41 research outputs found

    Verifiably Encrypted Signatures with Short Keys based on the Decisional Linear Problem and Obfuscation for Encrypted VES

    Get PDF
    Verifiably encrypted signatures (VES) are signatures encrypted by a public key of a trusted third party and we can verify their validity without decryption. This paper proposes a new VES scheme which is secure under the decisional linear (DLIN) assumption in the standard model. We also propose new obfuscators for encrypted signatures (ES) and encrypted VES (EVES) which are secure under the DLIN assumption. All previous efficient VES schemes in the standard model are either secure under standard assumptions (such as the computational Diffie-Hellman assumption) with large verification (or secret) keys or secure under \emph{(non-standard) dynamic qq-type assumptions} (such as the qq-strong Diffie-Hellman extraction assumption) with short verification keys. Our construction is the first efficient VES scheme with short verification (and secret) keys secure under \emph{a standard assumption (DLIN)}. As by-products of our VES scheme, we construct new obfuscators for ES/EVES based on our new VES scheme. They are more efficient than previous obfuscators with respect to the public key size. Previous obfuscators for EVES are secure under non-standard assumption and use zero-knowledge (ZK) proof systems and Fiat-Shamir heuristics to obtain non-interactive ZK, i.e., its security is considered in the random oracle model. Thus, our construction also has an advantage with respect to assumptions and security models. Our new obfuscator for ES is obtained from our new obfuscator for EVES

    Assumptions, Efficiency and Trust in Non-Interactive Zero-Knowledge Proofs

    Get PDF
    Vi lever i en digital verden. En betydelig del av livene våre skjer på nettet, og vi bruker internett for stadig flere formål og er avhengig av stadig mer avansert teknologi. Det er derfor viktig å beskytte seg mot ondsinnede aktører som kan forsøke å utnytte denne avhengigheten for egen vinning. Kryptografi er en sentral del av svaret på hvordan man kan beskytte internettbrukere. Historisk sett har kryptografi hovedsakelig vært opptatt av konfidensiell kommunikasjon, altså at ingen kan lese private meldinger sendt mellom to personer. I de siste tiårene har kryptografi blitt mer opptatt av å lage protokoller som garanterer personvern selv om man kan gjennomføre komplekse handlinger. Et viktig kryptografisk verktøy for å sikre at disse protokollene faktisk følges er kunnskapsløse bevis. Et kunnskapsløst bevis er en prosess hvor to parter, en bevisfører og en attestant, utveksler meldinger for å overbevise attestanten om at bevisføreren fulgte protokollen riktig (hvis dette faktisk er tilfelle) uten å avsløre privat informasjon til attestanten. For de fleste anvendelser er det ønskelig å lage et ikke-interaktivt kunnskapsløst bevis (IIK-bevis), der bevisføreren kun sender én melding til attestanten. IIK-bevis har en rekke ulike bruksområder, som gjør de til attraktive studieobjekter. Et IIK-bevis har en rekke ulike egenskaper og forbedring av noen av disse fremmer vår kollektive kryptografiske kunnskap. I den første artikkelen i denne avhandlingen konstruerer vi et nytt ikke-interaktivt kunnskapsløst bevis for språk basert på algebraiske mengder. Denne artikkelen er basert på arbeid av Couteau og Hartmann (Crypto 2020), som viste hvordan man omformer et bestemt interaktivt kunnskapsløst bevis til et IIK-bevis. Vi følger deres tilnærming, men vi bruker et annet interaktivt kunnskapsløst bevis. Dette fører til en forbedring sammenlignet med arbeidet deres på flere områder, spesielt når det gjelder både formodninger og effektivitet. I den andre artikkelen i denne avhandlingen studerer vi egenskapene til ikke-interaktive kunnskapsløse bevis som er motstandsdyktige mot undergraving. Det er umulig å lage et IIK-bevis uten å stole på en felles referansestreng (FRS) generert av en pålitelig tredjepart. Men det finnes eksempler på IIK-bevis der ingen lærer noe privat informasjon fra beviset selv om den felles referansestrengen ble skapt på en uredelig måte. I denne artikkelen lager vi en ny kryptografisk primitiv (verifiserbart-uttrekkbare enveisfunksjoner) og viser hvordan denne primitiven er relatert til IIK-bevis med den ovennevnte egenskapen.We live in a digital world. A significant part of our lives happens online, and we use the internet for incredibly many different purposes and we rely on increasingly advanced technology. It therefore is important to protect against malicious actors who may try to exploit this reliance for their own gain. Cryptography is a key part of the answer to protecting internet users. Historically, cryptography has mainly been focused on maintaining the confidentiality of communication, ensuring that no one can read private messages sent between people. In recent decades, cryptography has become concerned with creating protocols which guarantee privacy even as they support more complex actions. A crucial cryptographic tool to ensure that these protocols are indeed followed is the zero-knowledge proof. A zero-knowledge proof is a process where two parties, a prover and a verifier, exchange messages to convince the verifier that the prover followed the protocol correctly (if indeed the prover did so) without revealing any private information to the verifier. It is often desirable to create a non-interactive zero-knowledge proof (NIZK), where the prover only sends one message to the verifier. NIZKs have found a number of different applications, which makes them an attractive object of study. A NIZK has a variety of different properties, and improving any of these aspects advances our collective cryptographic knowledge. In the first paper in this thesis, we construct a new non-interactive zero-knowledge proof for languages based on algebraic sets. This paper is based on work by Couteau and Hartmann (Crypto 2020), which showed how to convert a particular interactive zero-knowledge proof to a NIZK. We follow their approach, but we start with a different interactive zero-knowledge proof. This leads to an improvement compared to their work in several ways, in particular in terms of both assumptions and efficiency. In the second paper in this thesis, we study the property of subversion zero-knowledge in non-interactive zero-knowledge proofs. It is impossible to create a NIZK without relying on a common reference string (CRS) generated by a trusted party. However, a NIZK with the subversion zero-knowledge property guarantees that no one learns any private information from the proof even if the CRS was generated dishonestly. In this paper, we create a new cryptographic primitive (verifiably-extractable one-way functions) and show how this primitive relates to NIZKs with subversion zero-knowledge.Doktorgradsavhandlin

    On Structure-Preserving Cryptography and Lattices

    Get PDF
    The Groth-Sahai proof system is a highly efficient pairing-based proof system for a specific class of group-based languages. Cryptographic primitives that are compatible with these languages (such that we can express, e.g., that a ciphertext contains a valid signature for a given message) are called structure-preserving . The combination of structure-preserving primitives with Groth-Sahai proofs allows to prove complex statements that involve encryptions and signatures, and has proved useful in a variety of applications. However, so far, the concept of structure-preserving cryptography has been confined to the pairing setting. In this work, we propose the first framework for structure-preserving cryptography in the lattice setting. Concretely, we - define structure-preserving sets as an abstraction of (typically noisy) lattice-based languages, - formalize a notion of generalized structure-preserving encryption and signature schemes capturing a number of existing lattice-based encryption and signature schemes), - construct a compatible zero-knowledge argument system that allows to argue about lattice-based structure-preserving primitives, - offer a lattice-based construction of verifiably encrypted signatures in our framework. Along the way, we also discover a new and efficient strongly secure lattice-based signature scheme. This scheme combines Rückert\u27s lattice-based signature scheme with the lattice delegation strategy of Agrawal et al., which yields more compact and efficient signatures. We hope that our framework provides a first step towards a modular and versatile treatment of cryptographic primitives in the lattice setting

    Verifiable Elections That Scale for Free

    Get PDF
    In order to guarantee a fair and transparent voting process, electronic voting schemes must be verifiable. Most of the time, however, it is important that elections also be anonymous. The notion of a verifiable shuffle describes how to satisfy both properties at the same time: ballots are submitted to a public bulletin board in encrypted form, verifiably shuffled by several mix servers (thus guaranteeing anonymity), and then verifiably decrypted by an appropriate threshold decryption mechanism. To guarantee transparency, the intermediate shuffles and decryption results, together with proofs of their correctness, are posted on the bulletin board throughout this process. In this paper, we present a verifiable shuffle and threshold decryption scheme in which, for security parameter k, L voters, M mix servers, and N decryption servers, the proof that the end tally corresponds to the original encrypted ballots is only O(k(L + M + N)) bits long. Previous verifiable shuffle constructions had proofs of size O(kLM + kLN), which, for elections with thousands of voters, mix servers, and decryption servers, meant that verifying an election on an ordinary computer in a reasonable amount of time was out of the question. The linchpin of each construction is a controlled-malleable proof (cm-NIZK), which allows each server, in turn, to take a current set of ciphertexts and a proof that the computation done by other servers has proceeded correctly so far. After shuffling or partially decrypting these ciphertexts, the server can also update the proof of correctness, obtaining as a result a cumulative proof that the computation is correct so far. In order to verify the end result, it is therefore sufficient to verify just the proof produced by the last server

    Succinct Publicly-Certifiable Proofs (or: Can a Blockchain Verify a Designated-Verifier Proof?)

    Get PDF
    We study zero-knowledge arguments where proofs are: of knowledge, short, publicly-verifiable and produced without interaction. While zkSNARKs satisfy these requirements, we build such proofs in a constrained theoretical setting: in the standard-model---i.e., without a random oracle---and without assuming public-verifiable SNARKs (or even NIZKs, for some of our constructions) or primitives currently known to imply them. We model and construct a new primitive, SPuC (Succinct Publicly-Certifiable System), where: a party can prove knowledge of a witness ww by publishing a proof π0\pi_0; the latter can then be certified non-interactively by a committee sharing a secret; any party in the system can now verify the proof through its certificates; the total communication complexity should be sublinear in w|w|. We construct SPuCs generally from (leveled) Threshold FHE, homomorphic signatures and linear-only encryption, all instantiatable from lattices and thus plausibly quantum-resistant. We also construct them in the two-party case replacing TFHE with the simpler primitive of homomorphic secret-sharing. Our model has practical applications in blockchains and in other protocols where there exist committees sharing a secret and it is necessary for parties to prove knowledge of a solution to some puzzle. We show that one can construct a version of SPuCs with robust proactive security from similar assumptions. In a proactively secure model the committee reshares its secret from time to time. Such a model is robust if the committee members can prove they performed this resharing step correctly. Along the way to our goal we define and build Proactive Universal Thresholdizers, a proactive version of the Universal Thresholdizer defined in Boneh et al. [Crypto 2018]

    Short Randomizable Signatures

    Get PDF
    International audienceDigital signature is a fundamental primitive with numerous applications. Following the development of pairing-based cryptography, several taking advantage of this setting have been proposed. Among them, the Camenisch-Lysyanskaya (CL) signature scheme is one of the most flexible and has been used as a building block for many other protocols. Unfortunately, this scheme suffers from a linear size in the number of messages to be signed which limits its use in many situations. In this paper, we propose a new signature scheme with the same features as CL-signatures but without the linear-size drawback: our signature consists of only two elements, whatever the message length, and our algorithms are more efficient. This construction takes advantage of using type 3 pairings, that are already widely used for security and efficiency reasons. We prove the security of our scheme without random oracles but in the generic group model. Finally, we show that protocols using CL-signatures can easily be instantiated with ours, leading to much more efficient constructions

    Expanding Blockchain Horizons through Privacy-Preserving Computation

    Get PDF

    On a New, Efficient Framework for Falsifiable Non-interactive Zero-Knowledge Arguments

    Get PDF
    Et kunnskapsløst bevis er en protokoll mellom en bevisfører og en attestant. Bevisføreren har som mål å overbevise attestanten om at visse utsagn er korrekte, som besittelse av kortnummeret til et gyldig kredittkort, uten å avsløre noen private opplysninger, som for eksempel kortnummeret selv. I mange anvendelser er det ønskelig å bruke IIK-bevis (Ikke-interaktive kunnskapsløse bevis), der bevisføreren produserer kun en enkelt melding som kan bekreftes av mange attestanter. En ulempe er at sikre IIK-bevis for ikke-trivielle språk kun kan eksistere ved tilstedeværelsen av en pålitelig tredjepart som beregner en felles referansestreng som blir gjort tilgjengelig for både bevisføreren og attestanten. Når ingen slik part eksisterer liter man av og til på ikke-interaktiv vitne-uskillbarhet, en svakere form for personvern. Studiet av effektive og sikre IIK-bevis er en kritisk del av kryptografi som har blomstret opp i det siste grunnet anvendelser i blokkjeder. I den første artikkelen konstruerer vi et nytt IIK-bevis for språkene som består av alle felles nullpunkter for en endelig mengde polynomer over en endelig kropp. Vi demonstrerer nytteverdien av beviset ved flerfoldige eksempler på anvendelser. Særlig verdt å merke seg er at det er mulig å gå nesten automatisk fra en beskrivelse av et språk på et høyt nivå til definisjonen av IIK-beviset, som minsker behovet for dedikert kryptografisk ekspertise. I den andre artikkelen konstruerer vi et IIV-bevis ved å bruke en ny kompilator. Vi utforsker begrepet Kunnskapslydighet (et sterkere sikkerhetsbegrep enn lydighet) for noen konstruksjoner av IIK-bevis. I den tredje artikkelen utvider vi arbeidet fra den første artikkelen ved å konstruere et nytt IIK-bevis for mengde-medlemskap som lar oss bevise at et element ligger, eller ikke ligger, i den gitte mengden. Flere nye konstruksjoner har bedre effektivitet sammenlignet med allerede kjente konstruksjoner.A zero-knowledge proof is a protocol between a prover, and a verifier. The prover aims to convince the verifier of the truth of some statement, such as possessing credentials for a valid credit card, without revealing any private information, such as the credentials themselves. In many applications, it is desirable to use NIZKs (Non-Interactive Zero Knowledge) proofs, where the prover sends outputs only a single message that can be verified by many verifiers. As a drawback, secure NIZKs for non-trivial languages can only exist in the presence of a trusted third party that computes a common reference string and makes it available to both the prover and verifier. When no such party exists, one sometimes relies on non interactive witness indistinguishability (NIWI), a weaker notion of privacy. The study of efficient and secure NIZKs is a crucial part of cryptography that has been thriving recently due to blockchain applications. In the first paper, we construct a new NIZK for the language of common zeros of a finite set of polynomials over a finite field. We demonstrate its usefulness by giving a large number of example applications. Notably, it is possible to go from a high-level language description to the definition of the NIZK almost automatically, lessening the need for dedicated cryptographic expertise. In the second paper, we construct a NIWI using a new compiler. We explore the notion of Knowledge Soundness (a security notion stronger than soundness) of some NIZK constructions. In the third paper, we extended the first paper’s work by constructing a new set (non-)membership NIZK that allows us to prove that an element belongs or does not belong to the given set. Many new constructions have better efficiency compared to already-known constructions.Doktorgradsavhandlin

    Structure-Preserving Signatures on Equivalence Classes and Constant-Size Anonymous Credentials

    Get PDF
    Structure-preserving signatures (SPS) are a powerful building block for cryptographic protocols. We introduce SPS on equivalence classes (SPS-EQ), which allow joint randomization of messages and signatures. Messages are projective equivalence classes defined on group element vectors, so multiplying a vector by a scalar yields a different representative of the same class. Our scheme lets one adapt a signature for one representative to a signature for another representative without knowledge of any secret. Moreover, given a signature, an adapted signature for a different representative is indistinguishable from a fresh signature on a random message. We propose a definitional framework for SPS-EQ and an efficient construction in Type-3 bilinear groups, which we prove secure against generic forgers. We also introduce set-commitment schemes that let one open subsets of the committed set. From this and SPS-EQ we then build an efficient multi-show attribute-based anonymous credential system for an arbitrary number of attributes. Our ABC system avoids costly zero-knowledge proofs and only requires a short interactive proof to thwart replay attacks. It is the first credential system whose bandwidth required for credential showing is independent of the number of its attributes, i.e., constant-size. We propose strengthened game-based security definitions for ABC and prove our scheme anonymous against malicious organizations in the standard model; finally, we discuss a concurrently secure variant in the CRS model

    Variants of Group Signatures and Their Applications

    Get PDF
    corecore