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Abstract. We study zero-knowledge arguments where proofs are: of
knowledge, short, publicly-verifiable and produced without interaction.
While zkSNARKs satisfy these requirements, we build such proofs in
a constrained theoretical setting: in the standard-model—i.e., without
a random oracle—and without assuming public-verifiable SNARKs (or
even NIZKs, for some of our constructions) or primitives currently known
to imply them.
We model and construct a new primitive, SPuC (Succinct Publicly-
Certifiable System), where: a party can prove knowledge of a witness w by
publishing a proof π0; the latter can then be certified non-interactively by
a committee sharing a secret; any party in the system can now verify the
proof through its certificates; the total communication complexity should
be sublinear in |w|. We construct SPuCs generally from (leveled) FHE,
homomorphic signatures and linear-only encryption, all instantiatable
from lattices and thus plausibly quantum-resistant. We also construct
them in the two-party case replacing FHE with the simpler primitive of
homomorphic secret-sharing.
Our model has practical applications in blockchains and in other proto-
cols where there exist committees sharing a secret and it is necessary for
parties to prove knowledge of a solution to some puzzle. Our construc-
tions can be seen as a way to compile a designated-verifier SNARK into
a proof system with a flavor of public-verifiability with similar efficiency
features of the starting dvSNARK (e.g., proving time).
We show that one can construct a version of SPuCs with robust proac-
tive security from similar assumptions. In a proactively secure model the
committee reshares its secret from time to time. Such a model is robust
if the committee members can prove they performed this resharing step
correctly. Along the way to our goal we define and build Proactive Uni-
versal Thresholdizers, a proactive version of the Universal Thresholdizer
defined in Boneh et al. [Crypto 2018].
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1 Introduction

We consider the setting where, at any given moment in time, users can post
a puzzle on a blockchain. Later some other user may come along and show to
everybody that they know a solution to the puzzle without necessarily leaking it
(i.e., in zero-knowledge). This scenario has numerous applications to problems
in secure decentralized computing that have received much attention lately—
these include but are not limited to: showing that the parties are following some
internal protocol [31], storing and retrieving secrets with functionalities close
to extractable witness encryption [33], zero-knowledge contingent payments [19]
and showing knowledge of secret inputs to general smart-contracts [17].

For a solution to the problem above to be useful, we do not only require that
all the users can verify the proof to a puzzle, but we also need to pose efficiency
requirements. A scalable solution should involve minimal interaction among par-
ties —ideally the puzzle-solver should post its proof and then disappear—and
low bandwidth—short proofs.

In principle, a perfect candidate for this setting are publicly-verifiable suc-
cinct non-interactive arguments of knowledge (or pv-SNARKs) [4] with zero-
knowledge properties. In this work, however, we shall seek solutions that do not
require publicly-verifiable SNARKs. Our choice is motivated by exploring dif-
ferent (and, plausibly, weaker) assumptions while obtaining post-quantum secure
constructions. In our solutions we do not only avoid using pv-SNARKs, but also
any publicly-verifiable proof for non-deterministic computations (that is, NIZKs
for NP \ P). We discuss the rationale of this choice in Section 1.2.

Committees certifying proofs without interaction. We consider a model which
is almost as non-interactive as that of pv-SNARKs, but in which we add one
more hop. At the high-level our model works as follows. At each moment in
time there exists a committee holding a secret (the secret being shared among
the committee members)1.This secret permits them to publicly “certify” a proof
publicly posted by anybody claiming they know a solution to a puzzle. Certifying
a proof happens in a threshold fashion: a prover holding a witness w, outputs a
succinct proof π0; the parties in the committee can then process it broadcasting
a “partial certificate”, which any node in the network can check whether to
consider it valid; if at least d (out of the total N) committee members broadcasted
a valid certificate, these can be combined through a deterministic algorithm to
obtain the bit b determining acceptance/rejection of π0. The protocol is required
to stay secure as long as the adversary corrupts less than a certain fraction of
committee members.

Naturally, a general MPC-based solution is always applicable in this sce-
nario. Our challenge, however, is to keep the efficiency requirements of low in-
teraction/bandwidth sketched above. Specifically we need to guarantee that: (i)
parties require no interaction among each other for proving, certification or ver-

1 Such a committee is not an uncommon architectural choice. See, e.g. [3, 29, 18]
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ification2; (ii) all messages—the proof π0 as well as the partial certificates—are
short (sublinear in the witness size).

YOSO-style proactive committees The requirements sketched above are sufficient
for the setting where a certifying committee is static (this is our vanilla SPuC
model in Section 4). We also study a version of our protocol where the committee
changes over time and can proactively reshare its shares. The challenge for us
is to make these protocols robust and YOSO-style, staying within our weak-
assumptions framework as much as possible. Requiring robustness means that
the resharing parties can prove whether they reshared correctly. YOSO (You
Only Speak Once) [29] requires more elaboration: when performing the resharing
(as well as in other parts of the protocol) parties should not interact among each
other, instead they speak only once and then can potentially disappear. For us,
the YOSO-style requirement means that, after the parties have been assigned
their roles as members of the certifying committees3 they need to speak only
once. Their message will consist of the certificate for the (potentially many)
proofs π0-s publicly posted during their time holding the role.

1.1 Contributions and Overview

1.1.1 A Model for SPuCs We provide a formal model for Succinct Publicly
Certifiable proofs (SPuCs), which we describe in Section 4. Our security notions
all refer to an adversary controlling up to d − 1 of the N committee members.
We require properties analogous to those for proof systems: unbounded zero-
knowledge—an adversary cannot learn anything even after (adaptively) querying
many proofs and certificates on them—and strong knowledge-soundness—given
an adversary providing a verifying proof and certificates for a statement stmt one
can extract a valid witness from them. The last notion can be paraphrased as: no
adversary can forge a certified proof π0 and (up to d−1) valid certificates for stmt
and π0 without knowing a witness for stmt. While these definitions intuitively
are extensions of the corresponding notions for designated-verifier NIZKs, we
find them to be non-trivial and require some care (for example, in modeling
appropriate oracles for the zero-knowledge simulator). Finally we require our
proofs and certificates to be of total size sublinear in the witness size.

1.1.2 A General Construction for SPuCs We provide a general construc-
tion for SPuCs from designated-verifier SNARKs and a primitive called Univer-
sal Thresholdizers (UT) introduced in [9]. Informally a UT generalizes threshold
primitives such as threshold encryption or signatures. The setup of a UT takes as

2 Naturally we require certifying parties to wait for proof π0 to be posted publicly.
3 This happens through some nomination mechanism that we just posit and do not
model explicitly in this paper. For example, one could use the nominating committee
techniques in [3]. After being nominated the committee members can potentially
remain anonymous to the rest of the network. This can be done for example through
ephemeral public-keys and anonymous public-key encryption [3]
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input a secret x and produces some public parameters and N secret keys which,
in our setting, will be given to the members of the certifying committee. These
allow the secret-holders to non-interactively and jointly compute any circuit C
on the secret without knowing the secret. Each of these “local computations”
from the secret holders can be verified as being valid. If at least d of them are
valid they can be recombined to reconstruct C(x).

Our second ingredient are designated-verifier (dv) SNARKs. In a dvSNARK a
proof π for a statement stmt can be verified only by a party holding a verification-
key vk through Verify(vk, stmt, π). To preserve soundness of the system it is im-
portant that the designated-verifier key remains secret from a malicious prover.

We show that thresholdizers from [9] can be used to construct SPuCs by
injecting x = vk as a secret in the UT and compute functions of the type
Cstmt,π(·) = Verify(·, stmt, π) through it. Although this construction is arguably
simple, showing we can apply UT to obtain our desired argument-like system
has some non-trivial aspects to it. First, despite the generality of the threshold-
like setting in the UT definition, its security definition is incompatible with that
in the SPuC setting: the latter involves additional oracles—e.g. a proof oracle
for true statements in the zero-knowledge experiment—and additional experi-
ments extractability. Second, we do not require the “full universality” of these
thresholdizers, but only that their supported computations include dvSNARK
verification. This may be a low-complexity computation, involving for example
a decryption and a zero-test on a low-degree polynomial [6]. This is significantly
less complex than the proven relation R. Finally, to obtain zero-knowledge in
SPuCs we observe that the dvSNARK used in the construction does not need
to satisfy the usual notion of zero-knowledge for designated-verifier NIZKs; a
weaker notion suffices. We introduce and model this notion, dubbed “key-less
zero-knowledge”, which we believe to be of independent interest. We show that
some existing dvSNARKs already satisfy this notion, namely all those obtained
through the popular compiler from Non-Interactive Linear Proofs (NILPs) [34]
described in [6]. We also observe that it is possible to obtain dvSNARKs satisfy-
ing this notion by compiling a (non zero-knowledge) pvSNARKs with a public-
key encryption scheme.

1.1.3 Quantum-Resistant Instantiations from Homomorphic Prim-
itives and Linear-Only Encryption By “opening the boxes” of UT and
dvSNARKs we show we can instantiate our SPuC construction requiring the
existence of: (leveled) Fully Homomorphic Encryption (FHE) [27]4, Homomor-
phic Signatures (HS) with context-hiding5 properties [32] and linear-only encryp-
tion [6, 12] (we require the existence of all these primitives). Given an encryption
of x, FHE allows computing an encryption of f(x) using only public parameters;
leveled FHE ensures correctness only for functions of a bounded depth d spec-

4 More precisely, we require leveled Threshold FHE, which is shown to be implied by
leveled FHE with the mild requirement of moderate decryption “noise bound”[9].

5 Context-hiding states that a signature σf,x, authenticating f(x) and obtained ho-
momorphically from a signature on x, reveals nothing about x.
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ified at setup time. HS allows to perform the same on signatures. Linear-only
encryption [6, 12] is a form of linearly-homomorphic encryption with guaranteed
limited malleability.

We elaborate more on the relation between publicly-verifiable NIZKs and
these abstract primitives in Section 1.2. Our construction for SPuCs is quantum-
resistant: all the above primitives can be instantiated from lattices. This is of par-
ticular relevance since there are no results on publicly-verifiable zero-knowledge
arguments with short proofs in the standard model. The only other construction
of pvNIZKs from lattices does not have succinct proofs [37]; the constructions
in [12, 13, 26] are for designated-verifiers.

One relatively minor challenge for us here is making sure that UT can be
built through the abstract primitives above. The construction for UT in [9] is
based on NIZKs, which we want to avoid. Although [9] informally mentions that
one could replace NIZKs with context-hiding homomorphic signatures, there is
no formal construction in the paper6.

We also show yet one more construction of UT for the two-party case re-
placing FHE with the simpler notion of (two-party) homomorphic secret sharing
(HSS), which can be also built from lattices [16]. An HSS scheme allows to share
a secret x and to let the share-holders compute shares of C(x) for any circuit C.

A practical perspective: If applied to an efficient dvSNARK—potentially one
more efficient than pvSNARKs—then one could leverage our constructions to
obtain a public-verifiability-flavored proof system preserving some of the effi-
ciency features of the starting dvSNARK (e.g. proving time and to some extent
succinctness). We believe our constructions can be practical: their overhead for
certifying dvSNARK proofs is arguably low since we apply homomorphic cryp-
tography to very small circuits (those for dvSNARK verification) and so is the
communication overhead for each certificate (whose number, however, scales with
the chosen threshold). Nonetheless it seems unclear what scheme could currently
be used for such instantiation. To the best of our knowledge, despite recent ad-
vances [35] it is still an open problem to obtain dvSNARKs without random
oracles that could beat pvSNARKs in practice (especially for prover’s time).

1.1.4 Proactive SPuCs from Proactive UT (pUT) We consider the set-
ting where the committee is not fixed but it can proactively reshare its secret
at every round without interaction. We construct a proactive variant of SPuCs
through a proactive variant of UT (pUT) which we introduce in this paper. The
construction of pSPuC from pUT is analog to that SPuC from UT, i.e. applying
a thresholdizer for a designated-verifier SNARK. Our model for proactive SPuCs
is straightforward once defining SPuCs and pUT.

A Construction of pUT from Special UT (sUT). To convert a UT into its proac-
tive version we need to enable the committee members to reshare (or “hand

6 A formal construction from homomorphic signatures is present in [10] but it relies
on the specifics of the underlying homomorphic encryption scheme.
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over”) their secret keys. Some prior techniques for doing this allow each party to
prove they are resharing correctly but they use NIZKs [3, 33]. For our alternative
approach, we observe that what needs to be handed over to the next committee
are reshares of some trapdoor computed inside the UT setup. We cannot directly
perform secret shares of it at handover time because there is no party holding
it (whoever computed it is now disappeared or it was not a single entity but a
protocol execution).

The solution to the problem above comes from UT itself. UT can be used
to verifiably compute functions on some secret obliviously (without knowing the
secret). Can we then extend UT to perform oblivious computation, not only
an injected secret x, but on its own trapdoor (a secret computed during the
execution of UT.Setup(x))? With this tool in our hands we could then let the
committee members obliviously compute some resharing function Reshare.

We show we can extend UT to support general (controlled) evaluations of its
own trapdoor obtaining a new primitive we call sUT. A sUT is like a UT but
it allows evaluations on two secrets: some secret x specified (through algorithm
sUT.PartEval) at setup time and its own trapdoor (through an analog of the
partial evaluation algorithm, called sUT.TrapEval). We are able to construct
sUT using almost the same assumptions as for UT: we still require homomorphic
signatures and FHE, but we need to also assume circular security of the latter
(namely, we should be able to securely encrypt its own decryption key in it).

We then show how to construct pUT by applying the algorithm TrapEval of
sUT on a function that generates a new secret and provides its share. Other
techniques of our construction for pUT are inspired by the YOSO-style ones
in [3] where the committee members of the new epoch can access their share
by opening a ciphertext encrypted with an ephemeral public key (of which they
only know the decryption key).

Both pUT and sUT are of independent interest and can be applied in contexts
of “cryptography-as-a-service” as those described in [3].

[16]

[9]

[32]

[6]

pUT

pSPuC

LWE HSS(2,2)

TFHE

UT(2,2)

sub-exp SIS

HS

UT

lin-only enc.

dvSNARK

SPuC(2,2)

sUT

SPuC

Fig. 1: Dependency diagram of assumptions and constructions. Suffix “(2, 2)”
denotes two-parties. The dashed line refers to non blackbox constructions and
additionally requires circular (KDM) security for the TFHE scheme. Plausible
constructions for linear-only encryption can be instantiated from LWE [12].
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1.2 Further Theoretical Motivation and Assumptions

Our goal is to build SPuCs through assumptions that are weaker than publicly-
verifiable zero-knowledge SNARKs and NIZKs. Also, our goal is to stay in the
standard model (without random oracles). In the next paragraphs we discuss
some of the motivation behind this and how our constructions relate to these
goals. Our hope is that this work can provide a new lens on constructions relying
on publicly-verifiable proof systems.
Through this work, we want to make the following observation:

In the standard model, we can obtain robust systems for succinct zero-
knowledge proofs, without interaction among the prover and verifier even
if publicly-verifiable NIZKs or SNARKs do not exist. It is possible to
extend these results to the case of proactive resharing without relying
on publicly-verifiable SNARKs.

Why not using publicly-verifiable SNARKs? We know that succinct arguments
in general require non-falsifiable assumptions (in case of black-box reductions)
[30]. Constructions of publicly-verifiable SNARKs usually go around this by: the
sometimes problematic Fiat-Shamir in the random-oracle model; knowledge-of-
exponent-like assumptions or idealized settings such as the generic or algebraic
group models (e.g., [34, 1, 24]). Since our constructions use results implying
designated-verifier SNARKs, we cannot get around the result in [30] and will
have underlying non-falsifiable assumption (those required for linear-only en-
cryption[6, 12]). Nonetheless we remark that our results still hold without a
random oracle and in the following paragraphs we argue that there is still an
advantage in moving from pvSNARKs to dvSNARKs as an assumption.

Assumptions in dvSNARKs vs in pvSNARKs. We observe it is plausible that
dvSNARKs may require strictly weaker assumptions than pvSNARKs. In fact,
we know that publicly-verifiable SNARKs are not a stronger primitive than
designated-verifier SNARKs since we can always construct the latter from pvS-
NARK by encrypting the proof under the verifier’s public key. We still do not
know whether there is a theoretical separation between these two notions though.

Even if dvSNARKs were not strictly weaker than pvSNARKs as a prim-
itive in the standard model, we might still obtain them from different (and,
potentially, more plausible) assumptions. For example, consider the pvSNARK
constructions in [25] and the dvSNARK constructions in [12, 13, 26]. Although
all non-falsifiable, the mathematical objects they refer to are quite different (re-
spectively, groups with bilinear pairings and lattices). We point that there also
exist other constructions in the standard model such as the publicly verifiable
arguments in [38], but they are based on the indistinguishability obfuscation,
which is yet not standard.

Finally, SPuCs and their constructions relying on dvSNARKs, can be moti-
vated by post-quantum security. We observe that, to the best of our knowledge,
there are no known constructions for pvSNARKs in the standard-model that
are resistant to quantum attacks. In fact, only recently the community learned
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about the possibility of post-quantum non-interactive zero-knowledge (with non-
succinct proofs) [37].

On not requiring publicly-verifiable NIZKs in general. Our constructions for
SPuCs not only do not require publicly-verifiable SNARKs, but they do not
require publicly-verifiable NIZKs in general either. None of the assumptions we
rely on—linear-only encryption, leveled FHE (or two-party HSS) and (context-
hiding) homomorphic signatures—are known to imply pvNIZKs7. We observe
that homomorphic signatures with the context-hiding property can be seen as
a variant of non-interactive zero-knowledge (with short proofs) for deterministic
computations on authenticated data. However, they do not allow to prove any-
thing on general non-deterministic computations since witnesses can possibly be
unauthenticated. The reason our work can afford this is that we use a trusted
setup that “bootstraps” the system creating secret keys for authentication (ho-
momorphic signatures) and threshold homomorphic decryption and signing the
initial set of shares. After this step no party is assumed to have access to these
secrets. We remark that it is possible to replace the trusted setup with an MPC
execution. This, at the same time, shows a limitation of our work: for this MPC
to run efficiently one would probably require publicly-verifiable NIZKs (interac-
tive approaches should also be possible though). We leave alternative approaches
to the latter as future work.

On assuming homomorphic cryptography for small computations. We remark
that although we often express our assumptions as general “Fully” Homomor-
phic Encryption and (context-hiding) Homomorphic Signature in general, our
requirements are actually weaker. We only need homomorphic properties on com-
putations as decryption, PRFs and the final low-degree test of some designated-
verifier SNARKs[6]. These are all computable in the class NC1 [2].

1.3 Other Related Work

The work in [5] also discusses how to compose (unleveled) FHE and “proofs” of
the verification algorithms to obtain succinct arguments of knowledge (in their
Section 9). The differences between their work and ours is that we use a primitive
that checks only deterministic computation (we use homomorphic signatures;
they use NIZK arguments of knowledge) and that their construction cannot
achieve public-verifiability from designated-verifiability. On the other hand, to

7 Unleveled FHE—where homomorphic operations work correctly for any polynomial-
size function f(x) without any depth bound—does imply designated-verifier
NIZKs [22]. The recent work in [20] shows, however, that circular (KDM-secure) un-
leveled FHE even implies pvNIZKs. For our proactive extensions, we assume KDM-
secure leveled FHE for NC1 which is known to imply (circular-secure) unleveled FHE
through bootstrapping [27]. We observe, however, that while the assumptions in our
proactive constructions are sufficient to imply pvNIZKs, they do not require the
standard FHE bootstrapping, significantly improving the efficiency of homomorphic
operations. Finally, circular-secure leveled FHE is not known to imply pvSNARKs.
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obtain the latter, we work in a slightly different security model and we add one
“hop” in the protocol.

The work in [28] investigates approaches to minimizing proof size. Their work
requires a slightly different primitive called fully homomorphic hybrid encryp-
tion, and differently from us, requires it to support any computation (whereas we
require that only for the circuit of the verifier in a designated-verifier SNARK).

Notation and Basic Background For any positive integer n, [n] denotes the
set {1, . . . , n}. We denote vectors in boldface. We use the notation Oλ(f(n)) to
denote O(p(λ)f(n)) where p is some polynomial in the security parameter. We
consider all adversaries to be stateful.

2 Background on Designated-Verifier SNARKs

A dvSNARK has a key-generation algorithm dvKeyGen which returns an evalu-
ation key ek and a verification key vk for an NP relation R. The prover PSNARK

takes in ek, a statement stmt and a witness w, and outputs a proof π, which
can be verified through algorithm VSNARK taking as input (stmt, π), and the (se-
cret) vk. Key properties of a dvSNARKs are: Succinctness (its proofs are short),
Knowledge-soundness (we can extract a valid witness from a verifying proof),
Zero-knowledge (a proof does not reveal anything more than the truth of the
statement). There are constructions of dvSNARKs from linear-only encryptions
[6, 12] (which can be plausibly instantiated from LWE).

Definition 1. (Designated-Verifier Succinct Non-Interactive Argument of Knowl-
edge) Let C = {Cℓ}ℓ∈N be a family of arithmetic circuits. Let RC be the corre-
sponding circuit satisfiability relation with the associated language LC. A succinct
non-interactive argument of knowledge (SNARK) for RC with completeness error
c(λ) and soundness error ϵ(λ) is a triple ΠSNARK = (dvKeyGen,PSNARK,VSNARK)
defined as follows:

– dvKeyGen(1λ) → (ek, vk) : The setup algorithm inputs the security parameter
λ and returns an evaluation key ek and verification state vk.

– PSNARK(ek, stmt,w) → π : The prove algorithm inputs a common reference
string ek, a statement stmt and a witness w, and returns a proof π.

– VSNARK(vk, stmt, π) : The verification algorithm inputs the verification state
vk, a statement stmt and a proof π, and returns a bit b ∈ {0, 1} indicating
accept or reject.

We say a ΠSNARK is designated-verifier (dv) if vk ̸= ⊥ and only the owner of
vk can verify proofs. In this work, we only focus on dvSNARKs.

A SNARK is required to satisfy the following properties:

– Completeness. For all λ ∈ N and all (stmt,w) ∈ RC ,

Pr

[
(ek, vk)← dvKeyGen(1λ)

π ← PSNARK(ek, stmt,w)
: VSNARK(vk, stmt, π) = 1

]
≥ 1− c(λ)

10



We say that ΠSNARK satisfies statistical completeness if c(λ) = negl(λ) and
perfect completeness if c(λ) = 0.

– Strong Knowledge-Soundness8. For all λ ∈ N and for all (non-uniform)
efficient adversaries Adv there exists a (non-uniform) efficient extractor Edv
such that

Pr


(ek, vk)← dvKeyGen(1λ)

(stmt, π)← AOdv(vk,·)
dv (z, ek)

w← EOdv(vk,·)
dv (z, ek)

:
R(stmt,w) ̸= 1 ∧

VSNARK(vk, stmt, π) = 1

 ≤ negl(λ)

where Odv(vk, ·) := VSNARK(vk, ·)
– Succinctness. For a polynomial p, the running time of VSNARK is o(|Cℓ|) ·

p(λ, |stmt|) and the proof size is O(λ).

3 Key-Less Zero-Knowledge

Here we introduce a variant notion of zero-knowledge for dvSNARKs and that
will be sufficient in our constructions (section 5.3). We call it key-less zero-
knowledge and it states that a proof leaks nothing to any adversary without
the verification key. This is less stringent than the standard zero-knowledge
requirement where we require a proof to leak nothing even to an adversary
holding a verification-key. We show this weaker notion is sufficient to obtain (full)
zero-knowledge in our model as formalized in Definition 5. Below (remark 1) we
also argue how it may allow for simpler and more efficient designated-verifier
SNARKs to be plugged into our construction.

Definition 2 ((Unbounded) Key-Less Zero-knowledge). We say dvS-
NARK ΠSNARK = (dvKeyGen,PSNARK,VSNARK) is key-less zero-knowledge if there
exists a stateful efficient simulator S such that for all λ ∈ N and all PPT ad-
versary A, we have that |Pr[klZKhon

A (1λ) = 1] − Pr[klZKsim
A (1λ) = 1]| ≤ negl(λ),

where klZKhon
A (1λ) and klZKsim

A (1λ) are defined in fig. 2.

klZK
world∈{hon,sim}
A (1λ)

(ek, vk)← dvKeyGen(1λ)

guess← AOworld
kl-zk(z, ek)

Output 1 iff guess = world

8 The definition is an adaptation of that in [21] and corresponds to a “strong” version
of knowledge-soundness for dvSNARKs where we allow the adversary to perform an
unbounded number of queries to a verification oracle.
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Ohon
kl-zk(inp)

Parse inp as (stmt,w)

if (stmt,w) ̸∈ R then return ⊥
return PSNARK(ek, stmt,w)

Osim
kl-zk(inp)

Parse inp as (stmt,w)

if (stmt,w) ̸∈ R then return ⊥
return S(ek, stmt)

Fig. 2: Key-Less Zero-Knowledge Experiment

Remark 1. The notion above may allow for simpler andmore efficient designated-
verifier SNARKs to be plugged in our construction. For example, consider the
compiler in [6]. It allows to transform a honest-verifier zero-knowledge (HVZK)
linear PCP (a proof system where the verifier has oracle access to a linear func-
tion of their queries) into a zero-knowledge dvSNARK. They also show how
any linear PCP can be transformed into a HVZK one in a general way. This
transformation however occurs at the cost of increasing the number of queries,
which concretely implies an increase in proof-size in the final SNARK. We do
not need to incur this overhead as we do not require a “fully zero-knowledge”
designated-verifier SNARK.

Existence of key-less zero-knowledge dv-SNARKs. We show in Theorem 1 that
the dvSNARKs obtained through the compiler in [6] satisfy our weaker re-
quirement even when compiling information-theoretic objects that are not zero-
knowledge to start with. The compiler works by letting the evaluation key en-
crypt queries to an information-theoretic proof system with algebraic properties.
A prover holding the witness can use these ciphertexts in the verification key to
homomorphically compute an answer for the verifier. The latter decrypts them
and performs a test consisting of a few polynomial evaluations.

In the following we use a modified compiler where the prover first reran-
domizes the ciphertexts. We can always use rerandomization in this compiler
since we assume linearly-homomorphic encryption We note that [6] mentions
how rerandomization can be used to achieve zero-knowledge. However, it does
not show the weaker type of property we are interested in.

To see the difference between standard zero-knowledge for dv-SNARKs and
key-less zero-knowledge we observe the following: in the construction we use
below an adversary with a decryption key would be able to learn information
about the witness if the underlying NILP (Non-Interactive Linear Proof, a close
relative of a linear PCP defined in [34]) is not HVZK. On the other hand, we
can obtain key-less zero-knowledge for any NILP

Theorem 1. For any NILP the compiler in [6] produces a dvSNARK with key-
less zero-knowledge.

Proof. The original compiler in [6] has the honest prover homomorphically com-
pute a linear function of a vector of ciphertexts. We let the prover first reran-
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domize the encryption by adding a an encryption of zero generated with fresh
randomness and then compute the same linear function. Simulation follows di-
rectly by semantic security of the ciphertexts.

The following theorem shows that we can obtain key-less ZK dvSNARKs
from pvSNARKs that are not zero-knowledge. We can obtain this by using the
folklore transformation that encrypts a proof with the designated-verifier key.

Theorem 2. If there exist publicly-verifiable SNARKs (not necessarily zero-
knowledge) and public-key encryption then there exist key-less zero-knowledge
designated verifier SNARKs.

Proof. (Sketch) We construct the dvSNARK from a pvSNARK and a PKE as
follows: the setup algorithm dvKeyGen first runs the key generation of PKE and
obtains (pk, sk), and then returns (ek := pk, vk := sk). The prover dvProve first
runs the pvSNARK prover to obtain a proof π. It next computes a ciphertext
ct being an encryption of π under pk, and returns ct as the final proof. The ver-
ification algorithm first decrypt ct and then runs the pvSNARK verification on
the plaintext. Completeness and soundness of the construction follow straight-
forwardly from the equivalent properties of pvSNARK and correctness of the
underlying PKE scheme. Key-less ZK property states that the proof ct should
not reveal any information about the prover’s witness without the verification
key. This follows from the semantic security of PKE.

4 Definition of SPuC

In this section we define our primitive SPuC-s.

Definition 3. Let P = [N] be a set of parties. A SPuC Π with a (d,N)-threshold
access structure and relation family (RSetλ)λ∈N with completeness error c = c(λ)
and soundness error ϵ = ϵ(λ) is a tuple of PPT algorithms (Setup,Prv,PartCert,
PartCertVfy,Vfy) such that

– Setup(1λ,R, d,N) → (pp, {sk1, . . . , skN}): On input the description of R and
threshold parameters d,N, the setup algorithm outputs public parameters pp
and a set of verification state shares sk1, . . . , skN.

– Prv(pp, stmt,w) → π0 : On input pp, a statement stmt and a witness w, the
prover algorithm outputs a proof π0.

– PartCert(ski, stmt, π0)→ π(i): On input a verification state share ski, a state-
ment stmt and a proof π0, the partial public prover algorithm outputs a partial
proof π(i) related to the partial certifier i.

– PartCertVfy(pp, stmt, π0, π
(i))→ {0, 1}: On input pp, a statement stmt, a proof

π0 and a partial proof π(i), the partial verifier outputs a bit b ∈ {0, 1}.
– Vfy(pp, stmt, π0, B)→ {0, 1}: On input pp, a statement stmt, a proof π0 and a

set B = {π(i)}i∈IS for some S ⊆ [N] with index set IS , the verifier algorithm
outputs a bit b ∈ {0, 1}.

13



Remark 2. Although we do not make it explicit in the syntax, the public param-
eters can be split in two: prover-related (used in Prv) and verifier-related (used
verification algorithms) parameters. The former of size potentially growing with
|R|, while the latter of independent size and concretely much smaller.

We require the following properties.

Correctness : For all λ ∈ N,R ∈ RSetλ, (stmt,w) ∈ R, any set S with cardinality
no smaller than d, we have that the following probability is at least 1− c(λ)

Pr

(pp, {sk1, . . . , skN})← Setup(R, d,N)
π0 ← Prv(pp, stmt,w)

π(i) ← PartCert(ski, stmt, π0)

: Vfy(pp, stmt, π0, {π(i)}i∈IS ) = 1


Moreover, for any statement stmt∗, proof π∗0 and for any set of partial proofs
B = {π∗(i)}i∈IS such that Vfy(pp, stmt∗, π∗0 , B) = 1, it should hold for all i ∈ IS ,

Pr[PartCertVfy(pp, stmt∗, π∗0 , π
∗(i)) = 1] ≥ 1− c(λ)

where (pp, {sk1, . . . , skN})← Setup(R, d,N).

Succinctness. The running time of Verify is Oλ(d(|stmt|+log(|w|))) and the size
of each proof and certificate is Oλ(log(|w|)).

Robustness. We require that for all λ ∈ N, R ∈ RSetλ, it holds that for any
PPT adversary A, the following experiment called ExptA,robust(1

λ) outputs 1
with negligible probability.

1. The challenger runs (pp, {sk1, . . . , skN}) ← Setup(R, d,N) and then sends
(pp, {sk1, . . . , skN}) to A.

2. A outputs a statement stmt∗, a proof π∗0 and a partial proof π∗(i).

3. The challenger returns 1 if PartCertVfy(pp, stmt∗, π∗0 , π
∗(i)) = 1 and π∗(i) ̸=

PartCert(ski, stmt∗, π∗0).

Knowledge Soundness We require that if an adversary is able to convince the
verifier, then we can extract a valid witness from it. Intuition about the exper-
iment: the adversary chooses a corruption set and gets the secret keys for that
set. It is then given oracle access to partial proofs from all the other parties.

Definition 4 (Knowledge Soundness). For all λ ∈ N, R ∈ RSetλ and for
all (non-uniform) efficient stateful adversaries A there exists a (non-uniform)
efficient extractor E such that Pr[KSNDA,E(1

λ) = 1] ≤ negl(λ)
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KSNDA,E(1
λ)

(pp, sk = (sk1, . . . , skN))← Setup(1λ,R, d,N)
C ← A(pp) where |C| = d− 1

(h, stmt, π0, πi1 , . . . , πid−1)← A
Oprf(pp, (skj)j∈C) where h ∈ [N] \ C

πh ← PartCert(skh, stmt, π0)

w← EOprf(pp)

Output 1 iff R(stmt,w) ̸= 1 ∧ Verify(pp, π0, (πh, πi1 , . . . , πid−1)) = 1

The oracle Oprf above works as follows: given a pair (stmt′, π′0) the adversary
is given all the responses PartCert(ski, stmt′, π′0) for i ∈ [N].
NB: above, the extractor does not need to take as input πh since it can always
obtain it from the (deterministic) proof oracle it has access to by emulating
the adversary’s behavior. This approach to modeling the extractor has the ad-
vantage of not requiring an explicit trapdoor (we remark that constructions of
this type are possible [6]), thus allowing for a somewhat stronger notion. We
follow a similar line of modeling when defining strong knowledge-soundness for
dvSNARKs (definition 1).

Zero-Knowledge. In the zero-knowledge experiment we let the adversary to cor-
rupt a certain subset of parties and then access to two types of oracles:

– one in which it supplies a statement stmt (not necessarily in the language)
and some π0 and gets the partial certificates from all the secret key holders;

– one analog to the oracle for standard zero-knowledge where, given a pair
statement–witness satisfying the relation, it receives a proof together with
certificates for it.

Definition 5 (Zero-Knowledge). We say SPuC with a (d,N)-threshold ac-
cess structure is zero-knowledge if there exists a stateful efficient simulator tuple
S = (S1, Sprt, Sprf) such that for all λ ∈ N, all R ∈ RSetλ and all PPT adversary
A, we have that

|Pr[ZKhon
A (1λ) = 1]− Pr[ZKsim

A (1λ) = 1]| ≤ negl(λ)

where the experiments are defined in Figure 3.

5 Construction of SPuC

In this section we describe constructions of (non-proactive) SPuC and discuss its
instantiations. The goal of subsection 5.1 is to serve as a warm-up to some of the
challenges of constructing SPuC-s and informally describes a limited construc-
tion. We provide preliminaries for our general SPuC construction—universal
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ZK
world∈{hon,sim}
A (1λ)

if world = hon then

(pp, sk = (sk1, . . . , skN))← Setup(1λ,R, d,N)

else

(pp, sk = (sk1, . . . , skN))← S1(R, d,N)

C ← A(pp) where |C| = d− 1

guess← AOworld
zk (pp, (skj)j∈C)

Output 1 iff guess = world

Ohon
zk (tag, inp)

if tag = part-proofs then

Parse inp as (stmt, π0)

(πi)i∈[N] ←
(
PartCert(ski, stmt, π0)

)
i∈[N]

return (π1, . . . , πN)

if tag = valid-x then

Parse inp as (stmt,w)

if (stmt,w) ̸∈ R then return ⊥
return Prv(pp, stmt,w)

Osim
zk (tag, inp)

if tag = part-proofs then

Parse inp as (stmt, π0)

(πi)i∈[N] ←
(
Sprt(sk, stmt, π0)

)
i∈[N]

return (π1, . . . , πN)

if tag = valid-x then

Parse inp as (stmt,w)

if (stmt,w) ̸∈ R then return ⊥
return Sprf(sk, stmt)

Fig. 3: ZK experiment. Oracles take as input tag ∈ {part-proofs, valid-x} and some
stmt whose structure depends on the tag.

thresholdizers, UT, and designated-verifier SNARKs—in subsection 5.2. We then
proceed to describe two instantiations of UT, both based on lattices. In subsec-
tion 5.5.1 we present a general construction (no limitations on threshold and
number of parties) from Threshold FHE and context-hiding homomorphic sig-
natures (HS). We present a simpler, more efficient construction for the two-party
case based on homomorphic-secret sharing (HSS) in subsection 5.5.2.

5.1 Warm-up: a Straw-Man Construction

The following construction—based only on the existence of (zero-knowledge)
designated-verifier SNARKs—exemplifies some of the properties we desire in a
succinct publicly-certifiable scheme. Although arguably simpler than our other
constructions we find it to have stronger limitations, discussed below. Thus we
keep its presentation informal.

Assuming the existence of a designated-verifier SNARK scheme (see next
section), we can construct a SPuC with N certifiers and threshold d as follows.

– At setup time we generate N different setups (eki, vki) ← dvKeyGen(1λ,R),
publish the N evaluation keys and a secret verification key vki to each of the
committee members.

– The algorithm Prv would then produce N designated-verifier proofs πdv
i , each

with a different evaluation key eki for i ∈ [N].
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– Each certifier i in the committee (algorithm PartCert) would return a bit stat-
ing acceptance or rejection of the respective πdv

i using vki and signed with a
key of the respective committee member.

– Given a set B of acceptance/rejection bits of size at least d, a verifier would
then accept if all the bits in B are 1 and otherwise reject.

For simplicity we have not presented algorithm PartCertVfy which can be
achieved with techniques similar to ours. The construction just described sat-
isfies knowledge soundness and zero-knowledge. its main limitations are a high
concrete and asymptotic efficiency and that it is not immediate how to extend
it efficiently to a proactively secure construction. For efficiency, notice that we
require N designated-verifier setups, which is very expensive (especially if we
want to replace the setup stage with an MPC execution). It is also expensive
in practice to require that a prover would run N times the proving algorithm.
The construction does not technically satisfy succinctness for the same reason:
the output of Prv depends on the number of shares. Even if this were acceptable
asymptotically (e.g., considering N a constant) this incurs high concrete costs.
In addition and in contrast to our constructions, it forces the runner of the algo-
rithm Prv to store N evaluation keys (each of size at least linear in the size of the
relation R). This dependency on N is less problematic if this parameter is small.
Extending this construction to the proactive case would seem to require regener-
ating the verification keys (the adversary could learn d of them through different
epochs and so they cannot remain the same). It is unclear how to perform this
new setup without an interactive MPC or a trusted authority.

We now describe the building blocks for our general construction.

5.2 Building Block Primitive: Universal thresholdizers (UT).

Universal thresholdizers (UTs) are a primitive that can be used to thresholdize
a system. A UT scheme with a (d,N)-threshold access structure consists of four
algorithms (Setup,Eval,Verify,Combine). The setup algorithm Setup takes in a
secret value x and divides it into a set of shares s1, . . . , sN, which are given to
N users. Each user, on input a circuit C, calls Eval and uses their shares si to
compute an evaluation share yi of C(x). The verification algorithm Verify can be
used to check whether yi was computed correctly. Finally, for a set B = {yi} for
which |B| ≥ d, the algorithm Combine can be used to combine these evaluation
shares and produce y = C(x).

For a UT scheme to be secure, it should hold that the shares s1, . . . , sN,
together with the evaluation shares yi can be simulated only given access to
the circuit C and its output on the secret value x (i.e., C(x)). In addition, the
robustness property states that no PPT adversary should be able to produce
an incorrectly computed evaluation share yi for a circuit C if the verification
algorithm Verify accepts it. For more formal details and constructions on UT
see appendix B.
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Setup(1λ,R, d,N)
dvKeyGen(1λ,R)→ (ek, vk)

(ppUT, skUT,1, . . . , skUT,N)← UT.Setup(d,N, vk)

return (pp = (ek, ppUT), {ski = skUT,i}i∈[N])

Prv(pp = (ek, ppUT), stmt,w)

return π0 ← dvProve(ek, stmt,w)

Vfy(pp, stmt, π0, (π
(i))i∈IS )

return UT.Combine(ppUT, (π
(i))i∈IS )

PartCert(ski, stmt, π0)

π(i) ← UT.PartEval(skUT,i, Cstmt,π0)

s.t. Cstmt,π0(·) := dvVerify(·, stmt, π0)

PartCertVfy(pp, stmt, π0, π
(i))

return UT.Verify(ppUT, Cstmt,π0 , π
(i))

s.t. Cstmt,π0(·) := dvVerify(·, stmt, π0)

Fig. 4: Construction of SPuC from UT

Theorem 3 (Implicit in [9]). If there exists leveled Threshold FHE and com-
pact context-hiding homomorphic signatures (HS) then there exists UT. It is
possible to construct leveled Threshold FHE from LWE.

5.3 A General Construction for SPuC

Our construction is in Figure 4.

Theorem 4. (informal) If there exists UT and zero-knowledge dvSNARKs then
there exists a secure SPuC.

5.4 Proof of Security

Completeness and robustness follow straightforwardly from the equivalent prop-
erties of UT [9]. We prove knowledge soundness and zero-knowledge.

Lemma 1 (Knowledge Soundness). The construction in Figure 4 is knowl-
edge sound (definition 4) if UT is Universal Thresholdizer and DV is a designated-
verifier SNARK with strong knowledge-soundness (definition 1).

Proof. Consider an adversary Ā in the knowledge soundness experiment of Def-
inition 4 for some λ,N ∈ N. Let us construct an adversary Adv for the strong
knowledge-soundness experiment as in Figure 5. We construct an extractor Ē
that internally runs the knowledge soundness extractor Edv, corresponding to
Adv. We claim that the extractor outputs a witness with high probability if Ā
produces a valid proof with high probability. First observe that (x, π0), output
of Adv, must verify successfully with probability negligibly close to that of Ā.
This follows from the definition of S = (SUT

1 , SUT
2 ), security of UT as well as

its verification and evaluation correctness: the output of O′ in Adv must be
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AOdv
dv (ek)

Let S = (SUT
1 , SUT

2 ) be the simulator from the UT security;

(pp, s1, . . . , sN, st)← SUT
1 (1λ); C ← Ā(pp)

Define oracle O′(stmt′, π′
0) as :

b← Odv(stmt′, π′
0)

(πi)i∈[N] ← SUT
2 (pp, Cstmt′,π′

0
, b, st)

where Cstmt′,π′
0
is the verification circuit (as in construction)

return (πi)i∈[N]

(h, stmt, π0, πi1 , . . . , πid−1)← Ā
Oprf(pp, (si)i∈C)

return (stmt, π0)

ĒOprf(pp)

Define oracle O′′(stmt′′, π′′
0 ) as :

(πi)i∈[N] ← Oprf(stmt′′, π′′
0 )

Find set of d proofs π∗ s.t. SPuC.PartCertVfy(pp, stmt, π′′
0 , π

∗
j ) = 1 ∀j ∈ [d]

If ∃π∗ output SPuC.Vfy(pp, stmt, π′′
0 ,π

∗); o.w. output 0

w← EO
′′

dv (ek)

return w

Fig. 5: Construction of Adv in the proof of lemma 1

computationally indistinguishable from dvVerify(vk, ·) (the oracle Odv in Strong
Knowledge-Soundness definition) otherwise we would be able to distinguish be-
tween the simulated πi-s and the honestly computed ones in UT security. By
definition of Adv the output of Ē must be a valid witness with probability close to
that of Edv. To show why, we observe that the oracle O′′ in the extractor Ē must
have, by construction, an output indistinguishable from that of dvVerify(vk, ·);
we can conclude this by invoking verification and evaluation correctness. ⊓⊔

Lemma 2 (Zero-Knowledge). The construction in Figure 4 is zero-knowledge
(Definition 5) if UT is Universal Thresholdizer and DV is a designated-verifier
SNARK with key-less zero-knowledge (Definition 2).

Proof. Our goal is to build S = (S1, Sprt, Sprf) where S1 is the simulator for
the setup. We shall do that by invoking the security definition of UT 9 and
the definition of key-less zero-knowledge (Definition 2). From these theorems it

9 For the definition of UT security, we refer to the sUT security in fig. 7. Note that
UT security is a special case where there is no trapdoor evaluation oracle.
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follows the existence of simulators respectively SUT = (SUT
1 , SUT

2 ) and Sklzk. We
then define S1 so that: it first runs (ek, vk)← dvKeyGen(R); then (ppUT, sk)←
SUT
1 (1λ,N); then it outputs a public key (ek, ppUT) and a simulation trapdoor

(sk, vk). We shall then define S as S := (S1, Sprt = SUT
2 , Sprf = Sklzk).

Claim 1: The output of S1 is indistinguishable from that of the honest setup.
This follows directly from the definition of SUT

1 and from UT security.

Hybrid Experiments. Let q(λ) = poly(λ) be an upper bound on the number
of oracle queries of the adversary in the experiment in Definition 5. For each
i ∈ {0, 1, . . . , q(λ)} we define a hybrid zero-knowledge experimentHi as in figure.
For all oracle queries j ∈ [q(λ)] the oracle Oi

zk acts as follows: for query j ≤ i
the adversary receives honest generated queries (from Ohon

zk ); for query j > i

receives simulated queries (Osim
zk ). Notice that hybrid H0 corresponds to ZKhon

and hybrid Hq(λ) to ZKsim. It is now sufficient to prove the following claim.

Claim 2: for all i ∈ [q(λ)] Hi−1 ≈ Hi. Notice that the oracles in Figure 3 are
such that for any tag ∈ {part-proofs, valid-x} Ohon

zk (tag, inp) ≈ Osim
zk (tag, inp). This

is because of the security of the UT and the (key-less) zero-knowledge property of
the dvSNARK. If two consecutive hybrids were distinguishable then it would be
possible to distinguish either of the two oracles with non-negligible probability
since the i− 1 queries can be efficiently implemented.

Hi
A(1

λ,N)

(ppUT, sk = (sk1, . . . , skN))← SUT
1 (1λ,R,N); C ← A(pp) where |C| = d− 1

Output guess← AOi
zk(ppUT, (sj)j∈C) where h ∈ [N] \ C

⊓⊔

5.5 Construction of UT

5.5.1 A General Construction of UT from TFHE and HS ([9]) As
informally described in [9], we can construct UT from TFHE and context-hiding
HS. TFHE can itself be built from FHE with moderate “noise bound” (roughly,
a measure of the noise at the decryption stage), which we can obtain for our
purposes from LWE [9]. In appendix B.2 we formally build for the first time UT
from homomorphic signatures ([9] only contains formal description and proofs
for a pvNIZK-based construction).

Intuition on construction. We exploit Threshold FHE, where one can encrypt a
message x (TFHE.Enc), publicly obtain a ciphertext of an evaluation C(x) for a
circuit C, members of a committee can provide partial decryptions of a ciphertext
through (a share of) a secret key, which can then be publicly combined to obtain a
plaintext. When we run UT.Setup(x) we encrypt the secret x through the TFHE
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and provide a share of the TFHE secret key to each of the committee members.
The evaluation and combination algorithm of UT invoke respectively the partial
decryption and combination algorithm of TFHE. To provide robustness we use
homomorphic signatures: we let each committee member sign the output of the
partial decryption. They can carry this out homomorphically (using HS.Eval),
as they are given a signature of their secret key share at setup time (through
HS.Sign).

Corollary 1. (informal) If there exists leveled Threshold FHE for NC1, com-
pact context-hiding Homomorphic Signatures and zero-knowledge dvSNARKs
then there exists a secure SPuC.

Efficiency We can instantiate our construction with dvSNARKs obtained through
Square-Span Programs [23] compiled with the results in [6] and homomorphic
signatures from [32]. The output of Prove consists of a constant number of ci-
phertexts each encrypting a field element. Its total size would then be Oλ(1).

The size of each certificate is Oλ(log(|stmt|)) which we can derive as follows.
First observe that the signatures in [32] after evaluation remain of a size lower
than some bound on the depth of the homomorphic computation. Looking inside
the TFHE-based UT construction from [9] (formalized in appendix B) and the
compiler in [6], we see that the homomorphic computation consists of a partial
TFHE decryption on top of a procedure fdv. On input a signed secret of size
Oλ(|stmt|) procedure fdv decrypts the aforementioned ciphertexts and performs
a zero-test on a low-degree multivariate polynomial with O(n) variables. Hence
a bound on the depth of fdv is Oλ(log(|stmt|)). The partial decryption on top of
it adds a factor poly(λ).

5.5.2 A Construction of UT from HSS and HS for the (2,2) Setting
In Figure 6 we describe a novel construction for (two-party) UT based on Homo-
morphic Secret-Sharing [14]. It works similarly to the construction from TFHE.
We recall that HS denotes the homomorphic signature scheme and we denote
by using HS.Eval and by HS.Sign respectively the algorithms for homomorphic
evaluation of signatures and for initially signing a message. We can instantiate
HSS10 from LWE through the construction in [16]. While the (2,2)-case for UT
is subsumed by the general construction from 5.5.1, our HSS-based construc-
tion requires simpler and more efficient primitives (see discussion of efficiency of
TFHE vs HSS in [16]). Moreover, although our main focus is quantum-resistant
constructions, HSS allows for a wider type of instantiations, for example from
DDH as in [14]11 (not known to imply (leveled) FHE).

10 A (2-party) HSS consists of algorithms: Share to secret share a message, Eval to
homomorphically produce a partial evaluation of a function f on the message x
given a share, Combine to publicly recombine the evaluation shares into f(x).

11 This instantiation is still plausibly weaker than publicly-verifiable NIZKs; the recent
breakthrough in [36] requires a sub-exponential version of DDH to build pvNIZKs.
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UT(2,2).Setup(1
λ, d = 2,N = 2, x)

(skhs, pkhs)← HS.Setup(1λ)

sk← UT(2,2)-AuxSetup(x, skhs)

return (pp := pkhs, sk)

UT(2,2)-AuxSetup(x, skhs)

(share1, share2)← HSS.Share(1λ, x)

for i = 1, 2 :

sk′i[hs]← HS.Sign(skhs, “i”, sharei)

sk′i := (sharei, sk
′
i[hs])

return (sk′1, sk
′
2)

UT(2,2).PartEval(pp := pkhs, ski, i, C)

yi ← HSS.Evali(sharei, C)

σi ← HS.Eval(pkhs, “i”, CHSSEval, ski[hs])

where CHSSEval := HSS.Evali(·, C)

return (yi, σi)

UT(2,2).Combine (pp := pkhs, y1, y2)

return HSS.Combine(y1, y2).

UT(2,2).VfyEval (pp := pkhs, πi = (yi, σi), i, C)

return HS.Verify(pkhs, “i”, yi, σi, CHSSEval)

where CHSSEval := HSS.Evali(·, C)

Fig. 6: 2-party UT Construction, UT(2,2), from HSS and HS.

Corollary 2. (informal) If there exists two-party-HSS for NC1, context-hiding
HS and zero-knowledge dvSNARKs then there exists a two-party SPuC.

Remark 3 (On UT and Robust HSS). We observe that the notion of UT is very
close to robust homomorphic secret-sharing scheme (see, e.g., Section 2 in [15]).
We, however, present it in the language of UT because it allows to use for the
same framework as that of our Section 5.5.1 and for continuity with [9].

6 Proactive UT and Proactive SPuC

We define a new primitive pUT, proactive version of UT where the committee
members can change constantly. The protocol is divided in epochs with a han-
dover stage at the end of each. During each epoch t, the members of committee
(Ct) can carry out oblivious evaluations as in UT and later hand over their shares
to the next committee Ct+1. We require these steps to be non-interactive and
robust (roughly, the resharing phase should be publicly verifiable).

After being nominated (a nomination stage is out of the scope of this paper
and we merely posit it) the committee member i for the next epoch holds an
ephemeral secret key eski. Its share of the secret will be encrypted with a corre-
sponding ephemeral public key epki. For this purpose a pUT is coupled with a
public-key encryption scheme PK.

Here we present an overview of the model and the construction. Further
details can be found in appendix D.
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6.1 Proactive UT: Model Description

A pUT extends the syntax of UT with algorithms for resharing, reconstruction
and related verification: – pUT.Reshare(pp, skti, i, epk

t+1)→ (yreshi , σresh
i ): using

a partial secret key skti this algorithm performs a (partial) handover of secret i
to the committee in epoch t + 1. – pUT.VfyReshare(pp, epkt, (yreshi , σresh

i ), i) →
{0, 1}: The algorithm verifies if party i carried out a resharing step correctly.
– pUT.Reconstruct(pp, esktj , (y

resh
i )i∈[d]) → skt+1

j : Having d shares (yreshi ), the

algorithm reconstruct a secret share skt+1
j through eskj .

6.2 Building Block: Special UT (sUT)

We construct pUT from another novel primitive, sUT. If a pUT extends UT with
resharing features, a sUT extends it with a special type of oblivious evaluation.
Recall that in UT committee members can obliviously compute functions on a
secret x, provided as input to the UT setup. In sUT, on the other hand, we also
allow to compute functions on secrets of the sUT itself (a trapdoor generated
at setup time). This very powerful type of evaluation will be useful in pUT to
reshare the trapdoor itself. Naturally we need to somehow constrain the type
of evaluations allowed to the adversary. In order to do this we allow two types
of evaluation queries: one unconstrained (on the secret x) and one (on the sUT
trapdoor) with respect to a circuit sampler. For more formal details on the
definition and security requirements of sUT see appendix C.1.

Definition 6 (Circuit Sampler). A circuit sampler D is a PPT that on input
a string z returns a circuit C ← D(z) of size polynomial in |z|.

Definition 7. (sUT Security) A sUT scheme satisfies security with respect to
circuit sampler D if there exists a PPT algorithm S = (SS ,SE) such that for
all λ, for any PPT adversary A, the following experiments ExprealA,sUT

(
1λ, d,N

)
≈

ExpidealA,sUT

(
1λ, d,N

)
(see Figure 7).

6.2.1 A Construction for sUT. We extend the construction from [9] to
prove evaluations on the sUT trapdoor. The TrapdEval function works exactly
as PartEval but on a different ciphertext (which encrypts the trapdoor). The con-
struction is using almost the same assumptions as for UT, namely homomorphic
signatures and FHE, but we need to also assume circular security of the latter
as we should be able to securely encrypt its own decryption key. A construction
of sUT is in Figure 8. We give more details of the construction and its security
in appendix C.2.

6.3 Construction of pUT

We give a construction based on a homomorphic signature HS, a threshold fully
homomorphic encryption scheme TFHE, and PRFs PRF. Our construction is in
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Expt
world∈{real,ideal}
A,sUT

(
1λ, d,N

)
:

1. x← A(1λ, d,N)
2. if world = real then (pp, s1, . . . , sN, trapd)← sUT.Setup

(
1λ, d,N, x

)
3. else if world = ideal then (pp, s1, . . . , sN, trapd)← SS

(
1λ, d,N

)
.

4. A outputs a corruption set C of size d− 1

5. The challenger provides the shares {si}i∈C to A.
6. A can ask for a polynomial number of adaptive queries to the oracle Oworld

sUT

(defined below).

7. Adversary outputs a guess guess

8. Return 1 iff guess = world

The oracle Oworld
sUT can receive in input either a tuple (trapdquery, z) or a tu-

ple (xquery, C). The first asks for a query evaluation on the trapdoor; the
other for the secret x. For the case (trapdquery, z), the oracle samples a circuit
from sampler D as C ←$ D(trapd, z), returns circuit C and partial evaluation
{yi ← sUT.TrapdEval (pp, si, C)}i∈[N]. For the case (xquery, C) the oracle responds with:

– if world = real then return {yi ← sUT.Eval (pp, si,T , C)}i∈[N]

– if world = ideal then return {yi}i∈[N] ← SE (trapd, C, C(x))

Fig. 7: Security experiment for sUT

fact based on the sUT construction by applying the algorithm TrapEval of pUT
on a “resharing” function F resh

t,epkt+1 , tied to our sUT construction (see also Fig.

9) that generates a new secret and then creates, signs and encrypts its shares
for the next epoch. Other techniques of our construction for pUT are inspired
by the YOSO-style ones in [3] where the committee members of the new epoch
can access their share by opening a ciphertext encrypted with an ephemeral
public key (of which they only know the decryption key). The main intuition
is that a committee member can carry out homomorphic computation on the
encrypted secrets and then certify through homomorphic signatures their partial
decryption. The result can publicly be combined to obtain the function output.
The construction of pUT is in Fig. 9.

Theorem 5. (Informal) We can construct sUT for a “family of resharing func-
tions” from compact context-hiding homomorphic signatures and leveled TFHE
with KDM security [7, 11]. We can construct pUT from the same assumptions.

6.4 From pUT to pSPuC

Proactive SPuCs extend the SPuC model in the same way as pUT extends
UT. A pSPuC includes algorithms (Reshare,VfyReshare,Reconstruct) to allow
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the committee members to hand over their secrets for certification. Once defined
(and constructed) pUTs, a construction for pSPuCs is straightforward: it is the
same as the one for SPuCs, but we replace UT with pUT.
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sUT.Setup(1λ, d,N, x)

(skhs, pkhs)← HS.Setup(1λ)

(skfhe, pkfhe)← TFHE.KeyGenAux(1λ, d,N)

ctx ← TFHE.Enc(pkfhe, x)

ρ←$ rnd

trapd := (skfhe, skhs, ρ)

sk← AuxSetup(trapd)

cttpd ← TFHE.Enc(pkfhe, trapd)

return (pp := (pkfhe, pkhs, ctx, cttpd), sk, trapd)

AuxSetup(s)

Parse s as s = (skfhe, skhs, ρ)

Parse ρ as ρ = (ρ[SS], ρ1[hs], . . . , ρN[hs])

sk′1[fhe], . . . , sk
′
N[fhe]← SS(d,N, skfhe, ρ[SS])

for i = 1, . . . ,N

sk′i[hs]← HS.Sign(skhs, “i”, sk
′
i[fhe]; ρi[hs])

sk′i := (sk′i[fhe], sk
′
i[hs])

return sk′1, . . . sk
′
N

sUT.PartEval(pp := (pkfhe, pkhs, ctx, cttpd), ski, i, C)

ct′ ← TFHE.Eval(pkfhe, ctx, C)

yi ← TFHE.PartDec(ski[fhe], ct
′
)

σi ← HS.Eval(pkhs, “i”, CDec, ski[hs])

where CDec := TFHE.PartDec(·, ct′)
return (yi, σi)

sUT.TrapdEval(pp := (pkfhe, pkhs, ctx, cttpd), ski, i, C)

ct′ ← TFHE.Eval(pkfhe, cttpd, C)

yi ← TFHE.PartDec(ski[fhe], ct
′
)

σi ← HS.Eval(pkhs, “i”, CDec, ski[hs])

where CDec := TFHE.PartDec(·, ct′)
return (yi, σi)

sUT.VfyEval (pp := (pkfhe, pkhs), πi = (yi, σi), i, C)

ct′ ← TFHE.Eval(pkfhe, ctx, C)

return HS.Verify(pkhs, “i”, yi, σi, CDec)

where CDec := TFHE.PartDec(·, ct′)

sUT.VfyTrapdEval (pp := (pkfhe, pkhs), πi = (yi, σi), i, C)

ct′ ← TFHE.Eval(pkfhe, cttpd, C)

return HS.Verify(pkhs, “i”, yi, σi, CDec)

where CDec := TFHE.PartDec(·, ct′)

sUT.Combine (pp := (pkfhe, pkhs), y1, . . . , yd)

return TFHE.Dec(pkfhe, {y1, . . . , yd}).

Fig. 8: Our sUT Construction.
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pUT.Setup(1λ, d,N, epk0, x)→ (pp, ct)

(pp, sk, trapd)← sUT.Setup(1λ, d,N, x)

Parse trapd as (skfhe, skhs, ρ)

ct← F resh
0,epk0(skfhe, skhs, ρ)

return (pp, ct)

pUT.Reshare(skti, i, epk
t+1)→ (yreshi , σresh

i )

return sUT.TrapdEval(pp, skti,F
resh
t,epkt+1)

pUT.VfyReshare(pp, epkt, (yreshi , σresh
i ), i)

return sUT.VfyEval(pp, (yresh
i , σresh

i ), i,F resh
t,epkt+1)

pUT.Reconstruct(pp, esktj , (y
resh
i )i∈[d])

ctj ← sUT.Combine(pp, (yresh
i )i∈[d]))

return skt+1
j := Deceskt

j
(ctj)

pUT.Eval := sUT.Eval

pUT.VfyEval := sUT.VfyEval

pUT.Combine := sUT.Combine

F resh
t,epkt+1(s)

Parse s as s = (skfhe, skhs, ρ)

(ρt+1
SS , ρt+1

hs,1 , . . . , ρ
t+1
hs,N, ρ

t+1
ct,1 , . . . , ρ

t+1
ct,N) = PRFρ(t+ 1)

(sk′i[fhe])i∈[N] ← SS.Share(d,N, skfhe, ρ
t+1
SS )

for i = 1, . . . ,N

sk′i[hs]← HS.Sign(skhs, “(i, t)”, sk
′
i[fhe], ρ

t+1
hs,i )

sk′i := (sk′i[fhe], sk
′
i[hs])

cti ← Enc
epkt+1

i
(sk′i; ρ

t+1
ct,i )

return ct1, . . . ctN

Fig. 9: pUT Construction and the auxiliary resharing functionality
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Supporting Material

A Additional Preliminaries

A.1 Pseudorandom Functions

We recall the definition of pseudorandom functions.

Definition 8 (PRF). Let PRF : K×D→ R be a family of functions and let Γ
be the set of all functions D→ R. We say that PRF is a pseudorandom function
(PRF) (family) if it is efficiently computable and for all PPT distinguishers D∣∣∣Pr [K←$ K,DPRFK(·)(1λ)

]
− Pr

[
g ←$ Γ,Dg(·)(1λ)

]∣∣∣ ≤ negl(λ)

A.2 Homomorphic Signatures

A homomorphic signature scheme allows a party P1 to sign a message x using a
secret signing key skhs and distribute this signature to some untrusted party P2

who can perform arbitrary computations y = f(x) over x and homomorphically
derive a signature σf,y. This signature certifies that y is the correct output of
the computation f over x. The signature σf,y is required to have a short length
which is also independent of the size of x. Moreover, anyone should be able to
verify publicly the tuple (f, y, σf,y) using P1’s public verification key vkhs and
become convinced that y is indeed f(x), without needing to have x.

Formally, a homomorphic signature scheme is as follows:

Definition 9. A homomorphic signature scheme HS for a function family F is
a tuple of PPT algorithms (Setup,Sign,Verify,Eval) defined as follows:

HS.Setup(1λ)→ (skhs, pkhs): The setup algorithm takes a security parameter λ
and outputs a secret key skhs and a public key pkhs. We assume that the public
key defines a set F of “admissible” functions.

HS.Sign(skhs, τ,m)→ σ: The signing algorithm takes a secret key skhs, a tag τ
and a message m, and outputs a signature σ.

HS.Verify(pkhs, τ,m, σ, f)→ {0, 1}: The verification algorithm takes a public key
pkhs, a tag τ , a message m, a signature σ and a function f ∈ F, and returns a
bit indicating accept or reject.

HS.Eval(pkhs, τ, f, σ)→ σf,y: The evaluation algorithm takes a public key pkhs,
a tag τ , a function f ∈ F and a signature σ, and outputs a signature σf,y.

A HS scheme should satisfy the following properties:

– Correctness. We require that for any (skhs, pkhs)← Setup(1λ), it holds that



1. For all tags τ and all m,

Pr
[
σ ← HS.Sign(skhs, τ,m) : HS.Verify(pkhs, τ,m, σ, I) = 1

]
= 1− negl(λ)

where I is the identity function.

2. For all tags τ , all m and all f ∈ F,

Pr

[
σ ← HS.Sign(skhs, τ,m)

σf,y ← HS.Eval(pkhs, τ, f, σ)
: HS.Verify(pkhs, τ, f(m), σf,y, f) = 1

]
= 1−negl(λ)

– Unforgeability Given a homomorphically signed datam an adversary cannot
produce a function f and a valid signature σy′ for which f(m) ̸= y′ (for a
formal definition we refer the reader to Definition 3.2 in [10]).

– Context-hiding. There exists a simulator such that for all λ, τ, x, f ∈ F we
have that

S(skhs, τ, f, f(x)) ≈ HS.Eval(pkhs, τ, f, σx)

where (skhs, pkhs)← Setup(1λ) and σx ← HS.Sign(skhs, τ,m)

– Compactness. The output of a HS.Eval should be of size linear in the depth
of the circuit representing f .

A.3 Threshold Fully Homomorphic Encryption

In this section, we recall the syntax and basic security notions of (leveled) thresh-
old fully homomorphic encryption (TFHE) from [8]. It is presented for general
access structures although we just require (d,N) threshold structures in this
work. The scheme is leveled as it requires correctness only for circuits of bounded
depth.

Definition 10. ((Leveled) Threshold Fully Homomorphic Encryption (TFHE))
Let P = {P1, . . . , PN} be a set of parties and let S be a class of efficient access
structures on P . A threshold fully encryption scheme for S is a tuple of PPT
algorithms TFHE = (Setup,Enc,Eval,PartDec,Dec) defined as follows:

– TFHE.Setup(1λ,A)→ (pk, sk1, . . . , skN): The setup algorithm inputs the secu-
rity parameter λ and an access structure A, and outputs a public key pk and
a set of key shares sk1, . . . , skN.

– TFHE.Enc(pk,m) → ct: The encryption algorithm inputs a public key pk and
a message m, and outputs a ciphertext ct.

– TFHE.Eval(pk, C, ct)→ ĉt: The evaluation algorithm inputs a public key pk, a
circuit C : {0, 1}∗ → {0, 1}∗, and a ciphertext ct, and outputs a ciphertext ĉt.

– TFHE.PartDec(pk, ct, ski) → mi: The partial decryption algorithm inputs a
public key pk, a ciphertext ct and a secret key share ski, and outputs a partial
decryption mi related to party Pi.

– TFHE.Dec(pk, B)→ m̂: The final decryption algorithm inputs a public key pk,
a set B = {mi}i∈S for some S ⊂ {P1, . . . , PN}, and outputs a message m̂ or
⊥.
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We require the following properties for a TFHE scheme. See aforementioned
papers for further formal details.

– Evaluation Correctness. For all λ, access structure A, circuit C : {0, 1}k →
{0, 1}∗ of depth at most δ = poly(λ), S ∈ A, and message m ∈ {0, 1}k,

Pr


(pk, sk1, . . . , skN)← TFHE.Setup(1λ,A)

ct← TFHE.Enc(pk,m)

ĉt← TFHE.Eval(pk, C, ct)

B ← {TFHE.PartDec(pk, ĉt, ski)}i∈S

: TFHE.Dec(pk, B)→ C(m)

 = 1−negl(λ)

– Setup with Explicit Secret Sharing. We require a special structural prop-
erty for the setup algorithm of TFHE. This will be useful in our construc-
tion. We point out that this assumptions is satisfied by natural construc-
tions such as those in [8]. More formally we require the TFHE key gen-
eration to output (sk1, . . . , skN, pkfhe) where (sk1, . . . , skN) are (d,N) secret
shares of skfhe, that is (sk1, . . . , skN)← Shared,N(sk) and we let (skfhe, pkfhe)←
TFHE.KeyGenAux(1λ, d,N) for an auxiliary function TFHE.KeyGenAux.

– Semantic Security. This is the standard requirement of semantic security
for public-key encryption. We say that a TFHE scheme satisfies semantic
security if for all λ, for all PPT adversary A, and any circuit C of depth
at most δ = poly(λ), the following experiment ExpsemA,TFHE(1

λ) outputs 1 with
negligible probability.

ExpsemA,TFHE(1
λ)

A← A(1λ, C); if A ̸∈ S, then return 0;

(pk, sk1, . . . , skN)← TFHE.Setup(1λ,A);
S ← A(pk); if S ̸⊆ {P1, . . . , PN} ∨ S ∈ A, then return 0;

b←$ {0, 1}; ct← TFHE.Enc(pk, b);

b′ ← A(ct, {ski}i∈S); if b = b′, then return 1

– KDM (circular) Security.We require a specific type of KDM (Key-Dependent
Message) security as defined in [7, 11] where the adversary cannot distinguish
between an encryption of the secret key and an encryption of an arbitrary
message (here we use the string of all 0s but, together with semantic security,
this implies that an encryption of the secret key is indistinguishable from any
other message). We use the following game between a challenger and an adver-
sary A. For a security parameter λ and all threshold access structures (d,N)
the game proceeds as follows: The challenger chooses a random bit b←$ {0, 1}.
It generates a key (pk, sk) ← TFHE.KeyGenAux(1λ, d,N) and sends pk to the
adversary as well as c such that c ← TFHE.Enc(pk, sk) if b = 0, otherwise
c← TFHE.Enc(pk, 0|sk|). The adversary outputs a bit b′. The property is sat-
isfied if Pr[b′ = b] ≤ 1

2 + negl(λ).

32



– Simulation Security. This notion corresponds to a specialized notion similar
to that of sUT security: we require that there exists a pair of simulators
S1, S2—respectively for the setup of the scheme and for partial decryption
queries—such that no adversary can distinguish whether it is interacting with
a real or simulated partial decryption oracle. More formally: we say that a
TFHE scheme satisfies simulation security if for all λ and access structure A,
there exists a PPT algorithm S = (S1,S2) such that for any PPT adversary A,
and any circuit C of depth at most δ = poly(λ), the following two experiments
ExpA,Real(1

λ) and ExpA,Ideal(1
λ) are indistinguishable. Note that when defining

the oracles, we implicitly assume that the inputs are valid, i.e., for input (S,C),
the oracles return ⊥ if S ̸⊆ {P1, . . . , PN} or C is not of polynomial depth.

ExpA,Real(1
λ)

A← A(1λ, C); if A ̸∈ S, then return 0;

(pk, sk1, . . . , skN)← TFHE.Setup(1λ,A);
(S∗,m1, . . . ,mk)← A(pk);

if S ̸⊆ {P1, . . . , PN} ∨ S ∈ A, then return 0;

{cti ← TFHE.Enc(pk,mi)}i∈[k];

b← AO-real({cti}i∈[k], {ski}i∈S∗);

O-real(S,C)

ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk);

B ← {TFHE.PartDec(pk, ĉt, ski)}i∈S ;

return B;

ExpA,Ideal(1
λ)

A← A(1λ, C); if A ̸∈ S, then return 0;

(pk, sk1, . . . , skN, state)← S1(1
λ,A);

(S∗,m1, . . . ,mk)← A(pk);
if S ̸⊆ {P1, . . . , PN} ∨ S ∈ A, then return 0;

{cti ← TFHE.Enc(pk,mi)}i∈[k];

b← AO-ideal({cti}i∈[k], {ski}i∈S∗);

O-ideal
y ← C(m1, . . . ,mk);

B ← S2(C, {ct1, . . . , ctk}, y, S, state);
return B;

Fig. 10: Simulation Security Experiments

Remark 4 (Constructions of TFHE). The work in [8] constructs TFHE with the
special setup structure above from secret-sharing and lattices (LWE). They build
FHE from the same assumptions. In our work we make the (mild) assumption
on KDM security of their scheme.

A.4 Homomorphic Secret Sharing

The following is an adaptation of the definition of HSS from [14]; our notion is
non-additive.

33



Definition 11 (Homomorphic Secret Sharing (HSS) [14]). A (2-party)
HSS scheme is a quadruple (Share,Eval1,Eval2,Combine) such that:

Share(1λ, x)→ (share1, share2) produces two secret shares of a secret x.

Evalb(shareb, C)→ yb produces a share of the evaluation C(x) given share shareb
for b ∈ {1, 2} of x and circuit C.

Combine(y1, y2)→ y it produces a final output y ∈ {0, 1}∗ on input a pair of
output shares y1, y2

The algorithms should satisfy the following correctness and security require-
ments:

– Correctness For any λ ∈ N, x ∈ {0, 1}∗

Pr

[
(share1, share2)← Share

(
1λ, x

)
yb ← Evalb (shareb, C) , b = 1, 2

: Combine(y1, y2) = C (x)

]
≥ 1− negl(λ)

– Security For all security parameters λ ∈ N, for all PPT adversaries A we
require the following advantage to be negligible in λ:

AdvHSS,A :=

∣∣∣∣∣∣∣Pr
A(shareβ) = β :

(b, x0, x1)← A(1λ)
β ←$ {0, 1}

(share1, share2)← Share(1λ, xβ)

− 1

2

∣∣∣∣∣∣∣
B Details on UT

B.1 Model (from [9])

Universal thresholdizer (UT) generalizes of non-interactive threshold schemes,
where for a given a secret known at setup time, one can secret share the secret
and now the parties with the share can together produce evaluations of that
secret. For simplicity, the formal definition below is tailored to (d,N)-threshold
access structure, because our construction is in this setting. The definition can
be modified in a straightforward way to consider general access structures.

Definition 12 (Universal Thresholdizer). Let P = {P1, . . . , PN} be a set of
parties. A universal thresholdizer scheme for a (d,N)-threshold access structure
is a quadruple of PPT algorithms UT = (Setup,PartEval,VfyEval,Combine) with
the following properties:

– UT.Setup
(
1λ, d,N, x

)
→ (pp, sk1, . . . , skN) : On input the security parameter

1λ, threshold parameters (d,N), and a message x ∈ {0, 1}k, the setup algorithm
outputs the public parameters pp, a set of shares sk1, . . . , skN.

– UT.PartEval (pp, ski, i, C) → πi : On input the public parameters pp, a share
ski, a tag i, and a circuit C : {0, 1}k → {0, 1}, the evaluation algorithm outputs
a partial evaluation πi.
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– UT.VfyEval (pp, πi, i, C)→ {0, 1} : On input the public parameters pp, a partial
evaluation πi, a tag i, and a circuit C : {0, 1}k → {0, 1}∗, the verification
algorithm returns a bit indicating acceptance or rejection.

– UT.Combine (pp, B)→ y : On input pp, a set of partial evaluations B = {πi}i
of size d, the combining algorithm outputs the final evaluation y.

A UT scheme is required to satisfy correctness, compactness, robustness and
security.

Definition 13 (Evaluation Correctness). A (d,N)-UT scheme has evalua-
tion correctness if for all λ, message x ∈ {0, 1}k, and circuit C : {0, 1}k →
{0, 1}∗,

Pr

[
(pp, sk1, . . . , skN)← UT.Setup

(
1λ, d,N, x

)
B ← {UT.PartEval (pp, ski, i, C)}i

:
|B| ≥ d ∧

UT.Combine (pp, B) = C(x)

]
≥ 1−negl(λ)

Definition 14 (Verification Correctness). A (d,N)-UT scheme has verifi-
cation correctness if for all λ, message x ∈ {0, 1}k, and circuit C : {0, 1}k →
{0, 1}∗,

Pr

[
(pp, sk1, . . . , skN)← UT.Setup

(
1λ, d,N, x

)
πi ← UT.PartEval (pp, ski, i, C)

: UT.VfyEval (pp, πi, i, C) = 1

]
= 1

Definition 15 (Compactness). A UT scheme is called compact if there exists
some polynomial poly(·) such that for all λ ∈ N, circuit C : {0, 1}k → {0, 1},

Pr

[
(pp, sk1, . . . , skN)← UT.Setup

(
1λ, d,N, x

)
πi ← UT.PartEval (pp, ski, i, C) for i ∈ [N]

: |πi| ≤ poly(λ,N)

]
= 1

Definition 16 (Robustness). A UT scheme satisfies robustness if for all λ ∈
N, it holds that for any PPT adversary A, the following experiment ExptA,robust(1

λ)
outputs 1 with negligible probability.

ExptRobustA,UT(1
λ):

1. A takes in the security parameter 1λ and outputs a message x.

2. The challenger runs (pp, sk1, . . . , skN) ← UT.Setup
(
1λ, d,N, x

)
and sends

(pp, sk1, . . . , skN) to A.
3. A outputs a fake partial evaluation π∗i .

4. The challenger returns 1 if
π∗i ̸= UT.PartEval(pp, ski, i, C) and UT.VfyEval(pp, π∗i , i, C) = 1.
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Definition 17 (UT Security). A UT scheme satisfies security with respect to
circuit sampler D if for all λ, the following holds. There exists a PPT algorithm
S = (SS ,SE) such that for any PPT adversary A, the following experiments
ExprealA,UT

(
1λ, d,N

)
and ExpidealA,UT

(
1λ, d,N

)
are computationally indistinguishable.

Expt
world∈{real,ideal}
A,UT

(
1λ, d,N

)
:

1. x← A(1λ, d,N)
2. if world = real then (pp, s1, . . . , sN)← UT.Setup

(
1λ, d,N, x

)
3. else if world = ideal then (pp, s1, . . . , sN)← SS

(
1λ, d,N

)
.

4. A is given (pp) and outputs a corruption set C of size t− 1

5. The challenger provides the shares {si}i∈C to A.
6. A can ask for a polynomial number of adaptive queries to the oracle Oworld

UT

(defined below).

7. Adversary outputs a guess guess

8. Return 1 iff guess = world

We now define oracle Oworld
UT . It can receive as a query C where C is a circuit

and the oracle responds with:

– if world = real then returns {yi ← UT.Eval (pp, si,T , C)}i∈[N]

– if world = ideal then return {yi}i∈[N] ← SE (trapd, C, C(x))

B.2 Construction of UT from TFHE and Homomorphic Signatures

The construction in Figure 11 is a formal description of the construction for UT
informally discussed in [9]. Its security can be seen as a special case of the formal
proof of security of our sUT construction, also based on TFHE and HS.

B.3 Construction of (2-party) UT from HSS and HS

Our construction of UT from HSS and HS is in Figure 6. Given the similarity
of syntax and properties between HSS and TFHE (notice that the security of
HSS can be cast in terms of TFHE’s simulation-based security), the security of
the construction in Figure 6 follows with little variations as a special case of the
proof of security of our sUT construction (see also Theorem 6).

C Details on Special UT (sUT)

C.1 Model

Universal thresholdizer (UT) is a generalization of non-interactive threshold
schemes, where for a given a secret known at setup time, one can secret share the
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UT.Setup(1λ, d,N, x)

(skhs, pkhs)← HS.Setup(1λ)

(skfhe, pkfhe)← TFHE.KeyGenAux(1λ, d,N)

ctx ← TFHE.Enc(pkfhe, x)

sk← UT-AuxSetup(skfhe, skhs)

return (pp := (pkfhe, pkhs, ctx), sk)

UT-AuxSetup(skfhe, skhs)

for i = 1, . . . ,N

sk′i[fhe]← SS(d,N, skfhe)

sk′i[hs]← HS.Sign(skhs, “i”, sk
′
i[fhe])

sk′i := (sk′i[fhe], sk
′
i[hs])

return sk′1, . . . sk
′
N

UT.PartEval(pp := (pkfhe, pkhs, ctx), ski, i, C)

ct′ ← TFHE.Eval(pkfhe, ctx, C)

yi ← TFHE.PartDec(ski[fhe], ct
′
)

σi ← HS.Eval(pkhs, “i”, CDec, ski[hs])

where CDec := TFHE.PartDec(·, ct′)
return (yi, σi)

UT.VfyEval (pp := (pkfhe, pkhs), πi = (yi, σi), i, C)

ct′ ← TFHE.Eval(pkfhe, ctx, C)

return HS.Verify(pkhs, “i”, yi, σi, CDec)

where CDec := TFHE.PartDec(·, ct′)

UT.Combine (pp := (pkfhe, pkhs), y1, . . . , yd)

return TFHE.Dec(pkfhe, {y1, . . . , yd}).

Fig. 11: UT Construction from TFHE and HS (informally described in [9]).

secret and now the parties with the share can together produce evaluations of
that secret. We define a special type of UT called sUT which essentially is a UT
with two extra algorithms that allow (verification of) evaluations on its own trap-
door. For simplicity, the formal definition below is tailored to (d,N)-threshold
access structure, because our construction is in this setting. The definition can
be modified in a straightforward way to consider general access structures.

Definition 18 (Special Universal Thresholdizer). Let P = {P1, . . . , PN}
be a set of parties. A universal thresholdizer scheme for a (d,N)-threshold ac-
cess structure is a quadruple of PPT algorithms sUT = (Setup,PartEval,VfyEval,
TrapdEval,VfyTrapdEval,Combine) with the following properties:

– sUT.Setup
(
1λ, d,N, x

)
→ (pp, sk1, . . . , skN, trapd) : On input the security pa-

rameter 1λ, threshold parameters (d,N), and a message x ∈ {0, 1}k, the setup
algorithm outputs the public parameters pp, a set of shares sk1, . . . , skN, and
a trapdoor trapd.

– sUT.PartEval (pp, ski, i, C) → πi : On input the public parameters pp, a share
ski, a tag i, and a circuit C : {0, 1}k → {0, 1}, the evaluation algorithm outputs
a partial evaluation πi.
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– sUT.VfyEval (pp, πi, i, C)→ {0, 1} : On input the public parameters pp, a par-
tial evaluation πi, a tag i, and a circuit C : {0, 1}k → {0, 1}∗, the verification
algorithm returns a bit indicating acceptance or rejection.

– sUT.TrapdEval (pp, ski, i, C) → πi : On input pp, a share ski, a tag i, and
a circuit C : {0, 1}k → {0, 1}, the trapdoor evaluation algorithm outputs a
trapdoor partial evaluation πi.

– sUT.VfyTrapdEval (pp, πi, i, C)→ {0, 1} : On input the public parameters pp, a
trapdoor partial evaluation πi, a tag i, and a circuit C : {0, 1}k → {0, 1}∗, the
trapdoor verification algorithm outputs a bit indicating acceptance or rejection.

– sUT.Combine (pp, B)→ y : On input pp, a set of partial evaluations B = {πi}i
of size d, the combining algorithm outputs the final evaluation y.

A sUT scheme is required to satisfy correctness, compactness, robustness and
security.

Definition 19 (Evaluation Correctness). A (d,N)-sUT scheme has evalu-
ation correctness if for all λ, message x ∈ {0, 1}k, and circuit C : {0, 1}k →
{0, 1}∗,

Pr


(pp, sk1, . . . , skN, trapd)

← sUT.Setup
(
1λ, d,N, x

)
B ← {sUT.PartEval (pp, ski, i, C)}i

:
|B| ≥ d ∧

sUT.Combine (pp, B) = C(x)

 ≥ 1−negl(λ)

A similar property holds for a valid set of trapdoor partial evaluations (computed
by TrapdEval algorithm) as well.

Definition 20 (Verification Correctness). A (d,N)-sUT scheme has verifi-
cation correctness if for all λ, message x ∈ {0, 1}k, and circuit C : {0, 1}k →
{0, 1}∗,

Pr

[
(pp, sk1, . . . , skN, trapd)← sUT.Setup

(
1λ, d,N, x

)
πi ← sUT.PartEval (pp, ski, i, C)

: sUT.VfyEval (pp, πi, i, C) = 1

]
= 1

A similar property holds for the TrapdEval and VfyTrapdEval algorithms as well.

Definition 21 (Compactness). A sUT scheme is called compact if there exists
some polynomial poly(·) such that for all λ ∈ N, circuit C : {0, 1}k → {0, 1},

Pr

[
(pp, sk1, . . . , skN, trapd)← sUT.Setup

(
1λ, d,N, x

)
πi ← sUT.PartEval (pp, ski, i, C) for i ∈ [N]

: |πi| ≤ poly(λ,N)

]
= 1

Definition 22 (Robustness). A sUT scheme satisfies robustness if for all λ ∈
N, it holds that for any PPT adversary A, the following experiment ExptA,robust(1

λ)
outputs 1 with negligible probability.
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ExptRobustA,sUT(1
λ):

1. A takes in the security parameter 1λ and outputs a message x.

2. The challenger runs (pp, sk1, . . . , skN, trapd)← sUT.Setup
(
1λ, d,N, x

)
and

sends (pp, sk1, . . . , skN) to A.
3. A outputs a fake partial evaluation π∗i .

4. The challenger returns 1 if
π∗i ̸= sUT.PartEval(pp, ski, i, C) and sUT.VfyEval(pp, π∗i , i, C) = 1.

Security. The security of a special-evaluation sUT scheme is a modified version
of the security property of UT schemes. In standard UT we allow the adversary
to access evaluation queries only to a secret x provided by the adversary itself.
In this other version we will allow the adversary to access evaluation queries to
a trapdoor of the UT setup itself. Naturally, for this notion to allow security
we restrict the type of queries the adversary can access to only those coming
from a “benign” distribution (otherwise the adversary could, for example, ask
the identity function itself and thus break security).

Definition 23 (Circuit Sampler). A circuit sampler D is a PPT that on
input a string z returns a circuit C ← D(z) of size polynomial in |z|.

Definition 24 (sUT Security). A sUT scheme satisfies security with respect
to circuit sampler D if for all λ, the following holds. There exists a PPT algo-
rithm S = (SS ,SE) such that for any PPT adversary A, the following exper-
iments ExprealA,sUT

(
1λ, d,N

)
and ExpidealA,sUT

(
1λ, d,N

)
are computationally indistin-

guishable.

We now define oracle Oworld
sUT for the experiment in Figure 12. It can receive

in input either a tuple (trapdquery, z) or a tuple (xquery, C). The first asks for
a query evaluation on the trapdoor; the other for the secret x. For the case
(trapdquery, z), the oracle samples a circuit from sampler D as C ←$ D(trapd, z),
returns circuit C and partial evaluation {yi ← sUT.TrapdEval (pp, si, C)}i∈[N].

For the case (xquery, C) the oracle responds with:

– if world = real then return {yi ← sUT.Eval (pp, si,T , C)}i∈[N]
– if world = ideal then return {yi}i∈[N] ← SE (trapd, C, C(x))

C.2 Construction of sUT

We extend the construction from [9] by replacing NIZKs with homomorphic sig-
natures and to support partial evaluations on the sUT trapdoor. The TrapdEval
function works exactly as PartEval but one a different ciphertext (which encrypts
the trapdoor). The construction is in Figure 8.
The construction uses the following building blocks:

39



Expt
world∈{real,ideal}
A,sUT

(
1λ, d,N

)
:

1. x← A(1λ, d,N)
2. if world = real then (pp, s1, . . . , sN, trapd)← sUT.Setup

(
1λ, d,N, x

)
3. else if world = ideal then (pp, s1, . . . , sN, trapd)← SS

(
1λ, d,N

)
.

4. A is given (pp) and outputs a corruption set C of size t− 1

5. The challenger provides the shares {si}i∈C to A.
6. A can ask for a polynomial number of adaptive queries to the oracle Oworld

sUT

(defined below).

7. Adversary outputs a guess guess

8. Return 1 iff guess = world

Fig. 12: sUT security experiment. We mark in blue the few differences with the
UT security experiment.

– a TFHE scheme (Definition 10). We require two things on it. First we require
the secret keys for partial evaluations to be a secret share of a secret (this
property is called “Setup with Explicit Secret Sharing” in Definition 10). More
formally we require the TFHE key generation to output (sk1, . . . , skN, pkfhe)
where (sk1, . . . , skN) are (d,N) secret shares of skfhe and we let (skfhe, pkfhe)←
TFHE.KeyGenAux(1λ, d,N) for an auxiliary function TFHE.KeyGenAux. This
will be necessary later for correctness of the proactive UT we build on top of
our sUT. We remark that the constructions in [9] satisfy these notions. Second,
we require the TFHE to have Key Dependent Message security (Definition 7.1
in [7]). This is necessary because we will encrypt skfhe as defined above with
its corresponding public key. This requirement, although heuristic, has been
made before in the context of homomorphic encryption [27].

– Context-hiding homomorphic signatures (Definition 9)

The construction in Figure 8 has an auxiliary Setup function used to make
clearer the symmetry with the resharing function we will define later.

We prove security of sUT with respect to distributions related to a “reshar-
ing” function (defined below). We note, however, that one can prove security
for other distributions and circuits as long as they do not leak the secret key
for TFHE to the adversary. We leave modeling this general case as future work.
This resharing function will be used later for pUT and its motivation can be
better understood from the pUT section. Nonetheless we define it here because
we will prove sUT security with respect to it. The superscripts t + 1 refer to
the fact that these values are (or are used for) part of the secret shares of the
committee members for epoch t+ 1.
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Definition 25 (Resharing Circuit Sampler). Given parameters d,N and a
public key encryption scheme PK, the resharing circuit sampler D′(z) is defined
as follows:

– Parse z as (t, ( ˆepki)i∈[d−1])

– Sample remaining N − d ephemeral keys for i = d, . . . ,N as (epki, eski) ←
PK.KeyGen(1λ)

– return Fresh
t,epkt+1 (defined in Figure 9)

Theorem 6. (Security) Let D′(z) be the distribution as in Definition 25. If
TFHE satisfies semantic security and simulation security (see Def. 10) and sat-
isfies security in presence of key-dependent messages , and HS satisfies unforge-
ability and context-hiding (see Def. 9), then the construction in Fig.8 satisfies
security (Def.24) with respect to distribution D′.

Proof. (Sketch) We point out that most of our proof follows the steps for the
UT security in [9]. The main difference is the presence of the TrapdEval for sUT
security. We discuss this later in the proof.

To prove security, we construct a simulator S = (SS ,SE) for ExptidealA,sUT

(
1λ, d,N

)
.

The simulator S is constructed as follows:

– SS(1λ, d,N): This is the simulator for sUT.Setup: it runs the TFHE setup sim-
ulator TFHE.SS instead of TFHE.KeyGen and defines ciphertexts ctx as an en-
cryption of 0 and cttpd as an encryption of (0, skhs, ρ) instead of (skfhe, skhs, ρ).

– SE (trapd, C, C(x)): it simulates queries of the type (xquery, C). To do that
it runs the partial decryption simulator of the TFHE instead of the actual
partial decryptor to output fake partial decryptions pi-s. It then runs the
context-hiding simulator of HS passing as input the partial decryptions pi-s
and the function PartDec.

Our adversary has access to two oracles, that for partial evaluations (sim-
ulated or not) and those for trapdoor evaluations. We now define a series of
hybrids. The change of hybrids H−1 → H0 affects mainly the trapdoor evalua-
tion oracle and it is a different step in the proof of sUT in contrast to that of
UT in [9].

The indistinguishability between real and ideal worlds can be argued via a
sequence of hybrid experiments between the adversary A and the challenger.

– H−1 is the real security experiment ExptrealA,sUT

(
1λ, d,N

)
.

– H0 is the same as H−1 but it produces cttpd as an encryption of (0, skhs, ρ) at
setup time. This affects the trapdoor evaluation oracle (for queries (trapdquery, z)).
This experiment is indistinguishable from H−1 become of KDM-security of
the TFHE scheme (formalized in Section A.3), IND-CPA of PK and the pri-
vacy property of Shamir secret sharing: the adversary can open at most t− 1
ciphertexts thus revealing at most t− 1 shares of 0 (which will look as if they
were from skfhe). Notice that we also use the PRF security since it produces
the randomness we plug in the sharing algorithm.
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– H1 is the same as H0, except the challenger simulates the signatures in the
sUT.PartEval By the context-hiding property of HS, the hybrid experiments
H0 and H1 are computationally indistinguishable.

– H2 is the same as H1, except the challenger simulates the partial decryptions
by running the TFHE simulator.
By the simulation security of TFHE, the hybrid experiments H1 and H2 are
statistically indistinguishable.

– H3 is the same as H2, except the challenger simulates the setup output pp by
running the TFHE simulator. Specifically, the challenger encrypts 0 instead of
x and trapd in the setup.
By the semantic security of TFHE, the hybrid experimentsH2 andH3 are com-
putationally indistinguishable. Also, note that the challenger in H3 simulates
the setup algorithm sUT.Setup and partial evaluation algorithm sUT.PartEval
without requiring access to the secret x. Hence,Hr corresponds to the ideal ex-
periment ExptidealA,sUT

(
1λ, d,N

)
as simulated through SS and SE defined above.

D Details on Proactive UT (pUT)

We define a new primitive pUT which can be seen as a proactive version of
UT with a set of secret-holders that can change throughout the protocol. We
assume that the run of the protocol consists of time periods (epochs) with a
handover stage at the beginning of each. At the beginning of each handover
stage the challenger produces a set of N ephemeral public-keys. The owners of
the corresponding secret keys are the committee members for the new epoch. The
output of the resharing stage should be N ciphertexts, each of them containing
a pair (sk′i, σ

′
i). The N ciphertexts are not directly an output of the reshare

stage but they are “partially evaluated” by the committee members of epoch t.
These can be then combined as done for partial evaluations in UT. We let the
adversary select d − 1 of these shares at each epoch. For the rest the security
experiment proceeds as for UT. As we mentioned the set of parties at period
t (called committee Ct) can do some partial evaluations and later reshare their
shares to the next committee Ct+1. Since the communication in each time period
should be non-interactive, we require the resharing phase to be publicly verifiable
such that everyone, not just the receivers, can verify the correctness of shares.

D.1 Model

We assume a pUT is associated with a public-key encryption scheme PK used
to sample the ephemeral keys. In the following we denote by d the threshold
for reconstruction and with T the epoch the model is currently referring to. Let

CT = {P (t)
1 , . . . , P

(t)
N } be the committee at the time period T . To simplify the

notation, we assume that each party P
(t)
i (for i ∈ [N] and T = 0, 1, . . .) owns

an anonymous key pair (sk
(t)
i , pk

(t)
i ) such that P

(t)
i can use sk

(t)
i to decode the

encoded shares [sT·,i] (encoded by pk
(t)
i ). Also, we use the notation [sTj ] in the
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VfyReshare algorithm to denote the set of encoded shares P
(t)
i has received from

the previous committee, namely {[s(t)i1,j
], . . . , [s

(t)
id,j

]}.
A proactive universal thresholdizer scheme for S consists of a tuple of PPT al-

gorithms pUT = (Setup,Eval,VfyEval,Combine,Reshare,VfyReshare,Reconstruct)
such that (Setup,Eval,VfyEval,Combine are defined similarly to the UT algo-
rithms and the reshare algorithms are defined as in 6.1.

The evaluation correctness and robustness properties are similar to the ones
for UT schemes, except in pUT, we require two additional correctness proper-
ties Resharing Correctness and Share Reconstruction Correctness. Informally,
Resharing Correctness states that proper computation of pUT.Reshare verifies
by the pUT.VfyReshare algorithm. Share Reconstruction Correctness states that
for d valid shares (computed by pUT.Reshare), the reconstruction algorithm
pUT.Reconstruct computes a valid share. We also require an additional robust-
ness property for resharing requiring that no adversary corrupting at most d−1
parties can compute the correct share value.

Definition 26 (pUT Security). A pUT scheme satisfies security with re-
spect to distribution D if for all λ, the following holds. There exists a PPT
algorithm S = (SS ,SE) such that for any PPT adversary A, the following ex-
periments ExprealA,pUT

(
1λ, d,N

)
and ExpidealA,pUT

(
1λ, d,N

)
are computationally indis-

tinguishable.

Expt
world∈{real,ideal}
A,pUT

(
1λ, d,N

)
:

1. x← A(1λ, d,N)
2. if world = real then (pp, s1,0, . . . , sN,0, trapd)← pUT.Setup

(
1λ, d,N, x

)
3. else if world = ideal then (pp, s1,0, . . . , sN,0, trapd)← SS

(
1λ, d,N

)
.

4. A outputs a corruption set C0 of size d− 1

5. The challenger provides the shares {si,0}i∈CT to A.
6. For T = 1, . . . , poly(λ):
(a) A outputs a corruption set CT of size d− 1

(b) A can ask for a polynomial number of adaptive queries to the oracle
Oworld

pUT (defined below).

(c) The challenger samples ephemeral key (epki, eski)i∈[N] ←
PK.KeyGen(1λ)N, calls pUT.Reshare(pp, si,T , epk) for all i ∈ [N]
and returns the outputs to A together with the epki-s.

(d) The challenger uses pUT.Reconstruct with input each eski to reconstruct
new shares {si,T+1}i∈[N].

(e) The challenger provides the shares {si,T }i∈CT to A.
7. Adversary outputs a guess guess

8. Return 1 iff guess = world

43



We now define oracle Oworld
pUT . It can receive as a query C where C is a circuit

and the oracle responds with:

– if world = real then returns {yi ← pUT.Eval (pp, si,T , C)}i∈[N]

– if world = ideal then return {yi}i∈[N] ← SE (trapd, C, C(x))

D.2 Construction

Our construction is in Figure 9. It uses a secure sUT as the underlying mechanism
and almost uses it completely black-box, nonetheless it relies only the specific
underlying structure of the TFHE as described in the sUT section (the fact that
its partial secrets are a resharing of a specific secret skfhe. We leave as future work
how to generalize these results. To ensure robustness one needs to slightly modify
the sUT construction so that shares are signed with the tag “(i, t)” instead of
only “i”. We can do this easily by extending the syntax of the setup for sUT
with an additional auxiliary parameter, a session id that can represent epoch or
any other information.

We now prove the security property (Definition 26). Other properties are
straightforwardly derived as for sUT. It is important to notice that: for correct-
ness we rely on the special structure of the TFHE key as shares of a secret; for
the robustness property of resharing we rely on security of the PRF and un-
forgeability of the homomorphic signature (the intuition is that if an adversary
will only gain d− 1 signatures of the type “(i, t)” for each epoch t and will not
be able to provide a d-th one without forging).

Theorem 7. (Security) Consider the sUT construction in Figure 8 then the
construction in Figure 9 satisfies security for pUTs (Definition 26).

Proof. (Sketch) We rely on the fact that the sUT construction is secure w.r.t.
distribution D′ (Definition 25). We claim that if an adversary Ap is able to
distinguish the ideal and real worlds in the pUT experiment, then we are able
to construct a successful adversary As for the sUT experiment. The adversary
As would work as follows:

– The adversary As forwards the sUT public parameters to Ap and selects the
same corruption set.

– For each query to the partial evaluation oracle from Ap, adversary As queries
its own partial evaluation oracle with the same input and returns the result.

– To simulate a resharing step from epoch t to epoch t + 1, As first samples
d − 1 fresh ephemeral key pairs ( ˆepki,

ˆeski)i∈[d−1]
12. It then invokes its own

trapdoor evaluation algorithm with input (t, (epki)i∈[d−1]). It then receives a

vector yresh of N shares of ct = (ct1, . . . , ctN) the output of F resh
t,epkt+1 . It will

also receive the remaining epki-s (returned as C by the trapdoor evaluation
oracle). This vector is yresh forwarded to Ap together with the ephemeral
public keys as if it were step (c) of the pUT security experiment.

12 For simplicity we express this with indices 1, . . . , d − 1 but they should correspond
to the indices declared in the corruption set by Ap.
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– In order to distribute the shares for the next round (step (d)), the As uses
sUT.Combine on yresh and retrieves the N ciphertexts output of F resh

t,epkt . It

then uses the d − 1 keys ˆeski-s to open the related ciphertexts returns to As

d− 1 reconstructed shares, As forwards them to Ap together with yresh.

– At the end of the protocol As outputs the same guess as Ap

We observe that As simulates the view of Ap in the pUT security exper-
iments. The advantage of As is thus negligibly close to that of Ap. Invoking
security of sUT concludes the proof.

45


	Succinct Publicly-Certifiable Proofs
	Introduction
	Contributions and Overview
	Further Theoretical Motivation and Assumptions
	Other Related Work

	Background on Designated-Verifier SNARKs
	Key-Less Zero-Knowledge
	Definition of SPuC
	Construction of SPuC
	Warm-up: a Straw-Man Construction
	Building Block Primitive: Universal thresholdizers (UT).
	A General Construction for SPuC
	Proof of Security
	Construction of UT

	Proactive UT and Proactive SPuC
	Proactive UT: Model Description
	Building Block: Special UT (sUT)
	Construction of pUT
	From pUT to pSPuC

	Additional Preliminaries
	Pseudorandom Functions
	Homomorphic Signatures
	Threshold Fully Homomorphic Encryption
	Homomorphic Secret Sharing

	Details on UT
	Model (from C:BGGJKR18)
	Construction of UT from TFHE and Homomorphic Signatures
	Construction of (2-party) UT from HSS and HS

	Details on Special UT (sUT)
	Model
	Construction of sUT

	Details on Proactive UT (pUT)
	Model
	Construction



