284 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A new optimized demand management system for smart grid-based residential buildings adopting renewable and storage energies

    Get PDF
    Demand Side Management (DSM) implies intelligently managing load appliances in a Smart Grid (SG). DSM programs help customers save money by reducing their electricity bills, minimizing the utilityā€™s peak demand, and improving load factor. To achieve these goals, this paper proposes a new load shifting-based optimal DSM model for scheduling residential usersā€™ appliances. The proposed system effectively handles the challenges raised in the literature regarding the absence of using recent, easy, and more robust optimization techniques, a comparison procedure with well-established ones, using Renewable Energy Resources (RERs), Renewable Energy Storage (RES), and adopting consumer comfort. This system uses recent algorithms called Virulence Optimization Algorithm (VOA) and Earth Worm Optimization Algorithm (EWOA) for optimally shifting the time slots of shiftable appliances. The system adopts RERs, RES, as well as utility grid energy for supplying load appliances. This system takes into account user preferences, timing factors for each appliance, and a pricing signal for relocating shiftable appliances to flatten the energy demand profile. In order to figure out how much electricity users will have to pay, a Time Of Use (TOU) dynamic pricing scheme has been used. Using MATLAB simulation environment, we have made effectiveness-based comparisons of the adopted optimization algorithms with the well-established meta-heuristics and evolutionary algorithms (Genetic Algorithm (GA), Cuckoo Search Optimization (CSO), and Binary Particle Swarm Optimization (BPSO) in order to determine the most efficient one. Without adopting RES, the results indicate that VOA outperforms the other algorithms. The VOA enables 59% minimization in Peak-to-Average Ratio (PAR) of consumption energy and is more robust than other competitors. By incorporating RES, the EWOA, alongside the VOA, provides less deviation and a lower PAR. The VOA saves 76.19% of PAR, and the EWOA saves 73.8%, followed by the BPSO, GA, and CSO, respectively. The electricity consumption using VOA and EWOA-based DSM cost 217 and 210 USD cents, respectively, whereas non-scheduled consumption costs 273 USD cents and scheduling based on BPSO, GA, and CSO costs 219, 220, and 222 USD cents.publishedVersio

    Desain dan Implementasi Smart Home Konsumsi Daya Rendah Menggunakan Algoritma Optimisasi Cuckoo-Earthworm

    Get PDF
    Penggunaan energi merupakan hal yang paling penting pada sistem smart home, karena dengan energi yang kecil maka sistem smart home akan semakin efisien dan juga ekonomis. Konsumsi energi pada sistem smart home dioptimalkan dengan teknik penjadwalan peralatan secara real time berdasarkan harga listrik pada saat itu dan persentase kenyamanan pengguna dimana konsumsi daya setiap peralatan diatur untuk melakukan penghematan. Melalui pendekatan ini pengguna dapat menentukan tingkat kenyamanan secara fleksibel untuk melakukan penghematan tanpa mengurangi kenyamanan yang diperoleh dari setiap peralatan rumah tangga. Algoritma Cuckoo-Earthworm digunakan untuk proses penjadwalan peralatan secara real time. Sistem smart home dilengkapi dengan Raspberry Pi3 sebagai HUB controller dan Smart Plug yang digunakan untuk monitor energi yang digunakan pada setiap peralatan dan juga sebagai switch untuk melakukan penjadwalan. Komunikasi antara HUB controller dan setiap device menggunakan jaringan Z-Wave. Untuk user interface menggunakan Home Assistant. Pada implemetasi sistem smart home dengan daya rendah menggunakan algoritma Cuckoo-Eartworm kali ini didapatkan pengurangan biaya mencapai 41.39% dan energi mencapai 32.52% dari peralatan yang tidak terjadwal pada tingkat kenyamanan terendah

    Load Balancer using Whale-Earthworm Optimization for Efficient Resource Scheduling in the IoT-Fog-Cloud Framework

    Get PDF
    Cloud-Fog environment is useful in offering optimized services to customers in their daily routine tasks. With the exponential usage of IoT devices, a huge scale of data is generated. Different service providers use optimization scheduling approaches to optimally allocate the scarce resources in the Fog computing environment to meet job deadlines. This study introduces the Whale-EarthWorm Optimization method (WEOA), a powerful hybrid optimization method for improving resource management in the Cloud-Fog environment. Striking a balance between exploration and exploitation of these approaches is difficult, if only Earthworm or Whale optimization methods are used. Earthworm technique can result in inefficiency due to its investigations and additional overhead, whereas Whale algorithm, may leave scope for improvement in finding the optimal solutions using its exploitation.  This research introduces an efficient task allocation method as a novel load balancer. It leverages an enhanced exploration phase inspired by the Earthworm algorithm and an improved exploitation phase inspired by the Whale algorithm to manage the optimization process. It shows a notable performance enhancement, with a 6% reduction in response time, a 2% decrease in cost, and a 2% improvement in makespan over EEOA. Furthermore, when compared to other approaches like h-DEWOA, CSDEO, CSPSO, and BLEMO, the proposed method achieves remarkable results, with response time reductions of up to 82%, cost reductions of up to 75%, and makespan improvements of up to 80%

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Deep learning application detecting SARS-CoV-2 key enzymes inhibitors.

    Get PDF
    The fast spread of the COVID-19 over the world pressured scientists to find its cures. Especially, with the disastrous results, it engendered from human life losses to long-term impacts on infected people's health and the huge financial losses. In addition to the massive efforts made by researchers and medicals on finding safe, smart, fast, and efficient methods to accurately make an early diagnosis of the COVID-19. Some researchers focused on finding drugs to treat the disease and its symptoms, others worked on creating effective vaccines, while several concentrated on finding inhibitors for the key enzymes of the virus, to reduce its spreading and reproduction inside the human body. These enzymes' inhibitors are usually found in aliments, plants, fungi, or even in some drugs. Since these inhibitors slow and halt the replication of the virus in the human body, they can help fight it at an early stage saving the patient from death risk. Moreover, if the human body's immune system gets rid of the virus at the early stage it can be spared from the disastrous sequels it may leave inside the patient's body. Our research aims to find aliments and plants that are rich in these inhibitors. In this paper, we developed a deep learning application that is trained with various aliments, plants, and drugs to detect if a component contains SARS-CoV-2 key inhibitor(s) intending to help them find more sources containing these inhibitors. The application is trained to identify various sources rich in thirteen coronavirus-2 key inhibitors. The sources are currently just aliments, plants, and seeds and the identification is done by their names

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighborsā€™ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Recursive convex approximations for optimal power flow solution in direct current networks

    Get PDF
    The optimal power flow problem in direct current (DC) networks considering dispersal generation is addressed in this paper from the recursive programming point of view. The nonlinear programming model is transformed into two quadratic programming approximations that are convex since the power balance constraint is approximated between affine equivalents. These models are recursively (iteratively) solved from the initial point vt equal to 1.0 pu with t equal to 0, until that the error between both consecutive voltage iterations reaches the desired convergence criteria. The main advantage of the proposed quadratic programming models is that the global optimum finding is ensured due to the convexity of the solution space around vt. Numerical results in the DC version of the IEEE 69-bus system demonstrate the effectiveness and robustness of both proposals when compared with classical metaheuristic approaches such as particle swarm and antlion optimizers, among others. All the numerical validations are carried out in the MATLAB programming environment version 2021b with the software for disciplined convex programming known as CVX tool in conjuction with the Gurobi solver version 9.0; while the metaheuristic optimizers are directly implemented in the MATLAB scripts

    Recent techniques used in home energy management systems: a review

    Get PDF
    Power systems are going through a transition period. Consumers want more active participation in electric system management, namely assuming the role of producersā€“consumers, prosumers in short. The prosumersā€™ energy production is heavily based on renewable energy sources, which, besides recognized environmental benefits, entails energy management challenges. For instance, energy consumption of appliances in a home can lead to misleading patterns. Another challenge is related to energy costs since inefficient systems or unbalanced energy control may represent economic loss to the prosumer. The so-called home energy management systems (HEMS) emerge as a solution. When well-designed HEMS allow prosumers to reach higher levels of energy management, this ensures optimal management of assets and appliances. This paper aims to present a comprehensive systematic review of the literature on optimization techniques recently used in the development of HEMS, also taking into account the key factors that can influence the development of HEMS at a technical and computational level. The systematic review covers the period 2018ā€“2021. As a result of the review, the major developments in the field of HEMS in recent years are presented in an integrated manner. In addition, the techniques are divided into four broad categories: traditional techniques, model predictive control, heuristics and metaheuristics, and other techniques.info:eu-repo/semantics/publishedVersio

    An Improved ABC Algorithm for Energy Management of Microgrid

    Get PDF
    Microgrids are an ideal way of electricity generation, distribution, and regulation for customers by means of distributed energy resources on the community level. However, due to the randomness of photovoltaic and wind power generation, it is a crucial and difficult problem to achieve optimal economic dispatch in microgrids. In this paper, we present an optimal economic dispatch solution for a microgrid by the improved artificial bee colony (ABC) optimization, with the aim of satisfying load and balance demand while minimizing the cost of power generation and gas emission. Firstly, we construct a mathematical model according to different characteristics of distributed generation units and loads, and improve the performance of global convergence for ABC in order to fit such model. Secondly, we explore how to solve the optimal economic dispatch problem by the improved ABC and give the essential steps. Thirdly, we carry out several simulations and the results illustrate the benefits and effectiveness of the proposed approach for optimal economic dispatch in microgrid
    • ā€¦
    corecore