizing the functions that make span and
energy consumption in distributed manufacturing systems [43].

To avoid the difficulty of applying the heuristics for the combinatorial nature of prob-
lems like crude oil operation scheduling problem, initially, the problem was converted
to an assignment problem-related to tanks and distillers, and later a chromosome was
implemented, which helps the further application of meta-heuristics like NSGA-II for
optimization of refinery schedule. A case study of a china refinery with three distillers
and ten charging tankers with multiple objectives was considered and tested success-
fully [44]. A modified particle swarm optimization was developed to generate an optimal
process plan, and its performance was verified through five independent experiments
and a comparison with other meta-heuristic algorithms in the domain of flexible process
planning research [45]. Recent advances of multi-objective genetic algorithms (MoGA)
were described with differential evolution (HSS-MoEA-DE) to solve several multi-objective
scheduling problems in manufacturing systems [46]. A hybrid harmony search and genetic
algorithm (HSGA) was proposed for an integrated job maintenance scheduling problem
in NMS [47]. A hybrid algorithm was proposed to solve the lot sizing and IPPS problem
in the case of plastic molding industry. The proposed approach was compared with the
simulated annealing for test its effectiveness [48].
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3. Problem Description

Here, thirty-six medium-scale gear manufacturing industries located in a distributed
manner across the southern part of India were considered as a case study for investigation
for the prospect of providing an optimum solution with a composite multi-objective
evolutionary algorithm approach assisted by a classifier. The systematic diagram of the
gearbox that is being manufactured and its major parts, i.e., gear, shaft, coupling flanges,
key, bearing inner-outer race, and bearing ball in a gearbox is mainly considered in this
study and, as shown in Figure 1 has been considered for further investigation. Our research
addresses areas of great concern related to finding a suitable supplier according to product
consignment, interoperability, lack of efficient techniques, tools, and methods for enhancing
the productivity of the system. The process usually begins with the customers in a network-
based manufacturing service requesting resources through a particular supplier. However,
the search and selection of an appropriate supplier are time-consuming, with the consumer
having little or no information about the respective capability narratives. We intend to
categorize suppliers that manufacture gearbox related products in the market from their
capability narratives and textual information collected via multiple product sourcing and
supplier discovery platforms through text mining. Further, efficient supplier classification
through the use of supervised machine-learning algorithms is implemented.

Figure 1. Various components in the gear box.

The output obtained in the form of task-specific suppliers from the proposed super-
vised learning algorithm is fed as input for the considered network-based manufacturing
system which consists of a set of job orders given by the customers denoted by n.

Each job has numerous process plans by which it can be implemented. A set of
available machines is distributed geographically to perform necessary operations in
a process plan for the completion of the job. Considering the scenario of the current
network-based manufacturing environment, the above background setting presents a chal-
lenge in terms of optimizing the objectives, i.e., completion time, energy consumption,
machine utilization rate, and service utilization. As the problem is computationally com-
plex and NP-hard in nature, it becomes tedious to solve the above scenario. Thus, there
is a necessity for an efficient and effective approach for an optimal process plan of the
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considered jobs. This research aims to provide a solution to approach an optimal process
plan of the considered jobs by fulfilling the above-mentioned objectives.

Hence, an integrated machine-learning-based evolutionary algorithmic approach
where the outcome of a supervised algorithm is used as an input to an evolutionary
algorithm that was considered. The mathematical model involved is presented in the below
section, and its respective notations are explained in Table 1. The present problem requires
a few assumptions that are very important to mention below.

1. Job pre-emption is prohibited.
2. Until the previous job is completed, the successive job cannot be processed.
3. Only one job can be processed in an enterprise at a time.
4. The reliability of a machine with respect to time is constant, and its value is the same

for that particular machine for every operation while processing a job.
5. At time t = 0, all machines and jobs are concurrently available.
6. The operations of every job and its respective sequence consisting of future processing

tasks need to be pre-defined.

Table 1. Notations used in mathematical model.

Notation Description

E The number of all the available jobs
G The number of all the available machines

Hv The number of all the available alternative process plans of job v.
Qvpk pth alternative process plan for kth operation of job v
Svp The number of all the available operations in the pth alternative process plan of the job v
L Maximum completion time of vth job from the all the available process plans

Dvkpr For operation Qvkp corresponding processing time of the on machine r
B An arbitrary Integer which is a very large positive integer.

Cv The completion time till the processing of job v
Cvkpr The earliest completion time till the operation Qvkp on machine r
Evkr Indicates energy consumption for processing kth operation of job v on machine r
Relvk Indicates reliability of the kth operation of job v

Decision Variables:

Xvp 1 The pth alternative process plan of job v is selected

0 Under other conditions

Yvkpwtur 1 The operation Qvkp preceding over the operation Qwtu on given machine r

0 Under other conditions

Zvkpr 1 If given machine r is selected for Qvkp

0 Under other conditions

3.1. Objectives

Minimization of makespan (Lmin) = MaxCvkpr (1)

Minimization of Machine Utilization (Uv) =

E
∑

v=1
Drv

G
∑

r=1
(mctr − mstr)

(2)

Minimization of energy consumption (E) =
E

∑
v=1

Svp

∑
k=1

G

∑
r=1

Evkr (3)
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Minimization of Reliability (R) =
Svp

∏
k=1

Relvk (4)

where Drv represents processing time of job v on the rth machine, and mctr indicates
finishing time of rth machine, i.e., the time taken to finish the final operation on rth
machine. mstr is the start time of rth machine.

3.2. Subject to Constraints

The initial operation (k = 1) in the possible process plan p of job v is mentioned as

Cvp1r + B
(
1 − Xvp

) ≥ Dvp1r
v ∈ [1, E], p ∈ [1, Hv], r ∈ [1, G]

(5)

The final operation for the possible process plan p of job v is mentioned below

CvpSvpr − B
(
1 − Xvp

) ≤ Cvpkr
v ∈ [1, E], p ∈ [1, Hv], r ∈ [1, G]

(6)

Different operations for the same job having precedence constraints are unable to be
processed simultaneously.

Cvpkr − Cvp(k−1)r1
+ B

(
1 − Xvp

) ≥ D vkpr

v ∈ [1, E], p ∈ [1, Hv], k ∈ [1, Svp], r, r1 ∈ [1, G]

(7)

Every machine is able to process only one operation at a time and is expressed as

Cvpkr − Cwutr + BYvpkwtur ≥ D vkpr

v, w ∈ [1, E], p, u ∈ [1, Hv], k, t ∈ [1, Svp], r ∈ [1, G]

(8)

Among the available process plans, there is the possibility to choose only one alterna-
tive process plan

E

∑
v=1

Xvp =

{
1 if processplan ′p′ is selected from job ′v′
0 otherwise zero

(9)

p ∈ [1, HV ]

One machine only must be chosen for each operation.

G

∑
r=1

Zvkpr =

{
1 if processplan ′p′ is selected from job ′v′
0 otherwise zero

(10)

v ∈ [1, E], p ∈ [1, Hv], k ∈ [1, Svp]

Table 1 presents the notation used in the mathematical model. Equations (1)–(4) repre-
sent an optimization of process parameters like minimizing makespan, maximization of
machine utilization, minimization of energy consumption, and maximization of reliability,
respectively. Precedence constraints of the operations are represented by Equations (5)
and (6); more specifically after the finishing of operation of a particular job, only the next
operation must start. Equation (7) represents different operations for the same job having
precedence constraints that are unable to be processed simultaneously. Equation (8) repre-
sents that each machine is able to process only one operation at a time and is expressed
as a constraint for the machine. Equation (9) indicates that among the available process
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plans there is the possibility to choose only one alternative process plan, and Equation (10)
represents that one machine only must be chosen for each operation.

4. A Framework of the Proposed Classifier-Assisted Evolutionary Algorithm Approach

In this section, the proposed classifier-assisted evolutionary algorithm approach as
a framework is explained. A distributed manufacturing network environment is consid-
ered. Figure 2 represents the proposed approach. In this model, the process gets initiated
with the customer requests for a specific product. These requests are handled by enter-
prise user (EU) and customer user (CU), which are service providers in network-based
manufacturing service. CU is an organization that accepts requests of different prod-
ucts from varied customers to complete the consignment agreement. To complete the
accepted tasks, the available potential suppliers are evaluated from their database for
assigning the task. Here, the main role of CU is to assign the tasks to the appropriate
suppliers/manufacturers/distributors, etc., and to monitor their activities regularly to
finish the task effectively and efficiently. On the other side, EU also accepts multiple
requests from customers; unlike CU, it has the capacity to provide some of the services
on its own due to its own manufacturing unit. The remaining services are fulfilled by
assigning the task through potential enterprises as sub-contracting. In this study, we
consider the EU service path where some of the services are fulfilled on their own. The
next step would be the selection of the most appropriate supplier from the list of potential
enterprises to whom the customer request must be forwarded. These suppliers are either
maintained in the knowledge base or available as text corpus in the form of capability nar-
ratives. Initially, categorization into manufacturing and non-manufacturing units is carried
out. Following this, text mining is implemented to finally perform supervised machine-
learning models-based classification to differentiate the above dataset of suppliers into
task-specific suppliers.

The above outcome of task-specific suppliers is further considered in a networked
manufacturing environment to undergo three different stages, i.e., order pool, task pool,
and service pool for processing requirements of the jobs to its final outcome. To execute the
process of the desired product, requests are sent to the order pool where the information of
product specifications and their requirements are sorted and stored. These stored orders in
the order pool have classified the tasks into individual tasks by taking into consideration
factors such as reliability, task priority, processing time, and serviceability identified in
this work. They contain a wide variety of tasks initiating from the procurement of raw
goods to dispatching the processed product to customers. Among the group of enterprises,
the enterprises that are needed to meet the product and process requirements are cho-
sen to carry out the manufacturing functions, i.e., process planning and scheduling for
optimal solutions.
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Figure 2. Framework of the proposed network manufacturing approach.

5. Experimentation Part Text-Mining

5.1. Task-Specific Supplier Classification through Supervised Machine-Learning Algorithms Based
on Text Mining

For the purpose of supplier classification, numerous suppliers representing the gear
manufacturing industry in India are taken as a case study. A flowchart explaining the
methodology for supplier classification is shown in Figure 3. After pre-processing and
mining are applied to the above dataset, the suppliers are classified into manufacturing and
non-manufacturing suppliers. Later, the manufacturing suppliers are further classified into
task-specific suppliers with the help of various supervised machine-learning algorithms.
The performance of these algorithms is validated with different performance measures.
The above approach is implemented using R and WEKA.
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Figure 3. Flowchart for the proposed text-mining approach.

Step 1. Creation of Supplier Corpus.

For the purpose of text mining, a corpus of suppliers representing the gear manu-
facturing industry was created. This corpus was constructed with the help of capability
narratives and textual portfolios accumulated via multiple product sourcing and supplier
discovery platforms such as Thomas Net, Procure Search, and Supply and Demand Chain
Executive, among several others. The enterprises fall into five different categories of gear
manufacturing as shown in Table 2. To accumulate any gear not falling into one of the
above categories, a miscellaneous type ‘All types of gear’ was created. A test corpus of
40 different gear firms was also created to later validate our approach and classification
performance. Out of these four, data are removed from corpus due to inadequate informa-
tion on several parameters, such as Types of Gears, Types of Machines, Industries Served,
etc. This unstructured textual information is then read and converted into vectors in R.
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Table 2. Various types of gear manufacturing.

Category 1 Bevel gear
Category 2 Helical and worm
Category 3 Helical gear
Category 4 Spur gear
Category 5 Worm gear
Category 6 All types of gear

Step 2. Pre-Processing of Text Corpus and Creation of Document Term Matrix.

The prepared text corpus usually consists of delimiters, blank spaces, punctuation
mark, and stop words. These need to be removed before the application of machine-
learning models to remove any unnecessary bias during training. The corpus is thus
subjected to data cleaning in this stage to eliminate the above entities. To proceed to the
later stages, two separate corpuses for manufacturing and non-manufacturing were cre-
ated. The created manufacturing and non-manufacturing corpus are subjected to training
and testing with varied weightages depending upon the frequency of their occurrence
as explained [10]. The document term matrix was also created by selecting the features
which are critical in the classification. The features can be represented in the form of a word
cloud on the basis of varying sparsity measure which indicates the numeric occurrence
estimate of the feature in the overall dataset. This measure can then be used to eliminate
those features which are not distributed entirely over the dataset and cannot be used to
accurately classify the dataset. This matrix is then converted into a comma-separated
value CSV file to be later used in training and testing for machine-learning models.
Figure 4 represents the word clouds which were formed for the six different gear classes
with a varying sparsity measure. Namely, Figure 4a represents word Cloud for Worm
at 0.77 sparsity, Figure 4b Word Cloud for Spur 0.90 sparsity, Figure 4c Word Cloud for
Helical at 0.77 sparsity Figure 4c Word Cloud for Worm and Helical at 0.90, Figure 4c Word
Cloud for Bevel at 0.90, and Figure 4f Word Cloud for All Types of gears at 0.77 sparsity are
represented. Through a hit-and-trial approach, 0.77 was selected as the optimum. Several
industry-specific information is also extracted through the use of regular expressions as
shown in Table 3.

Table 3. Information to be extracted from mining and gear classification categories.

Types of machines (CNC, LATHE)
Types of operations (milling, drilling, and grinding)

Types of gears (spur, helical, and bevel)
Types of materials (steel, aluminum, bronze, and brass)

Types of certifications (ISO 9000, ISO 14000
Types of manufacturing process (casting, forging, and extrusion)

Step 3. Classification into Task-Specific Suppliers.

The manufacturing corpus represented through document term matrix in the for-
mat of comma-separated values is subjected to classification algorithms such as Support
Vector Machines, Decision Tree, Naïve Bayes, and Random Forests to classify them into
task-specific suppliers. This is implemented with WEKA [49]. Training is performed on
a dataset comprising numerous random capability narratives and testing on the above
36 capability narratives of gear manufacturing industries to classify them in one of the
industrial categories. The performance of various classification algorithms is validated
through the confusion matrix and other performance measures such as Kappa statistic,
precision, recall, F-measure, etc., as shown in Table 4 obtained through WEKA. Figure 5
shows the confusion matrix which gives an idea about the number of instances that are clas-
sified in various categories, leading the classification to be either False Positive (FP), True
Positive (TP), False Negative (FN), or True Negative (TN). The Decision Tree was found to
be the best among all models with 0.932 precision the least relative absolute error at 9.6%,
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followed by Naïve Bayes at 0.73. SVM and Random Forest, having performed below par.
Figure 6 shows the results of the text mining depicting the enterprise information. It gives
the detailed information of an enterprise such as types of gears manufactured, types of
machines used, types of industries served, and major clients of that particular enterprise.

Figure 4. (a) Word Cloud for Worm at 0.77, (b) Word Cloud for Spur 0.90, (c) Word Cloud for Helical (d) Word Cloud for
Worm and Helical at 0.90, (e) Word Cloud for Bevel at 0.90, and (f) Word Cloud for All Types of gears at 0.77 sparsity.

Figure 5. Confusion matrices of Naïve Bayes, Random Forest, SVM, and Decision Trees.
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Table 4. Various performance measures for machine-learning algorithms Decision Tree (J48), Naïve Bayes, Random Forest,
and Support Vector Machines.

Decision Tree (J48)

TP Rate FP Rate Precession Recall F-Measure MCC ROC Area PRC Area Class

0.400 0.000 1.000 0.400 0.571 0.604 0.881 0.694 All types
1.000 0.033 0.857 1.000 0.923 0.910 0.983 0.857 Bevel gear
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Helical and worm gear
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Helical gear
1.000 0.071 0.800 1.000 0.889 0.862 0.991 0.950 Spur gear
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Worm gear
0.917 0.021 0.932 0.917 0.903 0.899 0.979 0.923 Weighted Avg.

Naïve Bayes

TP Rate FP Rate Precession Recall F-Measure MCC ROC Area PRC Area Class

0.200 0.097 0.250 0.200 0.222 0.114 0.490 0.181 All types
0.833 0.033 0.833 0.833 0.833 0.800 0.978 0.897 Bevel gear
0.500 0.125 0.333 0.500 0.400 0.316 0.672 0.573 Helical and worm gear
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Helical gear
0.875 0.000 1.000 0.875 0.933 0.919 0.938 0.920 Spur gear
0.714 0.069 0.714 0.714 0.714 0.645 0.808 0.723 Worm gear
0.722 0.046 0.738 0.722 0.727 0.681 0.838 0.750 Weighted Avg.

Random Forest

TP Rate FP Rate Precession Recall F-Measure MCC ROC Area PRC Area Class

0.000 0.000 0.000 0.000 0.000 0.000 0.771 0.435 All types
1.000 0.067 0.750 1.000 0.857 0.837 1.000 1.000 Bevel gear
0.500 0.063 0.500 0.500 0.500 0.438 0.969 0.817 Helical and worm gear
1.000 0.033 0.857 1.000 0.923 0.910 1.000 1.000 Helical gear
0.875 0.036 0.875 0.875 0.875 0.839 0.996 0.986 Spur gear
1.000 0.069 0.778 1.000 0.875 0.851 1.000 1.000 Worm gear
0.778 0.045 0.669 0.778 0.717 0.692 0.964 0.898 Weighted Avg.

Support Vector Machines

TP Rate FP Rate Precession Recall F-Measure MCC ROC Area PRC Area Class

0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.139 All types
0.667 0.033 0.800 0.667 0.727 0.683 0.817 0.589 Bevel gear
0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.111 Helical and worm gear
0.500 0.000 1.000 0.500 0.667 0.674 0.750 0.583 Helical gear
0.875 0.286 0.467 0.875 0.609 0.497 0.795 0.436 Spur gear
0.857 0.241 0.462 0.857 0.600 0.507 0.808 0.423 Worm gear
0.483 0.093333 0.454833 0.483 0.433 0.3935 0.695 0.380 Weighted Avg.

5.2. Proposed Multi-Objective Evolutionary Algorithms

A nature-inspired population-based algorithm called Moth Flame Evolutionary Opti-
mization (MFEO) algorithm introduced bfy MirjalIli [50] that works on the consideration of
the natural transverse movement of moths in nature. Moths can travel very long distances
on a straight-line path. However, interestingly, along with the straight-line, moths travel
spirally near to the light sources which converge into an optimized path for them to reach
their destination. Based on this phenomenon, the Moth Flame Evolutionary Optimizing
algorithm was developed. The effectiveness of this algorithm over other algorithms (GA,
PSO, ACO) is clearly shown by Mirjalili by considering several benchmark functions and
case studies [50]. In this work, a hybridized form of the Moth Flame Evolutionary Optimiz-
ing algorithm (HMFEO) is presented. We have considered non-dominated sorting Pareto
approach for the proposed algorithm hybridization. This has been implemented to the
moth flame optimization with non-dominated sorting and crowding distance operators,
and a flowchart for the same is presented in Figure 7.

The parameters for the HMFO technique are specified for the implementation of
algorithms shown in Table 5 with the number of moths at 200 and the maximum number
of iterations at 1500. The upper boundary and lower boundary values are specified based
on the test data input.
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Figure 6. Screen shot of extracted enterprise information and classification into task-specific supplier with text mining.

Figure 7. Flowchart of the proposed HMFO.
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Table 5. Initialization of parameters for proposed solution algorithm.

Process Parameters HMFEO NSGA II

Population Size/No. of Moths 200 200
Number of generations 1500 1500

Mutation Probability - 0.07
Cross-Over Probability - 0.76

Step 1. In HMFO, potential solutions are represented as moths and variables are repre-
sented as position in the moth space. A matrix consists of all the moths (n), and
their dimension is d.

L =

⎢⎢⎢⎢⎢⎣
L11 L12 . . . . L1d
L21 L22 . . . . L2d
L31 L32 . . . . L3d
L41 L42 . . . . L4d

⎥⎥⎥⎥⎥⎦
Initialization of moth population and their spaces are defined with the time matrices

and their corresponding inputs. In this proposed HMFEO, a new type of encoding schema
was presented to suit the problem nature. The encoding scheme for makespan is presented
in Figure 8.

Figure 8. Representation of chromosome initialization for make span.

The example of encoding schema is represented in Figure 8, and the encoding consists
of three parts. If we observe from bottom to top, Figure 8a is the encoding based on
a sequence of operations of each job, which can determine the sequence of operations
needed to produce a job. Figure 8b is the encoding based on machines, which can choose
the machine for each operation. Figure 8c is the encoding based on the processing times
of each machine for the corresponding operation. Therefore, a chromosome in Figure 8
shows three jobs, which consist of nine operations, and will be processed on three different
machines. The processing sequence of this chromosome can be represented as Qik

j that the
jth operation of the ith job that will be processed on the kth machine. Where Q23

1 is the
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first operation of the second job that will be processed on the third machine. Based on the
encoding, schema time matrices were obtained, and the time matrices for makespan can be
represented as follows. Makespan = zeros(mach, opns, pp, jobs); makespan(:,:,2, 3) matrix
below indicating the processing time values of machines for the corresponding operation
for the third job and second process plan. The remaining values in the matrix are kept
as zeros.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

O1 [12 18 9 0 0 0 0 0 0 0 0 0;
O2 14 9 23 0 0 0 0 0 0 0 0 0;
O3 11 16 16 0 0 0 0 0 0 0 0 0;
O4 0 0 0 0 0 0 0 0 0 0 0 0;
O5 0 0 0 0 0 0 0 0 0 0 0 0];

Step 2. Based on the above information, the energy consumption matrix (Equation (11))
is obtained through multiplication with the corresponding time matrix with
specified energy consumption input mentioned in Table 6. The encoding schema
is specified in Figure 9.

Table 6. Energy and reliability data.

Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Energy
consumption 15 29 32 14 11 12 19 24 14 16 22 11

Reliability 0.76 0.82 0.78 0.84 0.84 0.92 0.89 0.94 0.88 0.95 0.84 0.92

EC matrix (o, m, p, j) = L matrix (o, m, p, j) ∗ E (Rated energy matrix); (11)

The encoding schema is represented as shown in Figure 9, and the encoding consists
of three parts. Figure 9a is the encoding based on a sequence of operations of each job,
which can determine the sequence of operations needed to produce a job. Figure 9b shows
the encoding based on machines, which can choose the machine for each operation. Figure 9c
is the encoding based on the energy consumption of each machine for the corresponding
operation of a particular job. Based on the encoding schema time, matrices were obtained,
and the time matrices for energy consumption can be represented as follows. Energy-
consumption(:,:,1,2) indicates energy consumption matrix for second job first process plan.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

O1 [175 312 198 0 0 0 0 0 0 0 0 0;
O2 400 234 330 0 0 0 0 0 0 0 0 0;
O3 325 429 352 0 0 0 0 0 0 0 0 0;
O4 0 0 0 0 0 0 0 0 0 0 0 0;
O5 0 0 0 0 0 0 0 0 0 0 0 0];

The above matrix indicating the energy consumption values of machines for the
corresponding operation for the third job and second process plan. The remaining values
in the matrix are kept as zeros.

Step 3. A score function is defined that helps to select a suitable process plan, and it is
shown in Equation (12), where a higher score value indicates that the probability
of selecting the process plan is lesser. The lower the score value, the better the
process plan. The formula for the score function is shown below.

Score = (L ∗ Evk)/(Rvk) (12)

where L represents makespan, Evk indicates energy consumption for job v on machine k,
and Rvk indicates reliability for job v on machine k.
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Step 4. A matrix CL is formed considering all the moths into the objective functions that
are stored in FK represented below.

C = [CL1 CL2 CL3 CL4 ]T

A flame matrix with a similar size to the moth’s matrix is considered that stores the
fitness values. Even though the moth (L) matrix and flame (C) matrix consist of solutions,
the difference is that moths are search agents, whereas the flame indicates the best position
of moths.

Figure 9. Representation of chromosome initialization for energy consumption.

Step 5. After an appropriate process plan is selected, we consider the rows as individual
light sources through which we find the minimum values.

Step 6. The matrices are explored row-wise to find a minimum entry in their respective
rows once the required inputs are received and the search space is
clearly initialized.

Step 7. Moths maintain the best solution by updating its position Equation (13) by mov-
ing around the flag that is dropped by themselves during the search process.
Update the position of the moth with respect to one flame. The spiral motion
follows the Equation (13) represented as
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Z
(
Lx, Cy

)
= Sx · eat · cos(2 ∏ t) + Ly (13)

Lx indicates the xth moth, Cy indicates the yth flame, and Z indicates spiral function.
Sx is the distance of xth moth for yth flame, Sx = ‖Cy − Lx‖, which is a constant defining
shape of spiral motion. Where t [−1, 1],

Step 8. After finding the minimum entry in the summed matrix and converting all ∞’s to
0s, the sum of all the values is found in their respective objective
function matrices.

Step 9. Finally, we solve the function to generate optimal values for all objectives.

The most likely solution to our problem is selected based on the most appropriate
fitness value. First, the data from various gear manufacturing enterprises are collected. The
collected data contain the information regarding make span of the jobs, energy consump-
tion, reliability of machines, and service utilization rate. The proposed HMFO algorithm is
run on the Mathworks on Lenovo with an Intel processor with Windows 10 as the OS with
64 Gigabyte of RAM.

In this study, 10 different instances which are real-life case data have been considered
by setting the numerical quantity of jobs to be 6 and machines to be 12, where each job
has a varied number of substitutable process plans. Every process plan has a different set
of operations. For each operation, there is a different set of machines which are capable
enough to process the required task. For example, the instance 6 shown in the below
Table 7 has 6 jobs and 12 machines in total. Job 1 has two alternative process plans and
these process plans have three and three operations, respectively. One operation processed
on a machine at a time.

Table 7. Results of the experimental instances with makespan and energy consumption values.

Jobs Machines Processing Time
Range

GA-SA (Instance 1 to 32)
GA-MA (Instance 33 to 35)

Proposed HMFO

Makespan
Energy

Consumption Makespan
Energy

Consumption

Instance 1 3 5 [1, 10] 41 138.1 30.8 26.3
Instance 2 3 7 [1, 10] 54.1 205.4 43 190.5
Instance 3 3 10 [1, 10] 61.2 229.1 49.7 204
Instance 4 3 5 [1, 50] 190.3 708.7 171 617
Instance 5 3 7 [1, 50] 252.8 960.6 226.7 834
Instance6 3 10 [1, 50] 333.8 1273.3 301.7 1110
Instance7 3 5 [1, 100] 375.4 1307.1 319.3 1134
Instance8 3 7 [1, 100] 531.9 1895.4 516.7 1644.9
Instance9 3 10 [1, 100] 729.1 2830.5 698 2467.5
Instance10 5 5 [1, 10] 35 140.4 24 126.1
Instance11 5 7 [1, 10] 46 186.3 30 169
Instance12 5 10 [1, 10] 51.5 199.9 43.7 177
Instance13 5 5 [1, 50] 165.5 671.5 149.8 583.9
Instance14 5 7 [1, 50] 225.2 951.2 201.7 828
Instance15 5 10 [1, 50] 317 1303.6 306.8 1139
Instance16 5 5 [1, 100] 325.5 1253.2 311.7 1098
Instance17 5 7 [1, 100] 436.9 1909 410 1663
Instance18 5 10 [1, 100] 610.3 2587.5 598 2257
Instance19 7 5 [1, 10] 28.7 110.9 19.6 96.7
Instance20 7 7 [1, 10] 39.3 162.2 24 146
Instance21 7 10 [1, 10] 56.5 241.6 49 218
Instance22 7 5 [1, 50] 159.7 607 143 524
Instance23 7 7 [1, 50] 220.8 919.1 206 846
Instance24 7 10 [1, 50] 304.6 1310.5 265.002 1150.9
Instance25 7 5 [1, 100] 351 1422.9 305.37 1287.9
Instance26 7 7 [1, 100] 426.1 1978.3 370.7 1725
Instance27 7 10 [1, 100] 625.9 2664.1 544.5 2319.7
Instance28 10 10 [1, 200] 939.04 9873.2 816.96 8597.6
Instance29 15 15 [1, 200] 1554.12 22,505.2 1352.08 19,579.5
Instance30 20 20 [1, 200] 4778.07 80,577.2 4156 70,102.16
Instance31 20 20 [1, 200] 7753.04 100,073.4 6749 87,263.8
Instance32 20 20 [1, 200] 15,062.5 197,787.5 13,115 172,975.7
Instance 33 18 15 [1, 200] 531 13,340.3 502 12,986
Instance 34 18 15 [1, 200] 810 2036.32 739 1956
Instance 35 18 15 [1, 200] 680 2267.88 593 1837.6
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The processing time of various operations of jobs on several machines in different
process plans, the energy consumption, and reliability of all the machines are known earlier.
Table 6 provides the energy consumed per unit time by each machine and the reliability
of the machine. To solve the considered problem, a newly established bio-inspired Moth
Flame Optimization algorithm (HMFO) was adopted, and further, it was mapped according
to problem nature. The operations were assigned to the machines in such a way that the
considered objective functions are satisfied and an optimal sequence is obtained. The above-
discussed approach is implemented for all formulated instances to find the robustness of
the algorithm.

6. Discussion and Results

6.1. Validation of Proposed HMFO Algorithm with the Experimental Instances

To validate our approach toward optimization of makespan and energy consumption,
we consider some experimental instances from the literature. Table 7 shows the results
of the experimental instances with makespan and energy consumption values. We have
calculated makespan and energy consumption for around a total of 35 experiments with
the data available from (instances 1–32) mentioned in [51] and (instances 33–35) men-
tioned in [52]. A comparison of our proposed HMFO results with results carried out with
a Simulated Annealing Genetic Algorithm (SA-GA) for instances 1–32. For most of the
instances, the proposed HMFO gives better makespan and energy consumption values
when compared with existing SA-GA makespan and energy consumption values. We
also compared our proposed HMFO results with results carried out by [52], a Genetic
Algorithm-based Memetic Algorithm (GA-MA) for instances 33–35. For most of the in-
stances, the proposed HMFO gives better makespan and energy consumption values when
compared with existing GA-MA makespan and energy consumption values. All the above
results indicate the better performance of proposed HMFO with some of the experimental
instances which were already proposed in the literature.

6.2. Evolution of Proposed HMFO with Practical Instances

After proving the effectiveness of the proposed HMFO with practical instances in
Table 8. Furthermore, the effectiveness of the proposed algorithm is tested on different
problems of practical instances with the aim to minimize makespan and energy consump-
tion, maximizing machine utilization and reliability. Table 8 describes the optimal process
plans chosen for each job in all the instances. Out of the various alternative process plans,
only one process plan per job is chosen depending upon the score value. The lower the
score value, the better the process plan. Thus, whichever process plan gives the lowest
score value, that process plan is selected. For example, in instance 6, the process plans
selected for the jobs 1–6 are 1, 1, 1, 1, 2, and 1, respectively.

Table 8. Optimal process plans selected for each job for all practical instances 1–10.

Case Process Plans Selected

Jobs Machines J1 J2 J3 J4 J5 J6 J7 J8

Instance1 6 6 2 2 2 2 2 2 - -
Instance2 6 6 1 1 2 2 1 2 - -
Instance3 6 8 3 1 2 3 3 4 - -
Instance4 8 8 2 2 2 2 1 2 1 3
Instance5 8 8 2 1 2 1 1 1 2 2
Instance6 6 12 1 1 1 1 2 1 - -
Instance7 6 12 2 2 2 3 2 2 - -
Instance8 6 12 2 2 2 2 2 2 - -
Instance9 6 12 2 1 1 2 2 1 - -

Instance10 6 12 2 1 1 3 2 1 - -
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Table 9 shows the optimal values of makespan and energy consumption for all different
problem instances (1–10) of HMFO and NSGA-II. These are the Pareto optimal values
obtained by the simultaneous optimization of all the objectives. For example, in instance1,
for proposed HMFO, the Pareto optimal value of makespan is 30, and energy consumption
is 8906 and with NSGA-II the values of makespan and energy consumption as 43 and
9083, respectively. For instance6, for proposed HMFO, the value of makespan is 986,
and energy consumption is 15,553. With NSGA-II, we obtained the values of makespan
and energy consumption as 1083 and 17,694, respectively. To validate the performance
of the proposed algorithm, 10 different instances were considered, and their considered
objectives makespan and energy consumption values are shown in Table 9. In Table 9, clear
observation indicates Pareto optimal values of makespan and energy consumption values
are dependent on the number of jobs and machines. Interestingly makespan and energy
consumption values for instance 3, i.e., six jobs and eight machines (6 × 8) case is more
when compared to instances other instances 1, 2, i.e., six jobs, six machine cases (6 × 6),
and instances 4 and 5, i.e., eight jobs, eight machine case (8 × 8). A similar trend is also
shown in the literature for 6 × 8 cases for makespan and energy consumption values. In
almost all instances, the makespan and energy consumption values of HMFO are lesser
and far better than those given by NSGA-II. Thus, upon comparing both the algorithms we
can conclude that the optimum values are attained in the case of HMFO, which proves the
effectiveness of the proposed multi-objective evolutionary algorithm.

Table 9. Results of the practical instances with makespan and energy consumption values.

Jobs Machines
Proposed HMFO NSGA-II

Makespan Energy Consumption Makespan Energy Consumption

Instance 1 6 6 30 8906 35 9083
Instance 2 6 6 27 8325 38 8700
Instance 3 6 8 179 39,658 187 44,920
Instance 4 8 8 42 13,089 50 14,040
Instance 5 8 8 50 10,129 62 11,189
Instance6 6 12 986 15,553 1083 17,694
Instance7 6 12 1179 15,224.5 1256 16,785
Instance8 6 12 1026 13,881 1094 14,205.5
Instance9 6 12 669 14,298 756 14,898.5
Instance10 6 12 814 14,143.5 884 14,678

For instances 6–10, even though there are equal instances of jobs and machines, the
makespan and energy consumption values are different and depend only on the operations
and types of machines used.

For a better portrayal of the optimized HMFO algorithm’s results, Gantt charts have
been utilized for all 10 instances. For better understanding, Gantt charts for instances 1–5
are shown separately in Figure 10, and Gantt charts for instances 6–10 are shown separately
in Figure 11. Here, Figures 10 and 11 illustrate the maximum completion time for the
problem with respect to instances 1–5 and instances 6–10, respectively. The X-axis of the
Gantt chart indicates the average time of completion of the job (makespan), and the Y-axis
denotes the machines. As stipulated in Figure 10, it is clearly observable that the makespan
for all the five instances is 30, 27, 179, 42, and 50, respectively, which replicates the results
that are previously mentioned in Table 9. In Figure 11, it is clearly observable that the
makespan for all the five instances is 986, 1179, 1026, 669, and 814, respectively, which
replicates the results that are previously mentioned in Table 9.
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Figure 10. Gantt chart showing the makespan of instances from 1–5.

 
Figure 11. Gantt chart showing the make span of instances from 6–10.

In addition to comparing the performance of both the algorithms, i.e., HMFO and
NSGA-II, a comparative study of the machine utilization rate of different machines for all
the 10 instances is illustrated in Figures 12 and 13. It can be inferred from Figure 12 that in
all instances 1–5, machine utilization rates are far better for the results that are obtained
with HMFO when compared with results that are obtained with NSGA II. In Figure 13 for
instance 6 in case of HMFO, machine 6 has the maximum utilization rate, and machine 9 has
the minimum utilization rate. In case of NSGA-II, machine 6 has the highest, and machine
12 has the least utilization rate. In addition, it is evident from the bar graph that in the
case of HMFO, machine 8 and machine 12 have zero utilization rate. This means that these
machines are not at all utilized in the manufacturing process and in the case of NSGA-II,
all the machines are completely utilized. Since our objective is the maximization of the
service utilization rate, the machines that are not utilized can be completely removed from
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being ignored and can be removed from the workspace. Since HMFO reduces the initial
cost involved in installing the machines by eliminating the machines, we can conclude that
HMFO gives the optimum results of the machine utilization rates.

 

Figure 12. Utilization rate of different machines of instance 1–5.

 

Figure 13. Utilization rate of different machines of instance 6–10.
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In Table 9, the energy consumption values for all instances are plotted and shown
in the Figure 14. It can be inferred that energy consumption values for all 10 instances
are lower for HMFO when compared to NSGA II. Figure 15 articulates the reliability of
the jobs/services provided by the selected enterprise with respect to each instance. In
Figure 15, it can be inferred that for all five instances, there is not much change in the
reliability. In all the instances, i.e., instances 1–10, job 3 has the highest reliability, which
means machines performing job 3 have the highest probability of surviving their expected
lifetime. Job 4 has the least reliability, which indicates that machines processing job 4 fail at
a very early stage and cannot survive at least half of their intended lifetime. Hence, the
machines involved in the manufacture of job 4 need to be improved/changed.

 

Figure 14. Energy consumption values of all instances 1–10.

Figure 15. Reliability of different jobs of instance from 6–10.

To make the comparison of proposed algorithm with the benchmark algorithms,
several performance measures were reported [53–56], and these measures were mainly
useful for multi-/many-objective optimization problems. To make the process simple and
effective, Pareto optimal graphs were plotted for three objectives shown in Figures 16 and
17. Figures 16 and 17 give various Pareto graphs generated by HMFO and NSGA –II,
respectively. In Figures 16 and 17, the black color solutions indicate the non-dominated
solutions, and blue color solutions indicate the remaining solutions. Considering effective
evolution of all of the algorithms’ performances gives a better picture.
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Figure 16. Pareto optimal graphs showing various solutions for three objectives makespan, energy consumption, and
machine utilization for HMFO algorithm.

Figure 17. Pareto optimal graphs showing various solutions for three objectives makespan, energy consumption, and
Machine utilization for NSGA-II algorithm.
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The hypervolume (HV) is most used Performance Indicator (PI) among all for the
comparison multi-objective algorithms [56]. HV is the volume occupied by the dominated
Pareto front approximation ‘R’ drawn from a reference point o £ O L, such that Y £ R, R < o.
The HV is given by Equation (14). Here, ηL represents L dimensional lebesgue measure.

HV(R, o) = ηL( ∪
Y∈R

[Y, o] (14)

The HV describes the region of the objective space which is weakly dominated by the
approximation set. Until now, there are no particular guidelines for selecting the reference
point; however, the worst possible point (i.e., dominated by all points) then the nadir point
(1, 1, . . . 1) is considered in most of the studies [57]. Here, the HV is calculated by specifying
the reference point as (1.1, 1.1, . . . 1.1). Out of all the available HV values, the best, median,
and least values of hypervolume (HV) results are indicated with help of box-plot in Figure 18.
The HV is calculated for various instances of problems of proposed HMFO and NSGA-II
algorithms represented in Figure 18. For instance 1, in the case of HMFO, the best, median,
and least values are 0.6997, 0.6297, and 0.5497, and similarly for instance 1, in the case of
NSGA II, the best, median, and least HV values are 0.5653, 0.4853, and 0.3653, respectively.
In a similar manner, the box plots were obtained for all 10 instances that are represented
in Figure 18. It is well known from the literature the higher the HV value, the better the
performance of the algorithm. In the figure, after thorough observation, the HV values
indicate the higher values for all the instances (i.e., from instance 1 to instance 10) in case
of proposed HMFO when compared to the NSGA –II algorithm. This demonstrates the
superiority of the proposed HMFO over the NSGA II algorithm for better approximation.
Moreover, HV results for the first five instances (instances 1–5) fall in a lower range when
compared to the other instances (instances 6–10). This may be due to different problem
scenarios that were considered in all 10 instances.

Figure 18. Comparison of HMFO and NSGA-II with Hyper-Volume (HV) results for all the 10 instances of problems.

Apart from HV indicator, the results of various other performance measures for first
five instances (1–5) and last five instances (6–10) are shown in Tables 10 and 11, respectively.
Out of all the available solutions, the number of Non-Dominated (ND) solutions obtained
by a proposed algorithm is denoted as α, and the number of ND solutions that are not
identified by the benchmark algorithm is denoted by β. For better results, it is suggested
to have larger values of α and β and the ratio of β/α ratio near to one determines the
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effectiveness of the algorithm’s strength. The percentage of ND solutions provided by
a certain algorithm is expressed in terms of dominance ratio ΥΥ in Equation (15). If larger,
the dominance ratio indicates the superiority of the given algorithm.

Υ =

|B(∪
i

Mi)\B( ∪
i �=k

Mi)|
B(∪

i
Mi)

(15)

where |B(∪
i

Mi)\B( ∪
i �=k

Mi)| indicates the non-dominated solutions found by the algorithm

M that are unable to identify by the other standard algorithms.

Table 10. Results of performance indicators for comparison of HMFEO and NSGA II instance 1–5.

Indicator Algorithm
Instance

1 2 3 4 5

α
HMFEO
NSGA II

8.5
8.0

10.8
10.5

9.7
9.4

10.6
10.6

8.8
8.6

β
HMFEO
NSGA II

8.1
7.0

10.7
9.5

9.5
9.3

10.6
9.3

8.6
8.3

/  HMFEO
NSGA II

0.9529
0.8750

0.9900
0.9047

0.9700
0.9893

1.0000
0.8773

0.9700
0.9651

Υ
HMFEO
NSGA II

0.5264
0.4736

0.5079
0.4921

0.6012
0.3988

0.5000
0.5000

0.5264
0.4736

K HMFEO
NSGA II

0.0800
0.1250

0.0100
0.0953

0.0300
0.0107

0.0000
0.1227

0.0300
0.0349

λ
HMFEO
NSGA II

0.3693
12.123

0.0037
9.236

0.6289
8.265

0.0000
8.6321

0.0042
9.5632

π
HMFEO
NSGA II

0.4236
0.4125

0.4856
0.5563

0.4982
0.6029

0.4932
0.6765

0.4495
0.5988

HR HMFEO
NSGA II

0.8526
1.2536

0.7445
1.1456

0.9538
0.9469

0.6984
0.9548

0.4495
0.9854

Table 11. Results of performance indicators for comparison of HMFEO and NSGA II instance 6–10.

Indicator Algorithm
Instance

6 7 8 9 10

α
HMFEO
NSGA II

12.5
12.0

13.8
10.5

9.7
9.4

16.6
16.6

9.8
8.8

β
HMFEO
NSGA II

12.1
11.0

12.7
9.2

9.5
9.3

16.6
15.0

9.6
8.3

/  HMFEO
NSGA II

0.9682
0.9166

0.9202
0.8761

0.9700
0.9893

1.0000
0.9036

0.9795
0.9431

Ω HMFEO
NSGA II

0.5151
0.4848

0.5070
0.4929

0.5078
0.4922

0.5000
0.5000

0.5057
0.4942

K HMFEO
NSGA II

0.0800
0.1250

0.0104
0.0835

0.0310
0.0307

0.0000
0.1027

0.0400
0.0349

λ
HMFEO
NSGA II

0.4693
12.123

0.0089
9.236

0.5259
8.265

0.0000
8.6321

0.0063
10.5632

π
HMFEO
NSGA II

0.5136
0.4125

0.4856
0.4563

0.4982
0.5129

0.4932
0.5365

0.4445
0.5488

HR HMFEO
NSGA II

0.7415
0.9438

0.8556
1.2465

0.8629
1.1803

0.7875
1.9888

0.7589
0.8765
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K(a,b) in Equation (16) is useful for comparison of Pareto fronts, particularly to identify
the weak solutions of algorithm b with an algorithm (a > b), which ultimately gives the
correctness of the particular algorithm. Furthermore, lesser K species than the ND solutions
identified by a particular algorithm are considered weaker.

K(a, b) =
|b ∈ B, ∃a ∈ A : a > b|

|B| (16)

Lesser π is necessary, and the values which are very nearer indicate the highly dis-
tributed uniformly over the Pareto front. Equation (17) values of π which is the Euclidean
length between end points of the identified ND Pareto set by an algorithm is compared to
the net ND Pareto front.

Π =

Ff + Fl +
J−1
∑

i=1

∣∣∣∣Fi −
−
F
∣∣∣∣

Ff + Fl + (J − 1)
−
F

(17)

λ indicates convergence power if smaller λ values are useful for identified ND so-
lutions by the algorithm and fall very close range in the vicinity of net ND solutions for
Euclidean lengths.

Hyper-volume ratio or Hyper-area Ratio (HR) is the ratio of HV ratio of the algorithms.
HR(R,h,o,) = HV(R, o)/HV(h, o) from this lower HR is required to obtain better approxima-
tion [58]. In Tables 10 and 11, it can be confirmed that the values marked in bold are the
best values for showing the superiority of the proposed HMFO algorithm over the NSGA
II algorithm.

7. Conclusions

Advancements in technology, such as information and communication technologies
(ICT), have changed the traditional manufacturing systems practices. This is especially
true for a distributed manufacturing system due to its ability to cater to its needs such as
Big Data, interoperability, timely delivery, etc. In this research, the authors have considered
a case study of automotive industries which are small and medium scale in nature and are
geographically distributed with the objectives such as the selection of appropriate suppliers
according to product type and enhancing the system functions such as makespan, energy
consumption, and increased service utilization rate, interoperability, and reliability. To
execute the first objective: supplier discovery is implemented through text mining based
on supervised machine-learning models. The results of classification Decision Tree (J48),
Naïve Bayes, Random Forest, and Support Vector Machines are validated through various
performance measures, mainly Precision, Recall, and F-Measures. Decision trees have been
found to be best with a precision of 0.93 for the purpose. These selected potential suppliers
and their related information have been transferred as input data to the next phase.

The flexibility and complexity of a distributed manufacturing environment create
the need for investigating the multiple process plans and multiple performance measures.
Hence, the research paper also investigated alternative process plans to the objective
functions makespan, energy consumption, service utilization, and reliability of services.
We developed a MINLP model, and by acknowledging the NP-hard nature of the above
scenario, a multi-objective evolutionary algorithm was decided to be utilized for which
the input of task-specific suppliers is the outcome of supervised algorithmic models. As
a result, we have used a bio-inspired Moth Flame Optimization evolutionary algorithm
and tuned the algorithm to fit our problem objectives.

The results demonstrate that the use of evolutionary HMFO reduces the number of
machine when compared to NSGA-II proving the effectiveness of the methodology used
in this research. It also provides similar results with respect to the survivability of jobs as
compared to NSGA-II. Out of all the considered objective functions, energy consumption
is of utmost importance because of its effect on the current manufacturing environment.
An experimental comparison also reveals the effectiveness of the proposed HMFO. Various
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performance indicators are used to compare the superiority of the proposed HMFO over
the benchmark NSGA II algorithm. Thus, the results obtained showcase the superiority
of the approach mentioned in this research. Future work requires adopting an applica-
tion of the proposed methodology on a wider dataset using various other many-objective
evolutionary algorithms. It is important to mention here that the comparison of proposed
algorithms must be performed by using the state-of-the-art many-objective optimization
algorithms like Non-Dominated Sorting Genetic algorithm (NSGA) –III, S-Metric Selec-
tion Evolutionary Multi-Objective Optimization Algorithm (SMS-EMOA), EvolutionaryA
Algorithm-based on Decomposition (MOEA/D), etc., for better understanding of the
performance of the algorithm [59].
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Abstract: Industry standards pertaining to Human-Robot Collaboration (HRC) impose strict safety
requirements to protect human operators from danger. When a robot is equipped with dangerous
tools, moves at a high speed or carries heavy loads, the current safety legislation requires the
continuous on-line monitoring of the robot’s speed and a suitable separation distance from human
workers. The present paper proposes to make a virtue out of necessity by extending the scope of
on-line monitoring to predicting failures and safe stops. This has been done by implementing a
platform, based on open access tools and technologies, to monitor the parameters of a robot during the
execution of collaborative tasks. An automatic machine learning (ML) tool on the edge of the network
can help to perform the on-line predictions of possible outages of collaborative robots, especially
as a consequence of human-robot interactions. By exploiting the on-line monitoring system, it is
possible to increase the reliability of collaborative work, by eliminating any unplanned downtimes
during execution of the tasks, by maximising trust in safe interactions and by increasing the robot’s
lifetime. The proposed framework demonstrates a data management technique in industrial robots
considered as a physical cyber-system. Using an assembly case study, the parameters of a robot have
been collected and fed to an automatic ML model in order to identify the most significant reliability
factors and to predict the necessity of safe stops of the robot. Moreover, the data acquired from the
case study have been used to monitor the manipulator’ joints; to predict cobot autonomy and to
provide predictive maintenance notifications and alerts to the end-users and vendors.

Keywords: on-line monitoring; collaborative robots; human robot collaboration; machine learning

1. Introduction

Revolution of Industry 4.0 (I4.0) introduces new tools and technologies that can be in-
tegrated with the ones that are already exploited by factories. Several of them have already
been deployed in different manufacturing sectors to improve productivity and to satisfy
the expectations of consumers expectations for customisation. One such I4.0 enabling
technology is the collaborative robot (cobot) which is widely deployed in industry [1,2].
A cobot allows the skills of a robot, such as precision and strength, to be combined with
human dexterity and problem solving abilities [3] on a human-robot collaborative (HRC)
workstation. Cobots are designed to interact with humans directly and physically within
a shared workspace [4]. HRC applications that are designed on the basis of reliability
and safety standards increase human trust in collaboration and improve the quality and
working conditions of employees. In HRC, humans and robots share the same workspace.
Cobots are specifically made to halt before any involuntary contact may harm the human
coworker can cause harm. However, frequent halts induce accelerated wear and tear of the
robot and increase the probability of mechanical failures. Furthermore, cobots should be
light weight in order to minimise their inertia and allow them to stop suddenly. Therefore,
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joints have lower strength compared to standard industrial robots. Accordingly, scheduled
maintenance is no longer an appropriate strategy as it cannot account for the number and
severity of the forced halts of a robot. Continuous monitoring of the state of health of such
robots would be preferable. During monitoring, the system generates useful knowledge
and information, such as data about the robot’s sensors and event logs, which are stored
in historic logging databases and can be recalled to perform analytics. The smart data
analytics of collected data, using machine learning techniques, offers an opportunity to
monitor the health condition of industrial robots, to predict the mobile autonomy and
to perform predictive maintenance, if necessary. The Internet of Things (IoT) is another
emerging tool that is used for I4.0: connected devices with embedded systems that are able
to interact and communicate with each other or with centralised devices. The integration
of the IoT in a decision making system could improve the performance of the human-robot
interaction. This is the reason why the industrial internet of things (IIoT) extension refers
to its industrial application, that is to interconnect industrial machines and devices, robots,
sensors and instruments that are centralised to collect, exchange and analyze data. The IIoT
offers the possibility of achieving the complete design of physical cyber-systems through
the integration of data processing technologies, intelligent software and sensors. On-line
monitoring systems, and predictive maintenance models can be built on the basis of a large
set of historical data. Several steps are involved in such a process: preprocessing of the col-
lected data; extracting features from sensor data or feeding sensor data directly to machine
learning models; training the predictive models; generating decision support models that
will be able to evaluate a new data sent to the system; deploying developed models and
integrating them with the system. The on-line visualisation of the health status of a robot
and alerts about predicted failures will improve the human robot interaction. However,
the applications of such models can go far beyond HRC. The concepts of machine learning
(ML) tools used for predictive maintenance applications utilizing data available data on
the internet have been discussed in recent studies, such as in [5], and a condition-based
monitoring system, using ML tools, has been successfully deployed for a smart railway
applications [6].

Hence, this paper has focused on developing a framework using I4.0 enabling tech-
nologies to improve reliability and safety in HRC applications. The proposed framework
allows a cobot’s condition to be monitored continuously during HRC. The monitoring
deploys IoT connectivity, a data acquisition system, physical cyber-systems and ML tools to
perform analytics. The paper is divided as follows: the relevant equipment parametersare
first identified, and a description of the data acquisition framework is then given, an appli-
cation to an assembly case study in which all the necessary data are collected is presented,
and finally the analysis results of the considered case study are presented and discussed.

2. Research Hypothesis

In order to determine the relevant parameters that have to be monitored, it is worth
analysing the most common industrial cobot applications at present in use. TTraditional
robotic applications in fact exclude the access of humans to the work area and therefore
limit the range of applications to production processes [7]. On the other hand, as cobots are
designed to work with humans in the same shared workspace, several new applications
are emerging [8].

The general requirements for collaborative robot system applications, based on ISO
10218-1:2011 [9] and ISO 10218-2:2011 [10] are described in ISO 15066:2016 Robots and
robotic devices—Collaborative robots [11].

According to the ISO technical specifications, reliable safety, control and monitoring is
whenever HRC processes involve heavy loads, high speeds, forces or temperatures, in a
hazardous environment.

The different papers published over the last decade related to human-robot applica-
tions in the assembly, handling and welding domains as taken from the Scopus database,
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are listed in Figure 1. Following keywords are utilized: human robot together with collabo-
ration assembly, welding and/or handling on the search engine of the Scopus database [12].

Figure 1. Recent publications of human-robot collaborative (HRC) applications in the three aforementioned domains.

Despite not claiming to be exhaustive, the chart clearly shows that most HRC applica-
tions are deployed in assembly fields [13]. Handling and process production is the second
most important field that deploys collaborative robots, followed at a distance by welding.
Welding applications are more complex, as they require more physical parameters in order
to be precise, accurate and monitored. Table 1 offers an overview of the more studied
industrial applications of cobots.

The table also shows issues that could occur in HRC applications and identifies
important measuring parameters to build more reliable collaborative applications.

2.1. HRC Assembly

Human robot collaborative assembly is the action of joining two or more compo-
nents together. Numerous HRC applications are already present in industry, and new
solutions are continuously being proposed. Some HRC applications, with parameters
being measured during collaboration in different fields, are reported in Table 1. The table
also highlights the corresponding parameters necessary to monitor certain tasks. In HRC
assembly, a cobot and a human can help each other during the execution of tasks. The
monitoring of the physical, state, and process parameters of a cobot plays an important role
in obtaining safer and more reliable collaboration. The authors of research papers [14,15]
discussed the implementation of HRC assembly in manufacturing, and proposed industrial-
like solutions. The importance of such parameters and variables as the load, end-effector
force/torque, payload, robot and temperature of the robot and joints and robot speed were
identified and classified in these researches according to the tasks of the cobots in the HRC
assembly. The measurment of the performance, monitoring and prediction of the above
mentioned parameters are employed in the computation of the key performance indicators
(KPI)s of cobots [16–18].

2.2. HRC Handling

Handling is another widely used process in industry, for example in food manu-
facturing and logistics material handling. Handling involves different processes, such
as grasping, packaging, glueing, palletising, surface polishing, and so forth. Cobots are
used in collaborative handling applications are used for such processes as picking and
placing, product testing, assembly, loading/unloading, injection and moulding as support-
ive devices to increase the safety of human operators and to reduce repetitive strain and
accidental injuries. For example, the integration of cobots in a plastic polymer production
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line that produces noxious gases protects the employees in the production line from toxic
gases and sharp profiles. In such processes, the physical parameters of the cobots such as
the accuracy of the end-effector and the temperature ranges of the robot are monitored to
provide safer collaboration [19,20].

2.3. HRC Welding

Welding is another widely used process in industry. In this direction, walk through
programming has been proposed [21] for welding robots. Vision system interaction [22]
in welding and augmented reality-based approaches have also been proposed [23]. Most
of the proposed approaches implement cobots as assistant devices. As a result of the
complexity and uncertainty of the welding process, effective practical applications, using
collaborative robots, are still limited. Welding robots are currently programmed by means
of lead-through or offline. Intelligent technologies, such as vision sensing, automatic
programming, guiding and tracking, and real-time monitoring of the welding process,
were adopted in [24] to cope with geometrical uncertainties in the weld trajectory. Thus,
as shown in Table 1 such parameters as end-effector force, payload, robot temperature,
joint speed, joint orientation and position are significant for the success of the welding
operation and are likely to be monitored.

Table 1. Human-robot interaction (HRC) applications.

HRC Applications Deployed Tasks Important Parameters for HRC

Assembly HRC assembly in a shared workspace [25] End-effector force;
Manual guidance collaborative assembly [14] Payload monitoring;

HRC integrated automotive assembly [15] Robot Temperature; Joint Speed;
Handling Hazardous material handling [26] End-effector force;

Aseptic bottling using AR [27] Joint position and orientation;
Collaborative surface polishing, sanding [28,29] Robot Force; Joint Speed;
Collaborative robot injection and moulding [30] Speed and separation monitoring

Welding Virtual reality HRC welding [21] Torque/force sensors; Temperatures;
HRC Welding Cell [22] Position and orientation accuracy;

Spot welding manual guidance using AR [23] Robot Temperature; Joint Speed;

3. Methods

The proposed on-line monitoring system tracks the physical conditions of the cobot
while performing HRC processes. The framework of the online monitoring system is
outlined in Figure 2. Basically, the system is composed of several integrated parts: col-
laborative robot, that communicates with gateway using real time data exchange (RTDE)
and MODBUS protocols; data acquisition, which is the gateway to cloud communication;
database server, which stores the data necessary for prediction purposes and to feed the
on-line monitoring dashboard; data preprocessing which extracts meaningful features from
the dataset and transfers them to the ML models; machine learning models, which are
exploited to predict the future behaviour of any parts subject to failure; application layer,
which is deployed to allow the interactions with human operators under safe conditions.
Overall, the monitoring system alerts a human operator whenever a cobot displays im-
proper or erratic behaviour. The operator can access the dashboard remotely. For example,
if the temperature of one of the joints is higher than expected, the operator can access
the dashboard of the cobot to find out which working situation has led to the anomaly.
Moreover, a cobot system can be integrated with additional sensors to detect gas or ambient
pollution and then inform the human operator about the hazard. The present paper focuses
on the integration of data acquisition and machine learning in a cobot monitoring system;
networking communication and the application layer with management indicators have
already been discussed in [18,31,32].
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Figure 2. On-line monitoring framework.

3.1. Data Acquisition

The development of a data acquisition system for robots is an important part of a
monitoring system. Data collection and data storage offer the possibility of executing
deeper analyses about the connected devices and of assessing the status of the connected
devices. The data collected from robots can be either physical data or event data. The former
parameters that are measured by installed sensors, such as temperature, speed, vibrations,
force, voltage, and current. Event data refer to the working status of a robot, and to
hardware or software failures, breakdowns and so forth.

The architecture of the here presented system is composed of a collaborative robotic
manipulator (Universal Robots UR3), provided with a wireless TCP/IP connection to
a gateway, in order to access an Internet network over a range of around 100 m. The
communication with a robotic manipulator and gateway is established using RTDE that
uses TCP/IP communication on the port 30004 and robot generates output messages
on 125 Hz and Modbus TCP protocols in port 502. In the system, The RTDE protocol
acquires UR3 status data such as POWER OFF/ON, Emergency Stop, Protective Stop,
status of programme, that is, running, paused or stopped, and other parameters necessary
for monitoring [33]. In Modbus communication, the robot controller acts as a server
(Slave), gateway is client (Master) that can establish connections to the robot and send
standard Modbus requests to it. The server is available at the IP address of the robot
controller [34]. The robot Modbus communication interface can be used to communicate to
other robots, programmable logic controller (PLC)’s, Human-Machine Interface (HMI)’s or
inputs and outputs (IO) devices (when the IO device is functioning as a Modbus server).
In our system, the client sends a request to read specific registers that are available in the
internal memory of the robot, and the robot responds by providing the requested value.
The general purpose 16-bit registers present in the robot controller can contain certain
discrete variables such as the tool state, tool centre point (TCP) state, joint angle, joint
velocity, current, voltage, joint temperature. The system supports the Message Queuing
Telemetry Transport (MQTT) protocol. MQTT is Publish/Subscribe Model which consists
of three main components: publishers, subscribers, and a broker. Publishers are the
lightweight sensors and devices that connect to the broker to send their data and go back
to sleep whenever possible. Subscribers are applications or devices that are interested in a
certain topic, or sensory data, so they connect to brokers to be informed whenever new
data is received. The brokers classify sensory data in topics and send them to subscribers
interested in those topics only. A device can behave as a publisher and a subscriber at
the same time by publishing to specific topics and subscribing to others, the term MQTT
client is used to distinguish publishers/subscribers from brokers. Node-Red is a flow
based open source programming tool built upon Node.js that is used to connect hardware
devices, API’s and other online services belonging to the realm of Internet of Things (IoT).
Node-Red provides a browser-based flow editor which can be used to create JavaScript
functions in the form of interconnected blocks that together construct a flow. One of the
biggest advantages of Node-Red is its ability to run at the edge of the network in the cloud
and locally on a standard personal computer (PC). In the proposed framework Node-Red
is ran on the standard PC and the editor is accessible via any web browser on the local
network. The Node-Red dashboard is an add on module of Node-Red that is used to create
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and present on-line data graphical user interface(UI) on a web browser. The dashboard
package allows the addition of many UI components such as buttons, sliders, leds and
gauges. After representing all communication tools and protocols, data acquisition and
transmission occur as follows: the robotic arm is connected to the PC(gateway) with
RTDE and MODBUS protocols over Wi-Fi. On the PC, there are Node-Red nodes that
read and transmit all necessary data to the server using MQTT broker. On the same PC,
the Node-Red Dashboard Nodes offers the data in a graphical user interface accessible
through a web browser in a real-time manner. Node-red dashboard allows the data to
be presented in various forms such as charts, text fields and gauges, commands are also
triggered from the GUI using sliders, switches, text fields and buttons. Additional details
about communication protocols and KPI computations of the cobot on the dashboard are
given in the aforementioned papers [18,31].

3.2. Data Preprocessing

The preprocessing of data helps enhanc the quality of the data and to extract meaning-
ful insights. The data acquired from machines are normally fuzzy, biased and noisy. The
preprocessing of raw data can improve the efficiency and accuracy of the ML workflows.
This is why data cleaning, data integration, and feature transformation and selection are
required before data can be used.

Data cleaning involves such operations as improving bad data, reducing the unnec-
essary elements of data, and filtering out some incorrect data that do not belong to the
data set. The authors of [35] proposed different techniques such as the classic maximum
likelihood procedures, like Expectation-Maximization or Multiple-Imputation for the treat-
ment of missing and noisy data. Other authors proposed advanced ensemble missing
data techniques (MDTs) [36] to improve prediction model and authors of [37] evaluate
four MDTs techniques: listwise deletion (LD), mean imputation (MI), similar response
pattern imputation (SRPI) and full information maximum likelihood (FMIL). The majority
of authors agree to suggest using FMIL if there is enough data to afford; MI and SRPI
when there is a scarcity of data. Not to use LD if data is suspect missing completely at
random (MCAR).

Feature scaling which is also known as data standardisation, is another pre-processing
step. It refers to the standardisation of the range of features in a data set, which means
adjusting the values of numerical columns measured on different scales to a formal common
scale, without changing the ranges of the values or losing information. Data normalisation
means re-scaling the dimensions of data and avoiding over-weighting values. It helps
to improve the overall quality of a data set [38]. Scaling intervals of [0, 1] and [−1, 1] are
normally used, as shown in Equations (1) and (2)

[0, 1]interval =
actualValue − min(allValues)

max(allValues)− min(allvalues)))
(1)

[−1, 1]interval =
actualValue − (max(allValues) + min(allValues))/2

(max(allValues)− min(allvalues))/2
. (2)

Feature selection considers data composed of irrelevant and/or redundant features
that could influence the performance of the trading activity to a great extent. Different
feature selection such as multicollinearity, correlation coefficients and Variance Inflation
Factors (VIF) are proposed by authors [39,40] to improve performance of the ML model
outputs. According to the authors [39] the most commonly used techniques for numerical
input and output models are correlation coefficients, such as Pearson’s for a linear correla-
tion, or rank-based methods for a nonlinear correlation. For data with numerical input and
categorical output, the most common used techniques are correlation based multicollinear-
ity coefficients and ANOVA correlation coefficients. The techniques adopted in the present
framework are correlation coefficients if data coming from robot and predicting variables
is numerical.To predict categorical variables of the robot multicollinearity feature selection
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technique is used. Data variables-collected from a cobot during human-robot collaborative
applications have been evaluated using a correlation matrix and the simplest way to detect
collinearity is to look at the correlation matrix of the predictors. An element of this matrix
that is large in absolute value indicates a pair of highly correlated variables, and therefore
a collinearity problem in the data.

Data transformation is the process where format is conveniently converted from
numerical to categorical and redundant data are removed [41]. The above mentioned
data pre-processing techniques have been implemented in this study to extract significant
features from a cobot dataset. The collected features and variables have then been passed
onto the next steps of the framework.

Correlation analyses of cobot variables during HRC.
In order t o evaluate the significance relation between predictors Xp and response Y,

correlation analysis was performed. Correlation analyses provide an idea of the linearity
between paired variables. The correlation coefficients between two random variables, are
calculated for all the model variables as a parameter of the linear dependence [42]. The
sample estimate of the correlation coefficient rxy is computed for two variables, X and Y,
dataset as:

rXY =
cov(XY)

σXσY
. (3)

In Equation (3), σX and σY represent the standard deviations of X and Y.
The correlation coefficients in the correlation matrix are then presented with values in

the [−1, 1] interval that have the following meanings:

r =

⎧⎨⎩
0, means that there is no linear relationship (X and Y are linearly uncorrelated);

1, indicates a perfect positive linear relationship with X and Y varying in the same direction;
−1, indicates a perfect negative linear relationship, with X and Y varying in the opposite direction;

(4)

The correlation coefficients can be symmetrically arranged into a correlation matrix,
where each element of each column and each row variable correspond to the
correlation coefficients.

3.3. Machine Learning Models

This section describes the utilisation of ML tools to monitor the condition of a cobot.
A correlation analysis was first used to identify which variables are significant. The most
closely correlated variables of the collaborative robot were then fed to an ML tool to
perform predictive analyses.

3.3.1. Regression Model Used to Predict the Quantitative Parameters

A Multiple Linear Regression(MLR) model was used to predict quantitative parame-
ters. An MLR model predicts the linear relationship between a dependent variable and
other variables. A multiple linear regression model with p predictor variables x1 , x2, ... ,
xp and response Y, can be formulated as

Y = β0 + β1x1 + β2x2 + ... βpxp + ε, (5)

where β0, β1, ..., βp are known as model coefficients or parameters and ε is a noise term
which is a random error. Training data can be used to estimate β̂0, β̂1, ..., β̂p, and the
coefficients being known, predictions can be made using the following equation:

ŷ = β̂0 + β̂1x1 + β̂2x2 + ... + β̂pxp, (6)

where ŷ represents a prediction of Y on the basis of X = x. In the previous equation,
the hat ˆ symbol refers to the estimated coefficients or predicted response. Values of
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β must be estimated. The least square approach is used in this model to minimise the
following equation:

RSS =
n

∑
i=1

(Yi − ŷi)
2 =

n

∑
i=1

(Yi − β̂0 − β̂1xi1 − β̂2xi2 − ... − β̂pxip)
2. (7)

The following metrics have been selected from Table 2 to evaluate regression model:

Table 2. Evaluation metrics of the linear regression model .

Metrics Description Formulation

Residual Standard Error (RSE)
The Residual Standard Error is a
measure of the quality of a linear
regression fit.

RSE =
√

1
n−2 RSS

R2

R squared is the square of the
Pearson correlation coefficient
between the labels and the pre-
dicted values. This metric ranges
from zero to one. A higher value
indicates a higher quality model.

R2 = 1 − (yi−ŷi)
2

yi−ŷ)2 =
SSreg
SStot

Adjusted R2

This measures the proportion
of variation explained by only
those independent variables that
really help to explain the depen-
dent variable. In the equation,
where R2-sample R-square; p-
Number of predictors; N-total
sample size

R̄2 = 1 − (1−R2)(N−1))
N−p−1

F-score

This makes it possible to com-
pute the variance of the depen-
dant variable, the simpler model
is not able to explain as much as
the complex model. In the equa-
tion k1 and k2 are parameters of
two models

F-statistics =
(

RSS1−RSS2
k2−k1

)

(
RSS2
n−k2

)

p-value

This is a statistical test that deter-
mines the probability of extreme
results of the statistical hypothe-
sis test, and which takes the Null
Hypothesis to be correct.

3.3.2. Automatic Classification Model to Predict Qualitative Parameters

The Automatic machine learning(AutoML) system was adopted to find the best ML
model for our framework. H2O AutoML is an open source, user-friendly machine learning
software that was designed not only for advanced machine learning users, but also for non
experts. Recent studies show that H2O AutoML [43] performs better than other competitor
tools. The authors of [44,45] assessed the robustness and efficiency of AutoML, with respect
to other automatic models such as TPOT [46] and AutoKeras [47]. These authors used
dirty, clean and noisy data sets to evaluate the robustness of the tool. Other studies, [48,49]
have shown the effectiveness of the AutoML system, with respect to other tools, like
auto-sklearn [50] and Auto-WEKA [51] using open source datasets. AutoML relies on
the efficient training of H2O machine learning algorithms to produce a large number of
models in a short time. H2O AutoML supports the supervised training of regression, binary
classification and multi-class classification models on tabular datasets. H2O AutoML is
available in Python, R, Java and Scala as well as through a web GUI.
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The base models of H2O are Generalized Linear Models (GLM), Distributed Random
Forests (DRF), XGBoost, Gradient Boosting Machines (GBM), and Deep Learning (NN).
The used hyperparameters are chosen from a predefined search space using a grid search.
H2O chooses one of the three different options. It may use just one of the base models
or their hyperparameter-optimised versions. It can also choose a Best Of Family Stacked
Ensemble model, which includes one model from each category and the last available
option is the All Models Stacked Ensemble pipeline. After training one of the above
mentioned models, AutoML uses a test dataset to evaluate the accuracy and quality of
the new model, and provides a number of evaluation metrics that indicate how good the
model performs on the test dataset. The following metrics were selected to evaluate the
regression model:

The evaluation metrics used for the classification model are shown in the Table 3.

Table 3. Evaluation metrics of the classification model.

Metrics Description of the Metrics

AUC PR
The area under the precision-recall (PR) curve. This value ranges
from zero to one, and a higher value indicates a higher-quality
model.

AUC ROC
The area under the receiver operating characteristic (ROC) curve.
This ranges from zero to one, and a higher value indicates a
higher-quality model.

Accuracy The fraction of classification predictions produced by the model
that were correct.

Log loss
The cross-entropy between the model predictions and the tar-
get values. This ranges from zero to infinity, and a lower value
indicates a higher-quality model.

RMSE

The root-mean-square error metric is a frequently used measure
of the differences between the values predicted by a model, or an
estimator, and the observed values. This metric ranges from zero
to infinity; a lower value indicates a higher quality model.

MSE
This is an estimator that measures the average of the squares of
the errors, that is, the average squared difference between the
estimated values and the actual values

Feature importance

AutoML generates tables that indicate how much each feature
impacts a specific model. The values are provided as a percentage
of each feature: the higher the percentage is, the more that feature
impacts model training.

3.4. Description of the Case Study: Monitoring Cobot Arm Joints

This section describes a case study where a cobot (UR3) performs pick and place tasks
with a human operator, considering different loads—maximum, medium and minimum.
The components of the experiment consist of a human operator, a UR3 robot and a shared
workspace as shown in Figure 3. Both the robot and the human worker can access all the
components necessary for the assembly in the workspace, such as the base, flanges, bolts
and nuts. The HRC assembly application and integrated assembly method is described
in [25]. During the case study, Physical and hardware data, such as temperature, load,
speed, power, and programmed stops, protective stops and so forth, were acquired from
the developed data acquisition framework during the case study. The robot was used
without any workpiece to indicate the minimum load. A medium load corresponds to
a 1.5 kg workpiece and a maximum load to a 3.0 kg workpiece. The monitoring system
monitored all the physical parameters and predicted the parameters of influence of the
cobots using different ML models.
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Figure 3. HRC application processes: the figure on the left demonstrates the HRC assembly pro-
cess; The figure on the right demonstrates the cobot transporting assembled components to the
target position.

3.5. Correlation Analyses

The acquired variables from the case study were correlated to identify any important
variables of the cobot during the task execution with a human. The correlation coefficient
is an important measure of the association of continuous data.

Figures 4–9 show the correlation matrix of six joints to identify the most correlated
variables of the specific joints. The correlation matrix clearly shows that the temperature
and load variables are very closely correlated for each joint. Current in joint 1, joint 2 and
joint 3 is the next most closely correlated variable with load and temperature. Voltage and
speed variables are weakly correlated with other variables. Voltage is slightly correlated
only with a robot speed between Joint 0–5 with a maximum −0.78 value in Joint 1. The joint
speed variables are not correlated with other variables and they are almost 0 in every joint,
only with voltage 0.01 in joint 1.

The most closely correlated variables in the correlation matrix were chosen for the
regression and classification models to make predictions.

Figure 4. Correlation matrix of joint 0.
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Figure 5. Correlation of joint 1.

Figure 6. Correlation of joint 2.

Figure 7. Correlation of joint 3.
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Figure 8. Correlation of joint 4.

Figure 9. Correlation of joint 5.

Figure 10 shows a box plot of the temperature of each joint when working with
different loads. Figure 11 shows a box-plot of the power (product of current and voltage)
vs different loads. The box plots indicate that when there is a maximum load, or the end-
effector of the robot is working under a full load condition, there is a risk of the temperature
in some joints, especially Joints 2, 3, 4 and 5, of rising above 50 degrees. According to the
datasheet of the robot, the maximum temperature should not exceed 50 degrees, and this
value limits the working range of the robot.
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Figure 10. Box-plot of the Load with the Temperature.

Figure 11. Box-plot of the Load and the Power.

Figure 12 displays a box-plot of the speed vs different loads, and the plot shows that
varying the loads has no effect on the speed of the robot.
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Figure 12. Box-plot of the Load with the Speed.

Correlated variables such as loads, temperature and power are passed to the ML tools
to monitor the conditions of the cobot. The monitoring system is a hybrid system, as both
quantitative data regression models (data driven) and qualitative parameters classification
models are used. All the results appear on the analytical dashboard of the robot.

4. Results And Discussions

The results of the linear regression model, when used to predict the temperature of
the robot and when AutoML is used to forecast safety stops during collaborative work
are presented in this section. The correlation matrix and studies have shown that the
temperature of the each joint and protective stops during collaborative tasks are important
factors of the robot manipulator that can influence the reliability of collaborative work.
Figure 13 shows the results of a linear regression model used to predict the temperature
of a robot while performing human robot collaboration tasks with different loads. The
blue data on the graph are the original data and the red data are the predicted variables.
Moreover, the graph shows the critical temperature condition when the robot works with
maximum loads and normal condition when the robot performs tasks with lighter loads.

The Table 4 shows the performance results of the linear regression model. The main
evaluation parameters of the model were the Adjusted R squared, multiple R-squared,
F-statistics and p-values. The linear model with all the data resulted in a higher error than
for the other experimental setups. The performance of the LM with all the data including
the max. medium and min data, resulted in an Adjusted R-squared equal to 0.9346 and
a multiple R-squared of 0.9529, which are sufficient to be integrated into the monitoring
system as temperature prediction models.
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Figure 13. Temperature prediction results under different conditions.

Table 4. Performances of the general linear model when predicting the cobot temperature.

Experimental Setups Res. Std. Err. Multiple R-Squared Adjusted R-Squared F-Statistic p-Value

UR3 with all the data 1.865 0.9529 0.9346 52.02 <1.163 × 10−10

UR3 with the Max.Load 0.1422 0.9152 0.9151 3.347 × 104 <2.2 × 10−16

UR3 with the Medium Load 0.364 0.1571 0.1569 578.3 <2.2 × 10−16

UR3 with the Min. Load 0.3832 0.3952 0.395 2027 <2.2 × 10−16

Table 5 demonstrates the coefficients of the Linear regression model for UR3 with
all the data and important variables. It is clear, from the table, that the most influencing
variable with the greatest influence on the temperature predictive model is load.

Table 5. Performances of the linear regression model when predicting the robot temperature.

Input Variables Estimate Std. Error t Value Pr(>|t|)

Intercept 1.195 × 10+3 1.375 × 10+3 0.869 <0.396248
LOAD 1.208 × 10+1 1.041 × 10+0 11.611 8.56 × 10−10

JOINT_0 1.534 × 10+0 2.694 × 10−1 5.693 2.13 × 10−5

SPEED_ROBOT −6.107 × 10−2 1.411 × 10−2 −4.327 0.000406
TIME −7.458 × 10−7 8.761 × 10−7 −0.851 0.405837

CURRENT 5.800 × 10+1 2.902 × 10+1 1.999 0.060971
VOLTAGE 1.048 × 10−10 2.652 × 10−10 0.395 0.697487

POWER −4.051 × 10−10 2.063 × 10−10 −1.964 0.065163

H2O AutoML is used to predict safety stops during collaborative tasks. Our dataset is
trained in an H2O cluster using R, version 3.6.3. The AutoML function in H2O automates
the process of building a large number of models and finds the most suitable model for a
given dataset. AutoML includes a “leaderboard” of models that are trained in the process.
It includes a 5-fold validated model performance, and no hyperparameters were used
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for our dataset. Figure 14 shows the performance of AutoML and the importance of the
ten models.

Figure 14. Performance of the AutoML algorithms.

Users can receive scores of the dataset using the leaderboard frame. Our dataset
was trained in a binary classification model, and AUC metrics was used as the main
model parameter.

The predictive model results of AutoML are shown in Table 6.

Table 6. Results of different models used to predict safety stops using the automatic machine learning.

Model_id AUC logloss aucpr rmse mse

GBM_1_AutoML_20201030_160448 0.982 0.052 0.921 0.109 0.012
GBM_grid__1_AutoML_20201030_160448_model_3 0.979 0.055 0.913 0.112 0.012

XRT_1_AutoML_20201030_160448 0.979 0.055 0.927 0.106 0.011
DRF_1_AutoML_20201030_160448 0.979 0.059 0.927 0.105 0.011

DeepLearning_grid__2_AutoML_20201030_160448_model_1 0.913 0.107 0.766 0.150 0.022
DeepLearning_grid__1_AutoML_20201030_160448_model_1 0.907 0.141 0.749 0.152 0.023
DeepLearning_grid__3_AutoML_20201030_160448_model_1 0.904 0.120 0.754 0.151 0.023

DeepLearning_1_AutoML_20201030_160448 0.883 0.116 0.744 0.153 0.023
GLM_1_AutoML_20201030_160448 0.835 0.114 0.687 0.153 0.023

According to the table, the best performing algorithm is Gradient Boosting Machine
(GBM). The importance of the variables for the GBM model is shown in Figure 15.
According to the plot, the variables with the most influence on the GBM model are the
SPEED of the robot, and CURRENT.
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Figure 15. Importance of the variables on the different models.

5. Conclusions

A platform used to monitor the health status of collaborative robots during collab-
orative tasks is presented in this paper. The case study was performed on benchmark
tasks for collaborative assembly processes. An automatic machine learning(ML) tool was
used to perform on-line monitoring and predict outages of the industrial cobots during
a human-robot collaboration process. Such an on-line monitoring system allows more
reliable human robot collaboration applications to be created, unplanned downtime dur-
ing task execution to be eliminated, and the trust of humans during interaction with a
robot and the lifetime of the robot to be maximised. The proposed framework demon-
strates data management techniques on an industrial robot that is considered as a physical
cyber-system. Using an assembly case study, the parameters of a robot were collected
and fed to an automatic ML model in order to identify the most significant reliability
factors and to predict the necessity of safety stops of the robot. According to the results, a
linear regression model was selected for certain quantitative variables such as temperature.
The classification model was used to predict the qualitative variables. The linear regression
model was found to be sufficiently good to be integrated in the monitoring system to
predict temperature. H2O, with the AutoML function, was used to predict safety stops
during collaborative tasks and the results show that GBM appears to be the best model for
the considered dataset. Further improvement will involve the integration of other relevant
sensors in the monitoring platform to further increase the usability of the system under
variable working conditions.
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Abstract: Currently, the bike frame quality check (QC) mostly relies on human operation in industry.
However, some drawbacks such as it being time-consuming, having low accuracy and involving
non-computerized processes are still unavoidable. Apart from these problems, measured data are
difficult to systematically analyze for tracking sources of product defects in the production process.
For this reason, this paper aims to develop a 3D geometry mathematical model suitable for bicycle
frames QC using robotic arm-based measurement. Unlike the traditional way to find coefficients
of a space sphere, the proposed model requires only three check point coordinates to achieve the
sphere axis coordinate and its radius. In the practical work, the contact sensor combined with the
robotic arm is used to realize the compliance items measurement in shaft length, internal diameter,
verticality, parallelism, etc. The proposed model is validated based on both mathematic verification
and actual bike frame check.

Keywords: quality check; bike frame; mathematical model; graphical user interface

1. Introduction

In recent years, bike riding has become a popular leisure sport around the world. For this reason,
analysts forecast that the global high-end bicycle market will grow with a compound annual growth
rate (CAGR) of 4.82% during the period 2017–2021 according to the report from Research and Markets
Ltd. It is known that high-end bikes demand a high quality of bike frame [1–7]. Unfortunately, frame
QC still relies on the Vernier caliper, the plug gauge, the cylindrical gauge, and the thread gauge, etc.
It normally takes a long time to complete the process. Consequently, the automation measurement
process for the QC of the bike frame is essential in industry [8–12].

The coordinate-measuring-machine (CMM) is now being widely applied as part of workpiece
inspection in the production line [13–17]. It can be used to measure the geometry of physical objects
by sensing the discrete points on the object surface with a probe, including mechanical, optical, laser,
and white light. Basically, it has two major advantages: (1) high precision up to 0.001 mm and
(2) high reliability in both hardware and software. However, the CMM inspection planning session has
been a challenging issue because of its time-consuming nature using traditional methods, e.g., expert
experiences and technical documents data mining. Additionally, it may suffer from some following
disadvantages: (1) Its operation speed is limited. (2) It is sensitive to the environment temperature
and humidity. (3) It is not applicable to irregular shape object measurements. (4) It has a high cost.
Obviously, CMM is not suitable for the bike frame measurement due to the restriction of the operation
range. Alternatively, robotic arms are typically used for multiple industrial applications such as
material handling, welding, thermal spraying, assembly, palletizing, drilling, and painting, etc. [18–21].

Appl. Sci. 2019, 9, 5355; doi:10.3390/app9245355 www.mdpi.com/journal/applsci

237



Appl. Sci. 2019, 9, 5355

For instance, a platform based on a robotic arm using three degrees of freedom (DoF) principle was
proposed to estimate the calibration parameters of microelectromechanical systems (MEMS) [22]. It can
be placed indifferent positions for collecting a dataset of points evenly distributed. This case implies
that the measurement technique using robotic arms may provide a good solution for the bike frame
QC process.

2. System Description

2.1. System Structure

The proposed system structure of bike frame quality check is shown in Figure 1a, consisting of
subsystems such as robotic arm, graphical user interface (GUI), programmable logic controller (PLC),
contact sensor, mathematical model, database, and workbench. Each subsystem is responsible to carry
out a specific task, described as follows. (1) Robotic arm can carry the contact sensor and move it to
the check points. Therefore, the coordinates of check points can be found based on the robotic arm
coordinate system. (2) The contact sensor can feedback a digital signal to the robotic arm immediately
once it touches the surface of the check points. (3) PLC is to control the rotating disk to rotate the
bike frame 90◦ for the robotic arm to reach every check point. (4) Graphical user interface (GUI)
provides a friendly user interface for users to input data and display a real-time measurement outcome.
(5) Mathematical model presents a geometry algorithm that can effectively integrate the sphere formula
with the inner product of normal vector to find four parameters in the sphere formula using only three
measured points. Accordingly, the center coordinate of check point and its diameter can be calculated
accurately and simply. (6) A database using MySQL is used to store the measured data and export
measurement data report. (7) The workbench shown in Figure 1b is designed to sustain all hardware
devices. It contains: (1) a fixing frame, (2) A rotating disk, (3) a work platform, and (4) a sensor pedestal.
Moreover, the XAML and C# package are used to build up the system software such as the robotic arm
simulation object, the window object, the control object, and the 3D-geometry mathematical model.
Through Transmission Control Protocol (TCP) and Internet Protocol (IP) (TCP/IP), the contact sensor
and robotic arm can communicate with each other between different objects.

 
(a) 

Figure 1. Cont.
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(b) 

Figure 1. System structure: (a) system block; (b) profile of workbench.

In this study, we mainly focused on the development of mathematical model required for the
bike frame quality check using a robotic arm. Based on the proposed mathematical model, the robotic
arm is combined with the contact sensor to implement the bike frame quality check in shaft length,
internal diameter, verticality, and parallelism, etc. The major devices used in the proposed system are
listed as follows:

(1) Robotic arm: YASKAWA-GP7
(2) Contact sensor: Compact module changing touch-trigger probe (Renishaw TP20)
(3) PLC: DELTA DVP –PM1000M
(4) Database: MySQL

2.2. Introduction of Bike Frame

Generally, the bike frame consists of: (1) a B.B rotating shaft, (2) a S/T rotating shaft, (3) a S/T
groove, (4) a T/T rotating shaft, (5) a shock absorber, (6) and H/T, where they are required for quality
check, as shown in Figure 2.

Figure 2. Profile of a bike frame.
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3. Mathematical Model

The check items of bike frame for quality evaluation mainly include the shaft length, internal
diameter, verticality, and parallelism located in different shafts. The proposed mathematical model
provides the solutions for checked point coordinate calculation. It is described as follows.

3.1. Generation of Bike Frame Center Plane

Initially, the center plane of a bike frame should be generated from the B.B rotating shaft, as
shown in Figure 3, which is used as the base of the coordinate system. The coordinate of the
center point aa3(aa3x, aa3y, aa3z), as shown in Figure 3, can be determined from aa1(aa1x, aa1y, aa1z)

and aa2(aa2x, aa2y, aa2z) as:

aa3x =
aa1x + aa2x

2 aa3y =
aa1y + aa2y

2
aa3z =

aa1z + aa2z

2

 
Figure 3. The center plane (left) and point (right) of bike frame.

3.2. Center Plane Offset

The center plane offset is used to check if there is a shift at the center plane. For this purpose,
the y-axis aa3y taken from the center point aa3(aa3x, aa3y, aa3z) is regarded as the center standard plane.

In Figure 4, two check points, i.e., cc1 and cc22, coordinates at the S/T rotating shaft are expressed as:

cc1(cc1x, cc1y, cc1z) cc22(cc22x, cc22y, cc22z)

cc is defined as the center point between cc1 and cc22 as:

cc
(

cc1x + cc22x

2
,

cc1y + cc22y

2
,

cc1z + cc22z

2

)

w1 shown in Equation (1) is defined as the center plane offset at the S/T rotating shaft, and it is the
distance between the y axis coordinate of the cc point and the center plane.

w1 =

∣∣∣∣∣∣cc1y + cc22y

2
− aa3y

∣∣∣∣∣∣ (1)
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Figure 4. Center plane offset.

3.2.1. H/T Rotating Shaft Length

The H/T rotating shaft length can be determined by taking eight check points, as shown in Figure 5.

 
Figure 5. Check points of H/T rotating shaft length.

The coordinates of the eight check points are shown as follows:

f f 1( f f 1x, f f 1y, f f 1z) f f 2( f f 2x, f f 2y, f f 2z) f f 3( f f 3x, f f 3y, f f 3z) f f 4( f f 4x, f f 4y, f f 4z)

gg1(gg1x, gg1y, gg1z) gg2(gg2x, gg2y, gg2z) gg3(gg3x, gg3y, gg3z) gg4(gg4x, gg4y, gg4z)

The length f f 1gg1 between two check points ( f f 1 and gg1) is:

f f 1gg1 =

√
(gg1x − f f 1x)

2 +
(
gg1y − f f 1y

)2
+ (gg1z − f f 1z)

2 (2)

Similarly, the lengths f f 2gg2, f f 3gg3, and f f 4gg4 can be formulated according to Equation (2),
where the number one changes to numbers two to four, respectively.

Average length (L) between two check points ( f f 2 and gg2) is:

L =
f f 1gg1 + f f 2gg2 + f f 3gg3 + f f 4gg4

4
(3)

3.2.2. T/T Rotating Shaft Internal Diameter

The three check points at the T/T rotating shaft can be used to calculate the internal diameter, as
shown in Figure 6.
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Figure 6. The three check points at the T/T rotating shaft.

The coordinates of the three check points are expressed as:

d1(d1x, d1y, d1z) d2(d2x, d2y, d2z) d3(d3x, d3y, d3z)

The vectors
−−−−→
d3d1 and

−−−−→
d3d2 are:

−−−−→
d3d1 =

(
(d1x − d3x),

(
d1y − d3y

)
, (d1z − d3z)

)
(4)

−−−−→
d3d2 =

(
(d2x − d3x),

(
d2y − d3y

)
, (d2z − d3z)

)
(5)

The use cross product for the vectors
−−−−→
d3d1 and

−−−−→
d3d2 , and their normal vector

→
n can be obtained

as:
→
n =

−−−−→
d3d2 ×

−−−−→
d3d1 =

(
nx, ny, nz

)
(6)

where

nx =

∣∣∣∣∣∣∣
(
d2y − d3y

)
(d2z − d3z)

(d1z − d3z)
(
d1y − d3y

)
∣∣∣∣∣∣∣

ny = −
∣∣∣∣∣∣ (d2x − d3x) (d2z − d3z)

(d1x − d3x) (d1z − d3z)

∣∣∣∣∣∣
nz =

∣∣∣∣∣∣∣
(d2x − d3x)

(
d2y − d3y

)
(d1x − d3x)

(
d1y − d3y

)
∣∣∣∣∣∣∣

The spherical general shown in Equation (7) is used to find the axis point coordinate and axial
bore radius in Figure 6:

x2 + y2 + z2 + dx + ey + f z + g = 0 (7)

where the spherical axis point coordinate (d4) in Figure 6 is
(−d

2
,
−e
2

,
− f
2

)
, and d, e, f, and g are

real numbers.

The vector
−−−−→
d4d3 can be obtained as:

−−−−→
d4d3 =

(
(d3x) −

(−d
2

)
,
(
d3y

)
−

(−e
2

)
, (d3z) −

(− f
2

))
(8)

The vectors
−−−−→
d4d3 and

→
n are perpendicular to each other so that their inner product is zero.

−−−−→
d4d3 · →n = 0 (9)
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Following this, we substitute the coordinates of three check points d1(d1x, d1y, d1z),
d2(d2x, d2y, d2z), d3(d3x, d3y, d3z) into Equation (7) to form Equations (10)–(12). Additionally, Equation
(13) is obtained based on Equation (9).

(d1x)
2 +

(
d1y

)2
+ (d1z)

2 + d(d1x) + e
(
d1y

)
+ f (d1z) + g = 0 (10)

(d2x)
2 +

(
d2y

)2
+ (d2z)

2 + d(d2x) + e
(
d2y

)
+ f (d2z) + g = 0 (11)

(d3x)
2 +

(
d3y

)2
+ (d3z)

2 + d(d3x) + e
(
d3y

)
+ f (d3z) + g = 0 (12)∣∣∣∣∣∣∣

(
d2y − d3y

)
(d2z − d3z)

(d1z − d3z)
(
d1y − d3y

)
∣∣∣∣∣∣∣
(
(d3x) −

(−d
2

))
−

∣∣∣∣∣∣ (d2x − d3x) (d2z − d3z)

(d1x − d3x) (d1z − d3z)

∣∣∣∣∣∣((d3y
)
−

(−e
2

))

+

∣∣∣∣∣∣∣
(d2x − d3x)

(
d2y − d3y

)
(d1x − d3x)

(
d1y − d3y

)
∣∣∣∣∣∣∣
(
(d3z) −

(− f
2

))
= 0

(13)

The parameters values (d, e, f, g) can be thus be found by solving the simultaneous equations from
Equations (10)–(13).

Consequently, d4

(−d
2

,
−e
2

,
− f
2

)
can be obtained, and the axial bore radius of T/T rotating shaft can

be calculated as:
d4d1 = d4d2 = d4d3 =

1
2

√
d2 + e2 + f 2 − 4g (14)

3.2.3. Parallelism

In Figure 7, the parallelism angle between B.B. and T/T rotating shafts can be calculated as follows:

 
Figure 7. The parallelism between B.B. and T/T rotating shafts.

−−−−→
a2a1 =

(
(a1x − a2x),

(
a1y − (−333.5)

)
, (a1z − a2z)

)
(15)

−−−−→
d5′d4 =

⎛⎜⎜⎜⎜⎜⎜⎝0,

⎛⎜⎜⎜⎜⎜⎜⎝d4y −
(
d1y + d11y

)
2

⎞⎟⎟⎟⎟⎟⎟⎠, 0

⎞⎟⎟⎟⎟⎟⎟⎠ (16)

Using the inner product formula, the parallelism angel θ between
−−−−→
a2a1 and

−−−−→
d5′d4 can be

calculated as:

cosθ =

−−−−→
d5′d4 · −−−−→a2a1∣∣∣∣∣∣−−−−→d5′d4

∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2a1

∣∣∣∣∣∣
(17)
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3.2.4. Verticality

In Figure 8, the verticality angel between B.B. and H/T rotating shafts can be calculated as follows.

−−−−→
a2g4 =

(
(g4x − a2x),

(
g4y − (−333.5)

)
, (g4z − a2z)

)
(18)

Figure 8. The verticality angel between the B.B. rotating shaft and the H/T rotating shaft.

Use the inner product formula, the verticality angel θ between
−−−−→
a2a1 and

−−−−→
a2g4 can be calculated as:

cosθ =

−−−−→
a2a1 · −−−−→a2g4∣∣∣∣∣∣∣∣∣
−−−−→−−−−→
a2a1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2g4

∣∣∣∣∣∣
(19)

4. Model Verification Using the Real Data

The proposed mathematical model is verified using the real data taken from the SOLIDWORKS
drawing of the bike frame.

4.1. The Center Plane

From Figure 3, the two check points are:

aa1(139.59,−297, 109.14) aa2(139.59,−370, 108.85)

The center point of B.B rotating shaft is aa3(aa3x, aa3y, aa3z), where:

aa3x =
139.59 + 139.59

2
= 139.59

aa3y =
−297 + (−370)

2
= −333.5

aa3z =
109.14 + 108.85

2
= 108.995

∴ aa3(139.59,−333.5, 108.995)

Accordingly, the center plane is located at aa3y = −333.5mm.

4.2. Bike Center Plane Offset

From Figure 4, it is known that:

cc1(107.23,−373.75, 138.38) cc2(107.23,−327.25, 138.38)

The cc is located at the center point between cc1 and cc2.
Therefore,

cc(107.23,−350.5, 138.38)
w1 =

∣∣∣−350.5− (−333.5)
∣∣∣ = 17mm

As above, it is confirmed that the theoretical value matches the computational result.
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4.3. The H/T Rotating ShaftLength

In Figure 5, the coordinates of eight check points are shown as follows.

f f 1(625.05, 123.58, 600.41) f f 2(598.67, 150.63, 594.12) f f 3(650.93, 151.37, 606.57)
f f 4(624.70, 177.33, 600.32) gg1(651.01, 123.77, 493.51) gg2(623.60, 150.68, 486.98)
gg3(676.13, 149.86, 499.50) gg4(649.70, 177.24, 493.20)

Accordingly,

f f 1gg1 =

√
(651.01− 625.05)2 + (123.77− 123.58)2 + (493.51− 600.41)2 � 110mm

f f 2gg2 =

√
(623.60− 598.67)2 + (150.68− 150.63)2 + (486.98− 594.12)2 � 110mm

f f 3gg3 =

√
(676.13− 650.93)2 + (149.86− 151.37)2 + (499.50− 606.57)2 � 110mm

f f 4gg4 =

√
(649.70− 624.70)2 + (177.24− 177.33)2 + (493.20− 600.32)2 � 110mm

The average length (L) is obtained as:

L =
f f 1gg1 + f f 2gg2 + f f 3gg3 + f f 4gg4

4
� 110mm

As above, the calculated value is confirmed equal to the theoretical value.

4.4. T/T Rotating Shaft Internal Diameter

In Figure 6, the coordinates of three check points (d1, d2, d3) are shown as follows:

d1 = (55.39, 24, 353.63) d2 = (55.85, 24, 366.87) d3 = (66.64, 24, 359.98)
Therefore,

−−−−→
d3d1 = (−11.25, 0,−6.35)
−−−−→
d3d2 = (−10.79, 0, 6.89)

→
n =

−−−−→
d3d2 ×−−−−→d3d1 =

(
nx, ny, nz

) (20)

where;

nx =

∣∣∣∣∣∣ 0 6.89
0 −6.35

∣∣∣∣∣∣ = 0

ny =

∣∣∣∣∣∣ −10.79 6.89
−11.25 −6.35

∣∣∣∣∣∣ = −146.029

nz =

∣∣∣∣∣∣ −10.79 0
−11.25 0

∣∣∣∣∣∣ = 0
→
n = (0,−146.029, 0)

According to Equation (7), the axis point coordinate is d4
(−d

2
,
−e
2

,
− f
2

)
.

Therefore,
−−−−→
d4d3 =

(
66.64−

(−d
2

)
, 24−

(−e
2

)
, 359.98−

(− f
2

))
(21)

−−−−→
d4d3 and

→
n are perpendicular to each other so that:

−−−−→
d4d3 · →n = 0

⇒
0 ·

(
66.64−

(−d
2

))
− 146.029 ·

(
24−

(−e
2

))
+ 0 ·

(
359.98−

(− f
2

))
= 0 (22)
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e = −48 (23)

Substitute the coordinates of d1, d2 and d3 into Equation (10), as follows.

(55.39)2 + (24)2 + (353.63)2 + d(55.39) + e(24) + f (353.63) + g = 0 (24)

(55.85)2 + (24)2 + (366.87)2 + d(55.85) + e(24) + f (366.87) + g = 0 (25)

(66.64)2 + (24)2 + (359.98)2 + d(66.64) + e(24) + f (359.98) + g = 0 (26)

⇒
d = −118.27901 f = −720.25544 g = 133709.17771

As above, it can be obtained:

d4
(−d

2
,
−e
2

,
− f
2

)
= d4(59.1395, 24, 360.12772)

The radius between the axis and check point is:

d4d1 = d4d2 = d4d3 =
1
2

√
d2 + e2 + f 2 − 4g �

15
2
(mm) (27)

Accordingly, the internal diameter of T/T rotating shaft is:

=
√

d2 + e2 + f 2 − 4g � 15mm

As above, the calculated value is confirmed equal to the theoretical value.

4.5. Parallelism Between T/T and B.B Rotating Shafts Axes

In Figure 8, the coordinates of two check points (d1, d11) are:

d1(55.39, 24, 353.63) d11(55.39,−24, 353.63)

The coordinate of middle point d5 located between d1 and d2 is:

d5(55.39, 0, 353.63)

The X-axis and Y-axis coordinates of axis point d4 at the T/T rotating shaft are transferred to d5 to

form d5′. Therefore, the vector formed by d4 and d5′ is
−−−−→
d5′d4.

d5′ = (59.1395, 0, 360.12772)
−−−−→
d5′d4 = (0, 24, 0)

(28)

In Figure 7,
a1(94.98, 48, 723.32) a2(94.98,−333.5, 723.32)

−−−−→
a2a1 at the B.B rotating shaft is:

−−−−→
a2a1 = (0, 48− (−333.5), 0) = (0, 381.5, 0) (29)

The parallelism angel (θ) between
−−−−→
a2a1 and

−−−−→
d5′d4 can be calculated as:

cosθ =

−−−−→
d5′d4 · −−−−→a2a1∣∣∣∣∣∣−−−−→d5′d4

∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2a1

∣∣∣∣∣∣
=

(0, 24, 0) · (0, 381.5, 0)∣∣∣(0, 24, 0)
∣∣∣ · ∣∣∣(0, 381.5, 0)

∣∣∣ = 9156
9156

= 1 (30)
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∴ θ = 0
◦

As above, the T/T and B.B rotating shafts axes are confirmed parallel.

4.6. Verticality Between H/T and B.B Rotating Shafts Axes

The vector
−−−−→
a2g4 from the B.B rotating shaft to H/T axis point (g4) is:

−−−−→
a2g4 = (559.7486,−5,−154.8109)

where a2(94.98,−333.5, 723.32) and g4(654.7286,−338.5, 568.5091).

The verticality angel (θ) between
−−−−→
a2a1 and

−−−−→
a2g4 can be calculated as:

cosθ =
−−−−→

a2a1 ·−−−−→a2g4∣∣∣∣∣∣∣∣∣∣∣
−−−−→−−−−→

a2a1

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2g4

∣∣∣∣∣∣
=

(0, 381.5, 0) · (559.7486,−5,−154.8109)∣∣∣(0, 381.5, 0)
∣∣∣ · ∣∣∣(559.7486,−5,−154.8109)

∣∣∣

=
−1907.5

381.5× 580.7839
= −0.0086 � 0

(31)

∴ θ = 90
◦

As above, the H/T and B.B rotating shafts axes are confirmed vertical.

5. Practical Verification

The process of real bike frame quality check is carried out based on the proposed 3D geometry
mathematical model. The real system profile is shown in Figure 9.

 
Figure 9. Profile of real measurement system.

5.1. Results with GUI

The quality check results are displayed online using GUI, as shown from Figures 10–15.

5.1.1. Bike Frame Plane

The GUI of the bike frame plane is shown in Figure 10. The performance result is –333.5 mm and
that matches the theoretical value.
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(a) (b) 

Figure 10. Graphical user interface (GUI) of the bike frame plane: (a) synchronous action; (b) GUI.

5.1.2. Bike Center Plane Offset

The GUI of bike center plane offset is shown in Figure 11. The performance result is 17 mm and
that matches the theoretical value.

 
 

(a) (b) 

Figure 11. GUI of the bike center plane offset: (a) synchronous action; (b) GUI result.

5.1.3. H/T Rotating Shaft Length

The GUI of H/T rotating shaft length is shown in Figure 12. The performance result is 110 mm
and that matches the theoretical value.

 

 
 

(a) (b) 

Figure 12. GUI of the H/T rotating shaft length: (a) synchronous action; (b) GUI result.
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5.1.4. T/T Rotating Shaft Internal Diameter

The GUI of T/T rotating shaft internal diameter is shown in Figure 13. The performance result is
15 mm and that matches the theoretical value.

 

 
 

(a) (b) 

Figure 13. GUI of the T/T rotating shaft internal diameter: (a) synchronous action; (b) GUI result.

5.1.5. Parallelism

The parallelism between T/T and B.B rotating shafts axes using GUI is shown in Figure 14. The
performance result is θ = 0

◦
that matches the theoretical value.

p

 
 

(a) (b) 

Figure 14. GUI of parallelism: (a) synchronous action; (b) GUI result.

5.1.6. Verticality

The verticality between H/T and B.B rotating shafts axes using GUI is shown in Figure 15. The
performance result is θ = 90

◦
that matches the theoretical value.
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(a) (b) 

Figure 15. GUI of verticality: (a) synchronous action; (b) GUI result.

5.2. Practical Results

The measurement results from 10-times average values using the real bike frame are concluded in
Table 1. Based on the same bike frame, the error between the proposed model and the Vernier caliper is
below 0.05 mm, and the repeatability is at the range of 0.1 mm. This verifies that the proposed model
presents both robust and stable performance. Nevertheless, the measured data reveals that the tested
frame has some defects occurred in the center plane offset, parallelism and verticality.

Table 1. Measured values using the proposed model.

Check Item
Check Point T/T Rotating Shaft H/T Rotating Shaft

Center plane offset −2.71 mm Not applicable

Parallelism 8.2◦ Not applicable

Verticality Not applicable 114.65◦

Internal diameter 14.86 mm Not applicable

Length Not applicable 109.89 mm

To clarify the uncertainty of the measurement, the estimated standard deviation for a series of n
measurements is expressed mathematically as:

s =

√√√√ n∑
i=1

(xi − x)2

n− 1
(32)

where xi is the result of the ith measurement and x is the arithmetic mean of the n measurement results.
When a set of several repeated readings has been taken, the mean, x, and estimated standard

deviation, s, can be calculated. The measurement uncertainty, u, of the mean is therefore defined as:

u =
s√
n

(33)

where n is the number of measurements in the set.
The estimated standard deviation and measurement uncertainty based on 10 measurements

for S/T rotating shaft, T/T rotating shaft, and H/T rotating shaft is shown in Tables 2–4, respectively.
From the statistics, it is obvious that both standard deviation (s) and measurement uncertainty (u) for
all shaft measurements present a very low value no more than 0.018. Thus, accuracy and robustness of
the proposed model is thus confirmed.

250



Appl. Sci. 2019, 9, 5355

Table 2. Standard deviation (s) and measurement uncertainty (u) at S/T rotating shaft.

Check Item

Estimated Topic
Standard Deviation (s) Measurement Uncertainty (u)

Center Plane Offset 0.007 0.002

Internal Diameter 0.009 0.003

Length 0.006 0.002

Parallelism 0.010 0.003

Table 3. Standard deviation (s) and measurement uncertainty (u) at T/T rotating shaft.

Check Item

Estimated Topic
Standard Deviation (s) Measurement Uncertainty (u)

Center Plane Offset 0.005 0.002

Internal Diameter 0.018 0.006

Length 0.007 0.002

Parallelism 0.011 0.003

Table 4. Standard deviation (s) and measurement uncertainty (u) at H/T rotating shaft.

Check Item

Estimated Topic
Standard Deviation (s) Measurement Uncertainty (u)

Internal Diameter 0.007 0.002

Length 0.005 0.002

Verticality 0 0

6. Conclusions

Traditional methods for the QC of bike frame products usually use general jigs or Vernier
calipers. However, this kind of measurement process may take tens of minutes to complete. Another
disadvantage is that it is difficult to analyze the measured data due to lack of computerization. For these
reasons, the proposed 3D geometry mathematical model has successfully developed an accurate bike
frame measurement based on a robotic arm with a contact sensor. In this study, the proposed model
requires only three simultaneous equations to find the axis coordinate and its radius instead of four
equations in a space sphere. It verifies that the measured data obtained from the model performance is
consistent with the SOLIDWORKS drawing, including H/T rotating shaft length, T/T rotating shaft
internal diameter, parallelism, and verticality, etc. Accordingly, it is applicable for industrial QC
applications in a variety of bike frames. Other than these advantages, the stylus probe used in this
proposed model presents both simple and accurate performance. However, successful measurement
depends on the activity range of robotic arm that the certain features of bike frames should be reached
by the stylus probe. In the future work, the optical sensors used in CMM may provide an alternative
solution, although more complex signal processing algorithm should be addressed.
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Aleja Powstańców Warszawy 8, 35-959 Rzeszow, Poland

* Correspondence: katarzyna.antosz@prz.edu.pl

Abstract: The quality and reliability of consumables, including gear oils, results in the failure-free
operation of the transmission components in heavy trucks. It is known that oil viscosity is essential
for all lubricated tribopairs for wear and friction reduction in all vehicles with a gearbox. Viscosity
may be influenced by the contamination that wear products can impart on the oil. Oil contamination
can also affect lubrication efficiency in the boundary friction conditions in gearboxes where slips
occur (including bevel and hypoid gearboxes). The present research focused on this issue. An
obvious hypothesis was adopted, where it was theorized that exploiting the contaminants that are
present in gear oil may affect how the lubricating properties of gear oils deteriorate. Laboratory tests
were performed on contaminants that are commonly found in gear oil using the Parker Laser CM20.
The study was designed to identify a number of different solid particles that are present in oil. At
the second stage, friction tests were conducted for a friction couple “ball-on-disc” in an oil bath at
90 ◦C on a CSM microtribometer. The quantitative contamination of the gear oils that contained
solid particles and the curves representing the friction coefficients of fresh oils with a history of
exploitation were compared. The test results were statistically analysed. Exploitation was shown to
have a significant impact on the contamination of gear oils. It was revealed that the contamination
and the mileage had no effect on the tested oils.

Keywords: lubricity; gear oil; wear; operational reliability

1. Introduction

Ensuring that machines and devices are able to conduct high-quality work and main-
tain operational reliability is not only a very important issue in chemical applications [1–3],
e.g., transport [4,5], electronic systems [6], or scientific works, e.g., for chemical pur-
poses [7], it is also of great importance for applications that are related to the production of
high-quality food products [8]. Lubrication is essential for all sliding pairs in all tribosys-
tems [9–11].

The physical essence of lubrication processes is the conversion of adverse external
friction to friction that takes place inside of the tribofilm [12–14]. In order for good lubri-
cation to be maintained, the grease must have high adhesion to the frictional surfaces in
question, and the grease layer that is between these components must be maintained at a
certain thickness. This should be maintained regardless of friction speed, pressure, and
temperature [15], and this is usually difficult to achieve. The formation of a layer of grease
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on the friction surface is associated with the phenomena of the physical absorption of
polar particles and the chemical absorption of boundary films as well as a hydrodynamic
effect [16]. However, load transfer occurs through a layer of grease that is generated by
the hydrodynamic effect in the machine kinematic nodes that are under increasing mo-
tion [12]. High-pressure lubrication takes place in concentrated contacts, including in gear
contacts [17]. High pressure in the contact area increases the viscosity of the lubricant as
well as the elastic deformation of the surfaces that are in contact with each other indirectly
through the lubricant film. This is the case for elastohydrodynamic lubrication. The term
elasthydrodynamic film is used to refer to the intermediate lubricant film [15]. In gear
transmissions, lubrication conditions are not favorable for the formation of a lubricating
film. It seems that gullet pressure is one of the determinants. However, as stated in [18],
high pressure in the contact area increases the viscosity of the lubricant and the elastic
deformation of the contact surfaces in an indirect way through the lubricant film. Moreover,
pressure leads to teeth bending, and when teeth pairing occurs, the tips of the teeth belong
to the powered wheel rub the grease from the surface of the powering wheel. Modifying
the teeth only partially eliminates this phenomenon [15]. Moreover, high circumferential
speeds result in oil being removed from the contact area. It is known that the formation
of a lubricating film in oil is intended to prevent metal surfaces from coming into direct
contact with each other, but it also refers to a situation in which wear and high friction
occur between sliding surfaces. In light of the above situation, this becomes difficult in
the context of gear boxes. In addition, oil properties change during exploitation, and this
represents another disadvantage. It can be assumed that the contamination of the used oil
may impair the ability to form a permanent tribofilm that reduces the friction and wear of
sliding pairs [19]. The lubricant that is used in closed-circuit mechanical systems is subject
to aging [18]. It undergoes oxidation because it comes into contact with air. The particles,
which are a product of tribological wear, also get into the oil. The contamination of gear
oils with wear products may result in power losses, among other consequences, as well as
decreases in the flow resistance of the lubricant [19]. Therefore, the quality and condition
of the lubricant affects the friction resistance in gear boxes and may affect the efficiency of
tribomechanical systems [20,21]. The applications that oil is used for may lead to changes
in its viscosity [19]. On the other hand, as shown in paper [21], oil viscosity results in the
power losses in meshing when operating under a working load. It is for this reason that
periodic oil changes are performed [15].

Synthetic oils are usually used in the gear boxes of modern vehicles. This is because
of the many advantages of these oils. One of them is the reduction of the friction coefficient
during meshing by up to 25% compared to when mineral oils are used as a lubricant [21].
The use of such oils is beneficial, although the problem of the operational quality of these
oils is also important, with the preservation of their lubricating properties being one of
the main issues, especially since these properties can be affected by the operating time
as well as by the level of contamination resulting from exploitation. On the basis of the
above, it can be concluded that the overworking and contamination of gear oil may affect
its lubrication efficiency. This observation is especially important when considering that
the gear box elements need to be protected against excessive wear and the boundary
lubrication condition, which can be seen in gears where slips occur (including in bevel
and hypoid gear boxes). The present research focused on this issue. The hypothesis that
operational contaminants may affect the deterioration of the lubricating properties of
the synthetic gear oils was adopted. The main goal of this paper was to anlayze how
operational contaminants affect the deterioration of the lubricating properties of synthetic
gear oils. The article consists of the introduction followed by a chapter describing the
experiment—the Materials and Methods section. Finally, the results that were achieved
through the experiment are presented and compared.
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2. Materials and Methods

The following gear oils were used for the laboratory tests: class SAE 75W-140 Scania
Oil STO 2:0 A (oil from the axle of a truck), class 80W-14 Scania Oil AXLE STO 1:0 (oil from
the axle of a truck), class 75W-90 and Scania Oil 2:0 G of (oil from the gearbox of a truck).

Lubrication tests were conducted on the CSM microtribometer (CSM Switzerland).
The tests were performed using a ball-on-disk module, such as the one shown in Figure 1.
A steel friction node was installed. Both elements of the friction pair were made of 100Cr6
steel. Friction tests were conducted in an oil bath at 90 ◦C, which supposedly corresponded
to the operating temperature of the oil in real working conditions. The load in the friction
test was constant and equaled 5 N. The sliding distance was 630 m, and the linear speed was
60 mm/s. During the friction tests, the friction coefficient was recorded at the frequency of
10 Hz as a function of the friction path.

Figure 1. Picture of the tribometer test set up for the lubricating oil tests.

The laboratory tests determining the oil contaminants were performed using the
Parker Laser CM20 device, which is designed to identify the number of solid particles in
oil and to classify them with the use of the optical scanning method. The measurement
procedure was in accordance with PN-ISO 4406: March 2005 [22].

The methods that were used to observe and count the number of contaminants are
shown in Figure 2.

The measurement accuracy of this type of transmitter is an important issue. It should
be noted that a quality of measurements better than 5% was obtained when the ISO MTD
(ISO Medium Test Dust) and ISO ACFTD (ISO Air Cleaner Fine Test Dust) procedures
were used. As a result, it is possible to obtain results that are in accordance with the ISO
standard and that are in the range of 7–22 μm; NAS and SAE measurements were also
obtained in the ranges of 0–12 μm and 0–12 μm, respectively. In the conducted research,
it was assumed that the contaminants would be classified into six sections: 4; 6; 14; 21;
38; and 70 μm. Figure 3 shows the measuring device and an exemplary printout of the
measurement results.
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Figure 2. Diagram of the measuring system, 1—measuring chamber, 2—laser light source, 3—optical
scanner, 4—switching valve (hydraulic), 5—dosing pump, 6—flow sensor.

 

 
(a) (b) 

Figure 3. Parker Laser CM20 automatic particle number meter (a) device and (b) sample printout of measurements.

3. Results and Discussion

The test results were statistically processed. Table 1 presents descriptive statistics
of the test results for the friction coefficient and contains the minimum (min), maximum
(max), and average (mean) values and the standard deviation (std. dev.).
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Table 1. Descriptive statistics of the friction coefficient obtained in the tests determining the lubricity
of gear oils.

Oil Mileage (km) Gearbox Min Max Mean Std. Dev.

75W-140 fresh oil axle 0.0600 0.1374 0.0979 0.0142
75W-140 350,000 axle 0.0298 0.1193 0.1020 0.0086
80W-140 fresh oil axle 0.0177 0.0984 0.0671 0.0136
80W-140 220,000 axle 0.0032 0.0582 0.0523 0.0091
75W-90 fresh oil gearbox 0.0753 0.1566 0.1046 0.0075
75W-90 210,000 gearbox 0.0345 0.0908 0.0655 0.0102

The statistical values of the friction coefficient of the fresh oils and the oils with
a service history differ. In the case of the used oils, the work of which was expressed
as the mileage of a vehicle between 220,000 km and 210,000 km, the friction coefficient
demonstrated lower average values than the friction coefficient that was observed for the
fresh oils. Oil changes were planned for after these mileages were achieved. T Figures 4–6
present graphs of the friction coefficient based on different paths. The graph presenting
linear wear is shown in Figure 7. The graph shows the variability of linear wear depending
on the number of friction cycles. It should be noted that the presented curves depend on
the sliding wear of the friction pair, but this is not the only thing that should be taken into
account. The thermal expansion of the ball and disc that are heated by the conditioned
oil was also influenced. Both factors of the experiment have a synergistic influence on the
shape of the curves. The variability tests of the friction coefficient can function as a measure
for the lubricity of gear and diesel oils [23,24].

Figure 4. The curve of the friction coefficient depending on the friction path for oil SAE 75W-90 and fitting Function (1).
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Figure 5. The curve of the friction coefficient depending on the friction path for oil SAE 80W-140 and fitting Function (1).

Figure 6. The curve of the friction coefficient depending on the friction path for oil SAE 75W-90 and fitting Function (1).

The nonlinear dependence between the friction coefficient and distance (friction path)
is defined as follows:

y = α0 + α1xα2 e−α3x + ε, (1)

where y denotes the friction coefficient, x—distance, and ε—disturbances with a normal
distribution N(0, σ2) and is connected with measurement. The shapes of the curves
for the friction coefficients indicate a gradual friction process. All of the tested oils are
characterized by friction coefficient having an increasing curve when friction begins, and
then a slight decrease at the first stage of friction. At the next stage, a steady-state friction
regime with slight deviations was observed. However, for some oils, the course of the
friction coefficient decreased slightly—75W-90 (fresh oil), 75W-140 (after 210,000 km)—
at the second stage of friction. The most stable friction curve, which demonstrated the
smallest amount of fluctuation, was characterized by oil 80W-140 (after 220,000 km). In
this case, the variation seen in the friction function was similar than that of the theoretical
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model, which, as we will see later, was explained by the dependence between the number
of particles and the diameters of those particles.

Figure 7. Linear wear of friction pairs in oil bath.

For each oil, the parameters α0, . . . , α3 were estimated by applying the least squares
method. Parameter α2 corresponds to the shape of the curve, but value α3 corresponds to
the scale of descent. The values of these parameters are presented in Table 2. The fitting of
model (1) to the data is marked with a black curve in Figures 4–6. Additionally, the basic
indices of fitting function (1) were determined using the sum of squares (SSE)

SSE =
n

∑
i=1

(
yi − α̂0 − α̂1xα̂2

i e−α̂3xi
)2

,

where α̂0, . . . , α̂3 denote the estimator of unknown parameters, and the sum of squares total
(SST) is a sum of the squared differences between the observed dependent variable and its
mean

SST =
n

∑
i=1

(
yi − –

y
)2

.

Table 2. Parameter values of Function (1) for different types of oils and values for fitting this function
to real measures.

Type 75W90 75W90 80W140 80W140 75W140 75W140

Category Used oil Fresh oil Used oil Fresh oil Used oil Fresh oil
α0 0.04784 0.09997 0.00000 0.00025 0.01341 0.08129
α1 0.00276 0.02276 0.00798 0.05168 0.07399 0.03602
α2 0.76353 0.00000 0.42336 0.07891 0.05117 0.03766
α3 0.01342 0.00801 0.00141 0.00055 0.00034 0.00386

SSE 0.31497 0.32592 0.06434 0.13916 0.21841 0.33773
SST 2.07269 1.22027 1.38345 0.38203 0.35047 2.93344

R2
pseudo 0.84804 0.73291 0.95349 0.63573 0.37680 0.88487
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SST represents the deviance of the intercept-only model, but SSE represents the
deviance of the fitted nonlinear model. According to [25], we can calculate the pseudo R2,
which presents the goodness of fit model to the data as follows:

R2
pseudo = 1 − SSE

SST
.

The figures that are presented below present the fitting of Function (1) to the measured
data for the different oils.

In the literature, the stage at which the curve of the friction coefficient is constant is
called stationary or normal [26]. The stability of the friction process is important when
assessing oils. However, the lubricity of the oils that were tested is of practical significance.
The SAE (Society of Automotive Engineers) defines lubricity as a measure of the difference
in friction when comparing the properties of different oils with the same viscosities under
the same conditions [27]. In the results from the tests that were conducted in the current
research, the nominal viscosities of the fresh oil and used oils were the same, as the assumed
mileages (km) were not exceeded. Three different oils were tested in these tests. When
comparing the gear oils with different SAE viscosity classes, the following definition of
lubricity proposed in [28] may be relevant: lubricity is the liquid’s ability to cause low
static resistance when moving solid surfaces and high resistance when bringing them
together under a normal load. According to [29], lubricity is the ability of a substance to
provide better lubricating properties in conditions where the lubricant film is so thin that
its action is not only determined by viscosity. This is probably related to the occurrence
of mixed friction in many steel friction nodes. The approach presented in these works
is utilitarian, and the value of the friction coefficient is of practical importance when
assessing oils. According to the criterion for assessing the condition of oil, i.e., lubricity, the
condition of these oils can be considered suitable for use with high probability. A similar
relationship was demonstrated for engine oils composed of mineral oils that were used
in heavy trucks [30,31]. After 350,000 km, the used oil demonstrated a friction coefficient
that was slightly higher than that of the average value of the friction coefficient that was
obtained for fresh oil, and the standard deviation of the used oil’s friction coefficient was
clearly lower. The results indicate that the used oil 75W-140, which performed greater
operational work than oils 80W-140 and 75W-90, had worse lubrication properties and
was closer to reaching the limit state. It is worth adding that in [32], the limit state of the
object is defined as a technical condition in which further operation of the object is not
recommended. It should be kept in mind that the quality of a product is determined by its
degree of compliance with requirements [30], and the technically justified service life of oil
should ensure the maximum use of the potential of oil quality [33]; if this is true, then used
oil 75W-140 should not be considered to be suitable for use. Such a performance of this oil
is also confirmed by the linear wear results that are presented in Figure 7 (the curve marked
in blue). The highest difference in average values of the friction coefficient for the fresh and
used oil was found for the oil with the lowest nominal viscosity of 75W-90. The difference
was ~37%. The same relationship was also shown in the linear wear measurements. In
addition, the average friction coefficient for fresh oil 75W-90 was the highest among all
of the tested oils. The linear wear fresh oil 75W-90 was also the highest of all of the fresh
oils. It is possible that the condition of the used oil 75W-90 also depended on the type of a
gearbox that the oil was worked in. The two other oils worked in axles. Bevel gearboxes
are used in the rear axles, and this type of gearbox is characterized as having a much
greater degree of slipping compared to hypoid gear boxes, which means that the working
conditions of the oil in the axles are more demanding [19]. A different extortion spectrum
may be reflected in the dimension of the qualitative changes that were observed in the oils
used in axles.

The analysis also concerned the impact of the degree of contamination on lubricating
properties. An analysis of the relationship between the number of particles and the diameter
was conducted. The purpose of this analysis was to identify and compare the trends that
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were obtained for the fresh and used oils. For each of the oil states (clean and used),
the relationship between log10n (logarithm of the decimal number of particles depending
on the diameter of x) was identified. For this purpose, a linear model with a particular
transformation of the dependent variable was considered as follows:

(log10n)b = α0 + α1x + ε, (2)

where ε is a random variable with a normal distribution of N(0, σ2). In the paper, b = 0.2
was assumed (for this parameter, the highest determination indicators of R2 were obtained
for both the clean and used oils). From (2), we can see that the dependence between the
number of particles and the diameters of these particles is nonlinear.

Linear regression plots (2) are presented in Figures 8–10. The parameters of the linear
regression model are presented in Tables 3–5. The results of the particle content tests
indicated that the number of particles with the largest diameters is clearly higher in the
used oils. This means that these oils contain more contaminants. To estimate the unknown
parameters in model (2), the least squares method was applied. The linear models of the
dependences between the diameters of the particles in the oil samples and the number
of these particles are well matched to the empirical data. The values of the coefficients of
determination are close to or above 0.9. The best fit of the linear regression model was
demonstrated for fresh oil 75W-90. The same oil also had the highest average friction
coefficient in the lubricity tests.

Figure 8. Regression model of particle content as a function of particle diameter of fresh and used
(350,000 km) gear oil SAE 75W-140.
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Figure 9. Regression model of particle content as a function of particle diameter of fresh and used
(220,000 km) gear oil SAE 80W-140.

Figure 10. Regression model of particle content as a function of particle diameter of fresh and used
(210,000 km) gear oil SAE 75W-90.
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Table 3. Basic parameters of the linear regression model for oil 75W-140.

Fresh Oil Oil after 350,000 km

α1 –0.00674 *** –0.00227 ***
(Std. Error) (0.00024) (0.00011)

α0 1.40932 *** 1.40508 ***
(Std. Error) (0.00812) (0.0037)

Observations 89 90
R2 0.89971 0.83432

Adjusted R2 0.89856 0.83244
Residual Std. Error 0.05120 (df = 87) 0.02341(df = 88)

F Statistic 780.524 *** (df = 1; 87) 443.1412 *** (df = 1; 88)
Note: *** p < 0.01.

Table 4. Basic parameters of the linear regression model for oil SAE 80W-140.

Fresh Gear Oil Oil after 220,000 km

α1 –0.00578 *** –0.00181 ***
(Std. Error) (0.00017) (0.00007)

α0 1.43028 *** 1.40962 ***
(Std. Error) (0.00599) (0.00224)

Observations 90 90
R2 0.92529 0.89762

Adjusted R2 0.92444 0.89645
Residual Std. Error 0.03792 (df = 88) 0.01415 (df = 88)

F Statistic 1.089.854 *** (df = 1; 88) 771.511 *** (df = 1; 88)
Note: *** p < 0.01.

Table 5. Basic parameters of the linear regression model for oil 75W-90.

Fresh Gear Oil Oil after 210,000 km

α1 –0.00561 *** –0.00260 ***
(Std. Error) (0.00013) (0.00011)

α0 1.41607 *** 1.41604 ***
(Std. Error) (0.00449) (0.00369)

Observations 90 90
R2 0.95418 0.86863

Adjusted R2 0.95366 0.867174
Residual Std. Error 0.02843 (df = 88) 0.02339 (df = 88)

F Statistic 1.932.421 *** (df = 1; 88) 581.8797 *** (df = 1; 88)
Note: *** p < 0.01.

The comparison of the results of the lubricity tests and the amount of particles due
to the amount of contaminants does not indicate a correlation between the degree of oil
contamination and lubricity. A higher share of particles with the size of several dozen
micrometres was found in the used oils. It is possible that these large particles, that have
also been found in other wear products, are suspended in oil. This is also confirmed by
the information contained in PN-ISO 4406:2005 [22], where it is stated that particles that
are larger than 4 micrometres are treated as a reference value for suspended substances.
It is believed that in the case of suspensions, the presence of solid particles in a liquid
additionally gives the liquid a non-Newtonian liquid character, which is associated with
various types of viscosity anomalies [34]. However, the content of large particles, which
was much higher in the tested oils with a history of exploitation, did not adversely affect the
friction coefficient in the kinematic test pair. It is possible that the content of small particles
from fractional parts with diameters from 1 micrometre to 5μm in size is important. In
paper [35], it was stated that the share of oil contaminants with such dimensions can be as
high as 96%. The share of these particles was the highest in the volume of all of the tested
gear oils. A similar situation occurred in the fresh oils and in the oils with a history of
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exploitation. Additives are often used during the operation of oils; these can be microscopic
particles of soft metals ranging in size from 5 to 155 μm. In study [36], a beneficial effect of
such particle additives on the lubricating properties of gear oils is shown. It is possible that
this factor had a decisive impact on the lack of deterioration of the lubricating properties of
the tested oils. The fact emphasized in other papers, including [37,38], that large particles
with diameters ranging from a dozen to several dozen micrometres in size correspond to
the dynamic clearance, thus determining the thickness of a lubricating film should also
be noted. They are harmful because the dynamic clearance in gears that are in the contact
area of the meshing teeth should be from 0.1 to 1 micrometres [39]. Large dirt particles may
affect the continuity of a lubricating film.

4. Conclusions

The current paper presents an analysis of the operational contaminants that may affect
the deterioration of the lubricating properties of synthetic gear oils. The main objective
of the research was not only to compare the properties of oils, but to also determine the
relationship between the physical properties in order to determine the condition of the oil.
Two models were considered in the present work. One was the path friction coefficient.
The second was the relationship between the number of contaminants and the diameter of
the contaminants. For each oil, these models were fitted to the empirical data.

Based on the conducted research, the following conclusions were formulated:

1. The used oils can be characterized by a significant number of large contaminant
particles. According to normative requirements and operational experience, this
indicates their inability to be used to their full potential. The results of the friction
tests indicate that the exploitation use of oil 75W-140 occurred after 350,000 km of
mileage. It also applies to oil 75W-90, which had a much lower mileage but worked
in a gearbox. Moreover, the comparison of the results of the lubricity tests and the
amount of particles due to the amount of contaminants does not indicate a correlation
between the degree of oil contamination and lubricity. A higher share of particles that
were several dozen micrometres in size was found in the used oils. It is possible that
these large particles, which also present in other products of wear, are also suspended
in oil.

2. In the light of the conducted research, it seems reasonable to hypothesize that the
use of fluids in the expected operational runs does not cause a critical deterioration
of the lubricating and anti-wear properties. The deterioration in the properties is
non-catastrophic.

3. Unfortunately, the current research has not allowed us to check how long the liquid
work time in a gearbox and axle must be in order to reach critical deterioration.

The conducted research showed that the presence of contaminants is not catastrophic
and that in order to fully examine the oils and to determine the critical moment, the oils with
a much greater operational mileage should be tested in order to establish the relationship
between the number of particles and their tribological properties. After testing a larger
number of samples with different mileages, the second model supports the development
of a classifier that allows the oil mileage to be estimated in technical devices. This will be
the subject of further research.
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stałych. Tribologia 2011, 5, 137–145.
37. Bloch, H. (Ed.) Practical Lubrication for Industrial Facilities; The Fairmont Press, Inc.: Lilburn, GA, USA, 2009.
38. Becker, E.P. Trends in tribological materials and engine technology. Trib. Int. 2004, 37, 569–575. [CrossRef]
39. Syedhidayat, S.; Wang, Q.; Mohsen, A.H.M.; Wang, J. Choice and Exchange of Lubricating Oil for Injection Molding Machine.

Recent Pat. Mech. Eng. 2019, 12, 378–382. [CrossRef]

268



applied  
sciences

Article

Availability Estimation of Air Compression and
Nitrogen Generation Systems in LNG-FPSO
Depending on Design Stages

Youngkyun Seo 1, Jung-Yeul Jung 2,*, Seongjong Han 1 and Kwangu Kang 1

1 Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering (KRISO),
Geoje 53201, Korea; ykseo@kriso.re.kr (Y.S.); sjhan@kriso.re.kr (S.H.); kgkang@kriso.re.kr (K.K.)

2 Maritime Safety and Environmental Research Division, Korea Research Institute of Ships & Ocean
Engineering (KRISO), Daejeon 34103, Korea

* Correspondence: jungjy73@kriso.re.kr

Received: 21 October 2020; Accepted: 27 November 2020; Published: 3 December 2020

Abstract: This study estimated availability of an air compression system and a nitrogen generation
system in liquefied natural gas—floating production storage and offloading unit (LNG-FPSO) with
different design stages to investigate the gap between the availability at the early design stage and that
at the late design stage. Although availability estimation in the early design stage is more important
than the late design stage, it is difficult to estimate the availability accurately in the early design stage.
The design stage was divided into three depending on the design progress. Monte Carlo simulation
technique was employed for the availability estimation. The results of the availability estimation
showed that there was 0.434% difference between the early and late design stages. This meant that
the availability in the early design stage was underestimated due to limited information. A sensitivity
analysis was performed to investigate critical factors affecting the results. The investigated factors
were failure rate, repair time, redundant equipment, and modified preventive maintenance schedule.
The most critical factor was redundant equipment. It increased 0.486% availability.

Keywords: air compression system; nitrogen generation system; utility module; availability;
sensitivity analysis

1. Introduction

Various factors are considered in system design, such as efficiency, costs, safety, and environmental
effect. Availability is also one of the important issues in the system design. The definition
of the availability from BS4778-3.1 (British standards, quality vocabulary, availability, reliability,
and maintainability terms.) Guide to concepts and related definitions is the ability of an item under
the combined aspects of reliability, maintainability, and maintenance support to perform its required
function at a specified instant or for a specified period [1]. The availability indicates that how much a
system approaches ideal operation without production loss caused by equipment failures or undesired
external events. Availability estimation is frequently performed in the oil and gas, chemical, and power
plant industries to find the optimum design option, to predict the production level, and to evaluate
maintenance and operating policies.

Many previous studies conducted the availability estimation for various systems to improve their
designs. Basker and Martin [2] estimated the availability of production and electrical systems using the
developed numerical method. They considered failure and repair rates following the non-exponential
distribution. Keller and Stipho [3] conducted the availability estimation for two similar chlorine
production plants which were located in different environmental conditions (Iraq and Switzerland).
They employed the concept of “delayed time” to take into account the additional time required to
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reach full production rate. Bosman [4] estimated the availability of a natural gas compressor plant to
investigate its unavailability. Since the plant had no backup systems, the unavailability estimation
was crucial. They concluded that the availability analysis provided useful information to determine
the optimum number of spares. Aven [5] indicated the methodologies for the availability estimation
of oil/gas production and transport systems. He described not only an analytical approach but also
a simulation method for the availability estimation. Khan and Kabir [6] conducted the availability
estimation for an ammonia plant using both analytical and simulation method. They concluded that the
performance of the plant could be improved by changing the overhaul strategy and plant configuration.
Hajeeh and Chaudhuri [7] analyzed the availability of a reverse osmosis (RO) plant for producing
potable water from seawater through desalination. They employed failure mode effect analysis (FMEA)
and fault tree analysis (FTA) techniques to investigate the downtime pattern and failure. Zio et al. [8]
assessed the availability of an offshore installation using Monte Carlo simulation. Marquez et al. [9]
suggested a general approach for the reliability and availability assessment of complex systems by
employing Monte Carlo simulation. They validated the proposed approach by performing a case study
for cogeneration plants. Michelassi and Monaci [10] estimated the availability of a gas re-injection plant
for the oil and gas production. They utilized reliability block diagram (RBD) techniques in conjunction
with Monte Carlo simulation. They also considered the leak because the plant should be stopped when
the leak was detected. Chang et al. [11] estimated the availability of conventional and novel propulsion
systems with a BOG handling system of an LNG carrier. They estimated the availability depending on
the required function to prevent rough evaluation: design propulsion load, emergency propulsion load,
and BOG utilization. Görkemli and Ulusoy [12] suggested a new modeling approach for predicting the
availability of a production system. They considered not only machine failures but also the material
supply, management, and set-up in the proposed method. They also investigated the uncertainties
caused by the various production environment using a fuzzy Bayesian method. Seo et al. [13] predicted
the availability of CO2 liquefaction processes for a ship-based carbon capture and storage (CCS)
chain and they converted the availability to unavailability cost to calculate the life-cycle cost (LCC).
Seo et al. [14] estimated the availability of LNG fuel gas supply systems to evaluate economics of them.
They concluded that one of the significant factors was mechanical devices. Gowid et al. [15] reviewed
the studies related with the profitability, reliability, and condition based monitoring of liquefied natural
gas-floating production storage and offloading unit (LNG-PFSO). They assumed that the efficiency of
LNG-PFOS depends on LNG liquefaction process type, system reliability, and maintenance approach,
and reviewed the paper at theses points. They concluded that the literature was not sufficient to
improve efficiency of LNG-FPSO. Hwang et al. [16] developed the condition-based maintenance system
to perform proactive maintenance in advance to avoid the abnormal states. They addressed the system
architecture, main components, diagnostics, and prognostic methods of the system.

The methodologies for the availability estimation has been improved to increase its accuracy and
to apply to various systems. Precise availability estimation is important because it directly influences
the owner’s decision. The availability estimation is performed several times depending on the design
stages (conceptual design, basic design, and detailed design stages). In the early design stage, the results
of availability estimation are effective for design improvement, but it is hard to estimate it precisely
due to the limited data. On the contrary, accurate availability estimation is possible at the end of the
design stage using sufficient data, but it accompanies high costs for the system modification. Therefore,
it is an important to estimate the availability in the early design stage accurately. Although many
studies improved the methods to increase their accuracy, there was little effort to practically estimate
the availability in the early design stage

The purpose of this study is to investigate the availability gap between in the early and late design
stages by estimating it with the design stages to find practical manner of availability estimation in
the early design stage. The structure of this study is as follows. The target systems are described.
In Section 3, methodologies for the availability estimation are discussed. The results of the availability
estimation and the sensitivity analysis are indicated in Section 4. Finally, the conclusions are presented.
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2. Description of Target System

In this study, two systems in LNG-FPSO is selected as a target for the availability estimation.
These are air compression and nitrogen generation systems in LNG-FPSO. LNG-FPSO is a huge facility
for LNG production in offshore, and its concern has been increased because of the growing demand
for LNG. LNG-FPSO is a floating unit for production, processing, storage, and offloading of LNG
in remote offshore gas fields. Conventionally, the natural gas in an offshore field is transported by
pipeline to onshore for processing. LNG-FPSO does not require the pipeline because it processes
the natural gas itself in offshore. It is specialized for small scale gas field. Topside modules of the
LNG-FPSO can be categorized into two: a processing module and a utility module. The processing
module handles the primary hydrocarbon, whereas the utility module deals with utilities including
energy, water, air, and diesel oil. The utility module provides utilities to the processing system for
safe and stable operation. Some failure of the utility module can be critical because safety systems for
preventing an accident are operated by the utility module.

The topside of LNG-FPSO can be divided into ten modules as shown in Figure 1. A produced feed
gas come up through a turret, and it is transported to an inlet facility module. Slug in the feed gas is
removed by a slug catcher, and liquid is separated by a separator. CO2, Hg, and H2O in the feed gas is
removed in a pre-treatment module. The treated natural gas is liquefied by a liquefaction module, and a
refrigeration module supplies the refrigerant to the liquefaction module. The heavier components than
methane like ethane, butane, and propane are separated by a fractionation module. Some amounts of
natural gas are transferred to a fuel gas compression system, and it is utilized for power generation.
The liquefied natural gas is stored in storage tanks with LPG and condensate. A condensate stabilizer
module separates the relatively light components for safe operation. Condensate is mainly composed
of propane, butane, pentane, and heavier hydrocarbon. When condensate contains light components
like methane and ethane, it can be vaporized and increase the pressure of a storage tank during storage.
These light components should be separated before storage. A blowdown module treats combustion
fluids in emergency situations. The utility module supplies various utilities to other modules for
the operation.

Figure 1. Topside modules of liquefied natural gas—floating production storage and offloading unit
(LNG-FPSO).

In this study, air compression and nitrogen generation systems are analyzed in the utility module
because those are important systems for stable and safe operation. A general utility module contains
an instrument and service air system, a nitrogen generation system, a cooling water system, a seawater
system, a hot oil system, a portable water system, a produced and wastewater system, and a diesel
oil system. The instrument and service air system compresses the air up to approximately 10 bar
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for the usage of the instrument and others. The nitrogen generation system supplies nitrogen to the
customers. The cooling water system is used to provide the cooling medium for all of the topside
modules. The sea water system provides the seawater to various systems. The hot oil system increases
the temperature of the oil within a specified range. It utilizes waste heat from flue gas using waste
heat recovery units installed in a power generation system. The portable water system distributes
water to topside eyewash and safety shower, and hot and cold water for personal usage. The produced
and wastewater system removes the oil in the produced water from topside separators. The diesel oil
system distributes the diesel oil to customers by transferring and purifying it.

Figure 2 indicates the air compression and nitrogen generation systems. The systems mainly
consist of three pieces of equipment; an air compressor, an air dryer, and a nitrogen generator. Air is
compressed by the air compressor, and then the small amount of water in the compressed air is
dehydrated by the air dryer. The dry air is sent to a customer requiring the instrument air and to the
nitrogen generator. The nitrogen generator separates the nitrogen from the dry air.

Figure 2. Block diagram of air and nitrogen systems.

Figures 3–5 show process diagrams with different design stages. Figure 3 is a process flow diagram
(PFD) of the air compression and nitrogen generation systems. PFD shows the main equipment
in the system. The preliminary process and instrument diagram (P&ID) is indicated in Figures 4
and 5. P&ID includes not only the main equipment but also piping, instrumentation, and control
devices. In this study, the piping information is not contained because it is unnecessary for the
availability estimation.

 
Figure 3. Process flow diagram (PFD) of air and nitrogen system.
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Figure 4. The preliminary process and instrument diagram (P&ID) of air and nitrogen system.

 
Figure 5. P&ID of air and nitrogen system with information on preventive maintenance.

The design stage considered in this study are three. The first stage is PFD and the second stage is the
preliminary P&ID. The third stage is preliminary P&ID with the information on preventive maintenance.
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1. Stage I—PFD
2. Stage II—Preliminary P&ID
3. Stage III—Preliminary P&ID + Information on Preventive Maintenance

3. Methodology

Several methods are available for the availability estimation: reliability block diagram (RBD),
Markov model, and Monte Carlo simulation [17,18]. The former two are an analytical approach
whereas the latter one is a simulation approach. The analytical approach calculates the availability
using mathematical equations, while the simulation technique estimates it by generating scenarios.
When the system is complex, the analytical approaches like RBD and Markov model are unrealistic.
They are additionally difficult to apply to the system, which has nonconstant failure and repair
rates. However, the Monte Carlo simulation approach can handle inconstant failure/repair rates and
multi-state systems. One of the drawbacks of the Monte Carlo simulation is the long simulation time,
but it can be overcome by the advanced simulation techniques. In this study, Monte Carlo simulation
is employed for the availability estimation.

Figure 6 shows the procedure for the availability estimation using Monte Carlo Simulation. First of
all, the target system is analyzed, and then the reliability block diagram is drawn for the modeling of the
system. The data for reliability and maintainability is collected from the data sources. The availability
of the target system is estimated using the Monte Carlo Simulation. The followings are the details of
each step.

Figure 6. Procedure for availability estimation using Monte Carlo simulation.

3.1. STEP 1 System Analysis

First, the information required for the availability estimation is gathered, and the system is
analyzed. The boundary and a level of the system analysis determined in this step. The given operating
conditions and assumptions for the availability estimation are determined. Those include the lifespan
of the system, number of simulations, distribution function of failure, distribution function of repair
time, unit of failure rate, and unit of repair time. Table 1 tabulates the information.

3.2. STEP 2 Determination of Reliability Block Diagram (RBD)

RBD is a block structure to show success logic of a system. The blocks represent equipment or
components of the system to fulfill a specified function. Success path can be visually verified so that it
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can be easily understood. In this step, the RBD of the system is determined based on Step 1′s results.
The followings indicate the RBD with the different design development states.

Table 1. Operation conditions and assumption.

Items

Lifespan 20 years
Number of simulations 250

Distribution function of failure Exponential
Distribution function of repair time Constant

Unit of failure rate Number of failure/106 h
Unit of repair time Hours

3.2.1. RBD at Stage I (PFD Stage)

Figure 7 shows the RBD at Stage I. It is divided into three parts as shown in Figure 6: air compression,
air dryer, and nitrogen generation parts. The configuration of the air compressor part is 3× 50%. It means
that three compressors are installed, and the capacity of each compressor is 50%. Two compressors are
in operation, and one compressor is on standby for a failure of the operating compressors. The air
dryer part has 2 × 100% configuration. One air dryer is redundancy. In the nitrogen generation part,
the membrane has the 4 × 33% configuration. Three membranes are operated, and the remaining
membrane stands by for a failure.

 

Figure 7. Reliability block diagram at Stage I (PFD stage).

3.2.2. RBD at Stage II (Preliminary P&ID)

Figures 8–10 indicate the RBD at Stage II (for the preliminary P&ID stage). Figures 8–10 show the
RBD for the air compression, air dryer, and nitrogen generation parts, respectively.

Figure 8. Reliability block diagram at Stage II (preliminary P&ID stage)—Air compression part.

275



Appl. Sci. 2020, 10, 8657

Figure 9. Reliability block diagram at Stage II (preliminary P&ID stage)—Air dryer part.

Figure 10. Reliability block diagram at Stage II (preliminary P&ID stage)—Nitrogen generation part.

3.2.3. RBD at Stage III (Preliminary P&ID + Information on Preventive Maintenance)

RBD at Stage III is almost identical with that for stage II excepting the additional information on
preventive maintenance. One block for the preventive maintenance is added for stage III.

3.3. Step 3 Data Collection

The reliability and maintenance data are required for the availability estimation. Since the results
of the availability estimation are significantly influenced by the reliability and maintenance data,
they are important. Reliability data is linked to the failure rate. The maintenance data is associated with
the corrective maintenance time (repair time) and the preventive maintenance time. When the failure
occurs, the corrective maintenance is conducted to a system. Preventive maintenance is performed on
the basis of maintenance policies and strategies. The data can be categorized into three depending
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on the kinds of sources: Open data (from open books and reports), vendor data, and in-house data.
This study uses the OREDA (Offshore and onshore reliability data) and vendor data. OREDA is
offshore and onshore reliability data handbook sponsored by oil and gas companies. It is considered
a unique data source in the offshore industry. OREDA is employed in this study because it is the
most suitable for it [19,20]. Vendor data is taken from a manufacturer of air compression and nitrogen
generation systems. Table 2 indicates the reliability and maintenance data employed in this study.

Table 2. Reliability and maintainability data for air and nitrogen system.

Items Source
Failure Rate Active Repair Time

Lower Mean Upper Mean Max.

Compressor OREDA 2009 - 140.84 779.34 15 98
Electric motor OREDA 2015 0.87 7.52 19.63 16 25

Heat exchanger OREDA 2015 0.28 64.94 243.9 28 96
Separator OREDA 2015 0.34 73.49 271.39 6.4 12

Dryer OREDA 2015 18.32 29.22 44.37 6.2 11
Heater OREDA 2015 244.7 349.24 484.57 14 84

Membrane OREDA 2015 18.32 29.22 44.37 6.2 11
Filter * OREDA 2015 - 4.67 - 1.105 -

Relief valve OREDA 2015 0.04 2.07 6.41 6.9 13
Check valve OREDA 2015 0.01 2.47 9.24 2 2

Ball valve (Utilities) OREDA 2015 2.73 11.65 25.65 5 6
Ball valve (Condensate processing) OREDA 2015 12.08 72.09 226.9 27 39

Control valve OREDA 2015 0.99 19.8 93.96 9 9
Gate valve OREDA 2015 0.04 3.74 12.37 20 72

Control logic unit OREDA 2015 0.08 17.4 64.59 - -
Pressure input device OREDA 2015 0.01 1.09 3.73 7 12

Trap Vender - 16.31 22.83 2 -

* This data is regenerated using the component data in Offshore and onshore reliability data (OREDA) 2015.

Table 3 indicates the information on the preventive maintenance. The preventive maintenance
is conducted to prevent unexpected future failure. It is classified into four categories: age-based,
clock-based, condition-based, and opportunity maintenance [18]. In the age-based maintenance,
the preventive maintenance is performed at the defined age of the system (e.g., the number of
take-offs/landings for an airplane). The clock-based maintenance is carried out at specified calendar
time so that it is scheduled by administers. In the condition-based maintenance, the preventive
maintenance is initiated by measuring condition variables. The opportunity maintenance is carried
out when the system is stopped by the other failure. In this study, the clock-based maintenance is
taken into account for the preventive maintenance, and the data is collected from the vendor of the air
compression and nitrogen generation systems.

Table 3. Preventive maintenance information on air compression and nitrogen generation systems.

Equipment
Periodic
(month)

Maintenance Time
(hour)

Air compressor
Component replacement 1 6 0.5
Component replacement 2 24 3

Main maintenance 36 72

Air dryer
Component replacement 1 6 0.5
Component replacement 2 24 1

Main maintenance 36 24

Nitrogen generator
Component replacement 1 6 0.5
Component replacement 2 24 1

Main maintenance 36 24
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3.4. Step 4 Monte Carlo Simulation

Monte Carlo simulation is employed to estimate the availability. Figure 11 shows the flowchart
of the Monte Carlo simulation [21]. First of all, components, their states, and their configuration
are defined. Moreover, the next transition time for each component is estimated by the random
number generation. The transition time is the time when the phase of a component in the system
is changed from normal to failure. In this step, the generated random number is converted into a
value of time using a conversion method at a cumulative distribution function. Figure 12 shows
how the generated random number is transferred to the value of time by the conversion method.
The cumulative distribution function for the exponential distribution is indicated in Equation (1).

F(x) = 1− e−λx (1)

where λ is the failure rate, and x is a value of time.

R = F(x) = 1− e−λx (2)

where R is the random number between 0 and 1. R* is a generated random number between 0 and 1.

Figure 11. Procedure for availability estimation using Monte Carlo simulation [21].

The shortest transition time is found among all of the predicted times, and then the system time
is changed to the shortest transition time. If the time is shorter than the mission time, the transition
times for all component are estimated again. The mission time is total operation time required to
the system like lifespan. When the time is longer than the mission time, the system’s availability
is calculated. This process is just one simulation. If the number of simulations is lower than the
desired number of simulations, the next simulation is repeatedly performed. The desired number of
simulations is determined as referring the convergence of results. When a result converges sufficiently,
the number of simulations is selected as the desired number of simulations. The desired number of
simulations is determined as setting a sufficiently high number of simulations or determining the
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number of simulations after the initial simulation. When the number of simulations is the same as
the desired number of simulations, the average system availability is calculated finally. The average
system availability is the result after the last simulation, while the system availability is the result of
each simulation.

Figure 12. Conversion method to transfer random number to value of time at cumulative distribution.

The predicted time from the generated random number is shown in Equation (3).

x = F−1(R) = − 1
λ

ln(1−R) (3)

4. Results and Discussion

4.1. Availability

Figure 13 shows the availability of the air compression and nitrogen generation systems depending
on the design stages. The availability decreased with the increment of the design stages because the
system in the late design stage was more complex than that in the early design stage. A complex
system has more factors decreasing the availability of the system than a simple system. The availability
is decreased by 0.331% when the design stage was changed from Stage I (PFD) to Stage II (P&ID).
This meant that the instrument system occupies 0.331% of the system’s availability. When the design
stage was transferred from Stage II (P&ID) to Stage III, the availability was decreased by 0.103%.
The preventive maintenance influenced about 0.103% of the availability. The availability difference
between Stage I and Stage III was 0.434%. It showed that the availability in the early design stage
was underestimated compared to the late design stage. The unavailability (1—availability) in the late
design stage (0.972%) is approximately 1.8 times severe than that in the early design stage (0.535%).
We can predict that the unavailability estimated in the late design stage is 1.8 times serious than that in
the early design stage. The availability difference between early and late design stages can be dissimilar
with the target system. However, this result provides meaningful information to guess the actual
availability in the early design stage.

4.2. Component Criticality

Figure 14 shows the component criticality depending on the design stages. The component
criticality shows the important component of the availability, and it is the ratio of the component’s
failure time to the system failure time. The most crucial component at Stage I was the heater,
which accounted for 90.3% criticality. The heater and ball valve (condensate) were critical in Stage
II and Stage III. The heater and ball valve (condensate) had 50.7% and 20.0% criticality at the design
Stage III, respectively. The preventive maintenance occupied about 10% on the criticality at Stage III.
The most critical component was the heater regardless of the design stages. The availability of the
system can be significantly increased as installing redundant heaters. The results of the component
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criticality analysis guide a designer or a decision maker to select additional components to installed to
increase availability.

Figure 13. Availability depending on the stages.

Figure 14. Component criticality depending on the stages.

4.3. Sensitivity Analysis

This study performed the sensitivity analysis to investigate the factors affecting the results. It is
important to analyze the correlation between the factors and the results because the results can be
changed depending on the variation of the factors. In this study, four factors are investigated for
the sensitivity analysis: failure rate, repair time, redundant equipment, and modified preventive
maintenance schedule. The reliability data used in this study are mainly from OREDA, and its mean
value is utilized. The values can be different depending on the target conditions. OREDA predicts the
failure rate with 90% confidence interval. The confidence interval describes the amount of uncertainty
associated with a sample of a population. The sensitivity analysis was performed for the lower and
upper limits of the failure rates. The repair times utilized in this study were also mostly from OREDA.
The employed active repair time considers only the time when actual repair work is being done. It does
not contain time to shut down the unit, issue the work order, wait for spare parts, start-up after repair.
Some variation exists between the active repair time and the actual downtime. (The reason why
OREDA only considers the active repair time is that the required time for the preparation and return to
the normal operation are different depending on the location of the installation.) The additional repair
time is taken into account. The availabilities with and without redundant equipment are estimated to
examine its effect on the availability. Finally, the availability is calculated with different preventive
maintenance schedules.
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4.3.1. Lower amd Upper Failure Rates

Figure 15 indicates the availability depending on the design states with different failure rates: lower,
mean, and upper failure rates. As the failure rate was increased from lower to upper, the availability
was decreased. In the case of lower and mean failure rates, the availability was slightly decreased with
the design stages. In contrast, the availability was significantly reduced in the case of upper failure
rate. When the design stage was changed from Stage I (PFD) to Stage II (P&ID), the availability was
dramatically decreased in the case of upper failure rate. This indicated that the instrument devices
gave a critical impact on the availability. The availabilities are 99.506% (lower) and 97.819% (upper) at
Stage III. The upper means that the result is derived using upper failure rate in Table 2, and the lower
is the reverse. This meant that the most optimistic availability is 99.506% and the most pessimistic
availability is 97.819%.

Figure 15. Availability with different failure rate.

4.3.2. Additional Repair Time

Figure 16 shows the availability depending on the design stages with the additional repair time.
Three additional repair times assumed in this study are 1, 3, and 5 h to investigate the impact of the
delayed repair time. The availability decreased with the increment of the repair time. When additional 1,
3, and 5 h were considered at Stage III, the availabilities were 98.969%, 98.823%, and 98.701%, respectively.
This result presented that one additional hour in the repair time decreased the availability by 0.065%.

Figure 16. Availability with additional repair time.
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4.3.3. Installation of Redundant Heater

Figure 17 presents the availability depending on the design stages with the installation of the
redundant heater. As mentioned in Section 4.1, the most critical component in the availability was the
heater regardless of the design stages. The availability was estimated depending on the installation
of the redundant heater or not. The availability was considerably increased when the redundant
heater is installed. The availability is 99.028% without the redundant heater at Stage III, whereas it is
99.514% with the redundant heater. That is, the redundant heater increased the availability by 0.486%.
Although 0.486% availability seems to be low, it is not a negligible value in the system (LNG-FPSO).

Figure 17. Availability with installation of redundant heater.

4.3.4. Modified Preventive Maintenance Schedule

Figure 18 shows the availability depending on the design stages with the modified preventive
maintenance. As mentioned in Section 3, the preventive maintenance is conducted to prevent the
critical failures. There are various activities for the preventive maintenance as indicated in Table 3.
These activities are individually conducted depending on their inherent periodic. When the activities
have different schedule, some activities can be merged to increase the availability. Although simultaneous
preventive maintenance increases the availability, it requires new engineers to conduct the activities at the
same time. Since all components have the same preventive maintenance schedule, different schedules
were assumed in the modified schedule. The result showed that the availability was decreased by 0.076%
through the modified preventive maintenance schedule. Since the preventive maintenance was not
considered at Stages I and II, the values at those stages were unchanged.

Figure 18. Availability with modified preventive maintenance schedule.
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5. Conclusions

This study estimated the availability of air and nitrogen systems depending on the design stages to
analyze the gap between early and late design stages. Three design stages were considered: Stages I–III.
Stage I was the process flow diagram (PFD) stage and Stage II was the piping and instrument diagram
(P&ID) stage. In Stage III, the preventive maintenance was additionally considered comparing to Stage
II. The Monte Carlo simulation approach was employed for the availability estimation. The results
presented that the availabilities were decreased with the design progress. It is obvious because the
system was more complex with the design development. The availability difference between Stage
I and Stage II was 0.331%, and that was 0.103% between Stage II and Stage III. These indicated that
the instrument system and the preventive maintenance occupied 0.331% and 0.103%, respectively.
This result also presented that the availability in the early design stage (Stage I) was underestimated
compared to the late design stage (Stage III). The unavailability at the late design stage was 1.8 times
higher than the early design stage. We could guess the availability at the late design stage using the
result at the initial design stage. The most critical component in the air and nitrogen systems was the
heater regardless of design stages. The sensitivity analysis was conducted to analyze the key factors on
the results. The most crucial factor was the redundant equipment. When the redundant heater was
installed, the availability was increased by 0.486% at Stage III. The factors for the modified maintenance
schedule and additional repair time (1 h) were not significant in the system compared to other factors.
Since this study investigated only two systems (air and nitrogen systems) among lots of systems in
LNG-FPSO, future studies are required for the whole system (LNG-FPSO). Although this study did
not consider the whole system (LNG-FPSO), this gives the important guide to progress the next step
for the accurate availability estimation in the early design stage.
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Abstract: Smoothness of tape movement and stability of the tape area where elements are generated
are very important in precision mechatronic devices where precise elements are generated on a steel
tape, controlling them in real time. During movement, deformations and vibrations form in the steel
tape area where elements are generated as a result of imperfections of movement equipment, contact
between the roller surface and the tape, and errors arising in the movement process. This article
is based on the need for a detailed theoretical and experimental research of the effects occurring
during the movement of the precision steel tape used in measuring systems with precision elements
generated on the tape, including an investigation of the roller-tape contact. The article also aims to
develop a model of the system for measuring the displacement of the tape in a raster formation device,
to investigate and assess possible effects of external and internal factors on steel tape parameters.
The article presents experimental research conducted for determining dynamic variables forming
during the movement of a steel tape, assessing the factors that may cause raster generation errors in
dynamic mode.

Keywords: precision steel tape; tape transportation; roller-tape interactions; roller-tape contact pair

1. Introduction

Steel tapes with certain symbols (rasters, special markings, etc.) generated on their surface are
often used for metrological and technological purposes, for example, to measure displacement. These
symbols are generated by contact movement of a steel tape and a light source beam acting on either
the tape surface or its special coatings. Usually, the tape moving between feed and reception points in
conveyor devices has a fixed axial tension and a constant movement velocity, stabilizing the tape at the
guide rails from the bottom and the sides [1–4]. The smoothness of the movement of a moving precision
tape and the stability of the tape area where symbols are generated are very important factors that
affect the quality parameters of a generated tape. One of the most important characteristics of the raster
generation device is the smoothness of the stretching of the tape, which is important for the overall
operation of the system. The smoothness of the stretching of the tape affects errors in the position of
the raster element being generated and the control of activation of the laser beam. Determining not
only the amplitude, but also the frequency of the belt stretching oscillations is important [5].

Adverse deviations in the position or the shape of symbols being generated that way depend
on uncontrolled deviations of parameters of the said movement of the tape and the light beam from
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the set parameter values [6]. Tape vibrations forming as a result of the system tape movement
mechanism and other internal and external sources of excitation of vibrations are one of the most
important components of such deviations [7–9] They affect the occurring uncontrollable changes in
tape’s position, the displacement velocity and tape deformations that have an adverse impact on the
quality of the structures being generated, also affecting the accuracy and reliability of active process
control done in real time [10]. This impact on the system of defined parameters depends on vibration
parameters—frequencies, amplitudes and other statistical characteristics. Knowing these parameters
is important for developing the structure and optimizing the processes of formation of the structure
and the symbols [2,11–13].

Lateral movement of the tape, which can be caused by a roller tilt, tape defects, roller unevenness
and other factors is one of the most important factors [14,15]. Lateral movement of the tape can be
suppressed to a certain extent by using flanged rollers, but they can deform the edge of the tape and
cause high frequency low amplitude tape vibrations. On the other hand, the use of flangeless rollers
can eliminate the above problems but can enhance low frequency lateral tape movement [16–19].
Modeling the tape movement process can be one of the key factors that help to understand the effects
of deficiencies of the lateral tape dynamics [20].

The presented research analyses the tape movement system consisting of electromechanical tape
pulling and its constant stretching mechanisms as well as a tape deflection mechanism, which operates
in a sliding friction [21]. This system was mounted on a massive granite base placed on a foundation
using passive vibration insulation supports. A research, a data processing method and the results of
experimental research of a mock-up system were developed. The article examines the raster generation
method and the generation device. This method may be used to produce a precision metrological scale
on a stainless steel tape. The generation process takes place in the dynamic mode because both the
steel tape and the laser raster generation head are constantly moving during the process.

The main aim of the research is to develop a system for measuring the displacement of the tape in
the raster generation device, to examine the model of that system and to evaluate the possible impact
of external and internal factors on raster generation in the dynamic mode.

Since a large number of impulses is generated with a tape moving through the angle transducer
due to a very high resolution, information may be lost due to a limited speed of electric elements,
which would be an essential cause of errors in the position of raster elements [22–25].

The article examines experimental research results of one of the main components (a tape
displacement measuring unit) of the new precision raster generation system and possibilities for
analytical modeling.

2. Research Object

The study analyses the raster generation and control system. The system was designed to have a
constant linear relationship between the rotation angle of the drum and the linear displacement of the
bar. This was achieved by minimizing the kinematic and geometric errors of the measuring system
and the tape, which directly affects errors of the raster generation system. A focused laser beam raster
is formed based on the number of pulses in the angle measuring system.

The raster generation bench consists of a massive fine-structured granite base and the tape
movement devices mounted thereon presented in Figure 1, the laser raster generation components and
the raster scale error management system components. Figure 1 illustrates the raster generation bench:
1—tape unwinding mechanism, 2—granite base, 3—tape displacement using angle measuring system,
4—deflection node, 5—error monitoring unit, 6—pulling—stretching system, 7—control panel, 8—tape
winding mechanism, 9—mechanism for covering tape in a protective band, 10—indoor partition,
11—microscopes with CCD camera, 12—scanner, 13—optical laser beam deflection system, 14—laser,
15—constant belt tension mechanism, 16—device computing control set and laser and scanner freezer,
17—tape stretch control and management system, 18—vibration isolation supports. The length of the
granite base is 2 m in the Y direction.
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Figure 1. Raster generation bench (block diagram of a metal scale production device).

The main factors that adversely affect the accuracy of the dynamic calibration process are vibrations
from external and internal sources. Vibrations from external sources—technological devices, vehicles,
fans, etc. are usually transmitted through the floor. Internal sources of vibration include motors,
reducers, rotary motion transmitter and laser system scanners.

One of the most important components of the device is the tape displacement measuring system
(Position 3 in Figure 1). Figure 2 presents its 3D images in cross-sections: 1—angle transducer
base, 2—angle transducer limbo, 3—optical angle transducer heads, 4—precision tape displacement
measurement shaft, 5—system base, 6—hood, 7,8—rotary system bearings, 9—tape clamping shaft,
10—tape clamping mechanism. The circumference of the steel band tape measured in the precision
tape displacement measurement shaft is 200 mm. Accordingly, the diameter of this shaft at the point of
contact with the tape is 63.662 mm.

Figure 2. Three dimensional images of the tape displacement measuring system in cross-sections.

Tape displacement measuring errors have a high frequency harmonic component. One of the
reasons causing such errors is the so-called internal step error of the angle measurement transducer.
The latter, in turn, depends on deviations in the primary electrical signals from the regular sine and
cosine form, which are substantially affected by deviations in the shape of the limbo workpiece where
a raster track is generated. In order to minimize this error, workpieces were specially polished at
high precision till the maximum possible accuracy under Lithuanian manufacturing conditions was
achieved. Maximum precision was also pursued by moving the limbo raster drawing from the original
onto a product. A limbo raster drawing error was calibrated.

Figure 3 presents a graphical illustration of a parametric function of its two realizations of the tape
displacement using the angle measuring system error and approximation of its means. 6 measurements
were made, and 6 realizations were obtained; Figure 3 presents error graphs of 2 realizations and an
approximation of the means of the 6 realizations.
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Figure 3. Parametric function of two realizations 1, 2 of the tape displacements using angle measuring
system and approximation of 6 realizations means, 3 graphs.

The value of the standard deviation with respect to the means of dissemination of calibration
results of the 6 realizations is SD = 0.087 (see Formula 2). In pursuit of the maximum accuracy, a
shaft was mounted in special, extra-high-precision bearings, using the method of four-head primary
electrical signal generation. Calibration was performed autonomously by attaching a polygon to the
tape displacement using an angle measuring system (polygon calibrated with PTB and its known
errors), measuring it using an autocollimator, and entering an error correction.

3. Experimental Research of the Tape-Displacement Measuring System

Tape displacement measuring systems is a major part of the raster generation and control system,
which directly affect the accuracy of the scales being produced. A bench was developed for the study
of dynamic processes of the tape displacement measuring system.

Maintaining constant velocity is very important while working. For the purpose of this experiment,
fluctuating velocity of the tape point was measured as absolute vibro-velocity.

Three parameters were measured when determining dynamic properties of the research object
(Figure 4b): 1—displacement of the steel tape in the vertical direction Z (Figure 4c); 2—velocity of the
steel tape in the longitudinal direction Y (Figure 4a); 3—displacement of the tape–angle transducer
contact point was derived from angle sensor results. Capacitive displacement sensors CS02 were
used to measure vertical displacements, measuring displacements at two points (A and B) of the tape
(Figure 4c). Point A was at the raster generation point (there was an additional support under the
tape) and point B—on the tape between supports. Figure 4a presents the image of the measurement of
absolute steel tape vibrations (variation of point velocity) in longitudinal direction Y.

Brüel & Kjær vibration meters were used to measure vibration parameters and Micro-Epsilon
meters were used to measure displacement. Displacement meters (Figure 5a,b): a capacitive
displacement sensors CS02; b controller DT6220 and demodulator DL6220.Vibration meters
(Figure 5c,d): c portable metering result processing, storage and control equipment 3660-D; d triaxial
accelerometers 4506. Figure 6 illustrates the block diagram of the research equipment and its relation
to the research object (tape displacement measurement system).

The obtained measurement results were processed using the software package Origin, also
calculating statistical parameters:

arithmetic average:

x =
1
n

n∑
i=1

xi (1)

standard deviation:

SD =

√√
1

n− 1

n∑
i=1

(xi − x)2 (2)
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range
xrange = xmax − xmin (3)

where n is the number of measurement results, xi–measurement result i.

Figure 4. Measurement of vertical tape point displacements (a),longitudinal tape (b) velocity and
displacement of the steel tape in the vertical direction Z (c).

Figure 5. Instruments for measuring and analyzing vibration and displacement parameters: capacitive
displacement sensor CS02 (a) with controller DT6220, demodulator DL6220 ad power source (b); triaxial
accelerometer 4506 (c); portable metering result processing, storage and control equipment 3660-D with
DELL computer (d).
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Figure 6. Block diagram of the test bench of vertical tape displacement (direction Z) and velocity
(direction Y).

The received measurement results are presented in Figures 7–9. Figure 7 illustrates results of
vertical displacements of the two points (A and B) (also see Figure 4c) of the tape. Figure 7a presents
displacement results of points A and B (also see Figure 4c) in operation (a generated raster distance of
500 mm), and Figure 7b,c illustrates the curve and mean of three realizations, additionally presenting
histograms of the mean. Table 1 presents statistical parameters of three realizations of the displacement
(A1, A2 and A3 and B1, B2 and B3) of points A and B (also see Figure 4c).

The analysis of the results presented in Figure 7 and Table 1 allowed determining that the value of
the displacement of tape point A in vertical direction varies by about 37.5 μm, and the value of the
displacement of tape point B varies by about 53.5 μm. The value of displacement of point B is greater
because the lower tape part of point B is not supported. The frequency of tape oscillations is very low
(0.04 Hz), and oscillations of such frequency are likely to have been caused by deviations in the shape
of the tape.

Table 1 presents the analysis of the results where the standard deviation of the measurements
ranges between 0.09% and 0.87%.

Errors in the displacement measuring system directly affect the accuracy of raster formation on
steel tape. Vertical displacements (see Figure 7) up to 50 μm of significant steel tape points (points A and
B (also see Figure 4c)) were observed when stretching the tape. The analysis of vertical displacements
of point B revealed that they have a periodic shape and vertical displacements of point A have three
peaks at 48, 161 and 180 s. Points of support of the tape affect such a change of vertical displacements
of the significant points A and B.

Figure 8 presents the results of the measurement of the displacement of the tape–angle transducer
contact point, which is calculated using the results of the angle sensor. Figure 8a illustrates the time
graph and the histogram, Figure 8b presents the spectral density graph and Figure 8c—the spectral
graph part expanded to 50 Hz.
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Table 1. Statistical parameters of three realizations of displacement (A1, A2 and A3 from Figure 7b and
B1, B2 and B3 from Figure 7c) of points A and B (also see Figure 4c).

Measurement Point
Statistical Parameters, μm

Mean Standard Deviation Minimum Maximum Range (Maximum–Minimum)

Point A (Figure 7a)
Displacement A1 4.127 8.753 −4.322 33.283 37.605
Displacement A2 3.899 8.821 −4.505 32.904 37.409
Displacement A3 3.920 8.830 −4.519 33.046 37.565

Point B (Figure 7a)
Displacement B1 17.996 13.109 −7.910 45.683 53.593
Displacement B2 20.887 13.097 −4.701 48.791 53.492
Displacement B3 19.865 13.029 −5.784 47.738 53.522

Figure 7. Results of vertical displacements of two steel tape points A and B (also see Figure 4c):
displacement results of points A and B (a); the curve and mean of three realizations, additionally
presenting histograms of the mean: points A1-A3 (b) and points B1-B3 (c).
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Figure 8. Results of measurements of the displacement (from precision angle transducer) of the
tape–angle transducer contact point: (a) time graph and histogram, (b) spectral density graph,
(c) spectral graph part expanded to 50 Hz.

Figure 9. Results of the measurement of the steel tape velocity (also see Figure 4a): (a) time graph and
histogram, (b) spectral density graph, (c) spectral graph part expanded to 50 Hz.

Figure 9 illustrates the results of the measurement of the steel tape velocity (i.e., speed mismatch
at 2 mm/s) in the longitudinal direction Y. Figure 9a presents the time graph and the histogram,
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Figure 9b—the spectral density graph and Figure 9c—the spectral graph part expanded to 50 Hz.
Table 2 presents statistical parameters of the results of the measurement of the displacement of the
tape–angle transducer contact point and velocity in the longitudinal direction Y.

Table 2. Statistical parameters of the results of the measurement of the displacement of the steel
tape–angle transducer contact point and velocity in the longitudinal direction Y.

Displacement of the Tape–angle Transducer Contact Point
Statistical Parameters, μm

Mean Standard Deviation Minimum Maximum
Range

(Maximum–Minimum)
−0.00244 0.0106 −0.0476 0.039 0.086

Longitudinal tape velocity
Statistical parameters, mm/s

Mean Standard Deviation Minimum Maximum
Range

(Maximum–Minimum)
0.0122 0.0244 −0.0777 0.0859 0.163

The assessment of the results of the displacement of the tape–angle transducer contact point
(Figure 8 and Table 2) revealed that the value of the displacement of tape–angle transducer contact
point varies by about 0.086 μm. The analysis of the received spectral density results revealed that the
the following frequencies appeared in the tape displacement graphs: 1.67; 4.04; 19.9; 32.7; 40; 80.1;
120.9 and 160 Hz.

The assessment of the tape velocity results (Figure 9 and Table 2) revealed that the tape velocity
value varies by about 0.163 mm/s. The analysis of the obtained spectral density results showed that the
following frequencies appeared in the tape displacement graphs: 6.17; 10.04; 17.1 19.9; 32.7; 40; 80.1;
120.9 and 160 Hz.

The analysis of the received results showed that frequencies appearing in tape displacement and
velocity frequency graphs in Figures 8 and 9 were very close, and the assessment of the tape slip in
respect of the angle transducer allows stated that there was no slip in the frequency range from 0 to
200 Hz.

The analysis of graphs in Figures 8c and 9c revealed that the displacement and velocity amplitudes
at the same frequencies dominated (examining the frequency range up to 50 Hz), which indicated that
the band motion patterns were transmitted to the tape–gauge roll assembly and there was no slip
between the tape and gauge rolls.

4. Numerical Investigation of Tape Displacement

A model for calculating mechanical properties (Figure 10) was developed for the tape displacement
measurement system, which was one of the most important components of a raster generation device.
It should be noted that the numerical simulation model presents one very important node in the
experimental setup illustrated in Figure 4c.

Five Hypalon plates were affixed to the bottom and top of the steel tape. Both top and bottom
contact pairs were monitored during simulation. Figure 11 illustrates the contact pairs. The iterative
solution method was selected. Two selections of boundaries that could not penetrate each other under
deformation were chosen for the analysis of the contact pair boundary condition.

The contact pairs defined boundaries for parts that could come into contact as shown in Figure 11a,b,
for upside and downside contacts, respectively. The augmented Lagrangian was selected as the
algorithm for computing contact in the normal direction. Characteristic stiffness in current simulation
was equivalent to Young’s modulus. Penalty factor controls the stability and stiffness of the interface
surface during iterations. Moreover, an additional control over solver cutbacks, such as trigger cutback
criterion in numerical simulation, was not used because there was no destination boundary movement
history. The exponential dynamic Coulomb friction model using both static and dynamic friction
coefficients were included in the time dependent study for both contact pairs (Figure 11).
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In addition, the steel tape had a spring foundation condition from the left boundary and uploaded
velocity from the opposite boundary as shown in Figure 10. Experimental measurement tape velocity
data were used us a set velocity boundary condition in simulation as shown in Figure 12. The analytic
velocity function of steel tape’s end from the experiment (Figure 12) was used for the set velocity as
one of boundary conditions for simulation as shown in Figure 10.

Figure 10. Roller–steel tape unit modeled using Comsol Multiphysics.

Figure 11. Upside contact pair (a) and downside contact pair (b).

Figure 12. Set velocity curve for simulation of tape movements (experiment data).
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Two-point probes similar to the experimental setup sensor position (Figure 4c) were chosen for
postprocessor analysis after simulation. They are illustrated in Figure 10 as points A and B.

Figure 13 illustrates fixed constraints and the body load of the current model. Five contact zones
between the steel tape and support from Hypalon material are presented in Figure 13a. Dynamic
friction and gravity of these contact pairs only were taken into consideration during simulation. DOF
(Degree of Freedom) by z and x axes in contact zones was restricted. Two coordinated restrict the set
velocity (Figure 10), and the steel tape had a freedom of movement along the length only. Gravity was
also included in the simulation. The simulation was based on the parametric sweep of the top roller
preload by–z axes (Figure 13b) and a change from 10 to 40 N with 10-N steps. This range was chosen
based on the experimental 30-N preload setup.

Figure 13. Fixed constraints (a) and body load (b).

Mechanical properties of materials used in numerical simulation are presented in Table 3.

Table 3. Mechanical properties of used materials.

Structural Steel Hypalon SH90 Aisi 420

Density, kg/m3 7850 1200 7700
Young’s modulus,

Pa 200e9 20e6 215e9

Poisson’s ratio 0.30 0.40 0.28

Figure 14 below presents a compiled mesh of finite elements. The steel tape unit was modeled
using COMSOL Multiphysics software. The quality of mesh elements maximizes in the contact zone.
In the simulation, 0.48 and 0.93, respectively, were the minimum and the average element qualities.

Figure 14. Finite element mesh of the steel tape unit in the contact zone between the rollers and the
steel tape (a) and Hypalon plates and steel tape contact pairs (b).
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Having generated the finite element mesh for geometric model, the next step was modeling the
problem solution. In order to model the problem solution, equation system type and solution method
were selected for the steel tape unit. A time-dependent solution type was chosen, then solving the
contact and dynamic movement problems.

The time-dependent study was limited to 1 second because of the calculation time and data
storage limitation. The longitudinal displacement and velocity in point B (Figure 10) under different
preloads between the top roller and the steel tape are presented in Figure 15, respectively. Dependences
confirmed the feasibility of the simulation model and the experimental results of the measurement
point B displacement and velocity (Figures 8a, 9a and 15).

Figure 15. (a) Longitudinal displacement and (b) longitudinal velocity in point B, under variable
preloads from 10 to 40 N.

Of course, the longitudinal parasitic vibration of the steel tape had a greater impact on the pitch
formation precision, however, we believe that the taping vibration of the steel tape should also be
taken into account. Figure 16 illustrates the taping displacement of points A and B (left and right).
Displacement values were much higher than those in the longitudinal direction, and the effect on pitch
precision was the sum of the three coordinates of the total parasitic vibration of the steel tape.

Figure 16. Bending displacement in point A (a) and B (b) under different top roller preloads.

The received results show that the roller-tape contact pressure responded to the dynamic reaction
of the steel tape during movement and must be choosen carefully.

5. Conclusions

The article examines analytical modeling of one of the main components of the raster generation
system (tape displacement measurement unit) and presents the experimental research carried out.

A mechanical model of the steel tape and rollers subjected to loads was developed in the article.
The article presents the modeling, which defines deformation of a steel tape model under preloads
with the variable boundary conditions.

296



Appl. Sci. 2020, 10, 4041

The measurements of the moving tape of the precision raster generation system in the vertical and
longitudinal directions revealed that the value of the displacement of tape point when the tape was
supported from the bottom varied by about 37.5 μm during operation, and ranged to about 53.5 μm
when the tape was not supported from the bottom. The frequency of tape oscillations was very low
(0.04 Hz) and came as a result of deviations in the shape of the tape.

The main parameters that affected parasitic longitudinal and vertical displacements of the mesh
were the number and the position of mesh supports and the tensile and clamping forces of the mesh.
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Abstract: Like other types of elastomers, different geometries of the same cork–rubber material present
different mechanical behaviour when subject to compression between bonded plates. To validate
the application of Hooke’s Law on cork–rubber materials, under compression at small strains, a
set of experimental and numerical analyses has been conducted. Using finite element analysis, a
methodology is described to relate frictionless and frictional compression between a cork–rubber
sample and loading plates. Based on that, the performance of square cross-section blocks with other
dimensions can be evaluated. The results obtained by this approach showed a good agreement
with experimental compression tests and with outputs from other models available in the literature
relating Young and apparent compression moduli.

Keywords: cork–rubber composites; compression; apparent compression modulus; Young’s modulus;
bonded condition

1. Introduction

One of the application areas of cork–rubber-composites is vibration isolation. This type of
elastomers is composed of a rubber matrix filled with granules of cork, which can be utilised as
isolation pads for systems subjected to the presence of dynamic loads, such as buildings, industrial
machines and floating floors [1,2]. Cork is a natural origin material that is mostly used in wine stoppers.
The insertion of cork granules into a rubber compound contributes to its recovery improvement when
submitted to compression loads [3].

The use of numerical methods, such as finite element analysis (FEA), has proven to be an
advantageous tool to predict the mechanical behaviour of many materials. The application of FEA
related to elastomers and other cork composites has been utilised to access static, dynamic loading and
impact behaviour [4–8]. One of the first requirements for the application of isolation pads is to evaluate
their capacity to support static loadings. Regarding elastomers, one of the crucial steps during FEA is
the definition of material properties [9]. Typically for large strains, elastomer’s properties are defined
through the application of non-linear models. However, if a linear stress–strain relationship, at small
strains, is observed, Hooke’s Law can be adopted for that strain range [10].

Concerning rubber materials, the compression behaviour of a specimen between bonded surfaces
can be quantified using apparent compression modulus (Ec) [9,11]. This parameter is associated with
the rubber sample’s geometry. In the case of compression without bonded surfaces, the rubber block
presents axial and uniform lateral deformation, as depicted in Figure 1a. With a bonded condition, the
lateral surfaces deform, assuming a barrel shape due to incompressibility, as presented in Figure 1b.
The compression of rubber materials, considering friction between specimen and loading instrument
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surfaces, will also cause a similar shape effect. However, the rubber’s stiffness will be smaller when
compared to a bonded block due to some slippage of the edges [9].

  
(a) (b) 

Figure 1. Compression behaviour of a rubber block: (a) no friction between surfaces; (b) between
bonded surfaces.

For example, considering frictional contact compression on two blocks with the same area and
different thicknesses, the sample with lower thickness will present higher stiffness. This effect is related
to the ratio between loaded area and total free area, also known as shape factor [10,12]. For disks and
rectangular blocks, it can be determined by Equations (1) and (2), respectively:

fdisk =
D
4T

(1)

fblock =
LW

2T(L + W)
(2)

with L and W are the length and width of a block, T corresponds to the thickness and D to the diameter
of a cylinder.

Another aspect that has been considered by several authors is the effect of the rubber’s hardness.
A softer material presents higher deformation at a certain load level compared with a material
with higher hardness. To describe this effect, mathematical relationships between hardness and
Young’s modulus (E0) have been developed by several authors with applications on different types of
rubbers [13–15].

Mathematical models relating the compression behaviour with bonded contact and Young’s
modulus can also be found in the literature. Several works present different types of expressions for the
approximated solution of the relation between apparent compression and Young’s moduli [12,16–21].
Some of these studies are described in the literature review section. However, most of the analytical
models developed only focus on disk geometry and/or assume a condition of material incompressibility,
restricting its application to cork–rubber materials.

The existence of a relation between moduli can be useful, for example, to estimate Young’s
modulus value of a cork–rubber material and use it to evaluate the performance of an isolation pad
with other dimensions, reducing the need of several experimental testing. Thus, the goal of the present
study focuses on finding a relationship between compression with and without frictional surfaces. A set
of different square cross-section blocks composed of cork–rubber materials, characterised by a linear
region below 10% strain, was chosen to determine a relation between Young and apparent compression
moduli, based on finite element analysis results. A comparison of the proposed methodology with
other analytical models, relating Young and apparent compression moduli, was also conducted for
validation purposes.
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2. Literature Review on the Relation between Young and Apparent Compression Moduli

One of the first models was proposed by Gent and Lindley [12]. Considering a disk sample and
assuming a condition of total incompressibility, the resultant apparent compression modulus can be
determined by Equation (3), considering the geometry of the specimen [12]:

Ec = E0
(
1 + 2 f 2

)
(3)

where f is the shape factor. Other cross-section geometries and loading modes are studied in [22].
Another aspect of the relation between moduli noticed, and accounted for in the work of Gent and
Lindley [12], was the influence of bulk modulus for blocks with large shape factors.

The study presented by Horton et al. [19] did not follow the same assumption of a parabolic
deformation of lateral surfaces considered in [12]. Thus, another approach to the problem of compression
loading was performed based on a superposition method. The expression determined by the authors
also included the effect of bulk modulus (K), as presented in Equation (4), for the case of circular
cross-section blocks:

1
Ec

=
1

E0

⎡⎢⎢⎢⎢⎣1− f

√
2
3

tanh

⎛⎜⎜⎜⎜⎝ 1
f

√
3
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦+ 1

K
. (4)

Lindley [16] developed theoretical relations for the compression moduli of blocks with circular
and cross-section for soft elastic materials, following the same assumptions used for incompressible
materials in the Gent and Lindley’s study [12]. The approach was validated by the results’ agreement
with finite element analysis. For circular cross-section blocks, the resultant analytical expressions for
the determination of apparent compression modulus are presented:

Ec = 2G +
λG
E3

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 + 3
8
λ
E3

(w
h

)2
⎛⎜⎜⎜⎜⎜⎜⎜⎝1−

G
(

w
h

)2

2E3 +
33
32 G

(
w
h

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦, w < w2 (5)

Ec = λ+ 2G− λ
2

15E3

w2

w

(
8− w2

w

)
, w ≥ w2 (6)

where G is shear modulus, λ is second Lamé constant, w is the width of the cross-section and h is the
thickness of the block. The parameters E3 and w2 are calculated using Equations (7) and (8):

E3 = λ+ G (7)

w2 =

√
64E3h2

15G
(8)

A simpler model to determine the relationship between apparent compression and Young’s
moduli was proposed by Williams and Gamonpilas [20] for disks. The resulting equation is only
dependent on Poisson’s ratio (ν) and aspect ratio (S)—ratio between the radius and thickness—and is
presented in Equation (9):

Ec

E0
=

1 + 3ν
(

1−ν
1+ν

)
S2

1 + 3ν(1− 2ν)S2 (9)

Discussion about the compression behaviour of elastomer materials continues as other conditions
are considered to the problem solving, and mathematical models’ performance is compared against
experimental testing data [23,24]. Other conditions studied include the influence of the boundary
condition type, such as the existence of frictional contact between sample and plates [21,25–28] and the
application of non-linear models for large strains [29], for example.
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3. Materials and Methods

The methodology followed in this study is presented in Figure 2. Given a certain geometry
and Young’s modulus and Poisson’s ratio values obtained through an experimental compression
test—without friction between sample and loading plates—a simulation of the compression behaviour
considering a frictional contact can be performed through Finite Element Analysis (FEA). The results
obtained from the numerical analysis can then be used for determining a relationship between the two
testing configurations. A detailed description of the methodology steps is given below.

 
Figure 2. Methodology scheme.

Regarding experimental methods, two compression tests were performed, considering frictionless
and frictional contact between sample and loading plates. To simulate frictionless contact, lubricated
plates were used. The value of Young’s modulus was calculated based on load-displacement data from
that experiment. Poisson’s ratio of cork–rubber materials was also determined based on an internal
experimental procedure. This value was obtained through the measurement of lateral deformation,
using a probe indicator until a maximum of 20% axial strain. In this study, assuming an isotropic
material behaviour, the Poisson’s ratio obtained for the cork–rubber composites had a value of 0.31.
About the experimental testing with frictional contact, no lubricant or rough surface was applied
between the sample and compression plates. All the samples tested have the same square cross-section,
differing only in thickness.

Based on the values of Young’s modulus obtained by experimental tests, the compression
behaviour of different geometries of a cork–rubber compound was simulated, employing finite element
analysis. Simulations were performed using ANSYS Mechanical. The experimental setup and 3-D
finite element model are presented in Figure 3. The finite element model was composed of a solid
block, representing the cork–rubber specimen, placed between two surfaces. The numerical analysis
consisted of simulating the compression machine displacement in contact with one of the surfaces of a
cork–rubber block, recording as output the reaction force on the opposite surface. For that, rigid joints
were employed on each surface: one with a fixed condition on all degrees of freedom, and another
with only free translation on the load direction. Two contact options—rough and frictionless—were
also employed to simulate the experimental method, according to the respective testing condition.

In this study, to model the compression behaviour of cork rubber composites, Hooke’s Law
was considered, since these materials present a linear region at small strains [22]. These values of
deformation usually correspond to the application range of the cork–rubber vibration isolation pads,
which simplifies the problem under study. However, at higher strains, the use of non-linear models is
recommended [4,7,20]. The value of Poisson’s ratio used as an input for numerical analysis was the
same for all simulations performed since all tested materials presented similar results for that parameter.
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(a) (b) 

Figure 3. Compression of a cork–rubber sample: (a) Experimental setup; (b) Finite element model.

With the results from the numerical analysis of frictional contact between surfaces-stress and strain
data, the apparent compression modulus was calculated for different geometries, using Equation (10):

Ec =
σ
ε

(10)

where σ is stress and ε is strain. Then, the apparent compression modulus was related to Young’s
modulus for each shape factor.

Finally, for validation purposes, the results obtained by FEA for frictional contact were compared
to samples tested experimentally. In addition, the results concerning the application of the methodology
proposed in this article were compared against results obtained by the application of Lindley [16] and
Williams’ [20] models.

4. Results

The results from experimental and simulated compression tests are described first, according to
the contact type for comparison and validation of the approach developed. Then, using simulation
results, the relation between Young and apparent compression moduli for each shape factor defined is
presented. Figure 4 demonstrates a typical stress–strain plot for a cork–rubber composite, considering
a frictional contact. These materials exhibit a linear behaviour of up to approximately 10% strain.
Considering this, all results presented in this study correspond to a maximum strain of 10%, since all
samples demonstrated a linear behaviour until this point.

 
Figure 4. Stress–strain plot of a cork–rubber composite with frictional contact between loading surfaces
(solid line).
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4.1. Comparison between Experimental and Simulation Results: Frictionless Contact

An experimental compression test using lubricated plates was conducted to validate the application
of the finite element analysis for this problem. From the same cork–rubber compound, three blocks,
with an equal square cross-section and different thicknesses, were tested. Based on experimental
force-deflection data, Young’s modulus was estimated for small deformations, under 10% strain.
The results obtained from the experiments, in terms of stress–strain curves, are presented in Figure 5.
As it was possible to verify, with a frictionless condition, the results between different samples were
independent of the geometry or shape factor. Furthermore, comparing experimental with numerical
results, for each sample, it was possible to observe that it had very similar results (Figure 6).

Figure 5. Experimental results for different shape factors: 0.75 (blue), 0.5 (red) and 0.3 (green).

Figure 6. Comparison between experimental and simulation results for different shape factors: 0.75 (blue),
0.5 (red) and 0.3 (green).

4.2. Relation between Young and Apparent Compression Moduli

In the matter of frictional contact between sample and plates, different values of Young’s modulus
and shape factors were introduced as inputs for simulating compression behaviour. The values of
Young’s modulus were based on the results obtained for four different cork–rubber materials with
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distinct hardness. Regarding geometry, all models considered had the same square cross-section differing
only in thickness. With each analysis results, the apparent compression modulus was calculated by the
ratio between stress obtained for a certain strain—in this study, a 10% strain was considered.

A plot between Young and apparent compression moduli, for each shape factor, is presented in
Figure 7a. A linear relationship between the two parameters is noticeable. The ratio between Young
and apparent compression moduli, for each shape factor, is presented in Figure 7b.

  
(a) (b) 

Figure 7. (a) The relation between Young and apparent compression moduli; (b) Ratio between moduli
according to shape factor.

Figure 8 presents stress–strain plots for two values of Young’s modulus, for several shape factors,
to highlight differences between distinct stiffness material compounds. With higher stiffness materials,
there seemed to exist more significant differences between shape factors.

Figure 8. Stress–strain plots of samples with different Young’s modulus and shape factors.

4.3. Comparison between Experimental and Simulation Results: Frictional Contact

Regarding the compression without lubricant between rubber block samples and plates, a comparison
between experimental and simulation results was also performed to evaluate the performance of the
proposed simulation approach.

Based on the experimentally determined apparent compression modulus, Young’s modulus
used as input for the FEA experiment was determined using the relation obtained according to the
specimen’s shape factor, as presented in Figure 7b. The resulting reaction forces to approximately
10% strain were compared with the results from experimental compression tests. Figure 9 presents
the results for samples with 1.5 and 0.75 shape factors values. As is it possible to observe, the results
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of both approaches were relatively close, although there was a better agreement regarding the lower
shape factor example.

  
(a) (b) 

Figure 9. Load-deflection results for square cross-section blocks: (a) shape factor of 1.5; (b) shape factor of 0.75.

4.4. Comparison between Experimental and Simulation Results: Frictional Contact

The ratio of apparent compression modulus and Young’s modulus, obtained from the presented
methodology, was compared with the results obtained by the application of models developed by
Lindley [16] and Williams’ [20] models. Table 1 presents the FEA results for two types of cross-section-
circular and -square, and the results obtained from the application of the two theoretical models
regarding a cylinder shape. There were few differences in the relation between Young (E0) and apparent
compression moduli (Ec) between FEA data concerning the shape of the cross-section. The parameters’
values and maximum differences between analytical and numerical approaches are presented in
Table 1.

Table 1. Comparison of models to estimate the ratio of apparent compression modulus and Young’s modulus.

Thickness Shape Factor

FEA
Lindley [16] Williams [20]

Square Circular

Ec/E0 Ec/E0 Ec/E0 Error Ec/E0 Error

10 1.5 1.29 1.28 1.28 0.9% 1.29 −0.3%
20 0.75 1.21 1.19 1.19 1.9% 1.17 3.5%
30 0.5 1.15 1.13 1.13 2.2% 1.10 4.5%
50 0.3 1.09 1.07 1.06 2.3% 1.04 4.1%

For the range of shape factors considered, it was possible to notice that differences between the
application of analytical models and the finite element approach did not exceed 5%. Although the
maximum error occurs when the geometry considered for the theoretical models and finite-element
simulations are not identical-based on the assumption that, in this case, the same shape factor geometries
had similar compression behaviour, there seemed to be a good correspondence between results. Overall,
the FEA approach seemed to show a closer agreement with results from Lindley’s model, rather than
Williams’, probably due to the increased complexity of the first theoretical model.

5. Conclusions

To determine the axial deformation of cork–rubber square cross-section blocks when subject to
compression between two surfaces with frictional contact, a methodology for estimating the relation
between Young and apparent compression moduli was presented. Although there are many analytical
models available in the literature for rubber materials, the use of finite element analysis introduces the
advantage of providing results according to specific cork–rubber composite properties and geometries.
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Based on experimental data of frictionless compression tests, the relation between Young’s modulus
and apparent compression modulus was determined for some shape factors, recurring to FEA.

The results from numerical analysis indicated a linear relationship between the two moduli for the
same shape factor. In addition, regarding frictional contact, the results showed an increase in stiffness
for higher shape factors, as is verified and reported in other theoretical models. For the range of shape
factors studied, Young’s modulus of cork–rubber composites corresponded to more than 75% of the
value of apparent compression modulus. The outputs retrieved from the analysis were compared
against experimental compression results with frictional contact. Although relatively close, a better
agreement was achieved for the sample with the lowest shape factor. A comparison between the FEA
approach and two theoretical models used to evaluate cylinder shapes, was performed. The maximum
error between FEA and analytical models was below 5%. Furthermore, for the case study presented,
the differences between the use of a disk or a square cross-section block were small, considering the
same shape factor and thickness.

The results obtained in this study are limited to a specific type of cork–rubber materials, where the
assumption of Hooke’s Law under small strain compression applies. Furthermore, only four different
shape factors were analysed, and it was assumed that the behaviour of frictional contact was very
similar to a bonded contact type. Future research should address the effect of higher shape factors,
other cross-section shapes (rectangular and other polygons), and the friction coefficient between sample
and loading surfaces. Moreover, applying this knowledge and relating it to the dynamic compression
behaviour of isolation pads could be a topic of interest.
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