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Abstract. Structure-preserving signatures (SPS) are a powerful building block
for cryptographic protocols. We introduce SPS on equivalence classes (SPS-EQ),
which allow joint randomization of messages and signatures. Messages are pro-
jective equivalence classes defined on group element vectors, so multiplying a
vector by a scalar yields a different representative of the same class. Our scheme
lets one adapt a signature for one representative to a signature for another rep-
resentative without knowledge of any secret. Moreover, given a signature, an
adapted signature for a different representative is indistinguishable from a fresh
signature on a random message. We propose a definitional framework for SPS-
EQ and an efficient construction in Type-3 bilinear groups, which we prove se-
cure against generic forgers.
We also introduce set-commitment schemes that let one open subsets of the com-
mitted set. From this and SPS-EQ we then build an efficient multi-show attribute-
based anonymous credential system for an arbitrary number of attributes. Our
ABC system avoids costly zero-knowledge proofs and only requires a short in-
teractive proof to thwart replay attacks. It is the first credential system whose
bandwidth required for credential showing is independent of the number of its
attributes, i.e., constant-size. We propose strengthened game-based security def-
initions for ABC and prove our scheme anonymous against malicious organiza-
tions in the standard model; finally, we discuss a concurrently secure variant in
the CRS model.

Keywords: Public-key cryptography, pairing-based cryptography, structure-pre-
serving signatures, attribute-based anonymous credentials, set commitments

1 Introduction

Digital signatures are an important cryptographic primitive that provide a means for
integrity protection, non-repudiation and authenticity of messages in a publicly verifiable
way. In most signature schemes, the message space consists of integers in Zord(G) for
some group G, or of arbitrary strings mapped to either integers in Zord(G) or elements of



a group G via a cryptographic hash function. In the latter case, the hash function is often
modeled as a random oracle (thus, one effectively signs random group elements).

In contrast, structure-preserving signature (SPS) schemes [Fuc09, AHO10, AFG+10,
AGHO11, ACD+12, AGOT14a, AGOT14b, BFF+15, KPW15, Gha16, JR17, AHN+17]
sign group elements without requiring any prior encoding. SPS are defined over two
groups G1 and G2, equipped with a bilinear map (pairing), and messages are vectors of
group elements (from either G1 or G2 or both). Moreover, public keys and signatures
also consist of group elements only and signatures are verified by deciding group mem-
bership of their elements and evaluating the pairing on elements from the public key, the
message and the signature. Fully SPS schemes [AKOT15, Gro15] also require the secret
key to consist of group elements. The main reason for the introduction of SPS was their
interoperability with the non-interactive zero-knowledge proof (NIZK) system by Groth
and Sahai [GS08].

Randomization is a useful feature of signature schemes that lets anyone without
knowledge of the secret key transform a signature into a new one that looks like a freshly
generated signature on the same message. There have been various constructions of ran-
domizable signatures [CL03, CL04, BBS04, Wat05, PS16] and SPS schemes supporting
different types of randomization [AFG+10, AGOT14b].

In this paper, we extend randomization by constructing SPS schemes that in addition
to randomizing signatures also enable randomization of the signed messages in particu-
lar ways, and adaptation of the corresponding signatures. We show that such signature
schemes are particularly interesting for applications in privacy-enhancing cryptographic
protocols, as they allow to avoid costly zero-knowledge proofs.

1.1 Contribution

Our contributions can be broken down as follows: (1) introduction and instantiation of
SPS on equivalence classes (SPS-EQ), which are defined on group element vectors; (2) a
randomizable set-commitment scheme that enables constant-size opening of subsets of
the committed set; and, building on these primitives, (3) a new construction approach for
multi-show attribute-based anonymous credentials, which we efficiently instantiate and
analyze in a comprehensive security model we propose.

Structure-preserving signature scheme on equivalence classes. Inspired by ran-
domizable signatures, we introduce a variant of SPS. Instead of signing message vectors
as in previous SPS schemes, our variant signs classes of a projective equivalence relation
R defined over G` with ` > 1. These classes are lines going through the origin and are
determined by the mutual ratios of the discrete logarithms of the vector components. By
multiplying each component by the same scalar, a different representative of the same
equivalence class is obtained. If the decisional Diffie-Hellman (DDH) assumption holds
in group G then it is hard to decide whether two vectors belong to the same equivalence
class.

In SPS-EQ an equivalence class is signed by signing an arbitrary representative of
the class. From this signature one can then derive a signature for any other representative
of the same class, without having access to the secret key. Unforgeability for SPS-EQ
holds with respect to classes: after obtaining signatures on representatives of his choice,
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no adversary should be able to compute a signature on a representative of a class that
is different from the ones signed. We also require that an adaptation of a signature is
distributed like a freshly computed signature on the new representative. In combination
with unlinkability of equivalence classes this implies the following: given a representa-
tive and a signature on it, a random representative of the same class and the adaptation of
the signature to it are indistinguishable from a completely random message and a fresh
signature on it.

We present a definitional framework for SPS-EQ using game-based security defini-
tions and give an efficient construction whose signatures are short and their length is
independent of the message-vector length `. We prove our construction secure in the
generic-group model [Sho97].

Set commitments. We propose a new type of commitment scheme that lets one com-
mit to sets and open arbitrary subsets. We first propose a model for this primitive and
then give an efficient construction, which we prove secure in this model. It lets one com-
mit to subsets of Zp and a commitment and a subset-opening both consist of a single
bilinear-group element. Our scheme is computationally binding, perfectly hiding, and
computationally subset-sound, meaning that given a commitment to a set S it is infeasi-
ble to produce a subset-opening for some T 6⊆ S. We prove our scheme secure under a
generalization of the strong Diffie-Hellman assumption [BB04].

The scheme also supports commitment randomization, which is compatible with
the randomization of messages in our SPS-EQ scheme (i.e., multiplication by a scalar).
Randomization is perfect and the witness used for subset opening can be adapted accord-
ingly. This property has not been achieved by existing constructions (cf. Section 1.2)
without relying on costly zero-knowledge proofs of randomization.

A multi-show attribute-based anonymous credential system. An attribute-based
anonymous credential system provides means for anonymous authentication. Such a sys-
tem is a multi-party protocol involving a user, an organization (or issuer) and a verifying
party. The user can obtain a credential on multiple attributes, such as her nationality or
age, from an organization and present the credential to a verifier later on, while revealing
only certain attributes. Without learning any information about the user (anonymity), the
verifier will be convinced that the presented information (the shown attributes) is authen-
tic (unforgeability). In a multi-show credential system, a user obtains a credential from
an organization, typically in a non-anonymous way, and can later perform an arbitrary
number of showings that are unlinkable to each other.

We propose a new way of building multi-show attribute-based anonymous creden-
tials (often called Privacy-ABCs; we simply write ABCs) from SPS-EQ and set com-
mitments. Using our instantiations, we construct the first standard-model multi-show
ABC for which anonymity holds against malicious organization keys and which does
not assume a trusted setup.

An SPS-EQ scheme allows to randomize a vector of group elements together with
a signature on it, a property we use to achieve unlinkability of credential showings. We
use set commitments to commit to a user’s attributes. To issue a credential, the issuer
signs a message vector containing this set commitment; the credential is essentially this
signature together with the opening of the set commitment. During a showing, a subset
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of the issued attributes can then be opened. Unlinkability of showings is achieved via the
randomization properties of both signatures and set commitments, which are compati-
ble with each other. Furthermore, to thwart replay attacks of showings, we add a short
constant-size proof of knowledge for providing freshness.

We emphasize that our approach to constructing ABCs differs considerably from
existing ones, as we do not use zero-knowledge proofs to selectively disclose attributes
during showings. This makes constant-size showings possible, as achieved by our con-
struction. In particular, the size of credentials as well as the bandwidth required when
showing a credential are independent of the number of possible attributes as well as those
contained in the credential; it is a small constant number of group elements. This is the
first ABC system with this feature. We note that Camenisch et al. [CDHK15] recently
proposed an approach to ABCs with the same asymptotic complexity.

We introduce a game-based security model for ABCs in the vein of the Bellare, Shi
and Zhang’s [BSZ05] model for group signatures and prove our ABC system secure
in it. Our model considers replays and provides a strong form of anonymity against
organizations that may maliciously generate keys—both of which are not considered
by earlier models. Replay attacks have often been considered an implementation issue,
but we believe that such attacks should already be considered in the formal analysis,
avoiding right from the start problems that might later appear in implementations.

We note that previously there were no other comprehensive models for attribute-
based credential systems. In independent work, Camenisch et al. [CKL+16, CDHK15]
developed simulation-based notions. The model in [CKL+16] is on the one hand very
comprehensive and covers many potential features of ABCs such as revocation, multi-
credential representation, key binding, blind issuance, pseudonyms etc.; on the other
hand, it only supports non-interactive showings. Its comprehensiveness makes it much
more complex and harder to work with than our model, which focuses on covering the
basic functionality of an ABC system. The model in [CDHK15] focuses on ABCs secure
in the universal composability (UC) framework. Unfortunately, these strong security
guarantees often come with significantly deteriorated efficiency (as seen in the instan-
tiations in [CDHK15]). In contrast, our model can be instantiated with highly efficient
constructions, as we show. We further note that [CKL+16] and the ABC construction in
[CDHK15] do consider replays and malicious keys too, although the former in a seem-
ingly weaker sense and the latter only assuming a CRS, whereas our construction does
not rely on a trusted setup.

Finally, we discuss a variant of our scheme with smaller organization key sizes that
is concurrently secure in the CRS model. We provide a comparison of our ABC system
to other existing multi- and one-show ABC approaches.

1.2 Related Work

Signatures. Blazy et al. [BFPV11] introduce signatures on randomizable ciphertexts
and modify Waters’ signature scheme [Wat05] to instantiate them. Given a signature on
a ciphertext, anyone can randomize the ciphertext and adapt the signature accordingly,
knowing neither signing key nor encrypted message. Their construction is only practical
for very small message spaces, which makes it unsuitable for our purposes.
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Another related approach is the proofless variant of the Chaum-Pedersen signature
[CP93], used for self-blindable certificates by Verheul [Ver01]. The certificate as well as
the initial message can be randomized using the same scalar, preserving the validity of
the certificate. This approach works for the construction in [Ver01], but (as also observed
in [Ver01]) it is not a secure signature scheme due to its homomorphic property and the
possibility of efficient existential forgeries.

Linearly homomorphic signatures [BFKW09, CFW12, Fre12] allow for signing sub-
spaces of a vector space by publishing a signature for all of its basis vectors with respect
to the same (file) identifier; this identifier “glues” together the single vectors (of a file).
Given a sequence of scalar/signature pairs (βi, σi)i∈[`] for vectors ~vi (with the same
identifier), one can publicly compute a signature for the vector ~v =

∑
i∈[`] βi~vi.

If one uses a different identifier for every signed vector ~v then such signatures would
support a functionality similar to signature adaptation in SPS-EQ, that is, publicly com-
pute signatures for vectors ~v′ = β~v (although they are not structure-preserving). Various
constructions also provide a privacy feature called strongly/completely context-hiding
[ALP12, ALP13], requiring that a signature resulting from homomorphic operations is
indistinguishable from a fresh one. Nevertheless, homomorphic signatures are not appli-
cable to our context: for SPS-EQ unforgeability, we must prevent combination of signa-
tures on several (independent) vectors; so every vector must be assigned a unique iden-
tifier. This however breaks our unlinkability notion, as every signature can be linked to
its initial signature via the unique identifier. The same arguments also apply to structure-
preserving linearly homomorphic signatures [LPJY13]. Homomorphic signatures sup-
porting richer classes of admissible functions (beside linear ones) have also been consid-
ered, but are not applicable in our context either (cf. [ABC+12, ALP12] for an overview).
We note that the general framework of P -homomorphic signatures [ABC+12, ALP12]
is related to our approach in terms of unforgeability and privacy guarantees, but there
are no existing instantiations for the functionality that we require.

Chase et al. [CKLM14] introduce malleable signatures that let one derive, from a
signature on a message m, a signature on m′ = T (m) for an “allowable” transfor-
mation T . This generalizes signature schemes, including quotable [ABC+12, ALP13]
or redactable signatures [SBZ02, JMSW02] with an additional context-hiding property.
Letting messages be pseudonyms and allowable transformations map one pseudonym to
another, the authors use malleable signatures to construct anonymous credential systems
and delegatable anonymous credential systems [BCC+09]. The general construction in
[CKLM14] however relies on malleable zero-knowledge proofs [CKLM12] and is not
practically efficient—even when instantiated with the Groth-Sahai proof system [GS08].
Although the above framework is conceptually very different from our approach, we
note that SPS-EQ can be cast into the definition of malleable signatures: the evaluation
algorithm takes only a single message vector with corresponding signature and there
is a single type of allowable transformation. In contrast to Chase et al. [CKLM14] our
construction is practical and while Chase et al. only focus on transformations of sin-
gle messages (pseudonyms) in their credentials, we consider multi-show attribute-based
anonymous credentials, which is the main focus of our construction.

Set commitments. The best-known approach for commitments to (ordered) sets are
Merkle hash trees (MHTs) [Mer88], where for a set S the commitment size is O(1) and
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the opening of a committed set element is of sizeO(log |S|). Boneh and Corrigan-Gibbs
[BC14] propose an alternative MHT construction using a novel commitment scheme
based on a bivariate polynomial modulo RSA composites. In contrast to MHTs, their
construction supports efficient succinct proofs of knowledge (PoK) of committed values.

Kate, Zaverucha and Goldberg [KZG10] define polynomial-commitment schemes
that allow to commit to polynomials and support (batch) openings of polynomial evalu-
ations. They can be used to commit to ordered sets (by fixing an index set) or to sets by
identifying committed values with roots. Their two constructions are analogues of DL
and Pedersen commitments and have O(1)-size commitments and openings. Camenisch
et al. [CDHK15] proposed a variant of the Pedersen version from [KZG10]. A related
commitment scheme, called knowledge commitment, was proposed by Groth [Gro10]
and later generalized by Lipmaa [Lip12].

Other commitments to ordered sets are generalized Pedersen [Ped92] or Fujisaki-
Okamoto [FO98] commitments. Both have commitment size O(1), but opening proofs
are of size O(|S|). For completeness, let us also mention vector commitments [CF13],
which allow to open specific positions as well as subsequent updates at specific posi-
tions (but do not necessarily require hiding). Zero-knowledge sets [MRK03] are another
primitive in this context, which imply commitments [DHS15b]. They allow committing
to a set and performing membership and non-membership queries on values without
revealing any further information on the set.

Unfortunately, all existing approaches do not simultaneously provide constant-size
commitments and subset-openings as well as randomization compatible with the ran-
domization of messages in our proposed SPS-EQ.

ABCs. Signatures providing randomization features together with efficient zero-know-
ledge (ZK) proofs of knowledge of committed values can be used to generically construct
ABC systems. The most prominent example are CL credentials [CL03, CL04], based on
Σ-protocols. Following Groth and Sahai’s [GS08] efficient non-interactive ZK proofs
without random oracles, various constructions of non-interactive anonymous creden-
tials [BCKL08, ILV11] and delegatable (hierarchical) anonymous credentials [BCC+09,
Fuc11] have been proposed. These have a non-interactive showing protocol, that is, the
show and verify algorithms do not interact when demonstrating credential possession
(also the recent model for conventional ABCs in [CKL+16] considers non-interactive
showings).

We note that although such credential systems with non-interactive protocols ex-
tend the scope of applications of anonymous credentials, the most common use case
(i.e., authentication and authorization), essentially relies on interaction in order to pro-
vide freshness/liveness. We emphasize that our goal is not to construct non-interactive
anonymous credentials.

1.3 Differences to the Original Work

The original version of this work by Hanser and Slamanig [HS14] gave an SPS-EQ in-
stantiation that was shown not to be EUF-CMA by Fuchsbauer [Fuc14]. We propose a
new instantiation (given in Figure 1), which we prove EUF-CMA-secure and which is
more efficient than the one in [HS14] in terms of key size, signature size and number
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of verification equations. We also show that our scheme satisfies stronger security prop-
erties (Definitions 19 and 20) and discuss their relation to the original properties from
[HS14].

While [HS14] use the notion of polynomial commitments with factor opening, we
found set commitments with subset openings a more natural notion. We also strengthen
the ABC security model from [HS14]: we define anonymity against adversaries that
create malicious organization keys (Definition 29) and provide a stronger notion of un-
forgeability (Definition 28).

1.4 Subsequent Work

Since its introduction, SPS-EQ have been used in various contexts. The attribute-based
multi-show anonymous credential system initially presented in [HS14] was extended in
[DHS15a] by an efficient revocation mechanism, which takes advantage of the random-
ization of SPS-EQ.

Besides ABCs, SPS-EQs have also been used to efficiently instantiate other crypto-
graphic concepts. They yielded an intuitive construction of practical round-optimal blind
signatures in the standard model [FHS15, FHKS16], which led to an attribute-based
one-show anonymous credential system. They were also used to construct conceptually
simple verifiably encrypted signatures in the standard model [HRS15]. There it is also
shown that certain SPS-EQ imply public-key encryption, which separates them from
one-way functions. SPS-EQ were used in [FGKO17] for an efficient instantiation of ac-
cess control encryption [DHO16] and as a building block to construct the most efficient
fully anonymous dynamic group signature schemes [DS16].

Fuchsbauer and Gay [FG18] have recently constructed an SPS-EQ from standard
assumptions (such as DLin) in a weaker security model. Their scheme satisfies unforge-
ability against adversaries that must reveal the discrete logarithms of the message vectors
on which they query signatures. They show that their model is sufficient for the use of
SPS-EQ in credential schemes and all other applications considered so far, except for
blind signatures.

Apart from results concerning SPS-EQ, let us also mention a recent alternative
construction of ABCs by Camenisch et al. [CDHK15] from what they call unlinkable
redactable signatures. In their approach (whose underlying ideas are related to ours) the
size of the credentials and showings is asymptotically identical to that of our construc-
tion. However, the concrete efficiency of our construction is much better, partly due to
the fact that [CDHK15] target security in the universal composability (UC) framework
(cf. Section 5.6).

2 Preliminaries

A function ε : N → R+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. By a←R S, we denote that a is chosen uniformly at random
from a set S. Furthermore, we write A(a1, . . . , an; r) if we want to make the randomness
r used by a probabilistic algorithm A(a1, . . . , an) explicit and denote by [A(a1, . . . , an)]
the set of points with positive probability of being output by A. For an (additive) group
G we use G∗ to denote G \ {0G}.
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Definition 1 (Bilinear map). Let G1, G2 and GT be cyclic groups of prime order p,
where G1 and G2 are additive and GT is multiplicative. Let P and P̂ be generators of
G1 and G2, respectively. We call e : G1 × G2 → GT a bilinear map or pairing if it is
efficiently computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂ ) 6= 1GT , i.e., e(P, P̂ ) generates GT .

If G1 = G2 then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For
Type-2 pairings there is an efficiently computable isomorphism Ψ : G2 → G1 but none
from G1 → G2; for Type-3 pairings no efficiently computable isomorphisms between
G1 and G2 are known. Type-3 pairings are currently the optimal choice in terms of
efficiency for a given security level [CM11].

Definition 2 (Bilinear-group generator). A bilinear-group generator BGGen is a (pos-
sibly probabilistic) polynomial-time algorithm that takes as input a security parameter
1κ and outputs a description of a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ) consist-
ing of groups G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT of prime order p with dlog2 pe = κ and a
pairing e : G1 ×G2 → GT .

Definition 3 (DL). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,
G2,GT , e, P1 = P, P2 = P̂ ). The discrete logarithm assumption holds in Gi for BGGen
if for all probabilistic polynomial-time (PPT) adversariesA there is a negligible function
ε(·) such that

Pr
[
BG←R BGGen(1κ), a←R Zp, a′←R A(BG, aPi) : a′ = a

]
≤ ε(κ) .

The next assumption states that DL remains hard when given q − 1 additional ele-
ments ajPi, in both groups (hence “co-”). The assumption is implied e.g. by the Type-3
bilinear-group counterpart of the q-SDH assumption [BB04, CM11].

Definition 4 (q-co-DL). Let BGGen be a bilinear-group generator that outputs BG =
(p,G1,G2,GT , e, P, P̂ ). The q-co-discrete logarithm assumption assumption holds for
BGGen, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
BG←R BGGen(1κ), a←R Zp
a′←R A(BG, (ajP, ajP̂ )j∈[q])

: a′ = a

]
≤ ε(κ) .

Note that we will use the q-co-DL assumption statically throughout this paper, that is, q
is a fixed system parameter and does not depend on the adversary’s behavior, as e.g. in
[BB04].

Definition 5 (DDH). Let BGGen be a bilinear-group generator that outputs BG = (p,
G1,G2,GT , e, P1 = P, P2 = P̂ ). The decisional Diffie-Hellman assumption holds in
Gi for BGGen, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG←R BGGen(1κ), r, s, t←R Zp
b∗←R A(BG, rPi, sPi, ((1− b) · t+ b · rs)Pi)

: b∗ = b

]
− 1

2
≤ ε(κ) .

The XDH assumption formalizes the absence of efficiently computable isomorphisms
from G1 to G2; the SXDH assumption implies that there is none from G2 to G1 either.
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Definition 6 ((S)XDH). Let BGGen be a bilinear group generator outputting BG =
(p,G1,G2,GT , e, P, P̂ ). The (symmetric) external Diffie-Hellman assumption holds for
BGGen if DDH holds in G1 (and in G2).

Our last assumption (Definition 8) is a special case of Boyen’s [Boy08] extended
version of the uber-assumption [BBG05]. We first recall the basic uber assumption for
Type-3 bilinear groups:

Definition 7 ((R,S,T, f)-DH). Let BGGen be a bilinear-group generator that outputs
BG = (p,G1,G2,GT , e, P, P̂ ); let R = (ri)i∈[r], S = (sj)j∈[s] and T = (tk)k∈[t] be
three tuples of n-variate polynomials in Zp[X1, . . . , Xn] and let f ∈ Zp[X1, . . . , Xn].
Define R(~x) := (ri(~x)P )i∈[r], S(~x) := (si(~x)P̂ )i∈[s] and T(~x) := (e(P, P̂ )ti(~x))i∈[t].
The (R, S,T, f)-Diffie-Hellman assumption holds for BGGen, if for all PPT adversaries
A there is a negligible function ε(·) such that

Pr

BG←R BGGen(1κ), ~x←R Znp ,
e(P, P̂ )f(~x)

←R A(BG,R(~x), S(~x),T(~x))
:
∀M ∈ Zr×sp ∀~b ∈ Ztp : 0 6= f

6=
∑

Mijrisj+
∑

bktk
(i,j)∈[r]×[s] k∈[t]

 ≤ ε(κ) .
Essentially, this assumption says that if a polynomial f ∈ Zp[X1, ..., Xn] is independent
of the polynomials in R, S and T, then given their evaluations at some point ~x ∈ Znp (as
exponents of the group generators), it is hard to evaluate f at vector ~x (as exponent of
the group generator). The assumption holds in the generic-group model [BBG05].

Despite its power, the above assumption does not cover the q-co-SDH assumption
[BB04, CM11], which states that given

(
aiP, aiP̂

)
i∈[q], it is hard to output

(
s, 1

a+sP
)

for any s of the adversary’s choice. SDH allows the adversary to (1) choose its own
target function f (defined by s) from some family F of functions; and moreover (2)
F can contain rational functions and not only polynomials. Boyen [Boy08, Sections 6.1
and 6.2] thus extends the uber assumption to cover these two generalizations and argues
that validity in the generic-group model is maintained.

We introduce the following assumption, which is implied by Boyen’s extended uber-
assumption and generalizes the q-co-SDH assumption. The latter can be cast in the
uber-framework by stating that the adversary is given the evaluations at some point a
for (R, S,T) = ((Xi)i∈[0,q], (X

i)i∈[0,q], 1) and must output a rational function of the
form 1

h(X) := 1
X+s and 1

h(a)P . We extend the family of target functions from FSDH ={
1

h(X)

∣∣ h ∈ Zp[X], deg h = 1
}

to any rational functions whose denominator degree is
greater than its enumerator degree; that is

Fq =
{
g(X)
h(X)

∣∣∣ g, h ∈ Zp[X], 0 ≤ deg g < deg h ≤ q
}
.

Note that since any f = g
h ∈ Fq is strictly rational (and non-zero since deg g ≥ 0),

it is independent from all polynomials in R, S,T. The asymptotic simulation error in
the generic-group model proof of the generalized q-co-SDH assumption attains an error
bound cubic in q.

Definition 8 (q-co-generalized SDH). Let BGGen be a bilinear-group generator that
outputs BG = (p,G1,G2,GT , e, P, P̂ ). Then, the q-co-generalized-strong-Diffie-Hell-
man assumption holds for BGGen in G1, if for all PPT adversariesA there is a negligible
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function ε(·) such that

Pr

BG←R BGGen(1κ), a←R Zp,(
g, h, T

)
←R A(BG, (aiP, aiP̂ )i∈[q])

:

T ∈ G1 ∧ g, h ∈ Zp[X] ∧
0 ≤ deg g < deg h ≤ q ∧

e(T, h(a)P̂ ) = e(g(a)P, P̂ )

 ≤ ε(κ) .
Analogously, the above assumption can be defined to require T ∈ G2. As with the q-co-
DL assumption, we will use the q-co-GSDH assumption statically.

2.1 Digital Signatures

Definition 9 (Signature scheme). A digital signature scheme is a tuple (KeyGen, Sign,
Verify) of PPT algorithms:

KeyGen(1κ): This probabilistic algorithm takes as input a security parameter 1κ. It out-
puts a private key sk and a public key pk (we assume that the message spaceM can
be deduced from pk).

Sign(m, sk): This algorithm takes as input a message m ∈ M and a secret key sk. It
outputs a signature σ.

Verify(m,σ, pk): This deterministic algorithm takes as input a message m ∈ M, a
signature σ and a public key pk. It outputs 1 if σ is a valid signature for m under pk
and 0 otherwise.

A digital signature scheme is secure if it is correct and existentially unforgeable under
adaptive chosen-message attacks (EUF-CMA) [GMR88].

Definition 10 (Correctness). A digital signature scheme (KeyGen, Sign,Verify) is cor-
rect if for all κ ∈ N, all key pairs (sk, pk) ∈ [KeyGen(1κ)] and all m ∈M we have:

Pr
[
Verify(m,Sign(m, sk), pk) = 1

]
= 1 .

Definition 11 (EUF-CMA). A digital signature scheme (KeyGen,Sign,Verify) is exis-
tentially unforgeable under adaptive chosen-message attacks if for all PPT algorithms
A with access to a signing oracle Sign(·, sk) there is a negligible function ε(·) such that:

Pr

[
(sk, pk)←R KeyGen(1κ),

(m∗, σ∗)←R ASign(·,sk)(pk)
: m∗ /∈ Q ∧ Verify(m∗, σ∗, pk) = 1

]
≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle.

2.2 Zero-Knowledge Proofs of Knowledge

In this section we define zero-knowledge proofs of knowledge, which will be used in
our construction of ABCs. In particular, we require protocols to prove knowledge of a
discrete logarithm. These are best instantiated by starting with Σ-protocols (i.e., three-
round public-coin honest-verifier zero-knowledge proofs of knowledge) and then effi-
ciently converting them to (malicious-verifier) zero-knowledge proofs of knowledge, as
done in [CDM00]. We provide generic definitions here.
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For our definitions let LR = {x | ∃w : (x,w) ∈ R} ⊆ {0, 1}∗ be a formal lan-
guage, whereR ⊆ {0, 1}∗×{0, 1}∗ is a binary, polynomial-time (witness) relation. For
such a relation, the membership of x ∈ LR can be decided in polynomial time (in |x|)
when given a witness w of length polynomial in |x| certifying (x,w) ∈ R. We consider
an interactive protocol (P,V) between a (potentially unbounded) prover P and a PPT
verifier V and denote the outcome of the protocol as (·, b)←

(
P(·, ·),V(·)

)
where b = 0

indicates that V rejects and b = 1 that it accepts the conversation with P . We require the
following properties of an interactive protocol.

Definition 12 (Completeness). We call an interactive protocol (P,V) for a relation R
complete if for all x ∈ LR and w such that (x,w) ∈ R we have that (·, 1)←

(
P(x,w),

V(x)
)

with probability 1.

Definition 13 (Zero knowledge). We say that an interactive protocol (P,V) for a rela-
tion R is zero-knowledge if for all PPT algorithms V∗ there exists a PPT simulator S
such that: {

SV∗(x)
}
x∈LR

≈
{〈
P(x,w),V∗(x)

〉}
(x,w)∈R ,

where 〈P(·, ·),V∗(·)〉 denotes the transcript of the interaction of P and V , and “≈”
denotes (perfect) indistinguishability.

Definition 14 (Knowledge soundness). We say that (P,V) is a proof of knowledge
(PoK) relative to an NP relationR if for any (possibly unbounded) malicious prover P∗
such that (·, 1) ←

(
P∗(x),V(x)

)
with probability greater than ε there exists a PPT

knowledge extractor K (with rewinding black-box access to P∗) such that KP∗(x) re-
turns a value w satisfying (x,w) ∈ R with probability polynomial in ε.

For more formal definitions, see e.g. [Gol01]. If an interactive protocol is complete, per-
fect zero knowledge and satisfies knowledge soundness, then we call it a zero-knowledge
proofs of knowledge (ZKPoK).

3 Structure-Preserving Signatures on Equivalence Classes

We aim for an efficient, randomizable structure-preserving signature scheme for group-
element vectors that allows to jointly randomize messages and signatures in public. We
associate messages with representatives of projective equivalence classes defined on the
projective space underlying G` (for ` > 1 and some prime-order group G). Based on
such classes, we will construct a signature scheme that allows the randomization of both
messages and signatures via a change of representatives and a matching signature update.

Let us detail these equivalence classes. All elements of a vector (Mi)i∈[`] ∈ (G∗)`
share different mutual ratios. These ratios depend on their discrete logarithms and are
invariant under the operation γ : Zp∗×(G∗)` → (G∗)` with (s, (Mi)i∈[`]) 7→ s·(Mi)i∈[`].
This invariance allows for randomization of messages and coincides with the operation
of changing the representative inside projective equivalence classes defined on G`. More
precisely, we use the following equivalence relation to partition (G∗)` into classes:

R =
{
( ~M, ~N) ∈ (G∗)` × (G∗)`

∣∣ ∃ s ∈ Z∗p : ~N = s · ~M
}
⊆ (G∗)2` .

11



Note that R is an equivalence relation if and only if G has prime order. We exclude the
zero element from G, since we require that for any (Mi)i∈[`] a randomization s·(Mi)i∈[`]
looks random in (G∗)`, which is not the case if Mi = 0 for some i.

In our scheme an equivalence class [ ~M ]R is signed by issuing a signature on an
arbitrary representative ~M of [ ~M ]R. The scheme then allows to choose a different repre-
sentative s· ~M and to publicly adapt a signature for ~M to one for s· ~M , i.e., without access
to the secret key. One of our goals is to guarantee that two message-signature pairs from
the same equivalence class cannot be linked. Messages of the same equivalence class
cannot be linked if the DDH assumption holds on the message space. Our approach re-
quires thus a DDH-hard group, which is why we consider structure-preserving signatures
(if the messages were vectors of elements from Zp∗, class membership could be decided
efficiently).

3.1 Definition

Definition 15 (SPS-EQ). A structure-preserving signature scheme for equivalence re-
lationR over Gi is a tuple SPS-EQ of the following polynomial-time algorithms:

BGGenR(1
κ) is a bilinear-group generation algorithm which on input a security param-

eter κ in unary outputs a prime-order bilinear group BG.
KeyGenR(BG, 1

`) is a probabilistic algorithm which on input a bilinear group BG and a
vector length ` > 1 in unary outputs a key pair (sk, pk).

SignR( ~M, sk) is a probabilistic algorithm which on input a representative ~M ∈ (G∗i )`

of an equivalence class [ ~M ]R and a secret key sk outputs a signature σ.
ChgRepR( ~M, σ, µ, pk) is a probabilistic algorithm which on input a representative ~M ∈

(G∗i )` of an equivalence class [ ~M ]R, a signature σ for ~M , a scalar µ and a public key
pk returns an updated signature σ′ that is valid for the representative ~M ′ = µ · ~M .

VerifyR( ~M, σ, pk) is a deterministic algorithm which given a representative ~M ∈ (G∗i )`,
a signature σ and a public key pk outputs 1 if σ is valid for ~M under pk and 0
otherwise.

VKeyR(sk, pk) is a deterministic algorithm which given a secret key sk and a public key
pk checks the keys for consistency and returns 1 on success and 0 otherwise.

In case it does not matter which new representative is chosen, ChgRepR can be seen as
a matching randomization of a signature and its message using randomizer µ without
invalidating the signature on the equivalence class. We require the signature resulting
from ChgRepR to be indistinguishable from a freshly issued signature for the new rep-
resentative of the same class, that is, ChgRepR should also randomize the signature.

The scheme is correct if honestly generated key pairs and signatures verify, and if
ChgRepR outputs a valid signature.

Definition 16 (Correctness). An SPS-EQ scheme SPS-EQ over Gi is correct if for all
security parameters κ ∈ N, for all ` > 1, all bilinear groups BG = (p,G1,G2,GT , e,
P, P̂ ) ∈ [BGGenR(1

κ)], all key pairs (sk, pk) ∈ [KeyGenR(BG, 1
`)] and all messages

12



~M ∈ (G∗i )` and scalars µ ∈ Zp∗ we have:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR( ~M, SignR( ~M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(µ · ~M, ChgRepR( ~M, SignR( ~M, sk), µ, pk), pk) = 1

]
= 1 .

We define EUF-CMA security w.r.t. equivalence classes. In contrast to the standard no-
tion of EUF-CMA, we consider a forgery a valid signature on a message from any equiv-
alence class for which the forger has not seen signatures. Note that we assume ` to be
fixed.

Definition 17 (EUF-CMA). An SPS-EQ scheme SPS-EQ over Gi is existentially un-
forgeable under adaptive chosen-message attacks if for all ` > 1 and all PPT algorithms
A having access to a signing oracle SignR(·, sk), there is a negligible function ε(·) such
that:

Pr

BG←R BGGenR(1
κ),

(sk, pk)←R KeyGenR(BG, 1
`),

( ~M∗, σ∗)←R ASignR(·,sk)(pk)

:
∀ ~M ∈ Q : [ ~M∗]R 6= [ ~M ]R ∧

VerifyR( ~M
∗, σ∗, pk) = 1

 ≤ ε(κ) ,
where Q is the set of queries that A has issued to the signing oracle.

We now define new properties, which are better suited to work with than the class-
hiding game originally introduced in [HS14]. We start with a class-hiding property on
the message space:

Definition 18 (Class-hiding). Let ` > 1 and G∗i be a base group of a bilinear group.
The message space (G∗i )` is class-hiding if for all PPT adversariesA there is a negligible
function ε(·) such that

Pr

[
b←R {0, 1}, BG←R BGGenR(1

κ), ~M ←R (G∗i )`,
~M (0)←R (G∗i )`, ~M (1)←R [ ~M ]R, b

∗←R A(BG, ~M, ~M (b))
: b∗ = b

]
− 1

2
≤ ε(κ) .

The following shows that the class-hiding property is implied by the DDH assumption.

Proposition 1. Let ` > 1 and G be a group of prime order p. Then (G∗)` is a class-
hiding message space if and only if the DDH assumption holds in G.

Proof. We first note that DDH (as defined in Definition 5) is equivalent to a variant
DDH∗ where r, s, t are drawn from Zp∗ instead of Zp (as the statistical distance of the
respective distributions is negligible). It suffices thus to show that class-hiding is equiv-
alent to DDH∗.
“⇒” Let A be an adversary against DDH∗. We define an adversary B against the class-
hiding property of (G∗)`: B is given an instance (BG, ~M, ~M ′), runs A on (M1,M2,
M ′1,M

′
2) and outputs whatever A outputs.

If ~M ′ ∈ [ ~M ]R then ~M ′ = λ ~M for some λ ∈ Zp∗ and (M1,M2,M
′
1,M

′
2) =

(M1,M2, λM1, λM2) is a valid DDH∗ tuple in G. If ~M ′ is random then (M1,M2,
M ′1,M

′
2) is also random as in the case b = 0 in the DDH∗ game. There are also “false
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positives”, when ~M ′ 6∈ [ ~M ]R but (M ′1,M
′
2) = (λM1, λM2) for some λ. This occurs

however only with negligible probability; thus B’s success probability differs only by a
negligible amount from that of A, which show the implication.
“⇐” Let us parametrize the game from Definition 18 by bit b and denote it as Gameb, that
is, A is given (BG, ~M, ~M ′←R (G∗)`) in Game0 and (BG, ~M, ~M ′←R [ ~M ]R) in Game1.
We next define a hybrid game Game′j for every j ∈ [`]: it chooses µ←R Zp∗ as well as
Rj+1, . . . , R`←R G∗ and runs A on BG, ~M and

~M ′ := (µM1, . . . , µMj , Rj+1, . . . , R`) .

Note that by definition Game′1 = Game0 and Game′` = Game1, respectively.
If there exists an adversary that distinguishes Game0 from Game1 with probability

ε(κ) then for some index j ∈ [`] it distinguishes Game′j−1 from Game′j with probability
1
`−1ε(κ), which is non-negligible if ε(κ) is non-negligible. We show how to construct a
DDH∗ distinguisher B from a distinguisher between Game′j−1 and Game′j .

Given a DDH∗ instance (BG, rP, sP, tP ), B picks (mi)i∈[`]←R (Zp∗)` as well as
Rj+1, . . . , R`←R G∗, sets

~M ←
(
m1P, . . . . . . , mj−1P, (rP ),mj+1P, . . . ,m`P

)
(1)

~M ′ ←
(
m1(sP ), . . . ,mj−1(sP ), (tP ), Rj+1, . . . . . . , R`

)
(2)

and runsA on (BG, ~M, ~M ′). If (BG, rP, sP, tP ) is a “real” instance (i.e. t = rs) then the
first j elements in (2) are s-multiples of the first j elements in (1), and B thus simulates
Game′j . If t is random then so is the j-th element in (2) and B simulates Game′j−1. Hence,
any adversary distinguishing Game′j−1 from Game′j can be used to break DDH∗. ut

The next two definitions have already been used in [FHS15]. The first one formalizes
the notion that signatures output by ChgRepR are distributed like fresh signatures on the
new representative.

Definition 19 (Signature adaptation). Let ` > 1. An SPS-EQ scheme SPS-EQ on
(G∗i )` perfectly adapts signatures if for all tuples (sk, pk, ~M, σ, µ) with

VKeyR(sk, pk) = 1 ~M ∈ (G∗i )` VerifyR( ~M, σ, pk) = 1 µ ∈ Zp∗

ChgRepR( ~M, σ, µ, pk) and SignR(µ ~M, sk) are identically distributed.

The following definition demands that this even holds for maliciously generated ver-
ification keys. As for such keys there might not even exist a corresponding secret key,
we require that adapted signatures are random elements in the space of valid signatures.

Definition 20 (Signature adaptation under malicious keys). Let ` > 1. An SPS-EQ
scheme SPS-EQ on (G∗i )` perfectly adapts signatures under malicious keys if for all
tuples (pk, ~M, σ, µ) with

~M ∈ (G∗i )` VerifyR( ~M, σ, pk) = 1 µ ∈ Zp∗ (3)

we have that the output of ChgRepR( ~M, σ, µ, pk) is a uniformly random element in the
space of signatures, conditioned on VerifyR(µ ~M, σ′, pk) = 1.
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KeyGenR(BG, 1
`): On input a bilinear-group description BG and vector length ` > 1 in

unary, choose (xi)i∈[`]←R (Zp∗)`, set secret key sk ← (xi)i∈[`], compute public key
pk ← (X̂i)i∈[`] = (xiP̂ )i∈[`] and output (sk, pk). We assume that all other algorithms
have implicit input BG.

SignR( ~M, sk): On input a representative ~M = (Mi)i∈[`] of equivalence class [ ~M ]R and a
secret key sk = (xi)i∈[`] ∈ (Zp∗)`, return ⊥ if Mi /∈ G∗1 for some i ∈ [`]. Else, choose
y←R Zp∗ and output σ ← (Z, Y, Ŷ ) with

Z ← y
∑
i∈[`]

xiMi Y ← 1
yP Ŷ ← 1

y P̂ .

VerifyR( ~M, σ, pk): On input a representative ~M = (Mi)i∈[`] of equivalence class [ ~M ]R,
a signature σ = (Z, Y, Ŷ ) and public key pk = (X̂i)i∈[`], output 0 if for some i ∈ [`]:
Mi /∈ G∗1 or X̂i /∈ G∗2; or if Z /∈ G1 or Y /∈ G∗1 or Ŷ /∈ G∗2. Return 1 if the following
equations hold and 0 otherwise:∏

i∈[`]

e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ )

ChgRepR( ~M, σ, µ, pk): On input a representative ~M = (Mi)i∈[`] of equivalence class
[ ~M ]R, signature σ = (Z, Y, Ŷ ), µ ∈ Zp∗ and public key pk, return ⊥ if
VerifyR( ~M, σ, pk) = 0. Otherwise pick ψ←R Zp∗ and return σ′ ← (ψµZ, 1

ψY,
1
ψ Ŷ ).

VKeyR(sk, pk): On input sk = (xi)i∈[`] and pk = (X̂i)i∈[`], output 1 if for all i ∈ [`]:
xi ∈ Zp∗ and X̂i ∈ G∗2 and xiP̂ = X̂i; return 0 otherwise.

Fig. 1. Scheme 1, an EUF-CMA secure SPS-EQ scheme

3.2 Our Construction

In Figure 1 we present our SPS-EQ construction defined for a bilinear group generator
BGGen with message space (G∗1)`. Its signatures consist of two G1 elements and one G2

element and public keys are `-tuples from (G2)
∗. Verification is defined via two pairing-

product equations. A scheme with message space (G∗2)` is easily obtained by swapping
the group membership of all elements.

3.3 Security of Our Construction

Theorem 1. The SPS-EQ scheme in Scheme 1 is correct.

Proof. We have to show that for all κ ∈ N, all ` > 1, all choices of bilinear groups
BG←R BGGenR(1

κ), all choices of key pairs (sk, pk)←R KeyGenR(BG, 1
`), all ~M ∈

(G∗1)` and all µ ∈ Zp∗ the following holds:
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VKeyR(sk, pk) = 1 ∧
VerifyR

(
~M, SignR( ~M, sk; y), pk

)
= 1 ∀ y ∈ Zp∗ ∧

VerifyR
(
ChgRepR( ~M, SignR( ~M, sk; y), µ, pk; ψ), pk

)
= 1 ∀ y, ψ ∈ Zp∗ .

KeyGenR(BG, 1
`) returns sk ← (xi)i∈[`]←R (Zp∗)` and pk ← (xiP̂ )i∈[`], which shows

the first equation.
SignR( ~M, sk; y) returns Z = y

∑
i∈[`] xiMi, Y = 1

yP and Ŷ = 1
y P̂ . Plugging this

into the first relation in VerifyR, we get

e(Z, Ŷ ) = e
(
y
∑

i∈[`] xiMi,
1
y P̂
)
= e
(∑

i∈[`] xiMi, P̂
)y· 1

y =

=
∏
i∈[`]

e(xiMi, P̂ ) =
∏
i∈[`]

e(Mi, X̂i) .

Since e(Y, P̂ ) = e( 1yP, P̂ ) = e(P, 1y P̂ ) = e(P, Ŷ ), the second verification equation is
also satisfied.

Finally, ChgRepR
(
~M, (Z = y

∑
i∈[`] xiMi, Y = 1

yP, Ŷ = 1
y P̂ ), µ, pk; ψ

)
outputs

σ′ =
(
ψµZ, 1

ψY,
1
ψ Ŷ
)
=
(
ψy
∑

i∈[`] xiµMi,
1
ψ

1
yP,

1
ψ

1
y P̂
)
,

which is the same as SignR(µ ~M, sk;ψy), and thus verifies by correctness of SignR. ut

We prove the security of our construction using a direct proof in the generic-group
model [Sho97]. Loosely speaking, the generic-group model is a model to study the run-
time of generic algorithms in cyclic groups. Such algorithms do not exploit any special
structure of the representation of the group elements. Instead, they are only allowed to
perform abstract group operations and test whether two group elements are equal; they
thus work for any group. This is modeled by providing group operations to an algorithm
solely via oracles. In particular, for any discrete logarithm i, a generic algorithm can ob-
tain a random encoding σ(i) of iP (where P is a fixed generator) via an oracle and can
use further oracles to perform group operations as well as equality checks on encodings
of group elements. In the bilinear group setting, we consider all three groups G1, G2 and
GT as generic and algorithms have additionally access to a pairing oracle.

Theorem 2. In the generic-group model for Type-3 bilinear groups, Scheme 1 is EUF-
CMA secure.

Proof. In the generic-group model an adversary only performs generic group operations
(operations in G1, G2 and GT , pairings and equality tests) by querying the respective
group oracle.

We first consider the messages submitted to the signing oracle and the forgery output
by the adversary as formal multivariate Laurent polynomials whose variables correspond
to the secret values chosen by the challenger, and show that an adversary is unable to
symbolically produce an existential forgery (even when it chooses message elements
adaptively). Then, in the second part we show that the probability for an adversary to
produce an existential forgery by chance is negligible.
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The values chosen by the challenger in the unforgeability game, which are unknown
to the adversary, are the logarithms x1, . . . , x` of the public keys (X̂i)i∈[`] ∈ (G∗2)` and
the values y1, . . . , yq, picked for the q oracle replies, that is, when the j-th signing query
for a message (Mj,i)i∈[`] is answered as

(Zj , Yj , Ŷj) = (yj
∑

i∈[`] xiMj,i,
1
yj
P, 1

yj
P̂ ) .

When outputting a forgery (Z∗, Y ∗, Ŷ ∗) for a message (M∗i )i∈[`], the elements the ad-
versary has seen, besides P and P̂ , are (Zj , Yj)j∈[q] in G1, and (Ŷj)j∈[q] as well as
(X̂i)i∈[`] in G2. The forgery must thus have been computed by choosing

πz, πy, πŷ, πm∗,i, ρz,j , ρy,j , ρm∗,i,j , ψy,j , ψŷ,j , ψm∗,i,j , χŷ,i ∈ Zp for j ∈ [q] and i ∈ [`]

and setting

Z∗ = πzP +
∑
j∈[q]

ρz,jZj +
∑
j∈[q]

ψz,jYj

Y ∗ = πyP +
∑
j∈[q]

ρy,jZj +
∑
j∈[q]

ψy,jYj

Ŷ ∗ = πŷP̂ +
∑
i∈[`]

χŷ,iX̂i +
∑
j∈[q]

ψŷ,j Ŷj

M∗i = πm∗,iP +
∑
j∈[q]

ρm∗,i,jZj +
∑
j∈[q]

ψm∗,i,jYj

Similarly, for all j ∈ [q] the message (Mj,i)i∈[`] submitted in the j-th query is computed
as a linear combination of all the G1 elements the adversary has seen so far, that is,

P,Z1, Y1, . . . , Zj−1, Yj−1 .

By considering all these group elements and taking their discrete logarithms to the bases
P and P̂ , respectively, we obtain the following linear combinations:

z∗ = πz +
∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

y∗ = πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj

ŷ∗ = πŷ +
∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

m∗i = πm∗,i +
∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

mj,i = πm,j,i +
∑

k∈[j−1]

ρm,j,i,kzk +
∑

k∈[j−1]

ψm,j,i,k
1

yk
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Observe that all message elements as well as the elements Y ∗, Ŷ ∗ of the forgery must
be different from 0G1 and 0G2 , respectively, by definition. Plugging the forgery into the
verification relations yields:∏

i∈[`]

e(M∗i , X̂i) = e(Z∗, Ŷ ∗) ∧ e(Y ∗, P̂ ) = e(P, Ŷ ∗)

and taking discrete logarithms to the basis e(P, P̂ ) in GT , we obtain the following equa-
tions: ∑

i∈[`]

m∗ixi = z∗ŷ∗ (4)

y∗ = ŷ∗ (5)

The values m∗i , z
∗, ŷ∗, y∗ are multivariate Laurent polynomials of total degree O(q) in

x1, . . . , x`, y1, . . . , yq. Our further analysis will be simplified by the following fact.

Claim 1. For all n ≥ 1, the monomials that constitute zn have the form

1

ybs

∏
k∈[t]

yjk
∏
k∈[t]

xik (6)

with 1 ≤ t ≤ n; for all k1 6= k2: jk1 6= jk2; for all k: jk ≤ n ∧ s < jk; jt = n; and
b ∈ {0, 1}.

In particular, the monomials in zn can contain up to n y’s and x’s in the numerator
and there are as many x’s as y’s. All of the y’s are different, one of them is yn and
the indices of the other y’s are smaller than n. There can be (at most) one y in the
denominator and its index is smaller than that of all other y’s.

Proof (of Claim 1). We prove the claim by induction on n.

n = 1: As before the first signing query, the only element from G1 available to the
adversary is P , we have m1,i = πm,1,i and therefore

z1 =
∑
i∈[`]

πm,1,iy1xi ,

which proves the base case.
n→ n+ 1: Assume for all k ∈ [n] the monomials of all zk are of the form in (6). Since

mn+1,i = πm,n+1,i +
∑

k∈[n] ρm,n+1,i,kzk +
∑

k∈[n] ψm,n+1,i,k
1
yk
,

by the definition of SignR we have

zn+1 =
∑
i∈[`]

πm,n+1,i yn+1xi +
∑
i∈[`]

∑
k∈[n]

ρm,n+1,i,k yn+1zkxi

+
∑
i∈[`]

∑
k∈[n]

ψm,n+1,i,k yn+1
1

yk
xi . (7)
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The monomials in the first and the last sum are as claimed in the statement. By the
induction hypothesis any monomial contained in any zk is of the form

1

ybs

∏
p∈[t]

yjp
∏
p∈[t]

xip ,

with t ≤ n, jt = k and s < jp for all jp as well as jp < k, for all jp with p < t (which
are all different). Each such monomial leads thus to a monomial in the 2nd sum in (7)
of the form 1

ybs

(
yn+1

∏
p∈[t] yjp

)(
xi
∏
p∈[t] xip

)
= 1

ybs

∏
p∈[t′] yjp

∏
p∈[t′] xip , with

t′ := t + 1 ≤ n + 1, jt′ := n + 1, it+1 := i. Moreover t′ ≤ n + 1, all jp are still
different and ≤ n and s < jp for all jp, which proves the induction step.

Together this proves the claim. ut

We will use that by Claim 1 in any monomial in zk there are always exactly as many
y’s as x’s in the numerator and there are at least one y and one x; moreover there is at
most one y in the denominator (and which does not cancel down). Moreover, we have:

Corollary 1. Any monomial can only occur in one unique zn.

Proof. This is implied by Claim 1 as follows: For any monomial, let i∗ be the maximal
index such that the monomial contains yi∗ . Then the monomial does not occur in zn
with n > i∗, since zn contains yn contradicting maximality. It does not occur in zn with
n < i∗ either, since all yj contained in zn have j ≤ n, meaning yi∗ does not occur in zn;
a contradiction. ut

We start by investigating Equation (5):

y∗ = ŷ∗

πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj
= πŷ +

∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

By equating coefficients, and taking into account that by Claim 1 no zj contains mono-
mials of the form 1, xi, or 1

yj
, we obtain ρy,j = 0 for all j ∈ [q] and

(i) πŷ = πy

(ii) χŷ,i = 0 ∀i ∈ [`]

(iii) ψŷ,j = ψy,j ∀j ∈ [q]

Let us now investigate Equation (4) (where in ŷ∗ we replace πŷ, χŷ,i and ψŷ,j as per (i),
(ii) and (iii), respectively):
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∑
i∈[`]

m∗ixi = z∗ŷ∗

∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

=
(
πz +

∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

)(
πy +

∑
k∈[q]

ψy,k
1

yk

)
= πzπy +

∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

(
ψz,jπy + πzψy,j

) 1

yj
+

∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj +

∑
j∈[q]

∑
k∈[q]

ψz,jψy,k
1

yjyk
.

Equating coefficients for 1, we get:

(iv) πzπy = 0

Since by Claim 1, no terms in zjxi, zj and 1
yk
zj are of the form 1

yj
or 1

yjyk
, equating

coefficients for 1
yj

and 1
yjyk

for all j, k yields:

(v) ψz,jπy + πzψy,j = 0 ∀j ∈ [q]
(vi) ψz,jψy,k = 0 ∀j, k ∈ [q]

By (iv)–(vi), we have simplified Equation (4) to the following:

∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi

=
∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj . (8)

Let us analyze the monomials contained in the zj’s. By (6) in Claim 1, there is an equal
number of y’s and x’s in numerators of such monomials. Therefore, on the LHS the
number of x’s in all monomials is always greater than that of y’s, meaning monomials
of type (6) only occur on the RHS of (8).

We now show that ρz,nπy zn = 0 for all n ∈ [q]. Assume that for some n ∈ [q]
this is not the case. Since none of the monomials in zn can appear on the LHS and,
by Corollary 1, they do not appear in any other zi, i 6= n, zn must be subtracted by a
term contained in 1

yk
zj for some j, k ∈ [q]. The term in this zj must not have yk in the

numerator, as otherwise it would cancel down and the number of y’s and x’s would be
different, meaning it would not correspond to any monomial in zn (which are of the form
(6)). This also means that any monomial contained in zn (in the first sum on the RHS)
must have yk in the denominator if it is to be equal to a term in 1

yk
zj .

Next, we observe that monomials in zn can only be equal to terms in 1
yk
zj if j = n.

This is because the maximal i∗ with yi∗ appearing in zn would be different for any other
zj , j 6= n (cf. the proof of Corollary 1). But this means that any monomial in zn, which
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by the above must have yk in the denominator, also occurs in the zn in the double sum,
yielding a term with y 2

k in the denominator. Since this cannot occur anywhere else in the
equation by Corollary 1, we arrived at a contradiction. We have thus:

(vii) ρz,jπy zn = 0 ∀j ∈ [q]

Equation (4) has now the following, simplified representation:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj (9)

From Claim 1 we have that every monomial of zj has an equal number of y’s and
x’s in the numerator; for all monomials of the LHS we thus have: (number of y’s)
= (number of x’s) − 1. For such a term to occur on the RHS, this has to be a mono-
mial N in zj that has yk in the numerator, so it cancels down and yields a term with
more x’s than y’s. We show that this must be zk, that is, we show that ρz,jψy,k = 0 for
all j 6= k.

First this holds for k > j, since the “largest” y contained in zj is yj and thus yk does
not cancel. Second for k < j, let us assume that there is at least one pair of coefficients
ρz,jψy,k 6= 0 with k < j. Observe that 1

yk
zj on the RHS still contains yj as “largest”

y-value (by Claim 1). The monomials composing 1
yk
zj do thus only occur in zj on the

LHS, thus ρm∗,i,j 6= 0 for some i ∈ [`]. Thus the monomial N from zj on the RHS
which contains yk also occurs on the LHS. However, as by Claim 1 every y occurs only
once in every monomial, after canceling out yk from zj no yk remains in N on the RHS.
As however, yk is present in the corresponding monomial in zj on the LHS, there is no
corresponding term on the RHS. A contradiction. We thus obtain:

(viii) ρz,jψy,k = 0 ∀j, k ∈ [q], j 6= k

Since the RHS of (9) cannot be 0 (otherwise all m∗i on the LHS would be 0, which is not
a valid forgery), we have:

(ix) ∃ k ∈ [q] : ρz,kψy,k 6= 0

We now argue that there exists exactly one such k: if we had ρz,kψy,k 6= 0 as well as
ρz,k′ψy,k′ 6= 0 for k 6= k′ then ρz,k 6= 0 and ψy,k′ 6= 0 and thus ρz,kψy,k′ 6= 0, which
contradicts (viii). We have thus:

(x) ∃!n ∈ [q] : ρz,nψy,n 6= 0

By (viii) and (x), Equation (9) simplifies to∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi = ρz,nψy,n

1

yn
zn

= ρz,nψy,n
∑
i∈[`]

mn,ixi

= ρz,nψy,n
∑
i∈[`]

(
πm,n,i +

∑
j∈[n−1]

ρm,n,i,jzj +
∑

j∈[n−1]

ψm,n,i,j
1

yj

)
xi ,
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where in the 2nd line we substituted zn by its definition, namely yn
∑

k∈[`]mn,kxk, and
in the 3rd line we replaced mn,i by its definition. Since by Claim 1, xi, zjxi and 1

yj
xi,

for all i ∈ [`], j ∈ [q], do not have common monomials, equating coefficients yields
(with α := ρz,nψy,n):

πm∗,i = απm,n,i ρm∗,i,j = αρm,n,i,j ψm∗,i,j = αψm,n,i,j

This finally means that the message for the forgery is just a multiple of the previously
queried message Mn, which completes the first part of the proof.

It remains to show that the probability that an adversary produces an existential
forgery by “accident”, i.e., that two formally different polynomials collide by evaluating
to the same value (or, equivalently, that the difference polynomial evaluates to zero), is
negligible. Suppose that the adversary makes q queries to the signing oracle and O(q)
queries to the group oracles. Then, all involved formal polynomials resulting from query-
ing the group oracles are of degree O(q) and overall there are O(

(
q
2

)
) = O(q2) polyno-

mials that could collide (i.e. whose difference polynomial evaluates to zero). Then, by
the Schwartz-Zippel lemma and the collision argument, the probability of such an error
in the simulation of the generic group isO( q

3

p ) and is, therefore negligible in the security
parameter. ut

Lemma 1. Scheme 1 has perfect adaptation of signatures and perfect adaptation of
signatures under malicious keys.

Proof. Let ~M ∈ (G∗1)`, pk ∈ (G∗2)` and (xi)i∈[`] be such that pk = (xiP̂ )i∈[`]. A
signature (Z, Y, Ŷ ) ∈ G1×G∗1×G∗2 satisfying VerifyR( ~M, (Z, Y, Ŷ ), pk) = 1 is of the
form (y

∑
xiMi,

1
yP,

1
y P̂ ) for some y ∈ Zp∗. ChgRepR( ~M, (Z, Y, Ŷ ), µ, pk) for µ ∈ Zp∗

outputs (yψ
∑
xiµMi,

1
yψP,

1
yψ P̂ ), which is a uniformly random element σ in G1×G∗1×

G∗2 conditioned on VerifyR(µ ~M, σ, pk) = 1.
Scheme 1 moreover satisfies Definition 19, since sk = (xi)i∈[`] is the only element

satisfying VKeyR(sk, pk) = 1 and SignR(µ ~M, sk) outputs a uniformly random element
σ in G1 ×G∗1 ×G∗2 conditioned on VerifyR(µ ~M, σ, pk) = 1 (like ChgRepR). ut

4 Set Commitments

We now introduce a new commitment type that allows for committing to sets and besides
ordinary opening also supports opening of subsets. After formalizing the primitive, we
give an efficient construction with succinct commitments and openings.

Kate, Zaverucha and Goldberg [KZG10] introduce the notion of constant-size poly-
nomial commitments. They present two schemes, one computationally and one perfectly
hiding. Following a similar approach, we construct set commitments which allow us to
commit to a set S ⊂ Zp by committing to a monic polynomial whose roots are the ele-
ments of S. A feature we are aiming for is opening of subsets of the committed set, which
corresponds to opening non-trivial factors of the committed polynomial. Our scheme is
perfectly hiding and computationally binding.
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4.1 Definitions

We first present the model and security properties of our set-commitment scheme. They
are adapted from the polynomial-commitment scheme in [HS14], tailored to sets en-
coded as monic polynomials.

Definition 21 (Set commitments). A set-commitment scheme SC consists of the fol-
lowing PPT algorithms.

Setup(1κ, 1t): This probabilistic algorithm takes as input a security parameter κ and
an upper bound t for the cardinality of committed sets, both in unary form. It out-
puts public parameters pp (which include a description of an efficiently samplable
message space Spp containing sets of maximum cardinality t).

Commit(pp, S): This probabilistic algorithm takes as input the public parameters pp
defining message space Spp and a non-empty set S ∈ Spp. It outputs a commit-
ment C to set S and opening information O.

Open(pp, C, S,O): This deterministic algorithm takes as input the public parameters
pp, a commitment C, a set S and opening information O. If O is a valid opening of
C to S ∈ Spp, it outputs 1, and 0 otherwise.

OpenSubset(pp, C, S,O, T ): This (deterministic) algorithm takes as input the public
parameters pp, a commitment C, a set S ∈ Spp, opening information O and a non-
empty set T . It returns ⊥ if T * S; else it returns a witness W for T being a subset
of the set S committed to in C.

VerifySubset(pp, C, T,W ): This deterministic algorithm takes as input the public pa-
rameters pp, a commitmentC, a non-empty set T and a witnessW . IfW is a witness
for T being a subset of the set committed to in C, it outputs 1, and 0 otherwise.

We call a set-commitment scheme secure if it is correct, binding, subset-sound and hid-
ing. The properties are as follows, where the definitions of correctness, binding and
hiding are as for standard commitment schemes.

Definition 22 (Correctness). A set-commitment scheme SC is correct if for all t > 0,
all κ > 0, all pp ∈ [Setup(1κ, 1t)], all S ∈ Spp and all non-empty T ⊆ S the following
holds:

1. Pr
[
(C,O)←R Commit(pp, S) : Open(pp, C, S,O) = 1

]
= 1 .

2. Pr

[
(C,O)←R Commit(pp, S),
W ← OpenSubset(pp, C, S,O, T )

: VerifySubset(pp, C, T,W ) = 1

]
= 1 .

Definition 23 (Binding). A set-commitment scheme SC is binding if for all t > 0 and
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

pp←R Setup(1κ, 1t),
(C, S,O, S′, O′)←R A(pp) :

Open(pp, C, S,O) = 1 ∧
Open(pp, C, S′, O′) = 1 ∧

S 6= S′

 ≤ ε(κ) .
Subset soundness requires it to be infeasible to perform subset openings to sets that are
not contained in the committed set.
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Definition 24 (Subset-soundness). A set-commitment scheme SC is subset-sound if for
all t > 0 and all PPT adversaries A there is a negligible function ε(·) such that:

Pr

pp←R Setup(1κ, 1t),
(C, S,O, T,W )←R A(pp) :

Open(pp, C, S,O) = 1 ∧
VerifySubset(pp, C, T,W ) = 1 ∧

T * S

 ≤ ε(κ) .
Our hiding notion strengthens the standard one by giving the adversary access to an
OpenSubset oracle that opens the challenge commitment to any subset in the intersection
of the two candidate sets.

Definition 25 (Hiding). A set-commitment scheme SC is hiding if for all t > 0 and all
PPT adversaries A with access to an oracle OpenSubset there is a negligible function
ε(·) such that:

Pr


b←R {0, 1}, pp←R Setup(1κ, 1t),
(S0, S1, st)←R A(pp),
(C,O)←R Commit(pp, Sb),

b∗←R AOpenSubset(pp,C,Sb,O, · ∩S0∩S1)(st, C)

: b∗ = b

− 1

2
≤ ε(κ) .

The scheme SC is perfectly hiding if the above holds for ε ≡ 0.

4.2 The Construction

We now give a construction SC of a set-commitment scheme based on a bilinear group
generator BGGen. For the sake of compact representation, for ∅ 6= S ⊂ Zp we define
the polynomials fS(X) :=

∏
s∈S(X − s) =

∑|S|
i=0 fi ·Xi and f∅(X) := 1. For a group

generator P , since fS(a)P =
∑|S|

i=0(fi ·ai)P , one can efficiently compute fS(a)P when
given

(
aiP

)|S|
i=0

but not a itself.

Setup(1κ, 1t): On input a security parameter 1κ and a maximum set cardinality 1t

run BG = (p,G1,G2,GT , e, P, P̂ )←R BGGen(1κ), pick a←R Zp and output pp ←
(BG, (aiP, aiP̂ )i∈[t]), which defines message space

Spp = {S ⊂ Zp | 0 < |S| ≤ t} .

Commit(pp, S): On input pp = (BG, (aiP, aiP̂ )i∈[t]) and a set S ∈ Spp:
– If for some a′ ∈ S: a′P = aP , output C←R G∗1 and opening O ← (1, a′);
– Else pick ρ←R Zp∗, compute C ← ρ · fS(a)P ∈ G∗1 and output (C,O) with
O ← (0, ρ).

Open(pp, C, S,O): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C, set S, and
opening O = (b, ρ): if C /∈ G∗1 or ρ /∈ Zp∗ or S /∈ Spp then return ⊥.

– If O = (1, a′) and a′P = aP then return 1; else return 0.
– If O = (0, ρ) and C = ρ · fS(a)P , return 1; else return 0.

OpenSubset(pp, C, S,O, T ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C, a
set S, opening O and a set T , if Open(pp, C, S,O) = 0 or T * S or T = ∅ then
return ⊥.

– If O = (1, a′): if a′ ∈ T , return W ← ⊥; else return W ← fT (a
′)−1 · C.
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– If O = (0, ρ), output W ← ρ · fS\T (a)P .

VerifySubset(pp, C, T,W ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C, a
set T and a witness W : if C /∈ G∗1 or T /∈ Spp, return 0.

– If for some a′ ∈ T : a′P = aP then: if W = ⊥, return 1; else return 0.
– Else: if W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ), return 1; else return 0.

We have augmented the scheme from [HS14] by a special opening (of the form (1, a))
for the case that a set S contains the trapdoor a. (Under the t-co-DL assumption, such
sets are infeasible to find.) This makes the scheme perfectly correct and perfectly hiding
while still maintaining computational binding and subset-soundness.

We have defined the scheme in a way that reduces the computational complex-
ity of the prover in the ABC system in Section 5.4. To improve the performance of
VerifySubset, one could define a scheme with W ∈ G2 (for which VerifySubset would
have to compute fT (a)P ).

Security. We prove SC secure under the q-co-DL and the q-co-GSDH assumption. We
use both assumptions in a static way, as q ← t is a system parameter and fixed a priori.

Theorem 3. SC is correct.

Proof. Let t, κ > 0 and (BG, (aiP, aiP̂ )i∈[t])←R Setup(1κ, 1t) with BG = (p,G1,G2,

GT , e, P, P̂ ), let S ⊂ Zp with 0 < |S| ≤ t and let ∅ 6= T ⊆ S. We consider two cases.
(1) a ∈ S. Commit(pp,S) returns (C,O) with C ∈ G∗1 and O = (1, a). Open on input
(C, S, (1, a)) returns 1, which shows the first property. OpenSubset(pp, C, S,O, T ) re-
turns W ← ⊥ if a ∈ T and W ← fT (a)

−1 ·C if a 6∈ T . If a ∈ T then VerifySubset(pp,
C, T,W ) returns 1, asW = ⊥. If a /∈ T , it returns 1 ifC,W ∈ G∗1 and e(W, fT (a)P̂ ) =
e(C, P̂ ). This is satisfied, sinceW ∈ G∗1 and e(W, fT (a)P̂ ) = e(fT (a)

−1·C, fT (a)P̂ ) =
e(C, P̂ ).
(2) a 6∈ S. Commit(pp, S) returns (C, (0, ρ)) with C = ρ · fS(a)P and ρ ∈ Zp∗.
Open returns 1, since ρ ∈ Zp∗, S ∈ Spp, fS(a) 6= 0, thus C ∈ G∗1 and C has the required
form. OpenSubset(pp, C, (0, ρ), T ) returnsW ← ρ·fS\T (a)P . On input (pp, C, T,W ),
VerifySubset returns 1 if C,W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ). Since ρ ∈ Zp∗ and
a 6∈ S we have W = ρ · fS\T (a)P ∈ G∗1; moreover, e(W, fT (a)P̂ ) = e(ρ · fS(a) ·
fT (a)

−1 · P, fT (a)P̂ ) = e(ρ · fS(a)P, P̂ ) = e(C, P̂ ); so VerifySubset returns 1. ut

Theorem 4. If the t-co-DL assumption (Definition 4) holds then SC is binding.

Proof. We show that if A is able to output a commitment C and two valid openings to
distinct sets S, S′ then we can construct an adversary B that breaks t-co-DL: B obtains
an instance I = (BG, (aiP, aiP̂ )i∈[t]), sets pp ← I and runs A(pp). If A outputs a
collision (C, S,O, S′, O′) then by Open(pp, C, S,O) = 1 and Open(pp, C, S′, O′) = 1
with S 6= S′, it holds that C ∈ G∗1 and ∅ 6= S, S′ ⊂ Zp. If O = (1, a′) then by
Open(pp, C, S,O) = 1, we have a′P = aP and B outputs a′ as solution to the t-co-DL
problem. The case O′ = (1, a′) is dealt analogously. Else, we have O = (0, ρ), O′ =
(0, ρ′) with ρ, ρ′ ∈ Zp∗ and:

ρ · fS(a)P = C = ρ′ · fS′(a)P , (10)
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from which we have ρ · fS(a)− ρ′ · fS′(a) = 0. Since S and S′ are both non-empty and
distinct, we have deg fS > 0 and deg fS′ > 0 and fS 6= fS′ . Furthermore, fS and fS′
are monic and ρ, ρ′ 6= 0, thus t(X) ← ρ · fS(X) − ρ′ · fS′(X) 6= 0 while t(a) = 0 by
(10). Therefore, a is a root of the non-zero polynomial t(X) ∈ Zp[X] and t(X) is known
to B. Factoring t(X) yields a, which B outputs as solution to the t-co-DL problem. ut

Theorem 5. If the t-co-GSDH assumption (Definition 8) holds then SC is subset-sound.

Proof. We show that if A is able to output (C, S,O, T,W ), such that O is a valid
opening of C to set S, VerifySubset(pp, C, T,W ) = 1 and T * S, then we can
construct an adversary B against t-co-GSDH as follows. On input an instance I =
(BG, (aiP, aiP̂ )i∈[t]),B sets pp← I and runsA(pp); assumeA breaks subset-soundness
by outputting (C, S,O, T,W ).

We first deal with the case a ∈ T , which B can efficiently check. In this case B
chooses c ∈ Zp \ {−a}, and outputs a solution (1, X + c, 1

a+cP ) to t-co-GSDH.
For the rest of the proof, assume a /∈ T . If A is successful, we have Open(pp, C,

S,O) = 1. If O = (1, a′) then a′P = aP and B chooses c ∈ Zp \ {−a′}, and outputs a
solution (1, X + c, 1

a′+cP ) to t-co-GSDH. Else, we have O = (0, ρ) with ∅ 6= S ⊂ Zp,
|S| ≤ t, ρ ∈ Zp∗ and

C = ρ · fS(a)P ∈ G∗1 . (11)

From VerifySubset(pp, C, T,W ) = 1 we have ∅ 6= T ⊂ Zp, |T | ≤ t, W ∈ G∗1 and
e(W, fT (a)P̂ ) = e(C, P̂ ), which by (11) equals e(ρ · fS(a)P, P̂ ). Since ρ 6= 0, we have

e(ρ−1W, fT (a)P̂ ) = e(fS(a)P, P̂ ) . (12)

We further distinguish two cases:
(1) 0 < |S| < |T |. Then 0 < deg fS < deg fT ≤ t, which together with (12) means that
(fS , fT , ρ

−1W ) is a solution to the t-co-GSDH problem.
(2) 0 < |T | ≤ |S|. Then 0 < deg fT ≤ deg fS . By polynomial division we obtain
h, r with fS(X) = h(X)fT (X) + r(X) and deg r < deg fT . Since T * S, we have
0 ≤ deg r and moreover deg h ≤ deg fS ≤ t. Plugging this into (12), we get:

e
(
ρ−1W, fT (a)P̂

)
= e
(
h(a)fT (a)P + r(a)P, P̂

)
= e
(
h(a)P, fT (a)P̂

)
+ e
(
r(a)P, P̂

)
and thus

e
(
ρ−1W − h(a)P, fT (a)P̂

)
= e
(
r(a)P, P̂

)
.

Together with 0 ≤ deg r < deg fT ≤ t, this means that (r, fT , ρ−1W − h(a)P ) is
a solution to the t-co-GSDH problem, which B can efficiently compute from pp, since
deg h ≤ t. ut

Theorem 6. SC is perfectly hiding.

Proof. We consider the view of an unbounded adversary A in the hiding experiment
and assume w.l.o.g. that every query T to the OpenSubset oracle satisfies T ⊂ Zp and
∅ 6= T ⊆ (S0 ∩ S1). We distinguish several cases.
(1) A chooses S0, S1 with a ∈ S0 ∩ S1. Then for both b ∈ {0, 1}, Cb is uniformly
random in G∗1 and the jth query Tj to OpenSubset is answered with ⊥ if a ∈ Tj , and
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with Wj,b = fT (a)
−1 · Cb if a 6∈ Tj . The bit b is thus information-theoretically hidden

from A.

(2) a is contained in one of the sets S0, S1; say a ∈ S0. Note that for all queries Tj , we
have a /∈ Tj . If b = 0 then A receives a uniformly random C0 and when it queries Tj
to the OpenSubset oracle, it receives Wj,0 = fTj (a)

−1 · C0. If b = 1 then A receives
C1 = ρ · fS1(a)P for a random ρ ∈ Zp∗, and query Tj to the OpenSubset oracle returns
witness Wj,1 = ρ · fS1\Tj (a) · P = ρ · fS1(a) · fTj (a)−1 · P = fTj (a)

−1 · C1. Hence,
for both b ∈ {0, 1} we have Cb is uniformly random in G∗1 and Wj,b = fTj (a)

−1 ·Cb for
all j; the bit b is thus information-theoretically hidden from A.

(3) A chooses S0, S1 with a 6∈ S0 ∪ S1. Then for both b ∈ {0, 1}: Cb = ρ · fSb(a)P for
random ρ ∈ Zp∗ and a query for Tj is answered byWj,b = ρ·fSb\Tj (a)P = fTj (a)

−1·Cb.
Again for both b ∈ {0, 1}, A receives a uniformly random element Cb and query replies
that do not depend on b; the bit b is thus information-theoretically hidden from A. ut

5 Building an ABC System

In this section we present an application of SPS-EQ and set commitments introduced
in the two previous sections; we use them as basic building blocks for an attribute-
based credential system. ABC systems are usually constructed in one of two ways. They
can be built from blind signatures: a user obtains a blind signature from an issuer on
(commitments to) attributes and later shows the signature, provides the shown attributes
and proves knowledge of all unrevealed attributes [Bra00, BL13, FHS15]. The drawback
of this approach is that such credentials can only be shown once in an unlinkable fashion
(one-show).

Anonymous credentials supporting an arbitrary number of unlinkable showings (multi-
show) can be obtained in a similar vein using a different type of signatures: A user ob-
tains a signature on (commitments to) attributes, then randomizes the signature (so that
the resulting signature is unlinkable to the issued one) and proves in zero-knowledge the
correspondence of this signature to the shown attributes as well as the undisclosed at-
tributes [CL03, CL04].5 Our approach also achieves multi-show ABCs, but differs from
the latter. We randomize both the signature and the message (which is a set commitment
to attributes) and then use subset-opening of set commitments for selective constant-size
showings of attributes. We thereby completely avoid costly ZKPoKs over the attributes,
which in all other existing approaches require communication and typically also compu-
tation in the number of shown/encoded attributes.

We start by discussing the functionality and security of ABCs in Sections 5.1 and 5.2.
After providing some intuition for our construction (Section 5.3), we present the scheme
(Section 5.4) and analyze its security (Section 5.5). Finally, we give a performance and
functionality comparison with other schemes in Section 5.6.

5 More generally, the user could prove knowledge of a signature without revealing it. Although this can
be a significant performance bottleneck, this allows for using ABCs with conventional signatures such
as ECDSA, as in [CGM16].
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5.1 Model of ABCs

In an ABC system there are different organizations issuing credentials to users. These
users can then anonymously demonstrate possession of their credentials to verifiers. The
system is called multi-show when transactions (issuing and showings) performed by the
same user cannot be linked. A credential cred for user i is issued by an organization for a
set of attributes A and the user can show a subset D of A while hiding the other attributes.
Note that in our definition there is no setup and we do not assume any trusted parameters
at all.

Definition 26 (ABC system). An attribute-based anonymous credentials system con-
sists of the following PPT algorithms:

OrgKeyGen(1κ, 1t): A probabilistic algorithm that gets (unary representations of) a se-
curity parameter κ and an upper bound t for the size of attribute sets. It outputs a key
pair (osk, opk) for an organization.

UserKeyGen(opk): A probabilistic algorithm that gets an organization public key and
outputs a key pair (usk, upk) for a user.(

Obtain(usk, opk, A), Issue(upk, osk, A)
)
: These algorithms are run by a user and an

organization, respectively, who interact during execution. Obtain is a probabilistic
algorithm that takes as input the user’s secret key usk, an organization’s public key
opk and a non-empty attribute set A of size |A| ≤ t. Issue is a probabilistic algorithm
that takes as input a user public key upk, the organization’s secret key osk and a
non-empty attribute set A of size |A| ≤ t. At the end of this protocol, Obtain outputs
a credential cred for the user for attributes A or ⊥ if the execution failed.(

Show(opk, A, D, cred),Verify(opk, D)
)
: These algorithms are run by a user and a ver-

ifier, respectively, who interact during execution. Show is a probabilistic algorithm
that takes as input the organization public key opk, an attribute set A of size |A| ≤ t, a
non-empty set D ⊆ A (representing the attributes to be shown) and a credential cred.
Verify is a deterministic algorithm that takes as input the organization’s public key
opk and a set D. At the end of the protocol, Verify outputs 1 or 0 indicating whether
it accepts the credential showing or not.

5.2 Security of ABCs

We present a security model for multi-show ABCs, which is game-based and in the
spirit of group signatures [BSZ05] and considers malicious organization keys. We note
that at the time of designing our model, there were no other comprehensive models for
ABC systems.6 We start with a high-level overview of the required security properties
and note that we consider only a single organization in our model of unforgeability
and anonymity (since all organizations have independent signing keys, an extension to
multiple organizations is straightforward):

Correctness: A showing of a credential with respect to a non-empty set D of attributes
always verifies if the credential was issued honestly for some attribute set A with
D ⊆ A.

6 As already mentioned earlier, there are independently (and subsequently) developed very strong
simulation-based models in [CKL+16, CDHK15].
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Unforgeability: A user cannot perform a valid showing of attributes for which she does
not possess a credential. Moreover, no coalition of malicious users can combine their
credentials and prove possession of a set of attributes which no single member has.
This holds even after seeing showings of arbitrary credentials by honest users (the
notion thus covers replay attacks).

Anonymity: During a showing, no verifier and no (malicious) organization (even if they
collude) is able to identify the user or learn anything about the user, except that she
owns a valid credential for the shown attributes. Furthermore, different showings of
the same credential are unlinkable.

We now provide formal definitions of these properties, for which we introduce the fol-
lowing global variables and oracles.

Global variables. At the beginning of each experiment, either the experiment com-
putes an organization key pair (osk, opk) or the adversary outputs opk. In the anonymity
game there is a bit b, which the adversary must guess.

In order to keep track of all honest and corrupt users, we introduce the sets HU, and
CU, respectively. We use the lists UPK, USK, CRED, ATTR and OWNR to track user public
and secret keys, issued credentials and corresponding attributes and to which user they
were issued. Furthermore, we use the sets JLoR and ILoR to store the issuance indices
and corresponding users that have been set during the first call to the left-or-right oracle
in the anonymity game.

Oracles. The oracles are as follows:

OHU(i) takes as input a user identity i. If i ∈ HU ∪ CU, it returns ⊥. Otherwise, it creates
a new honest user i by running (USK[i], UPK[i])←R UserKeyGen(opk), adding i to HU

and returning UPK[i].

OCU(i, upk) takes as input a user identity i and (optionally) a user public key upk; if
user i does not exist yet, a new corrupt user with public key upk is registered, while
if i is honest, its secret key and all credentials are leaked.
In particular, if i ∈ CU or if i ∈ ILoR (that is, i is a challenge user in the anonymity
game) then the oracle returns ⊥. If i ∈ HU then the oracle removes i from HU and
adds it to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i. Otherwise (i.e.
i /∈ HU ∪ CU), it adds i to CU and sets UPK[i]← upk.

OObtIss(i, A) takes as input a user identity i and a set of attributes A. If i 6∈ HU, it returns
⊥. Otherwise, it issues a credential to i by running

(cred,>)←R
(
Obtain(USK[i], opk, A), Issue(UPK[i], osk, A)

)
.

If cred = ⊥, it returns ⊥. Else, it appends (i, cred, A) to (OWNR, CRED, ATTR)7 and
returns >.

OObtain(i, A) lets the adversary, who in the anonymity game impersonates a malicious
organization, issue a credential to an honest user. It takes as input a user identity i

7 We use this as a shorthand for “appends i to OWNR, cred to CRED and A to ATTR.
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and a set of attributes A. If i 6∈ HU, it returns ⊥. Otherwise, it runs

(cred, · )←R
(
Obtain(USK[i], opk, A), ·

)
,

where the Issue part is executed by the adversary. If cred = ⊥, it returns ⊥. Else, it
appends (i, cred, A) to (OWNR, CRED, ATTR) and returns >.

OIssue(i, A) lets the adversary, who in the unforgeability game can impersonate a mali-
cious user, obtain a credential from an honest organization. It takes as input a user
identity i and a set of attributes A. If i 6∈ CU, it returns ⊥. Otherwise, it runs

( · , I)←R
(
· , Issue(UPK[i], osk, A)

)
,

where the Obtain part is executed by the adversary. If I = ⊥, it returns ⊥. Else, it
appends (i,⊥, A) to (OWNR, CRED, ATTR) and returns >.

OShow(j, D) lets the adversary play a dishonest verifier in a credential showing by an
honest user. It takes as input an index of an issuance j and a set of attributes D. Let
i← OWNR[j]. If i 6∈ HU, it returns ⊥. Otherwise, it runs

(S, · )←R
(
Show(opk, ATTR[j], D, CRED[j]), ·

)
,

where the Verify part is executed by adversary.

OLoR(j0, j1, D) is the challenge oracle in the anonymity game where the adversary must
distinguish (multiple) showings of two credentials CRED[j0] and CRED[j1]. The oracle
takes two issuance indices j0 and j1 and a set of attributes D. If JLoR 6= ∅ and JLoR 6=
{j0, j1}, it returns⊥. Let i0 ← OWNR[j0] and i1 ← OWNR[j1]. If JLoR = ∅ then it sets
JLoR ← {j0, j1} and ILoR ← {i0, i1}. If i0, i1 6∈ HU or D 6⊆ ATTR[j0] ∩ ATTR[j1], it
returns ⊥. Else, it runs

(S, · )←R
(
Show(opk, ATTR[jb], D, CRED[jb]), ·

)
,

(with b set by the experiment) where the Verify part is executed by the adversary.

Using the global variables and oracles just defined, we now define security of an ABC
system:

Definition 27 (Correctness). An ABC system is correct, if for all κ > 0, all t > 0 and
all A with 0 < |A| ≤ t and all ∅ 6= D ⊆ A it holds that:

Pr


(osk, opk)←R OrgKeyGen(1κ, 1t),
(usk, upk)←R UserKeyGen(opk),
(cred,>)←R (Obtain(usk, opk, A),

Issue(upk, osk, A))

:
(>, 1)←R (Show(opk, A, D, cred),

Verify(opk, D))

 = 1 .

Definition 28 (Unforgeability). An ABC system is unforgeable, if for all t > 0 and
all PPT adversaries A having oracle access to O := {OHU,OCU,OObtIss,OIssue,OShow}
there is a negligible function ε(·) such that

Pr

 (osk, opk)←R OrgKeyGen(1κ, 1t),
(D, st)←R AO(opk),
(·, b∗)←R (A(st),Verify(opk, D))

:
b∗ = 1 ∧
∀j : OWNR[j] ∈ CU

⇒ D 6⊆ ATTR[j]

 ≤ ε(κ) .
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Definition 29 (Anonymity). An ABC system is anonymous, if for all t > 0 and all PPT
adversaries A having oracle access to O := {OHU,OCU,OObtain,OShow,OLoR} there is
a negligible function ε(·) such that

Pr

[
b←R {0, 1}, (opk, st)←R A(1κ, 1t),
b∗←R AO(st) : b∗ = b

]
− 1

2
≤ ε(κ) .

5.3 Intuition of Our Construction

Our construction of ABCs is based on SPS-EQ, on set commitments with subset open-
ings and on a single constant-size proof of knowledge for proving freshness. In con-
trast to this, the proofs of knowledge in existing ABC systems [Bra00, CL01, CL03,
CL04, CL11, CL13] require computation and communication that is linear in the num-
ber of shown (or even issued) attributes. However, aside from selective disclosure of
attributes, they usually allow to prove statements about non-revealed attribute values,
such as AND, OR and NOT, interval proofs, as well as conjunctions and disjunctions
of the aforementioned. We achieve less expressiveness; our construction supports se-
lective disclosure as well as AND statements about attributes (as the constructions in
[CL11, CL13, CDHK15], of which only the latter also achieves constant-size show-
ings). A user can thus either open some attributes and their corresponding values or
solely prove that some attributes are encoded in the respective credential without reveal-
ing their concrete values. Note that one can always associate sets of values to attributes,
so that users are not required to reveal the full attribute value, but only predefined “state-
ments” about the attribute value, e.g. “ 01.01.1980 ”, “>16 ” or “>18 ” for an attribute
label birthdate. This allows emulation of proving properties about attribute values.

Example. To give an idea of the expressiveness of our construction, we include an
example of an attribute set A. We are given a user with the following set of attribute and
value strings:

A = {“gender, male”, “birthdate, 01.01.1980”,
“drivinglicense,#”, “drivinglicense, car”} .

Note that # indicates an attribute value that allows to prove possession of the attribute
without revealing any concrete value. A showing could, for instance, involve the follow-
ing attributes D and its hidden complement A \ D:

D = {“gender, male”, “drivinglicense,#”}
A \ D = {“birthdate, 01.01.1980”, “drivinglicense, car”} .

Outline. We assume attributes to be values from Zp and note that we can define at-
tributes of arbitrary format by using a collision-resistant hash function H : {0, 1}∗ →
Zp. In our construction a credential cred of user i consists of an elementC from a bilinear
group, a scalar r ∈ Zp∗, an opening O of C and an SPS-EQ signature σ on (C, r ·C,P ).
The element C is a set commitment to a set of attributes A ⊂ Zp, whose randomness is
the user secret usk (thus, its opening O contains usk or the commitment trapdoor a, if
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a ∈ A). When obtaining a credential, the user performs a ZKPoK ΠRU(upk) to prove
knowledge of usk, which allows us to extract usk for corrupt users in the proof of un-
forgeability.

The values C and r define an equivalence class [(C, r · C,P )]R that is unique for
each credential with overwhelming probability. (The scalar r and the third credential
component are required to prove unforgeability.) During a showing, a random represen-
tative of this class, (C1, C2, C3)←R [(C, r · C,P )]R, together with an updated signature
σ′ is presented. The randomized commitment C1 is then subset-opened to the shown at-
tributes D ⊆ A (representing selective disclosure). Hence, showings additionally include
a witness W and a verifier checks whether the encodings of the disclosed attributes and
W give a valid subset opening of C1.

Freshness. We have to prevent transcripts of valid showings from being replayed by
someone not in possession of the credential. To this end, we require the user to conduct
an (interactive) proof of knowledge PoK{β | C3 = βP} of the discrete logarithm of
the third component C3 = µP of a shown credential cred′ = ((C1, C2, C3), σ

′), i.e.,
the randomizer µ used in the showing protocol, which provides a fresh challenge for
every showing. For the unforgeability reduction, we have the user additionally prove
knowledge of r = logC1

C2 by conducting a proof of knowledge PoK{α | C2 = αC1}.
We use the compact notationΠRF(C1, C2, C3) for the AND-composition of both proofs,
i.e., ΠRF(C1, C2, C3) := PoK{(α, β) | C2 = αC1 ∧ C3 = βP}.

Malicious organization keys. In contrast to anonymity notions usually considered for
ABCs, our model guarantees anonymity even against adversaries that generate the or-
ganization keys maliciously. Our construction is in the standard model and organization
public keys consist of an SPS-EQ public key pk and set-commitment parameters ppsc.
We augment the issuing protocol sketched above and let the (malicious) organization
prove knowledge of a secret key that matches its public key to the user (which allows us
to extract the signing key in the anonymity proof).

For an SPS-EQ scheme SPS-EQ we define an NP-relationRO, whose statements and
witnesses are organization public and private keys, i.e.: (pk, sk) ∈ R′O ⇔ VKeyR(sk,
pk) = 1. In our proof of anonymity we also need to extract the set-commitment trapdoor
a ∈ Zp, so we augment the above relation to:

((aP, pk), (w1, w2)) ∈ RO ⇐⇒ (aP = w1P ∧ VKeyR(w2, pk) = 1) ,

where aP is from the set-commitment parameters ppsc contained in opk. For compact-
ness, we use the notationΠRO(opk) and require the proof to be a perfect zero-knowledge
proof of knowledge.

ZKPoKs and concurrent security. We will consider all ZKPoKs in a black-box way
and assume that they are 4-move ZKPoK proofs from [CDM00], which are based on
Σ-protocols and feature rewindable black-box access to the verifier (for perfect zero-
knowledge) and the prover (for knowledge soundness) respectively.

Note however that the ZKPoKs from [CDM00] are not concurrently secure and so
neither is any instantiation of Scheme 2 using them. Thus, each organization, each user
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and each verifier must not run more than one protocol execution at once. We will briefly
discuss the idea of a concurrently secure scheme variant in the CRS model in Remark 1.

5.4 The Construction of the ABC System

Our ABC construction is based on any perfectly adapting structure-preserving signature
scheme on equivalence classes and the set-commitment scheme from Section 4.2 and
is described in Scheme 2. In particular, since the organization public key is fully de-
termined by the adversary (for malicious-key anonymity), we assume the bilinear group
generation algorithm inside the set-commitment-setup algorithm to be deterministic8 and
produce the same bilinear group for each security parameter.9 We will base our proofs
on assumptions that are modified accordingly, i.e., that are with respect to a deterministic
BGGen producing one bilinear group per security parameter.

Randomizable set commitment. The instantiation of set commitments presented in
Section 4.2 is randomizable in the sense that commitments as well as subset-opening wit-
nesses can be consistently randomized. For a compact presentation of our ABC construc-
tion and to smoothly integrate the set-commitment scheme with the SPS-EQ scheme,
in Scheme 2 we make the randomness ρ of the Commit algorithm explicit, i.e., write
Commit(pp, S; ρ). We also stress that in (Show,Verify) after the OpenSubset algorithm
has been run, we randomize the witness W using µ to obtain W ′. Observe that the re-
sulting witness is then consistently randomized with the set commitment C1.

Optimizations. Note that the first move in the showing protocol can be combined with
the first move ofΠRF , meaning the showing protocol consists of a total of 4 moves, when
using 4-move ZKPoKs. Furthermore, note that issuing can be made more efficient with
regard to both communication complexity and computational effort, as osk contains set-
commitment trapdoor a: instead of using a pairing to check C for consistency, the issuer
can compute it herself as C ← fA(a) · upk. (We wrote our scheme so that a is never
used and ppsc can then be moved to public parameters in the concurrently secure variant
discussed below.)

5.5 Security

The correctness of Scheme 2 follows by inspection.

Theorem 7. Let ΠRF , ΠRU and ΠRO be ZKPoKs. If the t-co-DL assumption holds, SC
is subset-sound and SPS-EQ is EUF-CMA-secure then Scheme 2 is unforgeable.

In the proof of unforgeability we distinguish whether the adversary wins the game by
forging a signature, breaking subset-opening soundness of the commitment scheme or
computing a discrete logarithm. We can efficiently determine which was the case since

8 This assumption was also made by Bellare et al. [BFS16] and is justified by actual implementations. For
example, BN-curves [BN06], the most common choice for Type-3 pairings, are generated deterministi-
cally.

9 Hence, the only random choice made by the set-commitment setup algorithm is picking the commitment
trapdoor a. Inside OrgKeyGen, we will make this randomness explicit.

33



OrgKeyGen(1κ, 1t): Given κ, t > 0, compute BG = (p,G1,G2,GT , e, P, P̂ )← BGGen(1κ);

pick a←R Zp, run ppsc = (BG, (aiP, aiP̂ )i∈[t])← Setup(1κ, 1t; a), which defines

Spp ← {A ⊂ Zp | 0 < |A| ≤ t}.
Run (sk, pk)←R KeyGenR(BG, 1

`) for ` = 3 and return (osk, opk)← ((a, sk), (ppsc, pk)).

UserKeyGen(opk): From opk derive security parameter κ > 0, deterministically compute BG ←
BGGenR(1

κ), pick usk←R Zp∗, set upk← usk · P and return (usk, upk).

(Obtain, Issue): Using ΠRO
(
opk = ((BG, (aiP, aiP̂ )i), pk)

)
:= PoK

{
(α, ~β) | αP = aP ∧

VKeyR(
~β, pk) = 1

}
and ΠRU(upk) := PoK{α | αP = upk}, Obtain and Issue interact as

follows:

Obtain(usk, opk, A) Issue(upk, osk, A)

BG← BGGenR(1
κ) If A /∈ Spp, return ⊥

If A /∈ Spp, return ⊥
ΠRU(upk)
←−−−−−−→→ If ΠRU(upk) fails, return ⊥

If ΠRO(opk) fails, return ⊥ ←
ΠRO(opk)
←−−−−−−→

(C,O)← Commit(ppsc, A; usk)

r←R Zp∗, R← r · C C,R−−−−−−−−−→ If e(C, P̂ ) 6= e(upk, fA(a)P̂ ) and

∀a′ ∈ A : a′P 6= aP then return ⊥
If VerifyR((C,R, P ), σ, pk) = 0

σ←−−−−−−−−− Else σ←R SignR((C,R, P ), sk)

return ⊥

Else return cred← (C, σ, r,O)

(Show,Verify): Using ΠRF(C1, C2, C3) := PoK{(α, β) | C2 = αC1 ∧ C3 = βP}, Show and

Verify interact as follows:

Show(opk, A, D, cred) Verify(opk, D)

Let cred = (C, σ, r,O); µ←R Zp∗ Let opk = (ppsc, pk)

σ′←R ChgRepR((C, r · C,P ), σ, µ, pk)

cred′ ←
(
(C1, C2, C3) = µ · (C, r · C,P ), σ′

)
W ← OpenSubset(ppsc, C, A, O, D)

W ′ ← µ ·W cred′,W ′−−−−−−−−−−−−→
ΠRF(C1, C2, C3)←−−−−−−−−−−→→ If ΠRF(C1, C2, C3) fails, return 0

Return
(
VerifyR(cred

′, pk) ∧

VerifySubset(ppsc, C1, D,W
′)
)

Fig. 2. Scheme 2, a multi-show ABC system

the knowledge extractor of the ZKPoK ΠRF lets us extract the credential used by the
adversary.

Proof (of Theorem 7). We first introduce the following syntactic changes to the exper-
iment, which let us distinguish different types of forgeries: (1) We include the value R
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in credentials cred output by Obtain (these belong to honest users and are now of the
form cred = ((C,R), σ, r, O)). (2) When the adversary makes a valid call to OIssue, the
experiment receives the values C,R and produces a signature σ; instead of appending
⊥ to the list CRED, the oracle now appends ((C,R), σ,⊥,⊥). Note that the adversary’s
view in the experiment remains unchanged.

Assume now an efficient adversary A wins the unforgeability game (Definition 28)
with non-negligible probability and let ((C∗1 , C

∗
2 , C

∗
3 ), σ

∗) be the message-signature
pair it uses and W ∗ be the witness for an attribute set D∗ 6⊆ ATTR[j], for all j with
OWNR[j] ∈ CU; moreover, the ZKPoK ΠRF(C∗1 , C

∗
2 , C

∗
3 ) verifies. We distinguish the fol-

lowing cases:

Type 1: [(C∗1 , C
∗
2 , C

∗
3 )]R 6= [(C,R, P )]R for ((C,R), σ, ∗, ∗) = CRED[j] for all is-

suance indices j (i.e., OWNR[j] ∈ HU ∪ CU). The pair ((C∗1 , C
∗
2 , C

∗
3 ), σ

∗) is thus a
signature forgery and using A we construct an adversary B that breaks the EUF-
CMA security of the SPS-EQ scheme.

Type 2: [(C∗1 , C
∗
2 , C

∗
3 )]R = [(C,R, P )]R where ((C,R), σ, ∗, ∗) = CRED[j] for some

index j with OWNR[j] ∈ CU. Since A only wins if D 6⊆ ATTR[j], it must have broken
subset soundness. We useA to construct an adversaryB that breaks subset soundness
of the set-commitment scheme SC.

Type 3: [(C∗1 , C
∗
2 , C

∗
3 )]R = [(C,R, P )]R where ((C,R), σ, r, O) = CRED[j] for some

index j with OWNR[j] ∈ HU. Then, we use A to break q-co-DL.

Type 1. This reduction is straightforward. B interacts with a challenger C in the EUF-
CMA game for SPS-EQ and B simulates the ABC-unforgeability game for A.
C runs (sk, pk)←R KeyGenR(BG, 1

3) and gives pk to B. Then, B picks a←R Zp, de-
fines ppsc ← (BG, (aiP, aiP̂ )i∈[t]) and sets (osk, opk) ← ((a,⊥), (ppsc, pk)). It next
runs A(opk) and simulates the environment and the oracles. All oracles are executed as
in the real game, except for the following oracles, which use the signing oracle instead
of the signing key sk:

OObtIss(i, A): B computes (C,O)←R Commit(ppsc, A, USK[i]), picks r←R Zp∗ and then
queries its oracle SignR(·, sk) on (C, r · C,P ) to obtain σ; B appends (i, ((C, r ·
C), σ, r, O), A) to (OWNR, CRED, ATTR).

OIssue(i, A): B runs this oracle by running the simulator S of ZKPoK ΠRO(opk) (as it
does not know sk = osk[2]), and instead of signing (C,R, P ), B obtains the signa-
ture σ from C’s signing oracle. If successful, B appends (i, ((C,R), σ,⊥,⊥), A) to
(OWNR, CRED, ATTR) and returns >.

Note that by perfect zero-knowledge of ΠRO(opk) the simulation of OIssue is perfect,
and so is that of OObtIss. When A outputs (D∗, st), B runs A(st) and interacts with A
as verifier in a showing protocol. IfA delivers a valid showing using ((C∗1 , C

∗
2 , C

∗
3 ), σ

∗)
and conductingΠRF(C∗1 , C

∗
2 , C

∗
3 ) then B runs the knowledge extractor ofΠRF to obtain

a witness w = (r′′, µ) with C∗3 = µP . If there is a credential ⊥ 6= ((C ′, R′), σ′, ∗, ∗) ∈
CRED such that (C ′, R′, P ) = µ−1 · (C∗1 , C∗2 , C∗3 ) then B aborts. (In this case, the forgery
is not of Type 1.) Otherwise, B has never queried a signature for class [(C∗1 , C

∗
2 , C

∗
3 )]R

and outputs ((C∗1 , C
∗
2 , C

∗
3 ), σ

∗), which is a forgery.B breaks thus EUF-CMA of SPS-EQ.

Type 2. B interacts with the challenger C in the subset-soundness game for SC for some
t > 0. First, C generates set-commitment parameters ppsc ← (BG, (aiP, aiP̂ )i∈[t]) with
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BG = (p,G1,G2,GT , e, P, P̂ ) = BGGenR(1
κ) and sends ppsc to B. B generates a

key pair (sk, pk)←R KeyGenR(BG, 1
3), sets (osk, opk)← ((⊥, sk), (ppsc, pk)) and runs

A(opk), simulating the oracles. All oracles are as in the real game, except for OObtIss,
in which B simply ignores the first two moves ΠRU and ΠRO , and OIssue, which is
simulated as follows (as B does not know a = osk[1]):

OIssue(i, A): The oracle is simulated as prescribed except for running the simulator for
ΠRO(opk). When A conducts ΠRU(upk), B runs the extractor for ΠRU to extract
usk and sets USK[i]← usk.

By perfect zero-knowledge of ΠRO(opk) the simulation of the oracle OIssue is perfect.
Moreover, note that B stores the secret keys of all users (all i ∈ HU ∪ CU).

When A outputs (D∗, st), B runs A(st) and interacts with A as verifier in a showing
protocol. Assume A delivers a valid showing using ((C∗1 , C

∗
2 , C

∗
3 ), σ

∗) and a witness
W ∗ for the attribute set D∗ such that D∗ 6⊆ ATTR[j] for all j with OWNR[j] ∈ CU and by
conducting ΠRF(C∗1 , C

∗
2 , C

∗
3 ). Then B runs the knowledge extractor of ΠRF to obtain

a witness w = (r′′, µ) such that C∗3 = µP . Let (C ′, R′, P ) = µ−1 · (C∗1 , C∗2 , C∗3 ); if
there is no credential ⊥ 6= ((C ′, R′), ∗, ∗, ∗) ∈ CRED then B aborts (the forgery was of
Type 1). Otherwise, let j∗ be such that ((C ′, R′), ∗, ∗, ∗) = CRED[j∗]. If OWNR[j∗] ∈ HU

then B aborts (the forgery was of Type 3). Else, we have OWNR[j∗] ∈ CU and D∗ *
ATTR[j∗]. If for some a′ ∈ ATTR[j∗] : a′P = aP then B sets O∗ ← (1, a′). Else, B
sets O∗ ← (0, µ · USK[OWNR[j∗]]). B outputs (C∗1 , ATTR[j

∗], O∗, D∗,W ∗), which satisfies
D∗ 6⊆ ATTR[j∗] 6= ⊥ and VerifySubset(ppsc, C

∗
1 , D
∗,W ∗) = 1. B’s output breaks thus

subset soundness of SC.

Type 3. We assume the forgery to be of Type 3 and use a sequence of games which
are indistinguishable under q-co-DL. Henceforth, we denote the event that an adversary
wins Game i by Si.

Game 0: The original game, which only outputs 1 if the forgery is of Type 3.

Game 1: As Game 0, except for the following oracles:

OObtIss(i, A): As in Game 0, except that the experiment aborts if set-commitment trap-
door a is contained in A.

OIssue(i, A): Analogous to OObtIss.

Game 0 → Game 1: If A queries a set A with a ∈ A to one of the two oracles then
this breaks the q-co-DL assumption for q = t and BG = BGGenR(1

κ). Denoting by
εqDL(κ) the advantage of solving the q-co-DL assumption, we have thus

|Pr[S0]− Pr[S1]| ≤ εqDL(κ) . (13)

Game 2: As Game 1, with the difference that the oracle OShow is run as follows:

OShow(j, D): As in Game 0, but the ZKPoK ΠRF(C1, C2, C3) is simulated.

Game 1→ Game 2: By the perfect zero-knowledge property of ΠRF , we have that

Pr[S1] = Pr[S2] . (14)

Game 3: As Game 2, except that oracle OHU is run as follows:
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OHU(i): As in Game 0, but when executing UserKeyGen(opk), the experiment draws
usk←R Zp instead of usk←R Zp∗ and it aborts if usk = 0.

Game 2→ Game 3: Denoting by qu the number of queries to OHU, we have

|Pr[S2]− Pr[S3]| ≤ qu
p . (15)

Game 4: As Game 3, except that when A eventually delivers a valid showing by con-
ducting ΠRF(C∗1 , C

∗
2 , C

∗
3 ), the experiment runs the knowledge extractor of ΠRF and

extracts a witness w. If the extractor fails, we abort.

Game 3→ Game 4: The success probability in Game 4 is the same as in Game 3, unless
the extractor fails, i.e., using knowledge soundness we have

|Pr[S3]− Pr[S4]| ≤ εks(κ) . (16)

Game 5: As Game 4, except that we pick an index k←R [qo], where qo is the number of
queries toOObtIss. (The game guesses that the adversary will use the kth issued credential
in its Type 3 forgery.)

The extracted witness w is such that w = (r, µ) ∈ (Zp∗)2 and C∗2 = rC∗1 and
C∗3 = µP . If credential ((C ′, R′), σ′, r′, O′) ← CRED[k] is such that (C ′, R′, P ) 6=
µ−1 · (C∗1 , C∗2 , C∗3 ) then the experiment aborts. Furthermore, we change the executions
of the following oracle, by aborting should the adversary want to corrupt the user that
owns the kth credential:

OCU(i): As in Game 0, except that the experiment aborts when i = OWNR[k].

Game 4→ Game 5: Note that when the forgery is of Type 3 then there exists some j s.t.
for CRED[j] = ((C ′, R′), σ′, r′, O′) we have (C ′, R′, P ) = µ−1·(C∗1 , C∗2 , C∗3 ); moreover,
OWNR[j] ∈ HU. With probability 1

qo
we have k = j, in which case the experiment does

not abort, i.e., we have
Pr[S5] ≥ 1

qo
Pr[S4] . (17)

We will now show that Pr[S5] ≤ εDL(κ), where εDL(κ) is the advantage of solv-
ing the DLP. B plays the role of the challenger for A in Game 5 and obtains a G1-
DLP instance (BG, xP ) with BG = (p,G1,G2,GT , e, P, P̂ ) = BGGenR(1

κ), generates
ppsc ← (BG, (aiP, aiP̂ )i∈[t]) by picking a←R Zp, generates (sk, pk)←R KeyGenR(BG, 1

3)
and sets (osk, opk)← ((a, sk), (ppsc, pk)). Then, B runs A(opk) and simulates the ora-
cles as in Game 5, except for OObtIss, whose simulation is as follows:

OObtIss(i, A): Let this be the jth query. B first computes C ← USK[i] · fA(a) · P . If
j = k then it sets R ← USK[i] · fA(a) · xP (= x · C), O = (0, USK[i]) and appends
cred = ((C,R), σ,⊥, O) to CRED. Otherwise B proceeds as in Game 5.

Note that since Game 2, the third component (r) of the credential is not required to
simulateOShow queries. WhenA outputs (D∗, st) then B runsA(st) and interacts withA
as verifier in a showing protocol. If A wins Game 5 using (C∗1 , C

∗
2 , C

∗
3 ) and conducting

ΠRF(C∗1 , C
∗
2 , C

∗
3 ) then B runs the knowledge extractor of ΠRF and extracts a witness

w = (r′, µ) ∈ (Zp∗)2 such that C∗2 = r′C∗1 and C∗3 = µP . Further, we have that
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((C ′, R′), σ′,⊥, O′) = CRED[k]. In the end, B outputs r′ as a solution to the DLP in G1.
We thus have

Pr[S5] ≤ εDL(κ) . (18)

Equations (13)–(18) together yield Pr[S0] ≤ qo · εDL(κ) + εks(κ) +
qu
p + εqDL(κ),

where q = t and qo and qu are the number of queries to OObtIss and OHU, respectively.
ut

Theorem 8. Let ΠRF , ΠRU and ΠRO be ZKPoKs. If the SPS-EQ has a class-hiding
message space and perfectly adapts signatures then Scheme 2 is anonymous.

The proof proceeds by defining a sequence of indistinguishable games in the last of
which the answers of oracleOLoR are independent of the bit b. Such an answer contains
(C1, C2, C3), σ′ and the proof ΠRF(C1, C2, C3). We first replace the signature σ′ by
a fresh signature (Game 2) and simulate the proof ΠRF (Game 3). In Games 5 and 6
we replace C1 and C2 by random elements. Since C3 = µ · P for µ←R Zp∗, in the final
game the adversary receives a fresh signature σ′ on a random tuple (C1, C2, C3) and a
simulated proof, resulting in a game that is independent of b.

Proof (of Theorem 8). We assume that adversary A at some point calls OLoR for some
(j0, j1, D) with both OWNR[j0], OWNR[j1] ∈ HU. This is w.l.o.g., as otherwise the bit b is
perfectly hidden fromA. Henceforth, we denote the event that an adversary wins Game i
by Si.

Game 0: The original game as given in Definition 29.

Game 1: As Game 0, except for the oracleOObtain. On the first successful completion of
the ZKPoKΠRO(opk) (of which there must be at least one by the above assumption), the
experiment runs the knowledge extractor for ΠRO , which extracts a witness (w1, w2). If
the extractor fails, we abort.

Game 0→ Game 1: The success probability in Game 1 is the same as in Game 0, unless
the extractor fails, i.e., using knowledge soundness we have

|Pr[S0]− Pr[S1]| ≤ εks(κ) . (19)

Game 2: As Game 1, except that the experiment sets a ← w1 and sk ← w2 and runs

OLoR as follows:

OLoR(j0, j1, D): As in Game 0, except that all executions of ChgRepR((C, r · C,P ),
σ, µ, pk) for credential (C, σ, r,O)← CRED[jb] and µ←R Zp∗ are replaced by SignR(µ·
(C, r · C,P ), sk)).

Game 1→Game 2: By knowledge soundness ofΠRO , we have VKeyR(sk, pk) = 1, and
by perfect adaptation of signatures of SPS-EQ (Definition 19), ChgRepR( ~M, σ, µ, pk)
and SignR(µ ~M, sk) are identically distributed for all ~M ∈ (G∗1)3. We thus have Pr[S1] =
Pr[S2].

Game 3: As Game 2, except that the experiment runs OLoR as follows:

OLoR(j0, j1, D): As in Game 2, but the ZKPoK ΠRF(C∗1 , C
∗
2 , C

∗
3 ) is simulated.
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Game 2→ Game 3: By perfect zero-knowledge of ΠRF , we have that Pr[S2] = Pr[S3]
and thus

Pr[S1] = Pr[S2] = Pr[S3] . (20)

Game 4: As Game 3, except for the following changes. Let qu be (an upper bound on)
the number of queries made to OHU. At the beginning Game 4 picks k←R [qu] (it guesses
that the user that owns the jbth credential is registered at the kth call to OHU) and runs
OHU, OCU and OLoR as follows:

OHU(i): As in Game 3, except if this is the kth call to OHU then it additionally defines
i∗ ← i.

OCU(i, upk): If i ∈ CU or i ∈ ILoR, it returns⊥ (as in the previous games). If i = i∗ then
the experiment stops and outputs a random bit b′←R {0, 1}. Otherwise, if i ∈ HU, it
returns user i’s usk and credentials and moves i from HU to CU; and if i /∈ HU∪ CU, it
adds i to CU and sets UPK[i]← upk.

OLoR(j0, j1, D): As in Game 3, except that if i∗ 6= OWNR[jb], the experiment stops out-
putting b′←R {0, 1}.

Game 3 → Game 4: By assumption, OLoR is called at least once with some input
(j0, j1, D) with OWNR[j0], OWNR[j1] ∈ HU. If i∗ = OWNR[jb] then OLoR does not abort
and neither does OCU (it cannot have been called on OWNR[jb] before that call to OLoR
(otherwise OWNR[jb] /∈ HU); if called afterwards, it returns ⊥, since i∗ ∈ ILoR). Since
i∗ = OWNR[jb] with probability 1

qu
, the probability that the experiment does not abort is

at least 1
qu

, and thus
Pr[S4] ≥ (1− 1

qu
)12 + 1

qu
· Pr[S3] . (21)

Game 5: As Game 4, except for OLoR:

OLoR(j0, j1, D): As in Game 4, except that in addition to µ←R Zp∗, it picksC1←R G∗1 and
performs the showing using cred′←R ((C1, r·C1, µ·P ), SignR((C1, r·C1, µ·P ), sk)),
with r ← CRED[jb][3], and W ← ⊥ (if a ∈ D) or W ← fD(a)

−1 · C1 (if a /∈ D),
where a = w1 is the value extracted since Game 1.

Note that the only difference is the choice of C1; W is distributed as in Game 4, in
particular, if a /∈ D, it is the unique element satisfying VerifySubset(pp, C, D,W ).

Game 4→ Game 5: Let (BG, xP, yP, zP ) be a DDH instance for BG = BGGenR(1
κ).

After initializing the environment, the simulation initializes a list L ← ∅. The oracles
are simulated as in Game 4, except for the subsequent oracles, which are simulated as
follows:

OHU(i): As in Game 4, but if this is the kth call then, besides setting i∗ ← i, it sets
USK[i]← ⊥ and UPK[i]← xP (which implicitly sets usk← x).

OObtain(i, A): As in Game 4, except for the computation of the following values if i =
i∗. Let this be the jth call to this oracle. If a /∈ A, it computes C as C ← fA(a) · xP
and sets L[j] ← ⊥. If a ∈ A it picks ρ←R Zp∗, computes C as C ← ρ · xP , sets
L[j] ← ρ and simulates the ZKPoK ΠRU(upk) (by the perfect ZK property of
ΠRU(upk) the simulation is perfect). (In both cases C is thus distributed as in the
original game.)

39



OShow(j, D): As in Game 4, with the difference that if OWNR[j] = i∗ and a 6∈ D it
computes the witness W ← µfA\D(a) · xP . (W is thus distributed as in the original
game.)

OLoR(j0, j1, D): As in Game 4, with the following difference. Using self-reducibility of
DDH, it picks s, t←R Zp and computes Y ′ ← t · yP + sP = y′P with y′ ← ty + s,
and Z ′ ← t · zP + s · xP = (t(z − xy) + xy′)P . (If z 6= xy then Y ′ and Z ′

are independently random; otherwise Z ′ = y′X .) It performs the showing using the
following values (implicitly setting µ← y′):

– If a 6∈ ATTR[jb]: C1 ← fA(a) · Z ′ and W ← fD(a)
−1 · C1;

– If a ∈ ATTR[jb] and a 6∈ D: C1 ← ρ ·Z ′ with ρ← L[jb] and W ← fD(a)
−1 ·C1;

– If a ∈ D: C1 ← ρ · Z ′ with ρ← L[jb] and W ← ⊥;

C2 ← r · C1, C3 ← Y ′ and r ← CRED[jb][3].

Apart from an error event happening with negligible probability, we have simulated
Game 4 if the DDH instance was “real” and Game 5 otherwise. If xP = 0G1 , or if
during the simulation ofOLoR it occurs that Y ′ = 0G1 or Z ′ = 0G1 then the distribution
of values is not as in one of the two games. Otherwise, we have implicitly set usk ← x
and µ ← y′ (for a fresh value y′ at every call of OLoR). In case of a DDH instance, we
have (depending on the case) C1 ← uskµfA(a) · P (or C1 = ρ · xµ · P = µ · C); other-
wise C1 is independently random. Letting εDDH(κ) denote the advantage of solving the
DDH problem and ql the number of queries to the OLoR, we have

|Pr[S4]− Pr[S5]| ≤ εDDH(κ) + (1 + 2ql)
1
p . (22)

Game 6: As Game 5, except for OLoR:

OLoR(j0, j1, D): As in Game 5, except that, in addition to µ andC1, it also picksC2←R G∗1
and performs the showing using cred′←R ((C1, C2, µ·P ), SignR((C1, C2, µ·P ), sk))
and W as in Game 5.

Game 5→ Game 6: Let (BG, xP, yP, zP ) be a DDH instance for BG = BGGenR(1
κ).

After initializing the environment, the simulation initializes a list L ← ∅. The oracles
are simulated as in Game 5, except for the subsequent oracles, which are simulated as
follows:

OObtain(i, A): As in Game 5, except for the computation of the following values if i =
i∗. Let this be the jth call to this oracle. It first picks u←R Zp and setsX ′ ← xP+u·P
andL[j]← u. If a /∈ A, it computesC ← fA(a)·USK[i]·P andR← fA(a)·USK[i]·X ′.
If a ∈ A, it picks ρ←R Zp∗ and computes C ← ρ · P and R ← ρ ·X ′. In both cases
it sets r ← ⊥ (r is implicitly set to r ← x′ := x + u and C and R = r · C are
distributed as in the original game; unless X ′ = 0G1). Note that, since the ZKPoK
in OShow is simulated, r is not used anywhere in the game.

OLoR(j0, j1, D): As in Game 5, with the difference that it fetches u ← L[jb], picks
s, t←R Zp and computes Y ′ ← t · yP + s · P = y′P with y′ ← ty + s, and
Z ′ ← t · zP + s · xP + ut · yP + us · P = (t(z − xy) + x′y′)P . It picks µ←R Zp∗
and performs the showing using C1 ← Y ′, C2 ← Z ′ and C3 ← µ ·P . Witness W is
computed from C1 as in the previous simulation.

40



Apart from an error event happening with negligible probability, we have simulated
Game 5 if the DDH instance was valid and Game 6 otherwise. If X ′ = 0G1 during
the simulation of OObtain, or if during the simulation of OLoR it occurs that Y ′ = 0G1

or Z ′ = 0G1 then the distribution of values is not as in one of the two games. Other-
wise, we have implicitly set r ← x′ (for a fresh value x′ at every call of OObtain) and
C1 ← Y ′ (for a fresh value Y ′ at every call of OLoR). In case of a DDH instance, we
have C2 = r · C1 (as in Game 5); otherwise C2 is independently random (as in Game
6). Letting εDDH(κ) denote the advantage of solving the DDH problem, and qo and ql
be the number of queries to OObtain and OLoR, respectively, we get

|Pr[S5]− Pr[S6]| ≤ εDDH(κ) + (qo + 2ql)
1
p . (23)

In Game 6 the OLoR oracle returns a fresh signature σ on a random triple (C1, C2, C3)
←R (G∗1)3 and a simulated proof; the bit b is thus information-theoretically hidden from
A and we have Pr[S6] =

1
2 . From this and Equations (23)-(19) we have

Pr[S5] ≤ Pr[S6] + εDDH(κ) + (qo + 2ql)
1
p = 1

2 + εDDH(κ) + (qo + 2ql)
1
p ,

Pr[S4] ≤ Pr[S5] + εDDH(κ) + (1 + 2ql)
1
p ≤

1
2 + 2 · εDDH(κ) + (1 + qo + 4ql)

1
p ,

Pr[S3] ≤ 1
2 + qu · Pr[S4]− 1

2 · qu ≤
1
2 + qu ·

(
2 · εDDH(κ) + (1 + qo + 4ql)

1
p

)
,

Pr[S0] ≤ Pr[S1] + εks(κ) ≤ 1
2 + εks(κ) + qu ·

(
2 · εDDH(κ) + (1 + qo + 4ql)

1
p

)
where Pr[S1] = Pr[S3]; qu, qo and ql are the number of queries to the OHU, OObtain

and the OLoR oracle, respectively. Assuming security of the ZKPoKs and DDH, the
adversary’s advantage is thus negligible. ut

Remark 1 (A Concurrently Secure Scheme Variant). We now sketch the idea of a more
efficient and concurrently secure variant of our scheme, which uses a CRS (and is in
particular, anonymous under malicious organization keys in the CRS model). Damgård
[Dam00] proposes a generic transformation of any Σ-protocol for an arbitrary NP-
relation R into a 3-move concurrent ZKPoK (without any timing constraints), under
the assumption of one-way functions and using a CRS. This requires the introduction of
a setup algorithm and replacing the ZKPoKs used in our construction with those from
[Dam00] (the statements proven stay the same). It uses four moves during issuing and
only three moves during showing (when interleaving the ZKPoK moves with the other
protocol moves).

The introduction of system parameters pp allows us to move the set-commitment
parameters from the organization keys to pp, which reduces the size of organization
public keys.

5.6 Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches. As other candidates for
multi-show ABCs, we consider the Camenisch-Lysyanskaya schemes [CL01, CL03,
CL04] as well as schemes from BBS+ signatures [BBS04, ASM06], which cover a
broad class of ABC schemes from randomizable signature schemes with efficient proofs
of knowledge. Furthermore, we look at two alternative multi-show ABC constructions
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[CL11, CL13], the recent self-blindable scheme in [RVH17], as well as Brands’ ap-
proach [Bra00] (for which there is a tweaked provable secure version [BL13]) for the
sake of completeness, although the latter only provides one-show ABCs. We omit a
comparison with approaches that only support a single attribute per credential, e.g.,
[AMO08], as our focus is on schemes supporting an arbitrary number of attributes.
We also omit approaches that achieve more efficient showings for existing ABC sys-
tems only in very special cases such as for attribute values that come from a very small
set (and are, thus, hard to compare).10 Finally, we also include the recent approach in
[CDHK15] that has the same asymptotic parameter sizes as our approach. They achieve
strong security security in the UC framework [Can01], but far less efficient construc-
tions when it comes to concrete instantiations. Their approach is equally expressive as
ours (selective disclosure), but additionally supports pseudonyms and context-specific
pseudonyms for showings. For our comparison in Table 1 we take their most efficient in-
stantiation (which does not provide secret key extractability) and note that our showings
require less than 10 group elements (when instantiated with Scheme 1 and the ZKPoK
protocol from [CDM00]), whereas the cheapest variant in [CDHK15] requires around
100 group elements.

Table 1 gives an overview of these systems, where BG denotes a bilinear group set-
ting; Gq denotes a group of prime order q (e.g., a subgroup of large order q of Zp∗ or an
elliptic curve group of order q) and ZN an RSA group. By |G|, denote the bitlength of
the representation of an element from group G, by MK we indicate whether anonymity
(privacy) holds with respect to maliciously generated issuer keys and by P we indicate
whether the schemes support selective disclosure (s) or also proving relations about at-
tributes (r). We note that ◦ indicates that the most efficient construction from [CDHK15]
used in Table 1 does not consider malicious keys11, while the other less efficient ones
in [CDHK15] do. The required assumptions for the schemes include the strong RSA
(sRSA) [BP97], LRSW [LRSW99], SXDH (cf. Definition 6), XDLIN (a decision lin-
ear [BBS04] variant of SXDH), DBP [AFG+10], q-SDH [BB04], q-ADHSDH [Fuc09],
n-BSDH [Goy07], J-RootDH [CDHK15], the generic group model (GGM), and we
write ? when no security proof is given.

We emphasize that, in contrast to other approaches, such as [CL04, CL13, RVH17],
our construction only requires a small and constant number of pairing evaluations in
all protocol steps. Finally, we want to mention that the model introduced in [CKL+16]
allows to instantiate constructions, for instance based on [CL03], that can deal with
malicious organization keys (although at the cost of efficiency).

10 For instance, the approach in [CG12] for CL credentials in the RSA setting (encoding attributes as
prime numbers) or in a pairing-based setting using BBS+ credentials [SNF11] (encoding attributes using
accumulators) where the latter additionally requires very large public parameters (one F -secure BB
signature [BCKL08] for every possible attribute value).

11 Here, we refer to the basic URS∗ that does not provide key-extraction. Adding this feature would require
proving a binary, or n-ary decomposition of the secret key using Groth-Sahai, which the authors estimate
to require more than 61000 group elements at the 128-bit security level. For their less efficient schemes
based on FSPS this can be achieved more efficiently.
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Table 1. Comparison of various approaches to ABC systems.

Scheme Parameter Size (L attr.)

Setting Assumption |opk| |cred|
[CL03] ZN sRSA O(L) O(1) 3|ZN |
[CL04] BG LRSW O(L) O(L) (2L+ 2)|G1|
[BBS04, ASM06] BG q-SDH O(L) O(1) |G1|+ 2|Zq|
[CL11] BG q-ADHSDH O(1) O(L) L|G1|+ |G2|
[CL13] BG q-SDH,XDH O(L) O(L) (2L+ 2)(|G1|+ |Zp|)
[Bra00] Gq ? O(L) O(1) 2(|Gq|+ |Zq|)
[RVH17] BG LRSW O(L) O(L) (2L+ 4)(|G1|+ |Zq|)
[CDHK15] BG SXDH, J-RootDH, n-BSDH O(L) O(1) 6|G1|+ 2|G2|+ |Zp|

q-SDH, XDLIN, co-CDH, DBP
Scheme 2 BG GGM O(L) O(1) 3|G1|+ |G2|+ 2|Zp|

Scheme Issuing Showing (k-of-L attr.)

Issuer User Comm Verifier User Comm MK P
[CL03] O(L) O(L) O(L) O(L) O(L) O(L−k) × r
[CL04] O(L) O(L) O(L) O(L) O(L) O(L) × r
[BBS04, ASM06] O(L) O(L) O(1) O(L) O(L) O(L) × r
[CL11] O(L) O(L) O(L) O(L) O(1) O(1) × s
[CL13] O(L) O(L) O(L) O(k) O(k) O(k) × s
[Bra00] O(L) O(L) O(1) O(k) O(k) O(L−k) × r
[RVH17] O(L) O(L) O(L) O(L) O(L) O(L) × r
[CDHK15] O(L) O(L) O(1) O(k) O(L− k) O(1) ◦ s
Scheme 2 O(L) O(L) O(1) O(k) O(L− k) O(1) X s

6 Future Work

Some challenging issues with respect to SPS-EQ remain open. Primarily, the construc-
tion of an instantiation secure in the standard model (or CRS model) that relies on simple
assumptions and perfectly adapts signatures (under malicious keys) is an open problem.
A first step was [FHS15], which gives a standard-model construction of SPS-EQ under a
q-type assumption, but which only provides a weaker form of privacy, which is too weak
for any of the considered applications of SPS-EQ. A further step was [FG18], which
gives a construction of SPS-EQ from standard assumptions, but achieving a weaker form
of unforgeability where the adversary must reveal the logarithms of the message vector
for which it queries a signature. This notion is not sufficient for the construction of
round-optimal blind signatures from SPS-EQ [FHS15, FHKS16].12

Another interesting question is whether such signatures when built for other more
general equivalence relations yield alternative and further applications.

12 In ABC schemes one can add interactive proofs of knowledge of the logarithms when obtaining a sig-
nature; the reduction can then make signing queries using the logarithms instead of the group elements
itself, as required by the security model in [FG18]. However, round-optimality of blind signatures pre-
cludes adding interaction; it is also not possible to add NIZKs of knowledge, as they require a CRS,
which is not compatible with the strong security model (malicious-signer anonymity) for blind signa-
tures considered in [FHS15].
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