
Expanding Blockchain Horizons
through Privacy-Preserving Computation

Lorenzo Gentile

PhD thesis
IT University of Copenhagen

2023
Computer Science Department

2

Summary in English

In this thesis, we explore the area lying between privacy-preserving computation
and blockchain applications. In particular, we consider the following applica-
tions: auctions, i.e., how to efficiently run auctions without an auctioneer while
keeping the bids private; decentralized finance (DeFi), i.e., what are the current
solutions and the open problems related to front-running; anonymous creden-
tials, i.e., how to find a trade-off between privacy and accountability of the
users.

In the context of auctions, we consider specifically the case of sealed-bid
auctions, i.e., no bidder is supposed to know how much the other auction par-
ticipants have bid. Sealed-bid auctions are a common way of allocating an asset
among a set of parties but require trusting an auctioneer who analyses the bids
and determines the winner. Many privacy-preserving computation protocols for
auctions have been proposed to eliminate the need for a trusted third party.
However, they lack fairness, meaning that the adversary learns the outcome
of the auction before honest parties and may choose to make the protocol fail
without suffering any consequences. In this thesis, we propose efficient protocols
for both first and second-price sealed-bid auctions with fairness against ratio-
nal adversaries, leveraging secret cryptocurrency transactions and public smart
contracts. In our approach, the bidders jointly compute the winner of the auc-
tion while preserving the privacy of losing bids and ensuring that cheaters are
financially punished by losing a secret collateral deposit. We guarantee that it
is never profitable for rational adversaries to cheat by making the deposit equal
to the bid plus the cost of running the protocol, i.e., once a party commits
to a bid, it is guaranteed that it has the funds and it cannot walk away from
the protocol without forfeiting the bid. Moreover, our protocols ensure that
the winner is determined and the auction payments are completed even if the
adversary misbehaves so that it cannot force the protocol to fail and then rejoin
the auction with an adjusted bid. In comparison to the state-of-the-art, our
constructions are both more efficient and furthermore achieve stronger security
properties, i.e., fairness. Interestingly, we show how the second-price can be
computed with a minimal increase of the complexity of the simpler first-price
case. Moreover, in case there is no cheating, only collateral deposit and refund
transactions must be sent to the smart contract, significantly saving on-chain
storage.

In the context of decentralized finance, we take into consideration the prob-

3

4

lem of front-running. Front-running is the malicious, and often illegal, act of
both manipulating the order of pending trades and injecting additional trades to
make a profit at the cost of other users. In decentralized finance, front-running
strategies exploit both public knowledge of user trades from transactions pend-
ing on the network and the miner’s ability to determine the final transaction
order. Given the financial loss and increased transaction load resulting from ad-
versarial front-running in decentralized finance, novel cryptographic protocols
have been proposed to mitigate such attacks in the permission-less blockchain
setting. In this thesis, we systematize and discuss the state-of-the-art of front-
running mitigation in decentralized finance, and illustrate remaining attacks
and open challenges.

Finally, in the context of anonymous credentials, we study the notion of
anonymous credentials with Publicly Auditable Privacy Revocation (PAPR).
PAPR credentials simultaneously provide conditional user privacy and auditable
privacy revocation. The first property implies that users keep their identity pri-
vate when authenticating unless and until an appointed authority requests to
revoke this privacy, retroactively. The second property enforces that the au-
ditors can verify whether or not this authority has revoked privacy from an
issued credential (i.e., learned the identity of the user who owns that creden-
tial), holding the authority accountable. In other words, the second property
enriches anonymous credential systems with transparency by design, effectively
discouraging such systems from being used for mass surveillance. In this thesis,
we introduce the notion of a PAPR anonymous credential scheme, formalize
it as an ideal functionality, and present constructions that are provably secure
under standard assumptions in the Universal Composability framework. The
core tool in our PAPR construction is a mechanism for randomly selecting an
anonymous committee towards which users secret share their identity informa-
tion, while hiding the identities of the committee members from the authority.
As a consequence, in order to initiate the revocation process for a given cre-
dential, the authority is forced to post a request on a public bulletin board
used as a broadcast channel to contact the anonymous committee that holds
shares of the identity connected to the credential. This mechanism makes the
user de-anonymization publicly auditable. Finally, we show how to modify our
construction to obtain proactive security.

Overall, the goal of this thesis is to contribute to the extension and en-
hancement of blockchain applications through the usage of privacy-preserving
computation.

Summary in Danish

Målet for denne opgave er at udforske området mellem teknologien for dis-
tribuerede private beregninger og blockchain applikationer. Opgaven behan-
dler især følgende applikationer: auktioner - hvordan man kan skabe auktioner
uden en tredje-part der spiller rollen som auktionarius mens deltagerne sam-
tidig holder deres bud hemmelige. Decentralized Finance (DeFi) - her studeres
de løsninger og åbne problemer som dette områder tilbyder specielt relateret
til algoritmehandel og ubalance i markedsinformation. Anonyme personlige
oplysninger - hvor omdrejningspunktet er hvordan man finder balancen mellem
privatliv og brugernes ansvarlighed.

Vi fokuserer på auktioner hvor buddende i første omgang er forsejlede altså
hvor ingen af deltagerne kender hinandens bud. Dette er en velkendt auk-
tionsform hvor en betroet tredje-part modtager genstanden for auktionen samt
hemmelige bud fra hver deltager og derefter udråber en vinder. Gennem tiden
er der forelået mange protokoller for privat beregning af auktioner it uden en
betroet tredje-part. Fælles for dem alle er at de ikke er fuldstændigt retfærdige.
Det bevirker at en ondsindet deltager kan modtage resultatet af auktionen og
derefter anullere protokollen uden følger. I denne opgave presenterer vi hurtige
og effektive protokoller for både højeste- og næsthøjeste bud auktioner. Ved at
udnytte kryptovaluta og smarte kontrakter kan vi garantere at disse protokoller
giver en retfærdig auktion hvis alle deltagere handler rationelt. Vi bruger en
teknik hvor deltagerne ved hjælp af en protokol kan beregne vinderen af auktio-
nen mens alle andre bud forbliver hemmelige. Deltagere der forsøger at snyde
bliver finansielt straffet da de mister et beløb som er blevet stillet i sikkerhed.
Vi garanterer at det aldrig er profitabelt for en deltager at snyde da det beløb
der bliver stillet i sikkerhed er det samme som buddet plus omkostninger for
protokollen. Det vil sige at når først deltageren har budt så kan denne ikke
afbryde deltagelsen i auktionen uden af miste sine penge. Ydermere, vores pro-
tokoller er designet så en vinder altid bliver udråbt og bud og betalinger er
endelige selvom nogle deltagere skulle prøve at snyde ved at forsøge at anullere
auktionen eller lave om på deres bud. Hvis vi sammenligner vores protokol med
den nyeste forskning så er effekten ved vores design både en hurtigere og mere
retfærdig auktion. En interesant konsekvens af vores design er at næsthøjeste
bud auktioner kan beregnes med en meget lille øgning i kompleksitet sammen-
lignet med højeste bud auktioner. Hvis ingen deltagere forsøger at snyde så

5

6

behøver den smarte kontrakt kun at behandle sikkerhedstillelse og refundering
hvilket giver en besparelse på den totale mængde information som protokollen
gør brug af på den underliggende blockchain.

I området Decentralized Finance (DeFi) kigger vi især ”Front-running”. ”Front-
running” er en, ofte, ulovlig måde at drive algoritmehandel på hvor en kriminel
part kan manipulere handler der er undervejs ved at omarrangere dem eller in-
dlægge små, hyggpige handler før og efter der, når de finansielle transaktioner
er afsluttet, skaber et fordelagtigt udfald for den kriminelle part med den al-
mindelig DeFi bruger som offer. I DeFi bruger ”Front-running” strategier både
information fra finansielle transkaktioner der er undervejs på netværket men
også en ”miners” evne til at manipulere rækkefølgen og tilføje andre transak-
tioner inden de bliver afsluttet. Dette finansielle tab for brugeren sammenholdt
med den stigende transaktionsbelastning hos mange blockchains giver anledning
til at søge muligheder i kryptografisk protokoller for afhjælpe dette problem. I
denne opgave sætter vi den nuværende viden i system og diskuterer måder
hvorpå man kan afhjælpe ”Front-running” samt andre skadelige strategier og
fremtidige udfordringer.

Til sidst, omkring emnet anonyme personlige oplysninger, studerer vi mu-
ligheden for revision ved samtidig brug af anonyme personlige oplysninger Pub-
licly Auditable Privacy Revocation (PAPR). Udfordringen er at man både vil
tilbyde brugeren at være privat men samtidig, under specielle forhold, vil være
i stand til at tilbagekalde dette. Det udmunder i et design hvor brugerens iden-
titet er privat under brugen af systemet indtil en autoritet laver en forpørgsel for
at få fjernet denne anonymitet. Hvis brugeren kommer under revision kan det
nu verificeres at autoriteten har handlet korrekt og de-anonymiseret den rette
identitet som brugeren har. Sidstnævnte er vigtigt for at skabe transparens
og forebygge et system med masseovervågning. Vi introducerer PAPR som et
koncept for anonyme personlige oplysninger. Vi formulerer dette som en ideal
funktionalitet og presenterer protokoller som er beviseligt sikrer under normale
antagelser i det såkaldte UC framework. Det vigtigste værktøj i PAPR er en
mekanisme som tilfældigt vælger anonyme kommiteer som, til sammen, holder
de private identitetsinformationer for alle brugere af systemet. En konsekvens
af dette er at hvis en autoritet skal fjerne anonymiteten hos en bruger skal au-
toriteten sende en offentlig forespørgsel for at kontakte kommiteen som holder
information om den forespurgte identitet. Det gør så at de-anonymiseringen
kun kan gøres offentligt og skaber den rette transparens under revision. Vi afs-
lutter med at vise hvordan vores konstruktion kan blive modificeret til at skabe
proaktiv sikkerhed.

Overordnet set er målet med denne afhandling at bidrage til udvidelsen og
forbedringen af blockchain-applikationer gennem brug af databehandling, der
beskytter privatlivets fred.

Acknowledgements

Several people have contributed in their own way to the completion of this
work. First of all, I am grateful to my supervisor Bernardo David for guiding me
throughout my PhD studies. A passionate mentor who allowed me to develop my
knowledge in the field of cryptography and to integrate easily into the scientific
community around it. My appreciation as a mentor has to be extended to
Sebastian Faust, who guided me during my exchange abroad.

Furthermore, my gratitude is due to my coauthors Bernardo David, Mohsen
Pourpouneh, Carsten Baum, James Hsin-yu Chiang, Tore Kasper Frederiksen,
Joakim Brorsson, Elena Pagnin, Paul Stankovski Wagner and my colleagues
Ravi Kishore, Anders Konring, Felix Engelmann, Ieva Daukantas, Boel Nel-
son, Daniele Friolo, Gennaro Avitabile, Paola de Perthuis, Mariana Botelho
da Gama, Anca Nitulescu, Orfeas Stefanos Thyfronitis Litos, Elena Micheli,
Francesco Berti, Patrick Harasser and each member of the Center for Informa-
tion Security and Trust (CISAT), as well as the whole academic and administra-
tive staff involved in the process. Sharing the joy and the pain of research with
them has been a precious professional and human experience. Beyond that, I
acknowledge Concordium Foundation for supporting my work.

In addition to all this, I wish to especially thank my friends Eloisa, Linda,
Massimo, Orfeas, Gianluca, Miriam, Mihhail, Mohamed, Ivan, Jon, Nikki, Anna,
Daniele, Mario, Sumero, Celeste and Giada for their invaluable closeness during
this journey. By all means, I extend my gratitude as friends to multiple peo-
ple mentioned earlier, the crew I spent my days with during my exchange in
Darmstadt, as well as others not explicitly mentioned here.

Finally, I express my deep gratitude to my family for cheering on me and to
my partner Elena, in particular for still being my partner despite the occasion-
ally unpredictable lifestyle I had during my PhD studies.

7

8

The inferno of the living is not something that will be; if
there is one, it is what is already here, the inferno where
we live every day, that we form by being together. There
are two ways to escape suffering it. The first is easy for
many: accept the inferno and become such a part of it
that you can no longer see it. The second is risky and
demands constant vigilance and apprehension: seek and
learn to recognize who and what, in the midst of inferno,
are not inferno, then make them endure, give them
space.

— Italo Calvino, Invisible Cities

Contents

1 Introduction 17
1.1 Auctions . 18

1.1.1 Related Work . 19
1.1.2 Our Contributions . 20

1.2 Decentralized Finance (DeFi) . 21
1.2.1 Related Work . 22
1.2.2 Our Contributions . 22

1.3 Anonymous Credentials . 23
1.3.1 Related Works . 24
1.3.2 Our Contributions . 25

2 Preliminaries 27
2.1 Models . 27

2.1.1 Adversarial Models . 27
2.1.2 Random Oracle Model (ROM) 28

2.2 Frameworks . 28
2.2.1 Real/Ideal Simulation Paradigm with Sequential Compo-

sition . 28
2.2.2 Universally Composable Security 28

2.3 Assumptions . 29
2.3.1 Decisional Diffie Hellman (DDH) Assumption 29
2.3.2 Discrete Logarithm (DL) Assumption 29

2.4 Cryptographic primitives . 29
2.4.1 Commitment Scheme . 29
2.4.2 Public Key Encryption Scheme 30
2.4.3 Digital Signatures . 30
2.4.4 Non-interactive Zero-Knowledge Proofs of Knowledge . . 31
2.4.5 Publicly Verifiable Secret Sharing (PVSS) 31
2.4.6 Blind Signature . 32
2.4.7 Provable Shuffle of Commitments 36

2.5 Ideal functionalities . 37
2.5.1 Ideal functionality FBB 37
2.5.2 Ideal functionality FPKI 37
2.5.3 Ideal functionality FZK 38

9

10 CONTENTS

2.5.4 Ideal functionality FNIZK 38
2.6 Blockchain . 39

2.6.1 Simplified UTXO model 39
2.6.2 Confidential transactions 40

3 FAST: Fair Auctions via Secret Transactions 43
3.1 Our Techniques . 43
3.2 Security Model and Setup Assumptions 45
3.3 Non-interactive Zero-Knowledge Proofs of Knowledge 45
3.4 Modelling a Stateful Smart Contract 49
3.5 Secret Deposits in Public Smart Contracts 49
3.6 First-Price Auctions . 53

3.6.1 Proof of Theorem 1 . 55
3.7 Extension to Second-price Auctions 65

3.7.1 Proof of Theorem 2 . 67
3.8 Complexity analysis and comparison to other protocols 74
3.9 Rational strategies . 75

4 SoK: Mitigation of Front-running
in Decentralized Finance 77
4.1 Front-running attacks . 77

4.1.1 Formalization: speculative sandwich 79
4.1.2 Speculative sandwich with private user balances 85
4.1.3 Example: speculative sandwich of scheduled swap 85
4.1.4 Speculative sandwich in hash-based commit & reveal schemes 86

4.2 Mitigation categories . 86
4.2.1 Fair ordering . 86
4.2.2 Batching of blinded inputs 87
4.2.3 Private & secret state . 92

5 PAPR: Publicly Auditable Privacy Revocation for Anonymous
Credentials 95
5.1 Our Techniques . 95

5.1.1 Cryptographic Primitives 97
5.1.2 Ideal Functionalities . 98

5.2 Defining PAPR for Anonymous Credentials 98
5.3 Realizing PAPR for Anonymous Credentials 100

5.3.1 Security Analysis of
∏

PC 103
5.4 From Static to Proactive Security 106

5.4.1 Modeling Proactive Security 106
5.4.2 Proactive Security Through YOSO Resharing 108
5.4.3 Proactive Security Through YOSO Threshold Encryption 110

5.5 Practical Considerations . 112
5.5.1 Optimizing the Size of the Committee 112
5.5.2 Flexibility in the Protocol Design 112
5.5.3 Overhead From a User Perspective 114

CONTENTS 11

5.5.4 Practical Attacks . 114
5.5.5 Towards an Efficient Instantiation of PAPR Credentials . 115

6 Conclusion 117

Bibliography 117

12 CONTENTS

List of Figures

1.1 Overview of mitigation techniques 22
1.2 Efficacy: batching of blinded inputs. 23

2.1 Protocol πPV SS from [64] . 33
2.2 Ideal functionality FBB . 38
2.3 Ideal functionality FPKI . 38
2.4 Ideal functionality FZK . 38
2.5 Ideal functionality FNIZK . 39

3.1 Functionality FSC (Stages 1,2,3 and 4). 50
3.2 Functionality FSC (Recovery). 51
3.3 Protocol ΠC . 52
3.4 Functionality FFPA. 54
3.5 Protocol ΠFPA (Off-chain messages exchange). 55
3.6 Protocol ΠFPA (Stage 1). 56
3.7 Protocol ΠFPA (Stages 2 and 3). 57
3.8 Protocol ΠFPA (Stages 4 and Recovery). 58
3.9 Simulator SFPA (Stage 1). 61
3.10 Simulator SFPA (Stage 1 - Continuation). 62
3.11 Simulator SFPA (Stages 2 and 3). 63
3.12 Simulator SFPA (Stages 4 and Recovery). 64
3.13 Functionality FSPA. 66
3.14 Protocol ΠSPA (Stages 1, 2, 3a and 3b). 68
3.15 Protocol ΠSPA (Stage 4 and Recovery Stage). 69
3.16 Simulator SSPA (Stages 1 and 2). 70
3.17 Simulator SSPA (Stage 3a and 3b). 71
3.18 Simulator SSPA (Stage 4 and Recovery). 72

4.1 Sandwich attack . 78
4.2 Batching of blinded inputs sent to a smart contract* or committee** 87
4.3 Speculative sandwich . 90
4.4 Successful speculative sandwich 91
4.5 Aborted speculative sandwich . 91

13

14 LIST OF FIGURES

5.1 Mechanics of
∏

PC : 1 Each user Pi locally generates commit-
ments to hide each committee candidate’s public key. Then, the
party shuffles the set of commitments in a provable way (zkcorr).
2 The output of the shuffle is published on a public bulletin board
(BB) by Pi. 3 The issuer I selects the committee members for
Pi from the shuffled list. 4 Pi secret shares its identity towards
the selected committee members in a publicly verifiable way. . . . 96

5.2 Ideal functionality FPC for PAPR Credentials. 99
5.3

∏
PC - Setup, Committee Establishment and Credential Request. 101

5.4 Elements of the zkesc statement. Intuitively, zkID states that
the proving user controls the enrolled identity key pkP . zkshare

states that the identity key pkU has been correctly shared to the
committee members in ~h. 102

5.5
∏

PC - Credential Issuance, Credential Showing and Privacy Re-
vocation. 104

5.6 Simulator SPC for protocol
∏

PC 107
5.7 Simulator SPC for protocol

∏
PC 108

5.8 Functioning of
∏

PC−P with YOSO resharing: as in the issuance
procedure of

∏
PC , initially each user Pi secret shares its iden-

tity pkPi
towards a different designated hidden committee. Sub-

sequently, the committees reshare the identities towards a new
single anonymous committee and a resharing towards a new sin-
gle anonymous committee is executed before the start of each
upcoming epoch. 109

5.9 Sketch of proactive security wrapper protocol
∏

PC−P 110

List of Tables

3.1 First-price auction computational complexity comparison in terms
of exponentiations performed by a party Pi ∈ P: n is the number
of parties, l is the total number of rounds in Stages 2 and 3 (i.e.,
bit-length of bids), τ is the number of rounds in Stage 2. 74

3.2 First-price auction communication complexity comparison in terms
of transmitted bits by a party Pi ∈ P: n is the number of parties,
l is the total number of rounds in Stages 2 and 3 (i.e., the bit-
length of bids), τ is the number of rounds of Stage 2, |G| and |Zq|
indicate the bit-length of elements g ∈ G and z ∈ Zq respectively,
λ is the security parameter, as defined in Section 2. 74

15

16 LIST OF TABLES

Chapter 1

Introduction

Privacy-preserving computation (also referred to as secure multi-party compu-
tation, secure computation, multi-party computation or MPC) is a subfield of
cryptography with the goal of allowing a set of mutually distrusting parties to
evaluate a certain function while keeping their input secret to each other. It
traces its roots back to the 1980s, with works related to specific applications such
as Mental Poker [163], investigating how two potentially dishonest players can
play a fair game of Poker without using any cards, e.g., over a phone, and the
Millionaires’ problem [174], investigating how two millionaires can learn which
of them is richer without revealing their actual wealth. Both scenarios show
how cryptography can be used to execute different computational tasks without
requiring a trusted third party. Indeed, it has been proven that general purpose
MPC is possible, i.e., any function can be evaluated on private inputs [176].

Likewise, the blockchain was introduced through a specific application as
well in 2008, i.e., Bitcoin [150], which is a payment system based on a public
transaction ledger, stored in a distributed way in a data structure composed
by a list of implicitly ordered blocks, i.e., a blockchain, and maintained by
parties called miners, who have the chance to generate new blocks containing
transactions by solving a puzzle called proof of work (PoW).

A few years later, in 2014, although Bitcoin already had limited programma-
bility features, Ethereum was introduced [173] and it is, at the time of writing,
among the most popular blockchain supporting smart contracts, i.e., a software
running on top of the blockchain that automatically enforces certain rules based
on how parties interact with it through transactions.

In a blockchain context, and in general in a distributed system, consensus
is a central concept, i.e., everybody has to agree on one state (e.g., the trans-
actions history). However, the FLP impossibility [95] showed in the 1980s that
consensus cannot be achieved over asynchronous networks, as in the case of a
blockchain. Thus, for a blockchain we consider eventual consensus, i.e., con-
sensus is reached only asymptotically. Indeed, in 2015 a notable analysis of the
Bitcoin protocol was conducted [99], introducing the concepts of chain growth,
i.e., a constant number of new blocks is added to the chain after a constant

17

18 CHAPTER 1. INTRODUCTION

number of rounds, chain quality, i.e., given k blocks in a blockchain at least
c ·k blocks were generated by honest parties for a constant c with overwhelming
probability and common prefix, i.e., the probability that two honest parties see
different chains after removing the k last blocks from a chain is negligible in k,
and it has been formally proven under which assumptions these properties hold
in the case of Bitcoin, e.g., the adversary cannot control more than half of all
of the computational power invested in solving the PoW puzzle. Subsequently,
other provably secure blockchain protocols based on proof of stake (PoS), an
energy-saving (among other advantages) alternative to PoW, have been pro-
posed, including Ouroboros [126], Ouroboros Praos [84] and Algorand [105].

Nowadays many efficient MPC protocols for specific applications exist, how-
ever they may not prevent parties to abort, i.e., do not properly conclude the
execution of the protocol if it is not in their interest given what they learnt
from the protocol execution up to a certain moment. Here is where MPC and
blockchain can meet. Indeed, smart contracts can play the role of enforcing a
set of predefined rules and, at last, enforcing the correct execution of an MPC
protocol when parties are assumed to be rational. Thus, a mechanism design
approach can be adopted to financially punish cheating parties by losing a public
cryptocurrency deposit (e.g., [32, 8, 133, 132, 134, 33, 30, 83, 19, 127, 72]).

In Chapter 3, we go one step further in this direction by introducing se-
cret deposits, leveraging secret cryptocurrency transactions and public smart
contracts, and use them in the design of efficient protocols for auctions.

Then, in Chapter 4 we study the problem of front-running in the context
of decentralized finance, i.e., the malicious act of both manipulating the order
of pending trades and injecting additional trades to make a profit at the cost
of other users. Motivated by the financial loss and increased transaction load
resulting from adversarial front-running, we describe common front-running at-
tacks, propose a schema of front-running mitigation categories, assess the state-
of-the-art techniques in each category and illustrate remaining attacks.

Finally, in Chapter 5 we face the issue of finding a trade-off between privacy
and accountability of the users in the context of anonymous credentials. Indeed,
most popular cryptocurrencies and smart contract systems offer no privacy guar-
antees of transactions and contract executions, while anonymous cryptocurrency
systems (e.g., [120]) address privacy issues, but it is impossible to investigate
illegal activities conducted in the system. In particular, we propose an anony-
mous and generic (i.e., it can be adopted outside the context of blockchain)
credential scheme providing simultaneously credentials conditional user privacy
and auditable privacy revocation, i.e., privacy of the users can be revoked by an
authority as long as it is publicly announced.

1.1 Auctions
Auctions are a common way of allocating goods or services among a set of parties
based on their bids, e.g., bandwidth spectrum, antiques, paintings, and slots for
advertisements in the context of web search engines or social networks [75]. In

1.1. AUCTIONS 19

the simplest form there is a single indivisible object and each bidder has a private
valuation for the object. One of the main desirable properties in designing an
auction is incentive compatibility, that is the auction must be designed in a way
that the participating parties can maximize their expected utilities by bidding
their true valuations of the object. According to design, the auction can be
categorized into open auctions and sealed-bid auctions [131].

We focus on the case of sealed-bid auctions, constructing protocols where
parties holding a private bid do not have to rely on trusted third parties to ensure
bid privacy. In a sealed bid auction, each bidder communicates her bid to the
auctioneer privately. Then, the auctioneer is expected to declare the highest
bidder as the winner and not to disclose the losing bids. In particular, in the
sealed-bid first-price auction, the bidder submitting the highest bid wins the
auction and pays what she bids, while in the sealed-bid second-price auction
(i.e., the Vickrey auction [170]) the bidder submitting the highest bid wins
the auction but pays the amount of the second-highest bid [129]. It is well-
known that in second-price auctions bidding truthfully is a dominant strategy,
but no dominant strategy exists in the case of first-price auctions. Moreover,
while in both first-price and second-price auctions a dishonest auctioneer may
disclose the losing bids, the second-price auction, in particular, highly depends
on trusting the auctioneer. Indeed, a dishonest auctioneer may substitute the
second-highest bid with a bid that is slightly smaller than the first bid to increase
her revenue. Therefore, it may not be possible or may be expensive to apply
it in certain scenarios. As a result, constructing cryptographic protocols for
auctioneer-free and transparent auction solutions is of great interest.

1.1.1 Related Work
Research on secure auctions started by the work of Nurmi and Salomaa [151] and
Franklin and Reiter [97] in the late 1900s. However, in these first constructions,
the auctioneers open all bids at the end of the protocol, which reveals the losing
bids to all parties. Since then, many sealed bid auction protocols have been
proposed to protect the privacy of the losing bids, e.g., [5, 17, 118, 122, 139, 135].
However, in most of these protocols, privacy is obtained by distributing the
computation of the final outcome to a group of auctioneers.

A lot of work has been done to remove the role of the trusted parties, includ-
ing the proposed protocols by Brandt [44, 42, 43], Brandt and Sandholm [45]
and Bag et al. [13]. In these protocols, the bidders must compute the winning
bid in a joint effort through emulating the role of the auctioneer. Moreover, the
seller plays a role in the auction and it is assumed that the seller has no incen-
tive to collude with other bidding parties. However, later by Dreier et al. [91]
it was pointed out that if the seller and a group of bidding parties collude with
each other, then they can learn the bids of other parties. Besides weak security
guarantees, the main drawback of the protocol proposed by Brandt [43] is that
it has exponential computational and communication complexities. There has
been implementations of auctions including [37, 36], which have been deployed in
practice for the annual sugar beets auction in Denmark. Other works [148] have

20 CHAPTER 1. INTRODUCTION

considered the use of rational cryptography in enhancing privacy. Finally, the
current state-of-the-art in protocols for secure First-Price Sealed-Bid Auctions
was achieved in SEAL [13], which we compare with the protocols we propose in
detail in Section 3.8. However, to the best of our knowledge, none of these works
considers incentives for the parties to complete the protocol or punishment for
cheaters.

An often desired feature of secure multi-party computation is that if a cheat-
ing party obtains the output, then all the honest parties should do so as well.
Protocols that guarantee this are also called fair and are known to be impossible
to achieve with dishonest majorities [74]. Recently, Andrychowicz et al. [8] (and
independently Bentov & Kumaresan [32]) initiated a line of research that aims
at incentivizing fairness in MPC by imposing cryptocurrency-based financial
penalties on misbehaving parties. A line of work [133, 132, 134, 33, 30, 83] cul-
minating in [19] improved the performance of this approach with respect to the
amount of on-chain storage and size of the collateral deposits from each party,
while others obtained stronger notions of fairness [127, 72]. However, all of these
works focus on using public collateral deposits for incentivizing fairness, which is
not possible for our application. Moreover, they rely on general-purpose MPC,
while we provide a highly optimized specific purpose protocol for auctions with
financial incentives. The protocols of [98, 90] are also based on cryptocurrencies.
The work of [98] is the closest to ours as it leverages a cryptocurrency to ensure
fairness, but it relies on SGX trusted execution enclaves which are known to be
broken [169].

1.1.2 Our Contributions
In Chapter 3, we present the results published in the 20th International Con-
ference on Applied Cryptography and Network Security (ACNS 2022) [86] and
available on Cryptology ePrint Archive [85], where we propose Fair Auctions
via Secret Transactions (FAST), in which there is no trusted auctioneer and
where rational adversaries are always incentivized to complete protocol execu-
tion through a secret collateral deposit. The proposed protocol is such that
each party can make sure the winning bid is the actual bid submitted by the
winning party, and malicious parties can be identified, financially punished and
removed from the execution (guaranteeing a winner is always determined). Our
contributions are summarized as follows:

• We propose using secret collateral deposits dependent on private bids in-
puts to ensure that the optimal strategy is for parties to complete the
protocol.

• (Section 3.5) We propose methods for implementing a financial punish-
ment mechanism based on secret deposits and standard public smart con-
tracts, which can be used to ensure the fair execution of our protocols.

• (Sections 3.6 and 3.7) We propose a cheater identifiable and publicly ver-
ifiable sealed bid auction protocols compatible with our secret deposit

1.2. DECENTRALIZED FINANCE (DEFI) 21

approach and more efficient than the state-of-the-art [13]. Our protocols
are guaranteed to terminate, finding the winner and paying the seller even
if cheating occurs.

To achieve fairness in an auction setting, we require each party to provide
a secret deposit of an amount of cryptocurrency equal to the party’s private
bid plus the cost of executing the protocol. In case a party is found to be
cheating, a smart contract automatically redistributes cheaters’ deposits among
the honest parties, the cheater is eliminated and the remaining parties re-execute
the protocol using their initial bids/deposits. Having a bid dependent deposit
guarantees that it is always more profitable to execute the protocol honestly
than to cheat (as analyzed in Section 3.9).

However, previous works that considered the use of cryptocurrency deposits
for achieving fairness (e.g., [32, 8, 133, 132, 134, 33, 30, 83, 19, 127, 72]) cru-
cially rely on deposits being public, thus using the same approach would reveal
information about the bid. To overcome this, we propose using secret deposits
that keep the value of the deposit secret until cheating is detected. Moreover,
this ensures that the parties have sufficient funds to bid for the object (e.g., in
a second-price auction, a party could bid very high just to figure out what the
second-highest price is and then claim her submitted bid was just a mistake).
Our protocols are constructed in such a way that it is possible to prove to the
smart contract that a party has cheated.

We wish to emphasize that:

• While using deposits to achieve fairness represents a well-known technique,
previous works considered public deposits only.

• Public deposits are not suitable for applications such as sealed-bid auctions
since in order to achieve fairness, bid-dependent deposits are required, and
public deposits would reveal information about the bid. For this reason,
we introduce secret deposits, which represent a novel technique.

• From a sealed bid auction perspective, our protocol improves the state-of-
the-art both in terms of efficiency and security guarantees, i.e., it achieves
fairness (while in previous works the adversary may learn the outcome of
the auction before honest parties and abort without suffering any conse-
quences).

• No previous work in this setting considers adaptive adversaries since it
would drastically increase the complexity of the protocol. For this reason,
we focus on the static adversary case only.

1.2 Decentralized Finance (DeFi)
Decentralized finance (DeFi) represents an emerging alternative or complement
to the current financial system. Its key feature is providing financial services,

22 CHAPTER 1. INTRODUCTION

without relying on trusted third parties such as banks or exchanges, by using
smart contracts running on a blockchain.

In the context decentralized applications (Dapps) and specifically decentral-
ized exchanges (DEXs), i.e., exchanges running on a blockchain, we refer to
front-running as the malicious, and often illegal, act of both manipulating the
order of pending trades and injecting additional trades to make a profit at the
cost of other users. In particular, front-running strategies exploit both public
knowledge of user trades from transactions pending on the network and the
miner’s ability to determine the final transaction order.

1.2.1 Related Work
Specific instances of front-running in decentralized finance (DeFi) were first
quantified by Daian et al. [78] and systematized by Eskandari et al. [93]. Besides
imposing a financial penalty on honest users, front-running can also degrade
the performance of blockchain networks, as recently observed on the Avalanche
blockchain [10].

1.2.2 Our Contributions
In Chapter 4, we present the results that will appear in Financial Cryptog-
raphy and Data Security, FC 2022 International Workshops, DeFi’22 and are
available on Cryptology ePrint Archive [22]. In order to evaluate the efficacy
of front-running mitigation techniques, we first formulate the set of adversarial
powers which permit front-running strategies to be exploited. Concretely, if
users submit their intended interaction to a pool of pending transactions, the
front-running adversary has the ability to:

1. Append pending transactions to the blockchain.

2. Infer user intentions from pending transactions and blockchain state.

Then, we describe common front-running attacks (Section 4.1) and as-
sess three front-running mitigation categories (Section 4.2) for their isolated
and combined efficacy in neutralizing front-running (Figure 1.1). We intro-
duce a speculative sandwich attack on input batching techniques (Section 4.2.2),
which can be mitigated with private user balances and secret input stores (Sec-
tion 4.2.3).

Adversarial power Section 4.2 Mitigation
1. Transaction
sequencing

Section 4.2.1 Fair ordering

Section 4.2.2 Batching of blinded inputs Commit & reveal
2. Inference of
user intent

Input aggregation
Section 4.2.3 Private user balances & secret input store

Figure 1.1: Overview of mitigation techniques

1.3. ANONYMOUS CREDENTIALS 23

Fair ordering (Section 4.2.1), implemented at the consensus protocol layer,
ensures that the local receipt-order of gossiped transactions seen by a node is
consistent with the final transaction ordering in the blockchain. We observe that
fair ordering effectively mitigates the miner’s ability to freely sequence transac-
tions, but introduces a front-running adversary which rushes the network.

User balance & input store
Public Private, secret

Batching of
blinded inputs

Commit & reveal Speculative
Sandwich Attacks

Taint of user balances
Input aggregation -

Figure 1.2: Efficacy: batching of blinded inputs.

Batching of blinded inputs (Section 4.2.2) replaces the sequential model
of DeFi interaction with a round-based one, where user inputs are blinded in each
round to ensure input independence, thereby thwarting front-running strategies
that rely on prior knowledge of other users’ intentions. However, if user bal-
ances are public, the input may still be partially inferred when the valid user’s
input space is constrained by its balance: here, we contribute a novel, specu-
lative front-running attack that exploits the direction of an automated market
maker (AMM) swap, leaked from the victim’s public balance. Furthermore, we
highlight differences between commit & reveal and input aggregation approaches
to batching of blinded inputs (Figure 1.2). In commit & reveal schemes, user
inputs are revealed individually: Although front-running in the specific round
is no longer possible, they necessarily leak information about the subsequent
balance-update for each participating user, even if the user balances are pri-
vate. If the taint of private balances is sufficiently strong, this can allow the
front-running adversary to infer the users future inputs (e.g., the intended AMM
swap direction).

Private user balances (Section 4.2.3) are thus necessary to prevent the
leakage of the valid user input space from balances and application state. Al-
though DeFi state must generally remain public to retain its utility [9], we show
that it is necessary to shield certain fragments thereof which explicitly reveal
future user intent. Secret input stores (Section 4.2.3) protect inputs that are
evaluated by the application after a time delay [172] or, in the case of order
books, whenever a match with other user inputs [77, 21] can be found.

1.3 Anonymous Credentials
Ensuring user privacy while complying with requirements for user accountabil-
ity is often a challenging task. As an example, consider an on-line payment
platform. User privacy demands that identities remain unknown while per-
forming on-line payments, while Know Your Customer and Anti-money laun-
dering regulations demand that misbehaving users should be held accountable.

24 CHAPTER 1. INTRODUCTION

This and many more sophisticated examples motivate the analysis of the trade-
offs between user privacy and accountability, both from a technical perspec-
tive [54, 55, 96, 110, 165], and from an ethical standpoint [1, 119, 168].

The notion of conditional privacy captures settings where a set of authorities
is given the power to revoke a user’s privacy. Unfortunately, the vast majority
of existing systems that provide conditional privacy naïvely trust revocation
authorities to trigger privacy revocation only in case a user behaves suspiciously.
Thus, they do not hold authorities accountable, allowing them to surreptitiously
revoke privacy. In particular, third party auditors (e.g., regulatory agencies and
users themselves) cannot verify whether privacy revocation has happened (or
not). As a consequence, user trust in the privacy of such systems is eroded.

We address this issue by introducing the notion of Publicly Auditable Privacy
Revocation (PAPR). In schemes offering conditional privacy, PAPR makes the
actions of authorities transparent to third party auditors, who can monitor when
privacy revocation takes place and thus detect abuse of power by the authorities.
We showcase the power (and challengers) of this notion by showing how to add
PAPR to anonymous credential schemes in order to achieve increased (user)
trust via strong accountability guarantees for both users and authorities.

1.3.1 Related Works

Privacy Preserving Authentication allows users to authenticate without
revealing their true identities. This feature is crucial for systems with strong
user privacy requirements, and can be achieved in many ways. Anonymous
credentials, envisioned by Chaum in [66] and first realized with provably se-
curity in [56], allow a user to prove ownership of a valid credential without
revealing their identity. Later, anonymous credential schemes with improved
efficiency [57, 25, 14] were proposed. Schemes with richer features such dele-
gation [76] and attributes [57, 14, 35] have also been proposed. More recently,
universally composable [60] anonymous credentials were proposed in [52, 51]. In
anonymous credential schemes, there are two main strategies to prevent abuse
of anonymity: allow users to authenticate anonymously only a predetermined
number of times [167, 53]; or introduce mechanisms for privacy revocation by a
central authority [56].

Conditional Privacy (or revocable privacy [165]) combines user anonymity
and accountability, so that it is possible for an authority to revoke a user’s
right to privacy, should the target user behave in illicit ways. This is often
implemented by giving a selected group of trusted entities the power to revoke
confidentiality or anonymity guarantees as needed. In order to avoid malicious
strategies, there is an unwillingness by authorities to let users decide who these
trusted parties should be. Instead, a set of central privacy revocation authori-
ties is often used. This is the case in many applications, including encryption
systems [147], e-cash [41], blind signatures [166] and group signatures [68].

1.3. ANONYMOUS CREDENTIALS 25

Publicly Auditable Privacy Revocation was introduced as a way to make
authorities accountable for the act of privacy revocation and thereby prevent
abuse of power. Techniques for auditing privacy revocation are often application
specific. Examples include auditing the behaviour of pseudonym conversion
authorities [55] or auditing that certificate authorities provide correct public
keys [146]. Known approaches to obtain auditability for revocation authorities
in the context of anonymous credentials either use non-standard techniques,
such as witness encryption [112], or rely on a set of trusted authorities that are
assumed not to collude [41, 68, 141, 147, 166].

Concurrent Works which addresses a similar goal of authority accountabil-
ity was proposed in [88]. However, this scheme does not achieve any notion of
composability and cannot be easily proven UC secure. Moreover, the committee
that is expected to cooperate in order to revoke privacy is not hidden, so its
publicly known members may be corrupted by a proactive adversary.

Anonymous Committees address the problem of ensuring that a set of par-
ties do not collude, by establishing a committee whose members’ identities are
not known to any party, including the committee members themselves (i.e., a
member knows it is in the committee but does not know the identity of other
members). Several works exist on this problem, e.g., [69, 126, 84, 79]. In this
setting, it is both hard for committee members to collude and for an adversary
to subvert committee members. In particular, the idea of distributing sensi-
tive information to anonymous committees(e.g., privacy revocation trapdoors)
or having anonymous committees execute cryptographic protocols has been ex-
plored in the context of proactive secret sharing [31, 111, 65], multiparty com-
putation (MPC) [103] and threshold encryption [92]. These protocols work in
the so called You Only Speak Once (YOSO) model, where a fresh randomly
chosen anonymous committee executes each round of the protocol, limiting the
adversary to probabilistic corruptions (i.e., when the adversary corrupts any
party, it only knows that this party may be party of the current committee with
a certain probability smaller than 1).

1.3.2 Our Contributions
In Chapter 5, we present the results that will appear in CT-RSA 2023, Cryp-
tographers’ Track at RSA Conference [47], where we introduce the concept of
anonymous credentials with PAPR, which we model and construct in the Uni-
versal Composability [60] framework. We define this new concept as an ideal
functionality supporting standard actions of anonymous credentials issuance,
linkable1 credential showing and privacy revocation. Our ideal functionality
captures the novel PAPR property by guaranteeing that all parties are notified

1While many anonymous credential schemes strive to provide unlinkability among differ-
ent showings, we restrict ourselves to the simpler case where different showings of the same
credential can be linked in order to focus on our new PAPR techniques.

26 CHAPTER 1. INTRODUCTION

when the issuer performs privacy revocation on a credential. Enforcing this
guarantee is the main challenge in our construction.

The core of our contribution is a novel mechanism to distributively store the
secret identity connected to a user’s anonymous credential in such a way that
privacy revocation is possible, but any attempt to revoke privacy (by retrieving
the user’s identity) requires a public announcement of the privacy revocation act
of the corresponding credential. Our contributions are summarized as follows:

• We introduce the notion of Publicly Auditable Privacy Revocation (PAPR)
for anonymous credential schemes.

• We provide a security definition of anonymous credentials with PAPR in
the Universal Composability framework (Section 5.2).

• We construct an efficient anonymous credential scheme that achieves our
PAPR notion with UC security against static malicious adversaries under
standard assumptions (Section 5.3).

• We show how to modify our construction to obtain a PAPR anonymous
credential scheme that is UC-secure against mobile adversaries via proac-
tive secret sharing and threshold encryption in the YOSO model (Sec-
tion 5.4).

Chapter 2

Preliminaries

Let y
$← F (x) denote running the randomized algorithm F with input x and

implicit randomness, obtaining the output y. When the randomness r is speci-
fied, we use y ← F (x; r). For a set X , let x $← X denote x chosen uniformly at
random from X ; and for a distribution Y, let y $← Y denote y sampled according
to the distribution Y. We denote concatenation of two values x and y by x|y.
A function f(x) is negligible in x if f(x) is positive and for every positive poly-
nomial p(x) ∈ poly(x) there exists a x′ ∈ N such that ∀x ≥ x′ : f(x) < 1/p(x),
we denote such functions as negl(x). Two ensembles X = {Xλ,z}λ∈N,z∈{0,1}∗
and Y = {Yλ,z}λ∈N,z∈{0,1}∗ of binary random variables are said to be com-
putationally indistinguishable, denoted by X ≈c Y , if for all z it holds that
| Pr[D(Xλ,z) = 1] − Pr[D(Yλ,z) = 1] | is negligible in the security parameter
λ for every non-uniform probabilistic polynomial-time (PPT) distinguisher D.
For a field F we denote by F[X]≤m the vector space of polynomials in F[X] of
degree at most m. Let H : {0, 1}∗ → {0, 1}l denote a collision resistant hash
function that maps the binary representation of the argument to a binary string
of length l. Let λ ∈ N denote a security parameter. Finally, we use the notation
~a[i] to denote the i’th element of the vector ~a. When signing messages not in
the message space of the signature algorithm (e.g., a group element or a vector),
we let the conversion to the message space be implicit.

2.1 Models
2.1.1 Adversarial Models
In our work we consider different adversarial models:

• Passive adversary: does not deviate from the protocol but executes any
polynomial time computation on the messages and the internal state of
the corrupted parties in order to learn private information.

• Active adversary: deviates from the protocol in arbitrary ways.

27

28 CHAPTER 2. PRELIMINARIES

• Rational adversary: deviates from the protocol only if profitable.

Moreover, we mainly consider the static restriction, i.e., the adversary is only
allowed to corrupt parties before protocol execution starts and parties remain
corrupted (or not) throughout the execution. We also consider the mobile case,
that is defined in Chapter 5.

2.1.2 Random Oracle Model (ROM)
A random oracle [27] is a map R : {0, 1}∗ → {0, 1}λ such that for each unique
input returns an output chosen uniformly at random (with λ a security param-
eter). In case the random oracle is queried more than once with the same input,
it returns the same output. A protocol using this abstraction is said to use the
random oracle model.

2.2 Frameworks
2.2.1 Real/Ideal Simulation Paradigm with Sequential Com-

position
This paradigm is commonly used to analyse cryptographic protocol security
and provides strong security guarantees, namely that several instance of the
protocol can be executed in sequence while preserving their security. In order
to prove security, a real world and an ideal world are defined and compared. In
the real world, the protocol π is executed with the parties, some of which are
corrupted and controlled by the adversary A. In the ideal world the protocol is
replaced by an ideal functionality F and a simulator S interacts with it. The
ideal functionality F describes the behaviour that is expected from the protocol
and acts as a trusted entity. A protocol π is said to securely realize the ideal
functionality F , if for every polynomial-time adversary A in the real world,
there is a polynomial-time simulator S for the ideal world, such that the two
worlds cannot be distinguished. In more detail, no probabilistic polynomial-
time distinguisher D can have a non-negligible advantage in distinguishing the
concatenation of the output of the honest parties and of the adversary A in the
real world from the concatenation of the output of the honest parties (which
come directly from F) and of the simulator S in the ideal world. More details
about this model can be found in [59, 106].

2.2.2 Universally Composable Security
In the Universal Composability (UC) framework [60] the security of a protocol
is analyzed under the real-world/ideal-world paradigm, i.e., by comparing the
real world execution of a protocol with an ideal world interaction with the ideal
functionality that it realizes. Protocols that are secure in the UC framework
can be arbitrarily composed with each other without compromising security. In
the ideal world execution, dummy parties (potentially controlled by an ideal

2.3. ASSUMPTIONS 29

adversary S, referred to as the simulator) interact with an ideal functionality
F . In the real world execution, parties (potentially corrupted by a real world
adversary A) interact with each other by following a protocol π that realizes
the ideal functionality F . The real and ideal executions are controlled by the
environment Z, an entity that controls inputs and reads the outputs of each
party, A and S. The protocol π securely realizes F in the UC framework if the
environment Z cannot efficiently distinguish between the real world execution
with π and A and the ideal world execution with S and F .

2.3 Assumptions
2.3.1 Decisional Diffie Hellman (DDH) Assumption

The DDH problem consists in deciding whether c = ab or c
$← Zp in a tuple

(g, ga, gb, gc) where g is a generator of a group G of order p, and a, b
$← Zp.

The DDH assumption states that the DDH problem is hard for every PPT
distinguisher. It is well known that the DDH assumption implies the Discrete
Logarithm assumption.

2.3.2 Discrete Logarithm (DL) Assumption
Let G be a finite cyclic group of prime order p and let g ∈ G be a generator.
Given h ∈ G, finding x ∈ Zq such that gx = h is computationally hard for any
PPT algorithm.

2.4 Cryptographic primitives
2.4.1 Commitment Scheme
Definition 1 (Commitment Scheme). A commitment scheme C is a tuple of
PPT algorithms (Setup,Commit,Open) defined as follows.

C.Setup(1λ): The setup algorithm takes as input the security parameter and
outputs some public parameters pp (implicit input in all subsequent algorithms)

C.Commit(m, r) −→ c: This procedure takes as input a vector of messages
m = {m1, . . . ,mn} and a vector of randomness r = {r1, . . . , rn} (sometimes
referred to as key). It outputs a commitment c.

C.Open(c,m, r) −→ v: This procedure takes as input a commitment c, a vector
of messages m = {m1, . . . ,mn} and a vector of randomness r = {r1, . . . , rn}.
It outputs a verification bit indicating whether m, r is an opening to c or not.

A commitment scheme should be correct, i.e the opening procedure will
return 1 (accept) with probability 1 if the commitment c is generated by Commit
on the remainder of the input to Open. Furthermore, it should be hiding, in
the sense that the commitment leaks no information about the message, and
binding so that the commitment can only be opened to the committed message.
These properties are defined in [4, Def. 1, Def. 2].

30 CHAPTER 2. PRELIMINARIES

Pedersen commitments

Let p and q be large primes such that q divides p − 1 and let G be the unique
subgroup of Z∗p of order q. All the computations in G are operations modulo p,
however we omit the mod p to simplify the notation. Let g, h denote random
generators of G such that nobody knows the discrete logarithm of h base g,
i.e., a value w such that gw = h. The Pedersen commitment scheme [156] to
an s ∈ Zq is obtained by sampling t

$← Zq and computing com(s, t) = gsht.
Hence, the commitment com(s, t) is a value uniformly distributed in G and
opening the commitment requires to reveal the values of s and t. The Pedersen
commitments are additively homomorphic, i.e., starting from the commitment
to s1 ∈ Zq and s2 ∈ Zq, it is possible to compute a commitment to s1+s2 ∈ Zq,
i.e., com(s1, t1) · com(s2, t2) = com(s1 + s2, t1 + t2).

2.4.2 Public Key Encryption Scheme
Definition 2 (Public Key Encryption Scheme). A public-key encryption scheme
is a tuple of PPT algorithms (Setup,KeyGen,Encrypt,Decrypt) defined as follows.

Enc.Setup(1λ): The setup algorithm takes as input the security parameter
and outputs some public parameters pp.

Enc.KeyGen(pp) −→ (sk, pk): The key generation algorithm takes as input the
public parameters and outputs a secret/public key pair (sk, pk).

Enc.Encrypt(m, pk) −→ c: The encryption algorithm takes as input a message
m and a public key pk. It returns a ciphertext c.

Enc.Decrypt(c, sk) −→ m: The decryption algorithm takes as input a ciphertext
c and a secret key sk. It returns a plaintext message m.

We consider an encryption scheme secure if it is indistinguishable under
Chosen Plaintext Attacks (IND-CPA) and key-private as formalised in [26, Def.
1].

2.4.3 Digital Signatures
Definition 3 (Signature Scheme). A signature scheme Sig with message space
M is a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) defined as follows.

Sig.Setup(1λ): The setup algorithm takes as input the security parameter
and outputs some public parameters pp.

Sig.KeyGen(pp) −→ (sk, pk): The key generation algorithm takes as input the
public parameters (or the security parameter λ only) and outputs a secret/public
key pair (sk, pk).

Sig.Sign(sk,m) = Sig.Signsk(m) −→ σ: The sign algorithm takes in input a
secret key sk and a message m ∈M; it outputs a signature σ.

Sig.Verify(pk,m, σ) −→ v: The verification algorithm takes in input a public
key pk, a message m ∈M and signature σ. It outputs 0 (reject) or 1 (accept).

Throughout the thesis we assume Sig to be correct and existentially unforge-
able as in [38, Def. 2]. In a nutshell this means that signatures generated by

2.4. CRYPTOGRAPHIC PRIMITIVES 31

the signing algorithm are always accepted by the verifying algorithm, and that
without the knowledge of the secret key it is computationally infeasible to gen-
erate a signature that is accepted by the verifying algorithm with non-negligible
probability.

2.4.4 Non-interactive Zero-Knowledge Proofs of Knowl-
edge

Let L be a language in NP and RL be a relationship such that L = {x | ∃w :
(x,w) ∈ RL}. A zero-knowledge proof of knowledge protocol Σ = (P, V) for a
language L allows a prover P to demonstrate to a verifier V that x ∈ L provided
that the prover knows a witness w such that (x,w) ∈ RL and with the following
properties:

(Completeness) If (x,w) ∈ RL then the proof generated by P is accepted by
the verifier V with overwhelming probability;

(Soundness) It is computationally hard for the prover P to prove to the
verifier V that (x,w) ∈ RL when (x,w) /∈ RL;

(Zero knowledge) There exists a PPT simulator S that, by using rewinding,
takes as input x but not w and generates a proof that (x, .) ∈ RL for some w,
i.e., the verifier V does not learn w but can check if (x, .) ∈ RL for some w;

(Proof of knowledge) There exists a PPT simulator S that interacts with a
copy of the prover P and extracts, by using rewinding, the witness w, i.e., the
verifier V can check if the prover P knows a witness w such that (x,w) ∈ RL;

2.4.5 Publicly Verifiable Secret Sharing (PVSS)
In our work, we use the PVSS protocol πPV SS from [64], which is described in
detail in Figure 2.1. A PVSS protocol allows for a dealer to distribute encrypted
shares to a set of parties in such a way that only one specific party can decrypt
a share but any third party verifier can check that all shares are valid. Later
on, each party can decrypt its corresponding share to allow for reconstruction
while showing to any third party verifier that the decrypted share corresponds
to one of the initial encrypted shares. A deposit committee C = {C1, . . . , Cm}
will execute this protocol verifying and decrypting shares provided as part of our
secret deposit mechanism (further discussed in Section 3.5). Since the parties
in C executing πPV SS must have public keys registered as part of a setup phase,
we capture this requirement in FSC as presented in Section 3.4.

In order to instantiate πPV SS , the NIZKs described below are also necessary:

• NIZK for Discrete Logarithm Equality (DLEQ): This NIZK from [67]
is used to prove that, given g1, ..., gm and x1, ..., xm, the discrete logarithms
of every xi with base gi are equal, i.e., xi = gαi for all i = 1, . . . ,m for some
α ∈ Zq (the same α for all i). It is denoted asDLEQ((gi, xi)I , (hi, yi)i). In
this NIZK, the prover computes e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am),

32 CHAPTER 2. PRELIMINARIES

for H(·) a random oracle (that will be instantiated by a cryptographic
hash function) and z as above. The proof is (a1, . . . , am, e, z). The verifier
checks that e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am) and that ai = gzi x

e
i

for all i.

• NIZK for Low-Degree Exponent Interpolation (LDEI): This NIZK
from [64] is used to prove that, given generators g1, g2, . . . , gm of a cyclic
group Gq of prime order q, pairwise distinct elements α1, α2, . . . , αm in Zq

and an integer 1 ≤ k < m known by a prover and a verifier, for p(x) known
by the prover, it holds that (x1, x2, . . . , xm) ∈ {(gp(α1)

1 , g
p(α2)
2 , . . . , g

p(αm)
m) :

p ∈ Zq[X],deg p ≤ k}. We denote this NIZK by LDEI((gi)i∈[m], (αi)i∈[m],
k, (xi)i∈[m]). In this NIZK, the sender chooses r ∈ Zq[X]≤k uniformly at
random and computes ai = g

r(αi)
i for all i = 1, . . . ,m, e = H(x1, x2, . . . , xm

, a1, a2, . . . , am) and z = e · p+ r. The proof is then (a1, a2, . . . , am, e, z).
The verifier checks that z ∈ Zq[X]≤k, that xe

i · ai = g
z(αi)
i holds for all

i = 1, . . . ,m and that e = H(x1, x2, . . . , xm, a1, a2, . . . , am).

Definition 4 (Definition 4 from [64]). Indistinguishability of secrets (IND1-
secrecy) We say that the PVSS is IND1-secret if for any polynomial-time ad-
versary A corrupting at most t− 1 parties, A has a negligible advantage in the
following game played against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends
all public information to A. Moreover, it creates secret and public keys
for all honest parties and sends the corresponding public keys to A.

2. A creates secret keys for the corrupted parties and sends the corresponding
public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b ← {0, 1} uniformly at random. It runs the
Distribution phase of the protocol with x0 as secret. It sends A all public
information generated in that phase, together with xb.

4. A outputs a guess b′ ∈ {0, 1}.

The advantage of A is defined as |Pr[b = b′]− 1/2|.

Proposition 1 (Proposition 3 from [64]). Protocol πPV SS is IND1-secret under
the DDH assumption.

2.4.6 Blind Signature
Definition 5 (Blind signature). A blind signature BSig with message space M
is a tuple of PPT algorithms (KeyGen,User,Sign,Verify) defined as follows ([2]).

BSig.KeyGen(1λ) −→ (sk, pk): The randomized key generation algorithm takes
as input a security parameter 1λ with λ ∈ N and outputs a secret/public key
pair (sk, pk).

2.4. CRYPTOGRAPHIC PRIMITIVES 33

Protocol πPV SS from [64]

Let h be a generator of a group Gq of order q. Let H(·) be a random oracle. Protocol
πPV SS is run between n parties P1, . . . ,Pn, a dealer D and an external verifier V
(in fact any number of external verifiers) who have access to a public ledger where
they can post information for later verification.

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and
registers the public key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution: The dealer D samples a polynomial p(X) ← Zq[X]≤t+`−1 (where
t = dn

2
e − 1 and ` is the number of secrets) and sets s0 = p(0), s1 =

p(−1), . . . , s`−1 = p(−(` − 1)). The secrets are defined to be S0 = hs0 , S1 =
hs1 , . . . , S`−1 = hs`−1 . D computes Shamir shares σi = p(i) for 1 ≤ i ≤ n. D
encrypts the shares as σ̂i = pkσi

i and publishes (σ̂1, . . . , σ̂n) in the public ledger
along with the proof LDEI that σ̂i = pk

p(i)
i for some p of degree at most t+ `− 1.

3. Verification: The verifier checks the proof LDEI.

4. Share decryptiona (for Pi): On input σ̂i, pki, decrypt share σ̃i = σ̂
1
ski
i = hσi

and publish it in the ledger together with PROOFi = DLEQ((h, σ̃i), (pki, σ̂i))
(showing that the decrypted share σ̃i corresponds to σ̂i).

5. Share decryption verification: Apply the verification algorithm of the DLEQ
proof PROOFi and complain if this is not correct.

6. Secret reconstruction algorithm RecQ: On input {σ̃i}i∈Q for a setQ of exactly
n−t indices, for j ∈ [`−1], set λ(j)

i =
∏

m:m∈Q,m 6=i
−j−m
i−m

for all i ∈ Q and compute

Sj =
∏

i∈Q(σ̃i)
λ
(j)
i =

∏
i∈Q hp(i)λ

(j)
i = hp(−j) = hsj , and publish the values Sj .

aAmortized share decryption (for Pi): If the PVSS has been used several times where
Pi has received in each case a share σ̂a

i , Pi can decrypt shares as above but publish one
single proof PROOFi = DLEQ((h, (σ̃a

i)a), (pki, (σ̂
a
i)a)).

Figure 2.1: Protocol πPV SS from [64]

BSig.User and BSig.Sign are randomized interactive algorithms.
The user runs BSig.User on an initial state (pk,m), where pk is a public key

and m ∈ M is a message, and let it interact with BSig.Sign run by the signer
on initial state a secret key (sk). At the end of the protocol, BSig.User either
enters the halt state and outputs a signature σ as its last outgoing message, or
enters the fail state. Instead, BSig.Sign simply enters the halt state, without
generating any output.

BSig.Verify(pk,m, σ) −→ v: The deterministic verification algorithm takes in
input a public key pk, a message m ∈M and signature σ. It outputs 0 (reject)
or 1 (accept).

Where an interactive algorithm is a stateful algorithm that on input an
incoming message min (this is ε if the party is initiating the protocol) and state
St outputs an outgoing message mout and updated state St′. Two interactive
algorithms A and B are said to interact when the outgoing messages of A are
passed as incoming messages to B, and vice versa, until both algorithms enter

34 CHAPTER 2. PRELIMINARIES

either the halt or fail state. We write (mA, StA,mB, StB)← [A(StA)↔ B(StA)]
to denote the final state after an interaction between A and B when run on initial
states StA and StB, respectively.

(Correcteness) A blind signature scheme is correct if for all λ ∈ N and for
all m ∈ M, it holds that StBSig.User = halt and BSig.Verify(pk,m, σ) −→ 1 when
(sk, pk) ← BSig.KeyGen(1λ) and (mSign, StSign, σ, StUser) ← [BSig.Sign(sk) ↔
BSig.User((pk,m))] with probability 1.

A blind signature has to guarantee unforgeability, i.e., a user should not be
able to forge signatures, and blindness, i.e., the signer should not be able to see
the messages that is being signed, or even be able to relate signed messages to
previous protocol sessions.

(Unforgeability) Let BSig = (KeyGen,User,Sign,Verify) be a blind signature
scheme, let λ ∈ N be the security parameter, and let A be a forging algorithm
with access to the signing oracle. The experiment Expomu

BSig,A(λ) first generates
a keypair (sk, pk)← BSig.KeyGen(1λ) and runs A on input (1λ, pk). The adver-
sary has access to a signing oracle that runs the BSig.Sign(sk, .) algorithm and
maintains state across invocations. At the end of its execution, the adversary
outputs a set of message signatures pairs {(m1, σ1), . . . , (ms, σs)}. Let t be the
number of completed signing sessions during A’s attack. Then A is said to win
the game if BSig.Verify(pk,mi, σi) −→ 1 for all 1 ≤ i ≤ s, all mi are different and
s > t. BSig is said to be unforgeable (one-more unforgeable under sequential
attacks) if the probability of winning the above game is negligible for all PPT
adversaries A.

Formally, the experiment is defined as follows:

Experiment Expomu
BSig,A(λ):

(sk, pk)← BSig.KeyGen(1λ)
SSet← ∅; s← 0 // set of signer sessions and number of finished sessions
{(m1, σ1), . . . , (ms, σs)} ← A(1λ, pk : Sign(., .))
if BSig.Verify(pk,mi, σi) −→ 1 for all 1 ≤ i ≤ s and s ≥ t and mi 6= mj for all
1 ≤ i < j ≤ s then
Return 1

else
Return 0

end if

Where A’s queries to the signing oracles are answered as follows:

Oracle Sign(s,min): // s is a session identifier
if s /∈ SSet then
SSet← {s}; StBSig.Sign[s]← sk
(mout, StBSig.Sign[s])← BSig.Sign(min, StBSig.Sign[s])
if StBSig.Sign[s] = halt then
t← t+ 1

2.4. CRYPTOGRAPHIC PRIMITIVES 35

end if
Return mout

end if

The advantage of A in breaking BSig is defined as the probability that the
above experiment returns 1:

Advomu
BSig,A(λ) = Pr[Expomu

BSig,A(λ) = 1]

BSig is said to be one-more unforgeable under sequential attacks if the ad-
vantage Advomu

BSig,A(λ) is a negligible function in the security parameter λ for all
PPT adversaries A.

(Blindness) Let BSig = (KeyGen,User,Sign,Verify) be a blind signature scheme,
let λ ∈ N be the security parameter and let A an adversary. The adversary A
acts as a cheating signer, who is trying to distinguish between two signatures
created in different signing sessions. The experiment chooses a random bit b,
generates a fresh key pair (sk, pk) ← BSig.KeyGen(1λ) and runs the adversary
A on input (1λ, pk, sk). A outputs two challenge messages m0 and m1 and
then act as the signer in two sequential interactions with the BSig.User algo-
rithm. If b = 0, then A first interacts with BSig.User(pk,m0) and then with
BSig.User(pk,m1); If b = 1, then A first interacts with BSig.User(pk,m1) and
then with BSig.User(pk,m0). If in both sessions the BSig.User algorithms ac-
cept, then A is additionally given the resulting signatures σ0, σ1 for messages
m0,m1. Finally, A outputs its guess d and wins the game if b = d. BSig is said
to be blind (blind under sequential attacks) if 2p− 1, where p is the probability
that A wins the above game, is negligible for all PPT adversaries A.

Formally, the experiment is defined as follows:

Experiment Expblind
BSig,A(λ):

b← {0, 1}; (sk, pk)← BSig.KeyGen(1λ)
((m0,m1), StA)← A(ε, (1λ, pk, sk))
(mA, StA, σb, Stb)← [A(StA)↔ User((pk,mb))]
(mA, StA, σ1−b, St1−b)← [A(StA)↔ User((pk,m1−b))]
if St0 = fail or St1 = fail then
σ ← fail

else
σ ← (σ0, σ1)

end if
d← A(σ, StA)
if b = d then
Return 1

else
Return 0

end if

The advantage of A in breaking BSig is defined as

36 CHAPTER 2. PRELIMINARIES

Advblind
BSig,A(λ) = 2 · Pr[Expblind

BSig,A(λ) = 1]− 1

BSig is said to be blind under sequential attacks if the advantage Advblind
BSig,A(λ)

is a negligible function in the security parameter λ for all PPT adversaries A.

2.4.7 Provable Shuffle of Commitments
Definition 6 (Provable Shuffle of Commitments). A proof system Shuf =
(Setup,Prove,Verify) for proving shuffle of commitments generated by a com-
mitment scheme C consists of the following algorithms.

Shuf.Setup(1λ): The setup algorithm takes as input the security parameter
and outputs public parameters pp, often referred to as the common reference
string (implicitly input to all subsequent algorithms).

Shuf.Prove(n, ρ, {ci}i∈[n]) −→ ({c′i}i∈[n], π): The provable shuffle algorithm
takes as input an integer n, a permutation ρ over the set {1, . . . , n}, and n com-
mitments {ci}i∈[n] generated by C.Commit. It returns a list of n commitments
{c′i}i∈[n] and a proof π.

Shuf.Verify(n, {ci}i∈[n], {c′i}i∈[n], π) −→ v: The verification algorithm takes as
input an integer n, two sets of n commitments and a proof π. It returns 1 (accept)
if π is a valid proof for the relation “there exists a set M = {mi}i∈[n] and a per-
mutation ρ ∈ Sn s.t. {C.Open(ci,mi, ri)}i∈[n] = {C.Open(c′ρ(i),mρ(i), r

′
ρi
}i∈[n]”,

where the randomnesses ri, r
′
i are extracted from π. Otherwise it returns 0

(reject).

We assume this scheme is executed by a prover P and a verifier V, both
of which are probabilistic polynomial time interactive algorithms. The public
transcript generated by P and V when interacting on inputs s and t is denoted
by tr ← 〈P(s),V(t)〉 and we write 〈P(s),V(t)〉 = b, b ∈ {0, 1} for rejection or
acceptance. Let R be a polynomial time decidable ternary relation. We denote
w as a witness for the statement x if (σ, x, w) ∈ R and we define the languages

Lσ = {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x having a witness w for the relation R.

The triple (Shuf.Setup,P,V) is called an argument for a relation R with per-
fect completeness if for all non-uniform polynomial time interactive adversaries
A we have:

(Computational soundness)

Pr[(σ,hist)← Shuf.Setup(1λ) : x← A(σ,hist) : x /∈ Lσ∧
〈A,V(σ, x)〉 = 1] ≈ 0

(Perfect completeness)

2.5. IDEAL FUNCTIONALITIES 37

Pr[(σ,hist)← Shuf.Setup(1λ) : x← A(σ,hist) : (σ, x, w) /∈ R∨
〈P(σ, x, w),V(σ, x)〉 = 1] = 1

Moreover, an argument (Shuf.Setup,P,V) is called public coin if the verifier
chooses their messages uniformly at random and independently of the messages
sent by the prover, i.e., the challenges correspond to the verifier’s randomness
ρ. Then we define:

(Perfect special honest verifier zero knowledge) A public coin argument
(Shuf.Setup,P,V) is called perfect special honest verifier zero knowledge (SHVZK)
argument for R with common reference string generator Shuf.Setup if there ex-
ists a probabilistic polynomial time simulator S such that for all non-uniform
polynomial time adversaries A we have

Pr[(σ,hist)← Shuf.Setup(1λ) : (x,wρ);
tr ← 〈P(σ, x, w),V(σ, x, ρ)〉 : (σ, x, w) ∈ R ∧ A(tr) = 1]

= Pr[(σ,hist)← Shuf.Setup(1λ) : (x,wρ);
tr ← S(σ, x, ρ) : (σ, x, w) ∈ R ∧ A(tr) = 1]

Then, to construct a fully zero-knowledge argument secure against arbitrary
verifiers one can first construct a perfect special honest verifier zero knowledge
argument and then convert it into a fully zero-knowledge argument [100].

A scheme with the above properties can be efficiently realized from the proof
of shuffle correctness for ciphertexts of [23]. In our setting, we view an ElGamal
ciphertext as a commitment (since it is unconditionally binding and computa-
tionally hiding) and use proofs of commitment shuffle correctness to convince a
verifier that two distinct sets of commitments yield the same set of openings.

2.5 Ideal functionalities

2.5.1 Ideal functionality FBB

The bulletin functionality FBB is defined in Figure 2.2. It is modified from [64,
Fig. 17] to not be authenticated (since we assume anonymous posting to the
bulletin board). In Chapter 5 we often omit specifying the MID for brevity.

2.5.2 Ideal functionality FPKI

Next, we present the FPKI functionality, defined in Figure 2.3, which is taken
from [143, Figure 3] with a slight change of wording.

38 CHAPTER 2. PRELIMINARIES

FBB keeps an initially empty ordered list M and interacts with a set of parties P
as follows:
Post to Bulletin Board: Upon receiving a message (post, sid,MID,m) from a
party Pi ∈ P, if there is no message (sid,MID,m′) ∈ M, append (sid,MID,m)
to the listM of messages that were posted in the public bulletin board. Then send
(posted, sid,MID,m) to S.
Read from Bulletin Board: Upon receiving a message (read, sid) from a party
in P, return (read, sid,M) to the caller.

Figure 2.2: Ideal functionality FBB .

FPKI keeps an initially empty listM of messages and interacts with a set of parties
P as follows:
Report Query: Upon receiving a message (report, sid, v) from party Pi, record
(Pi, v) in M iff Pi does not have a record and no record containing v exists.
Retrieve Query: Upon receiving a message (retrieve, sid,Pi), look up and
reply with (Pi, v), where v = ⊥ when there is no record for Pi.

Figure 2.3: Ideal functionality FPKI .

2.5.3 Ideal functionality FZK

The FZK functionality in Figure 2.4 is adapted from [61, Fig. 7], so that the
identity of the prover is not revealed to the verifier. In practice, this can be
realized by communicating over a sender-anonymous channel.

FZK proceeds as follows, running with the parties in P, and parameterized with a
relation R:
Prove: Upon receiving (zk-prover, sid,Pj , x, w) from Pi: If R(x,w) = 1, then
send the message (zk-proof, sid, x) to Pj and S. Otherwise, ignore.

Figure 2.4: Ideal functionality FZK .

2.5.4 Ideal functionality FNIZK

Finally, we give the non-interactive zero knowledge functionality FNIZK in Fig-
ure 2.5, taken from [115, Fig. 4].

2.6. BLOCKCHAIN 39

Parameterized with relation R and running with the parties in P.
Proof: On input (prove, sid, x, w) from party Pi ignore if (x,w) /∈ R. Send
(prove, sid, x) to S and wait for answer (proof, sid, π). Upon receiving the answer
store (x, π) and send (proof, sid, π) to Pi.
Verification: On input (verify, sid, x, π) from Pj check whether (x, π) is
stored. If not send (verify, sid, x, π) to S and wait for an answer (witness,
sid, w). Upon receiving the answer, check whether (x,w) ∈ R and in that case,
store (x, π). If (x, π) has been stored return (verification, sid, 1) to Pj , else
return (verification, sid, 0).

Figure 2.5: Ideal functionality FNIZK .

2.6 Blockchain
2.6.1 Simplified UTXO model
In order to focus on the novel aspects of our protocol, we represent cryptocur-
rency transactions under a simplified version of the Bitcoin UTXO model [149].
For the sake of simplicity we only consider operations of the “Pay to Public Key”
(P2PK) output type, which we later show how to realize while keeping the val-
ues of transactions private. The formal description of the adopted simplified
UTXO model is discussed below.

Bitcoin [149] and other similar cryptocurrencies use the concept of unspent
transaction output, or UTXO, that represents an indivisible amount of currency
locked to an owner [40]. Each transaction contains a certain number of consumed
UTXO, named transactions inputs, and created UTXO, named transaction out-
puts. In particular, a UTXO defines a number representing a certain amount of
currency and a locking script specifying the conditions that have to be satisfied
to use the UTXO as a transaction input (i.e., spend the UTXO). Note that
each created UTXO can have a different recipient and that, in case the amount
of currency that has to be transferred is smaller than the sum of the inputs, a
change UTXO is created, i.e., a UTXO that is still owned by the sender of the
transaction. Miners have the role of checking if the unlocking conditions are
satisfied and if the sum of the inputs is greater than the sum of the outputs.
The model is formally defined as follows:

• Representing Addresses: An address Addr = pk is simply a sig-
nature verification key associated to a certain secret key sk, where pk
and sk are generated by the key generation algorithm Sig.KeyGen(1λ)
and subsequent signatures σ are generated by the signature algorithm
Sig(sk, .) = Sig.Signsk(.);

• Representing Transactions: We represent a transaction in our simpli-
fied UTXO model by the tuple tx = (id, In,Out,Sig), where id ∈ {0, 1}λ
is a unique transaction identification, In = {(id1, in1), . . . , (idm, inm)}

40 CHAPTER 2. PRELIMINARIES

is a set of pairs of previous transaction id’s id ∈ {0, 1}λ and their val-
ues in ∈ N, Out = {(out1, Addr1), . . . , (outn, Addrn)} is a set of pairs of
values out ∈ N and addresses Addr and Sig = {σ1, . . . , σm} is a set of
signatures σ.

• Transaction Validity: A transaction tx = (id, In,Out,Sig) is considered
valid if, for all (idi, ini) ∈ In and (outj , Addrj) ∈ Out, the following
conditions hold:

1. There exists a valid transaction txi = (idi, Ini,Outi,Sigi) in the pub-
lic ledger such that (ini, Addri) ∈ Outi.

2. There exists σi ∈ Sig such that σi is a valid signature of id|In|Out
under Addri, i.e., V er(pki, id|In|Out, σi) = True.

3. It holds that
∑m

i=1 ini =
∑n

j=1 outj .

• Generating Transactions: A party controlling the corresponding sign-
ing keys sk1, . . . , skm for valid UTXO addresses Addr1, . . . , Addrm con-
taining values in1, . . . , inm can generate a transaction that transfers the
funds in these addresses to output addresses Addrout,1, . . . , Addrout,n by
proceeding as follows:

1. Choose a unique id ∈ {0, 1}λ.
2. Choose values out1, . . . , outn such that

∑m
i=1 ini =

∑n
j=1 outj .

3. Generate sets in and Out as described above and sign id|In|Out
with the signing keys corresponding to Addr1, . . . , Addrm, i.e., σi =
Sig.Signski

(id|In|Out) for i = 1, · · · ,m , obtaining Sig = {σ1, . . . , σm}.
4. Output tx = (id, In,Out,Sig).

2.6.2 Confidential transactions
In the case of confidential transactions [144] the input and output amounts are
kept secret using Pedersen commitments. However, in order to achieve public
verifiability, the transactions contain a zero-knowledge proof that the sum of the
inputs is equal to the sum of the outputs, and that all the outputs are between
[0, 2l − 1] (which can be computed with Bullet Proofs [48]). In particular,
confidential transactions can be formally defined by modifying the simplified
UTXO model described above as follows:

• Representing inputs and outputs: Set In is defined as In = {(id1,
com(in1, rin1)), . . . , (idm, com(inm, rinm))} and set Out is defined as Out =
{(com(out1, rout1), Addr1), . . . , (com(outn, routn), Addrn)}.

• Generate Transaction with In,Out: Compute
∏n

j=1 com(outj ,routj)∏m
i=1 com(ini,rini)

= com

(0,
∑n

j=1 routj−
∑m

i=1 rini) with rini , routj
$← Zq, include in the transaction

2.6. BLOCKCHAIN 41

the randomness
∑n

j=1 routj −
∑m

i=1 rini and the range proofs π guarantee-
ing that out1, · · · , outn are between [0, 2l − 1]. The resulting transaction
is then represented by tx = (id, In,Out,Sig,

∑n
j=1 routj −

∑m
i=1 rini , π).

• Validate a Transaction tx: Compute
∏n

j=1 com(outj ,routj)∏m
i=1 com(ini,rini)

= com(s, t)

and check if the obtained commitments is equal to com(0,
∑n

j=1 routj −∑m
i=1 rini), guaranteeing that

∑m
i=1 ini =

∑n
j=1 outj , then check the va-

lidity of the range proofs π.

• Spend a transaction output Out: Parse Out = (com(outi, routi), Addri).
In order to spend Out, the commitment com(outi, routi) = goutihrouti has
to be opened by revealing outi and routi . Values outi and routi are in-
cluded in a regular UTXO transaction generated as described above. Later
on, this UTXO transaction can be validated by checking that outi, routi
is a valid opening of com(outi, routi) and following the steps of a regular
UTXO transaction validation.

• Spend a transaction output Out with a NIZKPoK of routi : Al-
ternatively, an output Out = (com(outi, routi), Addri) for which only outi
and ĥ = hrouti (but not routi) are known can be spent if a NIZK π′ proving
knowledge of routi is also available. Notice that knowing outi is sufficient
for validating the regular UTXO transaction created using Out as an input.
Moreover, it can be checked that goutihrouti = com(outi, routi) given outi
and ĥ = hrouti , while the proof π′ guarantees that ĥ = hrouti is well formed1.
Values outi, hrouti and the proof π′ are included in a regular UTXO trans-
action generated as described above. Later on, this UTXO transaction
can be validated by checking that goutihrouti = com(outi, routi), checking
that π′ is valid and following the steps of a regular UTXO transaction
validation.

Note that the input set In in confidential transactions can also be public, (i.e.,
In = {(id1, in1), . . . , (idm, inm)}), as long as the outputs are kept private.

1In fact, showing such a proof of knowledge π′ of routi together with hrouti and outi makes
it easy to adapt reduction of the binding property of the Pedersen commitment scheme to the
Discrete Logarithm assumption. Instead of obtaining routi from the adversary, the reduction
simply extracts it from π′.

42 CHAPTER 2. PRELIMINARIES

Chapter 3

FAST: Fair Auctions via
Secret Transactions

In this Chapter, we present the results published in the 20th International Con-
ference on Applied Cryptography and Network Security (ACNS 2022) [86] and
available on Cryptology ePrint Archive [85].

We propose efficient privacy-preserving protocols, i.e., with no need of a
trusted third party, for both first and second-price sealed-bid auctions (Sec-
tions 3.6 and 3.7) with fairness against rational adversaries, leveraging secret
cryptocurrency transactions and public smart contracts. In our approach, it is
ensured that cheaters are identified and financially punished by losing a secret
collateral deposit (Sections 3.5). Indeed, it is always more profitable to execute
the protocol honestly than to cheat (Section 3.9).

3.1 Our Techniques
We start with a first-price sealed-bid auction protocol that builds on a simple
passively secure protocol similar to that of SEAL [13] and compile it to achieve
active security. However, we not only obtain an actively secure protocol but
also add cheater identification and public verifiability properties. We use these
properties to add our financial punishment mechanism with secret deposits to
this protocol. Even though our protocol achieves stronger security guarantees
than SEAL (i.e., sequential composability and fairness guarantees), it is more
efficient than the SEAL protocol as shown in Section 3.8. Later on, we extend
this protocol to the second-price case with a very low performance overhead.

A Toy Example:

Our protocol uses a modified version of the Anonymous Veto Protocol from [117]
as a building block. The anonymous veto protocol allows a set of n parties
P1, . . . ,Pn to anonymously indicate whether they want to veto or not on a

43

44 CHAPTER 3. FAST

particular subject by essentially securely computing the logical-OR function
of their inputs. In this protocol, each party Pi has an input bit di ∈ {0, 1}
with 0 indicating no veto and 1 indicating veto, and they wish to compute∨n

i=1 di. As proposed in [13], this simple anonymous veto protocol can be used
for auctions by having parties evaluate their bids bit-by-bit, starting from the
most significant bit and proceeding to execute the veto protocol for each bit in
the following way: 1. Until there is no veto, all parties only veto (input di = 1 in
the veto protocol) if and only if the current bit of their bid is 1; 2. After the first
veto, a party only vetoes if the bit of her bid in the last time a veto happened
was 1 and the current bit is also 1. In other words, in this toy protocol, parties
stop vetoing once they realize that there is another party with a higher bid (i.e.,
there was a veto in a round when their own bit were 0) and the party with the
highest bid continues vetoing according to her bid until the last bit. Therefore,
the veto protocol output represents the highest bid. However, a malicious party
can choose not to follow the protocol, altering the output.

Achieving Active Security with Cheater Identification and Public Ver-
ifiability:

In order to achieve active security with cheater identification and public veri-
fiability we depart from a simple passively secure protocol and compile it into
an active secure protocol using NIZKs following an approach similar to that
of [108, 121, 127]. This ensures that at every round of the protocol all parties’
inputs are computed according to the protocol rules, including previous rounds’
inputs and outputs. However, since the generic techniques from [108, 121, 127]
yield highly inefficient protocols, we carefully construct tailor-made efficient
non-interactive zero-knowledge proofs for our specific protocol, ensuring it to
be efficient.

Incentivizing Correct Behaviour with Secret Deposits:

In order to create incentives for parties to behave honestly, a deposit based on
their bids is required. However, a public deposit would leak information about
the parties’ bids, which have to be kept secret. Hence, we do secret deposits
as discussed below and keep the amount secret unless a party is identified as
a cheater, in which case the cheater’s deposit is distributed among the honest
parties. The cheater is then eliminated and the protocol is re-executed with the
remaining parties using their initial bids/deposits so that a winner is determined.
This makes it rational not to cheat both in the case of first and second-price
auctions, i.e., cheating always implies a lower utility than behaving honestly
(see Section 3.9).

Achieving On-Chain Efficiency:

In order to minimize the amount of on-chain communication, an approach based
on techniques from [18] is adopted. Every time a message is sent from a given

3.2. SECURITY MODEL AND SETUP ASSUMPTIONS 45

party to the other parties, all of them sign the message received and send the
signature to each other. Communication is only done on-chain (through the
smart contract) in case of suspected cheating.

Secret Deposits to Public Smart Contracts:

Since we use secret deposits based on confidential transactions [144], we need
a mechanism to reveal the value of cheating parties’ deposits to the smart con-
tract so it can punish cheaters. We do that by secret sharing trapdoor informa-
tion used to reveal this value using a publicly verifiable secret sharing (PVSS)
scheme [64] that allows us to prove in zero-knowledge both that the shares are
valid and that they contain the trapdoor for a given deposit. These shares are
held by a committee that does not act unless cheating is detected, in which case
the committee members are reimbursed for reconstructing the trapdoor with
funds from the cheater’s deposit itself. We discuss this approach in Section 3.5.
Providing alternative methods for holding these deposits is an important open
problem.

3.2 Security Model and Setup Assumptions
We prove our protocol secure in the real/ideal simulation paradigm with se-
quential composition. Our protocol uses the Random Oracle Model (ROM) [27].
Note that adopting the UC model, as an alternative, requires to use UC-secure
NIZK (instead of those described subsequently), but reduces the efficiency of
the protocol. Also, previous works consider the sequential composability model
only.

Adversarial Model:

We consider malicious adversaries that may deviate from the protocol in any
arbitrary way. Moreover, we consider the static case, where the adversary is
only allowed to corrupt parties before protocol execution starts and parties
remain corrupted (or not) throughout the execution. Moreover, we assume that
parties have access to synchronous communication channels, i.e., all messages
are delivered within a given round with a known maximum delay.

3.3 Non-interactive Zero-Knowledge Proofs of
Knowledge

In our work we follow the approach of Camenisch and Stadler [58] based on
the Fiat-Shamir heuristic [94] in order to obtain non interactive zero knowledge
(NIZK) proofs of knowledge for discrete logarithm relations. We will use these
NIZKs in forcing parties to execute our protocols correctly using the GMW
methodology [108]. Notice that parties must provide such NIZKs proving they
have executed each round of the protocol correctly, and an invalid NIZK is also

46 CHAPTER 3. FAST

a publicly verifiable proof that the party has misbehaved. We will be using the
following NIZKs:

NIZK for Stage 2 - Before First Veto:

In Stage 2 of the protocol, we need a NIZK proving knowledge of either bir, rir, xir

such that cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir or of bir, rir, r̄ir such that

cir
gbir

= cir
g = hrir ∧ vir = gr̄ir , where vir, cir, Xir, g, Yir are public. We denote

this NIZK by

BV {bir, rir, xir, r̄ir |(
cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir)∨

(
cir
gbir

=
cir
g

= hrir ∧ vir = gr̄ir)}.

A detailed construction of this NIZK is discussed below.

Following the approach proposed by Camenisch and Stadler [58] we construct
this NIZK as follows:

F̃1 = DL(h, cir)⊗
[
DL(Yir, vir) ∩DL(g,Xir)

]
F̃2 = DL(h, cir/g)⊗DL(g, vir)

Therefore we need to show

F̃ = F̃1 ∪ F̃2

To prove the knowledge of either F̃1 or F̃2, assuming that F̃α is known, party
i proceeds as follows:

1. Choose V̄ = (v̄1, v̄2, v̄3, v̄4) with v̄i
$← Zq and w̄ = (w̄1, w̄2) with w̄α = 0

and w̄i
$← Zq for i 6= α, and compute t1 = cw̄1

ir hv̄1 , t2 = vw̄1
ir Y v̄2

ir , t3 =
Xw̄1

ir gv̄2 , t4 = (cirg)w̄2hv̄3 , and t5 = vw̄2
ir gv̄4

2. H = H(h, cir, Yir, vir, g,Xir,
cir
g , t1, t2, t3, t4, t5) (mod q).

3. Γ = (γ1, γ2) where

γi =

{
H − (w̄1 + w̄2) (mod q), if i = α
w̄i, otherwise

4. R = (r1, r2, r3, r4, r5) where r1 = v̄1−γαx1, r2 = v̄2−γαx2, r3 = v̄2−γαx2,
r4 = v̄3−γαx3, and r5 = v̄4−γαx4 (all equations are modulo q), in which
(x1, x2, x3, x4) = (rir, xir, 0, 0) if α = 1, and (x1, x2, x3, x4) = (0, 0, rir, r̄ir)
if α = 2.

3.3. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE47

The resulting proof is (γ1, γ2, r1, r2, r3, r4, r5). The validity of the proof can be
checked by first re-constructing the commitments. That is,

t′1 = cγ1

ir h
r1 t′2 = vγ1

ir Y
r2 t′3 = Xγ1

ir g
r3

t′4 = (
cir
g
)γ2hr4 t′5 = vγ2

ir g
r5

and then checks the following condition

γ1 + γ2 = H(h, cir, Yir, vir, g,Xir,
cir
g
, t′1, t

′
2, t
′
3, t
′
4, t
′
5)

NIZK for Stage 3 - After First Veto:

In Stage 3 of the protocol, we need a NIZK proving knowledge of either bir, rir, xir

such that cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir , or of bir, rir, r̄ir̂, r̄ir such

that cir
gbir

= cir
g = hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir , or of bir, rir, xir̂, xir such that

cir
gbir

= cir
g = hrir ∧ dir̂ = Y xir̂

ir̂ ∧ Xir̂ = gxir̂ ∧ vir = Y xir
ir ∧ Xir = gxir . We

denote this NIZK by

AV {bir, rir, xir, r̄ir̂, r̄ir, xir̂ |(
cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧Xir = gxir)∨

(
cir
gbir

=
cir
g

= hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir)∨

(
cir
gbir

=
cir
g

= hrir ∧ dir̂ = Y xir̂

ir̂ ∧Xir̂ = gxir̂∧

vir = Y xir
ir ∧Xir = gxir)}.

A detailed construction of this NIZK is discussed below.

Following the approach proposed by Camenisch and Stadler [58] we construct
this NIZK as follows:

F̃1 = DL(h, cir)⊗
[
DL(Yir, vir) ∩DL(g,Xir)

]
F̃2 = DL(h, cir/g)⊗DL(g, dir̂)⊗DL(g, vir)

F̃3 = DL(h, cir/g)⊗
[
DL(Yir̂, dir̂)∩DL(g,Xir̂)

]
⊗
[
DL(Yir, vir)∩DL(g,Xir)

]
Therefore we need to show

F̃ = F̃1 ∪ F̃2 ∪ F̃3

To prove the knowledge of either F̃1 or F̃2 or F̃3, assuming that F̃α is known,
party i proceeds as follows:

48 CHAPTER 3. FAST

1. Choose V̄ = (v̄1, v̄2, v̄3, v̄4, v̄5, v̄6, v̄7, v̄8) with v̄i
$← Zq and w̄ = (w̄1, w̄2, w̄3)

with w̄α = 0 and w̄i
$← Zq for i 6= α, and compute t1 = cw̄1

ir hv̄1 ,
t2 = vw̄1

ir Y v̄2
ir , t3 = Xw̄1

ir gv̄2 , t4 = (cirg)w̄2hv̄3 , t5 = dw̄2

ir̂ gv̄4 , t6 = vw̄2
ir gv̄5 ,

t7 = (cirg)w̄3hv̄6 , t8 = dw̄3

ir̂ Y v̄7
ir̂ , t9 = Xw̄3

ir̂ gv̄7 , t10 = vw̄3
ir Y v̄8

ir and t11 =

Xw̄3
ir gv̄8 .

2. H = H(h, cir, Yir, vir, g,Xir,
cir
g , dir̂, Yir̂, Xir̂, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) .

3. Γ = (γ1, γ2, γ3) where

γi =

{
H − (w̄1 + w̄2 + w̄3) (mod q), if i = α
w̄i, otherwise

4. R = (r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11) where r1 = v̄1−γαx1, r2 = v̄2−
γαx2, r3 = v̄2−γαx2, r4 = v̄3−γαx3, r5 = v̄4−γαx4, r6 = v̄5−γαx5, r7 =
v̄6−γαx6, r8 = v̄7−γαx7, r9 = v̄7−γαx7, r10 = v̄8−γαx8 and r11 = v̄8−
γαx8 (all equations are modulo q), in which (x1, x2, x3, x4, x5, x6, x7, x8) =
(rir, xir, 0, 0, 0, 0, 0, 0) if α = 1, and (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 0, rir,
r̄ir̂, r̄ir, 0, 0, 0) if α = 2, and (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 0, 0, 0, 0, rir,
xir̂, xir) if α = 3.

The resulting proof is (γ1, γ2, γ3, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11). The va-
lidity of the proof can be checked by first re-constructing the commitments.
That is,

t′1 = cγ1

ir h
r1 t′2 = vγ1

ir Y
r2 t′3 = Xγ1

ir g
r3

t′4 = (
cir
g
)γ2hr4 t′5 = dγ2

ir̂ g
r5 t6 = vγ2

ir g
r6

t′7 = (
cir
g
)γ3hr7 t′8 = dγ3

ir̂ Y
r8
ir̂ t′9 = Xγ3

ir̂ g
r9

t′10 = vγ3

ir Y
r10
ir t′11 = Xγ3

ir g
r11

and then checks the following condition

γ1+γ2+γ3 = H(h, cir, Yir, vir, g,Xir,
cir
g
, dir̂, Yir̂, Xir̂, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11)

NIZK for Recovery - Proof of Not Winning:

In case the winning bid bw is determined but the winner Pw does not reveal
herself, the honest parties in our auction protocol will prove in zero-knowledge
that they are not the winner. In order to do so, they use a NIZK NWi ←
NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 = Y xi1

i1) ∨ . . . ∨ (Vl = 1 ∧ vi1 = Y xi1
i1)} that can

be constructed using the techniques from [58]. We do not describe this NIZK
construction nor estimate its complexity because it is used only in a corner case
of cheating where the honest parties are reimbursed for generating and verifying
such proofs.

3.4. MODELLING A STATEFUL SMART CONTRACT 49

NIZK for PVSS share consistency CC:

As part of our secret deposit mechanism (further discussed in Section 3.5), we
will use a NIZK showing that shares computed with the PVSS protocol πPV SS

from [64] encode secrets gm and hr that are terms of a Pedersen commitment c =
gmhr. Formally, given generators g1, . . . , gn, g, h of a cyclic group Gq of prime
order q, pairwise distinct elements α1, . . . , αn in Zq and a Pedersen commitment
c = gmhr known by prover and verifier, for p(x) and m, r known by the prover,
this NIZK is used to prove that (σ̂1, . . . , σ̂n) ∈ {(gp(α1)

1 , . . . , g
p(αn)
n) : p ∈ Zq[X],

p(−1) = gm, p(−2) = hr}. We denote this NIZK by CC((gi)i∈[n], (αi)i∈[n], g, h, c,
(σ̂i)i∈[n]). Notice that this NIZK can be constructed using the techniques from
[58] and integrated with the NIZK LDEI already used in πPV SS (presented
above).

3.4 Modelling a Stateful Smart Contract
We employ a stateful smart contract functionality FSC similar to that of [83]
in order to model the smart contract that implements the financial punishment
mechanism for our protocol. For the sake of simplicity, we assume that each
instance of FSC is already parameterized by the address of the auctioneer party
who will receive the payment for the auctioned good, as well as by the identities
(and public keys) of the parties in a secret deposit committee C that will help
the smart contract to open secret deposits given by parties in case cheating is
detected. We also assume that FSC has a protocol verification mechanism pv
for verifying the validity of protocol messages. FSC is described in Figures 3.1
and 3.2.

3.5 Secret Deposits in Public Smart Contracts
When using secret deposits as in our application, it is implied that there exists
a secret trapdoor that can be used to reveal the value of such deposits (and
transfer them). However, since we base our financial punishment mechanism on
a standard public smart contract, we cannot expose the trapdoor to the smart
contract. Instead, we propose that a committee C = {C1, . . . , Cm} with m/2+ 2
honest members1 holds this trapdoor in a secret shared form. This committee
does not act unless a cheating party needs to be punished and the trapdoor
needs to be reconstructed in order to allow the smart contract to transfer her
collateral deposit. In this case, the committee itself can be reimbursed from the
collateral funds. We present a practical construction following this approach.
Proposing more methods for keeping custody of such secret deposits is left as
an important open problem.

1We need m/2 + 2 honest members to instantiate our packed publicly verifiable secret
sharing based solution where two group elements are secret shared with a single share vector.

50 CHAPTER 3. FAST

Functionality FSC (Stages 1,2,3 and 4)

FSC is executed with parties P = {P1, . . . ,Pn}, a deposit committee members C =
{C1, . . . , Cm} and parameterized by committee public keys pkC1

, . . . , pkCm
used to

run πPV SS and pk′C1
, . . . , pk′Cm

used for signatures. FSC is also parameterized by
its own address Addrs, the address of the auctioneer Addrauc, timeout limit τ , a
protocol verification algorithm pv that given a protocol transcript outputs 1 if it is
valid and replies 0 otherwise, and values workP and workC for the costs of executing
the protocol for the parties in P and C, respectively. Once execution starts FSC

samples random generators g, h
$← G for a group G.

• Stage 1 - Setup:

– Upon receiving (param, sid) from Pi, FSC returns (param,
sid, g, h, pkC1

, . . . , pkCm
).

– Upon receiving the message (setup, sid,Pi, txi, pki, SH1i|SH2i,
SigC1,i, . . . , SigCm,i) from Pi, FSC checks that this message is valid ac-
cording to pv. If all checks pass, FSC continues the execution. Otherwise, it
proceeds to the Recovery Stage otherwise. After receiving this message from
all Pi ∈ P, FSC proceeds to the next steps.

• Stages 2 and 3: During these Stages, FSC only expects messages in case of
suspected cheating, eventually proceeding to the Recovery Stage.

• Stage 4 - Output:

– First-Price Auction: Upon receiving (output,
sid,Pw, bw, rbw , {Sig.Signskk (bw)}k∈[n]) from Pw, FSC verifies that bw, rbw
is a valid opening to the commitment cw in txw and that all signatures
{Sig.Signskk (bw)}k∈[n] are valid. If all checks pass, FSC performs a transaction
towards the auctioneer paying bw tokens to Addrauc, refunds Pw with workP
tokens and refunds all the other parties Pi ∈ P \ Pw with their full txi
transaction. Otherwise, proceed to the Recovery Stage.

– Second-Price Auction: Upon receiving (output,
sid,Pw, txpay, {Sig.Signskk (Pw|bw2)}k∈[n]) from Pw, FSC verifies that that
the range proof πpay is valid and that com(bw, rbw)/com(change′w, rchange′w) =
com(bw2 , rbw − rchange′w). If the checks pass, then FSC refunds all the other
parties Pi ∈ P \ Pw with their full txi transaction and performs transaction
txw paying bw2 to the auctioneer and refunding Pw with workP tokens. If the
check does not pass, then proceed to the Recovery Stage.

Figure 3.1: Functionality FSC (Stages 1,2,3 and 4).

A possible solution:

A feasible but not practical approach to do this would be storing the trapdoor
with the mechanism proposed in [31], where a secret is kept by obliviously and
randomly chosen committees by means of a proactive secret sharing scheme
where each current committee “encrypts the secret to the future” in such a way
that the next committee can open it. However, it is also necessary to ensure

3.5. SECRET DEPOSITS IN PUBLIC SMART CONTRACTS 51

Functionality FSC (Recovery)

• Recovery: Upon receiving one of the following messages FSC from a party Pi ∈ P
acts as described:

– (recovery-missing, sid,msg, {Sig.Signskk (msg)}k∈[n]): FSC sends (request,
sid) to each Pi ∈ P. If Pi does not send the missing message msgri or
sigski(msgr−1,i′) before a timeout τ or sends an invalid message according to
pv, it is considered a cheater.

– (recovery-cheat, sid,Pj , πc): in case Pj has been accused to
cheat by sending conflicting messages msgrj 6= msg′rj then πc =
(msgrj , Sig.Signskj (msgrj),msg′rj , sigskj (msg′rj)), while in case Pj has been
accused to cheat by sending an invalid message msgrj according to pv then
πc = (msgrj , Sig.Signskj (msgrj)). If πc is a valid proof of cheating, then Pj is
identified as a cheater, otherwise the sender Pi identified as a cheater.

– (recovery-payment, sid,NWi): FSC verifies that the proof of not winning
NWi is valid, i.e., the sender Pi is not the winner. After a timeout τ counted
from the moment the first message is received, all parties Pk who did not send
a valid message (recovery-payment, sid,NWi) are considered cheaters (i.e.,
either the corrupted Pw in case all other parties sent a valid NWi or all parties
who did not collaborate).

– (recovery-dishonest-winner, sid,NWi): (second-price case only) FSC ver-
ifies that the proof of not winning NWi is valid, i.e., the sender Pi is not
the winner. Then, FSC all parties Pk who did not send a valid message
(recovery-dishonest-winner, sid,NWi) are considered cheaters.

If a party Pi is a cheater, FSC collaborates with C to open Pi’s deposit txi by sending
(open, sid,Pi) to each Cj ∈ C, takes its full deposit, reimburses each Ci ∈ C with
workC tokens and reimburses each party P\Pi with an equal share of the remaining
tokens. In particular, FSC proceeds as follows:

– Upon receiving (share-decryption, sid, (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij ,
DLEQij)) from Cj , FSC verifies that SH2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi)
where SH2i is the one sent from Pi in Stage 1 - Setup.

– Use the share decryption verification procedure from πPV SS to identify 2+n/2
valid shares σ̃ij (by verifying DLEQij) and then uses the secret reconstruction
algorithm from πPV SS to reconstruct gbi and grbi . Next, FSC recovers bi from
gbi (since the length l of the bid is limited).

– The deposit of the cheating party Pi is distributed among the honest parties
P \ Pi and C by spending the confidential transaction output (ci, Addrs) of
txi. Indeed, in order to spend (ci, Addrs) it is sufficient to reveal bi, hrbi and
providing (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij , DLEQij to prove that hrbi contains
the same rbi of the initial commitment ci.

FSC now expects the execution to restart with parties P \ Pi only.

Figure 3.2: Functionality FSC (Recovery).

52 CHAPTER 3. FAST

that the secrets actually correspond to the trapdoor for the parties’ deposits.
Providing such proofs with the scheme of [31] would require expensive generic
zero-knowledge techniques (or a trusted setup for a zk-SNARK).

Protocol ΠC

Let C = {C1, . . . , Cm} be the deposit committee members and pkC1
, . . . , pkCm

and
skC1 , . . . , skCm be their public keys and private keys, used to run πPV SS , respectively.
Moreover, let pk′C1

, . . . , pk′Cm
and sk′C1

, . . . , sk′Cm
be their public keys and private

keys, used for signatures, respectively. The following steps are executed by Cj ∈ C:

• Setup verification: Upon receiving (setup, sid,Pi, txi, pki, (σ̂i1, . . . , σ̂im),
LDEIi, CCi) from Pi, Cj checks that txi is valid, verifies the shares (σ̂i1, . . . , σ̂im)
correctness with respect to the committee public keys pkC1

, . . . , pkCm
us-

ing the verification procedure of πPV SS through LDEIi and verifies NIZK
CCi. If all the checks pass, compute the hashes SH1i = H(txi, pki)
and SH2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi) and the signature SigCj ,i =
Sig.Signsk′Cj

(SH1i|SH2i), then send (setup-verification, sid, SigCj ,i) to Pi.

• Share decryption: Upon receiving (open, sid,Pi) from FSC, Cj uses the share
decryption procedure from πPV SS on σ̂ij , obtaining σ̃ij , DLEQij . and sending
(share-decryption, sid, (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij , DLEQij)) to FSC.

Figure 3.3: Protocol ΠC .

A protocol based on PVSS:

As an alternative, we propose leveraging the structure of our confidential trans-
action based deposits to secret share their openings with a recent efficient pub-
licly verifiable secret sharing (PVSS) scheme called Albatross [64]. Notice that
the secret amount information bi in these deposits is represented as a Pedersen
commitment gbihri and that the Albatross PVSS scheme also allows for sharing
a group element gs, while proving in zero-knowledge discrete logarithm relations
involving gs in such a way that they can be verified by any third party with
access to the public encrypted share. Hence, we propose limiting the bid bi bit
length in such a way that we can employ the same trick as in lifted ElGamal
and have each party Pi share both gbi and hri with the Albatross PVSS while
proving that their public encrypted shares correspond to a secret deposit gbihri .
The validity of this claim can be verified by the committee C itself or the smart
contract during Stage 1 - Setup. Later on, if bi needs to be recovered, C can
reconstruct gbi , brute force bi (because it has a restricted bit-length) and deliver
it to the smart contract while proving it has been correctly computed from the
encrypted shares. As we explain in Section 2, recovering bi and gri along with
the proofs of share validity is sufficient for transferring the secret deposit.

In Figure 3.3, we present Protocol ΠC followed by the committee C =
{C1, . . . , Cm} and executed as part of Protocols ΠFPA (resp. ΠSPA) described

3.6. FIRST-PRICE AUCTIONS 53

in Section 3.6 (resp. Section 3.7). The interaction of the other parties P =
{P1, . . . ,Pn} executing Protocols ΠFPA and ΠSPA with the committee C is
described as part of Stage 1 - Setup of these protocols.

Selecting Committees:

In order to focus on the novel aspects of our constructions, we assume that
the smart contract captured by FSC described in Section 3.4 is parameterized
by a description of the committee C = {C1, . . . , Cm} and the public keys corre-
sponding to each committee member. Notice that in practice this committee
can be selected by the smart contract from the set of parties executing the un-
derlying blockchain consensus protocol. The problem of selecting committees
in a permissionless blockchain scenario has been extensively addressed in both
Proof-of-Stake [126, 84, 70] and Proof-of-Work [155] settings.

3.6 First-Price Auctions
In this section, we introduce our protocol for first-price auctions (while the case
of second-price auctions is addressed in Section 3.7). We consider a setting with
n parties P1, . . . ,Pn, where each party Pi has a l-bit bid bi = bi1| . . . |bil, where
bir denotes the r-th bit of party Pi’s bid.

Modelling Fair Auctions:

First, we introduce an ideal model for fair auctions that we will use to prove
the security of our protocol. For the sake of simplicity, when discussing this
model, we use coins(n) to indicate n currency tokens being transferred where
n is represented in binary, instead of describing a full UTXO transaction. Our
ideal functionality FFPA is described in Figure 3.4. This functionality models
the fact that the adversary may choose to abort but all it may learn is that
it was the winner and the most significant bit where its bid differs from the
second-highest bid. Regardless of adversarial actions, an auction result is always
obtained and the auctioneer (i.e., the party selling the asset) is always paid. The
second-price case is presented in Section 3.7.

The Protocol:

In Figures 3.5, 3.6, 3.7 and 3.8, we construct a Protocol ΠFPA that realizes
FFPA. This protocol is executed by n parties P1, . . . ,Pn, where each party Pi

has a l-bit bid bi = bi1| . . . |bil and a deposit committee C = {C1, . . . , Cm} that
helps open secret deposits from corrupted parties in the Recovery Stage. The
protocol consists of 4 main stages plus a recovery stage, which is only executed
in case of suspected (or detected) cheating. In the first stage, every party i sends
to the smart contract a secret deposit, whose structure will be explained in detail
later. In the second and third stage, all parties jointly compute the maximum
bid (bit-by-bit) by using an anonymous veto protocol that computes a logical
OR on private inputs. To this aim, the parties start from the most significant bit

54 CHAPTER 3. FAST

Functionality FFPA

FFPA operates with an auctioneer PAUC , a set of parties P = {P1, . . . ,Pn} who
have bids b1, . . . , bn as input and where bi = bi1| . . . |bil is the bit representation of
bi, as well as an adversary SFPA. FFPA is parameterized by a bid bit-length l and
keeps an initially empty list bids.

• Setup (Bid Registration): Upon receiving (bid, sid, coins(bi + work)) from Pi

where bi ∈ {0, 1}l and work is the amount required to compensate the cost of
running the protocol for all the other parties, FFPA appends bi to bids.

• First-Price Auction: After receiving (bid, sid, coins(bi +work)) from all parties
in P, for r = 1, . . . , l FFPA proceeds as follows:

1. Select bwr, i.e., the r-th bit of the highest bid bw in the list bids.
2. Send (round-winner, sid, bwr) to all parties and SFPA.
3. Check if bwr = 1 and bir = 0 for i = 1, . . . , n 6= w. If so, let rw = r,

that is the first position where bw has a bit 1 and bw2 has a bit 0, and send
(leak-to-winner, sid, rw) to Pw.

4. Send (abort?, sid) to SFPA. If SFPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P, send (abort,
sid,Pi, coins(

bi+work
|P|)) where |P| is the number of remaining parties to all other

parties in P, set again r = 1 and go to Step 1. If SFPA answers with (proceed,
sid), if r = l go to Payout, else increment r by 1 and go to Step 1.

• Payout: Send (refund, sid,Pw, coins(bi + work)) to all parties Pi 6= Pw, send
(refund, sid, coins(work)) to Pw, send coins(bw) to PAUC , and halt.

Figure 3.4: Functionality FFPA.

position. Then, they apply the anonymous veto protocol according to their bits
bir, with 0 representing a no veto and 1 representing a veto. If the outcome of
the veto protocol (i.e., the logical-OR of the the inputs) is 1, then each party Pi

with input bir = 0 figures out that there is at least another party Pk whose bid
bk is higher than bi and Pi discovers that she cannot win the auction. Therefore,
from this point on, Pi stops vetoing, disregarding her actual bit bir in the next
rounds. Otherwise, Pi is expected to keep vetoing or not according to her bit
bir. Finally, in Stage 4 the winning party Pw executes the payment to the
auctioneer (i.e., the party selling the asset). Throughout all stages, the parties
must provide proofs that they have correctly computed all protocol messages
(using the NIZKs described in Section 3.3). If a party is identified as dishonest
at any point, the Recovery Stage has to be executed.

Security Analysis:

It is clear that this protocol correctly computes the highest bid. The ideal smart
contract enforces payment once a winner is determined and punishments other-
wise. The security of this protocol is formally stated in the following theorem,
which is proven in Section 3.6.1. A game-theoretical analysis is presented in

3.6. FIRST-PRICE AUCTIONS 55

Section 3.9, where it is shown that the best strategy for any rational party is to
follow the protocol.

Theorem 1. Under the DDH Assumption, Protocol ΠFPA securely computes
FFPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

Protocol ΠFPA (Off-chain messages exchange)

Protocol ΠFPA is executed with n parties P = {P1, . . . ,Pn}, where each party Pi

has a l-bit bid bi = bi1| . . . |bil and a deposit committee C = {C1, . . . , Cm}. Parties
P, C interact among themselves and with a smart contract FSC.

Off-chain messages exchange: To minimize the communication with the smart
contract, an approach based on [18] is adopted. Let r be a generic round of the
protocol, then each party Pi actually proceeds as follows when sending her messages:

• Roundr: each Pi sends msgr,i, Sig.Signski(msgr,i) to all the other parties;
• Roundr+1: all the other parties Pk for k ∈ {1, . . . , n}\ i sign the message received

from party i and send msgr,i, Sig.Signskk (msgr,i) to all the other parties, allowing
them to check if party i sent no conflicting messages. Then, each party repeats
from the instructions described in the previous round;

• Conflicting messages: in case Pi sends conflicting messages msgr,i 6= msg′r,i to
parties Pk 6= Pk′ , Pk or Pk′ send to the smart contract msgr,i, Sig.Signski(msgr,i)
and msg′r,i, Sig.Signski(msg′r,i) as a proof that Pi was dishonest;

• Evidence of a message: in case it has to be proven that a message msgr,i has
been sent by party Pi in round r, the other parties send to the smart contract
the signatures Sig.Signsk1(msgr,i), . . . , Sig.Signskn(msgr,i) along with the message
msgr,i.

Figure 3.5: Protocol ΠFPA (Off-chain messages exchange).

3.6.1 Proof of Theorem 1
In this section, we provide a full proof of security for Protocol ΠFPA. In order
to prove Theorem 1, we first the following auxiliary Lemmas:

Lemma 1. Under the DDH Assumption, the Pedersen commitment scheme [156]
is computationally binding and unconditionally hiding:

• Computationally binding: under the DL assumption, for any PPT algo-
rithm the probability ε(q) of finding s1, t1, s2, t2 ∈ Zq such that s1 6= s2
and com(s1, t2) = com(s2, t2) is negl(q).

• Unconditionally hiding: for any s1, s2 ∈ Zq and t1, t2
$← Zq, it holds

that | Pr[D(com(s1, t1)) = 1]− Pr[D(com(s2, t2)) = 1] | = negl(q) for any

56 CHAPTER 3. FAST

Protocol ΠFPA (Stage 1)

Stage 1 - Setup: Deposit committee parties Ck ∈ C first execute the Setup Verifi-
cation step of ΠC from Figure 3.3. All parties Pi proceed as follows:

1. Pi sends a secret deposit containing their bid bi, change change and a fee work
to the smart contract through a confidential transaction (as described in Sec-
tion 2.6.2). Let Addri be the address associated to party i and Addrs be the
address associated to the smart contract, Pi proceeds as follows:

(a) Pi sends (param, sid) to FSC, receiving (param, sid, g, h, pkC1
, . . . , pkCm

).

(b) Pi computes the bit commitments as cir = gbirhrir , with rir
$← Zq, to each

bit bir of bi, and the bid commitment as ci =
∏l

r=1 c
2l−r

ir = gbih
∑l

r=1 2l−rrir .
Let rbi be equal to

∑l
r=1 2

l−rrir. Then, ci can be rewritten as ci = gbihrbi =
com(bi, rbi).

(c) Define sets In = {(idi, ini)} and Out = {(ci, Addrs), (work,Addrs),
(com(changei, rchangei), Addri)}, where ci = com(bi, rbi) is the commitment
to the bid bi previously computed at Step 1, work is the amount required to
compensate the cost of running the protocol for all the other parties in P and
in C, change = ini − bi − work and rchange

$← Zq. Note that, in this case case,
ini and work are public, while bi and change are private.

(d) Compute rout = rbi + rchangei , so as to allow the other parties later to
verify that the sum of the inputs is equal to the sum of the outputs, i.e.,
ci · com(change, rchange)

?
= com(ini − work, rout).

(e) Compute proofs (πbi , πchange) showing that bi, change ∈ [0, 2l − 1], set txi =
(id, In,Out,Sig, rbi + rchangei , π).

(f) Compute the shares (σ̂i1, . . . , σ̂im, LDEIi) of gbi and hrbi using the distribution
procedure from πPV SS with pkC1

, . . . , pkCm
received in step (a).

(g) Compute CCi ← CC((pkCj
)j∈[m], (j)j∈[m], g, h, ci, (σ̂j)j∈[m]) to prove consis-

tency among the shares (σ̂i1, . . . , σ̂im) and the commitment terms gbi and hrbi

from ci = gbihrbi .
(h) Send (setup, sid,Pi, txi, pki, (σ̂i1, . . . , σ̂im), LDEIi, CCi) to each Cj ∈ C.
(i) Upon receiving (setup-verification, sid, SigCj ,i) from all Cj ∈ C, compute

SH1i = H(txi, pki) and SH2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi) and send
(setup, sid,Pi, txi, pki, SH1i, SH2i, SigC1,i, . . . , SigCm,i)) to FSC. If a party
Ca ∈ C does not send this message, proceed to the Recovery Stage.

2. Pi samples xir
$← Zq and computes Xir = gxir for r = 1, . . . , l, sending ci1, · · · , cil,

Xi1, · · · , Xil to all other parties.
3. Upon receiving all messages cj1, · · · , cjl, Xj1, · · · , Xjl from other parties Pj , Pi

computes Yjk =
∏j−1

m=1 Xmk/
∏n

m=j+1 Xmk for j = 1, . . . , n,k = 1, . . . , l, and ver-
ifies for each other party Pj that cj =

∏l
k=1 c

2l−k

jk for j ∈ {1, . . . , n} \ i. If this
verification fails or a message is not received, proceed to the Recovery Stage.

Figure 3.6: Protocol ΠFPA (Stage 1).

3.6. FIRST-PRICE AUCTIONS 57

Protocol ΠFPA (Stages 2 and 3)

Stage 2 - Before First Veto: All parties Pi, starting from the most significant bit
bi1 and moving bit-by-bit to the least significant bit bil of their bid bi = bi1| . . . |bil,
run in each round r the anonymous veto protocol until the outcome is a veto (i.e.,
Vr 6= 1) for the first time. Therefore each party Pi proceeds as follows:

1. Compute vir as follows:

vir =

{
Y xir
ir , if bir = 0

r̄ir
$← Zq, g

r̄ir , if bir = 1

and generate NIZK proving that vir has been correctly computed BVir ←
BV {bir, rir, xir, r̄ir | (cir

gbir
= cir = hrir ∧ vir = Y xir

ir ∧ Xir = gxir) ∨ (cir
gbir

=
cir
g

= hrir ∧ vir = gr̄ir)}, sending a message (vir, BVir) to all parties.

2. Upon receiving all messages (vkr, BVkr) from other parties Pk, Pi checks the proofs
BVkr for k ∈ {1, . . . , n} \ i and, if all checks pass, computes Vr =

∏n
k=1 vkr and

then goes to Stage 3 if Vr 6= 1 (at least one veto), otherwise follows the steps in
Stage 2 again until the round r = l. Note that, unless all the bids are equal to 0,
at some point the condition Vr 6= 1 is satisfied. If a message is not received from
party Pk or if BVkr is invalid, proceed to the Recovery Stage.

Stage 3 - After First Veto: Let r̂ denote the last round at which there was a
veto (i.e., Vr̂ 6= 1). All parties Pi, starting from bir̂+1 and moving bit-by-bit to
the least significant bit bil of their bid bi = bi1| . . . |bil, run in each round r > r̂ the
anonymous veto protocol taking into account both the input bit bir and the declared
input bit dir, defined as the value that satisfies the logical condition (bir = 0∧dir =
0) ∨ (bir = 1 ∧ dir̂ = 1 ∧ dir = 1) ∨ (bir = 1 ∧ dir̂ = 0 ∧ dir = 0), i.e., each party
Pi vetoes at round r iff she also vetoed at round r̂ (i.e., dir̂ = 1), and her current
input bit bir = 1. Therefore, each Pi proceeds as follows:

1. Compute vir as follows:

vir =

Y xir
ir , if bir = 0

r̄ir
$← Zq, g

r̄ir , if dir̂ = 1 ∧ bir = 1

Y xir
ir , if dir̂ = 0 ∧ bir = 1

and generate NIZK proving that vir has been correctly computed AVir ←
AV {bir, rir, xir, r̄ir̂, r̄ir, xir̂ | (cir

gbir
= cir = hrir ∧vir = Y xir

ir ∧Xir = gxir)∨(cir
gbir

=
cir
g

= hrir ∧ dir̂ = gr̄ir̂ ∧ vir = gr̄ir) ∨ (cir
gbir

= cir
g

= hrir ∧ dir̂ = Y
xir̂
ir̂ ∧ Xir̂ =

gxir̂ ∧ vir = Y xir
ir ∧Xir = gxir)}, sending a message (vir, AVir) to all parties.

2. Upon receiving all messages (vkr, AVkr) from other parties Pk, Pi checks the proofs
AVkr for k ∈ {1, . . . , n}\i and, if all checks pass, computes Vr =

∏n
k=1 vkr, following

the steps in Stage 3 again until round r = l. If a message is not received from
party Pk or if AVkr is invalid, proceed to the Recovery Stage.

Figure 3.7: Protocol ΠFPA (Stages 2 and 3).

58 CHAPTER 3. FAST

Protocol ΠFPA (Stages 4 and Recovery)
Stage 4 - Output: At this point, each party Pi knows the value of Vr for each
round r = 1, · · · , l and the protocol proceeds as follows:

1. Pi computes the winning bid as bw = bw1| · · · |bwl, such that bwr = 1 if Vr 6= 1 and
bwr = 0 if Vr = 1, and sends bw to all other parties (causing all parties Pk to sign
bw and send Sig.Signskk (bw) to each other). We denote by Pw the winning party
(i.e., the party whose bid is bw).

2. Pw opens the commitment to her bid com(bw, rbw) towards the smart contract by
sending (output, sid,Pw, bw, rbw , {Sig.Signskk (bw)}k∈[n]) to FSC.

3. If Pw does not open her commitment or if multiple parties open their commitments,
Pi proceeds to the Recovery Stage.

4. Finally, all parties who honestly completed the execution of the protocol receive
a refund of their deposit from the smart contract, apart from the winning party,
who only receives a refund equivalent to the work funds.

Recovery Stage: Parties Ci ∈ C listen to FSC and execute the Share Decryption
step of ΠC from Figure 3.3 if requested. In case a party Pi ∈ P is suspected of
cheating, the Recovery stage is executed as follows to identify the cheater depending
on the exact suspected cheating:

• Missing message or signatures: a message msgri or a signature
Sig.Signski(msgr−1,i′), on a message msgr−1,i′ by P ′

i, expected to be sent in
round r by Pi is not received by Pk. Then, Pk sends to FSC the message
(recovery-missing, sid,msg, {Sig.Signskk (msg)}k∈[n]), where msg is the last mes-
sage signed by all parties and waits for FSC to request the missing message. In that
way, Pi is expected to send msgri or Sig.Signski(msgr−1,i′) to FSC. If no action is
taken, Pi is identified as a cheater.

• Conflicting messages or Invalid message: In round r, Pi sends conflicting
messages msgri, Sig.Signski(msgri) and msg′ri, sigski(msg′ri) to different parties
Pk and P ′

k. In this case, Pk and P ′
k set the conflicting messages as a proof of

cheating πc = (msgri,Sig.Signski(msgri),msg′ri, Sig.Signski(msg′ri)). Otherwise,
Pi sends an invalid message msgri,Sig.Signski(msgri) to Pk (i.e., the message does
not follow the structure described in the protocol for messages in round r), Pk

uses this message as a proof of cheating πc = (msgri, Sig.Signski(msgri)). Pk

sends (recovery-cheat, sid,Pi, πc) to the smart contract and Pi is identified as
a cheater.

Every party Pi identified as a cheater loses her whole deposit (bi + work), which is
distributed to the other parties by FSC, and the protocol continues as follows:

• Re-execution (unknown bw): in case bw has not been computed, the protocol
is re-executed from Stage 2 excluding the parties identified as cheaters.

• Complete payment (known bw but unknown Pw): in case bw has been com-
puted but Pw does not send (output, sid,Pw, bw, rbw , {Sig.Signskk (bw)}k∈[n]) to
FSC, all Pi ∈ P compute a NIZK NWi ← NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 =
Y xi1
i1) ∨ . . . ∨ (Vl = 1 ∧ vi1 = Y xi1

i1)} showing that they are not the winner. Then
they send to FSC (recovery-payment, sid,NWi). The winner Pw (in case it is
identified) or all parties Pi who do not act (in case Pw is not identified) are iden-
tified as dishonest and lose their deposits, which are distributed among the honest
parties.

Figure 3.8: Protocol ΠFPA (Stages 4 and Recovery).

3.6. FIRST-PRICE AUCTIONS 59

distiguisher D, i.e., {com(s1, t2)}
s1∈Zq,t1

$←Zq

and {com(s1, t2)}
s2∈Zq,t2

$←Zq

are statistically indistiguishable.

Proof. It is proven in [156] that the Pedersen commitment scheme is compu-
tationally binding and unconditionally hiding under the assumption that the
Discrete Logarithm problem is hard, which is implied by the DDH assump-
tion.

Lemma 2. Under the DDH Assumption and in the random oracle model, there
exists a EUF-CMA [109] secure digital signature scheme.

Proof. There exist a number of digital signature schemes whose security is
implied by the DDH assumption in the random oracle model, e.g., [159] and
[34].

Lemma 3 (Theorem 5 from [48]). Under the DDH Assumption and in the
random oracle model, the range proofs computed in Stage 1 of ΠFPA guarantee
the zero-knowledge, the proof of knowledge and the soundness properties.

Lemma 4 (From [58]). Under the DDH Assumption and in the random oracle
model, the NIZKs BV , AV , NW and CC computed respectively in Stage 2,
Stage 3 and the Recovery Stage of ΠFPA have the zero-knowledge, the proof of
knowledge and the soundness properties.

Lemma 5 (Lemma 2 from [13]). Under the DDH Assumption, given Xir = gxir

with xir
$← Zq and i ∈ [1, n], Yir =

∏i−1
k=1 g

xkr/
∏n

k=i+1 g
xkr = g(

∑i−1
k=1 xkr−

∑n
k=i+1 xkr)

and yir =
∑i−1

k=1 xkr −
∑n

k=i+1 xkr with i ∈ [1, n], i ∈ [1, n], i′, i′′ ∈ [1, n]

such that i′ 6= i′′, gr̄ir with r̄ir
$← Zq and i ∈ [1, n] \ {i′, i′′}, gr̄i′r , gr̄i′′r ,

Φ ⊆ {xir : i ∈ [1, n] \ {i′, i′′}} and a challenge Ω ∈ {A,B}, it is computationally
hard to find if Ω = A or Ω = B, where:

A = (g,Φ, gx1rz1r , gx2rz2r , . . . , gxi′−1rzi′−1r , gxi′r r̄i′r , gxi′+1rzi′+1r , . . . , gxi′′ryi′′r , . . . , gxnrznr)

B = (g,Φ, gx1rz1r , gx2rz2r , . . . , gxi′−1rzi′−1r , gxi′r r̄i′r , gxi′+1rzi′+1r , . . . , gxi′′r r̄i′′r , . . . , gxnrznr)

where zir is either yir (note that when zir = yir the value gxirzir is equal to the
message vir = Y xir

ir = gxiryir of ΠFPA representing a no veto) or r̄ir (note that
when zir = r̄ir, where r̄ir

$← Zq, the value gxirzir is indistinguishable from the
message vir = gr̄ir of ΠFPA representing a veto) for i ∈ [1, n] \ {i′, i′′}, and Φ
is chosen by an adversary A. Intuitively, it is not possible to distinguish two
executions in which there is at least one veto but the number of parties vetoing
is different and it is not possible to learn if a party vetoed or not by checking
vir.

Lemma 6 (Lemma 3 from [13]). Under the DDH Assumption, let H be a set of
honest parties and C be a set of parties corrupted by an adversary A. For each
Ph ∈ H, let vhr be her message in Stages 2 or 3 during a round r of ΠFPA,
corresponding to an input bit bhr. Then, A learns no more than

∨
Ph∈H bhr. In

particular, in case
∨
Ph∈H bhr = 0, A learns that bhr = 0 for each Ph ∈ H. On

the other hand, in case
∨
Ph∈H bhr = 1:

60 CHAPTER 3. FAST

• A is not able to distinguish two executions in which the number of honest
parties Ph ∈ H with bhr = 1 is different.

• Let Ph1
,Ph2

∈ H be honest parties with input bits bh1r, bh2r such that
bh1r 6= bh2r and messages vh1r, vh2r respectively. Then, A is not able to
distinguish vh1r and vh2r.

Based on the above Lemmas, we prove Theorem 1, which we reproduce below
for the sake of clarity.

Theorem 1. Under the DDH Assumption, Protocol ΠFPA securely computes
FFPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

Proof. In order to prove this theorem, we construct a simulator SFPA (Figures
3.9, 3.10, 3.11 and 3.12) that performs an ideal execution with FFPA and inter-
acts with an internal copy of the adversary A, simulates honest parties, FSC and
the random oracle in an execution of Protocol ΠFPA with A in such a way that
this execution is indistinguishable from an execution between A and an honest
party in the real world. Throughout this execution, SFPA perfectly emulates
FSC and the random oracle unless stated otherwise. In order to show that an
ideal execution with SFPA and FFPA is indistinguishable from a real execution
of ΠFPA with A and honest parties, we argue that the view of A in the real
world and of SFPA’s internal copy of A is indistinguishable. In particular:

• Stage 1 - Setup: SFPA simulates each honest party Ph ∈ H using a
dummy input bid bh = bh1| . . . |bhl with bhr

$← {0, 1} for r = 1, . . . , l
and computes the bit commitments chr = gbhrhrhr for r = 1, . . . , l, the
bid commitment ch =

∏l
r=1 c

2l−r

hr = gbhh
∑l

r=1 2l−rrhr , the range proofs
(πbh , πchange), shares (σ̂h1, . . . , σ̂hm, LDEIh) of gb

′
h and h

rb′
h and the proof

of consistency CCh.
However, by Lemma 1, due to the hiding property of the commitments,
chr for r = 1, . . . , l and ch are indistinguishable from the commitments of
the corresponding parties in the real world. Moreover, by Lemma 3, due to
the zero knowledge property of NIZKs, (πbh , πchange) are indistinguishable
from the range proofs of the corresponding parties in the real world.
Similarly, by Lemma 4, due to the zero knowledge property of NIZKs,
CCh is indistinguishable from the NIZK of the corresponding party in the
real world.
On the other hand, by Lemma 1, due to the binding property of the com-
mitment, the bids bc of each corrupted party Pa ∈ C, extracted by SFPA

using the NIZKs knowledge extractor (given the proof of knowledge prop-
erty of NIZKs by Lemma 3), from the range proofs (πba , πchange), cannot
be changed later. Then, by Lemma 3, due to the soundness property
of the NIZKs, it is computationally hard for the adversary A controlling
each Pa ∈ C to compute the range proofs while the bids are not in the

3.6. FIRST-PRICE AUCTIONS 61

Simulator SFPA (Stage 1)
Let H be the set of simulated honest parties, C be the set of parties corrupted by
the adversary A, CH be the set of simulated members of the committee and CC be
the set of members of the committee corrupted by the adversary A.
Stage 1 - Setup.

• Generating Parameters with Trapdoor: SFPA samples g
$← G, t

$← Zq

and computes h = gt. Trapdoor t will allow SFPA to equivocate commitments
later. When A queries FSC with (param, sid), SFPA returns these values (param,
sid, g, h).

• Simulating Honest Parties: SFPA simulates each honest party Ph ∈ H using
dummy input bids b′h = b′h1| . . . |b′hl such that b′hr

$← {0, 1} for r = 1, . . . , l. SFPA

follows the steps of an honest party with input b′h in ΠFPA to do the following:

1. Generate pkh, transaction txh, shares (σ̂h1, . . . , σ̂hm, LDEIh) of gb
′
h and h

rb′
h ,

proof of consistency CCh ← CC((pkCj
)j∈[m], (j)j∈[m], g, h, ch, (σ̂j)j∈[m]) , then

send (setup, sid,Ph, txh, pkh, (σ̂h1, . . . , σ̂hm), LDEIh, CCh) to each Cj ∈ CC.
2. Upon receiving (setup-verification, sid, SigCj ,h) from all Cj ∈ CC, compute

SH1h = H(txh, pkh) and SH2h = H((σ̂h1, . . . , σ̂hm), LDEIh, CCh) and send
(setup, sid,Pi, txh, pkh, SH1h, SH2h, SigC1,h, . . . , SigCm,h)) to FSC.

3. Generate values ch1, · · · , chl, Xh1, · · · , Xhl (sample xhr
$← Zq, then Xhr = gxhr)

and send them to all other parties.
4. Upon receiving Xc1, · · · , Xcl from A for all Pc ∈ C, computes Yhk for each
Ph ∈ H and k = 1, . . . , l.

• Handling messages from A:

1. Upon receiving (setup, sid,Pa, txa, pka, (σ̂a1, . . . , σ̂am), LDEIa, CCa) from A
trough Pa ∈ C to Cj ∈ CH, SFPA follows the steps of ΠC to verify
txa, (σ̂a1, . . . , σ̂am), LDEIa, CCa. If all the checks pass, computes the hashes
SH1a = H(txa, pka) and SH2a = H((σ̂a1, . . . , σ̂am), LDEIa, CCa) and the sig-
nature SigCj ,a = Sig.Signsk′Cj

(SH1a|SH2a), then sends (setup-verification,
sid, SigCj ,a) to Pa.

2. Upon receiving the message (setup, sid,Pa, txa, pka, SH1a|SH2a,
SigC1,a, . . . , SigCm,a) from A trough Pa ∈ C to FSC, SFPA follows the
steps of FSC to verify that SH1a = H(txa, pka) and SigCj ,a for each Cj ∈ CH∪CC,
continuing the execution if the checks pass and simulating the recovery procedure
otherwise.

3. If the checks pass, SFPA uses the knowledge extractor for the NIZKs in order to
extract the bids ba for each party Pa ∈ C from their range proofs (πba , πchange)
included in the transactions txa. Then, SFPA sends (bid, sid, coins(ba + work))
for each extracted bid ba to FFPA on behalf of Pa.

Figure 3.9: Simulator SFPA (Stage 1).

expected range. Moreover, by Lemma 4, due to the soundness property
of the NIZKs, it is ensured that at every round the inputs of all Pa ∈ C
are computed according to the initial bid bc and the protocol rules.
Moreover, by Proposition 1, (σ̂h1, . . . , σ̂hm, LDEIh) does not leak any in-

62 CHAPTER 3. FAST

Simulator SFPA (Stage 1 - Continuation)

Simulating an honest party vetoing or not vetoing. considering Ph ∈ H, in
a round r during Stage 2 or Stage 3 requires SFPA to compute vhr as follows:

vhr =

{
Y

xhr
hr , if SFPA simulates a no veto

r̄hr
$← Zq, g

r̄hr , if SFPA simulates a veto
and generate NIZKs showing that vhr has been computed according to both the
first r bits of the dummy input bid b′h (i.e. b′h1, . . . , b

′
hr) and the outputs of the

protocol in the previous rounds (i.e. V1, . . . , Vr−1) by using the NIZKs simulators.
Whether a simulated honest party vetoes or not is decided by SFPA according
to rules, defined in Stage 2 and Stage 3 of SFPA, meaning that the behaviour of
simulated honest parties is completely independent of the dummy input bid b′h. In
Stage 2, SFPA uses the simulator of NIZK BV {b′hr, rhr, xhr, r̄hr | (chr

g
b′
hr

= chr =

hrhr ∧ vhr = Y
xhr
hr ∧Xhr = gxhr) ∨ (chr

g
b′
hr

= chr
g

= hrhr ∧ vhr = gr̄hr)} to generate
a proof BVhr and sends (vhr, BVhr) to all parties. In Stage 3, uses the generator
of NIZK AV {b′hr, rhr, xhr, r̄hr̂, r̄hr, xhr̂ | (chr

g
b′
hr

= chr = hrhr ∧ vhr = Y
xhr
hr ∧Xhr =

gxhr)∨ (chr

g
b′
hr

= chr
g

= hrhr ∧ dhr̂ = gr̄hr̂ ∧ vhr = gr̄hr)∨ (chr

g
b′
hr

= chr
g

= hrhr ∧ dhr̂ =

Y
xhr̂
hr̂ ∧Xhr̂ = gxhr̂ ∧vhr = Y

xhr
hr ∧Xhr = gxhr)} to generate a proof AVhr and sends

(vhr, AVhr) to all parties.

Figure 3.10: Simulator SFPA (Stage 1 - Continuation).

formation about the bids and it is guaranteed that the shares distribution
is valid.
Finally, by adopting a EUF-CMA secure digital signature, whose existence
is given by Lemma 2, in each round r no Pc ∈ C has the chance to forge a
signature Sig.Signski

(msgr,c) for a certain message msgr,c pretending to be
an honest party Pi in the real world, i.e., no transaction txi nor a proof of
cheating πc = (msgri,Sig.Signski

(msgri),msg′ri), indicating that Pi sent
conflicting messages, or πc = (msgri,Sig.Signski

(msgri), indicating that
Pi sent an invalid message, can be forged. Additionally, A cannot deny
having sent a message that it has signed in the past. Hence, proofs of
cheating cannot be repudiated.

• Stage 2 - Before First Veto and Stage 3 - After First Veto: SFPA

simulates each honest party Ph ∈ H vetoing or not vetoing in each round
r, by using the NIZKs simulator, in a way that is decided arbitrarily by
SFPA and that is completely independent of the dummy input bid bh.
In particular, SFPA simulates each honest party Ph ∈ H vetoing or not
vetoing coherently with the extracted input bids bc from each party Pa ∈ C
corrupted by the adversary A and the bit bwr learnt from FFPA in each
round r, i.e., in case a corrupted party is known to be the winner, SFPA

simulates each honest party Ph ∈ H not vetoing until r = l. On the
other hand, in case an honest party is known to be the winner, SFPA

3.6. FIRST-PRICE AUCTIONS 63

Simulator SFPA (Stages 2 and 3)

• Stage 2 - Before First Veto. Let rv be the first round in which a veto occurs,
i.e., Vrv 6= 1. Then, for r = 1, . . . , rv SFPA waits for (round-winner, sid, bwr)
and proceeds as follows:

1. (honest winner) If bwr = 1 and bar = 0 for each Pa ∈ C (note that SFPA has
previously extracted the bids of the corrupted parties), then Pw /∈ C, i.e., the
winner is known to be honest by SFPA but its identity will be known during
Stage 4 only. In this case, SFPA simulates one honest party Phw ∈ H picked
at random vetoing and simulates all the other honest parties not vetoing again,
then goes to Stage 3.

2. (corrupted winner) If bwr = 1 and SFPA receives (leak-to-winner, sid, rw)
from FFPA, then Pw ∈ C and its identity is known by SFPA. In this case, SFPA

simulates all honest parties Ph ∈ H not vetoing and goes to Stage 3.
3. (know nothing) If neither condition 1 nor 2 occurs, then nothing is known yet

regarding Pw (neither its identity nor if Pw is corrupted or not). If bwr = 1
then SFPA simulates all honest parties Ph ∈ H vetoing and goes to Stage 3.
If bwr = 0 then SFPA simulates all honest parties Ph ∈ H not vetoing and
continues to simulate Stage 2.

4. If an honest party Ph executing ΠFPA would initiate the Recovery Stage, SFPA

simulates Ph ∈ H initiate it with the simulated FSC. Then, at the end of each
round r, SFPA receives (abort?, sid) from FFPA. If any Pa ∈ C has been
identified as a cheater in the Recovery Stage, SFPA sends (abort, sid,Pa) to
FFPA, otherwise SFPA sends (proceed, sid) to FFPA.

• Stage 3 - After First Veto. For r = rv, . . . , l SFPA waits for (round-winner,
sid, bwr) and proceeds as follows:

1. (honest winner) If condition 1 of Stage 2 occurred or occurs during Stage 3,
SFPA eventually picks at random one simulated honest party Phw ∈ H (in case
it has not been already picked during Stage 2) and simulates her vetoing if
bwr = 1 and not vetoing if bwr = 0 until r = l and simulates all the other honest
parties not vetoing again

2. (corrupted winner) If condition 2 of Stage 2 occurred or occurs during Stage 3,
SFPA simulates all honest parties Ph ∈ H not vetoing until r = l.

3. (know nothing) If neither condition 1 nor 2 occurs, then nothing is known yet
regarding Pw (neither its identity nor if Pw is corrupted or not).
If bwr = 1 then SFPA simulates all honest parties Ph ∈ H vetoing. If bwr = 0
then SFPA simulates all honest parties Ph ∈ H not vetoing.

4. If an honest party Ph executing protocol ΠFPA would initiate the Recovery
Stage, SFPA simulates Ph ∈ H initiating it with the simulated FSC. Then,
at the end of each round r, SFPA receives (abort?, sid) from FFPA. If any
Pa ∈ C has been identified as a cheater in the Recovery Stage, SFPA sends
(abort, sid,Pa) to FFPA, otherwise SFPA sends (proceed, sid) to FFPA.

Figure 3.11: Simulator SFPA (Stages 2 and 3).

64 CHAPTER 3. FAST

Simulator SFPA (Stages 4 and Recovery)

• Stage 4 - Output. Once SFPA receives (announce-winner-and-refund,
sid,Pw, bw, coins(bi + work)) from FFPA:

– If Pw ∈ C and Pw deviates from the protocol during Stage 4, then SFPA sim-
ulates the recovery procedure with the simulated FSC. After Pw halts, SFPA

outputs whatever Pw outputs.
– If Pw ∈ C but Pw does not deviate from the protocol, then the execution is is

concluded as in the real world.
– If Pw /∈ C then the winning party Pw in the real world is one of the honest

parties. In this case, SFPA simulates Pw ∈ H winning and opening her commit-
ment cw not to her dummy input bid b′w but to the actual bid bw received from
SFPA. Note that Pw ∈ H is, in general, different from the simulated winning
honest party Phw ∈ H that was picked at random during the simulation of Stage
2 or 3. SFPA uses trapdoor t from Stage 1 - Setup to find a randomness r′ such
that cw = com(bw, r

′) by solving b′w + t · rw = bw + t · r′ for r′.

• Recovery Stage. SFPA perfectly emulates FSC. In particular, in case Pw

is corrupted and did not send (output, sid,Pw, bw, rbw , {Sig.Signskk (bw)}k∈[n])
to FSC, SFPA identifies Pw anyway by observing the extracted inputs bids ba
from each Pa ∈ C. Then, SFPA simulates all honest parties Ph ∈ H sending
(recovery-payment, sid,NWh) to FSC where NWh ← NW{(V1 = 1 ∧ vh1 =
Y

xh1
h1) ∨ . . . ∨ (Vl = 1 ∧ vh1 = Y

xh1
k1)} is generated using the simulator for NW .

Moreover, SFPA simulates each committee member Cj ∈ CH by following
ΠC. Indeed, upon receiving (open, sid,Pa), where Pa ∈ C, from FSC,
SFPA simulates Cj using the share decryption procedure from πPV SS on σ̂aj ,
obtaining σ̃aj , DLEQaj . and sending (share-decryption, sid, (σ̂a1, . . . , σ̂am),
LDEIa, CCa, σ̃aj , DLEQaj)) to FSC.

Figure 3.12: Simulator SFPA (Stages 4 and Recovery).

simulates one honest party Phw
∈ H picked at random vetoing or not

vetoing according if bwr = 1 or bwr = 0 respectively and simulates all
the other honest parties not vetoing again. Similarly, if nothing is known
about the winner, SFPA simulates all honest parties Ph ∈ H vetoing or not
vetoing according if bwr = 1 or bwr = 0 respectively. We will argue why
the view of the adversary A in the simulation by SFPA is indistinguishable
from the real world execution.

By Lemma 4, due to the zero knowledge property of NIZKs, BVhr and
AVhr are indistinguishable from the NIZKs of the corresponding parties
in the real world. Moreover, by Lemma 5 and Lemma 6, it is proven
that the inputs vhr of the veto protocol and the output Vr of each round
r are indistinguishable from the inputs of the corresponding parties and
the output in the real world. On the other hand, SFPA can compare the
extracted bids ba of each Pa ∈ C with the output of each round Vr to
discover if one of the honest parties in the real world in the winner of

3.7. EXTENSION TO SECOND-PRICE AUCTIONS 65

the auction. In that case, as described in the simulator, SFPA simulates
one honest party Phw ∈ H picked at random behaving as the winner.
However, by Lemma 5 and Lemma 6, the adversary A cannot distinguish
which honest party is the winner.

• Stage 4 - Output: in case one of the honest parties in the real world is the
winner of the auction, in the output stage she will reveal her identity and
open the commitment to her bid com(bw, rbw) towards the smart contract
by sending (output, sid,Pw, bw, rbw , {Sig.Signskk

(bw)}k∈[n]) to FSC. In
the ideal world, as described in the simulator, SFPA has to simulate Pw ∈
H winning and opening her commitment cw not to her dummy input bid b′w
but to the bid bw of Pw in the real world, i.e., equivocate the commitment.
Note that Pw ∈ H is, in general, different from the simulated winning
honest party Phw ∈ H that was picked at random during the simulation
of Stage 2 or 3. However, by Lemma 5 and Lemma 6, the adversary A
cannot distinguish if Pw is different from Phw

.
Moreover, by Lemma 1, due to the unconditionally hiding property of the
commitment, the adversary cannot learn that cw initially was a commit-
ment to b′w instead of bw.

• Recovery: SFPA simulates aborts and corresponding recovery stages if
A deviates from the protocol as in an actual execution of ΠFPA, i.e., when
an honest party would have triggered the Recovery Stage. Moreover, by
Lemma 4, due to the zero-knowledge property of NIZKs, NWh for each
Ph ∈ H are indistinguishable corresponding NIZKs in the real world.
Finally, by Proposition 1, it is guaranteed that the shares reconstruction
is valid.

Hence, the view of A in the real world and of SFPA’s internal copy of A is
indistinguishable, which concludes our proof.

3.7 Extension to Second-price Auctions
The second-price sealed-bid auction is a type of auction in which the parties
first submit their bids to the auctioneer and then the winner is the party with
the highest bid, however the price she pays is the second-highest bid. The
importance of the second-price auction is that it is strategy-proof, i.e., the best
strategy for rational parties is to bid their true valuation of the auctioned goods.
Despite this, the sealed second-price auctions may not be applied in certain
scenarios due to the trust that has to be put in the auctioneer. In particular, a
dishonest auctioneer may manipulate the bids and substitute the second-highest
bid with a bid that is slightly smaller than the first bid, so as to increase her
revenue or disclose the losing bids of the other parties to have a financial gain.
In fact, in a recent study, [7] it is shown that the only auction in which the
auctioneer has no incentive to deviate from the rules is the first-price auction.

66 CHAPTER 3. FAST

Functionality FSPA

FSPA operates with an auctioneer PAUC , a set of parties P = {P1, . . . ,Pn} who
have bids b1, . . . , bn as input, as well as an adversary SSPA. FSPA is parameterized
by a bid bit-length l and keeps an initially empty list bids.

• Setup (Bid Registration): Upon receiving (bid, sid, coins(bi + work)) from Pi

where bi ∈ {0, 1}l and work is the amount required to compensate the cost of
running the protocol for all the other parties, FSPA appends bi to bids.

• Winner Selection: After receiving (bid, sid, coins(bi +work)) from all parties in
P, for r = 1, . . . , rw, where rw is initialized to l, FSPA proceeds as follows:
1. Select bwr, i.e., the r-th bit of the highest bid bw in the list bids.
2. Send (round-winner, sid, bwr) to all parties.
3. Check if bwr = 1 and bir = 0 for i = 1, . . . , n 6= w. If so, set rw = r,

that is the first position where bw has a bit 1 and bw2 has a bit 0, and send
(leak-to-winner, sid, rw) to Pw.

4. If Pw is honest, announce her identity by sending (announce-winner, sid,Pw)
to all Pi ∈ P and SSPA. If Pw is corrupted, send (announce?, sid,Pw) to
SSPA. If SSPA answers with (announce, sid) then send (announce-winner,
sid,Pw) to all Pi ∈ P. If SSPA answers with (not-announce, sid), do nothing.

5. Send (abort?, sid) to SSPA. If SSPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P, send (abort,
sid,Pi, coins(

bi+work
|P| + work)) where |P| is the number of remaining parties

to all other parties in P to SSPA, set again r = 1 and go to Step 1. If SSPA an-
swers with (proceed, sid), if Pw has been determined, i.e., bwr = 1 and bir = 0
for i = 1, . . . , n 6= w, go to Second-Price Selection, otherwise increment r by 1
and go to Step 1.

• Second-Price Selection: remove Pw from P and for r = rw, . . . , l FSPA proceeds
as follows:
1. Select bw2r, i.e., the r-th bit of the second highest bid bw2 in the list bids.
2. Send (round-winner, sid, bw2r) to all parties.
3. Check if bw2r = 1 and bir = 0 for i = 1, . . . , n 6= w2. If so, set rw2 = r,

that is the first position where bw2 has a bit 1 and bw3 has a bit 0, and send
(leak-to-second, sid, rw2) to Pw2 .

4. Send (abort?, sid) to SSPA. If SSPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P, send (abort,
sid,Pi, coins(

bi+work
|P|)) where |P| is the number of remaining parties to all other

parties in P, set again r = rw and go to Step 1 to start recomputing the second-
price. If SSPA answers with (proceed, sid), if Pw2 has been determined, i.e.,
bw2r = 1 and bir = 0 for i = 1, . . . , n 6= w2, go to Payout, otherwise increment
r by 1 and go to Step 1.

• Payout: Send (refund, sid, coins(bi + work)) to all parties Pi 6= Pw, send
(refund, sid, coins(work)) to Pw, send coins(bw2) to PAUC , and halt.

Figure 3.13: Functionality FSPA.

3.7. EXTENSION TO SECOND-PRICE AUCTIONS 67

Hence, when considering the second-price we must overcome these problems. We
propose an efficient solution to adapt our protocol in the case of second-price
auctions. Note that a trivial solution is to run the protocol for the first-price
twice, but the second time from Stage 2 using the same setup from Stage 1 and
without the winning party Pw. However, this discloses both the highest bid bw
and the second-highest bid bw2

(i.e., the price paid by the winning party), and
suffers of unnecessary computational and communication complexity.

Modelling Second-Price Fair Auctions:

First, we describe an ideal functionality FSPA for the second-price auctions we
realize in Figure 3.13.

The Protocol:

Protocol ΠSPA for Second-Price Auctions is described in Figures 3.14 and 3.15.
In this protocol, each party Pi checks if she is the only one veto-ing in every
round r where bir = 1 and Vr 6= 1 (i.e., in which there was a veto), which
means that Pi is the winning party. Each party Pi can do that by checking
whether she obtains an alternative value V ′r = 1 (no veto) by using v′ir = Y xir

ir

(no veto) as her message and keeping the other parties’ messages unchanged. If
this condition is satisfied, then Pi proves it to all the other parties by revealing
xir. The first party who proves this condition to be true is the winning party
Pw. In order to compute the second-highest bid bw2

, the other parties conclude
the protocol excluding Pw, which reduces drastically both computational and
communication complexity with respect to the trivial solution of re-executing
the protocol for the first-price from scratch without Pw. In fact, the complexity
of the protocol for the second-price is almost the same as the one for the first-
price case, i.e., when Pw sends xir to all the other parties, so as to prove
she is the winning party, the communication complexity increases by |Zq| only.
We present a detailed efficiency estimate in Section 3.8. Finally, by using this
approach the winning bid is just partially disclosed, i.e., the knowledge of the
round r in which Pw declared herself as the winner of the auctions provides a
lower bound only over her actual bid bw.

Security Analysis:

The security of Protocol ΠSPA is stated in Theorem 2 and proven in Sec-
tion 3.7.1. A game-theoretical analysis is presented in Section 3.9.

Theorem 2. Under the DDH Assumption, Protocol ΠSPA securely computes
FSPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

3.7.1 Proof of Theorem 2
In this section, we prove Theorem 2, which we reproduce below for the sake of
clarity.

68 CHAPTER 3. FAST

Protocol ΠSPA (Stages 1, 2, 3a and 3b)
Protocol ΠSPA is executed by parties P = {P1, . . . ,Pn}, where each party Pi has
a l-bit bid bi = bi1| . . . |bil, and a deposit committee C = {C1, . . . , Cm} interacting
among themselves and with a smart contract FSC.
Off-chain messages exchange and Stage 1 - Setup: Same as in Protocol ΠFPA.
Stage 2 - Before First Veto and Stage 3a - After First Veto: In this stage,
all parties Pi follow all the steps of Stage 2 and Stage 3 of ΠFPA respectively and
execute the following extra steps:

1. If Pi sent vir = gr̄ir (i.e., she has bir = 1 and issued a veto), Pi computes V ′
r =(n∏

k=1,k 6=i

vkr
)
Y xir
ir and checks whether Vr 6= 1 and V ′

r = 1. If this is true, it means

that Pi is the only one who has vetoed (i.e., she is the only party with bkr = 1 for
k = 1, . . . , n, implying she has the highest bid). In this case, Pi sends (winner,
sid,Pw, xir) to all other parties.

2. Upon receiving (winner, sid,Pw, xir) from Pw, Pi it checks whether Pw indeed has

the highest bid by checking that Xwr = gxwr , computing V ′
r =

(n∏
k=1,k 6=w

vwr

)
Y xwr
wr

and checking whether Vr 6= 1 and V ′
r = 1. If any of these checks fail, proceed to

the Recovery Stage.
3. If a valid message (winner, sid,Pw, xir) was Pw, all parties Pi ∈ P\Pw recompute

Y ′
kr =

k−1∏
m=1

Xmr/
n∏

m=k+1

Xmr for k ∈ {1, . . . , n} \w, k = j +1, . . . , l (i.e., excluding

Pw from the remaining rounds from j + 1 to l), then continue to Stage 3b by
executing the protocol using the new Y ′

ir with a set of parties P \ Pw excluding
Pw.

4. If no party has sent a message (winner, sid,Pw, xir) by round r = l, then the
winner is dishonest (assuming no tie) and Pi proceeds to the Recovery Stage.

Stage 3b - After First Unique Veto: In this stage, all parties Pi ∈ {P1, . . . ,Pn}\

Pw considers Vr = V ′
r =

(n∏
k=1,k 6=w

vwr

)
Y xwr
wr = 1 (i.e., Vr with the input vwr of Pw

not representing a veto instead). Then:
• If there does not exist another previous round z with z = 1, . . . , r − 1 such that

Vz 6= 1, i.e., the first veto was also the first unique veto, then the parties Pi ∈
{P1, . . . ,Pn}\Pw continue the protocol following all the steps is Stage 2 and Stage
3 described in Section 3.6 but using the values Y ′

ir recomputed after the first unique
veto was detected. When Stage 2 and eventually Stage 3 are completed, return
and go to the output stage described in this section.

• If there does exist another previous round z with z = 1, . . . , r−1 such that Vz 6= 1,
i.e., the first unique veto was not the first veto, then set r̂ = z (i.e., the index
of the last veto is changed from r to z) and the parties Pi ∈ {P1, . . . ,Pn} \ Pw

continue the protocol following all the steps from Stage 3 as described in Section
3.6 but using r̂ = z when computing their next input vi(r+1) and the values Y ′

ir

recomputed after the first unique veto was detected. When Stage 3 is completed,
return and go to the output stage described in this section.

Figure 3.14: Protocol ΠSPA (Stages 1, 2, 3a and 3b).

3.7. EXTENSION TO SECOND-PRICE AUCTIONS 69

Protocol ΠSPA (Stage 4 and Recovery Stage)
Stage 4 - Output: At this point, all parties know the winner party Pw and the
second-price bw2 . The protocol proceeds as follows:

1. Pi computes the second highest bid as bw2 = bw21| · · · |bw2l, such that bw2r = 1 if
Vr 6= 1 and bw2r = 0 if Vr = 1, and sends Pw, bw2 to all other parties (causing all
parties Pk to sign bw2 and send Sig.Signskk (Pw|bw2) to each other).

2. In the Setup Stage, Pw sent to the smart contract a confidential transac-
tion txw = (id, In,Out, Sig, rbw + rchangew , π) where Out = {(com(bw, rbw),
Addrs), (work,Addrs), (com(changew, rchangew), Addrw)}. Pw creates a
new confidential transaction txpay = (idpay, Inpay,Outpay, Sigpay, rbw −
rchange′w , πpay) where In = {(id, com(bw, rbw))}, Out = {(bw2 , Addrauc),
(com(change′w, rchange′w), Addrw)}, Sigpay is left empty, Addrauc is the
address of the auctioneer, Addrw is the address of Pw and πpay is a
NIZK showing that change′w is between [0, 2l − 1]. Pw sends (output,
sid,Pw, txpay, {Sig.Signskk (Pw|bw2)}k∈[n]) to FSC, which performs txpay after
checking the validity of the message so that the auctioneer receives the payment
bw2 and Pw gets back bw − bw2 .

3. Finally, all honest parties receive a refund of their deposit from the smart contract,
apart from the winning party, who only receives a refund of the fee work plus the
transaction (bw − bw2) computed in the previous step.

Recovery Stage: Parties Ci ∈ C listen to FSC and execute the Share Decryption
step of ΠC from Figure 3.3 if requested. In case a party Pi ∈ P is suspected of
cheating, the Recovery stage is executed depending on the exact suspected cheating
as defined in Protocol ΠFPA, which allows to eventually identify the cheater. If a
cheater Pi is identified, the Recovery Stage proceeds as follows:

• Re-execution (unknown Pw): in this scenario the winning the party Pw is still
unknown, then the parties {P1, . . . ,Pn} \ Pi re-execute the protocol from Stage 2
without the cheating party Pi.

• Re-execution (known Pw but unknown bw2): in this scenario the winning
party Pw is known but the second highest bid bw2 is unknown, then the parties
{P1, . . . ,Pn} \ {Pi,Pw} re-execute the protocol from Stage 2 without the cheating
party Pi and the winning party Pw.

• Complete payment (known Pw and bw2 but missing payment): in this
scenario both the winning party Pw and the second highest bid bw2 are known, but
Pw is has not completed the payment to the auctioneer. Then, Pw’s deposit bw +
work is distributed by the smart contract as follows: bw2 is sent to the auctioneer
and the remaining amount, that is equal to (bw + work − bw2), is distributed to
the other parties.

• Dishonest winner identification: If no party has sent a message (winner,
sid,Pw, xir) by round r = l, each Pi ∈ P computes a NIZK NWi ←
NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 = Y xi1

i1) ∨ . . . ∨ (Vl = 1 ∧ vi1 = Y xi1
i1)} showing

that they are not the winner and sends to FSC (recovery-dishonest-winner,
sid,NWi). All parties Pi who do not send a valid NWi are identified as dishonest
and have their deposits distributed among the honest parties.

Figure 3.15: Protocol ΠSPA (Stage 4 and Recovery Stage).

70 CHAPTER 3. FAST

Simulator SSPA (Stages 1 and 2)
Let H be the set of simulated honest parties, C be the set of parties corrupted by
the adversary A, CH be the set of simulated members of the committee and CC be
the set of members of the committee corrupted by the adversary A.

• Stage 1 - Setup. Same as in SFPA.
Simulating an honest party vetoing or not vetoing. Same as SFPA.

• Stage 2 - Before First Veto. For every round r before the first veto, SSPA

waits for (round-winner, sid, bwr) and proceeds as follows:

1. (honest winner) If FSPA sends (announce-winner, sid,Pw) to SSPA, then the
winner is an honest party Pw. Thus, SSPA simulates Pw vetoing and proving
to be the winner by sending to all the other parties (winner, sid,Pw, xwr) and
simulates all the other honest parties not vetoing again, then goes to Stage 3b.

2. (corrupted winner) Upon receiving (leak-to-winner, sid, rw) and subsequently
(announce?, sid,Pw) from FSPA, SSPA learns the identity of the winner Pw

and that is corrupted. If A sends a message (winner, sid,Pw, xwr) then SSPA

replies (announce, sid) to FSPA, otherwise it replies (not-announce, sid) to
FSPA. Then SSPA simulates all honest parties Ph ∈ H not vetoing and goes to
Stage 3b.

3. (know nothing) If neither condition 2 nor 3 occurs, then nothing is known yet
regarding Pw (neither its identity nor if Pw is corrupted or not). If bwr = 1
then SSPA simulates all honest parties Ph ∈ H vetoing and goes to Stage 3a.
If bwr = 0 then SSPA simulates all honest parties Ph ∈ H not vetoing and
continues to simulate Stage 2.

4. If an honest party Ph executing ΠSPA would initiate the Recovery Stage, SSPA

simulates Ph initiating it with the simulated FSC. Then, at the end of each
round r, SSPA receives (abort?, sid) from FSPA. If any Pa ∈ C has been
identified as a cheater in the Recovery Stage, SSPA sends (abort, sid,Pa) to
FSPA, otherwise SSPA sends (proceed, sid) to FSPA.

Figure 3.16: Simulator SSPA (Stages 1 and 2).

Theorem 2. Under the DDH Assumption, Protocol ΠSPA securely computes
FSPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2− 2 parties Ci ∈ C.

Proof. In order to prove this theorem, we construct a simulator SSPA (Figure
3.16, Figure 3.17, Figure 3.18) that performs an ideal execution with FSPA and
interacts with an internal copy of the adversary A, simulates honest parties,
FSC and the random oracle in an execution of Protocol ΠSPA with A in such a
way that this execution is indistinguishable from an execution between A and
an honest party in the real world.

Throughout this execution, SSPA perfectly emulates FSC and the random
oracle unless stated otherwise. In order to show that an ideal execution with
SSPA and FSPA is indistinguishable from a real execution of ΠSPA with A and
honest parties, we argue that the view of A in the real world and of SSPA’s
internal copy of A is indistinguishable. In particular:

3.7. EXTENSION TO SECOND-PRICE AUCTIONS 71

Simulator SSPA (Stage 3a and 3b)
• Stage 3a - After First Veto For every round r after the first veto, SSPA waits

for (round-winner, sid, bwr) and proceeds as follows:
1. (honest winner) If FSPA sends (announce-winner, sid,Pw) to SSPA, then the

winner is an honest party Pw. Thus, SSPA simulates Pw ∈ H vetoing and
proving to be the winner by sending to all the other parties xwr, simulates all
the other honest parties H \ Pw not vetoing, then goes to Stage 3b.

2. (corrupted winner) Upon receiving (leak-to-winner, sid, rw) and subsequently
(announce?, sid,Pw) from FSPA, SSPA learns the identity of the winner Pw

and that is corrupted. If A sends a message (winner, sid,Pw, xwr) then SSPA

replies (announce, sid) to FSPA, otherwise it replies (not-announce, sid) to
FSPA. Then SSPA simulates all honest parties Ph ∈ H not vetoing and goes to
Stage 3b.

3. (know nothing) If neither condition 2 nor 3 occurs, then nothing is known yet
regarding Pw (neither its identity nor if Pw is corrupted or not). If bwr = 1
then SSPA simulates all honest parties Ph ∈ H vetoing. If bwr = 0 then SSPA

simulates all honest parties Ph ∈ H not vetoing.
4. If an honest party Ph executing ΠSPA would initiate the Recovery Stage, SSPA

simulates Ph initiating it with the simulated FSC. Then, at the end of each
round r, SSPA receives (abort?, sid) from FSPA. If any Pa ∈ C has been
identified as a cheater in the Recovery Stage, SSPA sends (abort, sid,Pa) to
FSPA, otherwise SSPA sends (proceed, sid) to FSPA.

• Stage 3b - After First Unique Veto. If Pw is honest, SSPA excludes it from
Stage 3b. For all other rounds r, SSPA waits for (round-winner, sid, bw2r) and:
1. (honest second) If bw2r = 1 and bar = 0 for each Pa ∈ C (note that SSPA

has previously extracted the bids of the corrupted parties), then SSPA learns
that the second-price bid was done by an honest party Pw2 . In this case, SSPA

simulates one honest party Phw2
picked at random (excluding the 1st price

winner Pw if it is honest) vetoing if bw2r = 1 and not vetoing if bw2r = 0 until
r = l and simulates all the other honest parties not vetoing again.

2. (corrupted second) If bw2r = 1 and SSPA receives (leak-to-second, sid, rw2)
from FSPA, then SSPA learns that the second-price bid belongs to a corrupted
party Pw2 ∈ C. In this case, SSPA simulates all honest parties Ph not vetoing
until r = l.

3. (know nothing) If neither condition 2 nor 3 occurs, then nothing is known yet
regarding Pw2 (neither its identity nor if Pw2 is corrupted or not). If bw2r = 1
then SSPA simulates all honest parties Ph ∈ H vetoing. If bw2r = 0 then SSPA

simulates all honest parties Ph ∈ H not vetoing. Then continues to simulate
Stage 3b until r = l.

4. If an honest party Ph executing ΠSPA would initiate the Recovery Stage, SSPA

simulates Ph ∈ H initiating it with the simulated FSC. Then, at the end of
each round r, SSPA receives (abort?, sid) from FSPA. If any Pa ∈ C has been
identified as a cheater in the Recovery Stage, SSPA sends (abort, sid,Pa) to
FSPA, otherwise SSPA sends (proceed, sid) to FSPA.

Figure 3.17: Simulator SSPA (Stage 3a and 3b).

72 CHAPTER 3. FAST

Simulator SSPA (Stage 4 and Recovery)
• Stage 4 - Output. Once SSPA receives (refund, sid, bw2 , coins(bi +work)) from
FSPA:

– If Pw is corrupted and deviates from the protocol during Stage 4, then SSPA

simulates the recovery procedure with the simulated FSC.
– If Pw is corrupted but does not deviate from the protocol, SSPA follows the

instructions of an honest party in ΠSPA to simulate honest parties.
– If Pw is honest, SSPA simulates Pw winning by creating a con-

fidential transaction txpay = (idpay, Inpay,Outpay,Sigpay, rbw −
rchange′w , πpay) where In = {(id, com(bw, rbw))}, Out = {(bw2 , Addrauc),
(com(change′w, rchange′w), Addrw)}, Sigpay is left empty, Addrauc is the address
of the auctioneer, Addrw is the address of Pw and πpay is a NIZK showing that
change′w is within [0, 2l − 1] (using the simulator for this NIZK). Finally, SSPA

simulates Pw sending (output, sid,Pw, txpay, {Sig.Signskk (Pw|bw2)}k∈[n]) to
FSC.

– After Pw halts, SSPA outputs whatever Pw outputs.

• Recovery Stage. SSPA perfectly emulates FSC. In particular, in case Pw is
corrupted and did not send (winner, sid,Pw, xwr) to all the other parties, SSPA

knows her identity due to the message (announce?, sid,Pw) from FSPA. Then,
SSPA simulates all honest parties Ph ∈ H sending (recovery-dishonest-winner,
sid,NWh) to FSC where NWh ← NW{(V1 = 1 ∧ vh1 = Y

xh1
h1) ∨ . . . ∨ (Vl =

1 ∧ vh1 = Y
xh1
k1)} is generated using the simulator of NW . Moreover, SSPA sim-

ulates each committee member Cj ∈ CH by following ΠC. Indeed, upon receiving
(open, sid,Pa), where Pa ∈ C, from FSC, SSPA simulates Cj using the share de-
cryption procedure from πPV SS on σ̂aj , obtaining σ̃aj , DLEQaj . and sending
(share-decryption, sid, (σ̂a1, . . . , σ̂am), LDEIa, CCa, σ̃aj , DLEQaj)) to FSC.

Figure 3.18: Simulator SSPA (Stage 4 and Recovery).

• Stage 1 - Setup: Same as Theorem 1.

• Stage 2 - Before First Veto and Stage 3a - After First Veto: In
terms of differences with respect of SFPA, in case an honest party is known
to be the winner in a certain round r, SSPA immediately learns the iden-
tity of the winning party by receiving the message (announce-winner,
sid,Pw) from FSPA. Then SSPA simulates Pw ∈ H vetoing and proving
to be the winner by sending to all the other parties (winner, sid,Pw, xwr)
and simulates all the other honest parties not vetoing again, then goes to
Stage 3b. Notice that, since xwr

$← Zq is sampled as in ΠSPA, this step
is indistinguishable from that as in real world execution of ΠSPA. On the
other hand, upon receiving (leak-to-winner, sid, rw) and subsequently
(announce?, sid,Pw) from FSPA, SSPA learns the identity of the win-
ner Pw and that is corrupted. Then, in case Pw does not send (winner,
sid,Pw, xwr) to all the other parties, SSPA sends (not-announce, sid,)
to FSPA and Pw will be identified as a cheater when the recovery proce-
dure is simulated. Analogous consideration to the Theorem 1 case (Stages

3.7. EXTENSION TO SECOND-PRICE AUCTIONS 73

2 and 3) and this approach make the view of the adversary A in the
simulation by SSPA indistinguishable from the real world execution.

• 3b - After First Unique Veto: At this point, in case Pw ∈ C, she will
not participate in the next steps of Stage 3b. Similarly, in case Pw /∈ C,
SSPA simulates Pw ∈ H not participating in the next steps of Stage 3b.
Then, the second-price bw2 has to be determined. Analogous consideration
to the Theorem 1 case (Stage 3) and this approach make the view of the
adversary A in the simulation by SSPA indistinguishable from the real
world execution.

• Stage 4 - Output: In case one of the honest parties in the real world
is the winner, SSPA simulates Pw ∈ H winning by creating a confidential
transaction txpay and sending (output, sid,Pw, txpay, {Sig.Signskk

(Pw|bw2)}k∈[n])
to FSC. However, by Lemma 1, due to the hiding property of the commit-
ments, the distributions of com(bw, rbw) and com(change′w, rchange′w) are
indistinguishable from those in a real world execution of ΠSPA. Moreover,
by Lemma 3, due to the zero knowledge property of range NIZKs, πpay is
indistinguishable from the range proof of Pw in the real world.
On the other hand, in the case Pw ∈ C, by Lemma 1, due to the binding
property of the commitments, the committed values bw and change′w can-
not be changed later by A. Moreover, by Lemma 3, due to the soundness
property of the NIZKs, it is computationally hard for the adversary A
controlling each Pa ∈ C to compute the range proof πpay while the bid is
not in the expected range.

• Recovery: SSPA simulates aborts and corresponding recovery stages if
A deviates from the protocol following the instructions of an honest party
executing ΠSPA. Moreover, by Lemma 4, due to the zero knowledge
property of NIZKs, NWh for each Ph ∈ H are indistinguishable from the
corresponding NIZKs in the real world. Finally, by Proposition 1, it is
guaranteed that the shares reconstruction is valid.

Hence, the view of A in the real world and of SSPA’s internal copy of A is
indistinguishable, which concludes our proof.

74 CHAPTER 3. FAST

Stage 1 Stage 2 Stage 3 Total
FAST nl + l +

8 log l + 2
τ(8 + 10n) (l− τ)(19+22n) 23nl+20l+8 log l−

11τ − 12nτ + 2
SEAL
[13]

11l + 12nl τ(17 + 20n) (l− τ)(33+36n) 48nl + 44l − 16τ −
16nτ

Table 3.1: First-price auction computational complexity comparison in terms of
exponentiations performed by a party Pi ∈ P: n is the number of parties, l is
the total number of rounds in Stages 2 and 3 (i.e., bit-length of bids), τ is the
number of rounds in Stage 2.

Stage 1 Stage 2 Stage 3 Total
FAST n((2l +

10)|G|+
3λ+ 4 log l)

nτ(|G|+
6|Zq|)

n(l − τ)(|G|+
11|Zq|)

n
(
|G|(3l + 10) +
|Zq|(11l − 5τ) +
3λ+ 4 log l

)
SEAL
[13]

17nl|G| 23nτ |G| 36n(l − τ)|G| (53nl − 13nτ)|G|

Table 3.2: First-price auction communication complexity comparison in terms
of transmitted bits by a party Pi ∈ P: n is the number of parties, l is the total
number of rounds in Stages 2 and 3 (i.e., the bit-length of bids), τ is the number
of rounds of Stage 2, |G| and |Zq| indicate the bit-length of elements g ∈ G and
z ∈ Zq respectively, λ is the security parameter, as defined in Section 2.

3.8 Complexity analysis and comparison to other
protocols

In this section, we present concrete estimates for the computational and commu-
nication complexity of our first and second-price auction protocols, i.e., ΠFPA

and ΠSPA, respectively. We show that, in the first-price case, ΠFPA is more
efficient than the state-of-the-art protocol SEAL [13]. In the second-price case,
we show that ΠSPA only incurs a small overhead (dominated by re-executing
one round) over ΠFPA.

The First-Price Case:

A concrete estimate of computational complexity is shown in Table 3.1 and
one for communication complexity is shown in Table 3.2. We estimate these
concrete complexities in terms of the number of exponentiations performed by
a party Pi and of the number of bits transmitted by a party Pi in an execution
of protocol ΠFPA, respectively. Moreover, we compare the complexity of our
protocol with SEAL [13], which is the current state-of-the-art protocol for first-
price sealed-bid auctions. In a similar way to our protocol, SEAL requires all
parties to jointly compute the maximum bid bit-by-bit and is subdivided into a
Stage 1 devoted to the setup, a Stage 2 identifying the rounds of the protocol
before the first veto and a Stage 3 identifying the rounds of the protocol after
the first veto. Hence, we highlight the differences in terms of complexity stage

3.9. RATIONAL STRATEGIES 75

by stage. Note that, in order to make the communication complexities of the
two protocols comparable, both of them have been expressed in terms of |G|.
Finally, FAST has an additional Stage 4 guaranteeing that the payment from the
winning party Pw to the auctioneer is executed. On the other hand, SEAL does
not guarantee this property. In particular, Stage 4 requires 1 exponentiation
per party and has a communication complexity equal to 2(n− 1)|G|.

The Second-Price Case:

The computational and communication complexities of the proposed second-
price auction are still linear in the number of agents. That is, assuming that at
round r, there is a party who is the only one that is veto-ing, then the parties
have to re-run the rth round with one less party. More precisely, by following
the notation of Table 3.1 and 3.2, let τ be the number of rounds in Stage 2, then
the computational complexity of Stage 1 and Stage 2 is similar to the first-price
auction, that is nl + l + 8 log l + 2 for Stage 1, and 8τ + 10nτ for Stage 2. Let
r, be the number of rounds until there is only a single party who is veto-ing.
Therefore the computational complexity of Stage 3 is 19r + 22nr until there is
only a single veto. After this the parties have to run the protocol with one less
party, i.e., n− 1 parties. Depending on the bid structure of the remaining n− 1
parties, the protocol is either in Stage 2 or Stage 3. Let τ ′ denote the number
of rounds until the remaining n− 1 parties get a veto. Then the computational
complexity for these τ ′ rounds would be 8τ ′+10(n−1)τ ′, and for the remaining
l− (τ +τ ′+r) it would be 19

(
l− (τ +τ ′+r)

)
+22(n−1)

(
l− (τ +τ ′+r)

)
. Using

the same notation, a similar argument follows for the communication complexity
per party in the case of the second-price auction.

3.9 Rational strategies
In this section we consider the incentives of parties in our protocols. Note that,
the set of bidders is fixed through the execution, i.e., once the execution has
started, even if it is required to re-execute the protocol, no new bid can be
submitted and it is therefore not possible to gain from the leaked information.
Moreover, in case there is a cheating party, the protocols refund the honest
parties with her deposit.

We now consider the utility of each party from participating in the pro-
tocol. The utility function of a generic party Pi in the first-price auction is
uFPA
i (b1, . . . , bn) = vi−bi if bi > maxj 6=i bj and 0 otherwise, while in the second-

price auction is instead uSPA
i (b1, . . . , bn) = vi −maxj 6=i bj if bi > maxj 6=i bj and

0 otherwise, where vi represents the Pi’s private valuation of what is at stake
in the auction. It is known that in the first-price auctions the optimal strategy
for each rational party depends on their beliefs regarding other party’s valu-
ations, while in the second-price auction the optimal strategy for each party
is to bid an amount equal to her valuation regardless of the strategy of other
parties [131, 142], i.e., bi = vi.

76 CHAPTER 3. FAST

Note that, in case a party Pi is honest, she always gets her deposit work
back. Then, if she is the winner, she gets what is at stake in the auction and pays
bi, while if she is not the winner, she gets her entire deposit bi + work back.
Therefore, by following the protocol each rational party has a non-negative
utility, i.e., ui(b1, . . . , bn) ≥ 0. However, if a party cheats her deposit bi +
work is distributed among honest parties. Therefore, the utility of a cheating
party, regardless of whether her bid is the highest or not, is ui(b1, . . . , bn) =
−(bi+work) < 0, which is strictly negative. Therefore, cheating is a dominated
strategy for each party, i.e., regardless of what other players do it always results
in a lower utility.

The above analysis shows that it is not rational for an adversaryA controlling
a single party to deviate from the protocol. Next, we show that it is also the
case for an adversary A controlling more than one party. Let Pi,Pj be two
parties controlled by A and let vA be the valuation of the adversary for what
is at stake in the auction. Without loss of generality let bi > bj . If A does not
deviate from the protocol, then her utility is either 0 (in case neither bi nor bj is
the winning bid) or vA−bi (in case bi is the winning bid). Instead, if A deviates
from the protocol by making Pi dropout, in case bj is not the second-highest
bid, then her utility is −(work+bi). If bj is the second-highest bid, A gets what
is at stake in the auction but her utility is vA − (bi + work + bj). Therefore A
always prefers to behave honestly.

Note that, it is necessary to have the deposit amount at least equal to the bid.
Indeed, let d be any deposit amount smaller than bi. Then the utility of A by
making Pi drop out the protocol is vA − (d+work + bj), while it is vA − bi by
behaving honestly. Therefore, in case d + work + bj < bi, A prefers to deviate
from the protocol to increase her utility. A similar argument shows that in the
second-price auction A always prefers to act honestly.

Chapter 4

SoK: Mitigation of
Front-running
in Decentralized Finance

In this Chapter, we present the results that will appear in Financial Cryptog-
raphy and Data Security, FC 2022 International Workshops, DeFi’22 and are
available on Cryptology ePrint Archive [22].

In decentralized finance, we refer to front-running as the malicious act of
both manipulating the order of pending trades and injecting additional trades
to make a profit at the cost of other users. Given the financial loss and increased
transaction load resulting from adversarial front-running, novel cryptographic
protocols have been proposed to mitigate such attacks. Thus, we describe com-
mon front-running attacks (Section 4.1), propose a schema of front-running
mitigation categories (Section 4.2), assess the state-of-the-art techniques in each
category and illustrate remaining attacks.

4.1 Front-running attacks
AMM sandwich: We briefly summarize the functionality of constant product
AMM’s, namely, a liquidity pool holding token balances, r0 and r1, of two
different token types, τ0 and τ1 respectively, s.t. r0 · r1 is always constant when
swaps are being carried out between τ0 and τ1. A user swaps units of τ0 for
units of τ1 by authorizing a left swap action SL(v : τ0, w : τ1). Here, the user
is sending v : τ0 to the AMM in return for at least w : τ1 (swap limit). For
this left swap to be valid, the product of the reserves must be maintained.
Thus, the following relation between initial and updated reserves must hold:
r0 · r1 = (r0 + v) · (r1 − w′), where w′ ≥ w and w′ represents the units of τ1
that the user actually gets. We refer w as the swap limit. A right swap of
SR(v : τ0, w : τ1) follows similarly: the user sends w : τ1 for at least v : τ0 in

77

78 CHAPTER 4. SOK

return such that r0 · r1 = (r0 − v′) · (r1 + w) and v′ ≥ v where v′ represents
the units of τ0 received. Constant product AMM’s exhibit slippage: subsequent
swaps in the same direction exhibit decreasing exchange rates.

User swaps can be “sandwiched”, exploiting slippage for the gain of the
attacker. Consider a left swap A : SL(vA : τ0,wA : τ1) submitted by user A. A
front-run swap by attacker M in the same direction reduces the exchange rate
for the subsequent victim swap: a final back-run swap by M in the opposing
direction then profits from an improved exchange rate.

M : SL(vfM : τ0,w
f
M : τ1) A : SL(vA : τ0,wA : τ1) M : SR(vbM : τ0,w

b
M : τ1)

Optimal front-run (vfM,wf
M) and back-run (vbM,wb

M) parameters are a function of
the victim’s swap, inferred from the pending victim transaction gossiped across
the network [16].

We illustrate a step-wise execution of a sandwich in Figure 4.1 and introduce
notation for user and AMM state proposed in [15] for this purpose. The wallet of
A is modelled as the term A[vi : τ0, ..., vn : τn], where v0, ..., vn are the respective
balances of token types τ0, ..., τn. The state of an AMM holding token types τ0
and τ1 is given by its reserve balances (r0 : τ0, r1 : τ1). Thus, we express the
system state as a composition of wallets and reserve balances.

A[v : τ] | (r0 : τ0, r1 : τ1)

Let the initial AMM balance be (100 : τ0, 100 : τ1). User A wishes to perform
the swap A : SL(15 : τ0, 10 : τ1). For simplicity, we assume unit values of τ0
and τ1 to be equal: given the ratio of AMM reserves is 1, there is no arbitrage
opportunity to be exploited [15]. If A’s order is executed immediately, A receives
13 : τ1 for the 15 : τ0 it sends to the AMM. Instead, however, if the user
swap is sandwiched by attacker M (Figure 4.1), A only obtains the minimum
amount 10 : τ1, implying a reduction of 3 : τ1. Note that the reserve product

A[15 : τ0] | M[15 : τ0, 10 : τ1] | (100 : τ0, 100 : τ1)

M:SL(15:τ0,13:τ1)−−−−−−−−−−−→ A[15 : τ0] | M[23 : τ1] | (115 : τ0, 87 : τ1)

A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[23 : τ1] | (130 : τ0, 77 : τ1)

M:SR(30:τ0,23:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[30 : τ0] | (100 : τ0, 100 : τ1)

Figure 4.1: Sandwich attack

is maintained at each execution step and that the sandwich execution preserves
the initial reserve ratio: the attack leaves no arbitrage opportunity unexploited.
The attacker M’s profit of 5 units of τ0 (or τ1) is optimal [16]: A receives the
minimum amount possible, namely its swap limit.

4.1. FRONT-RUNNING ATTACKS 79

Scheduled AMM sandwich: For certain AMM variants, the knowledge of
the user’s intent to perform a swap can be directly inferred from the blockchain
state. Paradigm [172] propose scheduled AMM swaps, or more generally, sched-
uled inputs. Let A : SL(15 : τ0, 10 : τ1, r) be a swap that is not executed immedi-
ately, but scheduled for evaluation together with the first user-AMM interaction
following blockchain round r, thus requiring no further interaction from A. Since
scheduled orders are stored in the AMM smart contract and evaluated at the
beginning of a known round, the sandwich attack strategy can be exploited, al-
beit over two block rounds [172]: the front-run is sequenced at the end of round
r and the back-run as the first newly submitted swap of round r + 1.

Generalized front-run attacks: In decentralized finance, actions exist which
are profitable for the authorizing user, but which can also be performed by any
other agent with a sufficient balance. In the permissionless blockchain setting,
generalized front-runners, a term coined by Daian [153], are automated agents
that identify profitable, pending transactions, which can be authorized by any
user, and simply replicate these with their own account, thereby depriving the
original transaction submitter of it’s profit. Since the security of DeFi applica-
tions rely on rational agents to solve for profitable arbitrage [178, 171, 82] and
liquidation [158] strategies, the presence of generalized front-running threatens
to restrict such opportunities to agents colluding with miners.

4.1.1 Formalization: speculative sandwich
We formalize the example attack trace introduced in Figure 4.3 and prove that
the attack strategy is either profitable or cost-neutral for the attacker. Again,
we assume unit value of τ0, τ1 to be equal, and the initial AMM reserve state to
be (r : τ0, r : τ1): in this state, there is no arbitrage opportunity to be exploited,
simplifying our analysis. We omit both AMM and transaction fees.

The victim A swap direction is left, inferred by M from A’s public balance
of vinitA : τ0 (A holds no units of τ1). The attack strategy is as follows:

1. Round r: Front-run victim with M : SL(vfM : τ0,w
f
M : τ1) such that

(r + vfM) · (r − wf
M) = r2 (4.1)

2. Round r+1: Back-run victim in opposing direction to reestablish initial
AMM reserve ratio, or if attacker balance is insufficient, back-run with
largest amount available to attacker M.

We must show that this strategy is always profitable (when the victim swap di-
rection can be inferred by the attacker). We note that there are several variables
beyond the attackers control. The ordering of both front-run and victim swap
in round r is random. Thus the desired ”front-run” ordering of the victim swap
in round r may not succeed (the sandwich is unsuccessful if the victim swap pre-
cedes attacker front-run swap). Furthermore, the victim swap parameters can
be arbitrarily chosen, so that the victim swap may not be enabled or execute in

80 CHAPTER 4. SOK

a given sequence. Thus, we must exhaustively demonstrate the profitability of
the attacker strategy for all possible cases:

1) Successful sandwich & enabled victim swap

2) Successful sandwich & disabled victim swap

3) Unsuccessful sandwich & enabled victim swap

4) Unsuccessful sandwich & disabled victim swap

Case 1: (Successful sandwich & enabled victim swap): We illustrate the sym-
bolic execution of the attack trace below in terms of initial balances, chosen
swap parameters and exchanged amounts.

0 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

Round r
M:SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

A:SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 2 A[vinitA − vA : τ0,w
′
A : τ1] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] |
(r + vfM + vA : τ0, r − wf

M − w′A : τ1)

Round r + 1
M:SR(vbM:τ0,w

b
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM − vfM + vbM

′
: τ0,w

init
M + wf

M − wb
M : τ1] |

(r + vfM + vA − vbM
′
: τ0, r − wf

M − w′A + wb
M : τ1)

We show that the attack is profitable. For τ0 and τ1 of equal unit value, the net
change in value exchanged by M must be positive. Thus, we must prove

profitM = −vfM + wf
M − wb

M + vbM
′
> 0 (4.2)

Note that the amounts exchanged in the front-run are equal to the front-run
parameters (vfM,wf

M), as they are chosen such that (4.1) holds. We consider the
sub-case (a) in which the attacker M has sufficient balance to perform the
back-run swap such that the AMM reserves are restored to the original state
and the sub-case (b) in which the attacker initially has no balance of τ1 to
perform the back-run: winit

M = 0. Here, the funds of τ1 required to execute the
back-run are received entirely in the front-run execution.

For sub-case (a), we rewrite (4.2) in terms of independently chosen pa-
rameters vfM, vA (the attacker only knows the victim swap direction) and initial
reserve amounts r. The reserves of the AMM are restored to the initial state
in final state 3 : summing all step changes to the reserves across the sandwich
execution yields

r + vfM + vA − vbM
′
= r r − wf

M − w′A + wb
M = r

vfM + vA − vbM
′
= 0 − wf

M − w′A + wb
M = 0

4.1. FRONT-RUNNING ATTACKS 81

or
vbM
′
= vfM + vA wb

M = wf
M + w′A

Inserting RHS of equations above into our proof obligation (4.2) yields

profitM = −��v
f
M +��v

f
M + vA +�

�wf
M −�

�wf
M − w′A >? 0

vA − w′A >? 0 (4.3)

To evaluate whether this inequality holds, we must solve for w′A in terms of
vA and vfM chosen independently by the victim and adversary respectively. We
exploit the constant reserve product invariant which holds for across the entire
execution.

(r + vfM) · (r − wf
M) = r2 (front-run swap)

(r + vfM + vA) · (r − wf
M − w′A) = r2 (victim swap)

We can derive r − wf
M = r2

r+vfM
from the first equation, and substitute the RHS

for r − wf
M in the second equation to obtain

(r + vfM + vA) · (
r2

r + vfM
− w′A) = r2

Solving for w′A ...

w′A =
r2

r + vfM
− r2

r + vfM + vA

=
r2(r + vfM + vA)− r2(r + vfM)

(r + vfM)(r + vfM + vA)

=
r2

r2 + (2vfM + vA)r + (vfM)
2 + vAvfM

· vA

and substituting the RHS for w′A in the proof obligation in (4.3) finally yields

profitM = (1− r2

r2 + (2vfM + vA)r + (vfM)
2 + vAvfM

) · vA > 0 (4.4)

The fraction expression above is less than 1 for any choice of positive vfM and vA
as the numerator is smaller than the denominator. The attacker profit is thus
positive and increases with vM, justifying the front-run swap by M.

Next, we consider the sub-case (b), where the attacker initially has no
balance of τ1, and restate the profit of attacker for the reader’s convenience.

profitM = −vfM + wf
M − wb

M + vbM
′
>? 0

82 CHAPTER 4. SOK

We assume initial attacker balance in winit
M : τ1 to be 0 : τ1, so that all the

amount of τ1 available for the back-run in state 2 is received in the front-run:
thus, substituting wb

M = wf
M into the equation above yields

profitM = −vfM + vbM
′
>? 0 (4.5)

To prove this inequality, we solve for vbM
′ in terms of vfM and vA chosen indepen-

dently by the victim and adversary respectively and initial reserves amounts r.
We exploit the constant reserve product invariant which holds throughout the
execution.

(r + vfM) · (r − wf
M) = r2 (Front-run)

(r + vfM + vA) · (r − wf
M − w′A) = r2 (Victim swap)

(r + vfM + vA − vbM
′
) · (r − wf

M − w′A + wb
M) = r2 (Back-run)

Since wf
M = wb

M is assumed in sub-case (b), the 3rd equation (back-run) yields

vbM
′
= r + vfM + vA −

r2

r − w′A
(4.6)

From the 2nd equation (victim swap), we solve for w′A in terms of independent
parameters vfM, vA and r

w′A = r − wf
M −

r2

r + vfM + vA

From the 1st equation (front-run) wf
M =

r·vfM
r+vfM

, so we can rewrite the above as

w′A = r − r · vfM
r + vfM

− r2

r + vfM + vA
=

r2

r + vfM
− r2

r + vfM + vA
=

r2 · vA
(r + vfM)(r + vfM + vA)

r − w′A =
r(r + vfM)(r + vfM + vA)− r2 · vA

(r + vfM)(r + vfM + vA)

Substituting the RHS above for r − w′A in the denominator expression of (4.6)
and then substituting the RHS of (4.6) for vbM

′ in (4.5) yields

profitM = −��v
f
M + r +��v

f
M + vA −

r2(r + vfM)(r + vfM + vA)

r(r + vfM)(r + vfM + vA)− r2 · vA

= vA −
r3vA

r(r + vfM)(r + vfM + vA)− r2 · vA

= (1− r2vA
(r + vfM)(r + vfM + vA)− r · vA

) · vA

= (1− r2

r2 + 2vfMr + (vfM)
2 + vAvfM

) · vA (4.7)

The attacker profit is positive but strictly less than the gain (4.4) obtained in
sub-case (a).

4.1. FRONT-RUNNING ATTACKS 83

Case 2 (Successful sandwich & disabled victim swap): Should the victim swap
not execute in round r, then M can simply revert the state of the AMM with a
back-run in the round r+1 with the same parameter values as in the front-run.

0 A[vinitA : τ0] | M[vinitA : τ0,w
init
A : τ1] | (r : τ0, r : τ1)

Round r
M:SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

A:((((((
SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 2 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

Round r + 1
M:SR(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

The attack execution is trivially cost-neutral for M.

Case 3 (Failed sandwich & enabled victim swap): We must show that the
attacker front-run must be disabled assuming the attacker parameters are chosen
as described in the attack strategy. Further, we can demonstrate that the back-
run by the attacker is profitable.

0 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

Round r
A:SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 1 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM : τ0,w

init
M : τ1] | (r + vA : τ0, r − w′A : τ1)

M:((((((
SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 2 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM : τ0,w

init
M : τ1] | (r + vA : τ0, r − w′A : τ1)

Round r + 1
M:SR(vbM:τ0,w

b
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM + vbM

′
: τ0,w

init
M − wb

M : τ1] | (r : τ0, r : τ1)

As described in step (1) of attack strategy, M’s front-run parameters are chosen
such that

(r + vfM) · (r − wf
M) = r2

wf
M =

r · vfM
r + vfM

(4.8)

Thus, the front-run swap is only enabled if the received amount is equal or
greater to wf

M shown above. Note, that this doesn’t hold if the front-run is
executed in state 1 of case (3) following the enabled victim swap. We prove
this by contradiction: assume that the front-run executes following the victim
swap, then the constant reserve product invariant must hold.

(r + vA) · (r − w′A) = r2 (Victim swap)

(r + vA + vfM) · (r − w′A − wf
M

′
) = r2 (Front-run)

84 CHAPTER 4. SOK

We solve for (r − w′A) in the first equation and insert into the second equation
to obtain

(r + vA + vfM) · (
r2

r + vA
− wf

M

′
) = r2

Further, we solve for wf
M

′ in terms of r, vA and vfM

r2

r + vA
− wf

M

′
=

r2

(r + vA + vfM)

wf
M

′
=

r2

r + vA
− r2

r + vA + vfM
=

r2 · vfM
(r + vA) · (r + vA + vfM)

=
r

r + vA
· r · vfM
(r + vA + vfM)

Comparing with wf
M in (4.8), we can infer the following inequality

wf
M

′
< wf

M

which cannot hold in a valid execution by definition of swaps: a user cannot
receive less than the chosen swap limit. Thus, the front-run cannot be enabled
in state 1 of case (3).

Next, we prove the profitability of the back-run. Assuming a sufficient bal-
ance of the attacker to revert the effect of the victim swap, the swap param-
eters of the back-run can be chosen to reverse the affects of victim swap on
the AMM reserves, which M observes following the output-phase of round r:
namely, vbM = vA and wb

M = wA
′. We insert these into the reserve product

invariant from the victim swap

(r + vA) · (r − wA
′) = r2 (Victim swap)

to obtain

(r + vbM) · (r − wb
M) = r2

wb
M =

r

r + vbM
· vbM

wb
M < vbM

For equal unit value of both token types, this is clearly profitable, as M receives
more value (vbM) as it sends (wb

M). If attacker has no balance of τ1 it simply omits
the back-run and the attack is aborted, resulting in a cost-neutral execution for
the attacker.

Case 4 (Failed sandwich & disabled victim swap): As in case (2) - should the
victim swap not execute in round r, then M can simply revert the state of the
AMM with a back-run in the round r + 1

4.1. FRONT-RUNNING ATTACKS 85

0 A[vinitA : τ0] | M[vinitA : τ0,w
init
A : τ1] | (r : τ0, r : τ1)

Round r
A:((((((

SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

M:SL(vfM:τ0,w
f
M:τ1)−−−−−−−−−−−→ 2 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

Round r + 1
M:SR(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

The attack execution is trivially cost-neutral for M.

4.1.2 Speculative sandwich with private user balances
Importantly, when performing the speculative AMM swap attack as shown
in 4.1.1, the direction of the victim swap must be known. If user balances
are private, M will have to guess the direction of the front-running swap. How-
ever, this is not a profitable strategy: an incorrect guess can result in a loss for
M as shown in the trivial example execution below.

A[10 : τ0, 10 : τ1] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
M:SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[10 : τ0, 10 : τ1] | M[21.5 : τ1] | (107 : τ0, 93.5 : τ1)
A:SR(17:τ0,6.5:τ1)−−−−−−−−−−−→ A[7 : τ0, 3.5 : τ1] | M[21.5 : τ1] | (100 : τ0, 100 : τ1)

Again, assuming equal unit value of τ0 and τ1, M realizes a loss of 7+15−21.5 =
0.5. No back-run swap is possible that extracts any arbitrage value given that
the reserve ratio is already consistent with the assumption that unit values of
τ0 and τ1 are equal [15]. Thus, speculative sandwich attacks are only rational if
the victim swap direction can be inferred, motivating the need for private user
balances.

4.1.3 Example: speculative sandwich of scheduled swap
We illustrate an example of a sandwich of a scheduled swap. Such an attack
can be exploited despite the batching of blinded user inputs Section 4.2.2, as
long as input schedules remain public. Let A : SL(20 : τ0, 15 : τ1, r) be a swap
action that is scheduled to execute as soon as possible following block-chain
round r, thus requiring no further interaction from the user. Further, let the set
of scheduled swap orders be captured in a publicly observable state fragment,
i.e., Γ = [A : SL(15 : τ0, 10 : τ1, r)]. In practice, such a scheduled swap order
will be evaluated prior to the first swap order in round r + 1, so that it is not
possible for the adversary to place a front-run swap before it in round r + 1.

However, the sandwich attack can still be executed by an adversary which
prevents honest users from submitting swap. The adversary simply submits the

86 CHAPTER 4. SOK

front-run to round r, and the back-run to round r + 1, whilst suppressing all
other user inputs.

A[15 : τ0] | M[15 : τ0, 10 : τ1] | (100 : τ0, 100 : τ1) | Γ
Round r

M:SL(15:τ0,13:τ1)−−−−−−−−−−−→ A[15 : τ0] | M[23 : τ1] | (115 : τ0, 87 : τ1) | Γ
Round r + 1

A:SL(15:τ0,10:τ1,r)−−−−−−−−−−−→ A[10 : τ1] | M[23 : τ1] | (130 : τ0, 77 : τ1) |
Γ \ [A : SL(15 : τ0, 10 : τ1), r]

M:SR(30:τ0,23:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[30 : τ0] | (100 : τ0, 100 : τ1) |
Γ \ [A : SL(15 : τ0, 10 : τ1, r)]

We emphasize that scheduled swap orders do not require the submitting user
A to participate in the round it is scheduled: it is evaluated automatically by
the application. Furthermore, since the victim’s swap parameters are public,
the front-run and back-run parameters can be chosen to optimize M’s profit.

4.1.4 Speculative sandwich in hash-based commit & reveal
schemes

As shown in Section 4.1.1, the speculative sandwich attack is rational as long
as the direction of the victim swap is known. Hash-based commit & reveal
schemes suffer from selective output by the adversary (Figure 4.2), permitting a
speculative attack to succeed even if the swap direction cannot be inferred from
public user balances. Here the attacker simply commits two front-run swaps of
opposing directions in the same round as the victim swap, whilst suppressing
other user inputs. In the output-phase, the adversary learns the direction of
the victim swap before having to open its own commitments and selectively
opens the front-run of the same direction as the victim swap, whilst refraining
from opening the other front-run swap. The back-run is then executed as in
Section 4.1.1.

4.2 Mitigation categories
4.2.1 Fair ordering
A recent line of research [136, 123, 124] has formalized an intuitive notion of
γ-receipt-order-fairness: given two distinct transactions tx and tx′ broadcast
by users, receipt-order-fairness of a consensus protocol ensures that tx will be
finalized prior to tx′ if a γ fraction of network nodes receives tx prior to tx′.
However, Kelkar et al. [123] show that even if all nodes agree on the relative
order in which any pair of transactions were first observed at the gossip stage,

4.2. MITIGATION CATEGORIES 87

a global transaction ordering of all transactions consistent with the local view
of pair-wise orderings is not always possible (Condorcet Paradox). Instead, a
weaker notion of γ-batch-order-fairness is realized in [124], where tx will be
sequenced prior to or in the same block as tx′ if a γ node fraction receives tx
first.

Front-running despite fair ordering: Although order fairness removes the
miner or round leader’s privilege to sequence transactions, it assumes that users
have secure channels to servers participating in consensus: in practice, however,
public blockchains rely on gossip networks to propagate pending transactions.
Here, the rushing network adversary can control the receipt-order of transactions
for each consensus node, thereby rendering the notion of γ-batch-order-fairness
meaningless. In practice, such a network adversary model may be excessively
strong: whereas in the standard setting the miner or round leader incurs no
additional cost for front-running victims, a non-trivial communication cost is
now imposed on the rushing adversary. Still, since order-fairness clearly can-
not eliminate front-running attacks in the (realistic) gossip-network setting, the
motivation for stronger front-running mitigation properties remains.

4.2.2 Batching of blinded inputs
Batching of blinded inputs is a technique to ensure 1) the independence between
user inputs and 2) the prevention of any adversarial sequencing of inputs. Inter-
actions occur in rounds: in each, inputs are committed during the input-phase,
followed by an output phase where the application state is updated after evalu-
ating user inputs with valid parameters. The collection of inputs can occur in
a smart contract or by a committee executing a cryptographic protocol which
authorizes the distribution of funds from a smart contract in the output phase.
The update of the application state following each round can result from the
evaluation of valid inputs in randomized order or an application-specific aggrega-
tion thereof: for example, a subset of submitted AMM swaps can be aggregated
into a single resulting swap.

Input
independence

Input
privacy

Open
challenges

Commit
& reveal

Hash commitments* - - Output bias
Timed commitments* • - Delay parameters
Threshold encryption** • - Honest majority
Secure multi-party
computation**

• - Honest majority
Input
aggregation

• • Abort penalty
Homomorphic
encryption** • • Efficiency

Figure 4.2: Batching of blinded inputs sent to a smart contract* or committee**

In batching of blinded inputs, we distinguish between commit & reveal and

88 CHAPTER 4. SOK

input aggregation (Figure 4.2). Both schemes commit inputs in the input-
phase of each round, thereby ensuring input independence. However, while input
aggregation keeps the users’ input private indefinitely, commit & reveal schemes
leak individual user inputs when commitments are opened, thereby offering no
input privacy by definition. Input privacy is necessary to prevent front-running
in subsequent interaction rounds: past inputs leak information about updates to
private balances (Section 4.2.3), which in turn can be exploited by front-runners,
as balances constrain the valid user input space.

Past user inputs reveal−−−→ Private user balances reveal−−−→ Future user inputs

In contrast, input aggregation only outputs the application state update: for
aggregated AMM swaps, only reserve updates are revealed, and updates to user
balances remain private, if private balances are supported. Naturally, input
aggregation can only offer input privacy up to the input batch size.

Commit & reveal: Although hash commitments collected by a smart con-
tract may appear to be an obvious approach to implement the commit & reveal
functionality, they suffer from output bias, as the adversary can selectively re-
frain from opening its commitment.

Time-lock puzzles [160] or timed commitments [39] generated by users and
sent to a smart contract promise to eliminate output bias, since the adversary’s
commitment can be force-opened after a delay, guaranteeing the inclusion of its
input in the output-phase. However, in the worst case, each user time-locked
input must be solved separately by a constant number of squaring operations
in a randomly sampled group, potentially rendering the approach impractical
for larger batches of time-locked inputs [125]. Burdges and De Feo [50] propose
a novel delay encryption notion and construction, which promises encryption
of many inputs to a randomly sampled session key. Thus, all delay-encrypted
inputs of a given batch can be decrypted after a single extraction process. Delay
encryption [50] is constructed from isogeny-based cryptography, a recent and
less-well studied class cryptographic assumptions. Finally, it remains an open
challenge to match delay cryptography parameters to real-world delays which
depend on assumed gate speeds used in practice.

Threshold encryption [89] can realize a commit & reveal scheme with the
assumption of an honest majority committee holding trapdoor information of the
encrypted inputs [164]. In each round, a key pair is produced by the execution
of a distributed key generation (DKG) protocol and the public is opened, with
which users encrypt their inputs in the given round. A subsequent opening of
the corresponding secret key by the threshold committee enables the decryption
of all inputs of the given round. However, should an encrypted user input fail
to be finalized in the block-chain in a given round due to network congestion,
the user’s intent will be made public after the secret key is revealed for the
given round without the user action being executed. Given this leakage, the
front-running adversary may now anticipate the re-submission of the same user
input in the next round.

4.2. MITIGATION CATEGORIES 89

Secure multi-party computation [175, 107] (MPC) has been proposed [140, 6]
to realize a commit & reveal functionality with guaranteed input reveal in an
anonymous fashion, also formalized as anonymous committed broadcast (ACB)
in [6]. The anonymization of inputs is achieved by random shuffling of user
inputs in an efficient manner. Here, honest majority MPC protocols [24, 80] are
favoured, as the output is guaranteed as long as the honest majority assumption
holds true. To implement a DeFi application with MPC, an MPC-controlled
smart contract is required, to which users send their funds prior to each round.

MPC
servers

Smart
contract

Users

3a. Authorization

2. Private Intent 1. Funds in

3b. Funds out

In the output phase of each MPC round, funds in the smart contract are redis-
tributed to users according to the output(s) of the MPC execution. In practice,
users can safely delegate the MPC execution to a group of servers [6].

Input aggregation: Naturally, MPC can realize any aggregation function
over private user inputs, and in some instances in an efficient manner. Given the
emphasis on the privacy of inputs, dishonest majority MPC protocols [62, 29, 81]
are favoured, which ensure that private inputs can never be obtained by the
adversary as long as a single participant remains honest. Informal proposals to
implement AMM instances in a dishonest majority MPC have been proposed
by Li et al. [137]. Although dishonest majority MPC can be aborted by a single
dishonest party, a recent line of research [128, 20, 21] has realized an efficient set
of protocols that identify and financially punish the aborting adversary. This
achieves a weaker notion of fairness as the rational adversary is incentivized
to never abort. Still, the penalty must exceed the financial option value of
aborting in order to be effective: given that inputs are private, it remains an
open research question on how to size financial penalties for identifiable abort
in MPC.

Penumbra [157] proposes the use of homomorpic encryption to realize the
secure aggregation of homomorphically encrypted AMM swap orders. The ag-
gregated swap is then decrypted to reveal the updated AMM reserves. User
balances are implemented with private coins (see Section 4.2.3), thus the pri-
vacy of the inputs are only dependent on the batch size. We note the non-trivial
complexity of aggregating a batch of encrypted AMM swaps with swap limit
constraints: efficient secure multi-party computation with fully homomorphic
encryption schemes remains an open research problem [102]. In [157], consensus
validators are proposed to perform the secure computation, consolidating MPC
and consensus layers.

Speculative sandwich w/public user balances: We illustrate that batch-
ing of blinded inputs alone is not sufficient to prevent front-running attacks. In-

90 CHAPTER 4. SOK

stead, speculative AMM sandwich attacks are possible in blinded input batching
schemes as long as the direction of the victim swap is known by the adversary.
This can be inferred from public user balances, as detailed in the subsequent
example. Such speculative sandwich attacks on batched inputs also assume that
the adversary in the permissionless setting can “isolate” a single victim’s input
in a given round, such that only front-run and victim transactions remain: we
argue that each batching round has participant limits due to gas constraints
or number of clients that MPC servers can support. Thus, the adversary can
occupy any arbitrary number of user slots per round and provide invalid inputs1

on slots not dedicated to the front-running swap.

Round r Round r+1
M : SL(vfM : τ0,w

f
M : τ1) A : SL(vA : τ0,wA : τ1) M : SR(vbM : τ0,w

b
M : τ1)

Figure 4.3: Speculative sandwich

In this speculative attack, we assume that private AMM swaps in each
blinded input batch are evaluated in a random order, as proposed in [137, 6].
The front-running M can only speculate on achieving the correct order to exe-
cute the sandwich. Since balances are public, M can observe that A’s balance
of τ1 is zero: thus, A’s submitted swap to the AMM (τ0, τ1) must be in the left
direction. M submits the front-run swap in the same direction as the victim in
the initial round r.

In the optimistic case shown in Figure 4.3, M’s front-run swap is evaluated
prior to the victim swap (in round r), thus enabling M to position the profitable
back-run swap in round r+1, where all other users are prevented from submitting
inputs. M’s front-run parameters can be chosen such that the front-run swap
simply does not execute should the front-run not be ordered prior to the victim
swap in round r, thereby aborting the attack. We refer to Section 4.1.1 for the
proof that this speculative sandwich is rational for the attacker.

An execution of a speculative sandwich is shown in Figures 4.4,4.5: here, ad-
versary M observes victim A’s interaction with an AMM which batches blinded
inputs. A has a public balance of 20 : τ0 only, allowing M to infer that A can
only perform a left swap from τ0 to τ1 with an input amount of at most 20 : τ0.
The attack strategy is executed over two subsequent rounds beginning in the
initial state shown in Figure 4.4, where we assume unit values of τ0 and τ1 are
equal.

In the first round r, M submits the front-run swap in the same direction as
the victim’s, with arbitrarily chosen input amount 7 : τ0. The minimum output
amount or swap limit of the front-run is then is chosen to be 6.5 : τ1 such that
(100 + 7) · (100− 6.5) = 1002 holds: thus, if the front-run were executed in the
initial state, M would receive exactly its swap limit. Since all other user orders
(other than the victim swap of A) are suppressed, there is a probability of 0.5
that the front-run is randomly evaluated before the victim’s swap, as shown in

1e.g., AMM swap parameters which cannot be executed in the current AMM state.

4.2. MITIGATION CATEGORIES 91

A[20 : τ0] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
M:SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[20 : τ0] | M[21.5 : τ1] | (107 : τ0, 93.5 : τ1)
A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[5 : τ0, 11.5 : τ1] | M[21.5 : τ1] | (122 : τ0, 82 : τ1)

Round r + 1
M:SR(22:τ0,18:τ1)−−−−−−−−−−−→ A[5 : τ0, 11.5 : τ1] | M[22 : τ0, 3.5 : τ1] | (100 : τ0, 100 : τ1)

Figure 4.4: Successful speculative sandwich

Figure 4.4. The back-run swap of M in the opposing direction then follows in
the subsequent round with probability 1, since M suppresses all user actions
other than its own back-run. Assuming equal unit value of both token types,
the attack profit for M is 3.5.

Should the front-run ordering fail (Figure 4.5), then M’s front-run param-
eters are chosen such that the front-run swap will not execute, resulting in an
abort of the speculative sandwich attack. This is due to the chosen front-run
parameters: following the execution step of A’s swap in Figure 4.5, the constant
product invariant can only hold if M receives 5 : τ1 for the 7 : τ0 it sends:
(115 + 7)× (87− 5) = 1002. However, this contradicts M swap limit of 6.5 : τ1,
such that the front-run cannot execute in the state following A’s swap. M can
still perform a back-run in round r+1, thereby restoring the initial reserve ratio
and extracting an arbitrage profit of 2, which is less than in the successful spec-
ulative sandwich execution in Figure 4.4. Still, the speculative sandwich attack
is always profitable, as shown in Section 4.1.1.

A[20 : τ0] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[7 : τ0, 15 : τ1] | (115 : τ0, 87 : τ1)
M:((((((

SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[7 : τ0, 15 : τ1] | (115 : τ0, 87 : τ1)

Round r + 1
M:SR(15:τ0,13:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[22 : τ0, 2 : τ1] | (100 : τ0, 100 : τ1)

Figure 4.5: Aborted speculative sandwich

Importantly, if victim A’s swap direction were unknown, M would have to
guess the direction of the front-running swap. An incorrect guess can result in
a loss for M as shown in Section 4.1.2. Thus, we argue that private user bal-
ances are necessary for batching of blinded inputs to be effective. Furthermore,
for scheduled AMM orders introduced in [172], private user balances remain in-
sufficient if scheduled orders are stored in public smart contracts: we sketch a
speculative sandwich attack on publicly scheduled swaps in Section 4.1.3. Fi-
nally, we note that hash-based commit & reveal schemes permit speculative

92 CHAPTER 4. SOK

sandwich attacks even when user balances are private, as the adversary can se-
lectively reveal the appropriate sandwich strategy which matches on the swap
first revealed by the victim (Section 4.1.4).

4.2.3 Private & secret state

As argued in Section 4.2.2, both the aggregation of blinded inputs and use of
private balances and secret input stores is necessary to mitigate front-running
in the current and future rounds. Whilst it may be possible to maintain the
entire DeFi application state secretly in an MPC instance in order to prevent
front-running, this will naturally reduce its utility to users in the permissionless
setting. Notably, Angeris et al. [9, 71] argue that both marginal price and
validity of a given AMM swap order must be queryable for an AMM interaction
to be meaningful. Therefore, we restrict our study of secret state in DeFi
applications to user input stores [172, 77], which maintain submitted inputs
until they are evaluated or executed at a later point in time.

Private user balances: Private block-chain currencies and tokens have been
realized with zero-knowledge proof systems: confidential transactions [145] shield
output amounts with efficient zero-knowledge range proofs [49], thereby ensur-
ing that newly created output values do not exceed those spent by the same
transaction. Confidential transactions only shield output amounts: a transac-
tion graph connecting outputs can still be inferred from public transactions on
the block-chain, permitting coin taint to propagate downstream.

Z-cash [161] style decentralized anonymous payment (DAP) schemes break
such public links between outputs, as well-formed relations between new and
spent outputs are not revealed but publicly verifiable with SNARK [113, 101,
154, 28, 114] zero-knowledge proofs. DAP schemes have also been proposed for
DeFi functionality in Manta [73], but here front-running is not mitigated, since
the AMM reserve state is public and swap inputs are not batched. Even though
swap parameters are blinded in Manta, each individual swap execution results in
a public update of AMM reserves. Thus, the affect of each swap on the current
AMM reserves is known, leaking exchanged amounts and permitting sandwich
attack strategies.

Importantly, when implementing input batching (Figure 4.2) with secure
computation and block-chains supporting private user balances, zero-knowledge
proofs must be generated inside the MPC instance in order to update private
user balances. Doing so efficiently in MPC or even fully homomorphic encryp-
tion remains on open research question.

Finally, Submarine commitments [46] propose that users can rely on k-
anonymity alone to privately commit funds during the input-phase without the
use of private balances. Here, users commit value to an k-anonymized address
which can only be withdrawn by a specific smart contract after the address is
revealed together with the input by the user.

4.2. MITIGATION CATEGORIES 93

Secret input stores: We note that shielded scheduled AMM swaps [172] or
long-running order lists [77] cannot be maintained by encryption alone: en-
cryption of a scheduled swap by a user implies its decryption at a later stage,
requiring repeated user interaction, and thus defeating the purpose of scheduled
inputs. Alternatively, a decryption by an honest majority committee implies
that the round or block-height of the input schedule is known. Instead, we
suggest a long-running MPC instance to realize secret input stores in decen-
tralized finance. Here, stored inputs are secret shared across MPC servers: in
each round, both newly submitted inputs and secretly stored inputs are secretly
evaluated together to update the application state, neither being visible to the
front-running adversary.

94 CHAPTER 4. SOK

Chapter 5

PAPR: Publicly Auditable
Privacy Revocation for
Anonymous Credentials

In this Chapter, we present the results that will appear in CT-RSA 2023, Cryp-
tographers’ Track at RSA Conference [47].

We enrich anonymous credential systems by introducing the notion of anony-
mous credentials with Publicly Auditable Privacy Revocation (PAPR), formalize
it as an ideal functionality (Section 5.2) and propose a realization that is secure
under standard assumptions in the Universal Composability (UC) framework
(Section 5.3) against static adversaries. Furthermore, we show how to modify
our construction to make it secure against mobile adversaries (Section 5.4).

5.1 Our Techniques
At a high level, our approach to create an anonymous credential scheme with
publicly accountable privacy revocation can be summarized in the following
three steps. First, the system maintains one global public list of enrolled parties
P (committee candidates), consisting of party identifiers IDP , e.g., a name, and
identity keys pkP (leveraging a PKI). Second, the issuer produces credentials
for a user, only if: (a) the user proves to have shared their identity key to
an anonymous committee, (b) the committee is composed by a fixed number
of other parties in the system (i.e., from the committee candidates), (c) the
selection of committee parties was provably at random. Third, any credential
can be subject to privacy revocation upon public announcement. The goal of
privacy revocation is to let an authority identify the holder of a given anonymous
credential pkC . Concretely, this is achieved by obtaining the credential holder’s
identity key pkP which is linked to the party’s identity IDP via a public key
infrastructure.

95

96 CHAPTER 5. PAPR

Pi

com(pkP1
)

...

...
com(pkPm

)

com(pkPρ(1)
)

...

...
com(pkPρ(m)

)
and zkcorr

2

Publish

BB

1 Shuffle

I
3 Select committee

4 Publicly Verifiable Secret Sharing
of Pi’s identity towards the (hidden) committee

com(pkPρ(1)
)←

...

...←

...

...←
com(pkPρ(m)

)
zkcorr

Figure 5.1: Mechanics of
∏

PC : 1 Each user Pi locally generates commitments
to hide each committee candidate’s public key. Then, the party shuffles the
set of commitments in a provable way (zkcorr). 2 The output of the shuffle is
published on a public bulletin board (BB) by Pi. 3 The issuer I selects the
committee members for Pi from the shuffled list. 4 Pi secret shares its identity
towards the selected committee members in a publicly verifiable way.

The Main Protocol The core idea in our main construction of PAPR anony-
mous credentials is to enable users to sample a random and anonymous com-
mittee in a verifiable way, using a verifiable shuffle. The protocol leverages a
Public Key Infrastructure where keys for all m users are registered. Intuitively,
to establish an anonymous committee, a user commits to all user public keys
in the list, shuffles (i.e., permutes and re-randomizes) the initial commitments
and proves that it has done so correctly, posting the resulting commitments and
proof to a Public Bulletin Board (BB). The issuer then selects the committee
from the shuffled commitments by publishing n < m random indices on the BB.
This approach to committee selection is illustrated in Figure 5.1.

A credential request requires the user to publish secret shares of its identity
encrypted under the public key of the selected committee along with zero knowl-
edge proofs of share validity (i.e., providing a publicly verifiable secret sharing
of its identity). This creates a link between the credential and the encrypted
shares of the identity, without revealing which identity was shared.

Since the issuer cannot learn the identity of the members of the revocation
committee, it can only trigger privacy revocation for any issued credential by
posting a public request on the BB. The committee members, monitoring the
BB, reacts to such a request and proceed to reconstruct the user’s identity by
providing the decrypted shares to the issuer via a private channel.

We stress that both during committee establishment and secret sharing to
the committee, all computation and communication is carried out by the user
and the issuer only, without involving the committee members at all.

In this protocol, differently from the YOSO model, we allow the party who

5.1. OUR TECHNIQUES 97

requests a credential to learn the identities of the corresponding committee
members. The rationale is that, as far as static security is concerned, an ad-
versary playing as a malicious user can already link the identity of a corrupted
committee member to an anonymous credential. Letting the identities of the
elected committee members be known to the requesting party in this way cre-
ates no incentive of corruption, as it leaks no additional information. We stress
that while the identities of committee members are learned, the selecting party
still has no influence over what parties constitute the committee since they are
selected provably at random.

Proactively Secure Versions Our main protocol is only secure against static
adversaries. To withstand mobile adversaries, who can periodically uncorrupt
parties and corrupt new parties, a heavier machinery is needed. It is crucial
to notice that mobile adversaries in our setting can 1) corrupt a majority of
the committee holding revocation data for a corrupted party’s credential, which
would allow an adversary to block privacy revocations, and 2) gradually cor-
rupt a majority of the committee holding revocation data for an honest party
(by moving to a new disjoint set of parties every epoch), which would allow it
to stealthily learn the honest party’s identity. Such mobile adversaries could
be trivially addressed by computing the steps for issuing and revoking a cre-
dential via YOSO MPC, where each round of the computation is performed
by a fresh randomly chosen fully anonymous committee, preventing the adver-
sary from corrupting the committee currently holding the computation’s secret
state. However, YOSO MPC is notoriously expensive. Therefore, as a first step
towards security against a mobile adversary, we instead show that we can use
proactive secret sharing in the YOSO model, where committees are not known
to any party, and the shared revocation data is periodically transferred to a new
randomly chosen anonymous committee. While this technique solves the issue
in a simple way, it requires the YOSO committees to hold an amount of data
linear in the number of credentials issued.

An even more efficient alternative for proactive security is to employ YOSO
threshold encryption and adding distributed key generation to our setup phase
to obtain a system wide encryption public key. Issuance is then modified so that
each party publishes an encryption of its identity under this common encryption
key and proves in zero knowledge that they have done so in a way that creates a
link between this encryption and the issued credential. Revocation can be done
later by threshold-decrypting the ciphertext connected to that credential. The
advantages of the latter approach are twofold, it both makes credential issuance
simpler for parties (i.e., they generate one ciphertext instead of encrypting mul-
tiple shares), and improves communication complexity for the YOSO committee
members, since they only have to hold shares on a single secret key.

5.1.1 Cryptographic Primitives
Our construction employs a key-private encryption scheme (i.e., an encryption
which hides the recipient’s public key) Enc = (Setup,KeyGen,Encrypt,Decrypt),

98 CHAPTER 5. PAPR

a signature scheme Sig = (Setup,KeyGen,Sign,Verify), a commitment scheme
C = (Setup,Commit, Open), and Shamir Secret Sharing [162]. We further use
two special types of digital signature schemes, structure preserving signatures
[3] defined as SPSig = (Setup,KeyGen,Sign,Verify) (similarly to Sig), and blind
signatures [152] defined as BSig = (KeyGen,User,Sign,Verify). Details on these
schemes are presented in Section 2.

Structure preserving signatures are digital signatures where signatures σ
and messages m belong to the same space. Blind signatures are a variant of
signatures where the signer does not learn the message she signs. In known
constructions the blind signature generation procedure is an interactive protocol
between the signer and the party wishing to have a message signed.

We use a non-interactive zero-knowledge (NIZK) proof of shuffle correctness
for commitments defined as the triple of algorithms Shuf = (Setup,Prove,Verify)
as per Definition 6. This NIZK allows for proving that a certain (public) vector
of commitments was obtained by re-randomizing a given (public) vector of com-
mitments and permuting the re-randomized commitments without revealing the
randomness used for re-randomization nor the permutation. This NIZK can be
efficiently realized from the proof of shuffle correctness for ciphertexts of [23].
In our setting, we view an ElGamal ciphertext as a commitment and use proofs
of commitment shuffle correctness to convince a verifier that two distinct sets of
commitments yield the same set of openings. The definitions of completeness,
soundness and zero-knowledge for Shuf follow the same structure and aims as
in [23] and presented in Section 2.

5.1.2 Ideal Functionalities
We make use of a set of ideal functionalities FBB , FPKI , FZK and FNIZK .
These functionalities are formally defined in Section 2. Briefly, the bulletin
board functionality FBB , works so that any party can publish a message m
to the board by sending (post, sid,m) and read the contents of the board by
sending (read, sid). FPKI is a functionality where each party can only send
(post, sid,m) once and can retrieve party P’s message as (read, sid,P). The
functionality for interactive zero knowledge, FZK is defined so that a prover
P can send (zk-prover, sid,V, x, w) to FZK , which sends (zk-proof, sid, x)
to the verifier V only if w is a witness for the statement x. Analogously, the
functionality for non-interactive zero knowledge FNIZK is defined by (prove,
sid, x, w), returning a proof π guaranteeing that w is a witness for the statement
x, and (verify, sid, x, π), outputting 1 for a valid π for the statement x.

5.2 Defining PAPR for Anonymous Credentials
In this section we introduce the notion of a Publicly Auditable Privacy Revoca-
tion (PAPR) Anonymous Credential Scheme and describe an ideal functionality
FPC for it. Section 5.3 presents our protocol ΠPC that realizes FPC based on

5.2. DEFINING PAPR FOR ANONYMOUS CREDENTIALS 99

efficient and well-known building blocks. Section 5.3.1 proves ΠPC secure in the
presence of a static, malicious adversary in the UC framework [60].

Defining PAPR Credentials We define the notion of PAPR credentials as
the ideal functionality FPC presented in Figure 5.2. This functionality pro-
vides standard anonymous credential interfaces supporting requesting creden-
tials (cred-req), issuing credentials (issue-cred), and showing credentials
(show-cred). While any party may request a credential, only a special party
called the issuer may approve such a request. As usual, requesting a credential
and later showing it does not reveal any information about the credential owner’s
identity to the issuer nor to the party who is shown a credential. However, we
do not aim at achieving unlinkability across multiple credential showings. In
order to capture the novel PAPR property, the identity revocation interface
(announce-rev) allows the issuer to request the identity of the owner of a
given credential at any time, but this also immediately informs all other parties
that privacy has been revoked for that credential.

Functionality FPC

FPC is parameterized by a credential space PK. The functionality interacts with
a set of users P = {P1, . . . ,Pm}, a special party called the issuer I = Pm+1 and
the ideal adversary S. It keeps a list Lcred of credentials and a setup list Lsetup,
both initialized to ∅.
Setup: On input (setup, sid) from Pi, add that party to the list Lsetup.
Credential Request: On input (cred-req, sid) from Pi, if Lsetup 6= P ∪I, then
ignore the request. If Pi is honest, sample a random pkCi

from PK and send
(cred-req, sid) to S. Otherwise send (key?, sid) to S and await response (key,
sid, pkCi

). Finally write (Pi, pkCi
, 0) to Lcred and send (cred-req, sid, pkCi

) to I.
Credential Issuance: On input (issue-cred, sid, pkCi

) from I, if (Pi, pkCi
, 0) ∈

Lcred, update the entry to (Pi, pkCi
, 1) and send (cred, sid, pkCi

) to Pi and S.
Else write (⊥, pkCi

, 1) to Lcred.
Credential Showing: On input (show-cred, sid, pkCi

,Pj) from Pi, if
(·, pkCi

, 1) /∈ Lcred, ignore the request. Send (valid-cred, sid, pkCi
) to Pj and

(valid-cred, sid, pkCi
,Pj) to S.

Privacy Revocation: On input (announce-rev, sid, pkCi
) by I, send

(announce-rev, sid, pkCi
) to all Pj ∈ P and S. If (·, pkCi

, 1) /∈ Lcred, then ignore
the request. If (⊥, pkCi

, 1) ∈ Lcred, then delete (⊥, pkCi
, 1) from Lcred, and ignore

the request. Else, (Pi, pkCi
, 1) ∈ Lcred, then delete (Pi, pkCi

, 1) from Lcred, output
(identity, sid,Pi, pkCi

) to S and send a delayed output (identity, sid,Pi, pkCi
)

to I.

Figure 5.2: Ideal functionality FPC for PAPR Credentials.

100 CHAPTER 5. PAPR

5.3 Realizing PAPR for Anonymous Credentials
In Figures 5.3 and 5.5 we describe protocol

∏
PC for anonymous credentials with

PAPR. We consider malicious adversaries that may deviate from the protocol
in any arbitrary way. Moreover, in this section we consider the static case,
where the adversary is only allowed to corrupt parties before protocol execution
starts and parties remain corrupted (or not) throughout the execution. We
assume that parties have access to synchronous communication channels, i.e.,
all messages are delivered with a known maximum delay. To be concise, in the
protocol description we let all reads from FBB and FPKI be implicit. It is also
implicit that if a variable that is part of a procedure (e.g. a public key) is not
yet available on FPKI or FBB , the current procedure will terminate without
output (i.e ignore the procedure call). Lastly, to avoid undefined behaviour
while keeping the protocol description simple, whenever more than one valid
message with equal values exist on FBB , only the chronologically first message
shall be considered. We further assume that a user remains anonymous when
posting to FBB as is the case in the YOSO model.

Using Committees

We assume that revocation committees are formed by selecting uniformly at
random the smallest number n of parties from set P = {P1, . . . ,Pm} such that
every committee is guaranteed an honest majority with overwhelming probabil-
ity given a certain corruption ratio. Selecting committees in this way has been
explored extensively in [87], where concrete numerical examples of its size are
provided. Indeed, a few examples are available in Section 5.5.

Since all parties are potential committee members, they are expected to
monitor the bulletin board. Notice, however, that our protocol works with
revocation committees selected from any set of parties (potentially disjoint from
the set of parties who request credentials, as discussed in Section 5.5.2) as long
as these committee have honest majority with overwhelming probability.

Protocol Overview

We now give a step-by-step overview of protocol
∏

PC .

Setup The setup phase consists of enrolling keys for the parties in the system.
Note that, by registering its identity key pkPi

to the PKI, the user key and
identity are linked. This link forms the basis for user identification during
privacy revocation.

Committee Establishment Before a credential can be issued, a committee
with which each party’s identity will be shared must be established. Each party
first executes the Hide Committee Candidates procedure. In step (1) the
party hides the order of the committee candidates using a verifiably random

5.3. REALIZING PAPR FOR ANONYMOUS CREDENTIALS 101

Protocol
∏

PC (First Part)
Protocol

∏
PC is executed by an issuer I and parties Pi ∈ {P1, . . . ,Pm} interacting

with functionalities FPKI , FBB , FNIZK and FZK .
∏

PC is parameterized by a
constant n ∈ Z such that sampling n parties out of {P1, . . . ,Pm} yields an honest
majority except with negligible probabilty.
Setup: The issuer I and all parties Pi proceed as follows:
1. (Issuer Setup) On input (setup, sid), I generates a blind signature key-

pair (pkB , skB) ← BSig.KeyGen(1λ) with λ ∈ N being a security param-
eter, an enrollment keypair (pkE , skE) ← SPSig.KeyGen(pp), a revocation
keypair (pkR, skR) ← Sig.KeyGen(pp) and an issuance keypair (pkI , skI) ←
Sig.KeyGen(pp) and sends (Report, sid, (pkB , pkE , pkR, pkI)) to FPKI .

2. (User Setup) On input (setup, sid), Pi generates user identifying keys
(pkPi

, skPi) ← Sig.KeyGen(pp) and sends (Report, sid, pkPi
) to FPKI . Ad-

ditionally Pi generates a single-use token keypair (pkTi
, skTi)← Sig.KeyGen(pp)

and interacts with I over a secure channel to obtain signatures σE(pkPi
) ←

SPSig.Sign(skE , pkPi
). Finally Pi runs BSig.User(pkB , pkTi

) with I running
BSig.Sign(skB) so as to compute the blind signature σB(pkTi

).
3. (Hide Committee Candidates) Let ~pkP be the vector of all pkPj

and ~f the vector,
s.t. ~f [j] = C.Commit(~pkP [j], 1), then Pi proceeds as follows:
(a) Sample a random permutation ρi and verifiably shuffle ~f as (~f ′

i , πρi) =

Shuf.Prove(m, ρi, ~f). Sign the shuffle as σTi(
~f ′
i)← Sig.Sign(skTi ,

~f ′
i),

(b) Send (post, sid, (hide, ~f ′
i , πρi , pkTi

, σTi(
~f ′
i), σB(pkTi

)) to FBB .
4. (Sample Committee) When (post, sid, (hide, ~f ′

j , πρj , pkTj
, σTj (

~f ′
j), σB(pkTj

))
appers on FBB , I proceeds as follows:
(a) Check that 1 = BSig.Verify(pkB , pkTj

, σB(pkTj
)), 1 = Sig.Verify(σTj (

~f ′
j))

and 1 = Shuf.Verify(m, ~f, ~f ′
j , πρj).

(b) If true, let ~bj where ~bj [i]
$←− Z∗

m+1, |~bj | = n, indicate the indexes se-
lected for the committee, sign ~bj as σI(~bj) ← Sig.Sign(skI ,~bj), send (post,
sid, (sample, ~f ′

j ,~bj , σI(~f
′
j ||~bj))) to FBB and store (~f ′

j ,~bj) internally.
Credential Request: On input (cred-req, sid), if there is an entry
(sample, ~f ′

j ,~bj , σI(~f
′
j ||~bj)) where 1 = Sig.Verify(pkI , σI(~f

′
j ||~bj) on FBB , Pi proceeds

as follows:
1. Define ~ai[j] = ~pkP [ρ(j)], ~hi[j] = ~ai[~bi[j]] and ~ci[j] = ~f ′

i [~bi[j]] for j = 1, . . . , n.
2. Generate identity shares via Shamir secret sharing, i.e., sample a random

polynomial f() of degree dn
2
e where f(0) = pkPi

and set ~si[j] = f(j) for
j = 1, . . . , n. Encrypt the shares under the committee public keys obtaining
~Ei[j] = Enc.Encrypt(si[j],~hi[j]) and construct committee member indicators
~qi[j]← Enc.Encrypt(~hi[j],~hi[j]) for j = 1, . . . , n.

3. Prove correct escrow by sending (prove, sid, xi, w) to FNIZK and getting
(proof, sid, πesci), where xi and w are defined as in zkesc (Figure 5.4).

4. Generate user credential keys (pkCi
, skCi)← Sig.KeyGen(pp).

5. Sends (post, sid, (req, ~Ei, ~f
′
i , ~qi, pkCi

, xi, πesci)) to FBB .

Figure 5.3:
∏

PC - Setup, Committee Establishment and Credential Request.

102 CHAPTER 5. PAPR

shuffle, and is then (anonymously) bound to the shuffle by signing it with skT .
In step (2), it publishes the shuffle, proof, and signature on the bulletin board.

The issuer then in step (1) of the Sample Committee procedure verifies that
the requesting party has published a single signed and valid shuffle. If so, in step
(2) it responds with a set of random indexes, indicating which of the shuffled
values in ~f ′ shall constitute the committee.

Credential Issuance In the Credential Request procedure, a user in step
(1) collects the public keys of the committee as indicated by I into ~hi, It also
puts the corresponding commitments to the committee keys into ~ci. It then in
step (2) produces a vector of encrypted shares ~Ei of its enrolled identity public
key pkPi

for the committee in ~hi. To allow other users to known whether they
are in the committee, a set of indicators, ~qi, is also produced. A party knows
it is the j’th member of a committee if ~qi[j] decrypts to its public key. Before
generating credential keys in step (4) and posting the credential request in step
(5), a party must first prove correct sharing in step (3). We provide a detailed
description of the proven relation zkesc in the next subsection below.

When the issuer observes a credential request on the bulletin board it first
executes step (1) of the Credential Issuance procedure to verify that a com-
mittee has been formed. Step (2) is executed to verify that sharing is done
correctly by the requesting user. If all checks pass, step (3) is executed to sign
the credential and publish it.

zkesc{skP , pkP , σE(pkP),
~h,~s, ~r | zkID ∧ zkshare}

1 zkID{skP , pkP , σE(pkP) |
Sig.VerifyKey(skP , pkP)∧
SPSig.Verify(pkE , pkP , σE(pkP))}

2 zkshare{~h,~s, pkP |
2.1 pkP = SShare.Reconstruct(~s)∧
2.2 ∀j ∈ {1, . . . , n} :
2.3 ~E[j] = Enc.Encrypt(~s[j],~h[j])∧
2.4 C.Open(~c[j],~h[j], ~r[j])∧
2.5 ~q[j] = Enc.Encrypt(~h[j],~h[j]) }

Figure 5.4: Elements of the zkesc statement. Intuitively, zkID states that the
proving user controls the enrolled identity key pkP . zkshare states that the
identity key pkU has been correctly shared to the committee members in ~h.

Proving Correct Escrow The correctness of the identity escrow in a cre-
dential request is defined by the relation zkesc. Figure 5.4 defines zkesc on a
high level, i.e., by using procedure definitions. To simplify notation, we here
define a procedure for knowledge of a private key, Sig.VerifyKey(sk, pk) → v,
which indicates if sk, pk is a valid keypair with respect to Sig.KeyGen(.).

For illustrative purposes, we define zkesc as a conjunction, where zkesc =
{zkID ∧ zkshare}. The first part, 1 zkID, states that the prover is the owner

5.3. REALIZING PAPR FOR ANONYMOUS CREDENTIALS 103

of pkP , i.e it knows secret key skP , and an issuer signature, σE(pkP), on pkP .
The second part, 2 zkshare is a statement that 2.1 the shares are constructed
correctly, i.e., any set of k shares will reconstruct to the users public key pkP .
Further, 2.2 each of these shares, 2.3 is correctly encrypted, 2.4 for the correct
committee member, 2.5 which is correctly indicated in ~q.

Credential Showing The Credential Showing and Verify Credential
Showing procedures are straightforward zero knowledge proofs of knowledge
of the credential private key skCi for the public key pkCi

(and when verifying,
also checking that the shown credential has been issued by I and that the
credential is not revoked).

Privacy Revocation To learn the secret identity behind a credential public
key pkCj

, i.e., to revoke the privacy, the issuer (and only the issuer) can execute
the Request Privacy Revocation procedure. This procedure consists of pub-
lishing an announcement of the request for privacy revocation, signed with the
privacy revocation key. Any (honest) user Pi, observing such a request executes
the Privacy Revocation Response procedure, where it first checks that a
credential exists for this credential in step (1). If so, in step (2) all committee
member indicators in ~qj of that request are checked by decrypting them with
the responding users identity secret key skPi

. If decryption results in the users
identity public key pkPi

for the k’th indicator, Pi holds the k’th seat in the
committee. If so, it (3) decrypts the k’th share, (4) proves correct decryption
and committee membership, and (5) encrypts both the share and proof (since
the proof reveals the share) for the issuer, and (6) sends the ciphertexts to the
issuer. The issuer, when receiving such a share, executes the Reconstruct
Revoked Identity procedure to decrypt and check the proof. When it has ob-
tained a mojority of the shares, it reconstructs the revoked identity and obtains
pkPj

.

5.3.1 Security Analysis of
∏

PC

We now prove that
∏

PC realizes FPC in the presence of a static malicious
adversary capable of corrupting up to m

2 − 1 users.

Theorem 3. Let Sig be a signature scheme, BSig be a blind signature scheme,
SPSig be a structure preserving signature scheme, SShare be a (t, n)−thresh-
old secret sharing scheme, C be a commitment scheme, Enc be a key-private
IND-CPA-secure public-key encryption scheme and Shuf be a zero-knowledge
proof of shuffle correctness as specified in Section 2. Protocol

∏
PC UC-realizes

FPC in the (FBB, FPKI , FZK , FNIZK)-hybrid model with security against
a static active adversary A corrupting a minority of P1, . . . ,Pm such that a
committee of size n ≤ m has honest majority with overwhelming probability.

Proof. Let A be a static adversary allowed to corrupt up to m/2− 1 parties be-
fore the start of the execution, which remain corrupt throughout the execution.

104 CHAPTER 5. PAPR

Protocol
∏

PC (Second Part)

Credential Issuance: On input (issue-cred, sid, pki), if there is an entry
(req, ~Ej , ~f

′
j , ~qj , pkCj

, xi, πesci) on FBB , I does the following:
1. If no internal entry (~f ′

j ,~bj) exists, ignore the next steps.
2. Send (verify, sid, xj , πescj) to FNIZK , await the reply (verification, sid, v).

If 0 = v, ignore the next steps.
3. Send (post, sid, issue, pkCj

, σI(pkCj
)← Sig.Sign(skI , pkCj

)) to FBB .
Credential showing:
1. (Credential showing) On input (show-cred, sid, pkCi

,Pj), Pi proves ownership
of pkCi

by sending (zk-prover, sid,Pj , x, skCi) to FZK where x is a statement
for the relation zkcred{skCi | Sig.VerifyKey(skCi , pkCi

)}.
2. (Verify Credential Showing) Any party, upon receiving (zk-proof, sid, x) for

ownership of pkCj
from FZK additionally verifies that FBB contains an entry

(issue, pkCj
, σI(pkCj

)) s.t. Sig.Verify(pkI , pkCj
, σI(pkCj

)) = 1, and contains no
entry (rev, pkCj

, σR(pkCj
)) s.t. Sig.Verify(pkR, pkCj

, σR(pkCj
)) = 1.

Privacy Revocation:
1. (Request Privacy Revocation) On input (announce-rev, sid, pkCj

), I requests
privacy revocation for pkCj

, by generating σR(pkCj
)← Sig.Sign(skR, pkCj

) and
sending (post, sid, (rev, pkCj

, σR(pkCj
))), to FBB .

2. (Privacy Revocation Response) A user, Pi, observing an entry
(rev, pkCj

, σR(pkCj
)) on FBB (with a valid signature):

(a) If no entries (req, ~Ej , ·, ~qj , pkCj
, ·) and (issue, pkCj

, σI(pkCj
)) exists on

FBB , ignore the next steps.
(b) If for no k, pkPi

= Enc.Decrypt(~qj [k], skPi), ignore the next steps.
(c) Calculates sk = Enc.Decrypt(~Ej [k], skPi).
(d) Constructs a statement xk for the relation zkrevk{skPi | sk =

Enc.Decrypt(~Ej [k], skPi) ∧ pkPi
= Enc.Decrypt(~qj [k], skPi) ∧

Sign.VerifyKey(skPi , pkPi
}) and sends the message (prove, sid, xk, skPi) to

FNIZK and await response (proof, sid, πrevk).
(e) Encrypt πrevk and sk for the issuer as s̃k ← Enc.Encrypt(sk, pkR), π̃revk ←

Enc.Encrypt(πrevk , pkR).
(f) Sends a message (rev-share, sid, pkCj

, s̃k, xkπ̃revk), to I.

3. (Reconstruct Revoked Identity) Upon receiving a message (rev-share,
sid, pkCj

, s̃k, xkπ̃revk), I uses skI to decrypt s̃k and π̃revk , to obtain sk and
πrevk , and verifies πrevk by sending (verify, sid, xk, πrevk) to FNIZK . On re-
ply (verification, sid, 1), I adds sk to its internal set SpkCj

−shares. If now
|SpkCj

−shares| = dn2 e + 1, calculate the revoked identity key by Lagrange in-
terpolating the polynomial f ′ defined by the shares in SpkCj−shares and then
calculate the identifying public key of the revoked user as f ′(0) = pkPj

.

Figure 5.5:
∏

PC - Credential Issuance, Credential Showing and Privacy Revo-
cation.

5.3. REALIZING PAPR FOR ANONYMOUS CREDENTIALS 105

We prove Theorem 3 by showing that for each A, there exists a simulator SPC

so that any environment Z has a negligible advantage in determining whether
it is interacting with A and

∏
PC or SPC and FPC . SPC is described in Figures

5.6 and 5.7.

Indistinguishably of Setup In this step, the vectors ~f (~f [j] = C.Commit
(~pkP [j], 1)) and ~f ′i ((~f ′i , πρi

) = Shuf.Prove(m, ρi, ~f)) are indistinguishable from
those computed in a real execution due to the hiding property of commitments.
Similarly, πρi is indistinguishable due to the zero knowledge property of zero
knowledge proofs. Thus, Z cannot distinguish this step of the ideal world exe-
cution with SPC and FPC from the real world execution of

∏
PC with A.

Indistinguishably of Credential Requests In this step, the simulated
proof πesci is indistiguishable from the one computed in a real execution since
SPC perfectly emulates FNIZK . Thus, Z cannot distinguish this step of the
ideal world execution with SPC and FPC from the real world execution of

∏
PC

with A.

Indistinguishably Credential Issuance In this step it is simulated the
creation of a credential without having any information about the identity of the
honest party who requests the credential in the real world execution. However,
πesci is indistinguishable from the one computed in the real world execution
since SPC perfectly emulates FNIZK . Thus, Z cannot distinguish this step of
the ideal world execution with SPC and FPC from the real world execution of∏

PC with A.

Indistinguishably of Credential Showings In this step it is simulated the
showing of a credential without having any information about the identity of the
honest party who shows it in the real world execution. However, (zk-proof,
sid, x) is indistinguishable from the one computed in the real world execution
since SPC perfectly emulates FZK . Thus, Z cannot distinguish this step of the
ideal world execution with SPC and FPC from the real world execution of

∏
PC

with A.

Indistinguishably of Privacy Revocation In this step, the simulated πrevk
,

computed for the adjusted shares s′k, is indistinguishable from the one computed
in the real world execution since SPC perfectly emulates FNIZK . Thus, Z can-
not distinguish this step of the ideal world execution with SPC and FPC from
the real world execution of

∏
PC with A.

Notice that throughout the simulation SPC interacts with A exactly as an
honest party would in

∏
PC , except when simulating credential issuance and

showing for honest parties. In these cases, SPC simulates the creation of a cre-
dential and its showing without having any information about the identity of
the honest party who requests/shows the credential. However, this is indistin-
guishable from the real world execution since these proofs are done via FNIZK

106 CHAPTER 5. PAPR

and FZK , which produces messages distributed exactly as in a real world exe-
cution. Moreover, by extracting witnesses from proofs done by A via FNIZK

and FZK , SPC activates FPC with inputs that match A’s behavior. Hence, Z
cannot distinguish the ideal world execution with SPC and FPC from the real
world execution of

∏
PC with A.

5.4 From Static to Proactive Security
Protocol

∏
PC as described in the previous sections realizes a PAPR credential

scheme using efficient building blocks, in the static security setting. In this
section, we sketch how to construct proactively secure PAPR Credentials, at
the price of using less efficient building blocks.

Maintaining the revocation committee secret in the presence of a mobile
adversary naturally puts us in the YOSO setting: the identities of committee
members must remain anonymous, so before they act in a revocation process (or
before) the adversary moves, they must re-share the revocation information they
hold towards a new anonymous committee. While it would be straightforward
to design a protocol realizing FPC by use of YOSO MPC, it would be terribly
inefficient, since it would require computing our credential issuance procedure
as part of a very complex YOSO MPC computation where a fresh anonymous
committee performs each round. Instead, we propose two alternative and more
efficient constructions. The first demonstrates how to wrap our protocol

∏
PC

with a YOSO resharing procedure to obtain proactive security. The second
improves efficiency further by using YOSO Threshold Encryption directly.

5.4.1 Modeling Proactive Security
We model proactive security, similarly to [130], by each party in the system
having an epoch tape which maintains an integer epoch initialized to 0 at the
start of the execution. The execution proceeds in phases which alternate be-
tween an operational phase and a refreshing phase, starting with the operational
phase. In contrast to [130], we force every party to have the same value as epoch
counter.

Epochs The refreshing stage is started by the adversary sending refresh to
all parties. Refresh of individual parties is not allowed. Upon receiving the
refresh command, a party increases epoch by 1 and executes its instructions
for refreshment. Once each party has completed its refreshment instructions
and handed over execution to Z, a new operational phase begins.

Corruptions A mobile adversary A can corrupt or uncorrupt any party Pi

after a refreshing phase ends (i.e., after the last party has handed over execution
to Z) but before the next operational phase starts (i.e., before the first activation

5.4. FROM STATIC TO PROACTIVE SECURITY 107

Simulator SPC (First Part)
SPC interacts a copy of the adversary A and the environment Z. SPC forwards all
messages between A and Z. SPC acts as FBB , FPKI , FZK and FNIZK towards
A, by following their respective descriptions (unless otherwise explicitly stated).
Setup:
1. (Issuer Setup) Run the

∏
PC procedure for Issuer Setup if the issuer is honest

and send (Setup, sid) to FPC .
2. (User Setup) Run the

∏
PC procedure for User Setup for all honest users, then

send (Setup, sid) to FPC for all honest users.
For each (post, sid, ·) sent to FPKI by a corrupt party, send (Setup, sid) to
FPC .

3. (Hide Committee Candidates) Run the Hide Committee Candidates proce-
dure for each honest user.

4. (Sample Committee) If I is honest, for each (post,
sid, (hide, ~f ′

j , πρj , pkTj
, σTj (

~f ′
j), σB(pkTj

)) sent to FBB , (either by a cor-
rupt Pj or when simulating an honest Pj in the previous paragraph), the
simulator executes step (1) of the Sample Committee procedure. If the
checks verify, also execute step (2).

Credential Request: If the simulator receives a message (cred-req, sid) from
FPC , an honest user has requested a credential. To simulate this, SPC executes
the Credential Request procedure in

∏
PC , but does so using arbitrary values

for skPi , pkPi
and σE(pkPi

) and a simulated proof πesci for the arbitrary values. If
later SPC receives a message for FNIZK , (verify, sid, xi, πesci) it responds with
(verification, sid, 1) instead of following the FNIZK description. If the simulator
receives (req, ~Ei, ~f

′
i , ~qi, pkCi

, xi, πesci) from a corrupt user Pi, intended for FBB ,
the simulator executes checks in step (1) and (2) of the Credential Issuance
procedure. If the checks clear, the request is valid and the simulator then sends
(cred-req, sid) to FPC , awaits the message (key?, sid) and responds by sending
(key, sid, pkCi

) to FPC .
Credential Issuance: If I is honest, on message (cred, sid, pkCj

) from FPC

simulate by executing step (3) of the Credential Issuance procedure. If instead
I is corrupt, for each message (post, sid, issue, pkCj

, σI(pkCj
)) sent to FBB , SPC

sends (issue-cred, sid, pkCj
) to FPC if σI(pkCj

) is a valid signature on pkCj
by I.

Credential showing:
1. (Credential showing) Whenever the simulator receives (valid-cred,

sid, pkCi
,Pj) from FPC , SPC simulates a successful show of credential

pkCi
to party Pj by simulating a successful proof of relation zkcred via FZK

with Pj acting as verifier, resulting in Pj receiving (zk-proof, sid, xi) from
FZK .

2. (Verify Credential Showing) Whenever the simulator receives a message
(zk-prover, sid,Pj , xi, skCi), where xi is a statement for zkcred{skCi |
Sig.VerifyKey(skCi , pkCi

)}, from a corrupt party Pi, intended for FZK , it verifies
the proof by following the description of FZK . If the verification clears, send
(show-cred, sid, pkCi

,Pj) to FPC .

Figure 5.6: Simulator SPC for protocol
∏

PC .

108 CHAPTER 5. PAPR

Simulator SPC (Second Part)
Privacy Revocation:
1. (Request Privacy Revocation) If the issuer is honest, and the simulator receives

a message (announce-rev, sid, pkCj
) from FPC , it executes the Request Pri-

vacy Revocation procedure in
∏

PC to simulate the issuer. If the issuer is
corrupt and SPC receives (post, sid, rev, pkCj

, σR(pkCj
)), intended for FBB

where σR(pkCj
) is a valid revocation signature on pkCj

, the simulator sends
(announce-rev, sid, pkCj

) to FPC .
2. (Reconstruct Revoked Identity) When SPC receives a message with the identity

of a user (identity, sid,Pi, pkCi
), it must simulate responses from the honest

committee members. If I is honest or Pi is corrupt, SPC thus executes the
∏

PC

procedure for Privacy Revocation Response for each honest Pj .
If I is corrupt and Pi is honest the simulator needs to ”adjust” the shares which
the honest committee members respond with, so that the shares reconstruct
to pkPi

rather that the arbitrary value used during simulation of the credential
request. Therefore the simulator first constructs a polynomial f of degree dn

2
e−1

where f(pkPi
) = 0 and f(k) = ~si[k] for each k where ρi(k) ∈ ~bi (i.e., for the

corrupt users in the simulated committee, don’t change the shares).
Then for each k where ρi(k) /∈ ~bi (honest users) let s′k = f(k) and construct
a statement xk for relation zkrevk with s′k. If later the simulator receives a
message for FNIZK , (verify, sid, xk, πrevk) it responds with (verification,
sid, 1) instead of following the FNIZK description. Honest committee members
are then simulated by executing step (5) and (6) of the Privacy Revocation
Response procedure using s′k and πrevk as constructed by the simulator.

Finally, when A stops, output whatever A outputs to Z.

Figure 5.7: Simulator SPC for protocol
∏

PC .

of a party in the operational phase). After A moves, every party Pi remains
corrupted (or honest) throughout that entire operational phase. At no time can
A corrupt more than dm2 e − 1 parties.

5.4.2 Proactive Security Through YOSO Resharing
Let us now describe how to modify

∏
PC to obtain proactive security by adding

a re-sharing procedure in the YOSO model. Resharing is a standard procedure
in proactive secret sharing that allows a set of parties to transfer a shared secret
for which they hold shares to a second set of parties who obtain fresh shares
independent from the original ones. On a high level, YOSO resharing allows for
a current committee to reshare a secret towards a future anonymous committee
while only speaking once. Such a YOSO resharing procedure can be added to
our PAPR protocol without modifying existing procedures. That is, we use∏

PC as it is, but add a YOSO reshare procedure for maintaining the escrowed
user identities over different epochs. Before every new epoch starts, current
revocation committees reshare the identity information they hold towards a
single anonymous committee that holds this information in the next epoch. We

5.4. FROM STATIC TO PROACTIVE SECURITY 109

refer to this protocol as
∏

PC−P . The approach is illustrated in Figure 5.8.

P1

...

Pn

... ...

Epoch 1 Epoch k

Issuance Resharing

pkP1

pkPn

= Committee

Figure 5.8: Functioning of
∏

PC−P with YOSO resharing: as in the issuance
procedure of

∏
PC , initially each user Pi secret shares its identity pkPi

towards
a different designated hidden committee. Subsequently, the committees reshare
the identities towards a new single anonymous committee and a resharing to-
wards a new single anonymous committee is executed before the start of each
upcoming epoch.

A YOSO resharing scheme can be abstractly described as having a com-
mittee establishment part, where all parties jointly elect the new committee
without learning it, and a resharing part, where the current committee prov-
ably reshares the committee secret to the new committee without learning or
revealing the new committee members. Multiple choices are available for imple-
menting YOSO resharing, e.g. Evolving-Committee Proactive Secret Sharing
[31], Random-Index Private Information Retrieval [104] plus standard reshar-
ing techniques, or YOLO YOSO Anonymous Committee PVSS Resharing [65].
We refrain from picking a particular scheme, and instead use the committee
establishment and resharing procedures abstractly, as described below:

Committee Establishment During committee establishment, a single com-
mittee for the next epoch of size n is elected from all m committee candidates,
without revealing the committee. This procedure will output a set of anony-
mous public keys which constitute the committee keys.

Resharing During resharing, each member of the current epoch committee
re-shares the secret using the anonymous public keys of the next epoch’s com-
mittee. This procedure will thus output a set of anonymously encrypted shares
of the secret. Before these encrypted shares are published, the old shares must
be made inaccessible, e.g. by deleting them.

Figure 5.9 describes how to add a refresh procedure based on YOSO-Resharing
to

∏
PC in order to realize FPC proactive security against a mobile adversary

A. Protocol
∏

PC−P is obtained by executing
∏

PC with the modifications de-
scribed in Figure 5.9 in order to securely refresh shares of revocation information
across epoch changes. We here indicate instances of functionalities specific to

110 CHAPTER 5. PAPR

Hold Revocation Responses: Postpone revocation requests until refresh phase.
Reshare: Pi on command refresh from Z does:

(a) Generate new keys (pk′Pi
, sk′Pi

)← Sig.KeyGen(pp), replace Fepoch
PKI with Fepoch + 1

PKI

and send (post, sid, pk′Pi
) to Fepoch + 1

PKI .
(b) Execute the YOSO Committee Establishment procedure, obtaining the

anonymous committee public keys for the epoch + 1 committee.
(c) For each postponed revocation request for credentials issued in the current

epoch, execute steps (1) to (5) of Privacy Revocation Response in
∏

PC ,
i.e., stopping before sending shares to I.

(d) If Pi is part of the YOSO committee for the current epoch, handle any revoca-
tion requests for credentials issued during previous epochs by executing steps
(3) to (5) of the Privacy Revocation Response procedure in

∏
PC .

(e) Erase skPi . Set skPi = sk′Pi
, pkPi

= pk′Pi
and epoch = epoch + 1.

(f) For all credentials that have not been revoked, execute YOSO resharing of es-
crowed identities towards the epoch + 1 committee. For all revocation requests
handled in steps (c) or (d), post the results by executing step (6) of the Pri-
vacy Revocation Response procedure in

∏
PC .

Wrap: Any other input is forwarded to
∏

PC .

Figure 5.9: Sketch of proactive security wrapper protocol
∏

PC−P .

an epoch be indicated in the superscript, so that F1
PKI is the shared instance

during the first epoch and F2
PKI the shared instance during the second.

Assuming an ideal functionality FY PSS capturing YOSO proactive secret
sharing with the properties outlined above, the security of

∏
PC−P is captured

as follows. Notice that such a FY PSS can be obtained via the techniques of
[103, 104, 65] plus UC-secure NIZKs modelled FNIZK .

Theorem 4. (Informal) Let Sig be a signature scheme, BSig be a blind sig-
nature scheme, SPSig be a structure preserving signature scheme, SShare be a
(t, n)−threshold secret sharing scheme, C be a commitment scheme, Enc be a
key-private IND-CPA-secure public-key encryption scheme and Shuf be a zero-
knowledge proof of shuffle correctness as specified in Section 2. Protocol

∏
PC−P

UC-realizes FPC in the (FBB, FPKI , FZK , FNIZK , FY PSS)-hybrid model, with
proactive security against a mobile active adversary A corrupting a minority of
parties in P1, . . . ,Pm so that any committee of size n ≤ m has honest majority,
with overwhelming probability.

5.4.3 Proactive Security Through YOSO Threshold En-
cryption

While the protocol in Figure 5.9 shows how to wrap
∏

PC with a YOSO-
resharing step to obtain proactive security, it is possible to realize a proactively
secure PAPR credential scheme in a more efficient way using YOSO Thresh-
old Encryption [92]. We can realize a PAPR Credential scheme assuming we

5.4. FROM STATIC TO PROACTIVE SECURITY 111

have such a YOSO Threshold encryption system, with procedures for setting
up YOSO committees (Committee Selection), generating a committee keypair
so that all system parties hold the public key and each committee member
holds a share of the corresponding secret key (Distributed Key Generation), re-
sharing the secret key (Reshare), decryption of a ciphertext to a share of the
plaintext (Threshold Decryption) and reconstruction of the plaintext given a suf-
ficient amount of shares of the plaintext (Reconstruct). We sketch our protocol∏

PC−PT below:

Setup Each party Pi generates an identity keypair and registers the public key
on a PKI. The issuer I generates issuance and revocation keypairs, registers
the public keys on a PKI and publishes signatures of each user’s public key
under the issuance key. All Pi execute the Committee Selection and the anony-
mous committee executes the Distributed Key Generation procedure obtaining
a threshold public key pkTHE and shares of the corresponding secret key.

Credential Issuance To request a credential, a user generates a new creden-
tial keypair, encrypts its identity public key under pkTHE . It then sends this
ciphertext and the public key of the new credential keypair to the issuer over
an anonymous channel and proves in zero knowledge that it knows the private
key and issuer signature on the encrypted public key. If the issuer accepts the
proof, it returns a signature on the credential public key.

Revocation Request The issuer requests privacy revocation for a credential
by signing the credential public key with its revocation key and posting the
signature on a bulletin board.

Reshare and Revocation Response On command refresh from Z, all cur-
rent epoch honest committee members constructs revocation responses for pri-
vacy revocation requests correctly posted on the system bulletin board by exe-
cuting the Threshold Decryption procedure to obtain shares of the revoked users
identity public key. They then execute the committee Reshare procedure before
giving the shares to the issuer. When the issuer obtain these shares, it learns
the identity key of the revoked user by executing the Reconstruct procedure.

Assuming an ideal functionality FY THE capturing YOSO threshold encryp-
tion with the properties outlined above, the security of

∏
PC−PT is captured as

follows. Notice that such a FY THE can be obtained via the techniques o [92] by
employing UC-secure NIZKs as modelled in FNIZK and UC-secure proactive
resharing as modelled in FY PSS (discussed above).

Theorem 5. (Informal) Let Sig be a signature scheme, BSig be a blind sig-
nature scheme and Enc be a key-private IND-CPA-secure public-key encryption
scheme. Protocol

∏
PC−PT UC-realizes FPC in the (FBB, FPKI , FZK , FNIZK ,

FY THE)-hybrid model with proactive security against a mobile active adversary
A corrupting a minority of P1, . . . ,Pm such that a committee of size n ≤ m has
honest majority with overwhelming probability.

112 CHAPTER 5. PAPR

The advantage of this approach in relation to the simple extension
∏

PC−P
using YOSO resharing is that using YOSO threshold encryption in this way
gives us amortized communication complexity essentially independently from
the number of credentials issued. Notice that in

∏
PC−P the YOSO commit-

tees are required to hold shares of the identity public keys connected to every
credential that has been issued (and not revoked). On the other hand, in this
improved construction, the YOSO committees only need to hold shares of the
secret key for the threshold encryption scheme. Moreover, credential issuance
also becomes cheaper, since a party who requests a credential no longer needs
to secret share its identity public key towards a committee. In the new cre-
dential issuance procedure, a party only needs to publish an encryption of its
identity public key under the threshold encryption public key, which also makes
the zero-knowledge proof it generates in this phase cheaper (i.e., proving that
a single ciphertext contains a certain message, instead of proving that a set of
encrypted secret shares reconstruct that message).

5.5 Practical Considerations
We now discuss the properties of PAPR for anonymous credential schemes from
a practical perspective.

5.5.1 Optimizing the Size of the Committee
Given a set of parties P of size m and a certain corruption ratio t, we are inter-
ested in sampling uniformly at random the minimum number of parties n from
P such that an honest majority committee is guaranteed with overwhelming
probability 1 − 2−λ, where λ is a security parameter. This situation is exten-
sively described in [87], but to aid intuition we here provide a few numerical
examples when λ = 60. Ifm = 10, 000 and t = 30%, then n = 462. Ifm = 2, 000
and t = 30%, then n = 382. If m = 10, 000 and t = 20%, then n = 178. If
m = 2, 000 and t = 20%, then n = 164.

5.5.2 Flexibility in the Protocol Design
Throughout this work we made some simplifying assumptions to ease the ex-
planation. Below, we discuss ways to generalize our protocol in the cases where
the assumptions are not actual limitations of the protocol design.

Multiple Authorities

The FPC functionality and its concrete realization,
∏

PC , are defined for a single
issuer I. This is done to keep the protocol simple and easy to read. Extending
the scheme to multiple authorities can be done straightforwardly in two ways.
One way is to exploit the fact that the scheme is proven to be universally
composable, so we can run multiple parallel instances without compromising
security. This approach requires no changes to the functionality or the protocol

5.5. PRACTICAL CONSIDERATIONS 113

description. A second way is to define FPC for multiple issuing parties. This
can be done by imposing that credential requests shall specify which I can issue
and revoke this credential, and by letting credential showings be valid for any
issuing I. This change can be trivially reflected in our

∏
PC construction.

Separating the Issuance and Revocation Roles

Analogously to the previous paragraph, we have kept the protocol description
simple by appointing a single party I for both issuance and revocation roles.
Modifying FPC and

∏
PC by introducing a revoking party R, and appointing

the revocation role to R, rather than I, is straightforward: in FPC allow R
(instead of I) to send (announce-rev, sid, ·). In

∏
PC move the generation and

PKI-registration of the revocation keypair (pkR, skR) into a separate Revoker
Setup procedure, and in the Privacy Revocation Response procedure, send
the shares to R rather than to I. This separation of roles can be combined with
the above modification for multiple authorities to freely select a desired set of
issuers and revokers.

Establishing Eligible Committee Candidates

In PAPR, the set of committee candidates is the root of trust for the guaranteed
privacy revocation and public announcement. In practice, our system can easily
be adapted to have the list of eligible committee candidates be publicly chosen
and endorsed, e.g., through an election or by the issuer. In particular, the set
of committee candidates does not have to coincide with the whole set of users.

Separating Users and Committee Candidates

In Section 5.3 we described
∏

PC assuming the set of users and the set of com-
mittee candidates to be the same. This was a simplifying assumption, but it
is not a limitation of our design. Indeed,

∏
PC can be modified to accommo-

date a set of committee candidates that is independent from the set of users.
For instance, split P into a subset C = {Pi1 , . . . ,Pic} of potential committee
members and a subset of standard users U = P r C, and run the instructions
Hide Committee Candidates and Sample Committee (from Figure 5.3),
letting the index run among the public keys in C. Committee candidates may
be expected to be online all the time. This behavior can be incentivized through
a reward system or law constraints. On the other hand, users are allowed to be
offline whenever they wish.

Managing a dynamic user set∏
PC crucially relies on FPKI to contain a fixed list of all parties before creden-

tials are issued. In practice the set of active users might however change over
time, with users joining or leaving the system. However, this reliance is not as
strong as it appears on first glance.

114 CHAPTER 5. PAPR

By running parallel instances of
∏

PC with multiple authorities, as described
above, each new instance will have a separate FPKI . Thus users joining an
already existing system can be enrolled to a new instance of the protocol.

On the other hand, if enough committee candidates leave the system, e.g.,
due to loss of their keys, the possibility of privacy revocation can be affected.
While a party leaving the system would technically fall under corrupt behaviour,
this is not a problem in

∏
PC−P and

∏
PC−PT . This is since these protocols

re-share committee secrets and explicitly use a new instance of FPKI for each
epoch. Thus, inactive users will not enroll with the new FPKI and will as a
consequence not be considered committee candidates anymore. In the case of∏

PC however, this mechanism is not present, and one must therfore account
for the probability of parties leaving the system when selecting the size of n.

5.5.3 Overhead From a User Perspective

Despite the many parts of the protocol, from a user perspective, the protocol
is a very low cost endeavor.

∏
PC is designed with user overhead in mind, re-

ducing complexity for the user and keeping as much of the resulting complexity
in the credential issuance phase. A user only needs to store a bare minimum of
their own identity key and their own credentials. Credential issuance is some-
what computationally intense for the user, but this only happens once – per
credential issuance. During normal (application) operation, there is zero com-
putational overhead for the user. Finally, a user will experience some additional
computational overhead when and only if they are involved as a committee
member in an actual privacy revocation request (or in a YOSO-resharing for∏

PC−P). So in summary, computational efforts for users are only necessary
in the beginning and sometimes (or rarely) at the end of an epoch, but never
during normal operation.

5.5.4 Practical Attacks

Denial of Service

An adversary with the capability to mount large scale Denial of Service (DoS)
attacks, i.e., targeting all potential committee members, can of course delay
privacy revocation while the attack is maintained. However, it cannot prevent
revocation indefinitely. Once the DoS attack is mitigated or no longer main-
tained, the protocol can simply resume execution, at which point the identity of
the user will be revealed. Since the committee members are revealed to the user
during credential issuance, one can also imagine DoS attacks targeting only the
committee members by a corrupt user utilizing this knowledge. However, while
such an attack is cheaper to mount, it is not feasible to maintain it indefinitely.
Thus, DoS attacks can delay, but not prevent privacy revocations.

5.5. PRACTICAL CONSIDERATIONS 115

Sybil Attacks

Sybil attacks, where a single party poses a multiple parties, are prevented due
to the fact that each user needs to enroll (i.e., post to FPKI) in the system with
a public key linked to their real identity. Thus we obtain a list of the actual
users in the system, preventing Sybil attacks.

5.5.5 Towards an Efficient Instantiation of PAPR Creden-
tials

We here provide a list of building blocks that may be used to efficiently instan-
tiate our

∏
PC protocol.

• To prove correct shuffling of committee candidates’ public keys, the Bayer
and Groth’s scheme [23] may be used, and the computational complexity
for the prover is O(m log(

√
m)), where m is the number of committee

candidates.

• For Sig, Boneh Boyen signatures may be used [38, Section 4.3], where the
computational complexity is constant for both signing and verifying.

• For SPSig, Abe et al.’s scheme SIG1 in [3, Section 4.1] may be used, where
the complexity is linear in the size of the message, which in our case makes
it constant since in our protocol we only sign single group elements.

• For Enc and C, ElGamal encryption may be used, in the second case we see
ciphertexts as commitments and rely on the schemes’ binding property.

• Protocols realizing the functionalities FBB , FPKI , FZK and FNIZK can
be found in [64, 143, 61, 115], respectively.

As described at a high level in Figure 5.4, zkesc, which is at the core of our
protocol, proves the following.

• 1 zkID states that the user is the owner of pkP , i.e it knows the secret key
skP , and knows a signature generated by the issuer on pkP , i.e σE(pkP).
Thus the computational complexity to prove it is constant O(1).

• 2 zkshare states that 2.1 the n shares are constructed correctly, i.e., any
set of k shares will reconstruct to the users public key pkP . Further,
2.2 each of these shares, 2.3 is correctly encrypted, 2.4 for the correct
committee member, 2.5 which is correctly indicated in ~q. Each of these
steps introduces a computational complexity that is linear with respect to
n.

The overall complexity of zkesc is therefore O(n). Moreover, to instantiate∏
PC efficiently, but without Universal Composability, the ideal functionalities
FBB , FPKI , FZK and FNIZK may be heuristically substituted respectively by a
blockchain such as Ethereum (note that FBB may also be implemented starting

116 CHAPTER 5. PAPR

from consensus protocols such as those in [69, 126, 84, 79, 11, 12, 138, 177]),
a PKI with key transparency such as CONIKS [146], Schnorr proofs over the
Tor network and Groth-Sahai proofs [116]. We stress that the security of these
substitutions would be heuristic. If formally proven secure, the resulting scheme
would at best be proven sequentially composable, due to the nature of Groth-
Sahai proofs.

In such a system where FNIZK is substituted for Groth-Sahai proofs, we
note that parts 2.3 and 2.4 of zkesc in Figure 5.4 corresponds to a PVSS scheme.
Thus, they can be realized as the verification equations of a pairing-based PVSS
scheme, e.g., [63].

Chapter 6

Conclusion

In this thesis, we explored the area lying between privacy-preserving computa-
tion and blockchain applications. In particular, we considered auctions, decen-
tralized finance (DeFi) and anonymous credentials.

In the context of auctions, we proposed efficient MPC protocols, i.e., with
no need of a trusted third party, for both first and second-price sealed-bid auc-
tions with fairness against rational adversaries, leveraging secret cryptocurrency
transactions and public smart contracts. In our approach, it is ensured that
cheaters are identified and financially punished by losing a secret collateral de-
posit, which represents a novel technique. As a future work, it may be extended
to other contexts where a public deposit is not suitable to achieve fairness.

In the context of decentralized finance, we have proposed a schema of front-
running mitigation categories, assessed state-of-the-art techniques in each cat-
egory and illustrated remaining attacks. Given the financial loss and network
congestion resulting from front-running in practice, this thesis highlights the
need to develop as future work efficient protocols which realize such mitigation
techniques.

Finally, in the context of anonymous credentials, we have introduced the
notion of anonymous credentials with Publicly Auditable Privacy Revocation
(PAPR), formalized it as an ideal functionality and proposes a realization that is
secure under standard assumptions in the Universal Composability (UC) frame-
work. Keep studying efficient non-UC instantiations of PAPR is left as a future
work. In particular, PAPR credentials simultaneously provide conditional user
privacy and auditable privacy revocation. Interestingly, the second property
enriches anonymous credential systems with transparency by design, effectively
discouraging the usage of such systems for mass surveillance.

Indeed, the ultimate goal of this thesis has been to contribute to show how
cryptography, and in this specific case blockchain and privacy-preserving compu-
tation, can benefit society and the people by reducing the power and the amount
of privacy that currently relies on trusted third parties in the real world.

117

118 CHAPTER 6. CONCLUSION

Bibliography

[1] et al. Abadi, M. An open letter from us researchers in cryptography and
information security, Jan 2014.

[2] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On
the (im)possibility of blind message authentication codes. In David
Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of
Lecture Notes in Computer Science, pages 262–279, San Jose, CA, USA,
February 13–17, 2006. Springer, Heidelberg, Germany.

[3] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving sig-
natures: Generic constructions and simple assumptions. Journal of Cryp-
tology, 29(4):833–878, October 2016.

[4] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. Journal of Cryptology, 29(2):363–421, April 2016.

[5] Masayuki Abe and Koutarou Suzuki. M+1-st price auction using ho-
momorphic encryption. In David Naccache and Pascal Paillier, editors,
PKC 2002: 5th International Workshop on Theory and Practice in Pub-
lic Key Cryptography, volume 2274 of Lecture Notes in Computer Science,
pages 115–124, Paris, France, February 12–14, 2002. Springer, Heidelberg,
Germany.

[6] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder–Scalable, Ro-
bust Anonymous Committed Broadcast. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pages
1233–1252, 2020.

[7] Mohammad Akbarpour and Shengwu Li. Credible auctions: A trilemma.
Econometrica, 88(2):425–467, 2020.

[8] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. Secure multiparty computations on bitcoin. In 2014
IEEE Symposium on Security and Privacy, pages 443–458, Berkeley, CA,
USA, May 18–21, 2014. IEEE Computer Society Press.

119

120 BIBLIOGRAPHY

[9] Guillermo Angeris, Alex Evans, and Tarun Chitra. A Note on Privacy
in Constant Function Market Makers. arXiv preprint arXiv:2103.01193,
2021. https://arxiv.org/abs/2103.01193.

[10] Avalanche. Apricot Phase Four: Snowman++ and Reduced C-Chain
Transaction Fees. https://medium.com/avalancheavax/apricot-p
hase-four-snowman-and-reduced-c-chain-transaction-fees-1e1
f67b42ecf, 2021.

[11] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Rus-
sell, and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th
Conference on Computer and Communications Security, pages 913–930,
Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[12] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis
Zikas. Bitcoin as a transaction ledger: A composable treatment. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 324–356, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[13] Samiran Bag, Feng Hao, Siamak F Shahandashti, and Indranil G Ray.
Seal: Sealed-bid auction without auctioneers. IEEE Transactions on In-
formation Forensics and Security, 2019.

[14] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013: 20th Conference on Computer and Communications Security,
pages 1087–1098, Berlin, Germany, November 4–8, 2013. ACM Press.

[15] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente.
A theory of Automated Market Makers in DeFi. In International Con-
ference on Coordination Languages and Models, pages 168–187. Springer,
2021. https://doi.org/10.1007/978-3-030-78142-2_11.

[16] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente.
Maximizing Extractable Value from Automated Market Makers. arXiv
preprint arXiv:2106.01870, 2021. To appear in FC’22. https://arxiv.
org/pdf/2106.01870.

[17] Olivier Baudron and Jacques Stern. Non-interactive private auctions. In
Paul F. Syverson, editor, FC 2001: 5th International Conference on Fi-
nancial Cryptography, volume 2339 of Lecture Notes in Computer Sci-
ence, pages 364–378, Grand Cayman, British West Indies, February 19–22,
2002. Springer, Heidelberg, Germany.

https://arxiv.org/abs/2103.01193
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://doi.org/10.1007/978-3-030-78142-2_11
https://arxiv.org/pdf/2106.01870
https://arxiv.org/pdf/2106.01870

BIBLIOGRAPHY 121

[18] Carsten Baum, Bernardo David, and Rafael Dowsley. A framework for
universally composable publicly verifiable cryptographic protocols. IACR
Cryptol. ePrint Arch., 2020:207, 2020.

[19] Carsten Baum, Bernardo David, and Rafael Dowsley. Insured MPC: Effi-
cient secure computation with financial penalties. In Joseph Bonneau and
Nadia Heninger, editors, FC 2020: 24th International Conference on Fi-
nancial Cryptography and Data Security, volume 12059 of Lecture Notes
in Computer Science, pages 404–420, Kota Kinabalu, Malaysia, Febru-
ary 10–14, 2020. Springer, Heidelberg, Germany.

[20] Carsten Baum, Bernardo David, and Rafael Dowsley. Insured MPC:
Efficient secure computation with financial penalties. In International
Conference on Financial Cryptography and Data Security, pages 404–420.
Springer, 2020.

[21] Carsten Baum, Bernardo David, and Tore Kasper Frederiksen. P2DEX:
privacy-preserving decentralized cryptocurrency exchange. In Interna-
tional Conference on Applied Cryptography and Network Security, pages
163–194. Springer, 2021.

[22] Carsten Baum, James Hsin yu Chiang, Bernardo David, Tore Kasper
Frederiksen, and Lorenzo Gentile. SoK: Mitigation of front-running in de-
centralized finance. Cryptology ePrint Archive, Report 2021/1628, 2021.
https://eprint.iacr.org/2021/1628 (to appear in Financial Cryptog-
raphy and Data Security, FC 2022 International Workshops, DeFi’22).

[23] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 263–280, Cambridge, UK,
April 15–19, 2012. Springer, Heidelberg, Germany.

[24] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party com-
putation with dispute control. In Theory of Cryptography Conference,
pages 305–328. Springer, 2006.

[25] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
P-signatures and noninteractive anonymous credentials. In Ran Canetti,
editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948
of Lecture Notes in Computer Science, pages 356–374, San Francisco, CA,
USA, March 19–21, 2008. Springer, Heidelberg, Germany.

[26] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-privacy in public-key encryption. In Colin Boyd, editor, Advances in
Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 566–582, Gold Coast, Australia, December 9–13,
2001. Springer, Heidelberg, Germany.

https://eprint.iacr.org/2021/1628

122 BIBLIOGRAPHY

[27] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93: 1st Conference on Computer and Communications Se-
curity, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM
Press.

[28] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Annual cryptology conference, pages 90–108.
Springer, 2013.

[29] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In Ken-
neth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 169–188,
Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[30] F. Benhamouda, S. Halevi, and T. Halevi. Supporting private data on
hyperledger fabric with secure multiparty computation. In 2018 IEEE
International Conference on Cloud Engineering (IC2E), pages 357–363,
April 2018.

[31] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public
blockchain keep a secret? In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020: 18th Theory of Cryptography Conference, Part I, volume 12550
of Lecture Notes in Computer Science, pages 260–290, Durham, NC, USA,
November 16–19, 2020. Springer, Heidelberg, Germany.

[32] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair pro-
tocols. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryp-
tology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Com-
puter Science, pages 421–439, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany.

[33] Iddo Bentov, Ranjit Kumaresan, and AndrewMiller. Instantaneous decen-
tralized poker. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, Part II, volume 10625 of Lecture Notes
in Computer Science, pages 410–440, Hong Kong, China, December 3–7,
2017. Springer, Heidelberg, Germany.

[34] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. High-speed high-security signatures. Journal of Cryptographic
Engineering, 2(2):77–89, September 2012.

[35] Johannes Blömer and Jan Bobolz. Delegatable attribute-based anonymous
credentials from dynamically malleable signatures. In Bart Preneel and
Frederik Vercauteren, editors, ACNS 18: 16th International Conference

BIBLIOGRAPHY 123

on Applied Cryptography and Network Security, volume 10892 of Lecture
Notes in Computer Science, pages 221–239, Leuven, Belgium, July 2–4,
2018. Springer, Heidelberg, Germany.

[36] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Roger Dingledine and
Philippe Golle, editors, FC 2009: 13th International Conference on Fi-
nancial Cryptography and Data Security, volume 5628 of Lecture Notes
in Computer Science, pages 325–343, Accra Beach, Barbados, Febru-
ary 23–26, 2009. Springer, Heidelberg, Germany.

[37] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. A practical implementation of secure auctions
based on multiparty integer computation. In Giovanni Di Crescenzo and
Avi Rubin, editors, FC 2006: 10th International Conference on Finan-
cial Cryptography and Data Security, volume 4107 of Lecture Notes in
Computer Science, pages 142–147, Anguilla, British West Indies, Febru-
ary 27 – March 2, 2006. Springer, Heidelberg, Germany.

[38] Dan Boneh and Xavier Boyen. Short signatures without random ora-
cles and the SDH assumption in bilinear groups. Journal of Cryptology,
21(2):149–177, April 2008.

[39] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, ed-
itor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 236–254, Santa Barbara, CA, USA,
August 20–24, 2000. Springer, Heidelberg, Germany.

[40] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. SoK: Research perspectives and
challenges for bitcoin and cryptocurrencies. In 2015 IEEE Symposium on
Security and Privacy, pages 104–121, San Jose, CA, USA, May 17–21,
2015. IEEE Computer Society Press.

[41] Stefan Brands. Untraceable off-line cash in wallets with observers (ex-
tended abstract). In Douglas R. Stinson, editor, Advances in Cryptology
– CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages
302–318, Santa Barbara, CA, USA, August 22–26, 1994. Springer, Heidel-
berg, Germany.

[42] Felix Brandt. Secure and private auctions without auctioneers. Techni-
cal Report FKI-245–02. Institut fur Informatick, Technishce Universitat
Munchen, 2002.

[43] Felix Brandt. Fully private auctions in a constant number of rounds. In Re-
becca Wright, editor, FC 2003: 7th International Conference on Financial
Cryptography, volume 2742 of Lecture Notes in Computer Science, pages

124 BIBLIOGRAPHY

223–238, Guadeloupe, French West Indies, January 27–30, 2003. Springer,
Heidelberg, Germany.

[44] Felix Brandt. How to obtain full privacy in auctions. International Journal
of Information Security, 5(4):201–216, 2006.

[45] Felix Brandt and Tuomas Sandholm. Efficient privacy-preserving pro-
tocols for multi-unit auctions. In Andrew Patrick and Moti Yung, ed-
itors, FC 2005: 9th International Conference on Financial Cryptogra-
phy and Data Security, volume 3570 of Lecture Notes in Computer Sci-
ence, pages 298–312, Roseau, The Commonwealth Of Dominica, Febru-
ary 28 – March 3, 2005. Springer, Heidelberg, Germany.

[46] Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the
Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart
Contracts. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1335–1352, Baltimore, MD, August 2018. USENIX Association.

[47] Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, and
Paul Stankovski Wagner. PAPR: Publicly auditable privacy revocation
for anonymous credentials, 2023. (to appear in CT-RSA 2023, Cryptog-
raphers’ Track at RSA Conference).

[48] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 315–334, San Francisco, CA, USA, May 21–23, 2018. IEEE
Computer Society Press.

[49] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 315–334. IEEE, 2018.

[50] Jeffrey Burdges and Luca De Feo. Delay encryption. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 302–326. Springer, 2021. https://doi.org/10.1007/97
8-3-030-77870-5_11.

[51] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-
secure delegatable credentials with attributes and their application to
blockchain. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Com-
puter and Communications Security, pages 683–699, Dallas, TX, USA,
October 31 – November 2, 2017. ACM Press.

[52] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and
Markulf Kohlweiss. Composable and modular anonymous credentials:
Definitions and practical constructions. In Tetsu Iwata and Jung Hee

https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-030-77870-5_11

BIBLIOGRAPHY 125

Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 262–288, Auck-
land, New Zealand, November 30 – December 3, 2015. Springer, Heidel-
berg, Germany.

[53] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: Efficient peri-
odic n-times anonymous authentication. In Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th
Conference on Computer and Communications Security, pages 201–210,
Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press.

[54] Jan Camenisch and Anja Lehmann. (Un)linkable pseudonyms for govern-
mental databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015: 22nd Conference on Computer and Commu-
nications Security, pages 1467–1479, Denver, CO, USA, October 12–16,
2015. ACM Press.

[55] Jan Camenisch and Anja Lehmann. Privacy-preserving user-auditable
pseudonym systems. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 269–284. IEEE, 2017.

[56] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
93–118, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Ger-
many.

[57] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor, Ad-
vances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 56–72, Santa Barbara, CA, USA, August 15–19,
2004. Springer, Heidelberg, Germany.

[58] Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Technical Report/ETH Zurich, Department of
Computer Science, 260, 1997.

[59] Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. Journal of Cryptology, 13(1):143–202, January 2000.

[60] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd Annual Symposium on Foundations of Com-
puter Science, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

126 BIBLIOGRAPHY

[61] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. Cryp-
tology ePrint Archive, Report 2002/140, 2002. https://eprint.iacr.
org/2002/140.

[62] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
34th Annual ACM Symposium on Theory of Computing, pages 494–503,
Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[63] Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness at-
tested by public entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17: 15th International Conference on Applied
Cryptography and Network Security, volume 10355 of Lecture Notes in
Computer Science, pages 537–556, Kanazawa, Japan, July 10–12, 2017.
Springer, Heidelberg, Germany.

[64] Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe
BATched Randomness based On Secret Sharing. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
Part III, volume 12493 of Lecture Notes in Computer Science, pages
311–341, Daejeon, South Korea, December 7–11, 2020. Springer, Heidel-
berg, Germany.

[65] Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring.
YOLO YOSO: Fast and simple encryption and secret sharing in the YOSO
model. Cryptology ePrint Archive, Report 2022/242, 2022. https://ep
rint.iacr.org/2022/242.

[66] David Chaum. Blind signatures for untraceable payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology – CRYPTO’82, pages 199–203, Santa Barbara, CA, USA,
1982. Plenum Press, New York, USA.

[67] David Chaum and Torben P. Pedersen. Wallet databases with observers.
In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, vol-
ume 740 of Lecture Notes in Computer Science, pages 89–105, Santa Bar-
bara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.

[68] David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, Advances in Cryptology – EUROCRYPT’91, volume 547
of Lecture Notes in Computer Science, pages 257–265, Brighton, UK,
April 8–11, 1991. Springer, Heidelberg, Germany.

[69] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science, 777:155–183, 2019.

[70] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theor. Comput. Sci., 777:155–183, 2019.

https://eprint.iacr.org/2002/140
https://eprint.iacr.org/2002/140
https://eprint.iacr.org/2022/242
https://eprint.iacr.org/2022/242

BIBLIOGRAPHY 127

[71] Tarun Chitra, Guillermo Angeris, and Alex Evans. Differential Privacy
in Constant Function Market Makers. Cryptology ePrint Archive, 2021.
https://eprint.iacr.org/2021/1101.

[72] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk,
and Ian Miers. Fairness in an unfair world: Fair multiparty computation
from public bulletin boards. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 719–728, Dallas, TX,
USA, October 31 – November 2, 2017. ACM Press.

[73] Shumo Chu, Yu Xia, and Zhenfei Zhang. Manta: a Plug and Play Private
DeFi Stack. 2021. https://eprint.iacr.org/2021/743.

[74] Richard Cleve. Limits on the security of coin flips when half the proces-
sors are faulty (extended abstract). In 18th Annual ACM Symposium on
Theory of Computing, pages 364–369, Berkeley, CA, USA, May 28–30,
1986. ACM Press.

[75] Peter Cramton et al. Spectrum auctions. Handbook of telecommunications
economics, 1:605–639, 2002.

[76] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous cre-
dentials from mercurial signatures. In Mitsuru Matsui, editor, Topics
in Cryptology – CT-RSA 2019, volume 11405 of Lecture Notes in Com-
puter Science, pages 535–555, San Francisco, CA, USA, March 4–8, 2019.
Springer, Heidelberg, Germany.

[77] Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou,
Nigel P. Smart, and Younes Talibi Alaoui. Kicking-the-Bucket: Fast
Privacy-Preserving Trading Using Buckets. Cryptology ePrint Archive,
Report 2021/1549, 2021. To appear in FC’22, https://ia.cr/2021/154
9.

[78] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels. Flash Boys 2.0: Frontrunning in Decentralized Exchanges,
Miner Extractable Value, and Consensus Instability. In IEEE Symposium
on Security and Privacy, pages 910–927. IEEE, 2020.

[79] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly recon-
figurable consensus and applications to provably secure proof of stake.
In Ian Goldberg and Tyler Moore, editors, FC 2019: 23rd International
Conference on Financial Cryptography and Data Security, volume 11598
of Lecture Notes in Computer Science, pages 23–41, Frigate Bay, St. Kitts
and Nevis, February 18–22, 2019. Springer, Heidelberg, Germany.

[80] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer

https://eprint.iacr.org/2021/1101
https://eprint.iacr.org/2021/743
https://ia.cr/2021/1549
https://ia.cr/2021/1549

128 BIBLIOGRAPHY

Science, pages 572–590, Santa Barbara, CA, USA, August 19–23, 2007.
Springer, Heidelberg, Germany.

[81] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
643–662, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidel-
berg, Germany.

[82] Vincent Danos, Hamza El Khalloufi, and Julien Prat. Global Order Rout-
ing on Exchange Networks. In International Conference on Financial
Cryptography and Data Security, pages 207–226. Springer, 2021.

[83] Bernardo David, Rafael Dowsley, and Mario Larangeira. Kaleidoscope:
An efficient poker protocol with payment distribution and penalty enforce-
ment. In Sarah Meiklejohn and Kazue Sako, editors, FC 2018: 22nd Inter-
national Conference on Financial Cryptography and Data Security, volume
10957 of Lecture Notes in Computer Science, pages 500–519, Nieuwpoort,
Curaçao, February 26 – March 2, 2018. Springer, Heidelberg, Germany.

[84] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology – EUROCRYPT 2018, Part II, volume 10821
of Lecture Notes in Computer Science, pages 66–98, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[85] Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. FAST:
Fair auctions via secret transactions. Cryptology ePrint Archive, Report
2021/264, 2021. https://eprint.iacr.org/2021/264.

[86] Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. FAST: Fair
auctions via secret transactions. In Giuseppe Ateniese and Daniele Ven-
turi, editors, ACNS 22: 20th International Conference on Applied Cryp-
tography and Network Security, volume 13269 of Lecture Notes in Com-
puter Science, pages 727–747, Rome, Italy, June 20–23, 2022. Springer,
Heidelberg, Germany.

[87] Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen,
and Daniel Tschudi. GearBox: An efficient UC sharded ledger leverag-
ing the safety-liveness dichotomy. Cryptology ePrint Archive, Report
2021/211, 2021. https://eprint.iacr.org/2021/211.

[88] Vanesa Daza, Abida Haque, Alessandra Scafuro, Alexandros Zacharakis,
and Arantxa Zapico. Mutual accountability layer: accountable anonymity
within accountable trust. In International Symposium on Cyber Security,
Cryptology, and Machine Learning, pages 318–336. Springer, 2022.

https://eprint.iacr.org/2021/264
https://eprint.iacr.org/2021/211

BIBLIOGRAPHY 129

[89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 307–315, Santa Barbara, CA, USA, Au-
gust 20–24, 1990. Springer, Heidelberg, Germany.

[90] Dominic Deuber, Nico Döttling, Bernardo Magri, Giulio Malavolta, and
Sri Aravinda Krishnan Thyagarajan. Minting mechanism for proof of
stake blockchains. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio,
and Angelo Spognardi, editors, ACNS 20: 18th International Conference
on Applied Cryptography and Network Security, Part I, volume 12146 of
Lecture Notes in Computer Science, pages 315–334, Rome, Italy, Octo-
ber 19–22, 2020. Springer, Heidelberg, Germany.

[91] Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade. Brandt’s
fully private auction protocol revisited. Journal of Computer Security,
23(5):587–610, 2015.

[92] Andreas Erwig, Sebastian Faust, and Siavash Riahi. Large-scale non-
interactive threshold cryptosystems through anonymity. Cryptology
ePrint Archive, Report 2021/1290, 2021. https://eprint.iacr.or
g/2021/1290.

[93] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. SoK:
Transparent Dishonesty: Front-Running Attacks on Blockchain. In Fi-
nancial Cryptography, pages 170–189, Cham, 2020. Springer International
Publishing.

[94] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.

[95] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

[96] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and
Daniel J. Weitzner. Practical accountability of secret processes. In William
Enck and Adrienne Porter Felt, editors, USENIX Security 2018: 27th
USENIX Security Symposium, pages 657–674, Baltimore, MD, USA, Au-
gust 15–17, 2018. USENIX Association.

[97] Matthew K Franklin and Michael K Reiter. The design and implemen-
tation of a secure auction service. IEEE Transactions on Software Engi-
neering, 22(5):302–312, 1996.

[98] Hisham S. Galal and Amr M. Youssef. Trustee: Full privacy preserving
vickrey auction on top of Ethereum. In Andrea Bracciali, Jeremy Clark,

https://eprint.iacr.org/2021/1290
https://eprint.iacr.org/2021/1290

130 BIBLIOGRAPHY

Federico Pintore, Peter B. Rønne, and Massimiliano Sala, editors, FC
2019 Workshops, volume 11599 of Lecture Notes in Computer Science,
pages 190–207, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019.
Springer, Heidelberg, Germany.

[99] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol: Analysis and applications. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II,
volume 9057 of Lecture Notes in Computer Science, pages 281–310, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[100] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthen-
ing zero-knowledge protocols using signatures. Journal of Cryptology,
19(2):169–209, April 2006.

[101] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 626–645. Springer, 2013.

[102] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, page 169–178, New York, NY, USA, 2009. Asso-
ciation for Computing Machinery.

[103] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once
- secure MPC with stateless ephemeral roles. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part II, volume
12826 of Lecture Notes in Computer Science, pages 64–93, Virtual Event,
August 16–20, 2021. Springer, Heidelberg, Germany.

[104] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and
Sophia Yakoubov. Random-index PIR and applications. In Kobbi Nis-
sim and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography
Conference, Part III, volume 13044 of Lecture Notes in Computer Sci-
ence, pages 32–61, Raleigh, NC, USA, November 8–11, 2021. Springer,
Heidelberg, Germany.

[105] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 51–68, 2017.

[106] Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge University Press, Cambridge, UK, 2004.

[107] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game or A completeness theorem for protocols with honest majority.

BIBLIOGRAPHY 131

In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Com-
puting, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM
Press.

[108] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all
NP-statements in zero-knowledge, and a methodology of cryptographic
protocol design. In Andrew M. Odlyzko, editor, Advances in Cryptology
– CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages
171–185, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[109] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal
on Computing, 17(2):281–308, April 1988.

[110] Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws:
Can they coexist? a cryptographic proposal. In Proceedings of the 2017
on Workshop on Privacy in the Electronic Society, pages 99–110, 2017.

[111] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno,
and Yifan Song. Storing and retrieving secrets on a blockchain. In Public-
Key Cryptography - PKC 2022 - 25th IACR International Conference on
Practice and Theory of Public-Key Cryptography, Virtual Event, March
8-11, 2022, Proceedings, Part I, 2022.

[112] Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resis-
tant law enforcement access systems. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part III, volume 12698 of Lecture Notes in Computer Science, pages
553–583, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg,
Germany.

[113] Jens Groth. Short pairing-based non-interactive zero-knowledge ar-
guments. In Masayuki Abe, editor, Advances in Cryptology – ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
321–340, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.

[114] Jens Groth. On the size of pairing-based non-interactive arguments. In
Annual international conference on the theory and applications of crypto-
graphic techniques, pages 305–326. Springer, 2016.

[115] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. Journal of the ACM (JACM), 59(3):1–35, 2012.

[116] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 415–432, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg,
Germany.

132 BIBLIOGRAPHY

[117] Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In
International Workshop on Security Protocols, pages 202–211. Springer,
2006.

[118] Michael Harkavy, J Doug Tygar, and Hiroaki Kikuchi. Electronic auctions
with private bids. In USENIX Workshop on Electronic Commerce, 1998.

[119] Martin Hellman. Open letter to Senator Ron Wyden, Feb 2018.

[120] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification. GitHub: San Francisco, CA, USA, 2016.

[121] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of
Lecture Notes in Computer Science, pages 369–386, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[122] Ari Juels and Michael Szydlo. A two-server, sealed-bid auction protocol. In
Matt Blaze, editor, FC 2002: 6th International Conference on Financial
Cryptography, volume 2357 of Lecture Notes in Computer Science, pages
72–86, Southampton, Bermuda, March 11–14, 2003. Springer, Heidelberg,
Germany.

[123] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-Fair Consen-
sus in the Permissionless Setting. IACR Cryptol. ePrint Arch., 2021:139,
2021. https://eprint.iacr.org/2021/139.

[124] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kan-
nan. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. Cryp-
tology ePrint Archive, 2021. https://eprint.iacr.org/2021/1465.

[125] Rami Khalil, Arthur Gervais, and Guillaume Felley. Tex-a securely
scalable trustless exchange. Cryptology ePrint Archive, 2019. https:
//eprint.iacr.org/2019/265.

[126] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain proto-
col. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptol-
ogy – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 357–388, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[127] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust
multi-party computation using a global transaction ledger. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EU-
ROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 705–734, Vienna, Austria, May 8–12, 2016. Springer, Hei-
delberg, Germany.

https://eprint.iacr.org/2021/139
https://eprint.iacr.org/2021/1465
https://eprint.iacr.org/2019/265
https://eprint.iacr.org/2019/265

BIBLIOGRAPHY 133

[128] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust
multi-party computation using a global transaction ledger. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 705–734. Springer, 2016.

[129] Paul Klemperer. Auctions: theory and practice. Princeton University
Press, 2004.

[130] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlo-
movits. Refresh when you wake up: Proactive threshold wallets with
offline devices. In 2021 IEEE Symposium on Security and Privacy, pages
608–625, San Francisco, CA, USA, May 24–27, 2021. IEEE Computer
Society Press.

[131] Vijay Krishna. Auction theory. Academic press, 2009.

[132] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with
penalties. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Confer-
ence on Computer and Communications Security, pages 418–429, Vienna,
Austria, October 24–28, 2016. ACM Press.

[133] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin
to play decentralized poker. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pages 195–206, Denver, CO, USA, Octo-
ber 12–16, 2015. ACM Press.

[134] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasude-
van. Improvements to secure computation with penalties. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Com-
puter and Communications Security, pages 406–417, Vienna, Austria, Oc-
tober 24–28, 2016. ACM Press.

[135] Kaoru Kurosawa and Wakaha Ogata. Bit-slice auction circuit. In
European Symposium on Research in Computer Security, pages 24–38.
Springer, 2002.

[136] Klaus Kursawe. Wendy, the good little fairness widget: Achieving order
fairness for blockchains. In Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, pages 25–36, 2020.

[137] Yunqi Li. HoneyBadgerSwap: Making MPC as a Sidechain. https:
//medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidec
hain-364bebdb10a5, 2021.

[138] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composi-
tion of authenticated byzantine agreement. In 34th Annual ACM Sympo-
sium on Theory of Computing, pages 514–523, Montréal, Québec, Canada,
May 19–21, 2002. ACM Press.

https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5
https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5
https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5

134 BIBLIOGRAPHY

[139] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey auctions
without threshold trust. In Matt Blaze, editor, FC 2002: 6th International
Conference on Financial Cryptography, volume 2357 of Lecture Notes in
Computer Science, pages 87–101, Southampton, Bermuda, March 11–14,
2003. Springer, Heidelberg, Germany.

[140] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind,
Aniket Kate, and Andrew Miller. Honeybadgermpc and asynchromix:
Practical asynchronous mpc and its application to anonymous communi-
cation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 887–903, 2019.

[141] Wouter Lueks, Maarten H Everts, and Jaap-Henk Hoepman. Vote to
link: Recovering From Misbehaving Anonymous Users. In Proceedings of
the 2016 ACM on Workshop on Privacy in the Electronic Society, pages
111–122, 2016.

[142] Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Mi-
croeconomic theory, volume 1. Oxford university press New York, 1995.

[143] Daniel Masny and Gaven J. Watson. A PKI-based framework for es-
tablishing efficient MPC channels. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021: 28th Conference on Computer and Commu-
nications Security, pages 1961–1980, Virtual Event, Republic of Korea,
November 15–19, 2021. ACM Press.

[144] Greg Maxwell. Confidential transactions. https://people.xiph.org/~g
reg/confidential_values.txt, 2016.

[145] Greg Maxwell. Confidential transactions. https://people.xiph.org/gr
eg/confidential_values.txt,, 2016.

[146] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Fel-
ten, and Michael J. Freedman. CONIKS: Bringing key transparency to
end users. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security
2015: 24th USENIX Security Symposium, pages 383–398, Washington,
DC, USA, August 12–14, 2015. USENIX Association.

[147] Silvio Micali. Fair Cryptosystems. Technical report, Massachusetts Insti-
tute of Technology, 1993.

[148] Peter Bro Miltersen, Jesper Buus Nielsen, and Nikos Triandopoulos.
Privacy-enhancing auctions using rational cryptography. In Shai Halevi,
editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture
Notes in Computer Science, pages 541–558, Santa Barbara, CA, USA,
August 16–20, 2009. Springer, Heidelberg, Germany.

[149] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/ greg/confidential_values.txt,
https://people.xiph.org/ greg/confidential_values.txt,

BIBLIOGRAPHY 135

[150] Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin.
pdf-(���� ���������: 17.07. 2019), 2008.

[151] Hannu Nurmi and Arto Salomaa. Cryptographic protocols for vickrey
auctions. Group Decision and Negotiation, 2(4):363–373, 1993.

[152] Tatsuaki Okamoto. Efficient blind and partially blind signatures with-
out random oracles. In Shai Halevi and Tal Rabin, editors, TCC 2006:
3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in
Computer Science, pages 80–99, New York, NY, USA, March 4–7, 2006.
Springer, Heidelberg, Germany.

[153] Paradigm. Ethereum is a Dark Forest. https://www.paradigm.xyz/202
0/08/ethereum-is-a-dark-forest/, 2020.

[154] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, pages 238–252. IEEE, 2013.

[155] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in
the permissionless model. In Andréa W. Richa, editor, 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[156] Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology
– CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
129–140, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidel-
berg, Germany.

[157] Penumbra. ZSwap documentation. https://protocol.penumbra.zone
/main/zswap.html, 2021.

[158] Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. Liqui-
dations: DeFi on a Knife-edge. In International Conference on Financial
Cryptography and Data Security, pages 457–476. Springer, 2021.

[159] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli M. Maurer, editor, Advances in Cryptology – EURO-
CRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
387–398, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Ger-
many.

[160] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-locked Puzzles
and Time-release Crypto. https://people.csail.mit.edu/rivest/pu
bs/RSW96.pdf, 1996.

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/
https://protocol.penumbra.zone/main/zswap.html
https://protocol.penumbra.zone/main/zswap.html
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf

136 BIBLIOGRAPHY

[161] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474. IEEE, 2014.

[162] Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979.

[163] Adi Shamir, Ronald L Rivest, and Leonard M Adleman. Mental poker.
In The mathematical gardner, pages 37–43. Springer, 1981.

[164] Shutter. Shutter Network. https://shutter.network/, 2022.

[165] Markus Stadler. Cryptographic protocols for revocable privacy. PhD thesis,
Verlag nicht ermittelbar, 1996.

[166] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. Fair blind
signatures. In Louis C. Guillou and Jean-Jacques Quisquater, editors,
Advances in Cryptology – EUROCRYPT’95, volume 921 of Lecture Notes
in Computer Science, pages 209–219, Saint-Malo, France, May 21–25,
1995. Springer, Heidelberg, Germany.

[167] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times anonymous
authentication (extended abstract). In Pil Joong Lee, editor, Advances in
Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes in Com-
puter Science, pages 308–322, Jeju Island, Korea, December 5–9, 2004.
Springer, Heidelberg, Germany.

[168] et al. Urs, Gasser. Don’t panic: Making progress on the “going dark ”
debate, Feb 2016.

[169] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In William Enck and Adri-
enne Porter Felt, editors, USENIX Security 2018: 27th USENIX Security
Symposium, pages 991–1008, Baltimore, MD, USA, August 15–17, 2018.
USENIX Association.

[170] William Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. The Journal of finance, 16(1):8–37, 1961.

[171] Ye Wang, Yan Chen, Shuiguang Deng, and Roger Wattenhofer. Cyclic Ar-
bitrage in Decentralized Exchange Markets. Available at SSRN 3834535,
2021. https://dx.doi.org/10.2139/ssrn.3834535.

[172] Dave White, Dan Robinson, and Hayden Adams. Time-weighted Average
Market Maker (TWAMM). 2021. https://www.paradigm.xyz/2021/07
/twamm/.

https://shutter.network/
https://dx.doi.org/10.2139/ssrn.3834535
https://www.paradigm.xyz/2021/07/twamm/
https://www.paradigm.xyz/2021/07/twamm/

BIBLIOGRAPHY 137

[173] Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[174] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE Computer
Society Press.

[175] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd Annual Symposium on Foundations of Com-
puter Science, pages 80–91, Chicago, Illinois, November 3–5, 1982. IEEE
Computer Society Press.

[176] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Sci-
ence, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986.
IEEE Computer Society Press.

[177] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and
Ittai Abraham. HotStuff: BFT consensus with linearity and responsive-
ness. In Peter Robinson and Faith Ellen, editors, 38th ACM Symposium
Annual on Principles of Distributed Computing, pages 347–356, Toronto,
ON, Canada, July 29 – August 2, 2019. Association for Computing Ma-
chinery.

[178] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur
Gervais. On the just-in-time discovery of profit-generating transactions in
defi protocols. arXiv preprint arXiv:2103.02228, 2021. https://arxiv.
org/abs/2103.02228.

https://arxiv.org/abs/2103.02228
https://arxiv.org/abs/2103.02228

	Introduction
	Auctions
	Related Work
	Our Contributions

	Decentralized Finance (DeFi)
	Related Work
	Our Contributions

	Anonymous Credentials
	Related Works
	Our Contributions

	Preliminaries
	Models
	Adversarial Models
	Random Oracle Model (ROM)

	Frameworks
	Real/Ideal Simulation Paradigm with Sequential Composition
	Universally Composable Security

	Assumptions
	Decisional Diffie Hellman (DDH) Assumption
	Discrete Logarithm (DL) Assumption

	Cryptographic primitives
	Commitment Scheme
	Public Key Encryption Scheme
	Digital Signatures
	Non-interactive Zero-Knowledge Proofs of Knowledge
	Publicly Verifiable Secret Sharing (PVSS)
	Blind Signature
	Provable Shuffle of Commitments

	Ideal functionalities
	Ideal functionality FBB
	Ideal functionality FPKI
	Ideal functionality FZK
	Ideal functionality FNIZK

	Blockchain
	Simplified UTXO model
	Confidential transactions

	FAST: Fair Auctions via Secret Transactions
	Our Techniques
	Security Model and Setup Assumptions
	Non-interactive Zero-Knowledge Proofs of Knowledge
	Modelling a Stateful Smart Contract
	Secret Deposits in Public Smart Contracts
	First-Price Auctions
	Proof of Theorem 1

	Extension to Second-price Auctions
	Proof of Theorem 2

	Complexity analysis and comparison to other protocols
	Rational strategies

	SoK: Mitigation of Front-running in Decentralized Finance
	Front-running attacks
	Formalization: speculative sandwich
	Speculative sandwich with private user balances
	Example: speculative sandwich of scheduled swap
	Speculative sandwich in hash-based commit & reveal schemes

	Mitigation categories
	Fair ordering
	Batching of blinded inputs
	Private & secret state

	PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials
	Our Techniques
	Cryptographic Primitives
	Ideal Functionalities

	Defining PAPR for Anonymous Credentials
	Realizing PAPR for Anonymous Credentials
	Security Analysis of PC

	From Static to Proactive Security
	Modeling Proactive Security
	Proactive Security Through YOSO Resharing
	Proactive Security Through YOSO Threshold Encryption

	Practical Considerations
	Optimizing the Size of the Committee
	Flexibility in the Protocol Design
	Overhead From a User Perspective
	Practical Attacks
	Towards an Efficient Instantiation of PAPR Credentials

	Conclusion
	Bibliography

