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Abstract. Digital signature is a fundamental primitive with numerous applications. Following
the development of pairing-based cryptography, several taking advantage of this setting have been
proposed. Among them, the Camenisch-Lysyanskaya (CL) signature scheme is one of the most
flexible and has been used as a building block for many other protocols. Unfortunately, this scheme
suffers from a linear size in the number of messages to be signed which limits its use in many
situations.
In this paper, we propose a new signature scheme with the same features as CL-signatures but
without the linear-size drawback: our signature consists of only two elements, whatever the message
length, and our algorithms are more efficient. This construction takes advantage of using type 3
pairings, that are already widely used for security and efficiency reasons.
We prove the security of our scheme without random oracles but in the generic group model. Finally,
we show that protocols using CL-signatures can easily be instantiated with ours, leading to much
more efficient constructions.

1 Introduction

Digital signature is one of the main cryptographic primitives which can be used in its own right,
to provide the electronic version of handwritten signatures, but also as a building block for
more complex primitives. Whereas efficiency is the main concern of the first case, the latter case
usually requires a signature scheme with additional features. Indeed, when used as a building
block, signatures must not just be efficient, they also have to be compatible with the goals and
the other building blocks of the protocol. For example, privacy-preserving primitives usually
require a signature scheme which allows signatures on committed secret values and compatible
with zero-knowledge proofs.

1.1 Related Works

Constructing a versatile signature scheme that is both efficient and secure is not easy. One
of the first construction specifically designed as a building block for other applications was
proposed by Camenisch and Lysyanskaya [CL03]. Their construction, relying on the Strong
RSA assumption [BP97], allows indeed signatures on committed values and proofs of knowledge
of a signature.

The emergence of pairing-based cryptography [Jou00,BF01] has created a need for such sig-
nature schemes compatible with this new setting. Indeed, many cryptographic protocols now
use bilinear groups, i.e. a set of three groups G1, G2 and GT along with a bilinear map
e : G1 × G2 → GT . In 2004, Camenisch and Lysyanskaya proposed a new pairing-based sig-
nature scheme [CL04] whose flexibility has allowed it to be used in several applications, such as
group signatures [BCN+10], direct anonymous attestations [CPS10,BFG+13], aggregate signa-
tures [LLY13] or E-cash systems [CPST15]. One of its most interesting features is probably the
ability of its signatures to be randomized: given a valid CL-signature σ = (a, b, c) on a message
m, anyone can generate another valid signature on the same message by selecting a random
scalar t and computing (at, bt, ct). The latter is indistinguishable from a fresh signature on m.
Let us consider a typical situation for anonymous credentials [CL01], direct anonymous attesta-
tions [BCC04], or group signatures [Cv91]: a user first gets a signature σ on some secret value s
and then has to prove, several times, that s is certified still keeping the proofs unlinkable. If σ
were issued using a conventional signature scheme, it would have to be committed and the user
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would have to prove that the commitment opens to a valid signature on a secret value which is
a rather complex statement to prove, even in the Random Oracle Model (ROM) [BR93]. Now,
if σ is a CL-signature, then the user can simply compute a randomized version σ′ of σ, sends
it and proves that it is valid on the secret value. This idea underlies the efficiency of the con-
structions described in [CPS10,BCN+10,BFG+13]. For these constructions, unlinkability relies
on the DDH assumption in G1, and so requires the use of asymmetric pairings. But this is not
a strong assumption, since they offer the best efficiency (see [GPS08]).

One might have thought that the seminal work of Groth and Sahai [GS08], providing the
first practical non-interactive zero-knowledge proofs (NIZKs) in the standard model, in conjunc-
tion with the recent structure-preserving signatures [AFG+10,AGHO11,AGOT14,CM14], has
decreased interest for CL-signatures. However, that has not happened due to the huge perfor-
mance gap between constructions in the standard model and constructions in the ROM: for
example, the most efficient group signature in the standard model [Gro07] consists of 50 group
elements whereas [BCN+10], in the ROM, consists of only 3 group elements and two scalars.
And for real-life applications, where time constraints are particularly challenging, constructions
with NIZK proofs in the ROM seem unavoidable.

As a consequence, signatures schemes, such as the CL-signatures, compatible with NIZKs in
the ROM still remain of huge practical interest.

Another primitive for which efficiency considerations are central is anonymous credentials.
Unfortunately, even if they are one of the applications proposed for CL-signatures, most of these
schemes [ASM06,CG12,CL13,BL13] use other constructions, such as the one proposed by Boneh,
Boyen and Shacham (BBS) [BBS04]. This is due to a large extent to the size of CL-signatures,
which is linear in the number of messages to be signed. Since a user of an anonymous credential
system may have several attributes to be certified, this cost quickly becomes prohibitive. This
is unfortunate because, here again, the randomizability of CL-signatures could lead to more
efficient protocols.

1.2 Our contribution

In this paper, we propose a new signature scheme, with the same features as CL-signatures, but
with a remarkable efficiency. Indeed, whereas the original CL-signatures [CL04] on blocks of r
messages consist of 1 + 2r elements of G1, ours only require 2 elements of G1, whatever r is.
Moreover, as illustrated in Figure 1 (see Section 7), our signature and verification algorithms
are much more efficient.

Our work proceeds from the observation that most of the recent protocols [CPS10,BCN+10,BFG+13]
using CL-signatures require type 3 pairings for efficiency and security reasons (see [GPS08]).
However, CL-signatures, as most of the constructions from the beginnings of pairing-based cryp-
tography, were designed for type 1 pairings. Unfortunately, this setting usually leads to more
complex protocols since they cannot rely on assumptions which would have held with pairings
of other types. This has been illustrated by the recent results [AGHO11,CM14] on structure-
preserving signatures, which show that designing schemes specifically for type 3 pairings results
in more efficient constructions.

Following the same rationale, we propose a signature scheme suited to such pairings: it can
be seen as CL-signatures, but taking advantage of the full potential of type 3 pairings. The
separation between the space of the signatures (G1) and the one of the public key (G2) allows
indeed more efficient constructions since the elements of the latter can no longer be used to
build forgeries in the former. Unfortunately, the security of our scheme does not rely on any
standard assumption and so is proved in the generic group model, which does not provide the
same guarantees. However, as illustrated by [CL04,BB08,AGHO11], relying on proofs in the
generic group model or on non-standard assumptions (themselves proved in this model), allows
more efficient constructions. For some applications with challenging time constraints, such as
public transport where authentication must be performed in less than 300 ms [HZB+13,DLST14],
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we argue that this trade-off, between efficiency and the security assumption, is reasonable. By
providing short signatures with efficient algorithms, our solution may then contribute to make
all features of modern cryptography more accessible.

Improving the efficiency of primitives with practical applications was also the concern of the
authors of [CMZ14]. They proved, in the generic group model, the security of the MAC scheme
introduced in [DKPW12] and used it to construct keyed-verification anonymous credentials
(the secret-key analogue of standard anonymous credentials). Although our signature shares
similarities with this scheme, it offers much more flexibility. Indeed, the construction described
in [DKPW12,CMZ14] does not achieve public verifiability and so only fits the case where the
verifier is also the issuer. Moreover, the protocols for obtaining or proving knowledge of a MAC
on committed messages are more complex than the ones, for a signature, we describe in this
paper.

Besides efficiency, one of the main advantages of our scheme is that it acts as a plug-in
replacement for CL-signatures. Indeed, since they achieve the same properties than the latter,
our signatures can be used to instantiate most of the protocols initially designed for CL ones.
To illustrate this point, we convert our signature scheme into a sequential aggregate signature
scheme [LMRS04] using an idea similar to the one of Lee, Lee and Yung [LLY13]. The resulting
aggregate signature only consists of 2 elements in G1 and so is shorter than theirs. Similar gains
can be achieved for many other applications such as group signatures or anonymous credentials.

1.3 Organization

We review some definitions and notations in Section 2 and present new computational assump-
tions in Section 3. Section 4 describes our signature scheme whose conversion into a sequential
aggregate signature scheme is described in Section 5. Section 6 describes a variant of our scheme
allowing to sign committed values along with a protocol for proving knowledge of a signature.
Section 7 provides a comparison with related works. Finally, we describe some applications and
provide the security proofs in the appendices.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order p along with a
bilinear map e : G1 ×G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;

2. for g 6= 1G1 and g̃ 6= 1G2 , e(g, g̃) 6= 1GT ;

3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [GPS08] defined three types of pairings: in type 1, G1 = G2; in
type 2, G1 6= G2 but there exists an efficient homomorphism φ : G2 → G1, while no efficient one
exists in the other direction; in type 3, G1 6= G2 and no efficiently computable homomorphism
exists between G1 and G2, in either direction.

Although type 1 pairings were mostly used in the early-age of pairing-based cryptography,
they have been gradually discarded in favour of type 3 pairings. Indeed, the latter offer a better
efficiency and are compatible with several computational assumptions, such as the Decision
Diffie-Hellman assumption in G1 or G2, also known as the XDH assumption, which does not
hold in type 1 pairings.

In this work, we only consider type 3 pairings. We stress that using type 1 or type 2 pairings
would make our signature scheme totally insecure.



4

2.2 Digital Signature Scheme

Syntax. A digital signature scheme Σ is defined by four algorithms:

– the Setup algorithm which, on input a security parameter k, outputs pp, a description of
the public parameters;

– the key generation algorithm Keygen which, on input pp, outputs a pair of signing and
verification keys (sk, pk) – we assume that sk contains pk, and that pk contains pp;

– the signing algorithm Sign which, on input the signing key sk and a message m, outputs a
signature σ;

– the verification algorithm Verify which, on input m, σ and pk, outputs 1 if σ is a valid
signature on m under pk, and 0 otherwise.

Security Notion. The standard security notion for a signature scheme is existential unforge-
ability under chosen message attacks (EUF-CMA) [GMR88] which means that it is hard, even
given access to a signing oracle, to output a valid pair (m,σ) for a message m never asked to the
signing oracle. It is defined using the following game between a challenger C and an adversary
A:

– Setup: C runs the Setup and the Keygen algorithms to obtain sk and pk. The adversary is
given the public key pk;

– Queries: A adaptively requests signatures on at most q messages m1,. . . ,mq. C answers
each query by returning σi ← Sign(sk,mi);

– Output: A eventually outputs a message-signature pair (m∗, σ∗) and wins the game if
Verify(pk,m∗, σ∗) = 1 and if m∗ 6= mi ∀i ∈ [1, q].

A signature scheme is EUF-CMA secure if no probabilistic polynomial-time adversary A can
win this game with non-negligible probability.

2.3 Sequential Aggregate Signature

Syntax. Sequential aggregate signature [LMRS04] is a special type of aggregate signature (intro-
duced by Boneh et al. [BGLS03]) where the final signature on the list of messages is computed
sequentially by each signer, who adds his signature on his message. It is defined by the four
algorithms described below:

– the AS.Setup algorithm which, on input a security parameter k, outputs pp, a description
of the public parameters;

– the key generation algorithm AS.Keygen which, on input pp, outputs a pair of signing and
verification keys (sk, pk) – we assume that sk contains pk, and that pk contains pp;

– the signing algorithm AS.Sign which, on input an aggregate signature σ on messages (m1, . . . ,mr)
under public keys (pk1, . . . , pkr), a message m and a signing key sk such that pk /∈ {pki}ri=1,
outputs a new aggregate signature σ′ on (m1, . . . ,mr,m);

– the verification algorithm AS.Verify which, on input (m1, . . . ,mr), σ and distinct public
keys (pk1, . . . , pkr), outputs 1 if σ is a valid aggregate signature on (m1, . . . ,mr) under
(pk1, . . . , pkr), and 0 otherwise.

Security Model. The security property for a sequential aggregate signature scheme is exis-
tential unforgeability under chosen message attacks which requires that no adversary is able to
forge an aggregate signature, on a set of messages of its choice, by a set of users whose secret
keys are not all known to it. It is defined using the following game between a challenger C and
an adversary A:
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– Setup: C first initializes a key list KeyList as empty. Next it runs the AS.Setup algorithm
to get pp and the AS.Keygen algorithm to get the signing and verification keys (sk∗, pk∗).
The verification key pk∗ is given to A;

– Join Queries: A adaptively asks to add the public keys pki to KeyList;

– Signature Query: A adaptively requests aggregate signatures on at most q messages
m1, . . . ,mq under the challenge public key pk∗. For each query, it provides an aggregate
signature σi on the messages (mi,1, . . . ,mi,ri) under the public keys (pki,1, . . . , pki,ri), all in
KeyList. Then C returns the aggregation AS.Sign(sk∗, σi, (mi,1, . . . ,mi,ri), (pki,1, . . . , pki,ri),mi);

– Output:A eventually outputs an aggregate signature σ on the messages (m∗1, . . . ,m
∗
r) under

the public keys (pk1, . . . , pkr) and wins the game if the following conditions are all satisfied:

• AS.Verify((pk1, . . . , pkr), (m
∗
1, . . . ,m

∗
r), σ) = 1;

• For all pkj 6= pk∗, pkj ∈ KeyList ;

• For some j∗ ∈ [1, r], pk∗ = pkj∗ and m∗j∗ has not been queried to the signing oracle, i.e.
m∗j∗ 6= mi, for i = 1, . . . , q.

A sequential aggregate signature scheme is EUF-CMA secure if no probabilistic polynomial-time
adversary A can win this game with non-negligible probability.

Certified Keys. As in [LLY13], we consider the setting proposed by Lu et al. [LOS+06] where
users must prove knowledge of their signing key sk when they want to add a public key pk in
KeyList. In the security proof, this enables the simulator to answer every signature query made
by the adversary A. As a consequence, in the Join Query, when A asks to add pk to KeyList,
it additionally proves its knowledge of the corresponding secret key sk.

3 Assumption

A by-now classical assumption is the so-called LRSW [LRSW00], applied to many privacy-
preserving protocols, such as the CL-signatures [CL04], that admit two protocols: an issuing
protocol that allows a user to get a signature σ on a message x, just by sending a commitment
of x to the signer, and a proving protocol that allows the user to prove, in a zero-knowledge
way, his knowledge of a signature on a commitment of x. They lead to efficient anonymous
credentials.

Definition 1 (LRSW Assumption). Let G be a cyclic group of prime order p, with a gener-
ator g. For X = gx and Y = gy, where x and y are random scalars in Zp, we define the oracle
O(m) on input m ∈ Zp that chooses a random h ∈ G and outputs the triple T = (h, hy, hx+mxy).
Given (X,Y ) and unlimited access to this oracle, no adversary can efficiently generate such a
triple for a new scalar m∗, not asked to O.

This assumption has been introduced in [LRSW00] and proven in the generic group model, as
modeled by Shoup [Sho97].

We now propose two similar assumptions in bilinear groups of type 3 that will provide even
more efficient protocols. We then prove them to hold in the bilinear generic group model.

Definition 2 (Assumption 1). Let (p,G1,G2,GT , e) a bilinear group setting of type 3, with
g (resp. g̃) a generator of G1 (resp. G2). For (X = gx, Y = gy) and (X̃ = g̃x, Ỹ = g̃y), where
x and y are random scalars in Zp, we define the oracle O(m) on input m ∈ Zp that chooses a

random h ∈ G1 and outputs the pair P = (h, hx+my). Given (g, Y, g̃, X̃, Ỹ ) and unlimited access
to this oracle, no adversary can efficiently generate such a pair, with h 6= 1G1, for a new scalar
m∗, not asked to O.

One can note that using pairings, an output of the adversary can be checked since the pair
P = (P1, P2) should satisfy e(P1, X̃ · Ỹ m) = e(P2, g̃). In addition, (X,Y ) are enough to answer
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oracle queries: on a scalar m ∈ Zp, one computes (gr, (X ·Y m)r). This requires 3 exponentiations
per query, while knowing (x, y) just requires a random sampling in G1 and one exponentiation.

In some situations, a weaker assumption will be enough, where Y is not given to the adver-
sary:

Definition 3 (Assumption 2). Let (p,G1,G2,GT , e) a bilinear group setting of type 3, with g
(resp. g̃) a generator of G1 (resp. G2). For (X̃ = g̃x, Ỹ = g̃y) where x and y are random scalars
in Zp, we define the oracle O(m) on input m ∈ Zp that chooses a random h ∈ G and outputs

the pair P = (h, hx+my). Given (g̃, X̃, Ỹ ) and unlimited access to this oracle, no adversary can
efficiently generate such a pair, with h 6= 1G1, for a new scalar m∗, not asked to O.

Theorem 4. The above Assumption 1 (and thus the Assumption 2) holds in the generic bilinear
group model: after q oracle queries and qG group-oracle queries, no adversary can generate a
valid pair for a new scalar with probability greater than 6(q + qG)2/p.

The proof can be found in the in the Appendix B.

4 Our Randomizable Digital Signature Scheme

For the sake of clarity, for our signature scheme, we first describe the specific case where only
one message is signed. We then present an extension allowing to sign several messages and show
that the security of the latter scheme holds under the security of the former (which holds under
the weak Assumption 2).

4.1 A Single-Message Signature Scheme

Description. Our signature scheme to sign a message m ∈ Zp consists of the following algo-
rithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,G2,GT , e).
These bilinear groups must be of type 3. In the following, we denote G∗1 = G1\{1G1};

– Keygen(pp): This algorithm selects g̃
$← G2 and (x, y)

$← Z2
p, computes (X̃, Ỹ ) ← (g̃x, g̃y)

and sets sk as (x, y) and pk as (g̃, X̃, Ỹ );

– Sign(sk,m): This algorithm selects a random h
$← G∗1 and outputs σ ← (h, h(x+y·m));

– Verify(pk,m, σ): This algorithm parses σ as (σ1, σ2) and checks whether σ1 6= 1G1 and
e(σ1, X̃ ·Ỹ m) = e(σ2, g̃) are both satisfied. In the positive case, it outputs 1, and 0 otherwise.

Correctness: If σ = (σ1 = h, σ2 = h(x+y·m)), then

e(σ1, X̃ · Ỹ m) = e(h, X̃ · Ỹ m) = e(h, g̃)(x+y·m) = e(h(x+y·m), g̃) = e(σ2, g̃).

Remark 5. As already remarked above, the signature could be generated with the secret key
being either (x, y) or (X = gx, Y = gy). But the former leads a more efficient signature scheme.

Randomizability. As the CL-signatures, a signature σ = (σ1, σ2) on a message m can be

randomized by selecting a random t
$← Z∗p and computing σ′ ← (σt1, σ

t
2) which is still a valid

signature on m: it corresponds to replace h ∈ G∗1 by h′ = ht ∈ G∗1.

Security Analysis. EUF-CMA is exactly the above Assumption 2, since a signing oracle is
perfectly equivalent to the oracle O.
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4.2 A Multi-Message Signature Scheme

Description. We now present a variant of the previous scheme to sign r-message vectors
(m1, . . . ,mr) ∈ Zrp at once. Our signature scheme consists of the following algorithms, where all
the sums and products are on j between 1 and r:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,G2,GT , e).
These bilinear groups must be of type 3. In the following, we denote G∗1 = G1\{1G1};

– Keygen(pp): This algorithm selects g̃
$← G2 and (x, y1, . . . , yr)

$← Zr+1
p , computes (X̃, Ỹ1, . . . , Ỹr)←

(g̃x, g̃y1 , . . . , g̃yr) and sets sk as (x, y1, . . . , yr) and pk as (g̃, X̃, Ỹ1, . . . , Ỹr).

– Sign(sk,m1, . . . ,mr): This algorithm selects a random h
$← G∗1 and outputs σ ← (h, h(x+

∑
yj ·mj)).

– Verify(pk, (m1, . . . ,mr), σ): This algorithm parses σ as (σ1, σ2) and checks whether σ1 6=
1G1 and e(σ1, X̃ ·

∏
Ỹ
mj
j ) = e(σ2, g̃) are both satisfied. In the positive case, it outputs 1,

and 0 otherwise.

Correctness: If σ = (σ1 = h, σ2 = h(x+
∑
yj ·mj)), then

e(σ1, X̃ ·
∏

Ỹ
mj
j ) = e(h, X̃ ·

∏
Ỹ
mj
j ) = e(h, g̃)x+

∑
yj ·mj

= e(hx+
∑
yj ·mj , g̃) = e(σ2, g̃).

Security Analysis. We now rely the security of this multiple-message signature scheme to
the security of the single-message signature scheme, and so on Assumption 2. Due to space
limitations, the proof of the following theorem is provided in in the Appendix C.

Theorem 6. The multiple-message signature scheme achieves the EUF-CMA security level un-
der the above Assumption 2. More precisely, if an adversary can break the EUF-CMA of the
multiple-message signature scheme with probability ε, then there exists an adversary against the
EUF-CMA security of the single-message signature scheme, within the same running time and
the same number of signing queries, succeeding with probability greater than ε− q/p.

5 A Sequential Aggregate Signature

Our Construction. It is possible to slightly modify the scheme from section 4.2 to convert
it into a sequential aggregate signature scheme. The signer’s secret key of the original scheme
to sign r-message vector was (x, y1, . . . , yr). But now, let us assume one publishes a signature
on the r-vector (0, . . . , 0): (g,X) = (g, gx) ∈ G2

1 for some g ∈ G1. This additional knowledge
does not help an adversary to produce forgeries on non-zero vectors, but the scalar value x is no
longer useful in the secret key since one can sign a vector (m1, . . . ,mr) by selecting a random

t
$← Zp and computing (gt, (X)t ·(gt)

∑
yj ·mj ). The correctness follows from the one of the original

scheme.

On the other hand, we can use the public key sharing technique from [LLY13] to construct an
efficient sequential aggregate signature scheme in the standard model: each signer j (from 1 to
r) generates his own signing and verification keys (yj , Ỹj) but uses the same element X from the

public parameters. To sign a message m1 ∈ Z∗p, the first selects a random t1
$← Zp and outputs

(σ1, σ2) ← (gt1 , (X)t1 · (gt1)y1·m1). A subsequent signer 2 can generate an aggregate signature
on m2 by selecting a random t2 and computing (σ′1, σ

′
2) ← (σt21 , (σ2 · σ

y2·m2
1 )t2). Therefore,

(σ′1, σ
′
2) = (gt1·t2 , gt1·t2(x+m1·y1+m2·y2)) = (gt, gt(x+m1·y1+m2·y2)), for t = t1t2, and so its validity

can be verified using the Verify algorithm described in section 4.2.

More formally, our sequential aggregate signature scheme is defined by the following algo-
rithms.



8

– AS.Setup(1k): Given a security parameter k, this algorithm selects a random x ∈ Zp and

outputs pp ← (p,G1,G2,GT , e, g,X, g̃, X̃), where X = gx and X̃ = g̃x for some generators
(g, g̃) ∈ G1 ×G2.

– AS.Keygen(pp): This algorithm selects a random y
$← Zp, computes Ỹ ← g̃y and sets sk as

y and pk as Ỹ .
– AS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m) proceeds as follows:
• If r = 0, then σ ← (g,X);
• If r > 0 but AS.Verify((pk1, . . . , pkr), σ, (m1, . . . ,mr)) = 0, then it halts;
• If m = 0, then it halts;
• If for some j ∈ {1, . . . , r} pkj = pk, then it halts.

If the algorithm did not halt, then it parses sk as y and σ as (σ1, σ2), selects t
$← Zp and

computes σ′ = (σ′1, σ
′
2)← (σt1, (σ2 · σ

y·m
1 )t). It eventually outputs σ′.

– AS.Verify((pk1, . . . , pkr), (m1, . . . ,mr), σ) parses σ as (σ1, σ2) and pkj as Ỹj , for j = 1, . . . , r,

and checks whether σ1 6= 1G1 and e(σ1, X̃ ·
∏
Ỹ
mj
j ) = e(σ2, g̃) are both satisfied. In the

positive case, it outputs 1, and 0 otherwise.

Correctness. If r = 0, then the algorithm AS.Sign outputs (gt, (X · gy·m)t) = (gt, gt(x+y·m)).
By induction, let us now assume that σ = (gs, gs(x+

∑
yj ·mj)), then an aggregate signature σ′ on

m is equal to (gt·s, gt·s(x+m·y+
∑
yj ·mj)), which is equal to (h, hx+

∑
yj ·mj+y·m) for some h ∈ G1.

The correctness of our sequential aggregate signature scheme follows then from the signature
scheme described in Section 4.2.

Security Analysis. We now rely the security of this aggregate signature scheme, in the certified
public key setting, to the security of the single-message signature scheme, and so on Assump-
tion 2:

Theorem 7. The aggregate signature scheme achieves the EUF-CMA security level, in the cer-
tified public-key setting, under the above Assumption 2. More precisely, if an adversary can
break the EUF-CMA of the aggregate signature scheme, then there exists an adversary against
the EUF-CMA security of the single-message signature scheme, within the same running time
and the same number of signing queries, succeeding with the same probability.

The proof can be found in the in the Appendix D.

6 Useful features

6.1 Signing Committed Messages

Many cryptographic primitives require efficient protocols to obtain signatures on committed (or
transformed) values. For example, in some group signature schemes [BBS04,DP06,BCN+10],
users must get a certificate on their secret key m ∈ Zp to join the group. The non-frameability
property [BSZ05] expected from such a primitive prevents the users to directly send the value
m to the group manager. Instead, they rather send a public value gm, for some public g ∈ G1,
and start a protocol with the latter to get a signature on the secret value m.

Our signature scheme can be slightly modified to handle such a protocol: one can submit
gm to the signer and prove knowledge of m. If the proof is valid, the signer can return σ =
(σ1, σ2)← (gu, (gx · (gm)y)u), for some u

$← Zp, which is a valid signature on m.
However, gm is not hiding enough in some applications, and namely if information-theoretical

security is required. For example, in anonymous credentials [CL01], the elements gm1 , . . . , gmr

may provide too much information on the attributes (m1, . . . ,mr), if they belong to small sets.
The modified BBS signature scheme [BBS04] described in [ASM06] enables the signer to

sign messages (m1, . . . ,mr) from a Pedersen commitment [Ped92] C = gt0 · g
m1
1 · · · gmrr (where
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t is a random scalar). We need to slightly modify the scheme described in Section 4.2 to add
such a feature. Indeed, the latter does not provide any element of G1 in the public key. The
resulting protocol is described below, in the multi-message setting. But we first start with the
single-message protocol.

A Single-Message Protocol. The signature scheme for signing one information-theoretically
hidden message consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,G2,GT , e).
These bilinear groups must be of type 3. In the following, we denote G∗1 = G1\{1G1} and
G∗2 = G2\{1G2}, which are the sets of the generators.

– Keygen(pp): This algorithm selects g
$← G∗1, g̃

$← G∗2 and (x, y)
$← Z2

p, computes (X,Y ) ←
(gx, gy) and (X̃, Ỹ )← (g̃x, g̃y), and sets sk← X and pk← (g, Y, g̃, X̃, Ỹ ).

– Protocol: A user who wishes to obtain a signature on the message m ∈ Zp first selects a

random t
$← Zp and computes C ← gtY m. He then sends C to the signer. They both run a

proof of knowledge of the opening of the commitment. If the signer is convinced, he selects
a random u

$← Zp and returns σ′ ← (gu, (XC)u). The user can now unblind the signature
by computing σ ← (σ′1, σ

′
2/σ
′
1
t).

The element σ then satisfies σ1 = gu and σ2 = (XC)u/gut = (XgtY m/gt)u = (XY m)u, which is
a valid signature on m for the single-message signature scheme described in Section 4.1. However,
because of the additional elements in the public key, the EUF-CMA security of the underlying
signature scheme now relies on the Assumption 1.

A Multi-Message Protocol. The signature scheme for signing information-theoretically hid-
den messages consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,G2,GT , e).
These bilinear groups must be of type 3. In the following, we denote G∗1 = G1\{1G1} and
G∗2 = G2\{1G2}, which are the sets of the generators.

– Keygen(pp): This algorithm selects g
$← G∗1, g̃

$← G∗2 and (x, y1, . . . , yr)
$← Zr+1

p , computes

(X,Y1, . . . , Yr)← (gx, gy1 , . . . , gyr) and (X̃, Ỹ1, . . . , Ỹr)← (g̃x, g̃y1 , . . . , g̃yr), and sets sk← X
and pk← (g, Y1, . . . , Yr, g̃, X̃, Ỹ1, . . . , Ỹr).

– Protocol: A user who wishes to obtain a signature on (m1, . . . ,mr) first selects a random

t
$← Zp and computes C ← gt

∏r
i=1 Y

mi
i . He then sends C to the signer. They both run a

proof of knowkedge of the opening of the commitment. If the signer is convinced, he selects
a random u

$← Zp and returns σ′ ← (gu, (XC)u). The user can now unblind the signature
by computing σ ← (σ′1, σ

′
2/σ
′
1
t).

Again, the element σ satisfies σ1 = gu and σ2 = (XC)u/gut. If one develops, σ2 = (Xgt
∏r
i=1 Y

mi
i /gt)u =

(X
∏r
i=1 Y

mi
i )u, which is a valid signature on (m1, . . . ,mr) for the multi-message signature

scheme described in Section 4.2, but with additional elements in the public key: the EUF-
CMA security of this multi-message signature scheme can also be shown equivalent to the one
of the single-message signature scheme, with a similar proof as the one for Theorem 6, and thus
relies on the Assumption 1.

6.2 Proving Knowledge of a Signature

If we still consider the example of anonymous credentials, the previous protocols have addressed
the problem of their issuance. However, once a user has obtained his credential, he must also be
able to use it to prove that its attributes are certified, while remaining anonymous. To do so,
the protocols usually follow the framework described in [CL04] and so need an efficient way to
prove knowledge of a signature.
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Our scheme offers such functionality thanks to the ability of our signatures to be sequentially
aggregated. Informally, to prove knowledge of a signature σ = (σ1, σ2) on a message m, the user
will aggregate a signature on some random message t under a dummy public key g̃ (which is
part of the public parameters). The resulting signature σ′ is then valid on the block (m, t) and
does not reveal any information on m.

More formally, let pk← (g̃, X̃, Ỹ1, . . . , Ỹr) be a public key for the signature scheme of Section
4.2 and σ = (σ1, σ2) be a valid signature on a block (m1, . . . ,mr) under it. To prove knowledge
of σ, the prover does the following:

1. He selects random r, t
$← Zp and computes σ′ ← (σr1, (σ2 · σt1)r).

2. He sends σ′ = (σ′1, σ
′
2) to the verifier and carries out a zero-knowledge proof of knowledge π

(such as the Schnorr’s interactive protocol [Sch90]) of (m1, . . . ,mr) and t such that:

e(σ′1, X̃) ·
∏

e(σ′1, Ỹj)
mj · e(σ′1, g̃)t = e(σ′2, g̃)

The verifier accepts if π is valid.

Theorem 8. The protocol above is a zero-knowledge proof of knowledge of a signature σ on the
block (m1, . . . ,mr).

The proof is provided in the in the Appendix E.

7 Efficiency

We compare in Figure 1 the efficiency of our scheme with the ones of CL-signatures [CL04] and
BBS-signatures [BBS04,ASM06] since they are the most popular schemes used as building blocks
for pairing-based protocols. As described in [ASM06], to compute a BBS signature on a block
of r messages (m1, . . . ,mr), a signer whose secret key is γ ∈ Zp first selects two random scalars

e and s and then computes A ← (g0g
s
1g
m1
2 . . . gmrr+1)

1
e+γ for some public parameters g0,. . . ,gr+1.

The signature is defined as (A, e, s). For proper comparison, we consider a variant of this scheme
where the signer has generated the elements gi ← gyi0 for i ∈ [1, r+1]. Therefore, he can compute

the element A more efficiently since A = g

1+
∑r+1
i=1

yi·mi
γ+e

0 .

Size of Sig. Sig. Cost Verif. Cost Rand. Pairings

Sign. Schemes

BBS [BBS04,ASM06]1G1 + 2Zp 2 RZp + 1 EG1 2 P + 1 EG2 + (r + 1) EG1 No All

CL [CL04] (1 + 2r)G1 1 RG1 + 2r EG1 4r P + r EG2 Yes All

Ours [sect. 4.2] 2G1 1 RG1 + 1 EG1 2 P + r EG2 Yes type 3

Seq. Aggregate
Sign. Schemes

LLY [LLY13] 3G1 1 Ver. + 5 EG1 5 P + r EG2 Yes All

Ours [sec. 5] 2G1 1Ver. + 3 EG1 2 P + r EG2 Yes type 3

Fig. 1. Efficiency comparison between related works. Here, r refers to the number of messages, RG1 (resp. RZp) to
the cost of generating a random element of G1 (resp. Zp), EGi to the cost of an exponentiation in Gi (i ∈ {1, 2}),
P to the cost of a pairing computation and Ver to the cost of verifying an aggregate signature.

As illustrated in Figure 1, our signature scheme (resp. sequential aggregate signature scheme)
compares favourably with the one from [CL04] (resp. [LLY13]). However, our scheme is only
compatible with type 3 pairings but we argue that this is not a strong restriction since most of
the recent cryptographic protocols already use them for efficiency and security reasons.

Although the efficiency of our scheme is similar to the one of BBS, we stress that the ability
of our signatures to be randomized improves the efficiency of protocols using them. Indeed, as
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explained in Section 1.1, one cannot show several times a BBS signature while being unlinkable.
One must then commit to the signature and then prove in a zero-knowledge way that the
resulting commitment opens to a valid signature. This is not the case with our scheme since
one can simply randomize the signature between each show. To illustrate this point, we provide
some examples in in the Appendix A.

8 Conclusion

In this work we have proposed a new signature scheme, suited for type 3 pairings, which achieves
a remarkable efficiency. As CL-signatures, our signatures can be randomized and can be used
as building blocks for many cryptographic primitives. In particular, they support efficient pro-
tocols for obtaining a signature on committed elements and can be efficiently combined with
zero-knowledge proofs in the ROM. As illustrated in this paper, instantiating cryptographic
constructions with our solution improves their efficiency and may therefore contribute to make
them more accessible for real-life applications.
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A Applications

In section 6, we have shown that our signatures share the same features than CL-signatures and
so can replace them in many applications. We provide below some examples and describe the
performance gains in Figures 2 and 3.

A.1 Group Signature

Let us consider the shortest group signature (in the ROM) proposed in [BCN+10]. A user of this
system first gets a CL-signature σ on a secret value sk and then uses it to prove membership
in the group. The main point for anonymity is that he can provide randomized versions of σ
when generating group signatures. They are unlinkable. Indeed, linking (a, b, c) with (at, bt, ct)
for some t ∈ Zp is equivalent to breaking the DDH assumption in G1.

Therefore, the construction of [BCN+10] does not specifically requires CL-signatures but
simply a signature scheme which allows (1) to sign a committed message and (2) to randomize
the signatures. Both properties are achieved by our scheme which can thus be used to instantiate
this group signature. For completeness we describe below the resulting algorithms (we borrow
the notations of [BCN+10]).

– GSetup(1k) : The Group Manager runs the Setup and the Keygen algorithms of the single-
message signature scheme described in Section 4.1 to get sk = (x, y) and pk = (g̃, X̃, Ỹ ). He
then sets the group public key gpk as pk along with some generator g ∈ G1, and sets his
secret key gmsk as sk.

– PKIJoin(i, 1k) : The user i generates (usk[i], upk[i])← Σ.Keygen(1k) for some digital signa-
ture scheme Σ and sends upk[i] to a Certification Authority. We assume then that upk[i] is
publicly available such that anyone can get an authentic copy of it.

– GJoin : To join the group, a user i starts an interactive protocol with the group manager.
He first generates a secret ski

$← Zp and sends the pair (τ, τ̃) ← (gski , Ỹ ski) along with a
signature η ← Σ.Sign(usk[i], τ) to the group manager. The latter then checks the validity
of η and the one of the pair (τ, τ̃) by testing whether e(τ, Ỹ ) = e(g, τ̃) or not. Next, the
user starts an interactive proof of knowledge of ski, such as the Schnorr’s protocol [Sch90].

If everything is correct, the group manager generates a random u
$← Zp and computes

σ ← (σ1, σ2)← (gu, (gx · (τ)y)u) which is a valid signature on ski, as explained in Section 6.
Finally, the group manager stores (i, τ, η, τ̃) in a secret register and sends σ to the user who
sets gski as (ski, σ, e(σ1, Ỹ )). Actually, the user does not need to store e(σ1, Ỹ ) but this will
allow him to avoid pairing computations during the GSign algorithm.

– GSign(gski,m) : To sign a message m the user first randomizes σ by generating a random
t and computing (σ′1, σ

′
2) ← (σt1, σ

t
2) and then computes a signature of knowledge of ski.

To do so, he selects a random k
$← Zp and computes e(σ′1, Ỹ )k ← e(σ1, Ỹ )k·t and c ←

H(σ′1, σ
′
2, e(σ1, Ỹ )k·t,m) for some hash function H which will be modelled as a random oracle

in the security proof. Finally, he computes s← k+ c · ski and outputs (σ′1, σ
′
2, c, s) ∈ G2

1×Z2
p

as the group signature µ on m.
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– GVerify(gpki,m) : To verify a signature µ = (σ1, σ2, c, s) on m the verifier computes R ←
(e(σ−11 , X̃) ·e(σ2, g̃))−c ·e(σs1, Ỹ ) and then checks whether c = H(σ1, σ2, R,m). This actually
corresponds to the verification of the signature of knowledge. If it is valid then he outputs
1. Otherwise, he outputs 0. Correctness follows from the fact that, if (σ1, σ2) is a valid
signature on ski, then:

(e(σ−11 , X̃) · e(σ2, g̃))−c · e(σs1, Ỹ )

= e(σ1, Ỹ )k · [e(σ1, Ỹ )ski · e(σ1, X̃) · e(σ−12 , g̃)]c

= e(σ1, Ỹ )k · [e(σ1, X̃ · Ỹ ski) · e(σ2, g̃)−1]c

= e(σ1, Ỹ )k

– GOpen(gmsk,m, µ): To open a signature µ, the group manager tests, for all entries (i, τi, ηi, τ̃i),
whether e(σ2, g̃) · e(σ1, X̃)−1 = e(σ1, τ̃) holds until he gets a match. He then outputs the
corresponding (i, τi, ηi) along with a proof of knowledge of a valid τ̃i. This proof can then
be checked by anyone to verify the validity of the opening.

This example shows that rewriting the algorithms of existing constructions in this new con-
text is quite obvious and so that our signature allows efficiency gains without the need for
designing a new scheme. In particular, the security analysis can be directly derived from the
original one. The only change is that the security properties will now rely on the unforgeability
of our scheme instead of the CL one. Here, the use of type 3 pairings is not even a restric-
tion since it was already required by the original construction. Figure 2 shows the performance
improvements we achieve compared to the latter.

Group Signature Size of Sig. Sig. Cost Verif. Cost

Bichsel et al
[BCN+10]

3 G1 + 2 Zp 3 EG1 + 1 EGT + 1 H 5 P + 1 EG1 + 1 EGT

Section A.1 2 G1 + 2 Zp 2 EG1 + 1 EGT + 1 H 3 P + 1 EG1 + 1 EGT

Fig. 2. Efficiency comparison between the original version of the group signature scheme described in [BCN+10]
and the one instantiated with our signature scheme, as described in appendix A.1. Here, EG1 (resp. EGT ) refers
to the cost of an exponentiation in G1 (resp. GT ), P to the cost of a pairing computation and H to the cost of
hashing elements to Zp. We do not consider operations in Zp since their cost is negligible compared to the other
ones.

A.2 Anonymous Credentials

Anonymous credentials allow users to prove possession of credentials without revealing any other
information about themselves. Ideally, different uses of the same credential should be unlinkable.
Moreover, users should be able to privately obtain credentials and then prove various state-
ments about them without revealing them. In the bilinear setting, the Camenisch-Lysyanskaya
scheme [CL04] and the ones from [BBS04,ASM06] fulfill all these requirements. Some other
schemes (such as the one of [HS14]) achieve a remarkable efficiency but at the cost of loosing at
least one of these properties.

The constructions of [CL04,ASM06] follow the same framework. Issuance of a credential
consists in a protocol where the user sends a commitment of its attributes (which may be
information-theoretically hidden) and then proves knowledge of them to the issuer. If the latter
is convinced, he returns a signature σ on the block of committed valued. Once the user has
received σ, he can prove possession of the credential by providing a proof of knowledge of this
signature on its attributes.
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This framework can therefore be instantiated with our signature scheme. The issuance proto-
col is then the one for signing committed messages we described in section 6.1 while presentation
of a credential consists in producing a proof of knowledge of a signature, as in section 6.2.

Anonymous
Credentials

Issuing Showing
User Issuer User Verifier Data Sent

CL [CL04]
(r + 1) EG1 +

PK{EG1 [r+1]}
(2r+4) EG1+
Ver(PK)

(2r + 4) EG1 +
PK{P[r + 2]}

(4r + 2) P +
Ver(PK)

(2r+3)G1+
|PK|

BBS+ [ASM06]
(r + 1) EG1 +

PK{EG1 [r+1]}
2 EG1 +
Ver(PK)

3 EG1 +
PK{P[r + 4] +
EG1 [2]+EG1 [3]}

Ver(PK) 2G1 + |PK|

Section A.2
(r + 1) EG1 +

PK{EG1 [r+1]}
2 EG1 +
Ver(PK)

2 EG1 +
PK{P[r + 1]} Ver(PK) 2G1 + |PK|

Fig. 3. Efficiency comparison between related works. Here, r refers to the number of attributes to be certified, EG1

to the cost of an exponentiation in G1 and P to the cost of a pairing computation. PK{EG1 [n]} (resp. PK{P[n]})
denotes the cost of proving knowledge of n secret scalars involved in a multi-exponentiation (resp. pairing-product)
equation, Ver(PK) the cost of verifying this proof and |PK| the size of the proof transcript.

Figure 3 shows that the anonymous credentials from [CL04] suffer from the linear size of
the CL-signatures but profits from the randomizability of the latter. On the contrary, those
from [ASM06] profits from the constant size of BBS-signatures but require to prove more com-
plex statements since these signatures cannot be revealed. Using our signatures for anonymous
credentials combines the advantages of both solutions since they offer both constant-size and
randomizability.

B Proof of Theorem 4

Let g and g̃ be the generators of G1 and G2, respectively, x and y be the secret scalars that
define (X,Y ) and (X̃, Ỹ ), and ri ∈ Z∗p be the scalar such that the ith oracle answer on scalar mi

is answered by (hi, ti = h
(x+y·mi)
i ) with hi = gri .

In the following, we associate group elements with polynomials whose formal variables are
the above unknown scalars: x, y, r1, . . . , rq, with first all the inputs available to the adversary:

X̃ = g̃x and Ỹ = g̃y in G2, Y = gy and hi = gri , ti = gri(x+y·mi), for i = 1, . . . , q, in G1. We
must first prove that an adversary A is unable to symbolically produce a new valid tuple, and
then that an accidental validity is quite unlikely.

For the output tuple (h∗, t∗) on a scalar m∗, since h∗ and t∗ are elements in G1, they can
just be combinations of previous tuples (hi, ti), g, and Y (without any help from elements in
G2): they have been built with queries to the oracle of internal law in G1, and so we know
((ui,1, vi,1, ui,2, vi,2)i, (w1, w2), (w

′
1, w

′
2)) ∈ Z4q+4

p such that:

gr
∗

= h∗ = gw1 · Y w′1 ·
q∏
i=1

h
ui,1
i · tvi,1i and gz

∗
= t∗ = gw2 · Y w′2 ·

q∏
i=1

h
ui,2
i · tvi,2i ,

and thus

r∗ = w1 + w′1 · y +

q∑
i=1

(ui,1 · ri + vi,1(x+ y ·mi) · ri)

and z∗ = w2 + w′2 · y +

q∑
i=1

(ui,2 · ri + vi,2(x+ y ·mi) · ri).
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The validity of the new tuple implies that z∗ = r∗(x+ y ·m∗), which leads to:

w2 + w′2 · y +

q∑
i=1

(ui,2 · ri + vi,2(xri +mi · yri))

= w1 · x+ w′1 · xy +

q∑
i=1

(ui,1 · xri + vi,1(x
2ri +mi · xyri))

+m∗ · (w1 · y + w′1 · y2 +

q∑
i=1

(ui,1 · yri + vi,1(xyri +mi · y2ri))).

For the two multivariable polynomials to be equal, the same monomials should appear on both
sides:

– no monomials of degree 3 on the left, so vi,1 = 0 for all i;

– no term in ri on the right, so ui,2 = 0 for all i;

– no constant term on the right, so w2 = 0;

– no term in x nor xy on the left, so w1 = 0 and w′1=0:

w′2 · y +

q∑
i=1

vi,2(xri +mi · yri) =

q∑
i=1

ui,1 · xri +m∗ ·
q∑
i=1

ui,1 · yri.

– no more term in y on the right, so w′2=0:

q∑
i=1

vi,2(xri +mi · yri) =

q∑
i=1

ui,1 · xri +m∗ ·
q∑
i=1

ui,1 · yri.

The monomials xri imply vi,2 = ui,1 for all i, while the monomials yri imply ui,1 ·mi = ui,1 ·m∗
for all i. Since r∗ 6= 0 (otherwise h∗ = 1G1), there is at least one ui,1 = vi,2 6= 0, and then
m∗ = mi: the pair is not for a new scalar! An adversary is then unable to symbolically produce
a valid tuple for a new scalar.

Now, it remains to evaluate the probability for an accidental validity: when two different
polynomials involved in the answers to the oracles evaluate to the same value. Since the elements
provided by the oracle are associated with polynomials of degree at most 2 and since the public
elements are associated with polynomials of degree at most 1, the polynomials resulting from
queries to the different group oracles are of degree at most 3 (because of pairing queries). Let qG
be the maximum number of group-oracle queries, there are thus at most 3+2q+qG polynomials,
and thus at most (3 + 2q+ qG)2/2 pairs of distinct polynomials that could evaluate to the same
value. By the Schwartz-Zippel lemma, the probability that such an event occurs is then upper-
bounded by 3(3 + 2q + qG)2/2p ≤ 6(q + qG)2/p which is negligible.

C Proof of Theorem 6

Let A be an adversary against the EUF-CMA security of the multiple-message signature scheme
from section 4.2. We construct a reduction R using A against the EUF-CMA security of the
single-message signature scheme described in section 4.1. The challenger of the latter game will
be denoted by C.

– Setup: R receives from C a public key pk∗ which contains the public parameters pp of the
signature scheme along with (g̃, X̃, Ỹ ). Next, it selects αj , βj

$← Zp, for j = 1, . . . , r, and

sets Ỹj ← Ỹ αj g̃βj . It outputs pk← (g̃, X̃, Ỹ1, . . . , Ỹr).
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– Queries: When A queries a signature on a vector Mi = (mi,1, . . . ,mi,r), R first requests

from C a signature on mi =
∑
αjmi,j and so receives σ = (σ1, σ2) such that e(σ1, X̃ ·

Ỹ
∑
αjmi,j ) = e(σ2, g̃). Next, it computes σ′2 ← σ2 · σ

∑
βj ·mi,j

1 and returns (σ1, σ
′
2) to A:

e(σ′2, g̃) = e(σ2 · σ
∑
βj ·mi,j

1 , g̃) = e(σ2, g̃) · e(σ
∑
βj ·mi,j

1 , g̃)

= e(σ1, X̃ · Ỹ
∑
αjmi,j ) · e(σ1, g̃

∑
βj ·mi,j )

= e(σ1, X̃ ·
∏

Ỹ αjmi,j g̃βj ·mi,j )

= e(σ1, X̃ ·
∏

(Ỹ αj g̃βj )mi,j ) = e(σ1, X̃ ·
∏

Ỹ
mi,j
j ),

which is a valid signature on Mi.

– Output: Eventually, A outputs a signature σ = (σ1, σ2) on a vector M∗ = (m∗1, . . . ,m
∗
r).

The signature σ is a valid forgery if

• e(σ1, X̃ ·
∏
Ỹ
m∗j
j ) = e(σ2, g̃);

• for i = 1, . . . , q, M∗ 6= Mi.

If
∑
αjm

∗
j =

∑
αjmi,j , for some i ∈ {1, . . . , q}, then R aborts. Otherwise, it outputs

σ∗ = (σ∗1, σ
∗
2), with σ∗1 ← σ1 and σ∗2 ← σ2 · σ

−
∑
βj ·m∗j

1 , together with m∗ ←
∑
αjm

∗
j :

e(σ∗2, g̃) = e(σ2 · σ
−

∑
βj ·m∗j

1 , g̃) = e(σ2, g̃) · e(σ
−

∑
βj ·m∗j

1 , g̃)

= e(σ1, X̃ ·
∏

Ỹ
m∗j
j ) · e(σ1, g̃−

∑
βj ·m∗j )

= e(σ1, X̃ ·
∏

(Ỹ αj g̃βj )m
∗
j ) · e(σ1,

∏
g̃−βj ·m

∗
j )

= e(σ1, X̃ ·
∏

Ỹ αjm
∗
j ) = e(σ1, X̃ · Ỹ

∑
αjm

∗
j ) = e(σ1, X̃ · Ỹ m∗).

Since m∗ has never been asked to the signing oracle, this is a valid forgery under the public
key pk∗.

We remark that, unless that adversary outputs a vector M∗ = (m∗1, . . . ,m
∗
r) such that

∑
αjm

∗
j =∑

αjmi,j for some vector Mi = (mi,1, . . . ,mi,r), a valid forgery makes R outputs a valid forgery
against the single-message signature scheme. We thus have to prove that such linear relations
are quite unlikely.

Let us denote y the scalar such that Ỹ = g̃y, and let us select γj
$← Zp, for j = 1, . . . , r. We

now set α′j ← αj − γj and β′j ← βj + yγj , for j = 1, . . . , r. One can remark that

Ỹ α′j g̃β
′
j = Ỹ αj−γj g̃βj+yγj = Ỹ αj Ỹ −γj g̃βj Ỹ γj = Ỹ αj g̃βj = Ỹj .

Hence, the public key is independent of the actual γj ’s, and thus reveals no information about
the αj ’s, and this is the same for the signatures that just depends on σ1 chosen by the oracle
and the public key.

As a consequence, the complete view of the adversary is totally independent of the αj ’s.
Hence, the probability that R aborts is upper-bounded by q/p.

D Proof of Theorem 7

Let A be an adversary against the existential unforgeability of the aggregate signature scheme
from section 5, in the certified public key setting. We construct a reduction R using A against
the existential unforgeability of the single-message signature scheme described in Section 4.1.
The challenger of the latter game will be denoted by C.
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– Setup: R first initializes a key list KeyList as empty. Next, it gets from C a public key pk
which contains the public parameters of the signature scheme pp along with (g̃, X̃, Ỹ ). It then
requests a signature on 0 from C which returns τ = (τ1, τ2) such that e(τ1, X̃) = e(τ2, g̃). One
can set g ← τ1 and X ← τ2. R then sets the public parameters of the aggregate signature
scheme as (pp, g,X, g̃, X̃) and sends pk∗ ← Ỹ to A. In the following, x∗ and y∗ will denote
the (unknown) scalars such that X̃ = g̃x

∗
(as well as X = gx

∗
) and Ỹ = g̃y

∗
. The scalar y∗

is thus the unknown secret key sk∗ associated to pk∗.
– Join Query: WhenA asks for adding a public key pki, the certification process that includes

a proof of knowledge of the associated secret keys ski allows R to extracts it: it thus stores
pki in KeyList, and stores (ski, pki) in its own list of signing/verification keys for future
simulations.

– Signature Query: When A requests for an aggregation of a message mi to the ag-
gregate signature σi on messages (mi,1, . . . ,mi,ri) under public keys (pki,1, . . . , pki,ri), if
ri > 0, R first checks the validity of σi, and aborts in the negative case. Then, it re-
quests a signature on mi from C, which returns σ = (σ1, σ2). All the public keys involved
in aggregate signatures must have been previously certified, then R knows the associated
secret keys (ski,1, . . . , ski,ri) = (yi,1, . . . , yi,ri): it selects a random t

$← Zp and returns

σ′ ← (σt1, (σ2 · σ
∑ri
j=1 yi,j ·mi,j

1 )t). This signature satisfies

e(σ′2, g̃) = e((σ2 · σ
∑ri
j=1 yi,j ·mi,j

1 )t, g̃) = e(σt2, g̃) · e(σt1, g̃)
∑ri
j=1 yi,j ·mi,j

= e(σ2, g̃)t ·
ri∏
j=1

e(σt1, g̃
yi,j ·mi,j ) = e(σ1, X̃ · Ỹ mi)t ·

ri∏
j=1

e(σt1, pk
mi,j
i,j )

= e(σt1, X̃ · pkmi ·
ri∏
j=1

pk
mi,j
i,j ) = e(σ′1, X̃ ·

ri∏
j=1

pk
mi,j
i,j · pk

mi)

which is thus a valid signature on the vector ((mi,j)i,mi) under the public keys ((pki,j)i, pk
∗).

– Output:A eventually outputs an aggregate signature σ = (σ1, σ2) on messages (m∗1, . . . ,m
∗
r)

under the public keys (pk1, . . . , pkr). The aggregate signature σ is a valid forgery if the fol-
lowing conditions are satisfied:
1. AS.Verify((pk1, . . . , pkr), σ, (m

∗
1, . . . ,m

∗
r)) = 1;

2. For all pkj 6= pk∗, pkj ∈ KeyList;
3. For some j∗ ∈ [1, r], pk∗ = pkj∗ and m∗j∗ has not been queried to the signing oracle, i.e.
m∗j∗ 6= mi, for i = 1, . . . , q.

The first condition implies that e(σ1, X̃
∏

pk
m∗j
j ) = e(σ2, g̃), while the second implies that R

knows yj such that pkj = g̃yj , for j = 1, . . . , r, when pkj 6= pk∗. The third one implies that
there exists (a unique, since the public keys are distinct) j∗ ∈ [1, r] such that pk∗ = pkj∗ : R
can compute σ∗ = (σ∗1 ← σ1, σ

∗
2 ← σ2 ·

∏
j 6=j∗ σ

−yj ·m∗j
1 ) which satisfies

e(σ∗2, g̃) = e(σ2 ·
∏
j 6=j∗

σ
−yj ·m∗j
1 , g̃) = e(σ2, g̃) ·

∏
j 6=j∗

e(σ
−yj ·m∗j
1 , g̃)

= e(σ1, X̃ ·
∏

pk
m∗j
j ) ·

∏
j 6=j∗

e(σ1, g̃
−yj ·m∗j )

= e(σ1, X̃ ·
∏

pk
m∗j
j ) ·

∏
j 6=j∗

e(σ1, Ỹ
−m∗j
j )

= e(σ1, X̃ · pk
m∗
j∗

j∗ ) = e(σ∗1, X̃ · pk
m∗
j∗

j∗ )

Since pkj∗ = pk∗ and m∗ = m∗j∗ was not query to C, this last equation shows that (m∗, σ∗)
is a valid forgery (for the single-message signature scheme described in Section 4.1) under
pk∗.
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But one has to additionally show that signature queries are correctly simulated with σ′ ←
(σt1, (σ2 · σ

∑ri
j=1 yi,j ·mi,j

1 )t), with σ = (σ1, σ2) a signature of m1 under pk∗, and t a random scalar,
whereas the real signature should be σ′ = (σti1, (σi2 · σ

y·m
i1 )t), where σi = (σi1, σi2) was a valid

signature on messages (mi,1, . . . ,mi,ri) under public keys (pki,1, . . . , pki,ri) (or σi = (g,X) when
r = 0), and t a random scalar.

But one can note that in both cases σ′1 is a random element in G∗1, while σ′2 is the unique

element that satisfies e(σ′2, g̃) = e(σ′1, X̃ ·
∏ri
j=1 pk

mi,j
i,j · pk

mi). Hence, the perfect simulation.

E Proof of Theorem 8

The completeness follows from the one of π and from the fact that σ′ is a valid signature on the
block (m1, . . . ,mr, t) under the public key (g̃, X̃, Ỹ1, . . . , Ỹr+1), where Ỹr+1 = g̃.

To prove the zero-knowledge property we construct a valid simulator S. First, S generates
two random elements σ′1 and σ′2 of G1 and sets σ′ ← (σ′1, σ

′
2). The pair σ′ is then correctly

distributed because r and t were randomly generated in the first step of the protocol. Next, S
runs the simulator of the proof π to simulate Step 2. The zero-knowledge property of π implies
then the one of our protocol.

Finally, let us consider a prover P such that the verifier’s acceptance is non-negligible. We
construct an extractor E using P to output a valid signature σ on a block of message. Since π
is a proof of knowledge, E can run the associated extractor to get a block (m1, . . . ,mr) along
with t such that:

e(σ′1, X̃) ·
∏

e(σ′1, Ỹj)
mj · e(σ′1, g̃)t = e(σ′2, g̃)

E can then compute σ = (σ1, σ2) ← (σ′1, σ
′
2 · (σ′1)−t) which is a valid signature on the block

(m1, . . . ,mr) since:

e(σ1, X̃) ·
∏

e(σ1, Ỹj)
mj = e(σ′1, X̃) ·

∏
e(σ′1, Ỹj)

mj · e(σ′1, g̃)t · e(σ′1, g̃)−t

= e(σ′2, g̃) · e(σ′1, g̃)−t

= e(σ2, g̃)

For any prover P accepted by a verifier with non-negligible probability, we can construct E
that outputs a valid signature by interacting with P. Our protocol is therefore a valid proof of
knowledge.


	Short Randomizable Signatures

