
Variants of Group Signatures and Their Applications

Lydia Garms

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Engineering, Physical and Mathematical Sciences

Royal Holloway, University of London

2020

Declaration

These doctoral studies were conducted under the supervision of Professor Keith Martin.

The work presented in this thesis is the result of original research I conducted, in collabo-

ration with others, whilst enrolled in the School of Mathematics and Information Security

as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

for any other degree or award in any other university or educational establishment.

Lydia Garms

27th February 2020

2

Abstract

In public–key cryptography each entity generates a public and secret key. The public key
is published alongside the user’s identity, whereas the secret key is kept private. Signature
schemes allow a signer with their secret key to “sign” a message producing a digital
signature. This signature can be publicly verified and ensures that the message originated
from the signer associated with the public key. Group signatures allow users to sign on
behalf of a group of users. Essentially, this ensures that the message originates from any
member of the group. However their identity within this group is not revealed, except
to a trusted opener who holds the opening secret key. In this thesis we introduce several
variants of group signature schemes for two applications.

The first application is reputation systems, which assign a user or item a reputation
value that can be used to evaluate trustworthiness. Examples of this include Amazon,
which rates sellers out of 5, and AirBnb which rates properties and users out of 5. In
a reputation system a user often has multiple items associated with them; for example,
on Amazon a user may sell several products. We introduce a new cryptographic model,
whereby reputation values are given to users, as opposed to existing cryptographic models
where reputation values are given to items. To allow for user privacy, a user’s items cannot
be linked. We prove this model can be achieved using two variations of a group signatures
scheme, with low additional efficiency cost given the extra functionality.

The collection of user data, such as health care records or other personal data, for pro-
cessing is our second application. Group signatures allow user data to be collected while
preserving the user’s privacy but still ensuring it originates from a group member. How-
ever, the correlation of data by user is useful for processing data. Therefore, the linkability,
i.e. whether signatures can be linked by user, must balance utility and privacy. We intro-
duce a new variant of group signature scheme that provides a more flexible and privacy-
friendly form of linkability. When created, all signatures are fully unlinkable, but can be
made linkable via a centrally trusted entity known as the converter. We formally define
the requirements for this new type of group signature scheme and provide an efficient
instantiation that provably satisfies these requirements.

The previous model captures a setting where the entity collecting and processing data is
the same. Therefore the data collector can be assumed to only submit honest input to the
converter. The outputs of the converter do not provide any assurance that data originated
from a group member. We extend the previous model to remove this assumption and allow
authentication to be preserved after data is converted. In order to provide a provably
secure construction we introduce: commuting group signatures. These signatures lift the
idea from the existing work of commuting signatures to the setting of group signatures.
We formally introduce these signatures and show how they can be realised.

3

Contents

1 Introduction 14

1.1 Motivation . 14

1.2 Chapter Overviews . 17

1.3 Publications . 18

2 Preliminaries 20

2.1 Notation . 20

2.2 Provable Security of Cryptography . 21

2.3 The Discrete Logarithm problem . 22

2.3.1 The Diffie–Hellman problems . 22

2.3.2 Bilinear Maps . 23

2.3.3 q-Strong Diffie–Hellman Assumption 24

2.3.4 LRSW Assumption . 24

2.4 Random Oracle Model . 24

2.5 Basic Cryptographic Primitives . 25

2.5.1 Encryption Schemes . 25

2.5.2 ElGamal Encryption . 27

2.5.3 Signature Schemes . 28

2.5.4 Structure Preserving Signatures Schemes 29

2.5.5 Camenisch-Lysyanskaya Signatures 30

2.5.6 BBS+ Signatures . 30

2.6 Zero–Knowledge Proofs of Knowledge . 31

2.6.1 Non–Interactive Zero–Knowledge Proofs 32

2.6.2 Fiat–Shamir Transform . 34

2.6.3 Proofs of Discrete Logarithms . 34

2.7 Group Signature Schemes . 35

2.7.1 Security Model for Dynamic Group Signature Schemes 36

4

CONTENTS

2.7.2 XS Group Signatures . 41

2.7.3 Variants of group signature schemes 42

2.8 Direct Anonymous Attestation . 46

2.8.1 Pre–DAA Security Model . 46

2.8.2 CDL Direct Anonymous Attestation Scheme 52

3 Modelling Centralised Reputation Systems with Unlinkable User Be-

haviour 55

3.1 Introduction . 55

3.1.1 Motivation . 56

3.1.2 Existing Work . 58

3.1.3 Our Contribution . 58

3.2 Chapter Preliminaries . 60

3.2.1 Existing Work on Centralised Reputation Systems 60

3.2.2 Conventional attacks on Reputation Systems 61

3.3 Defining a Reputation System . 63

3.3.1 Syntax of RS . 66

3.4 Security Properties . 67

3.4.1 Correctness . 69

3.4.2 Unforgeability of Reputation . 71

3.4.3 Traceability of users . 73

3.4.4 Unlinkability of User Behaviour . 73

3.4.5 Soundness of Reputation Values . 75

3.4.6 Anonymity of Feedback . 75

3.4.7 Non–frameability . 76

3.5 A Centralised Reputation System with Unlinkable User Behaviour 77

3.5.1 Binding Reputation to the XS Group Signature Scheme 77

3.5.2 Direct Anonymous Attestation . 79

3.5.3 Our RS-GS Construction . 80

3.6 Evaluation of our Construction . 80

3.6.1 Resilience against Conventional Attacks 80

3.6.2 Security of our Construction . 80

3.7 Instantiation of SPK and Efficiency . 91

3.7.1 Instantiation of SPKs . 91

3.7.2 Computational Cost . 92

5

CONTENTS

3.7.3 Communication Overhead . 92

3.8 Summary . 93

4 Group Signatures with Selective Linkability 94

4.1 Introduction . 94

4.1.1 Motivation and Background . 95

4.1.2 Linkability in Group Signatures . 95

4.1.3 Our Contribution . 97

4.1.4 Other Related Work . 99

4.2 Definition and Security Model for CLS . 100

4.2.1 Syntax of CLS . 100

4.2.2 Security Properties . 103

4.3 Our CLS Construction . 115

4.3.1 Detailed Description of CLS–DDH 116

4.4 Security of CLS–DDH . 119

4.4.1 Correctness . 120

4.4.2 Anonymity . 120

4.4.3 Non–transitivity . 126

4.4.4 Conversion Blindness . 131

4.4.5 Join Anonymity . 133

4.4.6 Non–frameability . 136

4.4.7 Traceability . 137

4.5 Instantiation of SPK and Efficiency . 142

4.5.1 Instantiation of SPKs . 142

4.5.2 Computational Cost . 143

4.5.3 Pseudonym and Signature Length 143

4.6 Summary . 143

5 Commuting Group Signatures 145

5.1 Introduction . 145

5.1.1 Motivation and Background . 145

5.1.2 Existing Work . 146

5.1.3 Our Contribution . 147

5.2 Chapter Preliminaries . 147

5.2.1 Automorphic Signatures . 148

6

CONTENTS

5.2.2 Controlled Malleable NIZKs . 149

5.3 Definition and Security Model for Commuting Group Signatures 152

5.3.1 Syntax of CGS . 152

5.3.2 Security Properties of CGS . 155

5.4 Our CGS Construction . 164

5.4.1 Detailed Description of our CGS–cmNIZK Construction 165

5.5 Security of our CGS–cmNIZK construction 170

5.5.1 Correctness . 171

5.5.2 Commutative Behaviour . 171

5.5.3 Re-randomisability . 172

5.5.4 Anonymity . 172

5.5.5 Blindness . 175

5.5.6 Non–frameability . 181

5.5.7 Traceability . 183

5.6 Concrete Instantiation and Efficiency . 184

5.6.1 Signature Proofs of Knowledge . 184

5.6.2 Automorphic Signatures . 184

5.6.3 Controlled Malleable NIZKs . 185

5.6.4 Efficiency . 189

5.7 Summary . 190

6 Convertible Group Signatures – Stronger Security and Preserved Veri-

fiability 191

6.1 Introduction . 191

6.1.1 Motivation and Background . 192

6.1.2 Our Contribution . 192

6.2 Definition and Security Model for CLS+ . 193

6.2.1 Syntax of CLS+ . 194

6.2.2 Security Properties of CLS+ . 196

6.3 Our CLS+ Construction . 208

6.3.1 Detailed Description of CLS–CGS . 210

6.4 Security of CLS–CGS . 213

6.4.1 Correctness . 213

6.4.2 Anonymity . 214

6.4.3 Non–transitivity . 222

7

CONTENTS

6.4.4 Conversion Blindness . 227

6.4.5 Non–frameability . 229

6.4.6 Traceability . 232

6.5 Concrete Instantiation of CLS–CGS construction 234

6.5.1 Extractability . 235

6.5.2 Instantiating the Proof of Unblinding 236

6.5.3 Efficiency . 237

6.6 Summary . 237

7 Concluding Remarks 238

Bibliography 241

A Additional Security Proofs for our RS-GS construction 255

A.1 Traceability . 255

A.2 Soundness of Reputation . 260

A.3 Anonymity of Feedback . 264

A.4 Non–frameability . 267

8

List of Figures

2.1 Oracles used in the dynamic group signature security model 40

2.2 Experiments capturing the correctness, anonymity, traceability, and non–

frameability security requirements for dynamic group signature schemes . . 42

2.3 The XS group signature scheme . 43

2.4 The 〈XSJoin,XSIssue〉 protocol of the XS group signature scheme 44

2.5 Oracles in the pre-DAA security model . 48

2.6 Experiment capturing the correctness requirement for pre–DAA schemes . . 49

2.7 Experiments capturing the anonymity, traceability and non–frameability

security requirements for pre–DAA schemes 50

2.8 The algorithms of CDL . 53

2.9 The < CDLJoin,CDLIssue > Protocol . 54

3.1 How entities interact in our model of a centralised reputation system 63

3.2 Oracles in our RS security model . 69

3.3 Experiments capturing our unlinkability of user behaviour, traceability and

unforgeability of reputation security properties 72

3.4 Experiments capturing our soundness of reputation, anonymity of feedback

and non–frameability security properties . 74

3.5 The algorithms of XS*, our modification to the XS group signature scheme 78

3.6 The algorithms of CDL in the static setting 79

3.7 Our RS-GS reputation system . 81

3.8 Simulated answers to oracle queries in our unforgeability of reputation proof 83

3.9 A which solves the q-SDH problem, using A′ which breaks unforgeability

of reputation for the RS-GS construction . 84

3.10 A which distinguishes between DDH tuples in G1, using A′ which breaks

unlinkability of user behaviour for our RS-GS construction 89

9

LIST OF FIGURES

4.1 Oracles used in our CLS model . 106

4.2 Security games for correctness of CLS . 109

4.3 Join protocol of our CLS–DDH construction 117

4.4 Convert oracle used during the first j queries of Game (0, j) in the CLS

anonymity proof . 121

4.5 Dj a distinguishing algorithm for the DDH problem in the CLS anonymity

proof . 122

4.6 A′ which distinguishes between DDH tuples using A in the CLS anonymity

proof . 125

4.7 Description of GameHj and the changes to the SNDU and CONVSIM oracles

in the CLS non–transitivity proof . 128

4.8 Oracles for Dj our distinguishing algorithm for the DDH problem in the

CLS non–transitivity proof . 129

4.9 The CONVSIM oracle used by distinguisher Dj in the CLS non–transitivity

proof . 130

4.10 D1 that distinguishes between Game 0 and Game 1 in the CLS conversion

blindness proof . 132

4.11 D2 that distinguishes between Game 1 and Game 2 in the CLS conversion

blindness proof . 132

4.12 A′, which breaks the DDH assumption, using A, which breaks the join

anonymity of CLS–DDH with probability ε 134

4.13 A′, which breaks the discrete log assumption, using A, which breaks the

non-frameability of CLS–DDH with probability ε 136

4.14 A′ which breaks the q-SDH assumption, using A which breaks the trace-

ability of CLS–DDH with probability ε . 139

5.1 Oracles used in our CGS security model . 157

5.2 Game defining correctness for CGS . 158

5.3 Games defining commutative behaviour of CGS 159

5.4 Join protocol of our CGS–cmNIZK construction 166

5.5 A′ which distinguishes DDH tuples in G2 usingA which breaks the anonymity

of CGS–cmNIZK with probability ε . 174

5.6 D1 that distinguishes between Game 1 and Game 2 in the CGS blindness

proof . 177

10

LIST OF FIGURES

5.7 D2 that distinguishes between Game 2 and Game 3 in the CGS blindness

proof . 179

5.8 D3 that distinguishes between Game 3 and Game 4 in the CGS blindness

proof . 180

5.9 A′ which breaks the EUF-cma security of the automorphic signatures used,

using A which breaks the non–frameability requirement of CGS–cmNIZK

with probability ε . 181

5.10 A′ which breaks the EUF-cma security of automorphic signatures, using A

which breaks the traceability of CGS–cmNIZK with probability ε 183

6.1 Oracles used in our CLS+ security model 200

6.2 Security games for correctness of CLS+ . 202

6.3 Join protocol of our CLS–CGS construction 211

6.4 Convert oracle used during first j queries of Game (0, j) in the CLS+

anonymity proof . 215

6.5 Dj a distinguishing algorithm for the DDH problem in the CLS+ anonymity

proof . 216

6.6 Dj a distinguishing algorithm for the DDH problem in the CLS+ anonymity

proof . 217

6.7 A′ which breaks the anonymity of commuting group signatures, given A

which breaks the anonymity of CLS–CGS . 221

6.8 Description of GameHj and the changes to the SNDU and CONVSIM oracles

in the CLS+ non–transitivity proof . 224

6.9 Dj our distinguishing algorithm for the DDH problem in the CLS+ non–

transitivity proof . 225

6.10 The CONVSIM oracle used by distinguisher Dj in the CLS+ non–transitivity

proof . 226

6.11 A′ which breaks the blindness of commuting group signatures using A which

breaks the conversion blindness of CLS–CGS 228

6.12 A′ which breaks the non–frameability of commuting group signatures using

A which breaks the non–frameability of CLS–CGS 230

6.13 A′ which breaks the traceability of commuting group signatures using A

which breaks the tier-2 traceability of CLS–CGS 233

A.1 Simulated answers to oracle queries for our traceability proof 256

11

A.2 A which solves the q-SDH problem, using A′ which breaks traceability for

the RS-GS construction . 257

A.3 A which breaks existential unforgeability under the chosen–message attack

for CL signatures, using A′ which breaks soundness of reputation for our

RS-GS construction . 262

A.4 A which distinguishes between DDH tuples in G1, using A′ which breaks

anonymity of feedback for our RS-GS construction 265

A.5 A which breaks the DL problem in G1, usingA′ which breaks non–frameability

for our RS-GS construction . 267

List of Tables

3.1 An overview of the notation used in our RS model 65

4.1 Computational costs for our CLS–DDH instantiation 143

4.2 Size of pseudonyms and signatures for our CLS–DDH instantiation 143

5.1 Games in our blindness proof . 175

12

Acknowledgements

Firstly I would like to thank my supervisor Keith for guiding me through my PhD, as well

as for all of the helpful feedback and advice I have received. I have also learned a great

deal from working with my other co authors. I would like to thank Siaw-Lynn and Liz

for all the time and support they have given me, and Anja for giving me the opportunity

to work with her during my internship, as well as the continued guidance during the rest

of my PhD studies. I would like to thank the EPSRC grant (EP/K035584/1) for funding

my PhD and IBM Research for funding my internship.

Thanks to everyone in the department for being such good company. I have really enjoyed

being part of a centre for doctoral training. My CDT cohort, particularly Ben, Nick

and Ivan as well as others from different cohorts, have been a great source of support

throughout the PhD. Thanks to all previous occupants of office 253 for the many tea

breaks, boilerhouse trips, SCR lunches and pub quizzes. In particular, thanks to Keele

for feeding me vegetables and generally being amazing, to Reynold for giving my day a

(strictly enforced) social structure, and to Nick (2) for his youthful approach to life. Being

part of the Wisdom group really improved my experience in the department and I am

grateful to Thyla, Sheila, Thalia and Rachel for their work in establishing this.

I am very grateful for the support I have received throughout my PhD studies from my

family and friends. In particular, thanks to Harriet and Lucy for always being there to

cheer me up at weekends, as well as my Mum and Dad for their unending support. Finally

thanks to Amit for being someone to bounce ideas off of, for consoling me when things

weren’t going to plan, for waking me up in the mornings with a cup of tea and much much

more.

13

Chapter 1

Introduction

Contents

1.1 Motivation . 14

1.2 Chapter Overviews . 17

1.3 Publications . 18

This chapter provides the motivation for the work in this thesis and an overview of the

structure.

1.1 Motivation

Group signature schemes [49] allow group members to sign on behalf of a group, without

revealing their identity within this group. A group signature ensures that a message

originates from a member of the group. To ensure accountability, a trusted opener has

the power to de-anonymise signatures with the opening secret key. In this thesis we will

introduce variants of group signature schemes for two different applications.

Our first application is centralised reputation systems [7, 18, 58, 70, 106, 112, 128], where

a user or item is allocated a reputation value representing trustworthiness or merit. Cen-

tralised schemes are managed by a trusted entity who forms reputation values. However

forming reputation values is often at odds with privacy. If reputation values are formed

from feedback given by other users, then the privacy of this feedback should be ensured,

whilst also ensuring that feedback is not given in an unfair way. For example a user

could unfairly influence another’s reputation by giving a large amount of positive or neg-

14

1.1 Motivation

ative feedback on the same subject. Also to form a reputation value on a user’s entire

behaviour, their activities must be linked together. This linkability could potentially be

used to de-anonymise users.

In order to address this, cryptographic models have been proposed to capture the key

security and privacy properties that a reputation system should satisfy [7, 18, 58]. Differ-

ent cryptographic techniques have been used to provide instantiations that achieve these

models. Group signature schemes have been used to allow feedback to be provided while

avoiding multiple feedback on the same item [18, 58]. They have also been used to enable

the formation of reputation values whilst ensuring the privacy of users’ behaviour [70, 106].

Contribution. In this thesis we establish a cryptographic model for a centralised rep-

utation system in a setting where user behaviour is unlinkable and reputation is given

to users instead of items. This ensures that users are accountable for all their behaviour

within the system. For example, in the context of a car pooling app, we ensure that a

user’s journeys (or items) cannot be linked together. However, we still allow for a user’s

reputation to be based on all of their activities on the app, so that it accurately reflects

their overall behaviour. We show that this model can be achieved by using two variants

of group signature schemes. The first variant allows reputation to be bound to group

signatures, so that reputation can be proved alongside group membership. The second

variant is based on an existing primitive, direct anonymous attestation [29].

Our second application is the collection and processing of data for privacy enhancing ap-

plications. Group signatures enable data to be stored authenticated, whilst also preserving

a user’s privacy. However there should be a balance between privacy and utility: the cor-

relation of data by user is often necessary for data processing. For example, several high

value measurements of blood pressure over many users may have very different implica-

tions than if they were all associated with a single user. Often the exact reason for data

processing is not clear when data is collected. Data collectors gather large amounts of data

but will only use small subsets when necessary for particular applications. For example,

public Wi-Fi data was accidentally captured by Google Street View cars but later used to

improve Google’s location services.

The opener, a trusted entity with the opening secret key, could de-anonymise signatures to

15

1.1 Motivation

allow for processing. However, this is potentially privacy intrusive, as the opener has the

power to de-anonymise all signatures. Alternative variants of group signatures have been

proposed which, instead of the opening functionality, allow signatures to be linked. This

means that signatures do not have to be fully de-anonymised, yet the correlation of data

by user can still be determined. Controlled linkability [79, 80, 120] allows for the linking

of signatures by a trusted entity with a linking secret key. However, this is still privacy

invasive since the linking entity can obtain information about the linking of signatures.

Also it does not scale well, as each pair of signatures must be linked. This means linking

a set of n signatures would require
(
n
2

)
operations. User controlled linkability [29] allows a

user to choose a basename, as well as a message to sign. Signatures on the same basename

can be publicly linked. However the linking can be determined by all, not just a trusted

entity. Also the signatures that need to be linked must be determined at the point of data

collection, which is not flexible enough. This is because, the purpose of the data may not

be known until later.

Contribution. In this thesis we firstly introduce a new variant of group signatures:

group signatures with selective linkability. Data is stored authenticated and unlinkable

by the data collector. We refer to the part of a signature that provides linkability as

a pseudonym. When a subset of pseudonyms, are processed, they can be linked in a

controlled way by a trusted central entity known as the converter. Specifically, this linking

should be performed blindly, so that the messages/ pseudonyms that are being linked, and

their linkage is not revealed to the converter. This linking is non-transitive, meaning

pseudonyms can only be linked within the same query to the converter. This ensures that

a list of linked pseudonyms cannot be gradually built up by the data collector. We assume

both the data collector, and converter are honest–but–curious, i.e. we assume they follow

the protocol honestly, but will attempt to learn all possible information. Therefore, only

correctly formed messages and pseudonyms are input to the converter.

Secondly, we introduce an extended model, for a setting where the data collector is split

into a data lake and data processor. A data lake is an entity that has collected a large

amount of user data, which they could then sell or pass on to data processors if a use for

this data is found. For example, groups of hospitals could collect anonymised healthcare

records of patients stored in a data lake. Researchers could then request relevant data

for analysis. The data processor can no longer trust that correctly formed pseudonyms

16

1.2 Chapter Overviews

were input to the converter. Therefore signatures as well as pseudonyms must be input

to the converter. To ensure that authentication is preserved, the converter must also

output signatures. Finally, in order to achieve this model, we introduce commuting group

signatures as a building block. These allow both messages and signatures to be blinded,

whilst still allowing for public verifiability, similarly to commuting signatures [66]. Blinded

signatures can still be opened to reveal a blinded identity. Therefore, blinded group

signatures can now be input to the converter who can verify and blindly open them.

1.2 Chapter Overviews

Chapter 2 presents preliminaries used throughout this thesis. This includes an introduction

to the notation used and core definitions.

In Chapter 3 we focus on the first application of reputation systems. We provide a cryp-

tographic security model for a centralised reputation system where reputation values are

given to users instead of items. We then present two building blocks and show how they

can be used to build a construction for such a reputation system. These are a direct

anonymous attestation scheme [29], and a modification to an existing group signature

scheme that allows reputation to be proved alongside group membership. We then prove

the security of this construction in our model, and evaluate how susceptible it is to conven-

tional attacks against reputation systems outside the scope of our cryptographic model.

We provide a concrete instantiation of our construction and analyse the efficiency of this

in comparison to other relevant reputation systems.

In Chapter 4 we consider our second application of data collection/ processing. We provide

a security model for our group signatures with selective linkability, defining the security

and privacy properties required. We then present a construction and prove the security

of this in the model. This construction makes use of ElGamal encryption [59], BBS+

signatures [9] and signature proofs of knowledge [46]. We then provide a concrete instan-

tiation for these building blocks and evaluate the efficiency of this in terms of the sizes of

pseudonyms/ signatures, and the number of operations required.

In Chapter 5 we introduce commuting group signatures, which will be used as a building

block to achieve the extended model for group signatures with selective linkability defined

17

1.3 Publications

in Chapter 6. We first present a formal security model for this new primitive, including

syntax and the necessary security and privacy properties. The standard security require-

ments for group signatures should apply, but now must hold for both standard and blinded

signatures. We also must ensure the security of the blinding of messages and signatures.

We then provide a construction, making use of malleable proof systems [45], automorphic

signatures [65], and ElGamal encryption. We prove our construction is secure, and then

provide a concrete instantiation of these building blocks. We compute the sizes of these

signatures in terms of the number of group elements.

In Chapter 6 we provide an extended security model for group signatures with selective

linkability, which takes into account the split data lake/ data processor. We provide

updated syntax to take into account that signatures are now input to the blind and

convert algorithms. We extend our security requirements to so that we no longer assume

that all inputs to convert from the data lake are correctly formed. We also ensure that the

unforgeability properties now hold for blinded and converted signatures. We then present

a construction making use of a commuting group signature scheme, as given in Chapter 5,

as a building block. The construction also makes use of a signature proof of knowledge and

a standard signature scheme. We then prove this construction secure under the extended

security model. We show that the concrete instantiation of commuting group signatures

given in Chapter 5 is compatible with our construction, and also provide an instantiation

of the other building blocks used. We analyse the efficiency of this in comparison to the

instantiation given in Chapter 4.

1.3 Publications

Chapter 3 is based on the paper “A New Approach to Modelling Centralised Reputa-

tion Systems”, which was joint work with Elizabeth A. Quaglia. This was presented at

AFRICACRYPT 2019 [71]. Preliminary work on this topic was included in the paper

“Reputation Schemes for Pervasive Social Networks with Anonymity”, which was joint

work with Keith Martin and Siaw–Lynn Ng. This was presented at PST 2017 [70].

Chapter 4 is based on the paper “Group Signatures with Selective Linkability”, which was

joint work with Anja Lehmann. This was presented at PKC 2019 [69].

18

1.3 Publications

Chapters 5 and 6 are based on the paper “Convertible Group Signatures – Stronger Se-

curity and Preserved Verifiability”, which was joint work with Anja Lehmann. This is

currently under submission.

19

Chapter 2

Preliminaries

Contents

2.1 Notation . 20

2.2 Provable Security of Cryptography 21

2.3 The Discrete Logarithm problem 22

2.4 Random Oracle Model . 24

2.5 Basic Cryptographic Primitives 25

2.6 Zero–Knowledge Proofs of Knowledge 31

2.7 Group Signature Schemes . 35

2.8 Direct Anonymous Attestation 46

This chapter introduces the standard notation, key building blocks, and definitions that

will be used throughout this thesis. For a comprehensive background on these notions,

see [82].

2.1 Notation

We first provide some basic notation and group theory that will be used throughout the

thesis.

We denote the set of integers as Z, the set of natural number as N and the set of real

numbers as R. A positive integer is a prime if it only has two divisors: 1 and itself. Let Z∗p

20

2.2 Provable Security of Cryptography

denote the set {1, .., p− 1}. We denote the set of consecutive integers {i, ..., j} for integers

i ≤ j, as [i, j], and [n] denotes the set {1, ..., n} for n > 1. We denote the empty set as ∅.

A function, f : N→ R , is negligible on its input, if for every positive polynomial p, there

exists an N such that for all integers n > N , f(n) < 1
p(n) . Throughout this thesis, we

shall denote an arbitrary negligible function by negl().

We denote assigning the value x to the variable y as y ← x, and y←$S denotes choosing

an element from a finite set S uniformly at random and assigning it to the variable y. If

A is a deterministic function, y ← A(x1, ...xn) denotes assigning the result of running A

on the inputs x1 to xn to an output y. If A is instead a probabilistic algorithm, y←$A()

denotes assigning the output of A to the variable y. We let ⊥ denote a failure symbol,

and PPT denote probabilistic polynomial–time.

2.2 Provable Security of Cryptography

In cryptography it is vital to precisely define security for cryptographic primitives, because

otherwise it is not possible to precisely evaluate the security of the construction.

One way of defining security is using security games, which will be the method we use

throughout this thesis. The games are designed to model real life security, incorporating

the threat model by the input given to the adversary, and the security goals by the

conditions the adversary must satisfy to win. In a security game a challenger interacts

with a probabilistic polynomial–time adversary A. The challenger provides the adversaries

inputs and receives outputs in return. In some cases the adversary may keep track of a

state throughout, so can “remember” past inputs and computations. At the end of the

game the challenger decides if the adversary has won or lost based on what they have

output. We say that if any adversary can only “win” with negligible probability then the

cryptographic primitive is secure. The adversaries are often given access to oracles for

particular functions. These allow the adversary to submit queries to the challenger who

performs some function on this input, alongside some other private input, and returns the

output of this function to the adversary.

Security can also be defined using simulation based security definitions. In this case, an

21

2.3 The Discrete Logarithm problem

ideal functionality is given for the cryptographic primitive and we say a construction is

secure if it is indistinguishable to an adversary from the ideal functionality.

In order to ensure that a construction satisfies the security requirements for a crypto-

graphic primitive, proofs of security must be provided that this is the case given a set of

assumptions. These proofs of security often take the form of reductions from the security

of the scheme to a cryptographic hardness assumption.

2.3 The Discrete Logarithm problem

We let G denote a group generation algorithm that on input a security parameter 1τ

outputs a description of a cyclic group along with its prime order p and a generator g ∈ G.

The size of the group output will depend on the security parameter τ input. We require

that the group operation can be computed efficiently. For each h ∈ G there is a unique x

in Zp, such that h = gx. We call this x the discrete logarithm of h with respect to g. The

discrete logarithm problem in a cyclic group G is, for a uniformally chosen h, to compute

the discrete logarithm of h with respect to g. We say the discrete logarithm problem is

hard with respect to G, if for all PPT algorithms A, the probability that they solve the

discrete logarithm problem for the group output by G with input 1τ , is negligible in τ .

The discrete logarithm assumption is the assumption that there exists G for which the

discrete logarithm problem is hard.

2.3.1 The Diffie–Hellman problems

The Computational Diffie–Hellman assumption, which we will refer to as the CDH as-

sumption, and the Decisional Diffie–Hellman assumption, which we will refer to as the

DDH assumption, are two assumptions that are related (but not equivalent) to the Discrete

Logarithm assumption.

The Computational Diffie–Hellman problem is given a prime p order group G, a generator

g and uniformally chosen group elements h1, h2 ∈ G, compute gx1x2 where x1, x2 are the

discrete logarithms of h1, h2 with respect to g .

22

2.3 The Discrete Logarithm problem

The Decisional Diffie–Hellman problem is given a prime p order group G, a generator g

and uniformally chosen group elements h1, h2 ∈ G, to distinguish between gx1x2 where x1,

x2 are the discrete logarithms of h1, h2 with respect to g and a uniform group element.

The random self–reduction for DDH [105, 122] randomises a DDH problem instance so

that if the input is a random DDH 3–tuple then the output is a random DDH 3–tuple,

and otherwise the output is a random 3–tuple. In [127] an expanded self–reduction is given

that will be used in this thesis. If the input is a random DDH 3–tuple (x, y, z) then the

output is two random DDH 3–tuples (x′, y′, z′) and (x′′, y′, z′′) with y′ in common, and

otherwise (x′, x′′, y′, z′, z′′) is a random 5–tuple. This can be generalised so that the output

is either k random DDH tuples with y′ in common, or a random 2k + 1–tuple.

2.3.2 Bilinear Maps

Let G1, G2, GT be cyclic groups of prime order p. A bilinear map e : G1×G2 → GT must

satisfy the following conditions: bilinearity, i.e., e(gx1 , g
y
2) = e(g1, g2)xy; non-degeneracy,

i.e., for all generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there

exists an efficient algorithm G(1τ) that outputs a bilinear group (p,G1, G2, GT , e, g1, g2),

and an efficient algorithm to compute e(a, b) for all a ∈ G1, b ∈ G2. Bilinear maps are

also referred to as pairings.

In [67] pairings are classified into three different types. For type–1 pairings, G1 = G2.

For type–2 pairings, G1 6= G2, but there is an efficiently computable homomorphism

ψ : G2 → G1. For type–3 pairings, G1 6= G2 and there is no efficiently computable

homomorphisms between G1 and G2.

We use type–3 pairings [67] in this work; i.e., we do not assume G1 = G2 or the existence of

an homomorphism between both groups in our scheme and security proofs. The advantage

of type–3 pairings is that they enjoy the most efficient curves, when balancing the cost of

pairings and group operations, the size of the representation of an element of G2 and the

flexibility of parameter choice [47, 67].

23

2.4 Random Oracle Model

2.3.3 q-Strong Diffie–Hellman Assumption

The q-Strong Diffie–Hellman assumption which we will refer to as the q-SDH assumption

is another hardness assumption related to the discrete logarithm assumption.

There are two versions of the q-Strong Diffie–Hellman assumption. The first version, given

by Boneh and Boyen in [19], is defined in a type–1 or type–2 pairing setting. We will refer

to this version as the Eurocrypt version. It is stated as follows:

Definition 2.1 (q–SDH assumption (Eurocrypt Version)). In (G1,G2), with an homomor-

phism ψ : G2 → G1: given (S1, S2, S
χ
2 , S

(χ)2

2 , ..., S
(χ)q

2) such that S1 ∈ G1, S2 ∈ G2, S1 =

ψ(S2), output (S
1

χ+x

1 , x) ∈ G1 × Zp\{−χ}.

We use the second version of that definition that supports type–3 pairings and was stated

in the journal version of their paper [20]. We will refer to this version as the JoC version.

It is stated as follows:

Definition 2.2 (q-SDH assumption (JoC version)). Given (g1, g
χ
1 , g

(χ)2

1 , ..., g
(χ)q

1 , g2, g
χ
2)

such that g1 ∈ G1, g2 ∈ G2, output (g
1

χ+x

1 , x) ∈ G1 × Zp\{−χ}.

2.3.4 LRSW Assumption

Another hardness assumption related to the discrete logarithm problem we will use in this

thesis is the LRSW assumption [97].

Definition 2.3 (LRSW assumption). Let an adversary be given (G1,G2), with generators

G1, G2 of G1, G2 respectively, X = Gx2 , Y = Gy2 for some x, y ∈ Z∗p and access to an oracle

that when f is input, outputs (A,Aβ, AαAfαβ) where A = Gr2 for uniform r ∈ Z∗p. It is

hard for the adversary to output (f,A,B,C) such that A ∈ G1, B = Aβ, C = AαAfαβ ,

and f has not been queried to the oracle.

2.4 Random Oracle Model

In this thesis we will make use of the random oracle model [13] as an assumption. The

random oracle model is a powerful tool that allows many practical schemes to be proven

24

2.5 Basic Cryptographic Primitives

secure.

The random oracle model firstly assumes that a hash function can be modelled in security

proofs by a black box that on receiving an input x outputs y. If x has been input previously,

then the same y should be output. If x has not been input previously, then y should

be chosen uniformally at random, and (x, y) should be stored for future queries. If an

adversary queries x to H then the reduction in the proof of security can see the query

and learn x, which is referred to as extractability. The reduction can also set the value of

H(x) to a value of its choice, provided it is correctly distributed, which is referred to as

programmability.

The value of proofs based on the random oracle model is still under debate within the

cryptographic community. Examples of cryptographic schemes that can be proved secure

under the random oracle, but where any practical instantiation can be shown to be insecure

were found in [42]. However these schemes were contrived, and so far there have been no

successful “real world” attacks on schemes proved secure under the random oracle model.

When instantiated properly with a suitable hash function, proofs under the random oracle

are still seen as strong evidence that a cryptographic construction will resist attacks in

practise [31].

2.5 Basic Cryptographic Primitives

2.5.1 Encryption Schemes

A public–key encryption scheme consists of the following probabilistic polynomial–time

algorithms:

• EncKGen(1τ): takes as input the security parameter 1τ and outputs the public key

pk and secret key sk.

• Enc(pk,m): takes as input the public key pk and a message m from the message

space, and outputs a ciphertext c.

• Dec(sk, c): takes as input the secret key sk and a ciphertext c, and outputs a message

25

2.5 Basic Cryptographic Primitives

m or a decryption failure ⊥.

Correctness. We say the encryption scheme is correct if for all messages m in the

message space, the probability that Dec(sk,Enc(pk,m)) 6= m is negligible in τ . We say

an encryption scheme is perfectly correct if, for all messages m in the message space, the

probability that Dec(sk,Enc(pk,m)) 6= m is 0.

2.5.1.1 Security Against Chosen–Plaintext Attacks

Security against chosen–plaintext attacks captures that an adversary should not be able

to distinguish between encryptions of two messages chosen by the adversary.

We now present the security game corresponding to the indistinguishable encryptions under

a chosen–plaintext attack (ind-cpa) requirement.

Experiment: Expind−cpa−bA,Π (τ)

(pk, sk)←$EncKGen(1τ), (m0,m1, st)←$A(choose, pk)

c←$Enc(pk,mb), b
∗←$A(st, guess, c)

return b∗

Definition 2.4. A public–key encryption scheme Π has indistinguishable encryptions

under a chosen–plaintext attack if, for all probabilistic polynomial–time adversaries A, the

following advantage is negligible in τ : |Pr[Expind−cpa−0
A,Π (τ) = 1]−Pr[Expind−cpa−1

A,Π (τ) = 1]|.

2.5.1.2 Security Against Chosen–Ciphertext Attacks

Security against chosen–ciphertext attacks captures that an adversary should not be able

to distinguish between encryptions of two messages, even when the adversary is able to

obtain decryptions of arbitrary ciphertexts. This ensures that the encryption scheme is

non–malleable [11]. This means that, given an encryption c of a message m, an adversary

cannot transform this into a new ciphertext, which is an encryption of a known function

of the original message.

26

2.5 Basic Cryptographic Primitives

We now present the security game corresponding to the indistinguishable encryptions under

a chosen–ciphertext attack requirement.

DEC(c′)

if c′ = c return ⊥ else return m′ ← Dec(sk, c′)

Experiment: Expind−cca2−b
A,Π (τ)

(pk, sk)←$EncKGen(1τ), (m0,m1, st)←$ADEC(choose, pk)

c←$Enc(pk,mb), b
∗←$ADEC(st, guess, c)

return b∗

Definition 2.5. A public–key encryption scheme Π has indistinguishable encryptions un-

der a chosen–ciphertext attack if, for all probabilistic polynomial–time adversaries A, the

following advantage is negligible in τ : |Pr[Expind−cca2−0
A,Π (τ) = 1]− Pr[Expind−cca2−1

A,Π (τ) =

1]|.

2.5.2 ElGamal Encryption

We will use the ElGamal encryption scheme [59] in this thesis. This encryption scheme

has public parameters (G, g, p). We now present algorithms ElgGen, ElgEnc, ElgDec.

ElgGen(1τ)

sk←$Z∗p, pk ← gsk

return (pk, sk)

ElgEnc(pk,m)

r←$Z∗p return c← (gr, pkrm)

ElgDec(sk, (c1, c2))

return m← c2c
−sk
1

Assuming the DDH assumption holds in G, ElGamal encryption is chosen–plaintext se-

cure [59].

Later in this thesis, we will use the homomorphic property of ElGamal; i.e., if C1 ∈

ElgEnc(pk,m1) and C2 ∈ ElgEnc(pk,m2), then C1 � C2 ∈ ElgEnc(pk,m1 ·m2).

We further use that ElGamal ciphertexts c = ElgEnc(pk,m) are publicly re-randomisable;

i.e., the re-randomised version c′ of c looks indistinguishable from a fresh encryption of

27

2.5 Basic Cryptographic Primitives

the underlying plaintext m. The following procedure clearly satisfies this:

Re-randomisation: On input (pk, (c1, c2)), r′←$Z∗p and output (c1g
r′ , c2pk

r′).

2.5.3 Signature Schemes

A signature scheme consists of the following probabilistic polynomial–time algorithms.

• SigKGen(1τ): takes as input the security parameter 1τ and outputs the public veri-

fication key vk and secret signing key sk.

• Sign(sk,m): takes as input the signing key sk and a message m, and outputs a

signature σ.

• Verify(vk,m, σ): takes as input the verification key vk, a message m, and signature

σ, and outputs 1 if σ is valid with respect to vk,m, and 0 otherwise.

Correctness. We say a signature scheme is correct if for all messages m in the message

space, the probability that Verify(vk,m,Sign(sk,m)) 6= 1 is negligible in τ . We say a

signature scheme is perfectly correct if for all messages m in the message space, the

probability that Verify(vk,m,Sign(sk,m)) 6= 1 is 0.

2.5.3.1 Defining the Security of Signature Schemes

The security requirements capture that an adversary cannot produce a signature on a

message of their choice without knowledge of the secret key, even when it can see signatures

of other messages.

We now present the security game corresponding to the existential unforgeability under

an adaptive chosen–message attack (EUF-cma) requirement. The adversary is given the

verification key vk and a signing oracle for secret key sk. The signing oracle is input a

message m′, and keeps track of inputs in the list M . The adversary must output a valid

signature for a message m not stored in M .

28

2.5 Basic Cryptographic Primitives

SIGN(m′)

M ←M ∪ {m′} return σ←$Sign(sk,m′)

Experiment: Expsig−forgeA,Π (τ)

(vk, sk)←$SigKGen(1τ),M ← ∅, (m,σ)←$ASIGN(vk)

if m ∈M or Verify(vk,m, σ) 6= 1 return 0 else return 1

Definition 2.6. A signature scheme Π is existentially unforgeable under an adaptive

chosen–message attack if, for all probabilistic polynomial–time adversaries A, there is a

negligible function negl such that Pr[Expsig−forgeA,Π (τ) = 1] ≤ negl(τ).

There is also a strengthened version of this security notion: strong existential unforgeability

under an adaptive chosen–message attack. We now present the security game for this

requirement.

SIGN(m′)

σ←$Sign(sk,m′),M ←M ∪ {m′, σ} return σ

Experiment: Expsig−strongforgeA,Π (τ)

(vk, sk)←$SigKGen(1τ),M ← ∅, (m,σ)←$ASIGN(vk)

if (m,σ) ∈M or Verify(vk,m, σ) 6= 1 return 0 else return 1

Definition 2.7. A signature scheme Π is strongly existentially unforgeable under an

adaptive chosen–message attack if, for all probabilistic polynomial–time adversaries A,

there is a negligible function negl such that Pr[Expsig−strongforgeA,Π (τ) = 1] ≤ negl(τ).

2.5.4 Structure Preserving Signatures Schemes

A structure preserving signature scheme [5] over a bilinear group (p,G1,G2,GT , e, g1, g2)

is an EUF–cma secure signature scheme such that the verification keys, messages and

signatures are elements of G1 and G2, and the verification predicate is a conjunction of

pairing-product equations over the verification key, the message and the signature.

29

2.5 Basic Cryptographic Primitives

2.5.5 Camenisch-Lysyanskaya Signatures

We will use the Camenisch–Lysyanskaya (CL) signature scheme [39] in Chapter 3. The

public parameters of the signature scheme are the bilinear group: paramCL = (p,G1,G2,GT ,

e, g1, g2). We now present the algorithms CLKGen, CLSign, CLVerify.

CLKGen(paramCL)

x←$Z∗p, y←$Z∗p, sk ← (x, y), X ← Gx2 , Y ← Gy2, vk ← (X,Y) return (vk, sk)

CLSign((x, y),m)

A←$G1, return σ ← (A,Ay, AxAmxy)

CLVerify((X,Y),m, (A,B,C))

if e(A, Y) = e(B,G2) and e(ABm, X) = e(C,G2) return 1 else return 0

The CL signature scheme is existentially unforgeable under a chosen–message attack under

the LRSW assumption [39].

2.5.6 BBS+ Signatures

We will use the BBS+ signature scheme in Chapter 4. This signature scheme was given

by Au et al. [9], and inspired by the BBS group signature scheme introduced in [21]. The

public parameters of the signature scheme are the bilinear group: (p,G1,G2,GT , e,G1, G2).

We now present the algorithms BBSGen+, BBSSign+, BBSVerify+.

BBSGen+(1τ)

h1←$G1, h2←$G1, x←$Z∗p, w ← Gx2 , sk ← x, pk ← (w, h1, h2) return (pk, sk)

BBSSign+(x,m)

s1←$Zp, s2←$Zp, A← (G1h
s2
1 h

m
2)

1
s1+x return (A, s1, s2)

BBSVerify+((w, h1, h2),m, (A, s1, s2))

if A ∈ G1 and e(A,wGs12) = e(G1h
s2
1 h

m
2 , G2) return 1 else return 0

Originally, Au et al. [9] proved the BBS+ signature scheme existentially unforgeable under

chosen–message attacks under the Eurocrypt version of the q-SDH assumption, making

use of the homomorphism between the groups in the security proof. However, in our

30

2.6 Zero–Knowledge Proofs of Knowledge

security proofs, we will make use of techniques from [32] which prove the unforgeability of

BBS+ signatures in the type–3 setting.

2.6 Zero–Knowledge Proofs of Knowledge

Intuitively, zero–knowledge proofs allow a prover to interact with a verifier demonstrating

that a proposition holds, without revealing any extra information. In fact, if the proposi-

tion is true, the verifier might as well have simulated the interaction on their own. A proof

of knowledge proves not only that a proposition holds but also that the prover knows a

valid witness of this.

We define a zero–knowledge proof of knowledge (ZKPoK) for a language L, which consists

of a set of instances for which there exist a valid witness, defined by the relation R. More

formally L = {x : ∃w s.t (x,w) ∈ R}.

Definition 2.8 (Zero–Knowledge Proof of Knowledge). An interactive zero–knowledge

proof of knowledge for a language L defined by relation R consists of two interactive PPT

algorithms P and V such that the following conditions hold:

1. Completeness For all (x,w) ∈ R, Pr[〈P(x,w),V(x)〉 = 1] = 1.

2. Soundness For all x /∈ L, for all adversaries A, the probability Pr[〈A(x),V(x)〉 = 1]

is negligible. Perfect soundness is achieved if this probability is 0.

3. Zero–Knowledge For all PPT adversaries A, there exists a probabilistic PPT

algorithm S such that for all (x,w) ∈ R, then the distributions of 〈P(x,w),A(x)〉

and S(x) are computationally indistinguishable. Perfect zero–knowledge is satisfied

if the two distributions are identically distributed.

4. Knowledge Soundness with error κ There exists a PPT E such that for every

adversary A that outputs x such that Pr[〈A,V(x)〉 = 1] = ε(|x|) > κ(|x|), then

EA()(x) outputs w such that (x,w) ∈ R with probability ε(|x|)− κ(|x|).

31

2.6 Zero–Knowledge Proofs of Knowledge

2.6.1 Non–Interactive Zero–Knowledge Proofs

In a non–interactive zero–knowledge proof, the prover does not interact with the verifier.

Instead, all parties have access to a trusted common reference string (CRS).

Definition 2.9 (Non–Interactive Proof Systems). A set of algorithms (CRSSetup,P,V)

constitute a non-interactive (NI) proof system for an efficient relation R with associ-

ated language LR if completeness and soundness are satisfied. A NI proof system is

extractable if, in addition, the extractability property is satisfied. An NI proof system is

zero–knowledge (NIZK) if the zero–knowledge property is satisfied. A NIZK proof system

that is also extractable constitutes a non-interactive zero–knowledge proof of knowledge

(NIZKPoK). An NI proof system is witness–indistinguishable (NIWI) if the witness–

indistinguishability property is satisfied. A NIWI proof system that is also extractable

constitutes a non-interactive zero–knowledge proof of knowledge (NIWIPoK).

1. Completeness. For all σcrs←$CRSSetup(1τ) and (x,w) ∈ R, V(σcrs, x, π) = 1 for

all proofs π←$P(σcrs, x, w).

2. Soundness. For all PPT adversaries A, and for σcrs←$CRSSetup(1τ), the proba-

bility that A(σcrs) outputs (x, π) such that x /∈ L but V(σcrs, x, π) = 1 is negligible.

Perfect soundness is achieved when this probability is 0.

3. Extractability. There exists polynomial–time extractor algorithms E = (E1, E2),

with E1(1τ) outputting (σext, τe), and E2(σext, τe, x, π) outputting w, such that:

(a) E1(1τ) outputs σext that is indistinguishable from σcrs output by CRSSetup(1τ).

(b) for all PPT adversaries A, the probability that A(σext, τe) (where (σext, τe)←$

E1(1τ)) outputs (x, π) such that V(σcrs, x, π) = 1 and (x,E2(σext, τe, x, π) /∈ R,

is negligible.

Perfect extractability is achieved if this probability is 0, and σext is distributed iden-

tically to σcrs.

4. Zero–Knowledge. There exists a polynomial–time simulator algorithm S = (S1, S2),

with S1(1τ) outputting (σsim, τs), and S2(σsim, τs, x) outputting πs, such that for all

(x,w) ∈ R and PPT adversaries A, the following two interactions are indistinguish-

able:

32

2.6 Zero–Knowledge Proofs of Knowledge

• We give the adversary A the CRS σcrs←$CRSSetup(1τ) and oracle access to

P(σcrs, ·, ·) (where P will output ⊥ on input (x,w) such that (x,w) /∈ R).

• We compute (σsim, τs)←$S1(1τ) and give the adversary A the simulated CRS

σsim and oracle access to S2(σsim, τs, ·, ·), where, on input (x,w), S outputs

S2(σsim, τs, x) if (x,w) ∈ R and ⊥ otherwise.

Perfect zero–knowledge is achieved if for all (x,w) ∈ R, these interactions are dis-

tributed identically.

5. Witness–Indistinguishability. For all (x,w1, w2) such that (x,w1), (x,w2) ∈ R,

the tuple (σcrs, π1) is indistinguishable from (σcrs, π2) where σcrs←$CRSSetup(1τ),

and for i ∈ {1, 2}, πi←$P(σcrs, x, wi). Perfect witness indistinguishability is achieved

when these two distributions are identical.

Simulation Sound Extractability The simulation soundness requirement [52, 116] en-

sures that soundness holds, even when the adversary is able to see simulated proofs as in

the zero–knowledge property. This was strengthened in [75] to ensure that extractability

holds, even when the adversary is able to see simulated proofs. All proofs that were not

simulated should be extractable.

Definition 2.10 (Simulation Sound Extractability). Let (CRSSetup,P,V) be a NIZKPoK

system for an efficient relation R, with a simulator (S1, S2) and an extractor (E1, E2).

Let SE1 be an algorithm that, on input 1τ , outputs (σext, τs, τe) such that (σext, τs) is

distributed identically to the output of S1. Consider the following game with the adversary

A:

• (σcrs, τs, τe)←$SE1(1τ)

• (x, π)←$AS2(σcrs,τs,·)(σcrs, τe)

• w ← E2(σcrs, τe, x, π).

The proof system satisfies simulation-sound extractability if for all PPT algorithms A

there exists a negligible function negl such that the probability that V(σcrs, x, π) = 1 and

(x, π) /∈ Q (where Q is the set of queried statements and their responses) but either

(x,w) /∈ R or w =⊥ is at most negl(τ).

33

2.6 Zero–Knowledge Proofs of Knowledge

2.6.2 Fiat–Shamir Transform

The Fiat–Shamir transform [63] allows for interactive proofs to be transformed into non-

interactive ones in the random oracle model.

The honest–verifier zero–knowledge property is a weakening of standard zero–knowledge

such that the verifier now performs their side of the protocol honestly. An interactive,

constant round, honest–verifier zero–knowledge proof of knowledge Π where the verifier

is public coin, i.e. its messages are fresh, random coins, and can be transformed into a

non-interactive proof ΠFS as follows.

• The verifier chooses a hash function.

• The prover executes the protocol, replacing messages with the verifier by the hash

of the transcript so far.

• The verifier checks that the transcript would have been accepted, and is consistent

with the hash function.

If we model the hash function in the random oracle model, then the security of the inter-

active proof system Π implies the security of ΠFS [4, 62, 113]. Proofs can be simulated by

programming the random oracle. Extraction occurs by rewinding and programming the

random oracle model, due to the Forking Lemma [114]. This lemma roughly says that if

an adversary has a non–negligible success probability in proving a statement then, after

rewinding to a crucial random oracle query and changing the response, the adversary will

generate a second successful proof with non-negligible probability.

2.6.3 Proofs of Discrete Logarithms

We follow the notation defined in [35] when referring to zero–knowledge proofs of knowl-

edge of discrete logarithms. For example PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a

zero–knowledge proof of knowledge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c

hold. Given a protocol in this notation, it is straightforward to derive an actual protocol

implementing the proof [35]. Indeed, the computational complexities of the proof protocol

can be easily derived from this notation: for each term y = gahb, the prover and the

34

2.7 Group Signature Schemes

verifier have to perform an equivalent computation, and to transmit one group element

and one response value for each exponent.

An SPK denotes a signature proof of knowledge [41, 46] which attests that the signer

of a message had knowledge of a witness to a particular relation. A formal definition

of signature proofs of knowledge is given in [46]. This can be seen as a non-interactive

transformation of a proof PK with respect to a message, e.g., using the Fiat–Shamir

transform [63] in the random oracle model. Using the Fiat–Shamir transform, the witness

can be extracted from these proofs by rewinding the prover and programming the random

oracle. We require the proof system to be simulation-sound and zero–knowledge.

Alternatively, these proofs can be extended to be online-extractable [64, 110]. This ensures

that the witness can be extracted without rewinding, to avoid potential exponential time

blow ups in security reductions. This is achievable by verifiably encrypting the witness

to a public key defined in the common reference string. Clearly this requires a trusted

common reference string. A practical instantiation is given by Camenisch and Shoup [40]

using Paillier encryption, secure under the DCR assumption [109]. We underline the

values that we need to be online-extractable in all proofs throughout this thesis.

2.7 Group Signature Schemes

Group signature schemes allow users to sign messages on behalf of the group in an anony-

mous way. That is, a verifier of a group signature is assured that it was signed by a valid

member of the group, but does not learn anything about the identity of the signer, or even

whether two signatures stem from the same user.

Group signature schemes were first introduced by Chaum and van Heyst [49]. A formal

security model was given for the static setting, when all users join the scheme at the

beginning, in [12]. A security model was given for the dynamic setting, where users can

join the group at any time, in [14]. We will use this dynamic setting predominately in this

thesis, and so we follow this model in this chapter. The dynamic model has three main

differences to the static model. Firstly, there is an interactive join protocol, which ensures

that users can join at any time and the group manager does not discover the user’s secret

key. Secondly, the group manager is split into two entities: a group manager who can join

35

2.7 Group Signature Schemes

users, and an opener who can de-anonymise signatures. Finally, in the dynamic model the

opener produces a proof that it has correctly traced a signature, which can be publicly

verified.

Weakened models for group signature schemes have also been proposed to allow for more

efficient schemes. In [21], CPA anonymity was defined for group signatures. Analogously

to CPA security for encryption schemes, in the CPA anonymity security game there is no

opening oracle. Also, in [23], selfless anonymity was introduced where signatures can be

de-anonymised if the signer’s secret key is leaked. This can be seen as a group signature

scheme without forward anonymity.

In [118], an additional security requirement opening soundness was introduced, which

ensures that corrupted users cannot claim that the signature of an honest user traces back

to them. In [108], randomness exposure resilience of group signatures was defined. It was

shown that it is impossible to achieve full anonymity, whilst also achieving randomness

exposure resilience. However, randomness exposure resilience can be achieved for schemes

with selfless anonymity. In [55, 56], the property of leak-freeness was introduced, which

ensures that a signer is not able to convince others that they were responsible for a

signature. A security model was also given in [24] for the fully dynamic setting, where

users are able to join and leave the group at any time, allowing for revocation.

Group signature schemes that are secure without assuming the random oracle model were

proposed in [8, 12, 25, 76]. Some group signature schemes have been designed to prioritise

very short signatures [17, 21]. Post-quantum secure group signature schemes [87, 88, 89,

92, 93] have also been proposed, with the first scheme from lattice assumptions introduced

in [74].

2.7.1 Security Model for Dynamic Group Signature Schemes

We first introduce the syntax of dynamic group signature schemes and then present the

desirable security and privacy properties for such schemes.

The following entities are involved: an issuer I, a set of users U = {uidi}, and an opener

O. The issuer I is the central entity that allows users to join the group. Once joined, a

36

2.7 Group Signature Schemes

user can then sign on behalf of the group in a pseudonymous way. That is the validity of a

signature with respect to the group’s public key can be publicly verified without revealing

any information about the particular user that created the signature. An opener O can

de-anonymise all signatures, outputting an identifier and a proof of this claim.

A group signature scheme in the dynamic setting consists of the following algorithms:

• GSetup(1τ): takes as input the security parameter, and outputs the public parame-

ters paramGS.

• GKG(paramGS): takes as input the public parameters paramGS, and outputs the group

public key gpk, the issuing secret key isk, and the opening secret key osk.

• GUKG(1τ): ran by the user with identifier uid on input the security parameter, and

outputs the user’s public key upk[uid] and private key usk[uid].

• 〈GJoin(gpk,usk[uid],upk[uid]),GIssue(isk, gpk, uid,upk[uid])〉: a user uid joins the

group by engaging in an interactive protocol with the Issuer I. The user uid and

Issuer I perform GJoin and GIssue respectively. These are input a state and an in-

coming message, and output an updated state, an outgoing message, and a decision,

either cont, accept, or reject. The initial input to GJoin is the group public key gpk,

and the user uid’s public and private key, whereas the initial input to GIssue is the

issuer secret key isk, and the user uid’s public key. If the issuer accepts, GJoin has

a private output of gsk[uid], and GIssue has output reg[uid].

• GSign(m,gsk[uid], gpk): performed by the user with identifier uid, takes as input a

message m, the user’s secret key gsk[uid], and the group public key gpk, and outputs

a signature Ω.

• GVerify(m,Ω, gpk): outputs 1 if Ω is a valid signature on m under the group public

key gpk, and 0 otherwise.

• GOpen(m,Ω, reg, osk, gpk): takes as input a message m, a signature Ω, the regis-

tration table reg, the opening secret key osk, and a group public key gpk. Outputs

(uid, λ) where if uid 6=⊥ then uid is the author of signature Ω and λ is a proof of

this claim, and otherwise no group member has been found to author Ω.

• GJudge(uid,upk[uid],m,Ω, λ, gpk): takes as input a user identifier uid, the public

key upk[uid] of the user uid, a message m, a valid signature Ω of m, a proof-string

37

2.7 Group Signature Schemes

λ and the group public key gpk. It checks that λ is a valid proof that user uid

produced Ω, and if so outputs 1 but otherwise outputs 0.

In Figure 2.1, we provide the oracles used in the security requirements. We now provide

a high–level description. The joining of users is modelled with the ADDU, SNDU and

SNDI oracles, depending on the corruption setting. When the issuer is corrupted, the

adversary can already create corrupted users, and can create honest users with the SNDU

oracle which runs the join protocol on behalf of this honest user. When the issuer is

honest, the adversary can create honest users with the ADDU oracle which runs both

the user’s and issuer’s sides of the protocol, and corrupted users with the SNDI oracle,

which runs the issue protocol on behalf of the honest issuer. As the issuer outputs the

user’s registration after a successfully completed join protocol, after the SNDI and ADDU

oracles this registration is stored in reg. The oracle WREG allows the adversary to control

reg if the issuer is corrupted, and the RREG oracle allows the adversary to read reg if

the adversary is not corrupted. The USK oracle can be used to reveal the secret key of

an honest user. The join protocol is modelled as follows: CLS.Join and CLS.Issue both

take as input the state stuidJoin or stuidIssue, which includes initial inputs and values stored

from the previous stage of the protocol, and an incoming message. They output a new

state, an outgoing message, and decuid which is set to accept, reject or cont and indicates

respectively that the protocol has completed successfully, the protocol has completed in

failure, or the protocol has not yet completed.

ADDU (join of honest user and honest issuer) Creates a new honest user for uid

and internally runs a join protocol between the honest user and honest issuer. At

the end, the honest user’s secret key gsk[uid] is generated and from then on signing

queries for uid will be allowed.

SNDU (join of honest user and corrupt issuer) Creates a new honest user for uid

and runs the join protocol on behalf of uid with the corrupt issuer. If the join

session completes, the oracle will store the user’s secret key gsk[uid].

SNDI (join of corrupt user and honest issuer) Runs the join protocol on behalf of

the honest issuer with corrupt users. For joins of honest users, the ADDU oracle

must be used.

USK Allows an adversary to obtain the secret key of an honest user.

38

2.7 Group Signature Schemes

RREG When the issuer is honest, allows an adversary to read reg.

WREG When the issuer is corrupt, allows an adversary to write to reg.

SIGN Returns signatures for honest users that have successfully joined (via ADDU or

SNDU, depending on the corruption setting).

OPEN Allows an adversary to open signatures with GOpen.

All oracles have access to the following records maintained as global state:

HUL List of uids of honest users, initially set to ∅. New honest users can be added by

queries to the ADDU oracle (when the issuer is honest) or SNDU oracle (when the

issuer is corrupt).

CUL List of corrupt users that have requested to join the group. Initially set to ∅, new

corrupt users can be added through the SNDI oracle if the issuer is honest. If the

issuer is corrupt, we do not keep track of corrupt users.

The security requirements for group signature schemes in the dynamic setting are correct-

ness, anonymity, traceability and non–frameability.

Correctness. The correctness requirement is given by the game in Figure 2.2. Given

a user is honestly registered to the scheme, and GSign is performed honestly, then the

signature output should verify correctly, and correctly open to reveal the correct author

of the signature, along with a valid proof of this.

A group signature scheme Π satisfies correctness if for all adversaries A, Pr[ExpcorrA,Π(τ) =

1] = 0.

Anonymity. The anonymity requirement is given by the game in Figure 2.2, and ensures

that a user’s signature cannot be de-anonymised or linked by user. In the security game

the adversary has corrupted the issuer but not the opener, as otherwise they could trivially

open signatures. They choose two honest users and a message, and in response are given

a signature authored by one of these authors and must guess which. They can create

honest users using the SNDU oracle and corrupt all honest users, including the two users

challenged by the adversary, with the USK oracle. As they are assumed to have corrupted

39

2.7 Group Signature Schemes

ADDU(uid):

if uid ∈ HUL ∪ CUL return ⊥
HUL← HUL ∪ {uid},gsk[uid]←⊥
decuid ← cont, (upk[uid],usk[uid])←$GUKG(1τ)

stuidJoin ← (gpk,usk[uid],upk[uid])

stuidIssue ← (isk, gpk, uid,upk[uid])

(stuidJoin,MIssue,decuid)←$GJoin(stuidJoin,⊥)

while decuid = cont

(stuidIssue,MJoin,decuid)←$GIssue(stuidIssue,MIssue)

(stuidJoin,MIssue,decuid)←$GJoin(stuidJoin,MJoin)

if decuid = accept

reg[uid]← stuidIssue,gsk[uid]← stuidJoin

return upk[uid]

SNDU(uid,Min):

if uid ∈ CUL return ⊥
if uid /∈ HUL

HUL← HUL ∪ {uid}
(upk[uid],usk[uid])←$GUKG(1τ)

gsk[uid]←⊥,Min ←⊥,decuid ← cont

if decuid 6= cont return ⊥
if stuidJoin undefined

stuidJoin ← (gpk,usk[uid],upk[uid])

(stuidJoin,Mout,decuid)←$GJoin(stuidJoin,Min)

if decuid = accept gsk[uid]← stuidJoin

return (Mout,decuid)

SNDI(uid,Min, upk):

if uid ∈ HUL return ⊥
if uid /∈ CUL

CUL← CUL ∪ {uid}
decuid ← cont,upk[uid]← upk

if decuid 6= cont return ⊥
if undefined stuidIssue ← (isk, gpk, uid,upk[uid])

(stuidIssue,Mout,decuid)←$GIssue(stuidIssue,Min,decuid)

if decuid = accept reg[uid]← stuidIssue

return (Mout,decuid)

USK(uid):

return (gsk[uid],usk[uid])

RREG(uid):

return reg[uid]

WREG(uid, reg):

reg[uid]← reg

SIGN(m,uid):

if uid /∈ HUL or gsk[uid] =⊥ return ⊥
return GSign(m,gsk[uid], gpk)

OPEN(m,Ω):

if (m,Ω) = (m∗,Ω∗) return ⊥
return GOpen(m,Ω, reg, osk, gpk)

Figure 2.1: Oracles used in the dynamic group signature security model

the issuer, they have access to WREG. They have access to the OPEN oracle, however

they cannot query the challenge signature, to avoid trivial wins.

Definition 2.11 (Anonymity). A group signature scheme Π satisfies anonymity if for all

polynomial–time adversaries A, the advantage |Pr[Expanon−0
A,Π (τ) = 1]−Pr[Expanon−1

A,Π (τ) =

1]| is negligible in τ .

Traceability. The traceability requirement is given by the game in Figure 2.2. This

requirement ensures that all valid signatures open to reveal a valid user, along with a

valid proof under GJudge, when the issuer is honest. In the security game the adversary

has corrupted the opener but not the issuer, as otherwise they could simply create users

without updating reg and so produce valid signatures that would not open correctly. They

40

2.7 Group Signature Schemes

are given the SNDI and ADDU oracles to create honest and corrupt users respectively, and

the RREG oracle to read reg. The USK oracle allows them to reveal the private keys of

honest users. The adversary must output a valid signature that does not open to reveal a

user along with a valid proof.

Definition 2.12 (Traceability). A group signature scheme Π satisfies traceability if for

all polynomial–time adversaries A, the advantage Pr[ExptraceA,Π (τ) = 1] is negligible in τ .

Non–frameability. The non–frameability requirement is given by the game in Figure 2.2.

This requirement ensures an adversary cannot impersonate an honest user, by forging a

signature that opens to their user identifier. In the security game the adversary has

corrupted the opener and the issuer, but not all users. They have access to the SNDU

oracle, which allows them to create honest users, and the USK oracle, which allows them

to obtain these users’ private keys. As they have corrupted the issuer they have access to

the WREG oracle which allows them to control reg. They can obtain signatures of honest

users with the SIGN oracle. Without using the signing oracle, the adversary must output

a valid signature, the identifier of an honest user that has not been revealed with USK,

and a proof that is valid under GJudge with respect to this signature and user identifier.

Definition 2.13 (Non–frameability). A group signature scheme Π satisfies non–frameability

if for all polynomial–time adversaries A, the advantage Pr[Expnon−frameA,Π (τ) = 1] is negli-

gible in τ .

2.7.2 XS Group Signatures

We now present the XS group signature scheme which will be used in Chapter 3. The XS

scheme [53] satisfies the security requirements for dynamic group signatures [14], under the

q-SDH [19] assumption, the XDH assumption [10, 21], and in the random oracle model [13].

As the XS scheme is given in the type–2 setting, it relies on the XDH assumption.

Definition 2.14 (XDH Assumption). The DDH assumption holds in G1 even when there

exists a homomorphism ψ : G2 → G1.

We provide the XS scheme in Figures 2.3 and 2.4. The public parameters of the XS scheme

are the type–2 bilinear group: (p,G1,G2,GT , e,G1, G2,Ψ).

41

2.7 Group Signature Schemes

Experiment: ExpcorrA,Π(τ)

paramGS←$GSetup(1τ), (gpk, isk, osk)←$GKG(paramGS),CUL,HUL← ∅
(uid,m)←$AADDU,RREG(gpk)

if uid /∈ HUL or gsk[uid] =⊥ return 0

Ω←$GSign(m,gsk[uid], gpk), if GVerify(m,Ω, gpk) = 0 return 1

(uid′, λ)←$GOpen(m,Ω, reg, osk, gpk), if uid 6= uid′ return 1

if GJudge(uid,upk[uid],m,Ω, λ, gpk) = 0 return 1 else return 0

Experiment: Expanon−bA,Π (τ)

paramGS←$GSetup(1τ), (gpk, isk, osk)←$GKG(paramGS),CUL,HUL← ∅
(st, uid0, uid1,m

∗)←$AOPEN,SNDU,WREG,USK(choose, gpk, isk)

if uid0, uid1 /∈ HUL or gsk[uid0],gsk[uid1] =⊥ return 0

Ω∗←$GSign(m∗,gsk[uidb], gpk), b∗←$AOPEN,SNDU,WREG,USK(guess, st,Ω∗)

return b∗

Experiment: ExptraceA,Π (τ)

paramGS←$GSetup(1τ), (gpk, isk, osk)←$GKG(paramGS),CUL,HUL← ∅
(m,Ω)←$ASNDI,ADDU,RREG,USK(gpk, osk)

if GVerify(m,Ω, gpk) = 0 return 0

(uid, λ)←$GOpen(m,Ω, reg, osk, gpk)

if uid =⊥ or GJudge(uid,upk[uid],m,Ω, λ, gpk) = 0 return 1 else return 0

Experiment: Expnon−frameA,Π (τ)

paramGS←$GSetup(1τ), (gpk, isk, osk)←$GKG(paramGS),CUL,HUL← ∅
(m,Ω, uid, λ)←$ASNDU,WREG,SIGN,USK(gpk, isk, osk)

if GVerify(m,Ω, gpk) = 0 return 0

If the following conditions hold return 1 else return 0

1.uid ∈ HUL and gsk[uid] 6=⊥
2.GJudge(uid,upk[uid],m,Ω, λ, gpk) = 1

3.USK not queried uid and SIGN oracle not queried (m,uid)

Figure 2.2: Experiments capturing the correctness, anonymity, traceability, and non–
frameability security requirements for dynamic group signature schemes

2.7.3 Variants of group signature schemes

Since the introduction of group signatures, several variants have also been proposed for dif-

ferent applications. Many seek to reduce the power of the opener, which can de-anonymise

all signatures and so is potentially a privacy bottleneck. An overview is given in [99].

Ring signatures [115] do not involve openers or issuers. Users generate their own secret and

public keys and can sign on behalf of a ring of users including themselves. The signature

guarantees that the message originates from a member of this ring, without revealing the

42

2.7 Group Signature Schemes

XSKeyGen(param)

ξ1, ξ2←$Zp;K ←$G1 \ {1G1
}, H ← Kξ1 , G← Kξ2 , γ←$Zp,W ← Gγ2

return gpk = (G1,K,H,G,G2,W), isk = γ, osk = (ξ1, ξ2)

XSUKG(1τ)

return (upk, usk)←$ SigKeyGen(1τ)

XSSign(m, (Z, x, y), gpk)

ρ1, ρ2←$Zp, T1 ← Kρ1 , T2 ← ZHρ1 , T3 ← Kρ2 , T4 ← ZGρ2 , z ← xρ1 + y

π←$SPK{(x, z, ρ1, ρ2) : T1 = Kρ1 ∧ T3 = Kρ2 ∧ T4T
−1
2 = Gρ2H−ρ1∧

e(T2,W)e(T2, G2)x = e(G1, G2)e(H,W)ρ1e(H,G2)z}(m)

return Ω = (T1, T2, T3, T4, π)

XSVerify(m,Ω, gpk)

return 1 if π holds for T1, T2, T3, T4 else return 0

XSOpen(m,Ω, osk, gpk)

if XSVerify(m,Ω, gpk) = 0 return ⊥

Z ← T2T
−ξ1
1 , if ∃uid s.t reg[uid] = (upk, Z, ., S) and Verify(upk, Z, S) = 1 uid∗ ← uid

λ = (Z,SPK{ξ1 : Z = T2T
−ξ1
1 ∧H = Kξ1})

return (uid∗, λ)

XSJudge(uid, upk,m,Ω, λ = (Z, πjg), gpk)

If the following hold return 1 else return 0

1.XSVerify(m,Ω, gpk) = 1

2.πjg is valid in relation to Z,Ω, gpk

3.reg[uid] = (upk, Z, ., S) and Verify(upk, Z, S) = 1

Figure 2.3: The XS group signature scheme

identity of the signer. Linkable ring signatures [94] allow signatures with the same author

to be linked, while signatures still do not reveal the identity of the signer.

Direct anonymous attestation (DAA) schemes [29] also do not have a trusted opener, but

instead have user–controlled linkability. Users now sign basenames as well as messages.

Signatures with the same basename and signer can be publicly linked together, and other-

wise are unlinkable. Therefore, the user re-uses the same basename whenever they wants

to be linkable. In DAA the user is split into two entities: a host, which is assumed to have

greater computational power, and a trusted platform module (TPM). Enhanced privacy

ID (EPID) schemes [28] were introduced to allow for revocation in DAA.

43

2.7 Group Signature Schemes

XSJoin(gpk,upk[uid],usk[uid])
 XSIssue(isk, gpk, uid,upk[uid])

y←$Z∗p, C ← Hy,

πjoin←$SPK{y : C = Hy}
-C, πjoin

Verifies C ∈ G1, checks πjoin,

x←$Z∗p, Z ← (G1C)1/(isk+x),

E ← e(G1C,G2)/e(Z,W),

D ← e(Z,G2)

πiss←$ SPK{x : Dx = E}
� Z, πiss

E ← e(G1C,G2)/e(Z,W)

D ← e(Z,G2)

Verifies Z ∈ G1, checks πiss

S←$Sign(usk[uid], Z)

-S

Checks Verify(upk[uid], Z, S) = 1

reg[uid]← (upk[uid], Z, x, S)

� x

Checks e(Z,G2)xe(Z,W)e(C,G2)−1 =

e(G1, G2)

gsk[uid]← (Z, x, y)

Figure 2.4: The 〈XSJoin,XSIssue〉 protocol of the XS group signature scheme

Dynamic group signatures with distributed traceability were formalised in [72]. These

allow a set of managers to open signatures in a distributed way, reducing the power of the

opener.

Forward secure group signatures [121, 104] provide security even after a user’s signing key

is leaked, by updating the users’ secret keys every time interval. This goes further than

the forward anonymity mentioned earlier, which only ensures that anonymity is preserved

after a user’s secret key is leaked.

Group signatures with deniability were introduced in [81]. These allow the opener to prove

that a user was not the signer of a signature, without revealing the actual signer.

In group signatures with controlled linkability [79, 80, 120], signatures are unlinkable except

to a dedicated linking authority with a linking secret key. On input two signatures this

linking authority decides whether they stem from the same user or not.

44

2.7 Group Signature Schemes

Another related concept is traceable group signatures [83] where a dedicated entity can

generate a tracing trapdoor for each user which allows this user’s signatures to be traced.

They also allow group members to prove they authored a signature.

Accountable tracing signatures [84] also reduce the power of the opener, by allowing the

opener to choose which users’ signatures they can open and prove they did not have the

ability to open a particular user’s signatures.

In [85], they avoid the need for an opener all together, by allowing users to prove or

deny authorship of a signature, as well as prove that two signatures authored by them

are linked. The opener can also prove that two signatures originate from the same user

without revealing user identities.

In [117], the power of the opener is reduced by introducing another entity, the admitter.

They have the power to specify messages, so that only signatures on those messages should

be able to be opened.

Different approaches have been proposed to allow for revocation in group signatures. One

approach is for users to prove when they sign that they are not included in a revocation

list [26, 34, 38, 57, 90, 91, 103, 107, 124]. Another method is to regularly update the group

public key, and users’ secret keys, so that revoked users are no longer able to sign [21, 121].

In verifier local revocation [23, 27], revocation information is sent to the verifiers who can

then determine whether a revoked user authored a signature. Group signature schemes

with verifier local revocation, such that the revocation is probabilistic have also been

proposed [86]. Another type of group signatures with verifier local revocation is group

signatures with time bound keys [61, 50]. Users’ secret keys are bound to a specific time

interval, and after these keys expire they are immediately revoked. The model for fully

dynamic group signatures given in [24] allows for revocation capturing the first two of

these approaches.

Another variant is group blind signature schemes [96]. Blind signatures [48] allow a mes-

sage to be signed via an interactive protocol between a entity holding the signing secret

key who should not learn the message and an entity holding the message who should not

learn the secret key. Group blind signature schemes similarly allow group signatures to

be signed in this way.

45

2.8 Direct Anonymous Attestation

Democratic group signatures [98] remove the role of the group manager, so that new

members join and leave the group via an interactive protocol with all existing group

members. There is no longer an opener, and instead all group members hold the tracing

trapdoor. Linkable democratic group signatures [100] allow signatures to be linked (but

not traced) by entities outside the group.

Mediated group signature schemes [55, 56] introduce an additional central entity, the

mediator. The signer identifies themself and submits a partial signature to the mediator,

which converts this into a full signature. This means that the mediator can immediately

revoke a group member.

2.8 Direct Anonymous Attestation

Direct anonymous attestation was introduced in [29]. A security model was given in [15]

for pre–DAA, the case where the TPM and host are merged into one entity. Security

requirements for the full DAA model were given in [33].

2.8.1 Pre–DAA Security Model

As in this thesis we always assume the host and TPM are merged, we now present the

pre–DAA security model [15]. A pre–DAA scheme consists of the following algorithms.

• DAASetup(1τ): takes as input the security parameter τ and outputs the parameters

for the scheme param.

• DAAKeyGen(param): takes as input the parameters param, and outputs the group

public key gpk, and the issuing secret key isk.

• 〈DAAJoin(gpk),DAAIssue(isk, gpk)〉: a user uid joins the group by engaging in an

interactive protocol with the Issuer. The user with identifier uid and Issuer perform

algorithms DAAJoin and DAAIssue respectively. These are input a state and an

incoming message respectively, and output an updated state, an outgoing message,

and a decision, either cont, accept, or reject. The initial input to DAAJoin is the

46

2.8 Direct Anonymous Attestation

group public key, whereas the initial input to DAAIssue is the issuer secret key, isk,

and the group public key. If the issuer accepts, DAAJoin has a private output of

gsk[uid], DAAIssue has a private output of reg[uid].

• DAASign(bsn,m,gsk[uid], gpk): takes as input a basename bsn, a message m, a user

secret key gsk[uid], and a group public key gpk, and outputs a signature Ω.

• DAAVerify(bsn,m,Ω, gpk): takes as input a basename bsn, a message m, a signature

Ω, and a group public key gpk, outputs 1 if Ω is valid, and 0 otherwise.

• DAALink((bsn0,m0,Ω0), (bsn1,m1,Ω1), gpk) takes as input two signatures Ω0,Ω1

each on a basename and a message, and a group public key gpk. Outputs 1 if

the two signatures are linked and 0 otherwise.

• DAAIdentifyT (T , gsk) outputs 1 if T corresponds to a valid transcript of a

< DAAJoin,DAAIssue > with output gsk, and otherwise 0.

• DAAIdentifyS(bsn,m,Ω, gsk) outputs 1 if the signature Ω originates from the user

secret key gsk, and 0 otherwise.

In Figure 2.5, we provide the oracles used in the pre–DAA security requirements: ADDU,

SNDU, SNDI, USK, and SIGN. These are similar to those for dynamic group signatures.

As there is no longer an opening functionality, there is no need for the WREG and RREG

oracles. The ADDU, SNDU, and SNDI oracles allow for the joining of honest and corrupted

users, depending on the corruption setting of the issuer as in group signature schemes.

The USK again allows the secret keys of honest users to be revealed, and the SIGN oracle

outputs signatures of honest users. There is no need for a linking oracle, because signatures

are publicly linkable. As in group signatures, DAAJoin and DAAIssue both take as input

the state, and an incoming message. They output a new state, an outgoing message, and

decuid which again is set to accept, reject or cont.

All oracles have access to the following records maintained as global state:

HUL List of uids of honest users, initially set to ∅. New honest users can be added by

queries to the ADDU oracle (when the issuer is honest) or SNDU oracle (when the

issuer is corrupt).

47

2.8 Direct Anonymous Attestation

CUL List of corrupt users that have requested to join the group. Initially set to ∅, new

corrupt users can be added through the SNDI oracle if the issuer is honest. If the

issuer is corrupt, we do not keep track of corrupt users.

BUL List of users that have been corrupted with the USK oracle. Initially set to ∅, only

honest users that have joined through the SNDU or ADDU oracles can be corrupted

in this way.

SL List of (uid,m, bsn) tuples input to the SIGN oracle.

ADDU(uid):

if uid ∈ HUL ∪ CUL return ⊥
HUL← HUL ∪ {uid},gsk[uid]←⊥
decuid ← cont, stuidJoin ← (gpk)

stuidIssue ← (isk, gpk, uid)

(stuidJoin,MIssue,decuid)←$DAAJoin(stuidJoin,⊥)

while decuid = cont

(stuidIssue,MJoin,decuid)←$DAAIssue(stuidIssue,MIssue)

(stuidJoin,MIssue,decuid)←$DAAJoin(stuidJoin,MJoin)

if decuid = accept

reg[uid]← stuidIssue,gsk[uid]← stuidJoin

return reg[uid]

SNDU(uid,Min):

if uid ∈ CUL return ⊥
if uid /∈ HUL

HUL← HUL ∪ {uid}
gsk[uid]←⊥,Min ←⊥,decuid ← cont

if decuid 6= cont return ⊥
if stuidJoin undefined stuidJoin ← gpk

(stuidJoin,Mout,decuid)←$DAAJoin(stuidJoin,Min)

if decuid = accept gsk[uid]← stuidJoin

return (Mout,decuid)

SNDI(uid,Min):

if uid ∈ HUL return ⊥
if uid /∈ CUL

CUL← CUL ∪ {uid},decuid ← cont

if decuid 6= cont return ⊥
if undefined stuidIssue ← (isk, gpk, uid)

(stuidIssue,Mout,decuid)←$DAAIssue(stuidIssue,Min)

if decuid = accept reg[uid]← stuidIssue

return (Mout,decuid, reg[uid])

else return (Mout,decuid)

USK(uid):

if uid /∈ HUL return ⊥
BUL← BUL ∪ {uid} return gsk[uid]

SIGN(bsn,m, uid):

if uid /∈ HUL or gsk[uid] =⊥ return ⊥
SL← SL ∪ {uid,m, bsn}
return DAASign(bsn,m,gsk[uid], gpk)

Figure 2.5: Oracles in the pre-DAA security model

The security requirements for pre–DAA schemes are correctness, anonymity, traceability

and non–frameability.

Correctness. In the game given in Figure 2.6 we provide the correctness requirement.

This ensures that, given a user is honestly joined to the scheme and DAASign is performed

correctly, the signature output will verify correctly. It also ensures that signatures gener-

ated honestly using the same user private key and basename will be linked under DAALink,

48

2.8 Direct Anonymous Attestation

Experiment: ExpcorrA,Π(τ)

param←$DAASetup(1τ), (gpk, isk)←$DAAKeyGen(param),HUL,CUL← ∅
(uid,m0,m1, bsn)←$AADDU(gpk), if uid /∈ HUL or gsk[uid] =⊥ return 0

∀b ∈ {0, 1} Ωb←$DAASign(bsn,mb,gsk[uid], gpk)

∀b ∈ {0, 1} if DAAVerify(bsn,mb,Ωb, gpk) = 0 return 1

if bsn 6=⊥ if DAALink((bsn,m0,Ω0), (bsn,m1,Ω1), gpk) = 0 return 1

if DAAIdentifyS(bsn,m0,Ω0,gsk[uid]) = 0 return 1

Let T denote the < DAAJoin,DAAIssue > transcript for user uid

if DAAIdentifyT (T ,gsk[uid]) = 0 return 1 else return 0

Figure 2.6: Experiment capturing the correctness requirement for pre–DAA schemes

and that DAAIdentifyS and DAAIdentifyT correctly identify signatures to the user private

key and the transcript respectively.

A pre–DAA scheme Π satisfies correctness if for all adversaries A: Pr[ExpcorrA,Π(τ) = 1] = 0.

Anonymity. The anonymity requirement is given by the game in Figure 2.7. This ensures

that a user’s signatures cannot be de-anonymised, and signatures with different basenames

cannot be linked by user. In the security game, the adversary has corrupted the issuer,

and chooses two honest users and a message and basename. They are returned with a

challenge signature and they must guess which of the two users is the author. They can

create honest users using the SNDU oracle and corrupt these with the USK oracle. They

can also obtain signatures from honest users with the SIGN oracle. However, they cannot

corrupt either of the challenged honest users with the USK, or query one of these users,

and the challenge basename to SIGN as otherwise the DAALink algorithm could be used

to trivially win.

Definition 2.15 (Anonymity). A pre–DAA scheme Π satisfies anonymity if for all polynomial–

time adversaries A, the advantage |Pr[Expanon−0
A,Π (τ) = 1]− Pr[Expanon−1

A,Π (τ) = 1]| is neg-

ligible in τ .

Traceability. The traceability requirement is given by the game in Figure 2.7. This

requirement ensures firstly that all signatures identify under DAAIdentifyS to a secret key

obtained through a < DAAJoin,DAAIssue > protocol, and secondly that two signatures on

the same basename that identify to the same secret key under DAAIdentifyS are always

linked. The Traceability experiment is made up of two games, which each capture a

different property. Both properties must be satisfied to ensure Traceability. The adversary

is separated into A1 and A2 to emphasize that these are separate games and there is no

49

2.8 Direct Anonymous Attestation

Experiment: Expanon−bA,Π (τ)

param←$DAASetup(1τ), (gpk, isk)←$DAAKeyGen(param),HUL,BUL,SL← ∅
(st, uid0, uid1, bsn,m)←$ASNDU,USK,SIGN(choose, gpk, isk)

if uid0, uid1 /∈ HUL or gsk[uid0],gsk[uid1] =⊥ return 0

Ω∗←$DAASign(bsn,m,gsk[uidb], gpk)

b∗←$ASNDU,USK,SIGN(guess, st,Ω∗)

if uid0, uid1 ∈ BUL or (uid0, ·, bsn), (uid1, ·, bsn) ∈ SL return 0

return b∗

Experiment: ExptraceA,Π (τ)

param←$DAASetup(1τ), (gpk, isk)←$DAAKeyGen(param),HUL,CUL,BUL← ∅
(Ω,m, bsn, gsk1, · · · , gskl)←$ASNDI

1 (gpk)

Let T denote the set of all transcripts accepted from SNDI queries

If the following conditions hold return 1

1. DAAVerify(bsn,m,Ω, gpk) = 1

2. ∀T ∈ T ∃i ∈ [l] such that DAAIdentifyT (T , gski) = 1

3. ∀i ∈ [l] DAAIdentifyS(bsn,m,Ω, gski) = 0

(bsn,m0,m1,Ω0,Ω1, gsk)←$A2(gpk, isk) if bsn =⊥ return 0

If the following conditions hold return 1 else return 0

1. ∀b ∈ {0, 1} DAAVerify(bsn,mb,Ωb, gpk) = 1

2. ∀b ∈ {0, 1} DAAIdentifyS(bsn,mb,Ωb, gsk) = 1

3. DAALink((bsn,m0,Ω0), (bsn,m1,Ω1), gpk) = 0

Experiment: Expnon−frameA,Π (τ)

param←$DAASetup(1τ), (gpk, isk)←$DAAKeyGen(param),HUL,BUL,SL← ∅
(bsn,m, uid,Ω)←$ASNDU,USK,SIGN

1 (gpk, isk)

If the following conditions hold return 1

1. DAAVerify(bsn,m,Ω, gpk) = 1

2. uid ∈ HUL\BUL and (uid,m, bsn) /∈ SL

3. DAAIdentifyS(bsn,m,Ω,gsk[uid]) = 1.

(bsn0,m0,Ω0, bsn1,m1,Ω1, gsk)←$A2(gpk, isk)

If one of the following conditions hold return 0

1. ∃b ∈ {0, 1} such that DAAVerify(bsnb,mb,Ωb, gpk) = 0

2. DAALink((bsn0,m0,Ω0), (bsn1,m1,Ω1), gpk) = 0

If one of the following conditions hold return 1 else return 0

1. DAAIdentifyS(bsn0,m0,Ω0, gsk) = 1 and DAAIdentifyS(bsn1,m1,Ω1, gsk) = 0

2. bsn0 6= bsn1 or bsn0 =⊥ or bsn1 =⊥

Figure 2.7: Experiments capturing the anonymity, traceability and non–frameability se-
curity requirements for pre–DAA schemes

joint state.

The first game captures that all valid signatures should identify to a secret key of a user

that has successfully joined under DAAIdentifyS . The adversary has not corrupted the

50

2.8 Direct Anonymous Attestation

issuer as otherwise they could simply create their own unregistered users. They are given

the SNDI oracle to create corrupt users, and have no need for other oracles as the game

does not distinguish between honest and corrupt users. They then must output a secret

key corresponding to every accepted SNDI query under DAAIdentifyT , and a valid signature

that does not identify to any of these secret keys under DAAIdentifyS .

The second game captures that signatures tracing to the same secret key and with the

same basename should link under DAALink. The adversary has corrupted the issuer, and

has no need for oracles as the game does not distinguish between honest and corrupt

users. They must output a basename, a user secret key, and two valid signatures on this

basename. They win if the two signatures are not linked under DAALink but do identify

to the same secret key.

Definition 2.16 (Traceability). A pre–DAA scheme Π satisfies traceability if for all

polynomial–time adversaries A, the advantage Pr[ExptraceA,Π (τ) = 1] is negligible in τ .

Non–frameability. The non–frameability requirement is given by the game in Figure 2.7.

This requirement ensures that an adversary cannot impersonate an honest user by forg-

ing signatures linking to theirs. This requires firstly that an adversary should not be

able to output a valid signature that identifies to the secret key of an honest user under

DAAIdentifyS , and secondly that they should not be able to output two valid linked sig-

natures, that either have different basenames or identify under DAAIdentifyS to different

secret keys. The non–frameability experiment is also made up of two games, which each

capture a different property. Both properties must be satisfied to ensure Non–frameability.

The adversary is separated into A1 and A2 to emphasize that these are separate games

and there is no joint state.

The first security game captures that an adversary should not be able to output a signature

that traces to the secret key of an honest user. The adversary has corrupted the issuer.

They are given the SNDU, USK, SIGN oracles to create honest users, reveal their private

keys, and obtain signatures from these honest users. They then must output a valid

signature that identifies under DAAIdentifyS to the secret key of an honest user, that was

not revealed under USK, or obtained through the SIGN oracle.

The second game captures that signatures tracing to different secret keys or with different

basenames should not link under DAALink. The adversary has again corrupted the issuer,

51

2.8 Direct Anonymous Attestation

and has no need for oracles as the game does not distinguish between honest and corrupt

users. They must output two valid linked signatures and a user secret key. They win

if either the basenames of the two signatures are different or only one of the signatures

identifies under DAAIdentifyS to the secret key.

Definition 2.17 (Non–frameability). A pre–DAA scheme Π satisfies non–frameability if

for all polynomial–time adversaries A, the advantage Pr[Expnon−frameA,Π (τ) = 1] is negligible

in τ .

2.8.2 CDL Direct Anonymous Attestation Scheme

The CDL scheme [33] was proved secure under the state–of–the–art security requirements

for full DAA [33], assuming the LSRW [97], Discrete Logarithm (DL), and DDH assump-

tions. It consists of the algorithms provided in Figure 2.8, and the protocol provided in

Figure 2.9. We merge the TPM and host here, as this is the setting considered through-

out this thesis. The public parameters of a CDL scheme are the type–3 bilinear group:

(p,G1,G2,GT , e,G1, G2) and a hash function H.

52

2.8 Direct Anonymous Attestation

CDLKeyGen(param)

α, β←$Z∗p, X ← G2
α, Y ← G2

β return gpk = (X,Y), isk = (α, β)

CDLSign(bsn,m, (f, (A,B,C,D), gpk)

a←$Z∗p, A′ ← Aa, B′ ← Ba, C ← Ca, D′ ← Da

if bsn 6=⊥ J ← H(bsn)f , π←$SPK{(f) : D′ = B′f ∧ J = H(bsn)f}(bsn,m)

if bsn =⊥ J ←⊥, π←$SPK{(f) : D′ = B′f}(bsn,m)

return Ω = (A′, B′, C ′, D′, J, π)

CDLVerify(bsn,m,Ω, gpk)

Parse Ω = (A′, B′, C ′, D′, J, π)

Verify π with respect to B′, D′, J,m, bsn

if A′ = 1 or J = 1 return 0

if e(A′, Y) 6= e(B′, G2) or e(A′D′, X) 6= e(C ′, G2) return 0 else return 1

CDLLink((bsn0,m0,Ω0), (bsn1,m1,Ω1), gpk)

For b ∈ {0, 1} parse Ωb = (A′b, B
′
b, C

′
b, D

′
b, Jb, πb)

if bsn0 6= bsn1 or bsn0, bsn1 =⊥ return 0

if ∃b ∈ {0, 1} such that CDLVerify(bsnb,mb,Ωb, gpk) = 0 return 0

if J0 = J1 return 1 else return 0

CDLIdentifyT (T , (f,A,B,C,D))

Let T = (n, (F, πf), (cre, πcre)), if F = Gf1 and cre = (A,B,C,D) return 1 else return 0

CDLIdentifyS(bsn,m,Ω, (f,A,B,C,D))

Let Ω = (A′, B′, C ′, D′, J, π), if CDLVerify(bsn,m,Ω, gpk) = 0 return 0

if D′ = B′f return 1 else return 0

Figure 2.8: The algorithms of CDL

53

2.8 Direct Anonymous Attestation

CDLJoin(gpk)
 CDLIssue(isk, gpk, uid)

choose n←$ {0, 1}τ

� n

f ←$Z∗p, F ← Gf1 ,

πF ←$SPK{(f) : F = Gf1}(n)

-F, πF

Verify πF , F ∈ G1 and F 6= 1

s←$Z∗p, A← G1
s, B ← Aβ

C ← AαF sαβ, D ← F sβ

cre← (A,B,C,D), πcre←$

SPK{t : B = Gt1 ∧D = F t}
reg[uid]← (F, cre)

�
cre, πcre

if A = 1 return ⊥
Verify πcre

if e(A, Y) 6= e(B,G2) or
e(AD,X) 6= e(C,G2)

return ⊥
gsk[uid]← (f, cre)

Figure 2.9: The < CDLJoin,CDLIssue > Protocol

54

Chapter 3

Modelling Centralised Reputation

Systems with Unlinkable User

Behaviour

Contents

3.1 Introduction . 55

3.2 Chapter Preliminaries . 60

3.3 Defining a Reputation System . 63

3.4 Security Properties . 67

3.5 A Centralised Reputation System with Unlinkable User Be-

haviour . 77

3.6 Evaluation of our Construction 80

3.7 Instantiation of SPK and Efficiency 91

3.8 Summary . 93

3.1 Introduction

This chapter introduces a new model for centralised reputation systems and a construction

satisfying this model using two variants of a group signature scheme as building blocks.

55

3.1 Introduction

3.1.1 Motivation

We first focus on an application of group signature schemes to centralised reputation sys-

tems.

Reputation has always played a fundamental role in how we exchange products and ser-

vices. While traditionally we have been used to trusting the reputation of established

brands or companies, we are now facing a new challenge in the online world: determining

the trustworthiness of a wide variety of possible exchanges. Whether we are selecting a

restaurant, buying a product or getting a taxi, we are increasingly relying on scores and

ratings to make our choice. For example, on Amazon, which in 2015 had over 2 million

third party sellers worldwide [1], each seller is given a rating out of 5. Also Uber, with

over 40 million monthly active users [3], allows drivers and passengers to rate each other.

A reputation system formalises this process of rating a user or service by associating them

with a reputation value representing their trustworthiness. A reputation is then built

as the value gets updated over time, as a consequence of user interactions and service

exchanges.

There are several privacy implications of reputation systems. Obviously, to form a rep-

utation value for a specific user or service, their behaviour across interactions needs to

be linked. However, a user could be deanonymised by linking all their interactions to-

gether in a profiling attack. Also the detection of multiple feedback on the same instance

also involves linking users’ feedback. Given this, a cryptographic treatment of reputation

systems has been considered necessary, and several models have been proposed in the

literature so far [7, 18, 58].

Reputation systems can be generally categorised into distributed or centralised systems.

Distributed systems [101] have no central server and use local reputation values, i.e.,

reputation values created by users on other users. For example, a user may generate a

reputation value based on feedback from querying other users, and their own interactions.

This means a user does not have a unique reputation value, but many other users hold

their own reputation value for them. As users must form reputation values on others,

their interactions cannot be anonymous. Examples of distributed reputation systems are

decentralised reputation systems (DRS) [51], based on querying other nodes, and privacy

56

3.1 Introduction

preserving DRS [78, 111], designed to maintain anonymity when answering queries from

other nodes using multi-party computation.

Centralised reputation systems, on the other hand, have a central server that manages

the network, performing tasks such as controlling communication between users, receiving

feedback and evaluating reputation values. We will focus on centralised systems since the

reputation systems used by most service providers such as Airbnb, Uber and Amazon are

of this type. A variety of centralised reputation system models have been proposed in

the literature. While their applications and the used techniques vary greatly, all of the

models have in common that reputations are assigned to each item or service, the object

of the reputation, rather than each user, the provider of the service. To understand the

limitations of this, let us consider the case of online shopping: in such a scenario, existing

reputation systems would typically allocate a reputation to each product sold (item), and

not to each seller (user), based on all their sold products.

In this chapter, we advocate the need for a shift in how reputation systems are modelled,

and we propose a model for reputation systems in which a reputation value is given to

each user, based on all their user behaviour or items. This is crucial in ensuring that a

user’s previous behaviour will contribute to their current reputation, instead of having

separate reputations for each service provided. Clearly, if items belonging to a user could

be linked together, the model which has been used so far could be transformed into our

new one, by collating the reviews for each item belonging to a user to form a reputation

value. However, if the user wishes to make their items unlinkable for privacy reasons,

then this becomes more challenging. We note that users can refer to both consumers and

providers of a service. However, as many applications such as Uber and AirBnb allow

both consumers and providers to be rated, we do not distinguish between the two.

A car pooling app is an example of the reputation systems we are modelling. A user may

not want their trips (or items) to be linked together, as their movements could be tracked.

However, a user’s reputation should be based on their previous trips, so others can judge

their reliability. In this context, reputations based on each journey are not useful, as they

cannot be used for future journeys. This is why it is important to assign reputation values

to users instead of items.

57

3.1 Introduction

3.1.2 Existing Work

There exist several security models for centralised reputation systems. Reputation sys-

tems using ecash for reputation points were modelled in [7], where a reputation value

corresponds to the number of a user’s reputation points. However, this model is limited

since it only captures reputation systems where reputations are formed in this way.

The model proposed in [18] is inspired by the security model for dynamic group sig-

natures [14], and the authors provide an extra linkability feature to detect users giving

multiple feedback on the same subject. In [58], the security requirements for this model

are improved by giving more power to the adversary, (for example, in the public linkability

security requirement the key issuer is no longer assumed to be honest), and introducing

the requirement that an adversary cannot forge feedback that will link to another user,

invalidating their feedback. In [58] the model is also made fully dynamic [24], i.e. users

can join or leave the scheme at any time, and a lattice-based instantiation satisfying this

model is provided.

Crucially, in both [18] and [58] reputations are assigned to each item, the subject of

feedback, not each user. In contrast, we propose a new model for reputation systems in

which a reputation value is given to each user, based on all their user behaviour or items.

This ensures a user’s reputation reflects their entire past behaviour and so ensures they

are accountable for their previous actions, modelling more accurately how such systems

truly operate.

3.1.3 Our Contribution

Our contribution is to propose a new model for reputation systems so that reputation

values are given to users instead of items, whilst guaranteeing that the user’s behaviour is

unlinkable, and that the central server does not have to be involved during every transac-

tion. This means that users can have multiple unlinkable items, whilst a reputation value

still reflects their entire behaviour. Therefore users can have the benefits of privacy, whilst

still being held accountable.

The first challenge when developing such reputation systems, is to provide a mechanism for

58

3.1 Introduction

generating reputation values, whilst ensuring items cannot be linked by user. We model

this with a ReceiveFB algorithm run by the central server (CS), which takes feedback, and

links it to other feedback on items with the same author, updating their reputation. We

define the security requirement, unlinkability of user behaviour, which defines the unlink-

ability of items by the same user achievable while reputations can still be updated using

ReceiveFB. Our approach as described so far gives rise to a possible attack in which a user

produces a valid item which will not contribute to this user’s reputation, or will even un-

fairly affect another user in ReceiveFB. We introduce the traceability security requirement

to mitigate against this attack. These security requirements are reminiscent of those for

group signature schemes in [12].

The second challenge is to determine the reputation of a specific user, whose items are

unlinkable. A naive solution could be for the user to simply attach their reputation to

an item, but the user could lie about their reputation. To avoid this, we introduce the

PostItem algorithm, with which the user posts their item, and proves they were given a

reputation at a particular time, using a token generated by the CS. We further introduce

the security requirement of unforgeability of reputation to ensure the user cannot lie about

their reputation.

Finally, the standard security requirements of a centralised reputation system [18, 58],

namely anonymity of feedback, soundness of reputation and non–frameability, still need to

hold, and we adapt these naturally to our new model.

We then show how such a reputation system satisfying our security requirements is achiev-

able using two variants of group signature schemes: a group signature scheme that has been

bound to reputation for sending items, and a DAA scheme [29] for sending feedback. We

present a concrete construction which ensures the unlinkability of user behaviour, trace-

ability and unforgeability of reputation requirements. Our modification to [53], similarly

to in [106], allows users to prove their reputation at a particular time. Our construction

also makes use of the DAA scheme given in [33], which ensures anonymity of feedback,

whilst multiple feedback on the same item can be detected, ensuring soundness of repu-

tation. This is due to the user controlled linkability property of the DAA scheme, where

only signatures with the same basenames can be linked. We set the basename to be the

item feedback is given on.

59

3.2 Chapter Preliminaries

To reduce complexity, our model is in the static setting, however it could simply be

converted to the dynamic case using [14]. Our construction uses building blocks designed

in the dynamic case and so could also be easily converted.

Although our scheme aims to provide reputation values for users, it would be straightfor-

ward to provide reputation values for items as well. The Central Server could simply keep

track of all feedback given on an item and publish the item alongside its reputation based

on just this feedback. In many applications, such as AirBnb, reputations are provided for

both users and items.

3.2 Chapter Preliminaries

3.2.1 Existing Work on Centralised Reputation Systems

We now provide an overview of several centralised reputation systems that have been pro-

posed for different applications that are not proven secure under a particular cryptographic

model for a reputation system.

The reputation system PerChatRep [126] was developed for pervasive social chatting;

users chat with each other and provide feedback on this. This scheme is a hybrid between

a distributed and centralised system. Local reputations are used, as well as a global

reputation calculated by the central server. The scheme manages privacy by changing the

pseudonyms used by nodes, at regular intervals. Therefore it does not achieve unlinkability

of all of a user’s behaviour to other users. This is also true for sending feedback.

AdContRep [125] is a reputation system that works in a similar way to PerChatRep but is

specifically for MANET content services, which help nodes to decide which service provider

to use for different applications. In this scheme reputations for different content as well

as users are tracked. Mobile ad hoc networks (MANETs) are networks of mobile devices

that communicate wirelessly, in a decentralised manner. However, nodes do communicate

with a central server periodically in AdContRep.

The reputation system AnonRep was devised in [128] for use in internet message boards

with anonymity. In order to form reputation values, messages must be opened to reveal

60

3.2 Chapter Preliminaries

the author. Anonrep uses multi–party computation to restrict this opening power, so that

reputation values are formed by a group of servers, instead of one trusted party. Users’

messages can only be de-anonymised if all servers collude.

In the context of vehicular ad-hoc networks (VANETs), networks of vehicles that allow

communication, an example is the reputation system in [106], where vehicles communi-

cate directly, and messages and feedback are anonymous and unlinkable. This reputation

system uses a modification of the BBS group signature scheme [21], which we will call

BBS*, that allows users to prove their reputation. Finally, [70] fixes a bug in the BBS*

scheme, and uses BBS* and a modified direct anonymous attestation (DAA) scheme to

build a reputation system for pervasive social networks with stronger anonymity for feed-

back than [106].

In [112], a reputation system is proposed that ensures feedback remains anonymous, while

ensuring feedback can only be given after the entity that is being rated confirms a trans-

action happens with the rater. This ensures reliability of reputation values by ensuring

that users cannot collude to repeatedly unfairly rate another user.

In [16], signatures of reputation are proposed, which allow users to sign demonstrating

they have a particular reputation, provided the measure of reputation is monotonic. This

means that extra feedback only increases the reputation score. A cryptographic security

model is given for this primitive, but not the wider reputation system.

3.2.2 Conventional attacks on Reputation Systems

We now detail several attacks on reputation systems outside the scope of a cryptographic

model. These attacks can be mitigated in other ways when a reputation system is imple-

mented by making careful design choices. We will evaluate how susceptible our construc-

tion is to these attacks at the end of this chapter.

• The On–Off attack: In this attack [95] adversaries behave honestly for some time,

building up a good reputation. They can then start behaving dishonestly. Their

high reputation enables them to do this effectively and for a long period of time,

before their reputation drops. This is particularly effective for an adversary with

61

3.2 Chapter Preliminaries

one specific target in mind. For example in eBay, a user could build up a good

reputation score for small orders in order to later defraud users during a big order.

This is also referred to as the traitors attack [102]. This attack can be mitigated by

adjusting the weighting of the final reputation formation, so that bad behaviour will

cause the reputation to deteriorate quickly. This ensures that more recent feedback

will have more value.

• Unfair Rating attack: A malicious node repeatedly provides dishonest feedback

(without collaboration) [54]. This unfairly affects the other user’s reputation. This

attack can be partly mitigated by ensuring each user can only provide feedback once

for each instance.

• The Collaborative Unfair Rating attack: This attack, described in [95] as the

collaborative bad mouthing attack, involves many malicious users colluding together

in the unfair rating attack. They all collude to submit dishonest feedback on a user.

This is also referred to as a colluders attack [102]. A form of this attack is the front

peers attack [102], when malicious users collude to increase each other’s reputations.

For example, they might post a public message, and inform all other users to submit

positive feedback on this message. In sybil attacks these colluding users are fake

identities.

This attack can be mitigated by ensuring only one feedback can be given per instance,

and also by making joining the scheme expensive in some way. New users to the

scheme could be verified. Another way is through incentivising honest feedback,

which was shown game theoretically to ensure players rate accurately [123].

• The Whitewashers attack: Whitewashers are malicious users that leave and then

rejoin the reputation scheme in order to lose their bad reputation [102]. After a user

has behaved maliciously they leave the system and then rejoin under a new identity

with a new reputation score. A way to mitigate this attack is to assign new users a

low reputation so that they must prove themselves in the network, as well as making

joining the scheme expensive in some way.

• The Self–Rating attack: Adversaries positively rate a large number of their own

items. This is particularly effective if they can create a large number of fake items

to positively rate. Ideally this attack should be avoided by preventing the user from

self rating. The central server can also punish authors of items that do not represent

a valid transaction.

62

3.3 Defining a Reputation System

3.3 Defining a Reputation System

We first introduce the syntax and generic functionality of a centralised reputation system

RS with unlinkable user behaviour, and a reputation value assigned to users.

We define a reputation system, RS, as consisting of the following probabilistic polynomial–

time algorithms: Setup, AllocateReputation, PostItem, CheckItem, SendFB, VerifyFB, LinkFB,

ReceiveFB. We illustrate our model in Figure 3.1.

CS(gpk, isk, osk,usk, r,F,L, ID)
2. For current time t perform (ω, r, ID)←$

AllocateReputation(gpk, isk, uid,usk[uid], t, r[uid], ID)
6. (r,L,F) ←
ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID)

User uid(gpk,usk[uid])
1. Request reputation at
current time, with req
3. When posting an
item I perform Ω←$

PostItem(gpk, I,usk[uid], r, t, ω)

User uid′(gpk,usk[uid′])
4. Check
CheckItem(gpk, I, r, t,Ω) = 1
5. When giving feedback fb
on item I, perform Φ←$

SendFB(gpk,usk[uid′], (I, r, t,Ω), fb)

1.
re
q

2.
(ω
, r
, t

)

3. (I, r, t,Ω)

5.
((I, r, t,Ω

), fb,Φ
)

Figure 3.1: How entities interact in our model of a centralised reputation system

SendFB, VerifyFB, and LinkFB are equivalent to the Sign, Verify, Link algorithms in [18]

and [58]. The additional algorithms, represent the key features of our new approach.

We will refer to our model for a centralised reputation system as the RS model. The

entities involved are a set of users U = {uidi} and a central server (CS). The CS has two

secret keys, isk and osk. The issuing secret key, isk, is necessary for allowing users to

join the system and allocating them tokens to prove their reputation, whereas the opening

secret key, osk, is necessary for forming reputations from feedback. For simplicity we

provide the CS with both secret keys, but to reduce the power of one entity the role of

the CS could be distributed.

63

3.3 Defining a Reputation System

The CS begins by running Setup. Users post items1, which are the subject of feedback,

while proving their reputation at a certain time using PostItem. After a request from a

user, the CS runs AllocateReputation, which outputs tokens to allow a user to prove their

current reputation at a specific time in PostItem. Other users verify that an item is a

valid output of PostItem by running CheckItem. This ensures the item was authored by

an enrolled user, the reputation alongside the item is correct for the given time, and the

CS can use feedback on the item to form reputations. SendFB is run by a user when

giving feedback on an item, and its output is sent to the CS. ReceiveFB is run by the CS

when receiving the output of SendFB from a user. The CS updates their stored feedback

and reputations, based on this. VerifyFB and LinkFB are used by ReceiveFB to check the

feedback is valid and that there is no feedback by the same user on this item, otherwise

ReceiveFB will abort.

We note that in our model, any user can give feedback on an item. This is useful for

applications where items are publicly posted and rated, such as a message boards. How-

ever, for applications where only a user who has consumed a service corresponding to a

particular item should be able to rate this item, care must be taken when sharing items.

Only the users who are allowed to rate an item should be given the item.

In the car pooling example, whenever a driver wishes to update their reputation, they

request the CS run AllocateReputation to obtain a token for their reputation. They are

incentivised to do this by the fact the reputation is displayed alongside the time it was

allocated. When they wish to offer a ride, they use their most recent token to share an

item with these passengers through PostItem, which can be verified by passengers with

CheckItem. The passenger can then pay using some anonymous payment system. After

the ride, their passenger can then provide feedback on this item to the CS using SendFB.

The CS uses ReceiveFB to update their lists of feedback and reputations for each user, if

the feedback is valid.

Before describing in detail our new model, we provide an overview of our notation in

Table 3.1.

We keep R, Aggr, r̂ generic to ensure a flexible model that applies to different applications.

We now state some examples.

1A simple example of an item could be a product being sold.

64

3.3 Defining a Reputation System

R The set of all possible reputation values.

r̂ The initial reputation of every user at the system’s setup.

U The set of all users in the scheme.

Aggr A function that takes as input the new feedback fb, the user whose reputation
is being updated uid, the list of feedback already received F , and the most
recent reputation r, and outputs the new reputation r′.

r For the user uid ∈ U , r[uid] is the user uid’s reputation held by the CS.

L A list of feedback that will contain entries in the form of a 6-tuple ((I, r, t,Ω),
fb,Φ), where (fb,Φ) is feedback/ proof pair, given on item I with reputation r
and time t, with the proof Ω. L is used by the CS to keep track of all feedback
given, so that multiple feedback on the same item can be detected in
ReceiveFB.

F A list of feedback that will contain entries of the form (uid, fb) where fb is
feedback given to user uid. F is used by the CS to keep track of all feedback
given on user uid to form reputations in ReceiveFB.

ID A list of identities for all users, this list will allow the CS to store information
on users whilst running AllocateReputation for use in ReceiveFB.

Table 3.1: An overview of the notation used in our RS model

In an application that values anonymity over a fine grained reputation, the set R could

consist of reputation values {0, 1, 2, 3, 4, 5}. In an application where fine grained reputation

is valued over large anonymity sets, the set R could consist of reputation values {n/10 :

n ∈ [0, 500]}.

The initial reputation r̂ could be set to 0 or to an average value. The choice of 0 could

potentially penalise new users, but the choice of an average value could allow users to

increase their reputation by rejoining the scheme.

If feedback is in the same set as R, then an example of Aggr that would fit with the

previous examples is:

Aggr(fb, uid,F , r) =
fb+ kr

1 + k
, such that k = |{(uid, fb′) ∈ F})|.

For this example, reputation values are the average of all feedback received. Alternatively,

this average could be weighted so that more recent feedback counts for more than more

distant feedback.

65

3.3 Defining a Reputation System

3.3.1 Syntax of RS

We now present the syntax for our RS model of a centralised reputation system. We note

that VerifyFB and LinkFB are never used explicitly, but only used internally by ReceiveFB.

However, as in existing work [18, 58], we include these algorithms separately to allow for

notational simplicity when defining security.

Definition 3.1 (RS). A centralised reputation system RS consists of the following algo-

rithms:

Setup(τ,R, r̂,U ,Aggr)→ (gpk, isk, osk,usk, r,L,F , ID): takes as input security param-

eter τ , a set R of reputation values, r̂ ∈ R, the initial reputation, a set of users U ,

and the aggregation algorithm Aggr. The CS computes a public key gpk, the issuing

secret key isk, which is used to issue new user secret keys and in AllocateRepu-

tation, and the opening secret key osk, which is used in ReceiveFB to trace the

author of an item to form reputations. The CS computes a secret key for each user,

usk = {usk[uid] : uid ∈ U}, and r, the reputation for all users held by the CS,

where ∀uid ∈ U , r[uid] = r̂. The CS creates empty lists L,F , ID.

AllocateReputation(gpk, isk, uid,usk[uid], t, r[uid], ID)→ (ω, r[uid], ID): takes as input

the public key gpk, the issuing secret key isk, user uid’s secret key usk[uid], the

current time t, the current reputation of user uid held by the CS r[uid], and the list

of identities for users ID. It updates the list of identities ID, and generates ω which

allows user uid to prove they have reputation r[uid].

PostItem(gpk, I,usk[uid], r, t, ω)→ Ω: takes as input the public key gpk, an item I, user

uid’s secret key usk[uid], the last reputation r, time t and token ω received from

the CS (r is not necessarily the reputation r[uid] held by the CS). It outputs Ω,

which proves the author is enrolled and has reputation r at time t, and is used in

ReceiveFB to form a reputation for user uid.

CheckItem(gpk, I, r, t,Ω)→ {0, 1}: takes as input the public key gpk, an item I, a rep-

utation r, a time t and Ω. It outputs 1 if Ω is a valid output of PostItem, given

(I, r, t), and 0 otherwise.

SendFB(gpk,usk[uid], (I, r, t,Ω), fb)→ Φ: takes as input the public key gpk, user uid’s

secret key usk[uid], the subject of their feedback, (I, r, t,Ω), and the feedback fb.

66

3.4 Security Properties

It outputs Φ which is sent to the CS, to prove the author of Φ is enrolled, and also

for the detection of multiple feedback.

VerifyFB(gpk, (I, r, t,Ω), fb,Φ)→ {0, 1}: takes as input the public key gpk, an item (I, r,

t,Ω), and feedback/ proof pair on this item (fb,Φ). It outputs 1 if Φ is a valid

output of SendFB, and 0 otherwise.

LinkFB(gpk, (I, r, t,Ω), fb0,Φ0, fb1,Φ1)→ {0, 1}: takes as input the public key gpk, an

item (I, r, t,Ω), and two feedback/ proof pairs on this item, (fb0,Φ0), (fb1,Φ1). It

outputs 1 if Φ0 and Φ1 were generated by the same user with the same input of

(I, r, t,Ω), and 0 otherwise.

ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID)→ (r,L,F): takes as input the public

key gpk, the opening secret key osk, a feedback/ proof pair (fb,Φ) on item (I, r, t,Ω),

the current reputations r held by the CS, the lists of feedback so far L and F , and

the list of user identities ID. If Φ is not valid, or the LinkFB algorithm finds multiple

feedbacks in L then it outputs ⊥. Otherwise, it uses the aggregation algorithm Aggr,

and the list F , to update r, L and F to take into account the new feedback.

3.4 Security Properties

We now present the desirable security and privacy properties for our RS model.

As discussed earlier, we consider reputation systems satisfying the following properties:

correctness, unforgeability of reputation, traceability, unlinkability of user behaviour,

soundness of reputation, anonymity of feedback, and non–frameability.

We introduce unforgeability of reputation, a requirement that ensures a user cannot prove

that they have a reputation for a certain time, which differs from the one they were

allocated by the CS in AllocateReputation. This is necessary because when an item is

unlinkable, the author’s reputation cannot be determined. Therefore the reputation must

be included alongside the item. This property ensures that the sender has not lied about

their reputation.

We also introduce unlinkability of user behaviour, which formalises our definition of unlink-

able user behaviour, given that ReceiveFB can still form reputations, as well as traceability,

67

3.4 Security Properties

which ensures that all items generated by an adversary can be traced back to them when

computing their reputation. This is necessary because, due to the unlinkability of user

behaviour property, an attacker could attempt to subvert ReceiveFB. These properties

are reminiscent of the full-anonymity and full-traceability properties [12] for static group

signature schemes, and have been adapted for reputation systems. Traceability and Un-

forgeability of Reputation are separate requirements because they seek to ensure different

properties: that user cannot lie about their reputation and that a user cannot avoid their

behaviour being traced back to them in ReceiveFB.

Soundness of reputation ensures an adversary cannot submit multiple feedback on the

same item, undermining the integrity of reputation values. Anonymity of feedback en-

sures that feedback cannot be traced to the user’s identity and is unlinkable. We have

adapted these two properties from [18] to fit our notation2. Non–frameability ensures

that an adversary cannot produce a feedback that links to another user’s feedback under

LinkFB, and so unfairly stop this feedback being counted. We have adapted this property

from [58]. Non–Frameability and Soundness of Reputation are separate requirements,

because non–frameability captures that feedback should not be unfairly linked together,

whereas Soundness of Reputation captures that feedback should not be unfairly unlinkable.

We highlight that the issuing secret key is used by the CS for joining users to the scheme,

and therefore for the traceability and soundness of reputation property the adversary

cannot corrupt the isk as otherwise they could cheat by creating unregistered users. The

opening secret key is used by the CS to trace items, so that reputations can be updated

with new feedback. Therefore in the unlinkability of user behaviour property the adversary

cannot corrupt the osk as otherwise they could trace signatures. This means the CS could

be split into two separate entities with different secret keys.

We trust that the CS updates users’ reputations correctly with ReceiveFB, meaning the CS

could potentially unfairly tamper with a user’s reputation. This assumption is necessary

because to publicly scrutinise the CS, the de-anonymisation of items input to the CS

would have to be made public. We justify this honest–but–curious trust assumption by

remarking that the manager of a reputation system will have a vested interest in ensuring

the fairness of the system to avoid disgruntled paying customers from moving elsewhere.

2Soundness of reputation is comparable to public linkability and anonymity of feedback is comparable
to anonymity.

68

3.4 Security Properties

Oracles and State. The security notions that we will formalise use a number of oracles

which keep joint state, e.g., by keeping track of queries and the set of corrupted parties.

We present the detailed description of all oracles in Figure 3.2 and an overview of them

and their maintained records.

USK (corrupts users) Corrupts user uid, and outputs their secret key usk[uid]. Cor-

rupted users are stored in C.

POST (create items) This oracle returns valid items of a user uid.

SENDFB (create feedback) This oracle returns valid feedbacks of a user uid, storing

outputs in the sets Guid, for use in the non–frameability property.

RECEIVEFB (perform ReceiveFB) This oracle returns outputs of the ReceiveFB algo-

rithm.

ALLREP(perform AllocateReputation) This oracle returns outputs of the

AllocateReputation algorithm.

USK(uid):

C ← C ∪ {uid}; return usk[uid]

POST(I, uid, r, t, ω):

return PostItem(gpk, I,usk[uid], r, t, ω)

SENDFB(uid, fb, (I, r, t,Ω)):

Φ←$SendFB(gpk,usk[uid], (I, r, t,Ω), fb),Guid ← Guid ∪ {((I, r, t,Ω), fb,Φ)} return Φ

RECEIVEFB((I, r, t,Ω), fb,Φ, ID):

return (r,L,F)← ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID)

ALLREP(uid, t, r):

return AllocateReputation(gpk, isk, uid,usk[uid], t, r, ID)

Figure 3.2: Oracles in our RS security model

3.4.1 Correctness

The reputation system RS should function correctly. We formulate correctness via five

conditions.

1. Items computed honestly via AllocateReputation and PostItem will verify correctly

under CheckItem.

69

3.4 Security Properties

2. Feedbacks computed honestly via SendFB will verify correctly under VerifyFB.

3. On input outputs of SendFB on the same item of (I, r, t,Ω), using the same user

secret key, the LinkFB algorithm will output 1.

4. If an item and feedback were generated honestly via PostItem and SendFB, then

ReceiveFB updates r,L,F correctly.

5. If ReceiveFB is input feedback that is not valid under VerifyFB, or links to other

feedback in L under LinkFB, then it will output ⊥.

Definition 3.2 (Correctness). A reputation system RS satisfies correctness if conditions

1–5 are satisfied.

Condition 1 is satisfied if for all τ ∈ N, all polynomially bounded R,U , r̂ ∈ R, all aggrega-

tion algorithms Aggr, (gpk, isk,usk, ID)←$ Setup(τ,R, r̂,U ,Aggr), all uid ∈ U , any time

t ∈ {0, 1}∗, any r ∈ R|U|, (ω, r, ID)←$AllocateReputation(gpk, isk, uid,usk[uid], t, r[uid], ID),

any I ∈ {0, 1}∗, then

CheckItem(gpk, I, r, t,PostItem(gpk, I,usk[uid], r, t, ω)) = 1.

Condition 2 is satisfied if for all τ ∈ N, all polynomially bounded R,U , all r̂ ∈ R, all

aggregation algorithms Aggr, (gpk,usk)←$Setup(τ,R, r̂,U ,Aggr), all uid ∈ U , all I ∈

{0, 1}∗, all r ∈ R, all t ∈ {0, 1}∗, all Ω ∈ {0, 1}∗, all fb ∈ {0, 1}∗, then

VerifyFB(gpk, (I, r, t,Ω), fb, SendFB(gpk,usk[uid], (I, r, t,Ω), fb)) = 1.

Condition 3 is satisfied if for all τ ∈ N, all polynomially bounded R,U , all r̂ ∈ R, all

aggregation algorithms Aggr, (gpk,usk)←$Setup(τ,R, r̂,U ,Aggr), all uid ∈ U , all I ∈

{0, 1}∗, all r ∈ R, all t ∈ {0, 1}∗, all Ω ∈ {0, 1}∗, all fb0, fb1 ∈ {0, 1}∗, for b ∈ {0, 1},

Φb←$SendFB(gpk,usk[uid], (I, r, t,Ω), fbb), then

LinkFB(gpk, (I, r, t,Ω), fb0,Φ0, fb1,Φ1) = 1.

70

3.4 Security Properties

Condition 4 is satisfied if for all τ ∈ N, all polynomially bounded R,U , all r̂ ∈ R, all aggre-

gation algorithms Aggr, (gpk, isk, osk,usk, ID)←$Setup(τ,R, r̂,U , Aggr), all uid, uid′ ∈

U , r ∈ R|U|, all t ∈ {0, 1}∗, (ω, r, ID)←$AllocateReputation(gpk, isk, uid,usk[uid], t, r[uid],

ID), all I ∈ {0, 1}∗, Ω←$PostItem(gpk, I,usk[uid], r, t, ω), all fb ∈ {0, 1}∗, Φ←$SendFB

(gpk,usk[uid′], (I, r, t,Ω), fb), all F , all L such that:

∀((I, r, t,Ω), fb′,Φ′) ∈ L: LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) = 0,

(r∗, L∗,F∗)← ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID), then

(r∗,L∗,F∗) 6=⊥,L∗ = ((I, r, t,Ω), fb,Φ) ∪ L,F∗ = F ∪ (uid, fb),

r∗[uid] = Aggr(fb, uid,F , r[uid]), and ∀ûid 6= uid ∈ U , r∗[ûid] = r[ûid].

Condition 5 is satisfied if for all τ ∈ N, all polynomially bounded R,U , all r̂ ∈ R, all

aggregation algorithms Aggr, (gpk, osk,usk, ID)←$Setup(τ,R, r̂,U ,Aggr), all r, all F ,

(L, (I, r, t,Ω), fb,Φ) with VerifyFB(gpk, (I, r, t,Ω), fb,Φ) = 0 or ∃((I, r, t,Ω), fb′,Φ′) ∈ L

such that LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) = 1 then

⊥← ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID).

We now present our new security properties, which are necessary as reputation values are

assigned to users instead of their individual unlinkable items.

3.4.2 Unforgeability of Reputation

A user can only prove that they have reputation r at time t, if this was allocated to them

by the CS in AllocateReputation. In the context of car pooling, this security property

ensures a driver cannot lie about their reputation when requesting a passenger.

In our security game in Figure 3.3, the adversary is given the opening secret key osk, the

list of user identities ID, the USK, POST, ALLREP oracles, but not isk, as they could run

AllocateReputation. The adversary wins if they output a valid item, for reputation r, time

t, tracing to a corrupted user uid in ReceiveFB, without querying (uid, r, t) to the ALLREP

71

3.4 Security Properties

Experiment: Expanon−ub−bA,RS (τ,R, r̂,U ,Aggr)

(gpk, isk, osk,usk, r,L,F , ID)←$Setup(τ,R, r̂,U ,Aggr)
(st, uid0, uid1, I, r, t, ID)←$ARECEIVEFB(choose, gpk, isk,usk, r,L,F , ID)

∀b̃ ∈ {0, 1} (ωb̃, ID)←$AllocateReputation(gpk, isk, uid,usk[uidb̃], t, r, ID)

Ω←$PostItem(gpk, I,usk[uidb], r, t, ωb)

b∗←$ARECEIVEFB(guess, st,Ω, ID)

if ((I, r, t,Ω), ·) queried to the RECEIVEFB oracle return 0

return b∗

Experiment: ExptraceA,RS(τ,R, r̂,U ,Aggr)

(gpk, isk, osk,usk, ID)←$Setup(τ,R, r̂,U ,Aggr);C ← ∅
(I, r, t,Ω, fb,Φ, r,L,F)←$AUSK,POST,SENDFB,ALLREP(gpk, osk, ID)

if CheckItem(gpk, I, r, t,Ω) = 0 or VerifyFB(gpk, (I, r, t,Ω), fb,Φ) = 0 return 0

if ∃((I, r, t,Ω), fb′,Φ′) ∈ L with LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) = 1 return 0

∀uid ∈ U , ID ←$AllocateReputation(gpk, isk, uid,usk[uid], t, r, ID)

if ⊥← ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID) return 1

else (r∗,L∗,F∗)← ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID)

if L∗ 6= ((I, r, t,Ω), fb,Φ) ∪ L return 1

if F∗ = (uid′, fb) ∪ F for some uid′ ∈ U uid∗ ← uid′ else return 1

if r∗[uid∗] 6= Aggr(fb, uid∗,F , r[uid∗]), or ∃ûid ∈ U\{uid∗} such that r∗[ûid] 6= r[ûid] return 1

if uid∗ /∈ C and (I, uid∗, r, t, ·) was not queried to the POST oracle return 1

else return 0

Experiment: Expunforge−repA,RS (τ,R, r̂,U ,Aggr)

(gpk, isk, osk,usk, r,L,F , ID)←$ Setup(τ,R, r̂,U ,Aggr)
(I, r, t,Ω)←$AUSK,POST,ALLREP(gpk, osk, ID)

if Ω returned by POST or if CheckItem(gpk, I, r, t,Ω) = 0 return 0

uid′←$U , fb← 0,Φ←$SendFB(gpk,usk[uid′], (I, r, t,Ω), fb)

(r∗,L∗,F∗)← ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID)

if F∗\F = {uid, fb} for some uid ∈ U uid∗ ← uid else return 1

if A queried (uid∗, t, r) to ALLREP oracle and uid∗ ∈ C return 0 else return 1

Figure 3.3: Experiments capturing our unlinkability of user behaviour, traceability and
unforgeability of reputation security properties

oracle, or it does not trace to any user.

Definition 3.3 (Unforgeability of Reputation). A reputation system RS satisfies unforge-

ability of reputation if for all polynomial–time adversaries A, all sets R and U such that

|R| and |U| are polynomially bounded in τ , all r̂ ∈ R, all Aggr functions, the advantage

Pr[Expunforge−repA,RS (τ,R, r̂,U ,Aggr) = 1] is negligible in τ .

72

3.4 Security Properties

3.4.3 Traceability of users

This security property ensures that any valid item an adversary produces will contribute

towards their own reputation in ReceiveFB. This also guarantees unforgeability. In the

context of car pooling, this security property means that feedback on a driver’s rides will

always affect their own reputation and not another’s.

In our security game in Figure 3.3, the adversary is given the opening secret key osk,

the list of user identities ID, the USK oracle to corrupt users, and the POST, SENDFB,

ALLREP oracles for uncorrupted user, but not isk, because they could cheat by generating

the secret key of a new user. They must output a valid item and feedback, and r,L,F ,

such that the feedback does not link to any in L. If ReceiveFB fails, does not correctly

update r,L,F , or updates the reputation of an uncorrupted user, then the adversary wins.

Definition 3.4 (Traceability). A reputation system RS satisfies traceability if for all

polynomial–time adversaries A, all sets R and U such that |R| and |U| are polynomially

bounded in τ , all r̂ ∈ R, all Aggr functions, the advantage Pr[ExptraceA,RS(τ,R, r̂,U ,Aggr) = 1]

is negligible in τ .

3.4.4 Unlinkability of User Behaviour

This property ensures other users cannot link together items by author, while the CS can

still link items to form reputation values based on a user’s entire behaviour. In the context

of car pooling, this security property means that all rides a driver/ user undertakes are

unlinkable, so their movements cannot be tracked.

In our security game in Figure 3.3, the adversary is given all user secret keys, the issuing

secret key isk, r, L, F , and ID, but not the opening secret key osk, because otherwise

they could run ReceiveFB, and then check which user’s reputation changes. They are given

the RECEIVEFB oracle, but its use is restricted so that the challenge signature cannot be

queried, to avoid this attack. This attack would not be practical in the real world, as

reputations will be updated at intervals so that multiple users’ reputations will change at

once. Future work could consider specific Aggr algorithms that would allow this security

property to be strengthened. In our work, to ensure our model is generic, we define security

for all possible Aggr functions.

73

3.4 Security Properties

The adversary chooses an item I, a reputation r and a time t, an updated list of identities

ID, and two users uid0, uid1, they then must decide whether an item Ω was authored by

uid0 or uid1.

Definition 3.5 (Unlinkability of User Behaviour). A reputation system RS satisfies un-

linkability of user behaviour if for all polynomial–time adversaries A, all sets R and U

such that |R| and |U| are polynomially bounded in τ , all r̂ ∈ R, and all Aggr functions,

the following advantage is negligible in τ :

∣∣∣Pr[Expanon−ub−0
A,RS (τ,R, r̂,U ,Aggr) = 1]− Pr[Expanon−ub−1

A,RS (τ,R, r̂,U ,Aggr) = 1]
∣∣∣ .

Experiment: Expsound−repA,RS (τ,R, r̂,U ,Aggr))

(gpk, isk, osk,usk, r,L,F , ID)←$Setup(τ,R, r̂,U ,Aggr); C ← ∅

((I, r, t,Ω), {fbj ,Φj}|C|+1
j=1)←$AUSK,POST,SENDFB,ALLREP(gpk, osk)

if ∃j ∈ [1, |C|+ 1] such that VerifyFB(gpk, (I, r, t,Ω), fbj ,Φj) = 0 return 0

if ∃j1, j2 ∈ [1, |C|+ 1] with j1 6= j2 s.t. LinkFB(gpk, (I, r, t,Ω), fbj1 ,Φj1 , fbj2 ,Φj2) = 1

return 0

if ∃j ∈ [1, |C|+ 1] s.t. (uid, fbj , (I, r, t, ω)) with uid /∈ C was queried to the SENDFB oracle

and Φj was returned return 0 else return 1

Experiment: Expanon−fb−bA,RS (τ,R, r̂,U ,Aggr)

(gpk, isk, osk,usk, r,L,F , ID)←$ Setup(τ,R, r̂,U ,Aggr)
(st, uid0, uid1, fb, (I, r, t,Ω))←$AUSK,POST,SENDFB,ALLREP(choose, gpk, isk, osk)

Φ←$SendFB(gpk,usk[uidb], (I, r, t,Ω), fb)

b∗←$AUSK,POST,SENDFB,ALLREP(guess, st,Φ)

if uid0 or uid1 queried to the USK oracle return 0

if (uid0, ·, (I, r, t,Ω)) or (uid1, ·, (I, r, t,Ω)) queried to the SENDFB oracle return 0

return b∗

Experiment: Expnon−frameA,RS (τ,R, r̂,U ,Aggr))

(gpk, isk, osk,usk, r,L,F , ID)←$ Setup(τ,R, r̂,U ,Aggr); C ← ∅; ∀uid ∈ U Guid ← ∅
((I, r, t,Ω), fb,Φ)←$AUSK,POST,SENDFB,ALLREP(gpk, isk, osk)

if VerifyFB(gpk, (I, r, t,Ω), fb,Φ) = 0 return 0

if ∃uid ∈ U\C such that the following hold return 1 else return 0

((I, r, t,Ω), fb,Φ) /∈ Guid and

∃((I, r, t,Ω), fb′,Φ′) ∈ Guid with LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) = 1

Figure 3.4: Experiments capturing our soundness of reputation, anonymity of feedback
and non–frameability security properties

We now provide an overview of the existing security properties.

74

3.4 Security Properties

3.4.5 Soundness of Reputation Values

Users who are not enrolled should not be able to submit feedback. Reputation values

should be based on only one piece of feedback per item per user. In the context of car

pooling, this security property would mitigate against an attack where a passenger repeat-

edly gives feedback on one ride, unfairly negatively influencing the driver’s reputation.

In the security game, adapted from [18], given in Figure 3.4, the adversary is able to

corrupt users with the USK oracle, and is given the opening secret key osk, but not the

issuing key isk, as they could use this to cheat by generating a secret key for a new

user. They can use the SENDFB, ALLREP and POST oracles for uncorrupted users. The

adversary outputs a list of feedback on the same item. They win if they can output more

valid unlinkable feedback than the number of corrupted users, without using the SENDFB

oracle.

Definition 3.6 (Soundness of Reputation). A reputation system RS satisfies soundness

of reputation if for all polynomial–time adversaries A, all sets R and U such that |R|

and |U| are polynomially bounded in τ , all r̂ ∈ R, all Aggr functions, the advantage

Pr[Expsound−repA,RS (τ,R, r̂,U ,Aggr) = 1] is negligible in τ .

3.4.6 Anonymity of Feedback

Anonymity of feedback captures the anonymity of those providing feedback against the

CS, and up to all but two colluding users. Unfortunately it is not possible for a reputation

system to have anonymity against all colluding users, whilst still satisfying soundness of

reputation. This is because an adversary could discover whether a user uid authored some

feedback ((I, r, t,Ω), fb,Φ) by running Φ′←$SendFB(gpk,usk[uid], (I, r, t,Ω), fb′), then

running LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′). If this outputs 1, then ((I, r, t,Ω), fb,Φ)

must be authored by uid. In the context of car pooling, this security property means that

provided passengers never submit multiple feedback on the same ride, their feedback will

be unlinkable.

In the security game, adapted from [18], and given in Figure 3.4, the adversary is given

isk, osk, and must choose two users uid0 and uid1, an item (I, r, t,Ω), and feedback fb.

They then must decide which of these users authored the Φ returned to them. The adver-

75

3.4 Security Properties

sary can corrupt users with USK, and use SENDFB, POST and ALLREP for uncorrupted

users. We do not allow the adversary to query uid0 or uid1 to the USK oracle, or to query

SENDFB with either uid0 or uid1 and (I, r, t,Ω), so that they cannot perform the attack

described.

Definition 3.7 (Anonymity of Feedback). A reputation system RS satisfies anonymity of

feedback if for all polynomial–time adversaries A, all sets R and U such that |R| and |U|

are polynomially bounded in τ , and all r̂ ∈ R, all Aggr functions, the following advantage

is negligible in τ :

∣∣∣Pr[Expanon−fb−0
A,RS (τ,R, r̂,U ,Aggr) = 1]− Pr[Expanon−fb−1

A,RS (τ,R, r̂,U ,Aggr) = 1]
∣∣∣ .

3.4.7 Non–frameability

This property, adapted from [58], ensures that an adversary, who has corrupted the central

server and all users, cannot forge feedback that links to feedback of another user, meaning

ReceiveFB detects multiple feedback by this user, and unfairly outputs ⊥. In the context

of car pooling, this security property means that a passenger cannot feedback on their

own ride, linking to the driver involved, invalidating any feedback they submit.

In the security game, given in Figure 3.4, the adversary is given isk, osk and can corrupt

users using the USK oracle, and use the POST, SENDFB, ALLREP oracles for uncorrupted

users. To win, they must output valid feedback not output by the SENDFB oracle, which

links to feedback output by the SENDFB oracle, authored by an uncorrupted user.

Definition 3.8 (Non–frameability). A reputation system RS satisfies non–frameability

if for all polynomial–time adversaries A, all sets R and U such that |R| and |U| are

polynomially bounded in τ , all r̂ ∈ R, all Aggr functions, the advantage

Pr[Expnon−frameA,RS (τ,R, r̂,U ,Aggr) = 1] is negligible in τ .

76

3.5 A Centralised Reputation System with Unlinkable User Behaviour

3.5 A Centralised Reputation System with Unlinkable User

Behaviour

We now present our construction that securely realises our RS model for reputation sys-

tems. Our construction makes use of two primitives: a modification of the XS group

signature scheme XS*, and the CDL DAA scheme [33].

More specifically, we modify the XS group signature scheme [53], detailed in Section 2.7.2,

similarly to the modification of the BBS group signature scheme [21] in [70, 106]. We use

XS* for posting items in PostItem, CheckItem, and AllocateReputation. The XS scheme

satisfies unlinkability of user behaviour, whilst still allowing reputations to be formed in

ReceiveFB, using the opening key. Furthermore our modification allows a user to prove

they were allocated a reputation at a certain time by AllocateReputation.

We then adopt the CDL [33] DAA scheme, detailed in Section 2.8.2, for the feedback

component of the reputation system in SendFB, VerifyFB, LinkFB. This perfectly fits our

requirements, because of the user controlled linkability of the DAA scheme. Signatures are

signed with respect to a basename, and are linkable only when they have the same author

and basename. Therefore in the context of reputation systems, by setting the basename

to be the subject of the feedback, multiple feedback on the same item can be detected,

whilst still ensuring anonymity of feedback.

3.5.1 Binding Reputation to the XS Group Signature Scheme

As discussed in the preliminaries, security requirements for group signatures were de-

fined for static groups [12], dynamic groups [14], and fully dynamic groups [24]. The

XS scheme [53] satisfies the security requirements for dynamic groups [14], of anonymity,

traceability and non–frameability, under the q-SDH [19] assumption and in the random

oracle model [13].

We present XS*, a modification of the XS scheme [53], to allow users to prove their repu-

tation in PostItem. In this modification, we introduce an additional algorithm XSUpdate*,

used in AllocateReputation, which outputs a token allowing a user to update their secret

77

3.5 A Centralised Reputation System with Unlinkable User Behaviour

XSKeyGen*(gpp1)

ξ1, ξ2←$Zp;K ←$G1 \ {1G1
}, H ← Kξ1 , G← Kξ2 , γ←$Zp,W ← Gγ2

return gpk1 = (G1,K,H,G,G2,W), isk1 = γ, osk = (ξ1, ξ2)

XSJoin*(isk1, uid, gpk1)

x, y←$Zp; Z ← (G1H
y)

1
γ+x

return usk1[uid] = (Z, x, y)

XSUpdate*(t, r, isk1, (Z, x, y), gpk1)

Q← H(r, t)

return (ω ← Q
1

γ+x , Z · ω)

XSSign*(I, (Z̃, x, y), gpk1, r, t)

ρ1, ρ2←$Zp, T1 ← Kρ1 , T2 ← Z̃Hρ1 , T3 ← Kρ2 , T4 ← Z̃Gρ2 , z ← xρ1 + y

π←$SPK{(x, z, ρ1, ρ2) : T1 = Kρ1 ∧ T3 = Kρ2 ∧ T4T
−1
2 = Gρ2H−ρ1∧

e(T2,W)e(T2, G2)x = e(G1 · H(r, t), G2)e(H,W)ρ1e(H,G2)z}
return Ω = (T1, T2, T3, T4, π)

XSVerify*(I, r, t,Ω, gpk1)

Parse Ω = (T1, T2, T3, T4, π), G̃1 = G1 · H(r, t)

return 1 if π holds for T1, T2, T3, T4, G̃1 else return 0

XSOpen*(I, r, t,Ω, osk, gpk1)

if XSVerify*(I, r, t,Ω, gpk1) = 0 return ⊥ return Z̃ ← T2T
−ξ1
1

Figure 3.5: The algorithms of XS*, our modification to the XS group signature scheme

key, depending on their reputation r at time t. PostItem uses XSSign* to sign as in the

original group signature scheme, but with this updated secret key as input. CheckItem

uses XSVerify*, which now also takes (r, t) as input, and only outputs 1 if the secret key

used to generate this signature has been updated correctly with (r, t).

We also modify the XS scheme by converting it to the static setting, to fit with our

reputation system model. We also move to the type–3 pairing setting, as defined in

Section 2.3.2, where there is no homomorphism between groups. This means we use the

(JoC) q-SDH assumption defined for the type–3 setting.

The XS* signature scheme consists of the algorithms given in Figure 3.5, and the group

public parameters gpp1: the type–3 bilinear group (p,G1,G2,GT , e,G1, G2) and hash func-

tion H : {0, 1}∗ → G1 that we assume is in the random oracle model. A signature proof

of knowledge SPK, as defined in Section 2.6.3, is used as a building block.

78

3.5 A Centralised Reputation System with Unlinkable User Behaviour

CDLKeyGen(gpp2)

α, β←$Z∗p, X ← G2
α, Y ← G2

β

return gpk2 = (X,Y), isk2 = (α, β)

CDLJoin(uid, isk2, gpk2)

f ←$Zp;F ← G1
f , r←$Zp

A← G1
r, B ← Aβ ;C ← (AαF rαβ), D ← (F)rβ

cre← (A,B,C,D) return usk2[uid]← (f, cre)

CDLSign(msg, fb, (f, (A,B,C,D)), gpk2)

a←$Zp, A′ ← Aa, B′ ← Ba, C ′ ← Ca, D′ ← Da

J ← H(msg)f , π←$SPK{(f) : D′ = B′f ∧ J = H(msg)f}(msg, fb)
return Φ = (A′, B′, C ′, D′, J, π)

CDLVerify(msg, fb,Φ, gpk2)

Parse Φ = (A′, B′, C ′, D′, J, π)

Verify π with respect to B′, D′, J, fb,msg

if A′ = 1 or J = 1 return 0

if e(A′, Y) 6= e(B′, G2) or e(A′D′, X) 6= e(C ′, G2) return 0 else return 1

CDLLink(msg, (fb0,Φ0), (fb1,Φ1), gpk2)

For b ∈ {0, 1} parse Φb = (A′b, B
′
b, C

′
b, D

′
b, Jb, πb)

if ∃b ∈ {0, 1} such that CDLVerify(msg, fbb,Φb, gpk2) = 0 return 0

if J0 = J1 return 1 else return 0

Figure 3.6: The algorithms of CDL in the static setting

3.5.2 Direct Anonymous Attestation

The CDL scheme [33], with a merged TPM and host is given in Section 2.8.2. It was

proved secure in the full DAA setting, assuming the LSRW [97], Discrete Logarithm (DL),

and DDH assumptions, under the state–of–the–art definitions given in [30]. We use the

CDL construction in particular because, as shown in Table 1 of [32], it has the lowest

estimated running time for signing out of the schemes proved secure under the more

recent models. We prioritise efficiency of signing over verification because in reputation

systems verification is performed by a server with more computational power.

We provide the CDL scheme in the form used in our reputation system construction in

Figure 3.6. The main difference from Section 2.8.2 is that it is in the static setting. The

group public parameters gpp2 are the type–3 bilinear group: (p,G1,G2,GT , e,G1, G2) and

a hash function H, that we assume is in the random oracle model. Again, a signature

proof of knowledge SPK, as defined in Section 2.6.3, is used as a building block.

79

3.6 Evaluation of our Construction

3.5.3 Our RS-GS Construction

In Figure 3.7 we present our RS-GS construction for a reputation system RS, as defined

in Section 3.3, derived from the XS* scheme and the CDL scheme.

3.6 Evaluation of our Construction

We first analyse the security of our construction against the conventional attacks against

reputation systems, discussed in Section 3.2.2, as well as in the RS model. We then

evaluate the efficiency of this construction.

3.6.1 Resilience against Conventional Attacks

The unfair rating attack is mitigated by the soundness of reputation requirement. The on-

off attack and whitewashing attack, and collaborative unfair rating attack can be mitigated

by design choices detailed in Section 3.2.2. Self–rating attacks could be mitigated by

making all users submit the feedback “*” on their own items that could be used to link

to self ratings, or be punished by the CS. The central server can also punish authors of

items that do not represent a valid transaction.

3.6.2 Security of our Construction

We now show that our construction is a secure RS reputation system as defined in Sec-

tions 3.3 and 3.4.

The proofs of traceability and unlinkability of user behaviour are similar to the proofs of

traceability/ non-frameability and anonymity for the XS scheme [53]. We have adapted

these proofs due to the modification in XS*, and as our model is static (users do not join

or leave after the scheme begins).

80

3.6 Evaluation of our Construction

Setup(τ,R, r̂,U ,Aggr)

Generate (gpp1, gpp2) as in XS, CDL

(gpk1, isk1, osk)←$XSKeyGen*(gpp1), (gpk2, isk2)←$CDLKeyGen(gpp2)

gpk ← (gpk1, gpk2), isk ← (isk1, isk2)

∀uid ∈ U usk1[uid]←$XSJoin*(isk1, uid, gpk1),usk2[uid]←$CDLJoin(uid, isk2, gpk2)

usk[uid]← (usk1[uid],usk2[uid])

L ← ∅,F ← ∅, ID ← ∅,∀uid ∈ U , r[uid]← r̂ return (gpk, isk, osk,usk, r,L,F , ID)

AllocateReputation(gpk, isk, uid,usk[uid], t, r[uid], ID)

(ω, Z̃)←$XSUpdate*(t, r[uid],usk1[uid], isk1, gpk1)

ID ← ID ∪ (uid, r[uid], t, Z̃) return (ω, r[uid], ID)

PostItem(gpk, I, (Z, x, y), r, t, ω)

if e(ω,WGx2) 6= e(H(r, t), G2) return ⊥
Z̃ ← Z · ω, ˜usk ← (Z̃, x, y) return Ω←$XSSign*(I, ˜usk, gpk1, r, t)

CheckItem(gpk, I, r, t,Ω)

return XSVerify*(I, r, t,Ω, gpk1)

SendFB(gpk,usk[uid], (I, r, t,Ω), fb)

return Φ←$CDLSign((I, r, t,Ω), fb,usk2[uid], gpk2)

VerifyFB(gpk, (I, r, t,Ω), fb,Φ)

return CDLVerify((I, r, t,Ω), fb,Φ, gpk2)

LinkFB(gpk, (I, r, t,Ω), fb0,Φ0, fb1,Φ1)

return CDLLink((I, r, t,Ω), (fb0,Φ0), (fb1,Φ1), gpk2)

ReceiveFB(gpk, osk, ((I, r, t,Ω), fb,Φ), r,L,F , ID)

if VerifyFB(gpk, (I, r, t,Ω), fb,Φ) = 0 return ⊥
if ∃(I, r, t,Ω), fb′,Φ′) ∈ L s.t. LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) = 1 return ⊥
Z̃ ← XSOpen*(I, r, t,Ω, osk, gpk1),Find (uid, r, t, Z̃) ∈ ID, otherwise return ⊥
r[uid]← Aggr(fb, uid,F , r[uid]),L ← ((I, r, t,Ω), fb,Φ) ∪ L,F ← (uid, fb) ∪ F return (r,L)

Figure 3.7: Our RS-GS reputation system

81

3.6 Evaluation of our Construction

3.6.2.1 Correctness

We show our RS-GS construction satisfies correctness. Condition 1 is satisfied because the

original XS scheme is correct, and the modification simply replaces G1 with G1H(r, t),

in both XSSign* and XSVerify*. Conditions 2 and 3 are satisfied due to the correctness

of CDL. Condition 4 is satisfied because the XS scheme is correct, and the modification

only replaces Z with Z(H(r, t)1/(γ+x)), as the output of XSOpen*. This is stored alongside

the user’s identity in ID. Condition 5 is satisfied, because ReceiveFB outputs ⊥ if the

feedback input is not valid, or links to other feedback in L.

3.6.2.2 Unforgeability of Reputation

Lemma 3.1 (Unforgeability of Reputation). Assuming the random oracle model, the

SPK is zero–knowledge and simulation sound extractable, and the q-SDH assumption, our

RS-GS construction satisfies unforgeability of reputation as defined in Section 3.4.

Proof. We show that if an adversaryA′ exists, such that Pr[Expunforge−repA′,RS-GS (τ,R, r̂, U ,Aggr)

= 1] = ε, for some τ,R, r̂, U ,Aggr with |R| polynomial in τ , n = |U| polynomial in τ ,

there are l different values of (r, t) queried to the H oracle, or the ALLREP oracle, and

ε is non–negligible in τ , then we can can build an adversary A, that solves the q-SDH

problem, where q = n, in polynomial–time. We describe A in Figures 3.8 and 3.9. We

then describe why the simulation given in Figures 3.8 and 3.9 and the unforgeability of

reputation experiment are indistinguishable to A, and how A′ works.

We first show that all inputs that A provides to A′ are distributed identically to the

unforgeability of reputation experiment. As H is in the random oracle model, we include

a H oracle. We keep track of the inputs and outputs to this oracle in HL

Simulating (gpk, osk, ID). W = T γ2 = Gγ2 . G1 is chosen randomly due to µ being

chosen randomly and independently. As ν1 is chosen randomly and independently, H is

independent of G1. (ξ1, ξ2,K,G, ID) are chosen as in Setup.

We will use the fact that Γ = Gγ1 and Buid = G
1/(γ+xuid)
1 later. This is because G1 =

82

3.6 Evaluation of our Construction

USK(uid)

if b = 1 and uid = uid∗ A aborts else C ← C ∪ {uid} return usk[uid]

POST(I, uid, r, t, ω)

if b = 1 and uid = uid∗

if e(ω,WGxuid∗2) 6= e(H(r, t), G2) return ⊥
ρ1, ρ2←$Zp, T1 ← Kρ1 , T2 ← Zuid∗ωH

ρ1 , T3 ← Kρ2 , T4 ← Zuid∗ωG
ρ2

G̃1 ← H(r, t) ·G1, Simulate π with T1, T2, T3, T4, G̃1

return Ω← (T1, T2, T3, T4, π)

else return PostItem(gpk, I,usk[uid], r, t, ω)

ALLREP(uid, t, r)

if (uid, t, r, out) ∈ AR return (out, r, ID)

else out′ ← H(r, t), let ((r, t), out′, χ,m′) ∈ HL
if m′ = m∗ and b′ = 0 and uid = uid′ A aborts

if m′ = m∗ and b′ = 0 and uid 6= uid′, out′′ ←
n′−2∏
j=0

(T γ
j

1)χηuid,j

else out′′ ←
n−1∏
j=0

(T γ
j

1)χκuid,j

AR← AR ∪ (uid, t, r, out′′), ID ← ID ∪ (uid, r, t, Zuidout
′′),

return (out′′, r, ID)

H(in)

if ∃(in, out, ·, ·) ∈ HL return out else m← m+ 1, χ←$Z∗p

if m = m∗ and b′ = 0, out←
n′−1∏
j=0

(T γ
j

1)χζj

else out←
n∏
j=0

(T γ
j

1)χλj

HL← (in, out, χ,m) ∪HL
return out

Figure 3.8: Simulated answers to oracle queries in our unforgeability of reputation proof

83

3.6 Evaluation of our Construction

A(T1, T
γ
1 , T

γ2

1 , ..., T γ
q

1 , T2, T
γ
2)

Create Empty List HL,AR, m← 0,m∗←$ [l], uid′←$U , b←$ {0, 1}, b′←$ {0, 1}
if b = 0 V ← U , n′ ← n

if b = 1 uid∗ ← U\{uid′},V ← U\{uid∗}, n′ ← n− 1, xuid∗ ←$Z∗p, Zuid∗ ←$G1

∀uid ∈ V\uid′, xuid, yuid←$Z∗p

µ←$Z∗p, let f(X) =
∏

j∈V\{uid′}

(X + xuid) =

n′−1∑
i=1

ζiX
i;G1 ←

n′−1∏
i=0

(T γ
i

1)µζi ,Γ←
n′−1∏
i=0

(T γ
(i+1)

1)
µζi

G2 ← T2,W ← T γ2 , x, ν1, ν2←$Z∗p, H ← ((ΓGx1)ν1G−1
1)1/ν2

ξ1←$Z∗p,K ← H1/ξ1 , ξ2←$Z∗p, G← Kξ2 , osk ← (ξ1, ξ2), gpk1 ← (G1,K,H,G,G2,W)

∀uid ∈ V\{uid′} let fuid(X) =
∏

ûid∈V\{uid′,uid}

(X + xûid) =
n′−2∑
j=0

ηuid,jX
j ;Buid ←

n′−2∏
j=0

(T γ
j

1)
µηuid,j

Zuid ← Buid(B
((x−xuid)ν1−1)/ν2
uid G

ν1/ν2
1)yuid ,usk1[uid]← (Zuid, xuid, yuid)

yuid′ ← ν2, xuid′ ← x, Zuid′ ← Gν11 ,usk1[uid′]← (Zuid′ , xuid′ , yuid′)

Let g(X) =
∏
uid∈U

(X + xuid) =

n∑
j=0

λjX
j

∀uid ∈ U , set guid(X) = g(X)/(X + xuid) =
n−1∑
j=0

κuid,jX
j

Finish computing (usk2[uid], gpk2, ID), as in Setup

(I, r, t,Ω, fb,Φ)←$A′USK,POST,ALLREP,H
(gpk, osk, ID)

Let Ω = (T1, T2, T3, T4, π)

if @out such that ((r, t), out, χ,m∗) ∈ HL return ⊥
Extract x?, ρ?1, z

? from π, y? ← z? − x?ρ?1, Q? ← T2T
−ξ1
1

if x? = xuid with uid ∈ U
if uid ∈ C if x? 6= xuid′ or b = 1 return ⊥

if y? = yuid′ , if b
′ = 1 return ⊥ else return ((Q?Z−1

uid′)
µ/χ, x?)

if y? 6= yuid′ , if b
′ = 0 return ⊥ else ω←$ALLREP(uid′, t, r)

return (Q?ω−1G
−ν1y?/ν2
1)

ν2
(ν2−y?) , x?)

if uid /∈ C if x? 6= xuid∗ or b = 0, or b′ = 0 return ⊥
ω←$ALLREP(uid∗, t, r), Q? ← Q?ω−1

return (Q?G
−ν1y?/ν2
1)

ν2
ν2−y?−ν1y?(x?−x) , x?)

else if b = 1 or b′ = 0 return ⊥ else return (Q?G
−ν1y?/ν2
1 G

−χ/µ
1)

ν2
ν2−y?−(ν1y

?+χν2/µ)(x
?−x) , x?)

Figure 3.9: A which solves the q-SDH problem, using A′ which breaks unforgeability of
reputation for the RS-GS construction

84

3.6 Evaluation of our Construction

∏n′−1
i=0 (T γ

i

1)µζi = T
µf(γ)
1 , and so Γ =

∏n′−1
i=0 (T γ

(i+1)

1)
µζi

=
∏n′−1
i=0 (T γ

i

1)µζiγ

= Gγ1 , and Buid =
∏n′−2
j=0 (T γ

j

1)µηuid,j = T
µfuid(γ)
1 = G

1/(γ+xuid)
1 . This is because ηuid,j for

j ∈ [0, n′ − 2] are defined to be the coefficients of fuid in Figure 3.9.

Simulating the USK oracle. The USK oracle is distributed identically to the unforge-

ability of reputation experiment because, provided the oracle does not abort, if uid 6= uid′,

Zuid = Buid(B
((x−xuid)ν1−1)/ν2
uid G

ν1/ν2
1)yuid = Buid(B

((x−xuid)ν1−1)/ν2
uid B

ν1(γ+xuid)/ν2
uid)yuid

= BuidB
yuid(ν1(γ+x)−1)/ν2
uid = (G1G

yuid(ν1(γ+x)−1)/ν2
1)1/(γ+xuid) = (G1H

yuid)1/(γ+xuid),

and Zuid′ = Gν11 = (G1G
ν1(γ+x)−1
1)1/(γ+x) = (G1H

yuid′)1/(γ+xuid′).

Simulating the POST oracle. If b = 1, and uid = uid∗ is input to the POST oracle,

because Zuid∗ was chosen randomly and independently, it is distributed identically to the

unforgeability of reputation experiment. The SPK can then be simulated due to the zero–

knowledge property. The signature output is then distributed identically to in PostItem.

If b = 0 or uid 6= uid∗, our oracle works in exactly the same way as in the unforgeability

of reputation experiment.

Simulating the other oracles. The ALLREP oracle is distributed identically to the un-

forgeability of reputation experiment, provided the oracle does not abort. This is because

with input (uid, t, r), when m′ = m∗, uid 6= uid′, and b′ = 0,

n′−2∏
j=0

(T γ
j

1)χηuid,j = T
χfuid(γ)
1 = T

χf(γ)/(γ+xuid)
1 = H(r, t)1/(γ+xuid),

else
∏n−1
j=0 (T γ

j

1)χκuid,j = T
χguid(γ)
1 = T

χg(γ)/(γ+xuid)
1 = H(r, t)1/(γ+xuid). The hash oracle

is distributed identically to the random oracle model, because χ is chosen randomly and

independently each time.

Reduction to q-SDH. If A′ is successful and outputs (I, r, t,Ω) then there exists

out such that ((r, t), out,m) ∈ HL, because for A′ to have output a valid signature for

(r, t), this must have been queried to the H oracle. Assume m = m∗, with probability

85

3.6 Evaluation of our Construction

1/l, then A does not abort at this stage. As (I, r, t,Ω) was not output by POST, we can

extract (Q?, x?, y?) such that Q? = (G1, H
y?out)

1/(x?+γ)
, because Ω is a valid signature.

We now consider all possible cases for a successful A′, and provide reductions to the q-SDH

problem for each case. The three cases are as follows: firstly x? corresponds to the key

of a corrupted user, ie x? = xuid for uid ∈ C; secondly x? corresponds to the key of an

uncorrupted user, ie x? = xuid for uid ∈ U \ C; and finally x? does not correspond to the

key of any user, ie x? 6= xuid for all uid ∈ U . The first cases is split into two sub cases:

firstly y? = yuid where x? = xuid and secondly y? 6= yuid where x? = xuid.

When x? corresponds to the key of a corrupted user. When x? = xuid for uid ∈ C,

we assume b = 0 and uid = uid′, which occurs with probability 1/2n. As b = 0, USK will

not abort.

We first note that as A′ is successful, if x? = xuid′ and y? = yuid′ , then as ReceiveFB would

successfully trace user uid′ then (uid′, r, t) has not been queried to ALLREP. Therefore

ALLREP will not abort.

We assume b′ = 0, which occurs with probability 1/2 and therefore, out =
∏n′−1
j=0 (T γ

j

1)χζj =

G
χ/µ
1 .

Then Q?Z−1
uid′ = out1/(xuid′+γ). Therefore (out1/(γ+xuid′))µ/χ = G

1/(γ+xuid′)
1 . Given this, A

can break the q-sdh assumption as shown in [20] . Therefore, in this case, assuming A′

was successful, A succeeds with probability 1/4ln

If y? 6= yuid′ , we assume b′ = 1 therefore A will not abort during ALLREP, and we can

query ALLREP(uid′, t, r). As ν2 = yuid′ 6= y?, then (ν2 − y?) 6= 0. Note that x = x?.

Because Q?ω−1 = (G1H
y?)1/(x?+γ), then

(Q?ω−1G
−ν1y?/ν2
1)

ν2
ν2−y? = (G1H

y?)
ν2

(γ+x?)(ν2−y?)G
−ν1y

?

ν2−y?

1

= (G1G
y?(ν1(γ+x)−1)/ν2
1)

ν2
(γ+x?)(ν2−y?)G

−ν1y
?

ν2−y?

1 = G
y?ν1(γ+x)−y

?+ν2−y
?ν1(γ+x

?)
(γ+x?)(ν2−y?)

1 = G
1/(γ+x?)
1 .

Given this, A can break the q-sdh assumption as shown in [20]. Therefore, in this case,

86

3.6 Evaluation of our Construction

assuming A′ was successful, A succeeds with probability 1/4ln.

When x? corresponds to the key of an uncorrupted user. We now consider the

case that uid /∈ C. In this case, we assume x? = xuid∗ , b = 1, and b′ = 1, which occurs with

probability 1/4n. Then as b′ = 1, A will not abort during ALLREP, and as uid∗ is not

corrupted, A will not abort during USK. If ν2− y?− ν1y
?(x?−x) = 0, then ν1 = ν2−y?

y?(x?−x) .

If y? = 0 then ν2 = 0, which is not possible. Therefore the adversary can obtain ν1 and

so break the discrete logarithm problem, which is implied by the q-SDH problem.

Because Q?ω−1 = (G1H
y?)1/(x?+γ), then

(Q?ω−1G
−ν1y?/ν2
1)

ν2
ν2−y?−ν1y?(x?−x) = (G1H

y?)
ν2

(γ+x?)(ν2−y?−ν1y?(x?−x))G
−ν1y

?

ν2−y?−ν1y?(x?−x)
1

= (G1G
y?(ν1(γ+x)−1)/ν2
1)

ν2
(γ+x?)(ν2−y?−ν1y?(x?−x))G

−ν1y
?

ν2−y?−ν1y?(x?−x)
1

= G
y?ν1(γ+x)−y

?+ν2−y
?ν1(γ+x

?)
(γ+x?)(ν2−y?−ν1y?(x?−x))

1 = G
1/(γ+x?)
1 .

Given this, A can break the q-sdh assumption as shown in [20]. Therefore, in this case,

assuming A′ was successful, A succeeds with probability 1/(4ln).

When x? does not correspond to a user’s key. If x? /∈ {xuid : uid ∈ U}, we assume

b′ = 1 and b = 0, which occurs with probability 1/4, and therefore A will not abort. If

ν2−y?−(ν1y
?+χν2/µ)(x?−x) = 0, then χ = µ(ν2−y?−ν1y?(x?−x))

ν2(x?−x) . Therefore the adversary

can obtain χ and so break the discrete logarithm problem, which is implied by the q-SDH

problem.

Due to the fact that ,

out1/(γ+x?) =

n∏
j=0

(T γ
j

1)χλj
1/(γ+x?)

= T
χg(γ)/(γ+x?)
1 = G

χ(γ+x)
µ(γ+x?)

1

= Γχ/µ(γ+x?)G
χx/µ(γ+x?)
1 = (Γχ/µG

χx?/µ
1)1/(γ+x?))G

χ(x−x?)
µ(γ+x?)

1 = G
χ/µ
1 G

χ(x−x?)
µ(γ+x?)

1 ,

and Q? = (G1H
y?out)1/(γ+x?),

87

3.6 Evaluation of our Construction

and

(G1H
y?)1/(γ+x?) = (G1G

y?(ν1(γ+x)−1)/ν2
1)1/(γ+x?)

= G
y?ν1x

?

ν2(γ+x
?)

1 G
y?ν1γ

ν2(γ+x
?)

1 (G1G
y?(ν1(x−x?)−1)/ν2
1)1/(γ+x?) = G

y?ν1/ν2
1 G

ν2+y
?(ν1(x−x

?)−1)
ν2(γ+x

?)

1 ,

we have that

(Q?G
−ν1y?/ν2
1 G

−χ/µ
1)

ν2
ν2−y?−(ν1y

?+χν2/µ)(x
?−x)

= (G
y?ν1/ν2
1 G

ν2+y
?(ν1(x−x

?)−1)
ν2(γ+x

?)

1 G
−ν1y?/ν2
1 G

χ/µ
1 G

χ(x−x?)
µ(γ+x?)

1 G
−χ/µ
1)

ν2
ν2−y?−(ν1y

?+χν2/µ)(x
?−x)

= (G
ν2+y

?(ν1(x−x
?)−1)

ν2(γ+x
?)

1 G
χ(x−x?)
µ(γ+x?)

1)
ν2

ν2−y?−(ν1y
?+χν2/µ)(x

?−x) = G
1/(γ+x?)
1 .

Given this, A can break the q-sdh assumption as shown in [20] . Therefore, in this case,

assuming A′ was successful, A succeeds with probability 1/4l.

Therefore A solves the q-SDH problem with probability at least ε
4ln .

3.6.2.3 Traceability

Lemma 3.2 (Traceability). Assuming the random oracle model, the SPK is zero–

knowledge and simulation sound extractable, and the q-SDH assumption, our RS-GS con-

struction satisfies traceability as defined in Section 3.4.

Our proof of traceability is very similar to our proof of unforgeability of reputation. We

therefore present this proof in Appendix A.

3.6.2.4 Unlinkability of User Behaviour

Lemma 3.3 (Unlinkability of User Behaviour). Assuming the DDH assumption and

the SPK is zero–knowledge, our RS-GS construction satisfies unlinkability of user behaviour

as defined in Section 3.4.

Proof. We show that if an adversaryA′ exists, such that |Pr[Expanon−ub−0
A′,RS-GS (τ,R, r̂, U ,Aggr)

88

3.6 Evaluation of our Construction

RECEIVEFB((I, r, t,Ω), fb,Φ, ID)

if VerifyFB(gpk, (I, r, t,Ω), fb,Φ) = 0 return ⊥
if ∃(I, r, t,Ω), fb′,Φ′) ∈ L such that LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) = 1

return ⊥

if d = 0 Z̃ ← T2T
−ξ1
1 , if d = 1 Z̃ ← T4T

−ξ2
3

Find (uid, r, t, Z̃) ∈ ID, otherwise return ⊥
r[uid]← Aggr(fb, uid,F , r[uid]),L ← ((I, r, t,Ω), fb,Φ) ∪ L,F ← (uid, fb) ∪ F
return (r,L,F)

A(K,T, U, V)

b, d, d′←$ {0, 1}
if d = 0 ξ1←$Z∗p, H ← Kξ1 , G← T, if d = 1 ξ2←$Z∗p, H ← T,G← Kξ2

Other than (K,H,G) generate (gpk, isk,usk, r,L,F , ID) as in Setup

(st, uid0, uid1, I, r, t, ID)←$A′RECEIVEFB(choose, gpk, isk,usk, r,L,F , ID)

out← H(r, t), G̃1 ← G1out, ω0 ← out1/(γ+xuid0), ω1 ← out1/(γ+xuid1)

ID ← ID ∪ {(uid0, r, t, Zuid0ω0), (uid1, r, t, Zuid1ω1)}
if d = 0 ρ1←$Zp, T1 ← Kρ1 , T2 ← Zuidd′ωd′H

ρ1 , T3 ← U, T4 ← ZuidbωbV

if d = 1 ρ2←$Zp, T1 ← U, T2 ← ZuidbωbV, T3 ← Kρ2 , T4 ← Zuidd′ωd′G
ρ2

Simulate π with T1, T2, T3, T4, G̃1, Ω← (T1, T2, T3, T4, π)

b′←$A′RECEIVEFB(guess, st,Ω, ID)

if ((I, r, t,Ω), ·) queried to the RECEIVEFB oracle b′ ← 0

if b′ = b return 1 else return 0

Figure 3.10: A which distinguishes between DDH tuples in G1, using A′ which breaks
unlinkability of user behaviour for our RS-GS construction

= 1] − Pr[Expanon−ub−1
A′,RS-GS (τ,R, r̂, U ,Aggr) = 1]| = ε, for some τ,R, r̂, U ,Aggr with |R|

polynomial in τ , n = |U| polynomial in τ , and ε is non–negligible in τ , then we can can

build an adversary A that breaks the DDH assumption with non-negligible probability.

We describe A in Figure 3.10. We then describe why the simulation given in Figure 3.10

and the unlinkability of user behaviour experiment are indistinguishable to A if a DDH

tuple is input, and A chooses d′ = b. We then show that, otherwise, A guesses correctly

with probability 1/2, and therefore A successfully distinguishes DDH tuples.

Simulating the inputs to A′. Assuming A was input a DDH tuple and chooses d′ = b,

all inputs to A′ are distributed identically to the unlinkability of user behaviour experi-

ment. In the choosing phase, the only difference to the experiment is in choosing (K,H,G),

which are still distributed identically. In the guessing phase, as d′ = b and (K,T, U, V)

is a DDH tuple,the input Ω to A′ is also distributed identically to the unlinkability of

89

3.6 Evaluation of our Construction

user behaviour Experiment, and ID is modified in the same way as the experiment. The

cca-anonymity property of the XS group signature scheme [53] is used to simulate answers

to the RECEIVEFB oracle. Since T4T
ξ2
3 = T2T

−ξ1
1 for a valid signature, to open signatures

it is only necessary to know ξ1 or ξ2.

Reduction to the DDH problem. Assuming A was input a DDH tuple, and chooses

d′ 6= b, both Zuid0ω0 and Zuid1ω1 are encrypted. If the adversary A′ has queried the

RECEIVEFB oracle with (I, r, t,Ω), then A outputs 1 with probability 1/2. Otherwise,

the adversary A′ has not queried the RECEIVEFB oracle with (I, r, t,Ω) to obtain d′, and

therefore A′ has no advantage in guessing b. Therefore A outputs 1 with probability 1/2.

On input a DDH tuple, the probability that A outputs 1 is:

1/4(Pr[Expanon−ub−0
A′,RS-GS (τ,R, r̂,U ,Aggr) = 0] + Pr[Expanon−ub−1

A′,RS-GS (τ,R, r̂,U ,Aggr) = 1]) + 1/4

= 1/4(1 + Pr[Expanon−ub−1
A′,RS-GS (τ,R, r̂,U ,Aggr) = 1]−Pr[Expanon−ub−0

A′,RS-GS (τ,R, r̂,U ,Aggr) = 1])

+1/4 = 1/4ε+ 1/2.

If the input to A is not a DDH tuple, then Ω is independent of b, therefore A′ has no

advantage in guessing b. Therefore A outputs 1 with probability 1/2.

Therefore A has an ε/4 advantage in distinguishing DDH tuples.

3.6.2.5 Soundness of Reputation, Anonymity of Feedback and Non-frameability

Lemma 3.4 (Soundness of Reputation). Assuming that CL signatures are existentially

unforgeable under the chosen–message attack, the SPK is zero–knowledge and simulation

sound extractable, and the random oracle model, our RS-GS construction satisfies sound-

ness of reputation as defined in Section 3.4.

Lemma 3.5 (Anonymity of Feedback). Assuming the DDH assumption in G1, the

SPK is zero–knowledge, and the random oracle model, our RS-GS construction satisfies

90

3.7 Instantiation of SPK and Efficiency

anonymity of feedback as defined in Section 3.4.

Lemma 3.6 (Non–frameability). Assuming the DL assumption in G1, the SPK is zero–

knowledge and simulation sound extractable, and the random oracle model, our RS-GS

construction satisfies non–frameability as defined in Section 3.4.

The proofs of Lemmas 4, 5, 6 are similar to the simulation based proof of security of

CDL [33]. It is clear, due to the similarity of the security requirements for DAA schemes [33]

and the security requirements of soundness of reputation, anonymity of feedback and

non-frameability, that a reputation system that uses the CDL scheme will satisfy these

requirements. We present the proofs in Appendix A for completeness.

Soundness of reputation ensures that an adversary cannot submit multiple feedback on

the same item. This corresponds to the property for DAA that a user should not be

able to produce two signatures with the same basename that do not link. Anonymity of

feedback ensures that, provided a user has not cheated by giving multiple feedback on the

same item, all feedback is unlinkable. This corresponds to the user-controlled linkability

property for DAA schemes that signatures with different basenames should be unlinkable.

Non–frameability ensures that an adversary cannot produce feedback that links to another

user’s feedback, without corrupting this user. This corresponds to the property for DAA

that an adversary should not be able to forge a signature that links to a user’s signature,

without corrupting this user.

3.7 Instantiation of SPK and Efficiency

3.7.1 Instantiation of SPKs

We have two non-interactive zero-knowledge proofs of knowledge in our scheme, in XSSign*

and CDLSign. Given a proof of discrete logarithms in this notation, as discussed in Sec-

tion 2.6.3, it is straightforward to derive an actual protocol implementing the proof [35].

For transforming interactive into non-interactive zero-knowledge proofs we rely on the

Fiat-Shamir heuristic that ensures security in the random oracle model.

Due to this, we can now state Corollary 3.1.

91

3.7 Instantiation of SPK and Efficiency

Corollary 3.1. The construction presented in Section 3.5.3, with the SPK instantiated

as described, is a secure RS as defined in Sections 3.3 and 3.4 under the DDH, q-SDH, and

LRSW assumptions in the random oracle model.

3.7.2 Computational Cost

We focus on PostItem, CheckItem, and SendFB, because these are performed by users with

less computational power. We note that ReceiveFeedback only needs to check all feedback

for the same item to ensure soundness of reputation, not all feedback. SendFB requires 7

exponentiations in G1, and 2 hash computations, which is a low computational cost.

There is an extra cost, compared to the existing work [18, 58], required to achieve un-

linkability of user behaviour in the PostItem and CheckItem algorithms. We note that

in [18, 58], whenever a user posts an item they must receive a new secret key from the

managing authority, which is not required by our reputation system. When joining, the

user pre–computes e(H,W) and e(H,G2). When a user receives a token ω, for reputation

r and time t, they must pre–compute e(ω,WGx2), e(H(r, t), G2), and e(ωZ,G2). Assuming

the pre–computation, PostItem requires 8 exponentiations in G1, 3 exponentiations in G3,

and a hash computation. CheckItem requires 2 computations of e, 10 exponentiations in

G1, 2 exponentiations in G2, 2 exponentiations in G3, and 2 hash computations.

3.7.3 Communication Overhead

Using updated parameters for curves that provide 128–bit security [119] and point com-

pression, the XS* signature Ω has length 432 bytes and the CDL signature Φ has length

336 bytes. Therefore the communication overhead when sending feedback with our con-

struction is 768 bytes, compared to 624 bytes in [18] using the same curves. This is a

relatively small increase given the additional security of unlinkability for user behaviour

achieved. Our communication overhead compares well to [58] where signatures have length

O(τ log(n)), as shown in [93], compared to our signatures of length O(τ).

92

3.8 Summary

3.8 Summary

We have introduced and formally defined a new security model for centralised reputation

systems, where user behaviour is unlinkable. This represents a shift from previous models

which aims at more accurately capturing the real-world requirements of reputation systems

used by many on a daily basis.

We have provided a concrete construction which satisfies the new security requirements

with a low additional efficiency cost.

93

Chapter 4

Group Signatures with Selective

Linkability

Contents

4.1 Introduction . 94

4.2 Definition and Security Model for CLS 100

4.3 Our CLS Construction . 115

4.4 Security of CLS–DDH . 119

4.5 Instantiation of SPK and Efficiency 142

4.6 Summary . 143

4.1 Introduction

This chapter introduces group signatures with selective linkability, which allow signatures

to be linked in a controlled and flexible way. Signatures are unlinkable by default, but

can be obliviously and non–transitively linked by the converter, a trusted entity. We first

introduce a formal security model for this primitive and then provide a construction that

provably satisfies this model.

94

4.1 Introduction

4.1.1 Motivation and Background

Group signatures are highly suited whenever data is collected that needs to be authen-

ticated while, at the same time, the privacy of the data sources must be respected and

preserved. In particular when data is collected from users, the protection of their privacy

is of crucial importance and has seen increased attention due to the recently introduced

General Data Protection Regulation (GDPR) [2], Europe’s new privacy regulation. In

fact, the GDPR creates strong incentives for data collectors to thoroughly protect users’

data and implement the principle of data minimization, as data breaches are fined with

up to 4% of an enterprise’s annual turnover.

When aiming to implement such techniques for privacy and data protection, one needs to

find a good balance with utility though since data gets collected in order to be analysed and

to generate new insights. For these processes it is usually necessary to know the correlation

among different data events, as they reveal a crucial part of the information. For instance,

when a group of users measure and upload their blood pressure via wearable activity

trackers, several high value measurements are not critical when they are distributed over

many participants, but might be alarming when originating from a single user.

Often the exact purpose of the data might not be clear at the point of data collection.

In fact, given the rapid advancements in machine learning and ubiquitously available and

cheap storage, data collectors tend to gather large amounts of data at first, and will

only use small subsets for particular applications as they arise. A well known example

is the Google Street View cars that inadvertently recorded public Wi-Fi data like SSID

information, which later was used to improve Google’s location services.

Ideally, the data should be collected and stored in authenticated and unlinkable form.

Only the particular subsets that are later needed should be correlated in a controlled and

flexible manner.

4.1.2 Linkability in Group Signatures

As discussed in Section 2.7.3, to address the tension between privacy and utility, group

signatures often have built-in measures that control linkability of otherwise anonymously

95

4.1 Introduction

authenticated information. Interestingly, despite the long line of work on this subject, none

of the solutions provides the functionality to cater for the flexibility needed in practice.

They either recover linkability in a privacy-invasive way or offer control only in a static

manner.

Group Signatures with Opening. Standard group signatures allow an entity with an

opening secret key to recover the signer’s identity. Originally, the opening was intended

to prevent abuse of anonymity, and only meant to be used in extreme situations. Clearly,

the opening capability can also be leveraged to determine the linkability of various data

events, but at a high cost for privacy: every request for linkability will recover the full

identity of the signer, and the central group manager learns the (signed) data of the data

collectors and their correlation.

Group Signatures with Controlled Linkability. A more suitable solution are group

signatures with controlled linkability [79, 80, 120]. This is much better than revealing the

identity of the user, but still relies on a fully trusted entity that will learn the collectors’

signed data. Further, this approach does not scale well for applications where a data

collector is interested in the correlations within a large data set. To link a data set of n

signed entries, each pair of signatures would have to be compared, which would require

n(n− 1)/2 requests to the linking authority. Another related concept are traceable group

signatures [83] where a dedicated entity can generate a tracing trapdoor for each user

which allows for the tracing of this user’s signatures. This approach is not suitable for our

use case of controlled data linkage either, as it requires knowledge of the users’ identities

behind the anonymous group signatures or trapdoors for all users, and also needs every

signature to be tested for every trapdoor.

Group Signatures with User-Controlled Linkability. Finally, schemes with user-

controlled linkability exist, such as in direct anonymous attestation (DAA) [29], described

in Chapter 2. In contrast to solutions with opening or linking authorities, the linkability

here can be publicly verified: a signature in such schemes contains a pseudonym that is

deterministically derived from the user’s secret key and the basename. Thus, the user

re-uses the same pseudonym whenever they want to be linkable. On the downside, this

linkage is immediate and static. That is, the users have to choose at the beginning whether

96

4.1 Introduction

they want to disclose their data in a fully unlinkable manner, or linked with respect to a

context-specific pseudonym. There is no option to selectively correlate the data after it

has been disclosed. Therefore, users or rather the data collectors allowing the use of such

protocols, will hesitate to choose the option of unlinkability, as they fear losing too much

information by the irreversible decorrelation.

4.1.3 Our Contribution

In this chapter we overcome the aforementioned limitations by introducing a new type of

group signature scheme that allows for flexible and selective linkability. We achieve that

functionality by combining ideas from the different approaches discussed previously. Group

signatures are associated with pseudonyms, but pseudonyms are unlinkable by default.

Only when needed, a set of signatures – or rather the pseudonyms – can be linked in an

efficient manner through a central entity, the converter. The converter receives a batch

of pseudonymous data and transforms this into a consistent representation, meaning that

all pseudonyms stemming from the same user will be converted into the same value. To

preserve the privacy of the users and their data, the converter correlates the data in a fully

blind way, i.e., they do not learn anything about the pseudonyms they transform. We call

this new type of group signature scheme convertibly linkable (group) signatures, i.e. CLS.

Security and Privacy for CLS. A crucial property that we want from pseudonym

conversions is that they establish linkability only strictly within the queried data, i.e.,

linked pseudonyms from different queries should not be transitive. Otherwise, different re-

linked data sets with overlapping input data could be pieced together, thereby gradually

eroding the user’s privacy. Aiming for such non-transitivity has an immediate impact

on the overall setting: we need to channel both, the pseudonyms and messages, blindly

through the converter, as transforming pseudonyms without the messages would require

linkability between the in- and outputs of the conversion query, which in turn allows

outputs from different queries to be linked.

We formally define the security of CLS through a number of security games, strongly

inspired by the existing work on group signatures and DAA [12, 14, 33]. That is, we want

signatures to be fully anonymous and unlinkable bearing in mind the information that is

revealed through the selective linkability. We discuss that the classic anonymity notion

97

4.1 Introduction

adapted to our setting will not suffice, as it cannot guarantee the desired non-transitivity.

In fact, capturing the achievable privacy and non-transitivity property in the presence of

adaptive conversion queries was one of the core challenges in this chapter, and we formalise

this property through a simulation-based definition. If the converter is corrupt, then

unlinkability of signatures no longer holds, but the adversary should neither be able to trace

signatures to a particular user, nor harm the obliviousness of queries, which is captured

in the conversion blindness and join anonymity properties. The guarantees in terms of

unforgeability are captured through the non-frameability and traceability requirements.

The former says that corrupt users should not be able to impersonate honest users, and

the latter guarantees that the power of an adversary should be bounded by the number

of corrupt users they control.

From a corruption point of view, we assume the data collector to be at most honest–

but–curious towards the converter, i.e., even a corrupt data collector will only query

pseudonym-message pairs that it has received along with a valid signature. We consider

this a reasonable assumption, as data collectors that will use such a CLS scheme do so

in order to implement the principle of data minimization on their own premises, and do

not have an incentive to cheat themselves. We will relax this assumption in Chapter 6,

although this will come with an efficiency cost.

Efficient Instantiation. We propose an efficient construction of such CLS schemes,

following the classical sign-and-encrypt paradigm that underlies most group signatures.

Roughly, we use BBS+ signatures [9] for attesting group membership, i.e., a user will

blindly receive a BBS+ signature from the group issuer on a secret key y chosen afresh

by the user. To sign a message m on behalf of the group, the user computes a signature-

proof-of-knowledge (SPK) for m where they prove knowledge of such an issuer’s signature

on its secret key and also encrypts its user key (or rather its “public key” version hy, where

h is a public parameter of the scheme), under the converter’s public key. The ciphertext

that encrypts hy serves as the pseudonym µ.

When the converter is asked to recover the correlations for a set of k pseudonym-message

pairs (µ1,m1), . . . (µk,mk), it blindly decrypts each pseudonym and raises the result to

the power of r, which is chosen fresh for every conversion query but used consistently

within. That is, all pseudonyms belonging to the same user will be mapped to the same

98

4.1 Introduction

query-specific DDH tuple hyr which allows for linkage of data within the query, but guar-

antees that converted pseudonyms remain unlinkable across queries. To achieve obliv-

iousness and non-transitivity of conversions, we encrypt all pseudonyms and messages

with a re-randomisable (homomorphic) encryption scheme under the blinding key of the

data collector. The re-randomisation is applied by the converter before they return the

transformed values, which ensures that the data collector cannot link the original and the

converted pseudonyms by any cryptographic value. Clearly, if the associated messages are

unique, then the data collector can link in- and outputs anyway, but our scheme should

not introduce any additional linkage. Given that the pseudonyms are encryptions under

the converter’s public key, we need to add the second layer of encryption in a way that

it does not interfere with the capabilities of the inner ciphertext. Using a nested form of

ElGamal encryption [60] gives us these properties as well as the needed re-randomisability.

Finally, we prove that our instantiation satisfies the desired security and privacy require-

ments under the DDH, q-SDH and DCR assumptions in the random oracle model. Our

construction relies on type–3 pairings and performs most of the work in G1 which comes

with significant efficiency benefits. In fact, we show that our construction is reasonably

efficient considering the increased flexibility when establishing the linkability in such a

selective and controlled manner.

4.1.4 Other Related Work

A number of results exist that establish convertible pseudonyms in the setting of dis-

tributed databases and have inspired our work. The data is created and maintained in a

distributed manner. For privacy, related data is stored under different, database-specific

pseudonyms that are seemingly unlinkable and can only be correlated by a central entity

that controls the data flow. While the initial approach by Galindo and Verheul [68] re-

quired the converter to be a trusted third party, Camenisch and Lehmann [36, 37] later

showed how the converter can operate in an oblivious manner. However, none of these

solutions supports authenticated data collection and [68] and [36] even let the (trusted)

converter establish all pseudonyms. The pseudonym system in [37] bootstraps pseudonyms

in a blind way from a user secret, but for every new pseudonym that requires the user,

converter and targeted data base to engage in an interactive protocol. Clearly, this is not

practical for a setting where users frequently want to upload data. Further, all schemes

99

4.2 Definition and Security Model for CLS

re-use the same pseudonym for a user within a database, whereas our solution creates

fresh and unlinkable pseudonyms for every new data item.

4.2 Definition and Security Model for CLS

In this section we first introduce the syntax and generic functionality of CLS and then

present the desirable security and privacy properties for such schemes.

The following entities are involved in a CLS scheme: an issuer I, a set of users U = {uidi},

a verifier V and a converter C. The issuer I is the central entity that allows users to join

the group. Once joined, a user can then sign on behalf of the group in a pseudonymous

way. That is, a verifier V can test the validity of a signature with respect to the group’s

public key but does not learn any information about the particular user that created the

signature. Most importantly, we want the pseudonymously signed data to be linkable

in a controlled yet blind manner. Such selected linkability can be requested through the

converter C that can blindly transform tuples of pseudonym-message pairs into a consistent

representation.

4.2.1 Syntax of CLS

Our notation closely follows the definitional framework for dynamic group signatures given

in [14], although there are some differences due to the different setting. Instead of an

opener, we have a converter who outputs a linked representation of the signatures input.

This means we no longer have need of a registration table for joined users. As we assume

the converter is honest–but-curious, we no longer need the equivalent of a judge algorithm.

We also weaken the anonymity requirement so that forward anonymity is no longer pro-

vided. It seems difficult to achieve this whilst also ensuring the non–transitivity of con-

versions. Now if the adversary is allowed to query the USK oracle, the adversary could

have instead created that user with the issuer secret key. Therefore there is no longer any

need for the USK oracle.

We stress that our algorithms (and security notions) are flexible enough to cover settings

100

4.2 Definition and Security Model for CLS

where multiple verifiers and converters exist. For the sake of simplicity, however, we focus

on the setting where there is only one entity each.

Definition 4.1 (CLS). A convertibly linkable group signature CLS scheme consists of the

following algorithms:

Setup and Key Generation. We model key generation individually per party, and

refer to (param, ipk, cpk) as the group public key gpk.

CLS.Setup(1τ)→ param: on input the security parameter 1τ , outputs param, the public

parameters for the scheme.

CLS.IKGen(param)→ (ipk, isk): performed by the issuer I; outputs the issuer secret key

isk, and the issuing public key ipk.

CLS.CKGen(param)→ (cpk, csk): performed by the converter C; outputs the converter

secret key csk, and the converter public key cpk.

CLS.BKGen(param)→ (bpk, bsk): performed by the verifier V1; outputs a blinding secret

key bsk, and blinding public key bpk. As the key is only used for blinding purposes,

(bpk, bsk) can be ephemeral. We write BK as the public key space induced by

CLS.BKGen.

Join, Sign and Verify. As in standard dynamic group signatures, we have a dedicated

join procedure that a user has to complete with the issuer. All users that have successfully

joined the group can then create pseudonymous signatures on behalf of the group, i.e.,

that verify with respect to the group public key gpk. For ease of expression we treat the

pseudonym µ as a dedicated part of the signature.

〈CLS.Join(gpk),CLS.Issue(isk, gpk)〉: a user uid joins the group by engaging in an in-

teractive protocol with the issuer I. The user uid and issuer I perform algorithms

CLS.Join and CLS.Issue respectively. These are input a state and an incoming mes-

sage respectively, and output an updated state, an outgoing message, and a decision,

1For the sake of simplicity we state the algorithms for the setting where the requester and receiver of
conversions is the same party, namely the verifier. However, our algorithms work in a public key setting
to facilitate more general settings as well.

101

4.2 Definition and Security Model for CLS

either cont, accept, or reject. The initial input to CLS.Join is the group public key,

gpk, whereas the initial input to CLS.Issue is the issuer secret key isk, and the group

public key gpk. If the user uid accepts, CLS.Join has a private output of gsk[uid].

CLS.Sign(gpk,gsk[uid],m)→ (µ, σ): performed by the user with identifier uid, with in-

put the group public key gpk, the user’s secret key gsk[uid], and a message m;

outputs a pseudonym µ and signature σ.

CLS.Verify(gpk,m, µ, σ)→ {0, 1}: performed by the verifier V; outputs 1 if σ is a valid

signature on m for pseudonym µ under the group public key gpk, and 0 otherwise.

Blind Conversion. Finally, we want our pseudonymous group signatures to be blindly

convertible. Thus, we introduce a dedicated CLS.Blind and CLS.Unblind procedure for

the verifier and a CLS.Convert algorithm that requires the converter’s secret key. The

latter transforms the unlinkable pseudonyms in a consistent manner, i.e., outputting con-

verted pseudonyms that are consistent whenever the input pseudonyms belong to the same

user. The final pseudonyms after unblinding will be identical if and only if they stem

from the same user and are obtained from the same CLS.Convert query. For example, if

(m1, µ1), (m2, µ2) stem from user A and (m3, µ3), (m4, µ4), (m5, µ5) stem from user B, then

after blinding, conversion and unblinding a random shuffle of (m1, µ1), (m2, µ1), (m3, µ2),

(m4, µ2), (m5, µ2) will be output.

CLS.Blind(gpk, bpk, (µ,m))→ (cµ, c): performed by the verifier V, on input a pseudonym-

message pair (µ,m), blinding public key bpk and group public key gpk; outputs a

blinded pseudonym and message.

CLS.Convert(gpk, csk, bpk, {(cµi, ci)}k)→ {(cµi, ci)}k: performed by the converter C, on

input k blinded pseudonym-message tuples {(cµi, ci)}k = ((cµ1, c1), ..., (cµk, ck)),

and the public blinding key bpk used; outputs converted pseudonyms {(cµi, ci)}k =

((cµ1, c1), ..., (cµk, ck)).

CLS.Unblind(bsk, (cµ, c))→ (µ,m): performed by the verifier V, on input a converted

pseudonym-message tuple and the blinding secret key bsk; outputs an unblinded

converted pseudonym-message tuple (µ,m).

We sometimes make the randomness r used in these algorithms explicit and, for example,

102

4.2 Definition and Security Model for CLS

write CLS.Blind(gpk, bpk, (µ,m); r).

4.2.2 Security Properties

We want CLS schemes to enjoy roughly the same security and privacy properties as group

signatures when taking the added linkability into account. Defining these properties when

pseudonyms can be selectively and adaptively converted is challenging, as it requires care

to avoid trivial wins while keeping the adversary as powerful as possible.

In a nutshell, we require the following guarantees from convertibly linkable group signa-

tures, where (join) anonymity and non–transitivity capture the privacy-related properties

and non–frameability and traceability formalise the desired unforgeability.

(Join) Anonymity: Pseudonymous signatures should be unlinkable and untraceable (to

a join session) even when the issuer and verifier are corrupt. When the converter

is honest, unlinkability holds for all signatures for which the associated pseudonyms

have not been explicitly linked through a conversion request. If the converter is

corrupt and also controlled by the adversary, unlinkability is no longer possible, yet

the anonymity of joins must remain.

Non–transitivity: Converted pseudonyms should be non-transitive, i.e., the verifier should

not be able to link the outputs of different convert queries. Otherwise, a corrupt

verifier would be able to gradually link together all pseudonyms that have ever been

queried to the converter.

Conversion Blindness: The converter learns nothing about the pseudonyms (and mes-

sages) it receives and the transformed pseudonyms it computes.

Non–frameability: An adversary controlling the issuer and some corrupt users, should

not be able to impersonate other honest users, i.e., create pseudonymous signatures

that would be linked to a pseudonym of an honest user.

Traceability: An adversary should not be able to create more signatures that remain

unlinkable in a conversion than they control corrupt users.

Clearly, any re-linked subset of the originally anonymous data increases the risk of re-

103

4.2 Definition and Security Model for CLS

identification. Thus, the converter could enforce some form of access control to the re-

linked data; e.g., only converting a certain amount of pseudonyms at once. The non-

transitivity requirement then ensures that a corrupt verifier cannot further aggregate the

individually learned data. We stress that these security properties only formalise the

achievable privacy for the pseudonyms and signatures. They do not and cannot capture

information leakage through the messages that the users sign. This is the case for all group

signatures, and not special to our setting.

Oracles and State. The security notions we formalise in the following make use of

a number of oracles which keep joint state, e.g., keeping track of queries and the set of

corrupted parties. We present the detailed description of all oracles in Figure 4.1 and now

provide an overview of them and their maintained records.

ADDU (join of honest user and honest issuer) Creates a new honest user for uid

and internally runs a join protocol between the honest user and honest issuer. At

the end, the honest user’s secret key gsk[uid] is generated and from then on signing

queries for uid will be allowed.

SNDU (join of honest user and corrupt issuer) Creates a new honest user for uid

and runs the join protocol on behalf of uid with the corrupt issuer. If the join

session completes, the oracle will store the user’s secret key gsk[uid].

SNDI (join of corrupt user and honest issuer) Runs the join protocol on behalf of

the honest issuer with corrupt users. For joins of honest users, the ADDU oracle

must be used.

SIGN This oracle returns signatures for honest users that have successfully joined (via

ADDU or SNDU, depending on the corruption setting).

CONVERT This oracle returns a set of converted pseudonyms along with their messages.

To model that conversion is triggered by an at most honest-but-curious verifier, we

request V to provide the unblinded set of pseudonyms along with signatures. The

conversion will only be done when all signatures are valid. The oracle then internally

blinds the pseudonym-message pairs and returns the blinded input, the randomness

used for the blinding along with the converted output. When this oracle is used in

the anonymity game, it further checks that the input does not allow the adversary

104

4.2 Definition and Security Model for CLS

to trivially win by converting the challenge pseudonym together with pseudonyms

from either of the challenge users.

All oracles have access to the following records maintained as global state:

HUL List of uids of honest users, initially set to ∅. New honest users can be added by

queries to the ADDU oracle (when the issuer is honest) or SNDU oracle (when the

issuer is corrupt).

CUL List of corrupt users that have requested to join the group. Initially set to ∅, new

corrupt users can be added through the SNDI oracle if the issuer is honest. If the

issuer is corrupt, we do not keep track of corrupt users.

SL List of (uid,m, µ, σ) tuples requested from the SIGN oracle.

Helper Algorithms. We introduce two additional algorithms for notational simplicity

in our security games: Identify and UnLink. Roughly, Identify allows one to test whether a

pseudonym belongs to a certain uid by exploiting the convertibility of pseudonyms. That

is, we create a second signature for gsk[uid] and use the converter’s secret key to test

whether both are linked. If so, Identify returns 1. This algorithm uses our second helper

algorithm UnLink internally, which takes a list of pseudonym-message pairs and returns 1

if they are all unlinkable and 0 otherwise.

Identify(gpk, csk, uid,m, µ)

(µ′, σ′)←$CLS.Sign(gpk,gsk[uid], 0)

if UnLink(gpk, csk, ((µ,m), (µ′, 0))) = 0 return 1

else return 0

105

4.2 Definition and Security Model for CLS

ADDU(uid)

if uid ∈ HUL ∪ CUL return ⊥
HUL← HUL ∪ {uid},gsk[uid]←⊥
decuid ← cont, stuidJoin ← gpk

stuidIssue ← (isk, gpk)

(stuidJoin,MIssue,decuid)←$CLS.Join(stuidJoin,⊥)

while decuid = cont

(stuidIssue,MJoin,decuid)←$CLS.Issue(stuidIssue,MIssue)

(stuidJoin,MIssue,decuid)←$CLS.Join(stuidJoin,MJoin)

if decuid = accept gsk[uid]← stuidJoin

return accept

SIGN(uid,m)

if uid /∈ HUL or gsk[uid] =⊥
return ⊥

(µ, σ)←$CLS.Sign(gpk,gsk[uid],m)

SL← SL ∪ {(uid,m, µ, σ)}
return (σ, µ)

SNDI(uid,Min)

if uid ∈ HUL return ⊥
if uid /∈ CUL

CUL← CUL ∪ {uid}
decuid ← cont

if decuid 6= cont return ⊥
if undefined stuidIssue ← (isk, gpk)

(stuidIssue,Mout,decuid)←$CLS.Issue(stuidIssue,Min)

return (Mout,decuid)

SNDU(uid,Min)

if uid ∈ CUL return ⊥
if uid /∈ HUL

HUL← HUL ∪ {uid}
gsk[uid]←⊥,Min ←⊥,decuid ← cont

if decuid 6= cont return ⊥
if stuidJoin undefined stuidJoin ← gpk

(stuidJoin,Mout,decuid)←$CLS.Join(stuidJoin,Min)

if decuid = accept gsk[uid]← stuidJoin

return (Mout,decuid)

CONVERT((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 return ⊥
if bpk /∈ BK return ⊥
if ∃i s.t. µi = µ∗ and ∃j 6= i s.t. Identify(uid∗d, µj) = 1 for d ∈ {0, 1}

return ⊥
else compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); ri) for i = 1, . . . , k

and {(cµi, ci)}k←$CLS.Convert(gpk, csk, bpk, {(cµi, ci)}k)

return ({(cµi, ci)}k, {(cµi, ci)}k, r1, . . . , rk)

Figure 4.1: Oracles used in our CLS model

106

4.2 Definition and Security Model for CLS

UnLink(gpk, csk, ((µ1,m1), ..., (µk,mk)))

(bpk, bsk)←$CLS.BKGen(param)

∀i ∈ [1, k] (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi))

{(cµi, ci)}k←$CLS.Convert(gpk, csk, bpk, {(cµi, ci)}k)

∀i ∈ [1, k] (µi,mi)← CLS.Unblind(bsk, (cµi, ci))

if ∃(i, j) with i 6= j s.t. µi = µj return 0

else return 1

For even more simplicity we often omit the keys for the algorithms (as they are clear from

the context). That is, we write Identify(uid, µ) which will indicate whether the pseudonym

µ belongs to the user with identity uid or not. Likewise, we write UnLink(µ1, . . . , µk) to

test whether all pseudonyms are uncorrelated or not.

Correctness. CLS signatures, generated by honest parties, should be correct and consis-

tent. More precisely, we formulate correctness via three requirements. Correctness of sign

guarantees that signatures formed using the CLS.Sign algorithm with a user secret key

generated honestly will verify correctly. Correctness of conversion guarantees that after

blinding, converting and then unblinding correctly, the output will be correctly linked mes-

sages/ pseudonyms. The messages output after unblinding should be the original messages

shuffled with a permutation Π (the permutation is necessary for non–transitivity to hold).

The unblinded converted pseudonyms should be shuffled with the same permutation and

are identical if and only if they stem from the same user. Consistency is a stronger vari-

ant of conversion-correctness and requires that the correlations of pseudonyms established

through the conversion procedure must be consistent across queries. More precisely, if a

conversion query reveals that two pseudonym µ1 and µ2 are linked, and another one that

µ2 and µ3 are linked, then it must also hold that a conversion query for µ1 and µ3 re-

turns linked pseudonyms. We require that this property even holds for maliciously formed

pseudonyms, which will be a helpful property in some of our security proofs.

The detailed definitions for correctness are given in Figure 4.2 and follow the game-based

style already used in [14] for correctness definitions.

Definition 4.2 (Correctness). A CLS scheme satisfies correctness if, for all adversaries

A, Pr[Expcorr−sigA,CLS (τ) = 1] = 0, Pr[Expcorr−convA,CLS (τ) = 1] ≤ negl(τ), and, Pr[ExpconsistA,CLS (τ) =

1] = 0.

107

4.2 Definition and Security Model for CLS

For the correctness of conversion, the negligible chance that the adversary has of winning

corresponds to the negligible chance that multiple user identifiers have the same secret

key.

Anonymity (Corrupt Issuer and Verifier). This security requirement captures the

desired anonymity properties when the converter is honest and the issuer is corrupt. The

verifier is honest–but–curious, which we model by only allowing unblinded valid signatures

to be input to the conversion oracle, which can be verified. Just as in conventional group

signatures, we want that the signatures of honest users are unlinkable and cannot be traced

back to a user’s join session with the corrupt issuer. To model this property, we let the

adversary output uids of two honest users together with a message and return a challenge

(µ∗, σ∗) that is created either by user uid0 or uid1. For anonymity, the adversary should

not be able to determine the user’s identity better than by guessing.

In our setting, this property must hold when the adversary has access to the conversion

oracle where it can obtain linked subsets of the pseudonymous data. To avoid trivial wins,

the adversary is not allowed to make conversion queries that link the challenge pseudonym

µ∗ to another pseudonym belonging to one of the two honest challenge users.

Definition 4.3 (Anonymity). A CLS scheme satisfies anonymity if for all polynomial–time

adversaries A the following advantage is negligible in τ :

∣∣∣Pr[Expanon−0
A,CLS (τ) = 1]− Pr[Expanon−1

A,CLS (τ) = 1]
∣∣∣ .

Experiment: Expanon−bA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL← ∅

(uid∗0, uid
∗
1,m

∗, st)←$ASNDU,SIGN,CONVERT(choose, gpk, isk)

if uid∗0 /∈ HUL or gsk[uid∗0] =⊥ or uid∗1 /∈ HUL or gsk[uid∗1] =⊥ return 0

(µ∗, σ∗)←$CLS.Sign(gpk,gsk[uid∗b],m
∗)

b∗←$ASNDU,SIGN,CONVERT(guess, st, µ∗, σ∗)

return b∗

Non–transitivity (Corrupt Issuer and Verifier). The second privacy-related prop-

erty we want to guarantee is the strict non-transitivity of conversions. This ensures that

108

4.2 Definition and Security Model for CLS

Experiment: Expcorr−sigA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL← ∅, (uid,m)←$AADDU(gpk)

if gsk[uid] =⊥ return 0

(µ, σ)←$CLS.Sign(gpk,gsk[uid],m)

if CLS.Verify(gpk,m, µ, σ) = 0 return 1 else return 0

Experiment: Expcorr−convA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL← ∅, (bpk, bsk)←$CLS.BKGen(param)

((uid1,m0), ..., (uidk,mk))←$AADDU(gpk)

if ∃i ∈ [1, k] st gsk[uidi] =⊥ return 0

∀i ∈ [1, k] (µi, σi)←$CLS.Sign(gpk,gsk[uidi],mi)

∀j ∈ [1, k] (cµj , cj)←$CLS.Blind(gpk, bpk, (µj ,mj))

{(cµi, ci)}k←$CLS.Convert(gpk, csk, bpk, {(cµi, ci)}k; Π)

∀j ∈ [1, k] (µj ,mj)← CLS.Unblind((cµj , cj), bsk)

if ∃ permutation Π : [1, k]→ [1, k] s.t.

1.∀i ∈ [1, k] mΠ(i) = mi

2.∀(i, j) ∈ [1, k] with uidi = uidj µΠ(i) = µΠ(j)

3.∀(i, j) ∈ [1, k] with uidi 6= uidj µΠ(i) 6= µΠ(j)

return 0

else return 1

Experiment: ExpconsistA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk)

((m0, µ0, σ0), (m1, µ1, σ1), (m2, µ2, σ2))←$A(gpk, isk, csk)

if UnLink(µ0, µ1) = 1 or UnLink(µ1, µ2) = 1 return 0

if UnLink(µ0, µ2) = 1 return 1

else return 0

Figure 4.2: Security games for correctness of CLS

109

4.2 Definition and Security Model for CLS

the outputs of separate convert queries cannot be linked together, further than what is

already possible due the messages queried. For example, if µ1 and µ2 are outputs from two

separate convert queries, the adversary should not be able to decide whether they were

derived from the same pseudonym or not. Otherwise the verifier could gradually build lists

of linked pseudonyms, adding to these during every convert query and eventually recover

the linkability among all pseudonymous signatures. This requirement should hold if the

issuer is corrupt, the converter is honest, and the verifier is honest–but–curious, therefore

again we only allow unblinded valid signatures to be input to the conversion oracle.

To model non-transitivity of conversions we use a simulation-based approach, requiring the

indistinguishability of an ideal and a real world. In the real world, all convert queries are

handled normally through the CONVERT oracle defined in Figure 4.1. Whereas in the ideal

world, the converted pseudonyms are produced by a simulator SIM through the CONVSIM

oracle. For a conversion request of input (µ1,m1, σ1), . . . , (µk,mk, σk), the simulator will

only learn which of the messages belong together, i.e., are associated to pseudonyms that

belong to the same user uid. For honest users, this can be looked up through the records

of the signing oracle that stores tuples (uid,mi, µi, σi) for each signing query. Thus, we

let the simulator mimic the conversion output for all pseudonyms stemming from honest

users, and convert pseudonyms from corrupt users normally (as there is no privacy to

guarantee for them anyway). Finally, the CONVSIM oracle outputs a random shuffle of

the correctly converted pseudonyms of corrupt users, and the simulated ones for honest

users. As mentioned before, we assume the verifier to be honest-but-curious, which we

enforce by requesting the adversary to output valid signatures along with the pseudonyms

to be converted and handle the blinding step within the conversion oracle.

Definition 4.4 (Non–transitivity). A CLS scheme satisfies non-transitivity if for all polynomial–

time adversaries A there exists an efficient simulator SIM such that the following advantage

is negligible in τ :

∣∣∣Pr[Expnontrans−0
A,CLS (τ) = 1]− Pr[Expnontrans−1

A,CLS (τ) = 1]
∣∣∣ .

110

4.2 Definition and Security Model for CLS

Experiment: Expnontrans−bA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL← ∅

b∗←$ASNDU,SIGN,CONVX(guess, gpk, isk)

where the oracle CONVX works as follows:

if b = 0 (real world) then CONVX is the standard CONVERT oracle

if b = 1 (ideal world) then CONVX is the simulated CONVSIM oracle

return b∗

CONVSIM((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 or bpk /∈ BK return ⊥

Set CL← ∅

Compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); ri) for i = 1, . . . , k

∀i ∈ [1, k] // determine message clusters Luid for honest users and list CL of corrupt pseudonyms

if (uid,mi, µi, σi) ∈ SL // pseudonyms from honest users

if Luid does not exist, create Luid ← {mi} else set Luid ← Luid ∪ {mi}

else CL← CL ∪ {(ci, cµi)} // pseudonyms from corrupt users

{(cµi, ci)}i=1,...k′ ←$CLS.Convert(gpk, csk, bpk,CL) for k′ ← |CL| // normally convert corrupt µs

Let Luid1 , . . . Luidk′′ be the non-empty message clusters

{(cµi, ci)}i=k′+1,...k←$SIM(gpk, bpk, Luid1 , . . . Luidk′′) // simulate conversion for honest µs

Let {(cµ′i, c′i)}i=1,...k be a random permutation of {(cµi, ci)}i=1,...k

return ({(cµi, ci, ri)}i=1,...,k, {(cµ′i, c′i)}i=1,...k, r1, . . . , rk)

Anonymity versus Non–transitivity. Note that non-transitivity is not covered by

the anonymity notion defined before. A scheme that satisfies anonymity could output the

converted pseudonyms in the exact same order as the input ones, allowing trivial link-

age between the in- and output of each conversion request. Thus, whenever the same

pseudonym is used as input to several conversion queries, this would enable the linka-

bility of the transformed pseudonyms across the different conversions, which is exactly

what non-transitivity aims to avoid. On the first glance, it might seem odd that having

transitive conversions does not harm our anonymity property. However, transitivity is

111

4.2 Definition and Security Model for CLS

only useful when several pseudonyms belonging to the same user appear in each conver-

sion request with one pseudonym being re-used in all these sessions. In the anonymity

game, the challenge pseudonym is not allowed to be used in combination with any other

pseudonym stemming from either of the challenge users (as this would make the definition

unachievable), and thus the transitivity of conversions can not be exploited.

Conversion Blindness (Corrupt Issuer and Converter). A crucial property of

our signatures is that they can be converted in an oblivious manner, i.e., without the

converter learning anything about the pseudonyms or messages it converts. In particular,

this blindness property ensures the unlinkability of blinded inputs across several conversion

requests. Conversion blindness should hold if both the issuer and converter are corrupt, but

the verifier is honest. We formalise this property in a classic indistinguishability style: the

adversary outputs two tuples of pseudonym-message pairs and receives a blinded version

of either of them. Given that blinding of pseudonyms is a public-key operation, we do

not need an additional blinding oracle. In fact, we do not provide the adversary with any

oracle access at all in this game. They already have corrupted the issuer and converter,

and this property does not distinguish between honest and corrupt users, thus we simply

assume that the adversary also has full control over all users.

Definition 4.5 (Conversion Blindness). A CLS scheme satisfies conversion blindness if

for all polynomial–time adversaries A the following advantage is negligible in τ :

∣∣∣Pr[Expblind−conv−0
A,CLS (τ) = 1]− Pr[Expblind−conv−1

A,CLS (τ) = 1]
∣∣∣ .

Experiment: Expblind−conv−bA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk), (bpk, bsk)←$CLS.BKGen(param)

(st, (µ0,m0), (µ1,m1))←$A(choose, gpk, isk, csk, bpk)

(cµ∗, c∗)←$CLS.Blind(gpk, bpk, (µb,mb))

b∗←$A(guess, st, cµ∗, c∗)

return b∗

Join Anonymity (Corrupt Issuer, Converter and Verifier). The final privacy

related property we require from a CLS scheme is the anonymity of joins even if all cen-

tral entities are corrupt. Here the challenge is that the adversary, controlling the issuer,

112

4.2 Definition and Security Model for CLS

converter and verifier, should not be able to link signatures of an honest user back to a

particular join session. This is the best one can hope for in this corruption setting as un-

linkability of signatures (as guaranteed by our anonymity property) is no longer possible:

the corrupt converter can simply convert all signatures/pseudonyms into a consistent rep-

resentation. Such a property does not exist in conventional group signatures, as a corrupt

opener can always reveal the join identity. In our setting, signatures can only be linked

instead of being opened and thus anonymity of the join procedure can be preserved.

To model this property we let the adversary output two identities of honest users uid0, uid1

that have successfully joined. We then provide the adversary access to a signing oracle

for one of them. This is done by adding the challenge user uid∗ (where uid∗ stands for a

dummy handle) to the list of honest users HUL with user secret key gsk[uidb]. Thus, in

the second stage of the game, the adversary can invoke the SIGN oracle on uid∗ to receive

signatures of messages of their choice for the challenge user. The adversary wins if they

can determine the bit b better than by guessing. To avoid trivial wins, the adversary is

not allowed to see any signature directly from uid0 or uid1.

Definition 4.6 (Join Anonymity). A CLS scheme satisfies join anonymity if for all

polynomial–time adversaries A the following advantage is negligible in τ :

∣∣∣Pr[Expanon−join−0
A,CLS (τ) = 1]− Pr[Expanon−join−1

A,CLS (τ) = 1]
∣∣∣ .

Experiment: Expanon−join−bA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL← ∅

(st, uid0, uid1)←$ASNDU,SIGN(choose, gpk, isk, csk)

if uid0 or uid1 /∈ HUL or gsk[uid0] =⊥ or gsk[uid1] =⊥ return 0

Choose uid∗,HUL← HUL ∪ {uid∗},gsk[uid∗]← gsk[uidb]

b∗←$ASNDU,SIGN(guess, st, uid∗)

return b∗ if (uidd, ∗) /∈ SL for d = 0, 1 else return 0

Non–frameability (Corrupt Issuer, Converter and User) This notion captures the

desired unforgeability properties when the issuer, converter, verifier and some of the users

are corrupt, and requires that an adversary should not be able to impersonate an honest

user. Our definition is very similar to the non-frameability definitions in standard group

113

4.2 Definition and Security Model for CLS

signature or DAA schemes [12, 14, 15]. Roughly, the only part we have to change is how

we detect that an honest user has been framed. In group signatures, non-frameability

exploits the presence of the group manager that can open signatures and requires that an

adversary cannot produce signatures that will open to an honest user who has not created

this signature. Here we have the converter instead of the group manager (or dedicated

opening authority), and thus express non-frameability through the linkage that is created

in a conversion. More precisely, an adversary should not be able to produce a valid

signature (µ∗, σ∗) that within a conversion request would falsely link to a signature of an

honest user. For generality (and sake of brevity), we use our helper function Identify that

we introduced at the beginning of this section to express that the adversary’s signature

should not be recognised as a signature of an honest user. For our unforgeability guarantees

we assume an honest but curious converter. This materialises in our requirement by using

the Identify function, which honestly performs CLS.Convert, to determine whether a forgery

has occurred.

Definition 4.7 (Non–frameability). A CLS scheme satisfies non–frameability if for all

polynomial–time adversaries A, the advantage Pr[ExpnonframeA,CLS (τ) = 1] is negligible in τ .

Experiment: ExpnonframeA,CLS (τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL← ∅

(uid,m∗, µ∗, σ∗)←$ASNDU,SIGN(gpk, isk, csk)

return 1 if all of the following conditions are satisfied:

CLS.Verify(gpk,m∗, µ∗, σ∗) = 1 and

Identify(uid,m∗, µ∗) = 1 where uid ∈ HUL and

(uid,m∗, µ∗, σ∗) /∈ SL

Traceability (Corrupt Converter and User) Our final requirement formalises the

unforgeability properties when only the converter, verifier and some users are corrupt,

whereas the issuer and some users are honest. In this setting, an adversary should not be

able to output more pseudonymous signatures that remain unlinkable in a conversion than

the number of users it has corrupted. This is again an adaptation of the existing trace-

ability notions for group signatures with an opening authority [12, 14] or user-controlled

linkability [15]. Interestingly, in the latter work given in Section 2.8.1 (that is closer to our

setting than standard group signatures), two traceability notions were introduced. While

114

4.3 Our CLS Construction

one is similar in spirit to our notion, a second property guarantees that all signatures of

corrupt users can be traced back to the exact signing key that the corrupt user has estab-

lished in the join protocol with the honest issuer. This seems to be an odd requirement, as

it is not noticeable in the real world. In fact, we do not limit the strategy of the adversary

in that way and only require their power to be bounded by the amount of corrupt users

they control.

Our definition uses our helper algorithm UnLink that we introduced at the beginning of this

section and that internally uses the CLS.Convert algorithm to detect whether pseudonyms

are unlinkable or not. Note that UnLink returns 1 only if all inputs are mutually unlinkable,

i.e., there is not a single tuple of input pseudonyms that was converted to the same value.

As in non–frameability we assume an honest but curious converter. This materialises in

this requirement by using the UnLink function, which honestly performs CLS.Convert, to

determine whether signatures are unlinkable.

Definition 4.8 (Traceability). A CLS scheme satisfies traceability if for all polynomial–

time adversaries A the advantage Pr[ExptraceA,CLS(τ) = 1] is negligible in τ .

Experiment: ExptraceA,CLS(τ)

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL← ∅

((m1, µ1, σ1), ..., (mk, µk, σk))←$AADDU,SNDI,SIGN(gpk, csk)

return 1 if all of the following conditions are satisfied:

∀j ∈ [1, k] : CLS.Verify(gpk,mj , µj , σj) = 1 and (∗,mj , µj , σj) /∈ SL and

k > |CUL| and

UnLink(gpk, csk, ((µ1,m1), ..., (µk,mk))) = 1

4.3 Our CLS Construction

We now present our construction that securely realises such CLS group signatures. Our

scheme follows the classical sign-and-encrypt paradigm: we use BBS+ signatures [9], as

discussed in Section 2.5.6, for attesting group membership, i.e., a user will blindly receive

a BBS+ signature from the group issuer on the user’s secret key y. To sign a message

m on behalf of the group, the user computes a SPK for m, where they prove knowledge

115

4.3 Our CLS Construction

of a BBS+ signature on y, and also encrypts hy under the converter’s public key. The

ElGamal ciphertext that encrypts hy serves as the associated pseudonym µ.

We discuss the homomorphic and re-randomisable properties of ElGamal encryption in

Section 2.5.2. To blind a set of k pseudonym-message pairs (µ1,m1), . . . (µk,mk) for

conversion, the verifier encrypts each value under its own ElGamal public key. As the

pseudonyms are already ElGamal ciphertexts themselves, this results in a nested double-

encryption of hy being encrypted under both keys. The converter then decrypts the

“inner” part of the ciphertext and blindly raises the result to a random value r. This

r is chosen fresh for every conversion query, but used consistently within. That is, all

pseudonyms belonging to the same user will be mapped to the same query-specific DDH

tuple hyr. Finally, the converter re-randomises all ciphertexts and shuffles them to destroy

any linkage between the in- and output tuples — this is crucial for achieving the desired

non-transitivity property. The verifier then simply decrypts the received tuples and can

link correlated data via the converted pseudonyms cµi.

4.3.1 Detailed Description of CLS–DDH

Setup and Key Generation. We use a type–3 bilinear group (p,G1, G2, GT , e, g1, g2)

with g1 and g2 being generators of G1 and G2 respectively. Further, we need four additional

generators g, h and h1, h2 in G1, where h1, h2 are used for the BBS+ signature and g, h

will be used for the ElGamal encryption.

CLS.Setup(1τ)

(p,G1,G2,GT , e, g1, g2)←$G(1τ), g, h, h1, h2←$G1

return param← (G1,G2,GT , p, e, g1, g2, g, h, h1, h2)

CLS.IKGen(param)

isk←$Z∗p, ipk ← gisk2

return (ipk, isk)

CLS.CKGen(param)

csk←$Z∗p, cpk ← gcsk

return (cpk, csk)

CLS.BKGen(param)

bsk←$Z∗p, bpk ← gbsk

return (bpk, bsk)

116

4.3 Our CLS Construction

Join. To join the group, users perform an interactive protocol with the issuer to obtain

their user secret key and group credential. Roughly, the gsk[uid] of a user consists of a

secret key y ∈ Z∗p and a BBS+ signature (A, x, s) of I on y, where A = (g1h
y
1h

s
2)1/(isk+x).

The detailed protocol of 〈CLS.Join(gpk),CLS.Issue(isk, gpk)〉 is given in Figure 4.3.

U .CLS.Join(gpk)
 I.CLS.Issue(isk, gpk)

choose n←$ {0, 1}τ

� n

y←$Z∗p, H ← hy1,

πH ←$SPK{(y) : H = hy1}(n)

-H,πH

Verify πH and that H ∈ G1

x←$Z∗p, s←$Z∗p
A← (Hhs2g1)1/(isk+x)

� A, x, s

check that A 6= 1G1 and that

e(A, g2)xe(A, ipk) = e(g1Hh
s
2, g2)

return gsk[uid]← (A, x, y, s)

Figure 4.3: Join protocol of our CLS–DDH construction

Sign and Verify. To sign a message m under gsk[uid] = (A, x, y, s), the user proves

knowledge of a BBS+ credential (A, x, s) on its secret key y and also encrypts hy under

the converter’s public key cpk. The proof π proves knowledge of the BBS+ credential and

asserts that the encryption contains the same value y. From π we only need the value y

to be online extractable. We use the improved proof of knowledge of a BBS+ credential

from Camenisch et al. [32], who have shown how to move most of the work from GT to

G1 and thus yield a much faster instantiation than the original proof by Au et al. [9]. For

verification, one verifies the proof π and some correctness properties of the re-randomised

versions of A that are sent along with the proof. In more detail, CLS.Sign and CLS.Verify

are defined as follows:

117

4.3 Our CLS Construction

CLS.Sign(gpk,gsk[uid],m)

parse gsk[uid] = (A, x, y, s), gpk = (ipk, cpk)

α←$Z∗p, µ1 ← gα, µ2 ← cpkαhy, r1, r2←$Z∗p,

A′ ← Ar1 , Â← A′−x(g1h
y
1h
s
2)r1 , d← (g1h

y
1h
s
2)r1h−r22 , r3 ← r−1

1 , s′ ← s− r2r3

π←$SPK{(x, y, r2, r3, s
′, α) : µ1 = gα ∧ µ2 = cpkαhy ∧ Â/d = A′−xhr22 ∧ g1h

y
1 = dr3h−s

′

2 }(m)

σ ← (A′, Â, d, π), µ← (µ1, µ2)

return (µ, σ)

CLS.Verify(gpk,m, µ, σ)

parse σ = (A′, Â, d, π)

return 1 if A′ 6= 1G1 , e(A
′, ipk) = e(Â, g2),

and π holds for A′, Â, d, µ,m w.r.t. gpk

Blind Conversions. When the verifier wants to learn which of the pseudonymously

received messages belong together, it sends a batch of pseudonym-message pairs in blinded

form to the converter. That is, it encrypts the messages and pseudonyms using ElGamal

encryption. The pseudonyms are ElGamal ciphertexts already and we roughly wrap them

in another encryption layer. The converter then blindly decrypts the pseudonyms, i.e.,

decrypts the “inner” part of the ciphertext, which yields hy encrypted under the verifiers

blinding key bpk. To ensure non-transitivity, i.e., restrict the linkage of pseudonyms to

hold only within the queried batch, the converter blindly raises the encrypted hy to a

random exponent r. This value is chosen afresh for every batch but used consistently

within the query, i.e., all pseudonyms that belong to the same user with secret key y will

be mapped consistently to hyr. To ensure that the ciphertexts and their order cannot leak

any additional information, we let the converter re-randomise and shuffle all ciphertexts

before they returns them to the verifier. Both the verifier and the converter are assumed

to be at most honest-but-curious, and so proofs that they have performed CLS.Blind and

CLS.Convert correctly are not needed.

118

4.4 Security of CLS–DDH

CLS.Blind(gpk, bpk, µ,m)

parse gpk = (ipk, cpk), µ = (µ1, µ2)

α, β, γ←$Z∗p, cµ1 ← µ1g
β , cµ2 ← gα, cµ3 ← µ2cpk

βbpkα

c1 ← gγ , c2 ← bpkγm, cµ← (cµ1, cµ2, cµ3), c← (c1, c2)

return (cµ, c)

CLS.Convert(gpk, csk, bpk, ((cµ1, c1), ..., (cµk, ck)))

parse cµi = (cµi,1, cµi,2, cµi,3), ci ← (ci,1, ci,2), r←$Z∗p

for i = 1, . . . k :

cµ′i,1 ← cµri,2, cµ
′
i,2 ← (cµi,3cµ

−csk
i,1)r // decrypt µ and raise to r

r1, r2←$Z∗p // re-randomise all ciphertexts

cµ′′i,1 ← cµ′i,1g
r1 , cµ′′i,2 ← cµ′i,2bpk

r1

c′i,1 ← ci,1g
r2 , c′i,2 ← ci,2bpk

r2

choose random permutation Π, for i = 1, . . . , k : (cµi, ci)← (cµ′′Π(i), c
′
Π(i))

return ((cµ1, c1), ..., (cµk, ck))

CLS.Unblind(bsk, (cµ, c))

parse cµ = (cµ1, cµ2), c = (c1, c2)

µ← cµ2cµ
−bsk
1 , m← c2c

−bsk
1

return (µ,m)

4.4 Security of CLS–DDH

We now show that our scheme satisfies all security properties defined in Section 4.2. More

precisely, we show that the following theorem holds (using the type–3 pairing version of

the q-SDH assumption given in [20]).

Theorem 4.1. The CLS–DDH construction presented in Section 4.3.1 is a secure CLS

as defined in Section 4.2 if the DDH assumption holds in G1, the q-SDH assumption

holds, and the SPK is simulation-sound, zero-knowledge and online extractable (for the

underlined values).

119

4.4 Security of CLS–DDH

4.4.1 Correctness

The construction satisfies correctness of sign due to the correctness of the signature

zero–knowledge proofs used, and because Â = A−xr1Ar1(isk+x) = Ar1isk = A′isk.

Let (Ai, xi, yi, si) be the secret signing key for the user with identifier uidi. Then ∀i ∈ k, for

ai, a
′
i, a
′′
i chosen randomly, µi = (gai , cpkaihyi), cµi = (gai+a

′
i , ga

′′
i , cpkai+a

′
ihyibpka

′′
i). Then

for r, r′i←$ {0, 1}∗ and a random permutation Π, cµΠ(i) = (ga
′′
i r+r

′
i , hyirbpka

′′
i r+r

′
i), and

µΠ(i) = hyir. Therefore µΠ(i) = µΠ(j) if and only if yi = yj . Except with negligible proba-

bility, as y is chosen randomly, this only occurs if and only if uidi = uidj . ∀i ∈ [1, k], for α

chosen randomly, ci = (gα,mibpk
α), for r′′i chosen randomly, cΠ(i) = (gα+r′′i ,mibpk

α+r′′i),

therefore mΠ(i) = mi. Therefore, the construction satisfies correctness of conversion.

Assume UnLink(gpk, csk, ((µ0,m0), (µ1,m1))) = 0 and UnLink(gpk, csk, ((µ1,m1),

(µ2, m2))) = 0. Due to the same argument, letting r1, r2 be the randomness chosen

in CLS.Convert, (µ0,2µ
−csk
0,1)r1 = (µ1,2µ

−csk
1,1)r1 and (µ1,2µ

−csk
1,1)r2 = (µ2,2µ

−csk
2,1)r2 . There-

fore, µ0,2µ
−csk
0,1 = µ2,2µ

−csk
2,1 . However, if UnLink(gpk, csk, ((µ0,m0), (µ2,m2))) = 1, then

(µ0,2µ
−csk
0,1)r3 6= (µ2,2µ

−csk
2,1)r3 , where r3 was chosen during Convert. This is a contradiction.

Therefore, the construction satisfies consistency.

4.4.2 Anonymity

Lemma 4.1. The CLS–DDH construction presented in Section 4.3.1 satisfies anonymity

if the DDH assumption holds in G1, and the SPK is unbounded simulation-sound, zero–

knowledge and online extractable (for the underlined values).

Proof. We assume that an adversary A exists that makes q queries to the SNDU oracle

for distinct user identifiers and qconv queries to the CLS.Convert oracle, guesses b correctly

in the anonymity game and wins with probability ε+ 1/2.

We define Game (0,0) to be the anonymity experiment, with b chosen randomly at the

beginning, using the CLS–DDH construction. Let P0,0 be the event that an adversary A

correctly guesses b after Game (0,0).

120

4.4 Security of CLS–DDH

CONVERT((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 return ⊥
if bpk /∈ BPK return ⊥
if ∃i s.t. µi = µ∗ and ∃j 6= i s.t. Identify(uid∗d, µj) = 1 for d ∈ {0, 1}

return ⊥
else compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); r

′
i) for i = 1, . . . , k

r←$Z∗p,∀i ∈ [1, k]

α←$Z∗p, c′i ← (ci,1g
α, ci,2bpk

α)

if µi = µ∗ µ′i←$G1, β←$Z∗p, cµ′i ← (gβ , µ′ibpk
β)

if µi 6= µ∗

β←$Z∗p, cµ′i,1 ← cµri,2g
β , cµ′i,2 ← cµri,3cµ

−rcsk
i,1 bpkβ

Choose random permutation Π;∀i ∈ [1, k] (cµi, ci)← (cµ′Π(i), c
′
Π(i))

return ({(cµi, ci)}k, {(cµi, ci)}k, r′1, . . . , r′k)

Figure 4.4: Convert oracle used during the first j queries of Game (0, j) in the CLS
anonymity proof

Game (0, j) is identical to Game (0,0), except for during the first j queries to the CONVERT

oracle, when µ∗ is queried. We provide the new convert oracle used for the first j queries

of Game (0, j) in Figure 4.4. Let P0,j be the event that the adversary A correctly guesses

b after Game (0, j).

We show that Game (0,j) and Game (0, j+1) are indistinguishable assuming the DDH

assumption. We provide a distinguishing algorithm Dj in Figure 4.5, and explain why Dj

simulates inputs to A that are distributed identically to Game (0, j) if a DDH tuple is

input, and Dj simulates inputs to A that are distributed identically to Game (0, j + 1) if

a DDH tuple is not input.

The values gpk, csk, isk are distributed identically to the anonymity game, as everything

but h, h1 are chosen in the same way, and χ is chosen randomly and independently, there-

fore h1 is distributed correctly.

Simulating the SNDU Oracle. The SNDU oracle only differs from the oracle in the

anonymity experiment during the k-th query. In this case H is distributed identically, and

πH can be simulated due to the zero-knowledge property of the proof system used. The

value y is not defined, but this is not output to A or used in the next stage of the protocol.

Therefore the outputs of SNDU are distributed identically to the anonymity experiment.

121

4.4 Security of CLS–DDH

SNDU(uid, n)

if uid /∈ HUL

HUL← HUL ∪ {uid}, l← l + 1,gsk[uid]←⊥,Min ←⊥,decuid ← cont

if l = k uid′ ← uid,H ← Dχ
2 , simulate πH with H,n, stuid ← (⊥, H, πH)

return ((H,πH), cont)

Continue from line 5 of oracle in anonymity experiment

SIGN(uid,m)

if uid 6= uid′ perform SIGN oracle from anonymity experiment

else α, β←$Z∗p, µ1 ← gα, µ2 ← cpkαD2

A′, d←$Z∗p, Â← A′isk, simulate π with A′, Â, d, µ1, µ2,m

σ ← (A′, Â, d, π) return ((µ1, µ2), σ)

CONVERT((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

s← s+ 1 if s ≤ j perform CONVERT given in Figure 4.4

if s > j + 1 perform CONVERT given in anonymity experiment

if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 return ⊥
if bpk /∈ BPK return ⊥
if ∃i s.t. µi = µ∗ and ∃j 6= i s.t. Identify(uid∗d, µj) = 1 for d ∈ {0, 1}

return ⊥
else compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); r

′
i) for i = 1, . . . , k

if ∃i s.t. µi = µ∗ r←$Z∗p
∀j ∈ [1, k]

α←$Z∗p, c′j ← (cj,1g
α, cj,2bpk

α) Let σj = (., ., ., πj)

if µj = µ∗ µ′j ← Dr
4

if µj 6= µ∗

if (uid, ., µj , σj) ∈ SL yj ← yuid else extract yj from πj

µ′j ← D
ryj
3

β←$Z∗p, cµ′j ,← (gβ , µ′jbpk
β)

Choose random permutation Π;∀i ∈ [1, k] (cµi, ci)← (cµ′Π(i), c
′
Π(i))

else ((cµ1, c1), . . . , (cµk, ck))←$CLS.Convert(gpk, csk, bpk, ((cµ1, c1), . . . , (cµk, ck)))

return ({(cµi, ci)}k, {(cµi, ci)}k, r′1, . . . , r′k)

Dj(D1, D2, D3, D4)

s, l← 0, k←$ [1, q], b, b′←$ {0, 1}, h← D1, χ←$Z∗p, h1 ← hχ

Finish computing gpk, csk, isk as in CLS.Setup,CLS.IKGen,CLS.CKGen

HUL, SL← ∅
(uid∗0, uid

∗
1,m

∗, st)←$ASNDU,SIGN,CONVERT(gpk, isk, choose)

if uid∗b 6= uid′ return 0

if uid∗0 /∈ HUL or uid∗1 /∈ HUL return b′

(µ∗, σ∗)←$ SIGN(uid′,m∗)

b∗←$ASNDU,SIGN,CONVERT(st, µ∗, σ∗, guess)

if b∗ = b return 1

Figure 4.5: Dj a distinguishing algorithm for the DDH problem in the CLS anonymity
proof

122

4.4 Security of CLS–DDH

Simulating the SIGN Oracle. The SIGN oracle is identical to the oracle in the anonymity

experiment, when uid 6= uid′ is queried. When uid′ is queried, we write logD1
(D2) as ỹ, and

so D2 = hỹ. This is consistent with SNDU, as H = Dχ
2 = hỹ1. A′, d′ are chosen randomly

and independently and Â = A′isk and so these are distributed identically to CLS.Sign. The

signature proof of knowledge π can be simulated due to the zero-knowledge property of

the proof system used. Therefore the outputs of SIGN are distributed identically to the

anonymity experiment.

Simulating the CONVERT Oracle. Other than the jth query, the CONVERT oracle

is identical to both Games (0, j) and (0, j + 1).

For the jth query, if the input to Dj is a DDH tuple, then outputs from the CONVERT

oracle are identically distributed to the anonymity game. This is because, if µ∗ is not

queried, the oracle behaves identically to the anonymity game. If µ∗ is queried, the ci

are computed identically to the anonymity game. Writing logD1
(D3) as r̃, Dr

4 = hỹr̃r

and D
ryj
3 = hrr̃yj . The µ′ are then blinded, and shuffled with a random permutation.

Therefore, due to the re-randomisation property, the freshly blinded µ′ are distributed

identically to the re-randomised µ′. Therefore, if a DDH tuple is input, the outputs of the

CONVERT oracle are identically distributed to Game (0, j).

Simulating challenge signature. The challenge signature (µ∗, σ∗) input to A in the

guessing stage is distributed identically to the anonymity game, due to outputs of the

SIGN oracle being distributed identically to the anonymity game.

Reduction to the DDH problem. If the input to Dj is not a DDH tuple, then outputs

of the CONVERT oracle for the jth query are identically distributed to Figure 4.4. This is

because for all pseudonyms µi input, except for µ∗, the pseudonyms output are distributed

identically to the oracle in the anonymity game. When µ∗ is queried, as D4 is random

and independent, µ′i is now chosen randomly and independently, and so is identically

distributed to Figure 4.4. Therefore, if the input to Dj is not a DDH tuple, then the

outputs to A are identically distributed to Game (0, j + 1)

The distinguisher Dj only aborts early if uid∗b 6= uid′, which occurs with probability q−1/q.

123

4.4 Security of CLS–DDH

Therefore, the probability that Dj outputs 1 given a DDH tuple was input is Pr[P0,j]/q.

The probability that Dj outputs 1 given a DDH tuple was not input is Pr[P0,j+1]/q. The

advantage of Dj is therefore |Pr[P0,j] − Pr[P0,j+1]|/q, therefore |Pr[P0,j] − Pr[P0,j+1]| =

qεDDH.

We define Game 1 to be Game (0, qconv), where qconv is the number of queries to the

CONVERT oracle. Let P1 be the event that an adversary A correctly guesses b after

Game 1. As |Pr[P0,j]− Pr[P0,j+1]| = qεDDH, then |Pr[P0,0]− Pr[P1]| ≤ qconvqεDDH.

Next, we show that |Pr[P1]−1/2| ≤ εDDH. We build an adversary A′ that distinguishes

between DDH tuples, given A that successfully guesses b in Game 1 with probability

Pr[P1]. We provide A′ in Figure 4.6, and explain why the simulation input to A given

in Figure 4.6 is identically distributed to Game 1, provided a DDH tuple is input, and A

guesses correctly with probability 1/2, if a DDH tuple is not input.

The group public key and issuer secret key (gpk, isk) are computed identically to Game 1,

except for g, cpk, which are distributed identically to Game 1.

Simulating the Oracles. The SNDU and SIGN oracles are identical to Game 1. In the

CONVERT oracle, if µj = µ∗, µ′j is distributed identically to Game 1. Otherwise, µ′i is

computed using yuid, which is already known if µ′i was output by the SIGN oracle, and for

other signatures yuid can be extracted using the soundness property of the zero-knowledge

proofs used. Due to the re-randomisation property, the freshly blinded µ′ are distributed

identically to the re-randomised µ′. Therefore, the cµ′i generated are distributed identically

to Figure 4.4.

Reduction to the DDH problem. If a DDH tuple is input, (D3, D4h
yb) are distributed

identically to CLS.Sign. The values A′, d are chosen randomly, Â = A′isk, and so they are

distributed identically to the CLS.Sign algorithm. The signature proof of knowledge π

can be simulated, due to the zero-knowledge property of the zero-knowledge proofs used.

Therefore, µ∗, σ∗ are distributed identically to Game 1, and so A guesses successfully with

probability Pr[P1]. If the input is not a DDH tuple, then all inputs to A are independent

of b, therefore A guesses successfully with probability 1/2. On input a DDH tuple, A′

124

4.4 Security of CLS–DDH

SNDU(uid,Min)

Same as in anonymity experiment

SIGN(uid,m)

Same as in anonymity experiment

CONVERT((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 return ⊥
if bpk /∈ BPK return ⊥
if ∃i s.t. µi = µ∗ and ∃j 6= i s.t. Identify(uid∗d, µj) = 1 for d ∈ {0, 1}

return ⊥
else compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); r

′
i) for i = 1, . . . , k

r←$Z∗p,∀j ∈ [1, k]

α←$Z∗p, c′j ← (cj,1g
α, cj,2bpk

α)

Let σj = (., ., ., πj)

if µj = µ∗ µ′j ←$G1

if µj 6= µ∗

if (uid, ., µj , σj) ∈ SL yj ← yuid else extract yj from σj

µ′j ← hryj

β←$Z∗p, cµ′j ,← (gβ , µ′jbpk
β)

Choose random permutation Π;∀i ∈ [1, k] (cµi, ci)← (cµ′Π(i), c
′
Π(i))

return ({(cµi, ci)}k, {(cµi, ci)}k, r′1, . . . , r′k)

A′(D1, D2, D3, D4)

Set g ← D1, b, b
′←$ {0, 1}, cpk ← D2

Otherwise set gpk, isk as in CLS.Setup,CLS.IKGen,CLS.CKGen

(uid∗0, uid
∗
1,m

∗, st)←$ASNDU,SIGN,CONVERT(choose, gpk, isk)

Let gsk[uid∗0] = (·, ·, y0, ·) and gsk[uid∗1] = (·, ·, y1, ·), if y0, y1 undefined return b′

µ∗1 ← D3, µ
∗
2 ← D4h

yb

A′, d←$G1, Â← A′isk, simulate π with A′, Â, d, µ∗1, µ
∗
2,m

∗

µ∗ ← (µ∗1, µ
∗
2), σ∗ ← (A′, Â, d, π), b∗←$ASNDU,SIGN,CONVERT(guess, st, µ∗, σ∗)

if b∗ = b return 1 else return 0

Figure 4.6: A′ which distinguishes between DDH tuples using A in the CLS anonymity
proof

125

4.4 Security of CLS–DDH

outputs 1 with probability Pr[P1]. On an input that is not a DDH tuple, A′ outputs 1

with probability 1/2. Therefore Pr[P1]− 1/2 ≤ εDDH, and so |Pr[P1]− 1/2| = εDDH.

Therefore |Pr[P0,0] − 1/2| ≤ (qqconv + 1)εDDH. As εDDH is negligible, our construction

satisfies anonymity.

4.4.3 Non–transitivity

Lemma 4.2. The CLS–DDH construction presented in Section 4.3.1 satisfies non-transitivity

if the DDH assumption holds in G1, and the SPK is unbounded simulation-sound, zero–

knowledge and online extractable (for the underlined value).

Proof. For proving non-transitivity, we have to show that there exists an efficient simulator

SIM that makes the real and simulated game indistinguishable. We start by describing

the simulator and then explain why the real and simulated conversion oracles CONVERT

and CONVSIM are indistinguishable.

SIM(gpk, bpk, Luid1 , . . . Luidk′)

l← 0,∀j ∈ [1, k′]

µ′←$G1;∀m ∈ Luidj

l← l + 1, β, γ←$Z∗p, cl ← (gγ ,m · bpkγ), cµl ← (gβ , µ′ · bpkβ)

return ((cµ1, c1), . . . (cµl, cl))

We assume that an adversary A exists that makes q queries to the SNDU oracle for

distinct user identifiers and qconv queries to the CONVX oracle, guesses b correctly in the

non-transitivity game with SIM as described and wins with probability ε+ 1/2.

We will stepwise make the real-world (b=0) and the simulated world (b=1) equivalent,

using a sequence of Games Hj for j = 0, . . . , q. The idea is that in Game Hj we will not

use simulated conversions for all users uid1, . . . , uidj in order of when they were queried

126

4.4 Security of CLS–DDH

to SNDU. More precisely, we define Game Hj to be as given in Figure 4.7 with all other

oracles identical to the non–transitivity experiment. Let Pj be the event that A guesses

b correctly in Game Hj , with the simulator given. Game Hj keeps track of the queries to

SNDU, adding the first j queries uid to a set UL. Then during queries to CONVSIM, if a

signature of a user in UL is queried, these are treated in the same way as pseudonyms for

corrupted users, i.e., they are normally converted using the CLS.Convert algorithm. If a

signature of an honest user that is not in UL is queried, we add this user to NUL. These

conversions are simulated as usual.

Game H0 is identical to the non-transitivity game because UL is empty. Therefore,

Pr[P0] = ε+ 1/2. In Game Hq, UL contains all honest users, and so the CONVSIM oracle

is now identical to the CONVERT oracle, and inputs to the adversary are now independent

of b , therefore Pr[Pq] = 1/2.

We now show that if an adversary can distinguish Games Hj and Hj+1, we can turn this

into a distinguisher Dj that can break the DDH assumption. We describe the reduction

and the additional simulation that is needed in Figures 4.8 and 4.9. The CONVERT oracle

remains unchanged. To avoid confusion, we write uid′ to refer to the j + 1-th user that

has joined the group (and for which Dj embedded the DDH challenge).

We now argue that when a DDH tuple (D1, D2, D3, D4) is input to Dj , the inputs to A

are distributed identically to Game Hj+1; when a DDH tuple is not input, the inputs to

A are distributed identically to Game Hj . That is for D1 = h,D2 = ha, D3 = hb, D4 = hc,

the oracles provided by Dj will be exactly as in Hj+1 when c = ab, and as in Hj otherwise.

We first note that due to the DDH random self-reduction given in [127], if a DDH tuple is

input to Dj , then for all i ∈ [qconv], D1, D2, D3,i, D4,i is a DDH tuple. If a DDH tuple is not

input to Dj , then D1, D2, D3,1, D4,1, · · · , D3,qconv , D4,qconv is randomly and independently

distributed.

The keys gpk, csk, isk are distributed identically to the non–transitivity game, as χ is

chosen randomly and independently when setting h1 ← hχ.

Simulating the SNDU Oracle. The SNDU oracle only differs from the oracle in the

non–transitivity experiment during the (j+1)-th query by embedding D2 of the DDH chal-

127

4.4 Security of CLS–DDH

Game Hj
t← 0, b←$ {0, 1}, param←$CLS.Setup(1τ)

HUL, CUL, SL← ∅
(ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk), b∗←$ASNDU,SIGN,CONVX(guess, gpk, isk)

return b∗

SNDU(uid,Min)

if uid /∈ HUL, t← t+ 1, if t ≤ j UL← UL ∪ {uid}
Continue from line 2 of standard SNDU oracle

CONVSIM((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 or bpk /∈ BK return ⊥
Set CL← ∅
Compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); ri) for i = 1, . . . , k

∀i ∈ [1, k]

if (uid,mi, µi, σi) ∈ SL

if Luid does not exist, create Luid ← {mi},CLuid ← {(ci, cµi)}
else set Luid ← Luid ∪ {mi},CLuid ← CLuid ∪ {(ci, cµi)}

else CL← CL ∪ {(ci, cµi)}
{(cµi, ci)}i=1,...k′ ←$CLS.Convert(gpk, csk, bpk,CL ∪

⋃
uid∈UL

CLuid)

for k′ ← |CL ∪
⋃

uid∈UL

CLuid|

let Luid1 , . . . Luidk′′ be the non-empty message clusters

Let NUL← {uid1, . . . uidk′′}\UL
{(cµi, ci)}i=k′+1,...k←$SIM(gpk, bpk,

⋃
uid∈NUL

Luid)

Choose random permutation Π;∀i ∈ [1, k] (cµ′i, c
′
i)← (cµΠ(i), cΠ(i))

return ({(cµi, ci, ri)}i=1,...,k, {(cµ′i, c′i)}i=1,...k, r1, . . . , rk)

Figure 4.7: Description of Game Hj and the changes to the SNDU and CONVSIM oracles
in the CLS non–transitivity proof

128

4.4 Security of CLS–DDH

Dj(D′1, D′2, D′3, D′4)

Expand D′1, D
′
2, D

′
3, D

′
4 into D1, D2, {D3,i, D4,i : i ∈ [qconv]} using DDH random self-reduction [127]

s, t← 0, b, ←$ {0, 1}, h← D1, χ←$Z∗p, h1 ← hχ

Finish computing gpk, csk, isk as in CLS.Setup,CLS.IKGen,CLS.CKGen

HUL, CUL, SL← ∅
b∗←$ASNDU,SIGN,CONVX(guess, gpk, isk)

if b∗ = b return 1 else return 0

SNDU(uid, n)

if uid /∈ HUL, t← t+ 1, if t ≤ j UL← UL ∪ {uid}
HUL← HUL ∪ {uid},gsk[uid]←⊥,Min ←⊥,decuid ← cont

if t = j + 1 uid′ ← uid,H ← Dχ
2 simulate πH with H,n, stuid ← (⊥, H, πH)

return ((H,πH), cont)

Continue from line 5 of standard SNDU oracle

SIGN(uid,m)

if uid 6= uid′ perform SIGN oracle from anonymity experiment

else α, β←$Z∗p, µ1 ← gα, µ2 ← cpkαD2

A′, d←$Z∗p, Â← A′isk

Simulate π with A′, Â, d, µ1, µ2,m

σ ← (A′, Â, d, π) return ((µ1, µ2), σ)

Figure 4.8: Oracles for Dj our distinguishing algorithm for the DDH problem in the CLS
non–transitivity proof

lenger into the user’s “public key” H using knowledge of χ. Clearly, H is distributed iden-

tically as when computed normally, and πH can be simulated due to the zero-knowledge

property of the proof system. Note that y is not defined for this honest user, but this is

not output to A, or used in the next stage of the protocol.

Simulating the SIGN Oracle. The SIGN oracle is identical to the oracle in the non–

transitivity experiment when uid 6= uid′ is queried. When uid′ is queried, we simply

encrypt D2 instead of hy.

This is consistent with SNDU, as H = Dχ
2 . Further, A′, d′ are chosen randomly and

independently, and Â = A′isk, so these are distributed identically to CLS.Sign. The SPK

π can be simulated due to the zero–knowledge property of the proof system.

Simulating the CONVSIM Oracle. What remains to be shown is that the CONVSIM

oracle created by Dj either behaves identically to the CONVSIM oracle in Game Hj or

as in Hj+1, depending on whether its input was a DDH tuple or not. We know that

D3,s = hr̃ for some r̃ and thus it must hold that Dyr
3,s = hr̃ry. Finally, we derive cµ by

129

4.4 Security of CLS–DDH

CONVSIM((µ1,m1, σ1), . . . , (µk,mk, σk), bpk)

s← s+ 1, if ∃i ∈ [1, k] s.t. CLS.Verify(gpk,mi, µi, σi) = 0 or bpk /∈ BK return ⊥
Set CL← ∅, r←$Z∗p
Compute (cµi, ci)←$CLS.Blind(gpk, bpk, (µi,mi); ri) for i = 1, . . . , k

∀i ∈ [1, k]

if (uid,mi, µi, σi) ∈ SL

if Luid does not exist Luid ← {mi},CLuid ← {(mi, yuid)}
else Luid ← Luid ∪ {mi},CLuid ← CLuid ∪ {(mi, yuid)}

else Extract yi from σi,CL← CL ∪ {(mi, yi)}

n← 0; ∀(m, y) ∈ CL ∪
⋃

uid∈UL

CLuid

n← n+ 1, γ1, γ2←$Z∗p, (cµn, cn)← ((gγ1 , Dyr
3,sbpk

γ1), (gγ2 ,mbpkγ2))

if Luid′ exists ∀m ∈ Luid′
n← n+ 1, γ1, γ2←$Z∗p, (cµn, cn)← ((gγ1 , Dr

4,sbpk
γ1), (gγ2 ,mbpkγ2))

let Luid1 , . . . Luidk′′ be the non-empty message clusters

Let NUL← {uid1, . . . uidk′′}\UL
{(cµi, ci)}i=n+1,...k←$ SIM(gpk, bpk,

⋃
uid∈NUL,uid 6=uid′

Luid)

Choose random permutation Π;∀i ∈ [1, k] (cµ′i, c
′
i)← (cµΠ(i), cΠ(i))

return ({(cµi, ci)}i=1,...,k, {(cµ′i, c′i)}i=1,...k, r1, . . . , rk)

Figure 4.9: The CONVSIM oracle used by distinguisher Dj in the CLS non–transitivity
proof

encrypting Dyr
3,s from scratch under bpk, which is not noticeable to the adversary due to

the re-randomisation that is applied in the conversion algorithm.

If (D1, D2, D3, D4) is a DDH tuple, then Dr
4,s = hr̃rỹ. Therefore as ỹ = yuid′ , the inputs

to A are also distributed identically to Game Hj+1. Whereas, if (D1, D2, D3, D4) is not

a DDH tuple, then Dr
4,s, is distributed identically to µ′, which was chosen randomly and

independently. Therefore the inputs to A are distributed identically to Game Hj .

Reduction to the DDH problem. Therefore, the probability that Dj outputs 1 if it

was given a valid DDH tuple as input is Pr[Pj+1], and Pr[Pj] is the probability that Dj

outputs 1 when the input was not a DDH tuple. The advantage of Dj is then |Pr[Pj] −

Pr[Pj+1]|, therefore |Pr[Pj]− Pr[Pj+1]| = εDDH.

Overall, for our sequence of games H0 to Hq, it holds that |Pr[P0]− Pr[Pq]| ≤ qεDDH and

thus ε ≤ qεDDH is negligible. This concludes our proof that the CLS–DDH construction

satisfies non–transitivity.

130

4.4 Security of CLS–DDH

4.4.4 Conversion Blindness

Lemma 4.3. The CLS–DDH construction presented in Section 4.3.1 satisfies conversion

blindness if the DDH assumption holds in G1.

Proof. We define Game 0 be the conversion blindness experiment, using the CLS–DDH

construction. Let P0 be the event that an adversary A correctly guesses b after Game 0.

We define Game 1 to be identical to Game 0, except instead cµ∗ is chosen randomly. Let

P1 be the event that the adversary A correctly guesses b after Game 1.

Game 1

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk), (bpk, bsk)←$CLS.BKGen(param)

(st, (µ0,m0), (µ1,m1))←$A(choose, gpk, isk, csk, bpk)

(., c∗)←$CLS.Blind(gpk, bpk, (µb,mb)), cµ
∗←$G3

1

b∗←$A(guess, st, cµ∗, c∗)

return 1 if b∗ = b

We define Game 2 to be identical to Game 1, except c∗ is chosen randomly. Let P2 be

the event that the adversary A correctly guesses b after Game 2. Clearly the probability

that A correctly guesses b is 1/2, as they are given no information about b. Therefore

Pr[P2] = 1/2.

Game 2

param←$CLS.Setup(1τ), (ipk, isk)←$CLS.IKGen(param), (cpk, csk)←$CLS.CKGen(param)

gpk ← (param, ipk, cpk), (bpk, bsk)←$CLS.BKGen(param)

(st, (µ0,m0), (µ1,m1))←$A(choose, gpk, isk, csk, bpk)

c∗←$G2
1, cµ

∗←$G3
1

b∗←$A(guess, st, cµ∗, c∗)

return 1 if b∗ = b

We show that Game 0 and Game 1 are indistinguishable assuming the DDH assumption.

We provide a distinguishing algorithm D1 in Figure 4.10.

131

4.4 Security of CLS–DDH

D1(D1, D2, D3, D4)

b←$ {0, 1}
g ← D1, bpk ← D2, otherwise generate gpk, isk, csk as in CLS.Setup,CLS.IKGen,CLS.CKGen

(st, ((µ0, µ
′
0),m0), ((µ1, µ

′
1),m1))←$A(choose, gpk, isk, csk, bpk)

(., c∗)←$CLS.Blind(gpk, bpk, (µb,mb)), β←$Z∗p, cµ∗ ← (µbg
β , D3, µ

′
bD4cpk

β)

b∗←$A(guess, st, cµ∗, c∗)

return 1 if b∗ = b

Figure 4.10: D1 that distinguishes between Game 0 and Game 1 in the CLS conversion
blindness proof

D2(D1, D2, D3, D4)

b←$ {0, 1}
g ← D1, bpk ← D2, otherwise generate gpk, isk, csk as in CLS.Setup,CLS.IKGen,CLS.CKGen

(st, ((µ0, µ
′
0),m0), ((µ1, µ

′
1),m1))←$A(choose, gpk, isk, csk, bpk)

c∗ ← (D3,mbD4), cµ∗←$G3
1

b∗←$A(guess, st, cµ∗, c∗)

return 1 if b∗ = b

Figure 4.11: D2 that distinguishes between Game 1 and Game 2 in the CLS conversion
blindness proof

If D1 is input a DDH tuple, all inputs to A are distributed identically to Game 0. This is

because, letting α = loggD3, then D4 = bpkα, and therefore cµ∗ is distributed identically

to the CLS.Blind algorithm.

If D1 is not input a DDH tuple, all inputs to A are distributed identically to Game 1.

This is because, β,D3, D4 are now chosen independently and randomly.

Therefore |Pr[P0] − Pr[P1]| ≤ εDDH, where εDDH is the DDH advantage, and therefore

negligible.

We show that Game 1 and Game 2 are indistinguishable assuming the DDH assumption.

We provide a distinguishing algorithm D2 in Figure 4.11.

If D2 is input a DDH tuple, all inputs to A are distributed identically to Game 1. This

is because letting α = loggD3, then D4 = bpkα, and so c∗ is distributed identically to an

output of the CLS.Blind algorithm.

If D2 is not input a DDH tuple, all inputs to A are distributed identically to Game 2.

This is because D3, D4 are now chosen independently and randomly.

132

4.4 Security of CLS–DDH

Therefore |Pr[P1]− Pr[P2] ≤ εDDH, and so|Pr[P0]− 1/2| ≤ 2εDDH.

4.4.5 Join Anonymity

Lemma 4.4. The CLS–DDH construction presented in Section 4.3.1 satisfies join anon-

ymity if the DDH assumption holds in G1, and the SPK is zero–knowledge.

Proof. First we show that if an adversary A exists that makes q queries for distinct user

identifiers to the SNDU oracle, such that

|Pr[Expanon−join−0
A,CLS–DDH (τ) = 1]− Pr[Expanon−join−1

A,CLS–DDH (τ) = 1]| = ε,

where ε is non-negligible, then we can can build an adversary A′,that breaks the DDH

assumption with non-negligible probability. We provide A′ in Figure 4.12. We then

describe why the simulation given in Figure 4.12 is indistinguishable to the join anonymity

experiment to A if a DDH tuple is input, and that A guesses correctly with probability

1/2 if a DDH tuple is not input.

Assuming the input to A′ is not a DDH tuple, then the probability A′ aborts due to uidb 6=

ũid is (q-1)/q. If ũid is input to the SIGN oracles, then A′ outputs 1 with probability 1/2.

As D4 is random and independent to all other variables, all inputs to A are independent

of b, therefore the probability they guess correctly is 1/2. Therefore, the probability that

A′ outputs 1 is 1/2q.

Assuming the input to A′ is a DDH tuple, ũid = uidb, and A does not cheat by querying

uid0 or uid1 to the signing oracle, we now show that all inputs to A are distributed

identically to the join anonymity experiment.

The keys (gpk, isk, csk) given to A are distributed identically to the join anonymity ex-

periment. The only difference is in choosing h1, h, which are distributed randomly and

independently.

133

4.4 Security of CLS–DDH

SNDU(uid, n)

if uid /∈ HUL

HUL← HUL ∪ {uid}, l← l + 1,gsk[uid]←⊥,Min ←⊥,decuid ← cont

if l = k ũid← uid,H ← D2, simulate πH with H,n, stuid ← (⊥, H, πH)

return ((H,πH), cont)

Continue from line 5 of oracle in second converter anonymity experiment

SIGN(uid,m)

if uid /∈ HUL return ⊥
if uid = ũid return ⊥
if uid 6= uid∗ perform SIGN oracle from join anonymity

else α, β←$Z∗p, µ1 ← gα, µ2 ← cpkαD4

A′, d←$G1, Â← A′isk, simulate π with A′, Â, d, µ1, µ2,m

σ ← (A′, Â, d, π) return ((µ1, µ2), σ)

A′(D1, D2, D3, D4)

b←$ {0, 1}, gpk, csk, isk chosen as in CLS.Setup,CLS.IKGen,CLS.CKGen except h1 ← D1, h← D3

k←$ [1, q], l = 0,HUL← ∅
(st, uid0, uid1)←$ASNDU,SIGN(choose, gpk, isk, csk)

if uid0 or uid1 /∈ HUL or decuid0 6= accept or decuid1 6= accept b∗ ← 0

if b∗ = b return 1 else return 0

if uidb 6= ũid return 0

Choose uid∗ as in experiment,HUL← HUL ∪ {uid∗}, b∗←$ASNDU,SIGN(guess, st, uid∗)

if (uidd, ∗) ∈ SL for d = 0, 1 b∗ ← 0

if b∗ = b return 1 else return 0

Figure 4.12: A′, which breaks the DDH assumption, using A, which breaks the join
anonymity of CLS–DDH with probability ε

134

4.4 Security of CLS–DDH

Simulating the SNDU Oracle. The SNDU oracle only differs from the oracle in the

join anonymity experiment during the k-th query. In this case H is distributed identically,

and πH can be simulated due to the zero-knowledge property of the proof system used.

The value yũid is not defined but this is not output to A, or used in the next stage of the

protocol. Therefore, the output of SNDU is distributed identically to the join anonymity

experiment.

Simulating the SIGN Oracle. The SIGN oracle is identical to the oracle in the join

anonymity experiment when uid 6= uid∗ is queried. When uid∗ is queried, letting y∗ =

logD1
(D2), D4 = hy

∗
. This is consistent with SNDU, as H = D2 = hy

∗

1 . The values

A′, d′ are chosen randomly and independently, and Â = A′isk, so these are distributed

identically to CLS.Sign. The proof π can be simulated due to the zero-knowledge property

of the proof system used. Therefore the output of SIGN is distributed identically to the

join anonymity experiment.

Reduction to the DDH problem. Assume A′ is input a DDH tuple, and uidb output

by A is ũid, which occurs with probability 1/q, then A′ will not abort early. If the

adversary queries the signing oracle with uid0 or uid1, or does not output honestly joined

users, then b∗ = 0 is the same as the output of the join anonymity experiment with

adversary A. If the adversary does not query the signing oracle with uid0 or uid1, then

all inputs to A are identically distributed to the join anonymity experiment, and so b∗ = b

with the same probability as 1 is output in the join anonymity experiment for adversary

A.

Therefore, the probability that A′ outputs 1 is:

1/2 Pr[Expanon−join−0
A,CLS–DDH (τ) = 0] + 1/2 Pr[Expanon−join−1

A,CLS–DDH (τ) = 1] = (ε+ 1)/2.

Therefore A′ outputs 1 with probability (ε+ 1)/2q.

Therefore, A′ has advantage ε/2q in distinguishing DDH tuples, and so our CLS–DDH

construction satisfies join anonymity.

135

4.4 Security of CLS–DDH

SNDU(uid,Min)

if uid /∈ HUL

HUL← HUL ∪ {uid},gsk[uid]←⊥,Min ←⊥,decuid ← cont

yuid←$Z∗p, H ← Dyuid
2 , simulate πH with H, stuid ← (⊥, H, πH)

return ((H,πH), cont)

Continue from line 5 of oracle in non-frameability experiment

SIGN(uid,m)

α←$Z∗p, µ1 ← gα, µ2 ← cpkαDzyuid
2

A′, d←$G1, Â← A′isk, simulate π with A′, Â, d, µ1, µ2,m

σ ← (A′, Â, d, π) return ((µ1, µ2), σ)

A′(D1, D2)

gpk, csk, isk chosen as in CLS.Setup,CLS.IKGen,CLS.CKGen except h1 ← D1, z←$Z∗p, h← Dz
1

HUL← ∅, (uid∗,m∗, µ∗, σ∗)←$ASNDU,SIGN(gpk, isk, csk)

Extract y∗ from π∗ included in σ∗ return y∗y−1
uid∗

Figure 4.13: A′, which breaks the discrete log assumption, using A, which breaks the
non-frameability of CLS–DDH with probability ε

4.4.6 Non–frameability

Lemma 4.5. The CLS–DDH construction presented in Section 4.3.1 satisfies non-frameability

if the DL assumption holds in G1, and the SPK is simulation-sound and zero–knowledge.

Proof. We show that if there exists an adversary A such that Pr[ExpnonframeA,CLS–DDH(τ) = 1] =

ε, where ε is non-negligible, then we can can build an adversary A′ that breaks the discrete

log assumption with non-negligible probability. We provide A′ in Figure 4.13, where we

describe how A′ simulates the oracles needed in the non-frameability game and extracts

the DL solutions. We then describe why the simulation given in Figure 4.13 and the

non–frameability experiment are indistinguishable towards A.

All inputs to A are distributed identically to the non-frameability experiment.

The values gpk, csk, isk are distributed identically to the non–frameability game, as ev-

erything but h, h1 is chosen in the same way. The value z is chosen randomly and inde-

pendently, therefore h is distributed correctly.

136

4.4 Security of CLS–DDH

Simulating the SNDU Oracle. When a new user identifier is queried to SNDU, H

is distributed identically as yuid is chosen randomly and independently, and πH can be

simulated due to the zero-knowledge property of proof system used. Note that y is set as

⊥, but this is not output to A, or used in the next stage of the protocol.

Simulating the SIGN Oracle. Letting ỹ = logD1
(D2), then Dzyuid

2 = hỹyuid . This is

consistent with SNDU because H = hỹyuid1 . Therefore, µ1, µ2 are distributed correctly.

A′, Â, d are distributed identically to CLS.Sign because Â = A′isk, and A′, d are chosen

randomly. The proof π can be simulated due to the zero–knowledge property of the zero–

knowledge proofs used. Therefore the output of SIGN is distributed identically to the

non-frameability experiment.

Reduction to the DL problem. We assume A is successful. The output of A,

(m∗, µ∗, σ∗), cannot have been returned by the SIGN oracle, as A is successful, there-

fore we can extract y∗, due to the soundness property of the zero–knowledge proof used.

As Identify(gpk, csk, uid∗,m∗, µ∗) = 1, this means that µ∗2µ
∗−csk

1 = D
zyuid∗
2 = hỹyuid∗ .

Therefore due to the soundness of the zero–knowledge proof, hỹyuid∗ = hy
∗

and ỹ is output

by A′.

If A is successful with probability ε, A′ solves the discrete logarithm problem with prob-

ability at least ε, and so our CLS–DDH construction satisfies non–frameability.

4.4.7 Traceability

Lemma 4.6. The CLS–DDH construction presented in Section 4.3.1 satisfies traceability

if the q-SDH assumption holds, and the SPK is simulation-sound, zero–knowledge and

online extractable.

Proof. First we show that if there exists an adversary A such that Pr[ExptraceA,CLS–DDH(τ) =

1] = ε, where ε is non-negligible, which makes q queries to the SNDI oracle for distinct

user identifiers, then we can can build an adversary A′ that breaks the q-SDH problem

137

4.4 Security of CLS–DDH

with non-negligible probability. We provide the detailed description of A′ in Figure 4.14,

and explain here how A′ works.

First note that all inputs that A′ provides to A are distributed identically to the trace-

ability experiment. This is because G1,G2,GT , p, e, g2, ipk are distributed identically to

the traceability experiment, and g, h, cpk, csk were chosen identically to the traceability

experiment. The generators g1, h2 are distributed correctly, due to the fact µ and ν1

were chosen randomly and independently. As θ is chosen randomly, h1 is also distributed

correctly. Therefore, (gpk, csk) given to A are distributed identically to the traceability

experiment.

We will later use the fact that Γ = gisk1 , and Bi = g
1/(isk+xi)
1 . This is because g1 =∏q−1

i=0 S
µζi
i = g̃

µf(isk)
1 , therefore Γ =

∏q−1
i=0 S

µζi
i+1 =

∏q−1
i=0 S

µζiisk
i = gisk1 , andBi =

∏q−2
j=0 S

µηi,j
j

= g̃
µfi(isk)
1 = g

1/(isk+xi)
1 .

Simulating the ADDU Oracle. The ADDU oracle simply returns accept when a valid

uid is input, as in the traceability experiment.

Simulating the SNDI Oracle. In the case of SNDI, y can be extracted due to the

soundness property of the zero-knowledge proofs used. We now show that answers to

SNDI queries are correctly distributed.

During the kth query to SNDI, suid, xuid are distributed correctly, as ν2 is chosen randomly

and independently. Because ν2 = suid + θy,

Auid = gν11 = (g1g
ν1(isk+x)−1
1)1/(isk+x) = (g1h

ν2
2)1/(isk+x) = (g1h

suid+θy
2)1/(isk+x)

= (g1h
suid
2 hy1)1/(isk+x).

Therefore Auid is also distributed correctly.

For all other queries, suid, xuid are chosen randomly and independently and so are dis-

tributed correctly. Auid is also distributed correctly due to the following:

Auid = Bl(B
((x−xl)ν1−1)/ν2
l g

ν1/ν2
1)suid+θy = Bl(B

((x−xl)ν1−1)/ν2
l B

ν1(isk+xl)/ν2
l)suid+θy

138

4.4 Security of CLS–DDH

ADDU(uid)

if uid ∈ HUL ∪ CUL return ⊥ else HUL← HUL ∪ {uid} return accept

SNDI(uid, (H,πH))

if uid ∈ HUL return ⊥ else CUL← CUL ∪ {uid}, l← l + 1

Extract y as a witness of πH

if l = k suid ← ν2 − θy, xuid ← x,Auid ← gν11 , yuid ← y

else xuid ← xl, suid←$Z∗p, Auid ← Bl(B
((x−xl)ν1−1)/ν2
l g

ν1/ν2
1)suid+θy, yuid ← y

return ((Auid, xuid, suid), cont)

SIGN(uid,m)

if uid /∈ HUL return ⊥
if yuid undefined yuid←$Z∗p
α, β←$Z∗p, µ1 ← gα, µ2 ← cpkαhyuid , a←$Z∗p, A′ ← ga1 , Â← Γa, d←$G1

Simulate π using A′, Â, d, µ1, µ2,m

return ((µ1, µ2), (A′, Â, d, π))

A′(G1,G2,GT , p, e, g̃1, S1, ..., Sq, g2, w)

G1,G2,GT , p, e, g2 given as input, ipk ← w,HUL, CUL← ∅
g, h chosen as in CLS.Setup, csk, cpk chosen as in CLS.CKGen

∀i ∈ [1, q − 1] xi←$Z∗p

µ←$Z∗p, let f(X) =

q−1∏
i=1

(X + xi) =

q−1∑
i=0

ζiX
i, g1 ←

q−1∏
i=0

Sµζii ,Γ←
q−1∏
i=0

Sµζii+1

x, ν1, ν2←$Z∗p, h2 ← ((Γgx1)ν1g−1
1)1/ν2 , θ←$Z∗p, h1 ← hθ2, gpk ← (cpk, ipk, param)

∀i ∈ [1, q − 1] let fi(X) =

q−1∏
j=1,j 6=i

(X + xi) =

q−2∑
j=0

ηi,jX
j , Bi ←

q−2∏
j=0

S
µηi,j
j

l← 0, k←$ [1, q], ((m1, µ1, σ1), ..., (mr, µr, σr))←$AADDU,SNDI,SIGN(gpk, csk)

Parse σi = (A′i, Âi, di, πi)

∀i ∈ [1, r] H̃i ← µi,2µ
−csk
i,1

if ∃i ∈ [1, r] s.t. ∀uid ∈ CUL H̃i 6= hyuid

Extract x̃, ỹ, r̃2, r̃3, s̃′ from πi

if r̃3 = 0, Ã← 1, s̃← s̃′

else Ã← A′
r̃3
i , s̃← s̃′ + r̃2r̃3

s∗ ← s̃+ θỹ return ((Ãg
−ν1s∗/ν2
1)

ν2
ν2−s∗−ν1s∗(x̃−x) , x̃)

else return ⊥

Figure 4.14: A′ which breaks the q-SDH assumption, using A which breaks the traceability
of CLS–DDH with probability ε

139

4.4 Security of CLS–DDH

= BlB
(suid+θy)(ν1(isk+x)−1)/ν2
l = (g1g

(suid+θy)(ν1(isk+x)−1)/ν2
1)1/(isk+xl)

= (g1h
suid+θy
2)1/(isk+xl) = (g1h

suid
2 hy1)1/(isk+xl).

Therefore, answers to SNDI queries are distributed identically to the traceability experi-

ment.

Simulating the SIGN Oracle. For the SIGN oracle, µ1, µ2 are chosen identically to

the traceability experiment. As a is chosen randomly and independently, A′, d are chosen

randomly, and as Γ = gisk1 , Â = A′isk, therefore (A′, Â, d) are distributed identically to

CLS.Sign. Due to the zero-knowledge property of SPK, π can be simulated identically to

the traceability experiment using A′, Â, d, µ1, µ2,m. Therefore, answers to these queries

are distributed identically to the traceability experiment.

Reduction to q-SDH. We assume A is successful. Then it outputs at least q+ 1 valid

signatures that are unlinkable and not returned by the SIGN oracle for an uncorrupted

user. As there are at least q + 1 unlinkable signatures, there will be i such that ∀uid ∈

CUL, H̃i 6= hyuid . As the signatures were not returned by the SIGN oracle, we can extract

the witnesses for πi due to soundness of the zero-knowledge proofs used.

We now show that we correctly extract a BBS+ signature Ã on s̃, x̃, ỹ from πH .

If r̃3 = 0, then g1h
ỹ
1, h

s̃′
2 = 1. Therefore Ã = (g1h

ỹ
1h

s̃
2)1/(isk+x̃) = 1.

If r̃3 6= 0, then Âi = A′−x̃i dih
r̃2
2 , and Âi = A′iski , thereforeA′isk+x̃

i = dih
r̃2
2 = (g1h

ỹ
1h

s̃′
2)1/r̃3hr̃22

= (g1h
ỹ
1h

s̃′+r̃2r̃3
2)1/r̃3 = (g1h

ỹ
1h

s̃
2)1/r̃3 . Therefore Ã = A′r̃3i = (g1h

ỹ
1h

s̃
2)1/(isk+x̃).

There are three possible cases for the BBS+ signature Ã, x̃, ỹ, s̃.

Consider the first case, when x̃ /∈ {x1, ..., xq−1} ∪ {x}. If ν2 − s∗ − ν1s
∗(x̃ − x) = 0, then

ν1 = ν2−s∗
s∗(x̃−x) . If s∗ = 0, then ν2 = 0, which is not possible. Therefore the adversary can

obtain ν1 and so break the discrete logarithm problem, which is implied by the q-SDH

problem.

We now show that A′ outputs g
1/(isk+x̃)
1 , with which we can obtain a solution to the q-SDH

140

4.4 Security of CLS–DDH

problem.

(Ãg
−ν1s∗/ν2
1)

ν2
ν2−s∗−ν1s∗(x̃−x) = (g1h

s∗
2)

ν2
(isk+x̃)(ν2−s∗−ν1s∗(x̃−x)) g

−ν1s
∗

ν2−s∗−ν1s∗(x̃−x)
1

= (g1g
s∗(ν1(isk+x)−1)/ν2
1)

ν2
(isk+x̃)(ν2−s∗−ν1s∗(x̃−x)) g

−ν1s
∗

ν2−s∗−ν1s∗(x̃−x)
1

= g
s∗ν1(isk+x)−s

∗+ν2−s
∗ν1(isk+x̃)

(isk+x̃)(ν2−s∗−ν1s∗(x̃−x))
1 = g

1/(isk+x̃)
1 .

Given this, which is a forgery as x̃ /∈ {x1, ..., xq−1}, A can break the q-SDH assumption as

shown in [20].

For the second case, if for some uid, x̃ = xuid, and Ã = Auid, but ỹ 6= yuid, then A′

can break the discrete log assumption implied by the q-SDH assumption. This is because

logh2(h1) = s̃−suid
yuid−ỹ .

Finally we consider the third case, where x̃ ∈ {x1, ..., xq−1} ∪ {x}, but for x̃ = xuid,

then Ã 6= Auid. We assume x̃ = x, which occurs with probability 1/q. As Ã 6= Auid,

ν2 − s∗ = (suid − s̃) + θ(y − ỹ) 6= 0.

We now show that A′ outputs g
1/(isk+x̃)
1 , with which we can obtain a solution to the q-SDH

problem:

(Ãg
−ν1s∗/ν2
1)

ν2
ν2−s∗ = (g1h

s∗
2)

ν2
(isk+x)(ν2−s∗) g

−ν1s
∗

ν2−s∗

1

= (g1g
s∗(ν1(isk+x)−1)/ν2
1)

ν2
(isk+x)(ν2−s∗) g

−ν1s
∗

ν2−s∗

1 = g
s∗ν1(isk+x)−s

∗+ν2−s
∗ν1(isk+x)

(isk+x)(ν2−s∗)
1 = g

1/(isk+x)
1 .

Given this, A can break the q-sdh assumption as shown in [20].

Therefore, if A is successful with probability ε, A′ solves the q-SDH problem with proba-

bility at least ε/q.

Therefore, our CLS–DDH construction satisfies traceability.

141

4.5 Instantiation of SPK and Efficiency

4.5 Instantiation of SPK and Efficiency

We now discuss how to securely instantiate the online-extractable SPKs used in our

CLS–DDH construction and state the computational cost and lengths of signatures and

pseudonyms.

4.5.1 Instantiation of SPKs

We have two non-interactive zero–knowledge proofs of knowledge in our scheme:

πH = SPK{(y) : H = hy1}(n)

used in the join protocol for proving knowledge of y in H = hy1, and

π = SPK{(x, y, r2, r3, s
′, α) : µ1 = gα ∧ µ2 = cpkαhy

∧ Â/d = A′−xhr22 ∧ g1h
y
1 = dr3h−s

′

2 }(m)

proving knowledge of a BBS+ signature on y and that µ encrypts the same y. In both

cases we need the witness y to be online extractable. For this, we additionally encrypt y

under a public key that needs to be added to param (and to which in security proof we will

know the secret key for), and extend π and πH to prove that the additional encryption

contains the same y that is used in the rest of the proof. For the verifiable encryption of y

we use Paillier encryption [40], which is secure under the DCR assumption [109]. Proving

correct encryption for such Paillier ciphertexts can be done using standard techniques

from [40].

For transforming interactive into non-interactive zero–knowledge proofs we rely on the

Fiat-Shamir heuristic that ensures security in the random oracle model. Due to this, we

can now state Corollary 4.1.

Corollary 4.1. The CLS–DDH construction presented in Section 4.3.1, with the SPK

instantiated as described, is a secure CLS as defined in Section 4.2 under the DDH, q-SDH

and DCR assumption in the random oracle model.

142

4.6 Summary

4.5.2 Computational Cost

We provide the operations required for the entities involved in the scheme in Table 4.1.

We denote k exponentiation in group Gi by kexpGi , k hash function calls by khash, and

k pairing operations by kpair. We denote k exponentiations in Z∗n2 due to the Paillier

encryption used, by kexpZ∗
n2

.

Entity Algorithm Computational Cost

User CLS.Sign 16expG1
+ 15expZn2 + 1hash

Verifier
CLS.Verify 12expG1

+ 11expZn2 + 1hash + 2pair

CLS.Blind 6expG1

CLS.Unblind 2expG1

Converter CLS.Convert 7kexpG1

(k pseudonyms input)

Table 4.1: Computational costs for our CLS–DDH instantiation

4.5.3 Pseudonym and Signature Length

We provide the sizes of pseudonyms and signatures in terms of the number of group

elements in Table 4.2. We denote the length required to represent k elements in G1 as

kG1, k outputs of a hash function as kH, and k elements in Z∗n2 , due to the Paillier

encryption used, as kZ∗n2 .

Pseudonym Signature

Original Blinded Converted Unblinded and
µ cµ cµ Converted µ σ

2G1 3G1 2G1 1G1 3G1 6Zp 1H 6Z∗n2

Table 4.2: Size of pseudonyms and signatures for our CLS–DDH instantiation

4.6 Summary

In this chapter we have proposed a new form of group signatures that support flexible

and controlled linkability. Data can be collected in an authenticated and fully unlinkable

form, whilst still allowing the data to be obliviously relinked by queries to a central entity.

We have formalised the required security properties in a dynamic model and proposed

143

4.6 Summary

an efficient scheme that satisfies these requirement under discrete logarithm and Paillier

assumptions in the random oracle model.

144

Chapter 5

Commuting Group Signatures

Contents

5.1 Introduction . 145

5.2 Chapter Preliminaries . 147

5.3 Definition and Security Model for Commuting Group Signa-

tures . 152

5.4 Our CGS Construction . 164

5.5 Security of our CGS–cmNIZK construction 170

5.6 Concrete Instantiation and Efficiency 184

5.7 Summary . 190

5.1 Introduction

This chapter introduces commuting group signatures, which allow group signatures to be

blinded whilst remaining publicly verifiable. We present a formal security model for this

new primitive and a construction that provably satisfies this model.

5.1.1 Motivation and Background

The opener in standard group signatures is the central entity that is invoked when a

signature is de-anonymised. As discussed earlier, this role poses a privacy risk, as the

145

5.1 Introduction

opener learns all messages and identities of users whose signatures are under dispute.

Commuting group signatures mitigate this by realising the opening obliviously. We model

blinding by introducing another type of entity — the data processors P. When requesting

signatures to be opened, the signature and message get blinded under P’s key and the

opener returns a blinded user identity that only the data processor can unblind. The

commuting aspect — following the notation of commuting signatures by Fuchsbauer [66]—

is used to preserve the validity of a group signature during the various blinding operations.

A data processor may entrust a data lake to collect and store data for them. The data

lake should not be able to see the messages and user identities, however they should still

be able to check that they hold valid user data suitable for processing. Commuting group

signatures allow a user to sign data and blind messages under the key of a trusted data

processor. The data lake can still verify these blinded signatures, and pass them on to the

data processor on request. The data processor can then unblind the messages/ signatures.

If the data processor wishes to know the correlation of data by user, they can request that

the opener obliviously opens these signatures.

Commuting group signatures can also be used as a building block in the context of group

signatures with selective linkability. The fact that the blinded signatures can be verified,

allows the converter to check inputs are well formed. This means we no longer need

the honest–but–curious assumption for the verifier. This also allows authentication to

be preserved, provided we still assume that the converter is honest–but–curious. This is

because, the converter can attest that their inputs were valid blinded group signatures.

Assuming that the converter is honest–but–curious this ensures that their output originates

from valid user data and has been honestly blinded and converted.

5.1.2 Existing Work

Verifiably encrypted signatures [22] allow a signer to sign a message, encrypt the signature

and prove that this is an encryption of a valid signature. In [66], commuting signatures

were introduced that provide a verifiably encrypted signature on an encrypted message,

starting from either an unencrypted message–signature tuple, or an encrypted message.

Commuting group signatures similarly prove that there exists a valid group signature on an

146

5.2 Chapter Preliminaries

encrypted message. Therefore, as in commuting signatures [66], data is publicly verifiable

even when encrypted.

5.1.3 Our Contribution

We formally define the functionality and security requirements of commuting group sig-

natures, adapting the standard notions of anonymity, traceability and non-frameability of

group signatures to this blinded setting.

We then build a construction that provably satisfies these requirements. At a high level:

a user’s and issuer’s key pair is each a signing and verification key of an automorphic

signature scheme [65]. When joining the group, the issuer signs the user’s verification

key, yielding the user’s membership credential. During signing, the user encrypts its

verification key under the opener’s public key, and proves knowledge of a valid automorphic

signature on the message with respect to this verification key, as well as knowledge of a

valid credential for this key.

In order to blind signatures for opening while preserving their verifiability, we use zero-

knowledge proofs that are controlled malleable [45], which can be realised with Groth-Sahai

proofs [77]. This allows the signature and message to be encrypted under a blinding key

and the proof transformed accordingly. Because the malleability is controlled, this does

not affect the unforgeability of the signatures.

Finally, we prove that our construction is secure based on the DDH assumption, and the

security of the automorphic signatures and the controlled malleable NIZKs.

5.2 Chapter Preliminaries

We now present all building blocks and assumptions that are needed for our CGS con-

struction. We use ElGamal encryption as a chosen–plaintext secure, re-randomisable and

homomorphic encryption scheme, and standard proof protocols, as defined in Chapter 2.

We also use automorphic signatures [65] and controlled malleable proof protocols.

147

5.2 Chapter Preliminaries

5.2.1 Automorphic Signatures

An automorphic signature [65] over a bilinear group (p,G1,G2,GT , e, g1, g2) is an EUF–

cma secure signature whose verification keys are contained in the message space. Moreover,

the messages and signatures consist of elements of G1 and G2, and the verification predicate

is a conjunction of pairing-product equations over the verification key, the message and

the signature. They consist of the following algorithms:

• ASetup(1τ) outputs the parameters for the signature scheme paramauto.

• AKeyGen(paramauto) on input the parameters, outputs a public verification key and

a secret signing key, (apk, ask).

• ASign(ask,m) on input a signing key and message, outputs a signature Ω.

• AVerify(Ω, apk,m): checks that Ω is a valid signature on m under apk.

We now present the automorphic signature scheme [65] that will be used in our concrete

instantiation. We have rewritten the scheme so that the message is an element of G1 and

the verification key is an element of G2. This can be done analogously so that the message

is an element of G2 and the verification key is an element of G1.

ASetup(1τ)

(p,G1,G2,GT , e, g1, g2)←$G(1τ), F,K, T ←$G1 return ((p,G1,G2,GT , e, g1, g2), F,K, T)

AKeyGen(paramauto)

ask←$Z∗p, apk ← gask2 return (apk, ask)

ASign(ask,M)

r, c←$Z∗p, A← (K · T r ·M)1/(ask+c), C ← F c, D ← gc2, R← gr1, S ← gr2 return (A,C,D,R, S)

AVerify(Ω, apk,M)

Check e(A, apk ·D) = e(K ·M, g2)e(T, S), e(C, g2) = e(F,D), e(R, g2) = e(g1, S)

148

5.2 Chapter Preliminaries

5.2.2 Controlled Malleable NIZKs

A controlled malleable proof [45] for a relation R and transformation class T , which gives

the set of allowed transformations, consists of three algorithms constituting a regular

non-interactive proof:

• CRSSetup(1τ): generates a common reference string σcrs.

• P(σcrs, x, w): takes as input the common reference string σcrs, as a well as a statement

x and a witness such that (x,w) ∈ R, and outputs a proof π.

• V(σcrs, x, π): takes as input the common reference string σcrs, as a well as a statement

x, and a proof π and outputs 1 if π is valid, and 0 otherwise.

As detailed in Chapter 2, such a proof is called zero–knowledge (NIZK) if there exists a

PPT simulator (S1, S2) such that an adversary can’t distinguish between proofs formed

by the prover and proofs formed by the simulator; and a proof of knowledge (NIZKPoK)

if there exists a PPT extractor (E1, E2) that can produce a valid witness from any valid

proof. The fourth algorithm, specific to malleable proof systems, is:

• ZKEval(σcrs, T, x, π): which, on input σcrs, a transformation T = (Tinst, Twit) (in some

transformation class T), an instance x, and a proof π, outputs a mauled proof π′

for instance Tinst(x).

The controlled-malleable simulation-sound extractability requirement reconciles malleabil-

ity with simulation-sound extractability [52, 75] and requires that, for any instance x, if

an adversary can produce a valid proof π that x ∈ R then an extractor can extract from

π either a witness w such that (x,w) ∈ R or a previously proved instance x′ and transfor-

mation T ∈ T such that x = Tinst(x
′). This guarantees that any proof that the adversary

produces is either generated from scratch using a valid witness, or formed by applying a

transformation from the class T to an existing proof.

Definition 5.1. Let (CRSSetup,P,V,ZKEval) be a NIZKPoK system for an efficient rela-

tion R, with a simulator (S1, S2) and an extractor (SE1, E2). Let T be an allowable set of

unary transformations for the relation R such that membership in T is efficiently testable.

149

5.2 Chapter Preliminaries

Let SE1 be an algorithm that, on input (1τ), outputs (σcrs, τs, τe) such that (σcrs, τs) is

distributed identically to the output of S1. Consider the following game with adversary

A:

• Step 1. (σcrs, τs, τe)←$SE1(1τ)

• Step 2. (x, π)←$AS2(σcrs,τs,·)(σcrs, τe)

• Step 3. (w, x′, T)← E2(σcrs, τe, x, π).

The proof system satisfies controlled-malleable simulation-sound extractability (CM-SSE)

with respect to T if for all PPT algorithms A there exists a negligible function negl such

that the probability (over the choices of SE1, A, and S2) that V(σcrs, x, π) = 1 and

(x, π) /∈ Q (where Q is the set of queried statements and their responses) but either:

• w 6=⊥ and (x,w) /∈ R;

• (x′, T) 6= (⊥,⊥) and either x′ /∈ Qinst (the set of queried instances), x 6= Tinst(x
′), or

T /∈ T ;

• (w, x′, T) = (⊥,⊥,⊥);

is at most negl(τ).

In [45] strong derivation privacy for such proofs is also defined. This ensures simulated

proofs are indistinguishable from those formed via a transformation.

Definition 5.2. For a malleable NIZK (CRSSetup,P,V,ZKEval) with an associated sim-

ulator (S1, S2), a given adversary A, and bit b, let pAb (τ) be the probability of the event

that b′ = 1 in the following game:

• Step 1. (σcrs, τs)←$S1(1τ);

• Step 2. (state, x1, π1, ..., xq, πq, T)←$A(σcrs, τs);

150

5.2 Chapter Preliminaries

• Step 3. If V(σcrs, xi, πi) = 0 for some i, (x1, · · · , xq) is not in the domain of Tinst, or

T /∈ T , abort and output ⊥. Otherwise, form

π←$


S2(σcrs, τs, Tinst(x1, · · · , xq)), if b = 0

ZKEval(σcrs, T, {xi, πi}i∈[q]), if b = 1

• Step 4. b′←$A(state, π).

The proof system is strongly derivation private if for all PPT algorithms A there exists a

negligible function negl such that |pA0 (τ)− pA1 (k)| < negl(τ).

Putting these two definitions together, a cm-NIZK is defined to be a proof system that is

CM-SSE, strongly derivation private, and zero–knowledge.

A cm-NIZK Construction We now present the construction given in [45] that provably

satisfies the above definitions. Let R be an efficient relation, and suppose T is an allowable

set of transformations for R that contains the identity transformation; suppose further

that membership in T is efficiently testable.

Let (SigKGen,Sign,Verify) be a structure preserving signature scheme that is EUF-cma

secure as defined in Sections 2.5.3 and 2.5.4. Let (CRSSetupWI,PWI,VWI,ZKEvalWI) be a

non-interactive witness indistinguishable proof of knowledge (NIWIPoK), as defined in Sec-

tion 2.6.1, for the relation: ((x, vk), (w, x′, T,Ω)) ∈ RWI if (x,w) ∈ R or Verify(vk,Ω, x′) =

1, x = Tinst(x
′), and T ∈ T . We also require the NIWIPoK to be derivation pri-

vate with respect to RWI and a set of transformations TWI such that for every T ′ =

(T ′inst, T
′
wit) ∈ T there exists a TWI(T

′) ∈ TWI. For TWI(T
′) = (Tinst,WI, Twit,WI) we require

that Tinst,WI(x, vk) = (T ′inst(x), vk), and Twit,WI(w, x
′, T,Ω) = (T ′wit(w), x′, T ′ ◦ T,Ω).

The cm-NIZK is defined as follows:

• CRSSetup(1τ): Generate σcrs,WI←$CRSSetupWI(1
τ) and (vk, sk)←$ SigKGen(1τ), out-

put σcrs = (σcrs,WI, vk).

• P(σcrs, x, w): Output π←$PWI(σcrs,WI, xWI, wWI), where xWI = (x, vk) and wWI =

(w,⊥,⊥,⊥).

151

5.3 Definition and Security Model for Commuting Group Signatures

• V(σcrs, x, π): Output VWI(σcrs,WI, xWI, π) where xWI = (x, vk).

• ZKEval(σcrs, T, x, π): Output ZKEvalWI(σcrs,WI, TWI(T), xWI, π) where xWI = (x, vk).

Instantiation In [45] it is shown that Groth Sahai proofs [77] can be used to instantiate

the derivation private NIWIPoKs used in this construction, and a structure preserving

signature was identified [44].

5.3 Definition and Security Model for Commuting Group

Signatures

In this section we first introduce the syntax and generic functionality of commuting group

signatures CGS and then present the desirable security and privacy properties for such

schemes.

The entities involved in a commuting group signature scheme are an issuer I, a set of

users U = {uidi}, an opener O, and — additionally — data processors P. Once joining the

group via the issuer I, a user can either sign as in standard group signatures, or output

blinded signatures directly (with respect to the blinding public key of P). Standard

signatures and attached messages can also be blinded afterwards. Opening can be done

for both standard group signatures and blinded ones, where it returns the user identity

in plain and in blinded form respectively. Signatures, messages, or user identities that

are blinded can only be retrieved by the designated data processor P. Our model allows

for several data processors. However, the blinding public key must be input to CGS.Sign.

This enables users, and only them, to choose their preferred and trusted data processor,

but also limits the flexibility as they have to be chosen at the moment the signatures are

created.

5.3.1 Syntax of CGS

Definition 5.3 (CGS). A commuting group signature CGS scheme consists of the following

algorithms:

152

5.3 Definition and Security Model for Commuting Group Signatures

Setup and Key Generation. We refer to (param, ipk, opk) as the group public key

gpk, and BK as the public/ private key space induced by CGS.BKGen.

CGS.Setup(1τ)→ param on input the security parameter 1τ , outputs param, the public

parameters for the scheme.

CGS.IKGen(param)→ (ipk, isk) performed by the issuer I; outputs the issuer secret key

isk, and the issuing public key ipk.

CGS.OKGen(param)→ (opk, osk) performed by the opener O; outputs the opener secret

key osk, and the opener public key opk.

CGS.BKGen(param)→ (bpk, bsk) performed by a data processor P; outputs a blinding

secret key, bsk, and blinding public key, bpk.

Join, Sign and Verify. As in dynamic group signatures, a user joins via the issuer, and

they can then sign standard and blinded signatures. In contrast to the model for standard

group signatures [14], we split the signature into a pseudonym µ and a signature σ, for ease

of notation. All group signatures following the predominant Sign-Encrypt-Prove paradigm

can be matched to this notation.

CGS.UKGen(param)→ (usk[uid],upk[uid]) a user generates their own secret key

usk[uid] and their user public key upk[uid].

〈CGS.Join(gpk,usk[uid],upk[uid]),CGS.Issue(isk, gpk,upk[uid])〉 a user uid joins the

group by engaging in an interactive protocol with the issuer I. The user uid and

issuer I perform algorithms CGS.Join and CGS.Issue respectively. These are input

a state and an incoming message respectively, and output an updated state, an

outgoing message, and a decision, either cont, accept, or reject. The initial input to

CGS.Join is the group public key, gpk, their user secret key usk[uid], and user public

key upk[uid], whereas the initial input to CGS.Issue is the issuer secret key, isk, the

issuer public key ipk and user public key upk[uid]. If the user uid accepts, CGS.Join

has a private output of gsk[uid].

CGS.Sign(gpk, bpk,gsk[uid],m)→ (µ, σ) performed by the user with identifier uid, with

input the group public key gpk, blinding public key bpk, the user’s secret key

gsk[uid], and a message m; outputs a pseudonym µ and signature σ.

153

5.3 Definition and Security Model for Commuting Group Signatures

CGS.Verify(gpk, bpk,m, µ, σ)→ {0, 1} performed by a verifier; outputs 1 if σ is a valid

signature on m for pseudonym µ under the group public key gpk and blinding public

key bpk, and 0 otherwise.

Blinding. A successfully joined user can also create blinded group signatures directly,

where blinding is done with respect to bpk. Anyone knowing a standard group signature

can also blind it for the particular data processor. Importantly, despite being fully blinded,

the correctness of these signatures can still be verified.

CGS.BlindSign(gpk, bpk,gsk[uid],m)→ (c, cµ, cσ) performed by the user with identifier

uid with input the group public key gpk, including the blinding public key bpk, the

user’s secret key gsk[uid], and a message m; outputs a blinded message, pseudonym,

and signature.

CGS.BlindUser(bpk, upk)→ cupk performed on input a user public key upk, and the

blinding public key bpk; outputs a blinded user public key.

CGS.Blind(gpk, bpk,m, µ, σ)→ (c, cµ, cσ) performed by the verifiers with input the group

public key gpk including the blinding public key bpk, a message m, a pseudonym µ

and a signature σ; outputs a blinded message, pseudonym, and signature.

CGS.BlindVerify(gpk, bpk, c, cµ, cσ)→ {0, 1} performed by a verifier; outputs 1 if cσ is a

valid blinded signature on c for pseudonym cµ under the group public key gpk, and

0 otherwise.

Opening and Unblinding. Both standard and blinded group signatures can be de-

anonymised by the opener O, which outputs a plain user public key and a blinded one

respectively. The unblinding of user public keys or messages can be done with the corre-

sponding bsk only.

CGS.Open(gpk, bpk, osk,m, µ, σ)→ {upk,⊥} performed by the opener O, on input their

opening secret key, a message m, pseudonym µ and signature σ; outputs a user

public key or a failure symbol ⊥.

154

5.3 Definition and Security Model for Commuting Group Signatures

CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ)→ {cupk,⊥} performed by the opener O, on in-

put their opening secret key, and a blinded message c, pseudonym cµ and signature

cσ; outputs a blinded user public key or a failure symbol ⊥.

CGS.UnblindUser(bsk, cupk)→ upk on input a blinded user public key cupk, and the

blinding secret key bsk, outputs a user public key.

CGS.UnblindM(bsk, c)→ m on input a blinded message c, and the blinding secret key

bsk; outputs the message m.

Re–randomisation. When used in privacy-preserving protocols, such as the CLS+

scheme presented in Chapter 6, it may be useful if both types of signatures can be re-

randomised, which we therefore make explicit here. When re-randomising blinded signa-

tures, the algorithm also refreshes the blinded message. Sometimes we do not need the

full tuple c, cµ, cσ to be re-randomised and omit the unnecessary outputs for brevity.

CGS.RRand(gpk, bpk,m, µ, σ)→ (µ′, σ′) performed by a verifier, on input the group pub-

lic key, the blinding public key, and a message m, pseudonym µ and signature σ;

outputs a re-randomised pseudonym and signature.

CGS.RRandBlind(gpk, bpk, c, cµ, cσ)→ (c′, cµ′, cσ′) performed by a verifier, on input the

group public key, the blinding public key, and a blinded message c, pseudonym cµ and

signature cσ; outputs a re-randomised blinded message, pseudonym and signature.

5.3.2 Security Properties of CGS

Like standard dynamic group signatures [14], commuting group signatures must satisfy

the anonymity, traceability and non–frameability requirements. However, the anonymity

requirement must now take the blinding capabilities into account, and capture the opening

of blinded signatures and its impact in particular. Likewise, as blinded signatures can still

be verified against the group public key, the traceability and non-frameability requirements

must be extended as well. Finally, we additionally require that blinded signatures cannot

be linked to the signature before blinding, which we formalise in the blindness definition.

155

5.3 Definition and Security Model for Commuting Group Signatures

Oracles and State. Our security notions make use a number of oracles: ADDU, SNDU,

SNDI, SIGN, OPEN, BOPEN, which keep joint state.

We present the detailed description of these oracles in Figure 5.1 and an overview of them

and their maintained records. We do not provide oracles for all of the CGS algorithms,

however we require that they are indistinguishable from algorithms we do capture in our

security model.

ADDU (join of honest user and honest issuer) Creates a new honest user for uid

and internally runs a join protocol between the honest user and honest issuer. At

the end, the honest user’s secret key gsk[uid] and public key upk[uid] are generated,

and from then on signing/ opening queries for uid will be allowed.

SNDU (join of honest user and corrupt issuer) Creates a new honest user for uid

and runs the join protocol on behalf of uid with the corrupt issuer. If the join

session completes, the oracle will store the user’s secret key gsk[uid], and public key

upk[uid].

SNDI (join of corrupt user and honest issuer) Runs the join protocol on behalf of

the honest issuer with corrupt users. If the issue session completes, upk[uid] will be

stored. For joins of honest users, the ADDU oracle must be used.

SIGN This oracle returns signatures for honest users that have successfully joined (via

ADDU or SNDU, depending on the game).

OPEN This oracle opens standard signatures, and outputs a user public key.

BOPEN This oracle opens blinded signatures, and outputs a blinded user public key.

All oracles have access to the following records maintained as global state:

HUL List of uids of honest users, initially set to ∅. New honest users can be added by

queries to the ADDU oracle (when the issuer is honest) or SNDU oracle (when the

issuer is corrupt).

CUL List of corrupt users that have requested to join the group, initially set to ∅. New

corrupt users can be added through the SNDI oracle if the issuer is honest. If the

issuer is corrupt, we do not keep track of corrupt users.

156

5.3 Definition and Security Model for Commuting Group Signatures

ADDU(uid)

if uid ∈ HUL ∪ CUL return ⊥
(usk[uid],upk[uid])←$CGS.UKGen(param)

HUL← HUL ∪ {uid},gsk[uid]←⊥
decuid ← cont, stuidJoin ← (gpk,usk[uid],upk[uid])

stuidIssue ← (isk, gpk,upk[uid])

(stuidJoin,MIssue,decuid)←$CGS.Join(stuidJoin,⊥)

while decuid = cont

(stuidIssue,MJoin,decuid)←$CGS.Issue(stuidIssue,MIssue)

(stuidJoin,MIssue,decuid)←$CGS.Join(stuidJoin,MJoin)

if decuid = accept

gsk[uid]← stuidJoin,

return (accept,upk[uid])

SNDI(uid,Min, upk)

if uid ∈ HUL return ⊥
if uid /∈ CUL

CUL← CUL ∪ {uid},upk[uid]← upk

decuid ← cont, stuidIssue ← (isk, gpk, upk)

if decuid 6= cont return ⊥
(stuidIssue,Mout,decuid)←$CGS.Issue(stuidIssue,Min)

return (Mout,decuid)

SIGN(uid,m, bpk)

if uid /∈ HUL or gsk[uid] =⊥ return ⊥
(µ, σ)←$CGS.Sign(gpk, bpk,gsk[uid],m)

SL← SL ∪ {(uid,m, bpk)}
return (σ, µ)

SNDU(uid,Min)

if uid ∈ CUL return ⊥
if uid /∈ HUL

HUL← HUL ∪ {uid}
gsk[uid]←⊥,Min ←⊥,decuid ← cont

(usk[uid],upk[uid])←$CGS.UKGen(param)

return (upk[uid], cont)

if decuid 6= cont return ⊥
if stuidJoin undefined stuidJoin ← (gpk,usk[uid],upk[uid])

(stuidJoin,Mout,decuid)←$CGS.Join(stuidJoin,Min)

if decuid = accept gsk[uid]← stuidJoin

return (Mout,decuid)

OPEN(m,µ, σ, bpk)

upk ← CGS.Open(gpk, bpk, osk,m, µ, σ)

if m = m∗ and upk = upk[uid∗d] for d ∈ {0, 1}
return ⊥

else return upk

BOPEN(c, cµ, cσ, bpk, bsk)

if (bpk, bsk) /∈ BK return ⊥
upk ← CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ)

m← CGS.UnblindM(bsk, c), upk ← CGS.UnblindUser(bsk, upk)

if m = m∗ and upk = upk[uid∗d] for d ∈ {0, 1}
return ⊥

else return upk

Figure 5.1: Oracles used in our CGS security model

SL List of (uid,m, bpk) tuples requested from the SIGN oracle.

Correctness. The standard signature scheme should be correct as in the original defini-

tion for dynamic group signatures [14]. We further need to ensure that honestly generated

blinded signatures verify and open correctly, and that the blinding can be reversed.

The game defining the correctness requirements for commuting group signatures is given

in Figure 5.2.

Definition 5.4 (Correctness). A commuting group signature scheme CGS satisfies cor-

rectness if for all adversaries A: Pr[ExpcorrA,CGS(τ) = 1] = 0.

Commutative Behaviour of CGS. Our model now contains a multitude of algorithms,

essentially providing all functionality for blinded as well as for unblinded inputs. To avoid

a complexity blow-up in the security games, we require the indistinguishability of certain

157

5.3 Definition and Security Model for Commuting Group Signatures

Experiment: Expcorr
A,CGS(τ)

param←$CGS.Setup(1τ), (isk, ipk)←$CGS.IKGen(param), (osk, opk)←$CGS.OKGen(param)

(bsk, bpk)←$CGS.BKGen(param),CUL,HUL← ∅, gpk ← (param, ipk, opk)

(uid,m)←$AADDU(gpk), if uid /∈ HUL or gsk[uid] =⊥ return 0

(µ, σ)←$CGS.Sign(gpk, bpk,gsk[uid],m), if CGS.Verify(gpk, bpk,m, µ, σ) = 0 return 1

upk ← CGS.Open(gpk, bpk, osk,m, µ, σ), if upk[uid] 6= upk return 1

(c, cµ, cσ)←$CGS.Blind(gpk, bpkm, µ, σ)

if CGS.BlindVerify(gpk, bpk, c, cµ, cσ) = 0 return 1

if CGS.UnblindM(bsk, c) 6= m return 1

upk′ ← CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ))

if upk 6= upk′ return 1

Figure 5.2: Game defining correctness for CGS

operations, or in fact their commutative behaviour.

First, we require that directly blinded signatures are indistinguishable from standard ones

that were blinded later:

CGS.Blind(gpk, bpk,m, (CGS.Sign(gpk, bpk,gsk[uid],m))) ≈

CGS.BlindSign(gpk, bpk,gsk[uid],m).

Likewise, outputs of CGS.BlindUser must be indistinguishable from the output of

CGS.OpenBlind on a valid blinded signature with the same public key:

CGS.BlindUser(bpk, (CGS.Open(gpk, bpk, osk,m, µ, σ))) ≈

CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ).

Further, we want that verification and opening of blinded signatures

(c, cµ, cσ)←$CGS.Blind(gpk, bpk,m, µ, σ) must yield the same result as their unblind coun-

terparts for (µ, σ)←$CGS.Sign(gpk, bpk,gsk[uid],m):

CGS.BlindVerify(gpk, bpk, c, cµ, cσ) = CGS.Verify(gpk, bpk,m, µ, σ)

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ)) =

CGS.Open(gpk, bpk, osk,m, µ, σ).

The full requirements for the commutative behaviour of CGS are given in Figure 5.3. They

158

5.3 Definition and Security Model for Commuting Group Signatures

Experiment: Expindbsign-b
A,CGS (τ)

param←$CGS.Setup(1τ), (isk, ipk)←$CGS.IKGen(param), (osk, opk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk)

(uid,m, µ, σ, bpk)←$AADDU(gpk, isk, osk)

if uid /∈ HUL or gsk[uid] =⊥ or CGS.Verify(gpk, bpk,m, µ, σ) = 0 return 0

(c0, cµ0, cσ0)←$CGS.Blind(gpk, bpk,m, µ, σ), (c′1, cµ
′
1, cσ

′
1)←$CGS.BlindSign(gpk, bpk,gsk[uid],m)

b∗←$A(cb, cµb, cσb), return b∗

Experiment: Expindbuser-b
A,CGS (τ)

param←$CGS.Setup(1τ), (isk, ipk)←$CGS.IKGen(param), (osk, opk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk)

(m,µ, σ, bpk)←$A(gpk, isk, osk), if CGS.Verify(gpk, bpk,m, µ, σ) = 0 return 0

cupk0 ← CGS.OpenBlind(gpk, bpk, osk,CGS.Blind(gpk, bpk,m, µ, σ))

cupk1←$CGS.BlindUser(bpk,CGS.Open(gpk, bpk, osk,m, µ, σ))

b∗←$A(cupkb), return b∗

Experiment: Expindbverif
A,CGS (τ)

param←$CGS.Setup(1τ), (isk, ipk)←$CGS.IKGen(param), (osk, opk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk)

(m,µ, σ, bpk)←$A(gpk, isk, osk), (c, cµ, cσ)←$CGS.Blind(gpk, bpk,m, µ, σ)

if CGS.Verify(gpk, bpk,m, µ, σ) 6= CGS.BlindVerify(gpk, bsk,CGS.Blind(gpk, bpk,m, µ, σ)) return 1

if CGS.Open(gpk, bpk, osk,m, µ, σ) 6= CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ))

return 1

else return 0

Figure 5.3: Games defining commutative behaviour of CGS

allow us to omit redundant oracles and simplify our model.

Definition 5.5 (Commutative Behaviour of CGS). A commuting group signature scheme

CGS satisfies commutative behaviour of CGS if for all ppt adversaries A the following

advantages are negligible in τ : |Pr[Expindbsign−0
A,CGS (τ) = 1] − Pr[Expindbsign−1

A,CGS (τ) = 1]|,

|Pr[Expindbuser−0
A,CGS (τ) = 1]− Pr[Expindbuser−1

A,CGS (τ) = 1]|, and Pr[ExpindbverifA,CGS (τ) = 1].

Anonymity. This requirement ensures that group signatures cannot be de-anonymised

by an adversary that has corrupted the issuer and data processor, but not the opener.

The adversary has access to the opener, which they can query now on standard signatures

as well as on blinded ones (via the BOPEN oracle). Opening blinded inputs might seem a

risky choice, as it might lead to trivial wins by blinding and re-randomising the challenge

signature. To avoid this, we opt for an RCCA-version of the classic (CCA) anonymity

notion, and let the BOPEN oracle check whether it was queried on a blinded signature

that opens to either of the challenge users and the challenge message, and abort in such

159

5.3 Definition and Security Model for Commuting Group Signatures

cases. In order to do so, the adversary must also provide the blinding key pair to the

oracle. The key pair is first checked for correctness and then used to unblind the blinded

message and user identity.

The indistinguishability requirement of CGS.BlindSign ≈ CGS.Blind(CGS.Sign) ensures that

this requirement also covers the anonymity of signatures originated from CGS.BlindSign.

Definition 5.6 (CGS Anonymity). A commuting group signature scheme CGS satisfies

anonymity if for all polynomial–time adversaries A, the following advantage is negligible

in τ : ∣∣∣Pr[Expanon−1
A,CGS (τ) = 1]− Pr[Expanon−0

A,CGS (τ) = 1]
∣∣∣ .

Experiment: Expanon-b
A,CGS(τ)

param←$CGS.Setup(1τ), (isk, ipk)←$CGS.IKGen(param), (osk, opk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk)

(st, uid∗0, uid
∗
1,m

∗, bpk)←$ASNDU,SIGN,OPEN,BOPEN(choose, gpk, isk)

if uid∗0, uid
∗
1 /∈ HUL or gsk[uid∗0],gsk[uid∗1] =⊥ return 0

(µ∗, σ∗)←$CGS.Sign(gpk, bpk,gsk[uid∗b],m
∗)

b∗←$ASNDU,SIGN,OPEN,BOPEN(guess, st, µ∗, σ∗) return b∗

Blindness. This requirement ensures that blinded group signatures and messages cannot

be linked to the group signature and message they originate from, when the issuer and

opener are corrupted. We also capture that CGS.BlindUser securely blinds user public

keys. As the adversary has corrupted the issuer and opener, and this property does not

distinguish between honest and corrupted users, we do not provide them with any oracle

access.

Definition 5.7 (CGS Blindness). A commuting group signature scheme CGS satisfies

blindness if for all polynomial–time adversaries A the following advantage is negligible in

τ : ∣∣∣Pr[Expblind−0
A,CGS (τ) = 1]− Pr[Expblind−1

A,CGS (τ) = 1]
∣∣∣ .

160

5.3 Definition and Security Model for Commuting Group Signatures

Experiment: Expblind−bA,CGS (τ)

param←$CGS.Setup(1τ), (ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

(bpk, bsk)←$CGS.BKGen(param), gpk ← (param, ipk, opk)

(st, (upk0, µ0, σ0,m0), (upk1, µ1, σ1,m1))←$A(choose, gpk, bpk, isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 return 0

(c∗, cµ∗, σ∗)←$CGS.Blind(gpk, bpk,mb, µb, σb)), cupk←$CGS.BlindUser(bpk, upkb)

b∗←$A(guess, st, cupk, c∗, cµ∗, σ∗) return b∗

Traceability. This requirement ensures that group signatures can always be traced to a

user identifier from a join session. Here the adversary can corrupt the opener and data

processor, but not the issuer. We formulate this property for blinded signatures only, but

the guarantees carry over to standard ones as well, due to the commutative behaviour of

CGS.BlindVerify(CGS.Blind) = CGS.Verify and

CGS.UnblindUser(CGS.OpenBlind) = CGS.Open.

That is, if an adversary could forge a standard group signature that does not trace to a

join session, then it could blind this signature and so forge a valid blinded group signature

(as required by the experiment).

Definition 5.8 (CGS Traceability). A commuting group signature scheme CGS scheme

satisfies traceability if for all polynomial–time adversaries A the advantage

Pr[ExptraceA,CGS(τ) = 1] is negligible in τ .

Experiment: ExptraceA,CGS(τ)

param←$CGS.Setup(1τ), (ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk)

(c, cµ, cσ, bpk, bsk)←$AADDU,SNDI,SIGN(gpk, osk), if (bpk, bsk) /∈ BK return 0

upk ← CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ))

return 1 if all of the following conditions are satisfied:

CGS.BlindVerify(gpk, bpk, c, cµ, cσ) = 1 and

@uid ∈ CUL ∪ HUL such that upk[uid] = upk

Non–frameability. This requirement ensures that an adversary that has corrupted all

central entities, i.e., the opener, data processors and issuer, cannot frame an honest user.

161

5.3 Definition and Security Model for Commuting Group Signatures

Our game requires the adversary to output blinded values but again, due to the com-

mutative behaviour, this requirement also captures non-frameability for standard group

signatures.

Definition 5.9 (CGS Non–frameability). A commuting group signature scheme CGS sat-

isfies non–frameability if for all polynomial–time adversaries A, the advantage

Pr[ExpnonframeA,CGS (τ) = 1] is negligible in τ .

Experiment: ExpnonframeA,CGS (τ)

param←$CGS.Setup(1τ), (ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk)

(uid, c∗, cµ∗, cσ∗, bpk, bsk)←$ASNDU,SIGN(gpk, isk, osk)

return 1 if all of the following conditions are satisfied:

CGS.BlindVerify(gpk, bpk, c∗, cµ∗, cσ∗) = 1 and (bpk, bsk) ∈ BK

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c∗, cµ∗, cσ∗)) = upk[uid] where uid ∈ HUL

and (uid,CGS.UnblindM(bsk, c∗), bpk) /∈ SL

Indistinguishability of Re–randomisable Signatures. If the standard and blinded

group signatures should have the additional capability to be re-randomisable, we formalise

the security of that operation through an indistinguishability game, requiring that re-

randomised signatures and fresh signatures are indistinguishable from each other. Such

indistinguishability is used in our CLS+ security proof, given in Chapter 6, to allow for

the simulation of the convert oracle.

This requirement is not implied by the anonymity and blindness requirements. Consider a

construction that satisfies both blindness and anonymity. If this construction was adjusted

so that standard signatures include a counter which indicates how many times it has

been re-randomised (this counter would otherwise be ignored in verification, blinding and

opening), the resulting construction would still satisfy both anonymity and blindness. For

both the anonymity and blindness games, given an adversary A′ that breaks the new

construction, an adversary A could be constructed to break the original construction.

In the case of anonymity, A provides the same inputs to A′ that they receive, except that

a counter of 0 will be added to signatures returned by SIGN and in the guessing phase. If

A′ guesses correctly then A will guess correctly. In the case of blindness, A will provide A′

with the same inputs in the choosing phase. The two signatures returned by A′ will include

162

5.3 Definition and Security Model for Commuting Group Signatures

a counter, but this can simply be removed by A. The resulting signature returned to A will

be distributed identically to those in the blindness game for the new construction, as the

counter is ignored by blinding. Therefore all inputs to A′ are distributed correctly and so

if A′ guesses correctly A will guess correctly. Therefore a construction that clearly would

not satisfy indistinguishability of re-randomised and fresh standard signatures, does satisfy

anonymity and blindness. The same argument also holds for the indistinguishability of

re-randomised and fresh blinded signatures.

Experiment: Exprrand−bA,CGS (τ)

param←$CGS.Setup(1τ), (ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk),HUL, CUL← ∅

(st, uid,m, µ, σ, bpk)←$ASNDU,USK(gpk, isk, osk)

if uid /∈ HUL or gsk[uid] =⊥ or CGS.Open(gpk, bpk, osk,m, µ, σ) 6= upk[uid] return 0

if b = 0 (µ′, σ′)←$CGS.RRand(gpk, bpk,m, µ, σ)

if b = 1 (µ′, σ′)←$CGS.Sign(gpk, bpk,gsk[uid],m)

b∗←$A(st, µ′, σ′) return b∗

Experiment: Expblindrrand−bA,CGS (τ)

param←$CGS.Setup(1τ), (ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

gpk ← (param, ipk, opk),HUL, CUL← ∅

(st, uid, c, cµ, cσ, bpk, bsk)←$ASNDU,USK(gpk, isk, osk)

if (bpk, bsk) /∈ BK or uid /∈ HUL or gsk[uid] =⊥ return 0

if CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ) 6= upk[uid] return 0

if b = 0 (c′, cµ′, cσ′)←$CGS.RRandBlind(gpk, bpk, c, cµ, cσ)

if b = 1 (c′, cµ′, cσ′)←$CGS.BlindSign(gpk, bpk,gsk[uid],CGS.UnblindM(bsk, c))

b∗←$A(st, c′, cµ′, cσ′) return b∗

Definition 5.10 (Re–randomisable). A commuting group signature scheme CGS scheme

is re-randomisable if for all polynomial–time adversaries A the following advantages are

negligible in τ : ∣∣∣Pr[Exprrand−0
A,CGS (τ) = 1]− Pr[Exprrand−1

A,CGS (τ) = 1]
∣∣∣

and

163

5.4 Our CGS Construction

∣∣∣Pr[Expblindrrand−0
A,CGS (τ) = 1]− Pr[Expblindrrand−1

A,CGS (τ) = 1]
∣∣∣ .

5.4 Our CGS Construction

To build our CGS–cmNIZK construction for commuting group signatures, we make use of

automorphic signatures, ElGamal encryption and controlled malleable NIZKs. Automor-

phic signatures are structure-preserving signatures, for which the verification key space

is contained within the message space. Controlled-malleable NIZKs allow proofs to be

mauled to take into account a transformation of the instance, as long as this transfor-

mation is within an allowable set. This allows signatures to be blinded, but because the

malleability is controlled the unforgeability properties are still satisfied.

High–level Idea. The issuer’s key pair is the signing and verification key of an auto-

morphic signature [65], which we recall in Section 5.2, and the opening key is an ElGamal

encryption key pair. When joining the group, a user first generates a signing and verifi-

cation key of an automorphic signature, which will be their secret and public key. The

issuer then signs the user’s public key to form a credential, which is possible due to the

automorphic property.

When a user signs m, they encrypt their public key under the opening public key – which

forms a pseudonym – and “normally” sign the message using the automorphic signature.

The latter is never revealed, but gets used only in a proof of knowledge. More precisely,

using a cm-NIZK, the user proves knowledge of a signature of m under its public key, an

issuer’s credential on its public key and correctness of the pseudonym.

During blinding, the pseudonym is re-randomised, and an extra layer of encryption under

the blinding public key is added. The message is also encrypted under the blinding public

key. The malleability of the cm-NIZK is then used to update the signature. The pseudonym

can be opened by decrypting under the opening secret key – both in plain and blinded

form. Finally, messages and opened pseudonyms can be unblinded by decrypting with the

blinding secret key. The bpk must be fixed in signing, as it must be part of the statement

proved by the cm-NIZK to allow for the proof to be transformed in blinding. This is because

164

5.4 Our CGS Construction

cm-NIZKs are defined for relations that are closed under all allowable transformations.

Additional Structural Assumptions of Automorphic Signatures. We make the

following assumptions satisfied by our concrete instantiation which we present later. The

automorphic signature scheme can be simplified so either messages are elements of G1 and

the verification key is an element of G2, in which case we will refer to (ASetup1,AKeyGen1,

ASign1,AVerify1), or messages are elements of G2 and the verification key is an element of

G1, in which case we will refer to (ASetup2,AKeyGen2,ASign2,AVerify2). We also assume

our automorphic signatures are in the type–3 setting, ASetup takes as input the bilinear

group, and that the signing key sk and verification key vk are of the form sk ∈ Z∗p and

vk = gskj when vk ∈ Gj .

5.4.1 Detailed Description of our CGS–cmNIZK Construction

Setup and Key Generation. In CGS.Setup, parameters for the automorphic signature

scheme, ElGamal encryption scheme and cm-NIZKs are formed. The issuing secret and

public key is set to be the signing and verification key of an automorphic signature. The

opening secret and public keys are ElGamal decryption and encryption keys in G2, and

the blinding secret and public keys are ElGamal decryption and encryption keys in both

G1 and G2 .

CGS.Setup(1τ)

(p,G1,G2,GT , e, g1, g2)←$G(1τ), paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)

paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2), g←$G1, ĝ←$G2, σcrs←$CRSSetup(1τ)

return ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

CGS.IKGen(param)

(ipk, isk)←$AKeyGen2(paramauto2) return (ipk, isk)

165

5.4 Our CGS Construction

CGS.OKGen(param)

osk←$Z∗p, opk ← ĝosk

return (opk, osk)

CGS.BKGen(param)

bsk1, bsk2←$Z∗p, bpk1 ← gbsk1 , bpk2 ← ĝbsk2

return ((bpk1, bpk2), (bsk1, bsk2))

Join. To join the group, the user first generates a key pair (usk, upk) for an automorphic

signature and then obtains an issuer’s signature on their public key upk. The user must

first prove knowledge of usk with an SPK. However, the knowledge soundness of of this

SPK is not required in any of our security proofs. This is because our security model, like

the standard model for dynamic group signatures [14], ensures that even the issuer cannot

frame an honest user. Therefore if an adversary could complete a join protocol fully on

behalf of another user, without knowing the associated secret key, they still cannot forge

signatures. However, even if impersonating another user in the join protocol does not lead

to a forgery, it could still lead to a denial of service attack, and so we include the SPK.

CGS.UKGen(param)

return (upk, usk)←$AKeyGen1(paramauto1)

U .CGS.Join(gpk, usk, upk)
 I.CGS.Issue(isk, gpk, upk)

choose n←$ {0, 1}τ� n

πjoin←$ SPK{usk : upk = gusk2 }(n)

-
πjoin

Verify πjoin with respect to upk

cred←$ASign2(isk, upk)
� cred

check that
AVerify2(cred, ipk, upk) = 1

upk′ ← gusk1 return
gsk[uid]← (usk, upk, upk′, cred),

Figure 5.4: Join protocol of our CGS–cmNIZK construction

Sign and Verification of standard group signatures. When signing a message m

under the signing key gsk[uid] = (usk, upk, upk′, cred), the user’s public key is encrypted

under the opening public key. By setting µ2 = 1, µ can also be seen as an encryption

166

5.4 Our CGS Construction

under the blinding key with encryption randomness 0. The tuple (1,m) can also be seen

as an encryption of m under the blinding key with encryption randomness 0. This is

necessary so that blinding encryption can be added by “re-randomising” these ciphertexts

in CGS.Blind, while maintaining the capability to update the associated proof. This is

because cm-NIZKs are defined for relations that are closed under all allowable transforma-

tions and so encryption under the blinding key must be included during signing to allow

for the later blinding of the signature. The user then signs m with their user secret key

to output Ω.

The signature is never output, but instead a cm-NIZK is computed which proves that µ is

an encryption of upk, c is an “encryption” of m (with randomness 0), and knowledge of a

correct Ω. The latter comprises showing that Ω is a valid signature on m under upk, and

knowledge of a membership credential cred that is a valid signature on upk under ipk.

More formally we define the relation R such that ((opk, bpk1, bpk2, ipk, µ, c),

(upk′, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,m)) ∈ R if and only if:

e(g1, µ1) = e(gα1 , ĝ), e(g1, µ2) = e(gβ1 , ĝ), and (5.1)

e(g1, µ3) = e(g1, upk)e(gα1 , opk)e(gβ1 , bpk2), and (5.2)

AVerify1(Ω, upk,m) = 1, AVerify2(cred, ipk, upk) = 1, and (5.3)

e(c1, g2) = e(g, gγ2), e(c2, g2) = e(m, g2)e(bpk1, g
γ
2), and (5.4)

e(upk′, g2) = e(g1, upk). (5.5)

These checks ensure that a pseudonym is the ElGamal encryption of the upk under the

blinding and opening key (5.1,5.2), the ciphertext c is an ElGamal encryption of the

message under the blinding key (5.4), Ω is a valid signature under the user public key on

the message (5.3), the credential is a valid signature under the issuing public key on the

user public key (5.3), and that upk′ = gusk1 (5.5).

We define the allowable set of transformations to be:

T = {(renc1, renc2, renc3) : renc1, renc2, renc3 ∈ Zp},

such that for T = (renc1, renc2, renc3), the transformation

167

5.4 Our CGS Construction

Tinst(opk, bpk, ipk, µ, c) =

(opk, bpk, ipk, (µ1ĝ
renc1 , µ2ĝ

renc2 , µ3 · opkrenc1bpkrenc22), (c1g
renc3 , c2bpk

renc3
1)),

and Twit(upk
′, upk, cred,Ω, gα1 , g

β
1 , g

γ
2 ,m) =

(upk′, upk, cred,Ω, gα1 g
renc1
1 , gβ1 g

renc2
1 , gγ2g

renc3
2 ,m).

We show later that this relation and transformation can be instantiated as a cm-NIZK.

We note that upk′ is only included as a witness, to allow for the extractability requirement

necessary for the building of a CLS+ scheme, as shown in Chapter 6. This requirement

ensures that if a valid blinded signature does not open to a user public key that was

input to a simulator, upk′ can be extracted. If this is not necessary, upk′ can be removed,

which will not affect the security of the scheme. In Chapter 6, we define the extractability

property and show that this construction satisfies it.

In more detail, CGS.Sign and CGS.Verify are defined as follows:

CGS.Sign(gpk, bpk,gsk[uid],m)

parse gsk[uid] = (usk, upk, upk′, cred), α←$Z∗p, (µ1, µ2, µ3)← (ĝα, 1, upk · opkα)

β ← 0, γ ← 0, c← (1,m),Ω←$ASign1(usk,m)

σ←$ cm-NIZK{(upk′, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,m) : e(g1, µ1) = e(gα1 , ĝ)∧

e(g1, µ2) = e(gβ1 , ĝ) ∧ e(g1, µ3) = e(g1, upk)e(gα1 , opk)e(gβ1 , bpk2)∧

AVerify1(Ω, upk,m) = 1 ∧ AVerify2(cred, ipk, upk) = 1 ∧ e(c1, g2) = e(g, gγ2)∧

e(c2, g2) = e(m, g2)e(bpk1, g
γ
2) ∧ e(upk′, g2) = e(g1, upk)} return ((µ1, µ2, µ3), σ)

CGS.Verify(gpk, bpk,m, µ, σ)

Check µ2 = 1 ,Verify σ with respect to (opk, bpk, ipk, µ, (1,m))

Blinding and blind verification. During blinding, the pseudonym and message are

encrypted under the blinding public key, and the encryption under the opening public

168

5.4 Our CGS Construction

key is re-randomised, so that this encryption randomness cannot be used to unblind

pseudonyms. The cm-NIZK is transformed with ZKEval so that it is consistent with

the blinded pseudonym, and message. When ZKEval is performed, the proof is also re-

randomised due to the derivation privacy property. In CGS.BlindSign, the pseudonym is

encrypted under the blinding and opening public key, and the message is encrypted under

the blinding public key. The proof cm-NIZK is then computed as in CGS.Sign.

CGS.BlindSign(gpk, bpk,gsk[uid],m)

parse gsk[uid] = (usk, upk, upk′, cred), α, β, γ←$Z∗p

cµ← (ĝα, ĝβ , upk · opkαbpkβ2), c← (gγ ,m · bpkγ1),Ω←$ASign1(usk,m)

cσ←$ cm-NIZK{(upk′, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,m) : e(g1, cµ1) = e(gα1 , ĝ)∧

e(g1, cµ2) = e(gβ1 , ĝ) ∧ e(g1, cµ3) = e(g1, upk)e(gα1 , opk)e(gβ1 , bpk2)∧

AVerify1(Ω, upk,m) = 1 ∧ AVerify2(cred, ipk, upk) = 1 ∧ e(c1, g2) = e(g, gγ2)∧

e(c2, g2) = e(m, g2)e(bpk1, g
γ
2) ∧ e(upk′, g2) = e(g1, upk)}

return (c, cµ, cσ)

CGS.Blind(gpk, bpk,m, µ, σ)

if CGS.Verify(gpk, bpk,m, µ, σ) = 0 return ⊥

α′, β′, γ′←$Z∗p, cµ← (µ1ĝ
α′ , µ2ĝ

β′ , µ3opk
α′bpkβ

′

2), c← (gγ
′
,m · bpkγ

′

1)

cσ←$ZKEval(σcrs, (α
′, β′, γ′), (opk, bpk, ipk, µ, (1,m)), σ), return (c, cµ, cσ)

CGS.BlindVerify(gpk, bpk, c, cµ, cσ)

Check cσ with respect to cµ, c, gpk and bpk

CGS.BlindUser(bpk, upk)

β←$Z∗p return cupk ← (ĝβ , upk · bpkβ2)

Opening and unblinding. The opener first checks the validity of the provided input

and decrypts the standard or blinded pseudonym under its opening secret key osk. It

outputs the decrypted value, which is either the plain user public key or an encryption

thereof.

169

5.5 Security of our CGS–cmNIZK construction

CGS.Open(gpk, bpk, osk,m, µ, σ)

if CGS.Verify(gpk, bpk,m, µ, σ) = 0

return ⊥

return upk ← µ3µ
−osk
1

CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ)

if CGS.BlindVerify(gpk, bpk, c, cµ, cσ) = 0

return ⊥

return cupk ← (cµ2, cµ3 · cµ−osk1)

To unblind messages and user public keys, they are simply decrypted via bsk.

CGS.UnblindUser(bsk, cupk)

return upk ← cupk2cupk
−bsk2
1

CGS.UnblindM(bsk, c)

return c2c
−bsk1
1

Re-randomisation. In order to re-randomise both standard and blinded signatures,

firstly the encryption under both the opening and blinding public key is re-randomised.

The cm-NIZK is then updated with ZKEval to take this into account.

CGS.RRand(gpk, bpk,m, µ, σ)

if CGS.Verify(gpk, bpk,m, µ, σ) = 0 return ⊥, α′←$Z∗p, µ′ ← (µ1ĝ
α′ , µ2, µ3opk

α′)

σ′←$ZKEval(σcrs, (α
′, 0, 0), (opk, bpk, ipk, µ, (1,m)), σ), return (µ′, σ′)

CGS.RRandBlind(gpk, bpk, c, cµ, cσ)

if CGS.BlindVerify(gpk, bpk, c, cµ, cσ) = 0 return ⊥, α′, β′, γ′←$Z∗p

cµ′ ← (cµ1ĝ
α′ , cµ2ĝ

β′ , cµ3opk
α′bpkβ

′

2), c′ ← (c1g
γ′ , c2bpk

γ′

1)

cσ′←$ZKEval(σcrs, (α
′, β′, γ′), (opk, bpk, ipk, cµ, c), cσ), return (c′, cµ′, cσ′)

5.5 Security of our CGS–cmNIZK construction

We now show that our CGS–cmNIZK construction satisfies the security properties for

commuting group signatures defined in Section 5.3.2; i.e., the following theorem holds.

Theorem 5.1. The CGS–cmNIZK construction presented in Section 5.4 is a secure CGS

as defined in Section 5.3.2 if

170

5.5 Security of our CGS–cmNIZK construction

• the automorphic signatures schemes are EUF-cma secure and satisfy the additional

structural assumptions given in Section 5.4,

• the cm-NIZK is zero–knowledge, strongly derivation private and controlled-malleable

simulation-sound extractable (cm-SSE),

• the SPK (used in Join) is a zero-knowledge proof of knowledge,

• the DDH assumptions holds in G1 and G2.

We now show that our CGS–cmNIZK construction satisfies the correctness, commutative

behaviour, re-randomisability, traceability, non-frameability, anonymity and blindness re-

quirements given in Section 5.3.2.

5.5.1 Correctness

The first twos conditions are clearly satisfied due to the correctness of the cm-NIZKs used,

and because if µ = (ĝα, 1, upk · opkα), then µ3µ
−osk
1 = upk. Due to the correctness of the

cm-NIZKs used, the transformed proof will still be valid and so the signature will still be

valid after blinding. As c = (gγ
′
,m ·bpkγ

′

1), we have CGS.UnblindM(bsk, c) = c2c
−bsk1
1 = m.

Because upk = µ3µ
−osk
1 and µ2 = 1, we have cµ = (µ1ĝ

α, ĝβ, µ3opk
αbpkβ2). Therefore,

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ))

= CGS.UnblindUser(bsk, (ĝβ, µ3bpk
β
2µ
−osk
1)) = µ3µ

−osk
1 = upk.

5.5.2 Commutative Behaviour

CGS.BlindSign is indistinguishable from CGS.Sign followed by CGS.Blind because c, cµ are

distributed identically when they are computed in CGS.Blind with input a valid signature,

to when they are computed in CGS.BlindSign. A polynomial–time adversary cannot distin-

guish between cσ generated in CGS.Blind or CGS.BlindSign due to the derivation privacy

of cm-NIZKs.

CGS.BlindUser is indistinguishable from the output of CGS.OpenBlind on a valid blinded

171

5.5 Security of our CGS–cmNIZK construction

signature with the same user public key, because the adversary must return µ of the form

(ĝα, 1, upk · opkα), which will be of the form (ĝα+α′ , ĝβ, upk · opkα+α′bpkβ2) after blinding,

and (ĝβ, upk ·bpkβ2) after opening. This is identically distributed to CGS.BlindUser on input

upk.

For the final requirement, if the adversary outputs an invalid signature, then CGS.Blind

will also fail. If the adversary outputs a valid signature, then due to the correctness of the

cm-NIZK used, CGS.Blind will output a valid proof, and so CGS.BlindVerify will output 1.

Because upk = µ3µ
−osk
1 and µ2 = 1, cµ = (µ1ĝ

α, ĝβ, µ3opk
αbpkβ2). Then

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c, cµ, cσ))

= CGS.UnblindUser(bsk, (ĝβ, µ3bpk
β
2µ
−osk
1)) = µ3µ

−osk
1 = upk.

5.5.3 Re-randomisability

The pseudonyms output by CGS.Sign and CGS.RRand and the pseudonyms and blinded

messages output by CGS.BlindSign and CGS.RRandBlind are identically distributed. The

adversary cannot distinguish between a fresh cm-NIZK and a transformed one due to the

derivation privacy property. Therefore, the CGS–cmNIZK construction is re-randomisable.

5.5.4 Anonymity

Lemma 5.1. The CGS–cmNIZK construction presented in Section 5.4 satisfies anonymity

if the DDH assumption holds in G2, and the cm-NIZK is zero–knowledge and cm-SSE.

Proof. First we show that if an adversary A exists, such that

|Pr[Expanon−0
A,CGS–cmNIZK(τ) = 1]− Pr[Expanon−join−1

A,CGS–cmNIZK(τ) = 1]| = ε,

where ε is non-negligible, then we can can build an adversary A′ that distinguishes DDH

tuples with non-negligible probability. We provide A′ in Figure 5.5. We then describe why

the simulation given in Figure 5.5 and the anonymity experiment are indistinguishable

172

5.5 Security of our CGS–cmNIZK construction

towards A, provided A′ is input a DDH tuple, and otherwise that A guesses correctly

with probability 1/2.

The simulator SE1 outputs a σcrs that is identical to CRSSetup. The values ĝ, opk are

distributed identically to the anonymity experiment. Therefore, gpk, isk are distributed

identically to the anonymity experiment. Assuming a DDH tuple is input, the inputs to A

in the guessing phase are identically distributed. This is because µ∗ = (D3, 1, D4upk[uid∗b])

is identically distributed to CGS.Sign, as logD3
D4 = logĝ opk. The ciphertext c∗ is gener-

ated identically to CGS.Sign. The proof σ∗ can be simulated due to the zero–knowledge

property of the cm-NIZK used.

Simulating the Oracles. The SNDU and SIGN oracles are identical to the anonymity

experiment.

The OPEN and BOPEN oracles are identically distributed, provided they successfully ex-

tract upk and do not abort.

The only case in which they will not successfully extract upk is the case where instead

the extraction algorithm outputs a statement x′, and a transformation T , where x′ =

(opk, bpk∗, ipk, µ∗, c∗), as this is the only statement for which a simulation is generated,

and x = Tx(x′) and T is a valid transform. This means that cµ/ µ, and c/ (1,m), are re-

randomisations of µ∗, c∗, and so c/ (1,m) is an encryption of m∗, and cµ/ µ are encryptions

of upk[uid∗b]. Also bpk = bpk∗. In this case the OPEN and BOPEN oracles would have

aborted anyway.

Both oracles will also abort due to invalid inputs identically to the anonymity game. In

BOPEN, the blinding encryption randomness is preserved by outputting (cµ2, upkcµ
bsk2
2)

which is identically distributed to the output of CGS.OpenBlind.

Reduction to the DDH problem. If a DDH tuple is not input, D4 was chosen ran-

domly, and so the input to A is independent of b. Therefore A guesses correctly with

probability 1/2.

173

5.5 Security of our CGS–cmNIZK construction

SNDU(uid, n)

Identical to the anonymity experiment.

SIGN(uid,m, bpk)

Identical to the anonymity experiment.

OPEN(m,µ, σ, bpk)

if CGS.Verify(gpk, bpk,m, µ, σ) = 0 return ⊥
((·, upk, ·, ·, ·, ·, ·, ·), ·, ·)← E2(σcrs, τe, (opk, bpk, ipk, µ, (1,m)), σ)

if upk =⊥ return ⊥
if upk = upk[uid∗d] s.t d ∈ {0, 1} and m = m∗ and bpk = bpk∗ return ⊥
else return upk

BOPEN(c, cµ, cσ, bpk, bsk)

if (bpk, bsk) /∈ BK return ⊥
if CGS.BlindVerify(gpk, bpk, c, cµ, c) = 0 return ⊥
((·, upk, ·, ·, ·, ·, ·, ·), ·, ·)← E2(σcrs, τe, (opk, bpk, ipk, cµ, c), cσ)

m← CGS.UnblindM(bsk, c)

if upk =⊥ return ⊥
if upk = upk[uidd] s.t d ∈ {0, 1} and m = m∗ and bpk = bpk∗ return ⊥
else return (cµ2, upkcµ

bsk2
2)

A′(D1, D2, D3, D4)

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ)

paramauto1←$ASetup1(1τ), paramauto2←$ASetup2(1τ)

g←$G1, ĝ ← D1, (σcrs, τs, τe)←$SE1(1τ),

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), opk ← D2, gpk ← (param, ipk, opk)

(st, uid∗0, uid
∗
1,m

∗, bpk∗)←$ASNDU,SIGN,OPEN,BOPEN(choose, gpk, isk)

if uid∗0, uid
∗
1 /∈ HUL or gsk[uid∗0],gsk[uid∗1] =⊥ b∗ ← 0

if b∗ = b return 1 else return 0

µ∗ ← (D3, 1, D4upk[uid∗b]), c
∗ ← (1,m∗)

σ∗←$S2(σcrs, τs, (opk, bpk
∗, ipk, µ∗, c∗))

b∗←$ASNDU,SIGN,OPEN,BOPEN(guess, st, µ∗, σ∗)

if b∗ = b return 1 else return 0

Figure 5.5: A′ which distinguishes DDH tuples in G2 using A which breaks the anonymity
of CGS–cmNIZK with probability ε

174

5.5 Security of our CGS–cmNIZK construction

The probability A is successful is:

1/2 Pr[Expanon−0
A,Π (τ) = 0] + 1/2 Pr[Expanon−1

A,Π (τ) = 1] = (ε+ 1)/2.

Therefore A′ has an ε/2 advantage in distinguishing DDH tuples.

5.5.5 Blindness

Lemma 5.2. The CGS–cmNIZK construction presented in Section 5.4 satisfies blindness

if the DDH assumption holds in G1 and G2, and the cm-NIZK is zero–knowledge and

strongly derivation private.

Proof. In this proof we will show that the following Games 0 -5 are indistinguishable. As

Game 0 is the blindness game with the CGS–cmNIZK construction, and in Game 5 all

inputs to the adversary are independent of the bit they must guess, our CGS–cmNIZK

construction satisfies blindness. We give a summary of the games in Table 5.1.

Game Change Indistinguishability to previous game

Game 0 The blindness game with the
CGS–cmNIZK construction.

Game 1 σcrs generated by S1 instead of
CRSSetup.

Outputs of S1 and CRSSetup identi-
cally distributed.

Game 2 cσ∗ generated by S2 instead of
ZKEval.

Due to the strong derivation privacy
of the cm-NIZK.

Game 3 cµ∗ chosen randomly. Due to the DDH assumption which
implies the security of Elgamal en-
cryption.

Game 4 c∗ chosen randomly. Due to the DDH assumption which
implies the security of Elgamal en-
cryption.

Game 5 cupk chosen randomly. Due to the DDH assumption which
implies the security of Elgamal en-
cryption.

Table 5.1: Games in our blindness proof

We define Game 0 to be the blindness experiment with the commuting group signature

construction. Let P0 be the event that an adversary A correctly guesses b after Game 0.

175

5.5 Security of our CGS–cmNIZK construction

We define Game 1 to be identical to Game 0, except that σcrs is generated by S1 instead

of CRSSetup, and a simulation trapdoor is also generated. As outputs of S1 and CRSSetup

are identically distributed, letting P1 be the event that the adversary A correctly guesses

b after Game 1, then Pr[P0] = Pr[P1].

We define Game 2 to be identical to Game 1, except during blinding instead of transforming

the proof with ZKEval instead the proof is simulated. Let P2 be the event that the

adversary A correctly guesses b after Game 2.

Game 2

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ), g←$G1, ĝ←$G2

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2))

paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2)), (σcrs, τs)←$S1(1τ)

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

(bpk, bsk)←$CGS.BKGen(param), gpk ← (param, ipk, opk)

(st, (upk0, µ0, σ0,m0), (upk1, µ1, σ1,m1))←$A(choose, gpk, bpk, isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 return 0

cupk←$CGS.BlindUser(bpk, upkb)

α, β, γ←$ {0, 1}∗, cµ∗ ← (µb,1ĝ
α, µb,2ĝ

β , µb,3opk
αbpkβ2),

c∗ ← (gγ ,mbbpk
γ
1), cσ∗←$S2(σcrs, τs, (opk, bpk, ipk, cµ

∗, c∗))

b∗←$A(guess, st, cupk, c∗, cµ∗, cσ∗) return b∗

We show that Game 1 and Game 2 are indistinguishable, assuming the cm-NIZK proof is

strongly derivation private. We provide a distinguishing algorithm D1 in Figure 5.6 that

aims to guess b′ in the Strongly Derivation Private security game.

We now show that when b′ = 1, inputs to A are identical to Game 1, and when b′ = 0

inputs to A are identical to Game 2.

The gpk, isk, osk input to A is the same as in both Game 1 and Game 2. The challenge

pseudonym and ciphertext cµ∗ and c∗ are re-randomisations of cµb and cb, which is identical

to the CGS.Blind algorithm, and therefore identical to both Game 1 and Game 2. The

blinded user public key cupk is computed identically to both Game 1 and Game 2.

176

5.5 Security of our CGS–cmNIZK construction

D1(σcrs)

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2))

paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2)), (σcrs, τs)←$S1(1τ)

g←$G1, ĝ←$G2, param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

(bpk, bsk)←$CGS.BKGen(param), gpk ← (param, ipk, opk)

(st1, (upk0, µ0, σ0,m0), (upk1, µ1, σ1,m1))←$A(choose, gpk, bpk, isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 b∗ ← 0

if b∗ = b return 1 else return 0

α, β, γ←$ {0, 1}∗

return (st2, (opk, bpk, ipk, µb, (1,mb)), σb, (α, β, γ))

D1(st2, π
∗)

cµ∗1 ← µb,1ĝ
α, cµ∗2 ← µb,2ĝ

β , cµ∗3 ← µb,3opk
αbpkβ2

c∗1 ← gγ , c∗2 ← mbbpk
γ
1 , cupk←$CGS.BlindUser(bpk, upkb)

b∗←$A(guess, st1, cupk, c
∗, cµ∗, π∗), if b∗ = b return 1

Figure 5.6: D1 that distinguishes between Game 1 and Game 2 in the CGS blindness proof

If b′ = 0, D1 is returned with the simulation of a proof for the statement

T (opk, bpk, ipk, µb, (1,mb)) = (opk, bpk, ipk, cµ∗, c∗),

which is identical to Game 2.

If b′ = 1, D1 is returned with the transformation, defined by (α, β, γ), of the proof. This

is identical to Game 1.

Therefore |Pr[P1] − Pr[P2]| ≤ εsdp, where εsdp is the advantage in breaking the strong

derivation privacy of the cm-NIZK.

We define Game 3 to be identical to Game 2, except cµ∗ is chosen randomly. Let P3 be

the event that the adversary A correctly guesses b after Game 3.

177

5.5 Security of our CGS–cmNIZK construction

Game 3

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ), g←$G1, ĝ←$G2, (σcrs, τs)←$S1(1τ)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

(bpk, bsk)←$CGS.BKGen(param), gpk ← (param, ipk, opk)

(st, (upk0, µ0, σ0,m0), (upk1, µ1, σ1,m1))←$A(choose, gpk, bpk, isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 return 0

γ←$ {0, 1}∗, cµ∗←$G3
2, c
∗
1 ← gγ , c∗2 ← mbbpk

γ
1

cσ∗←$S2(σcrs, τs, (opk, bpk, ipk, cµ
∗, c∗)), cupk←$CGS.BlindUser(bpk, upkb)

b∗←$A(guess, st, cupk, c∗cµ∗, cσ∗) return b∗

We define Game 4 to be identical to Game 3, except c∗ is chosen randomly. Let P4 be the

event that the adversary A correctly guesses b after Game 4.

Game 4

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ), g←$G1, ĝ←$G2, (σcrs, τs)←$S1(1τ)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

(bpk, bsk)←$CGS.BKGen(param), gpk ← (param, ipk, opk)

(st, (upk0, µ0, σ0,m0), (upk1, µ1, σ1,m1))←$A(choose, gpk, bpk, isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 return 0

cµ∗←$G3
2, c
∗←$G2

1

cσ∗←$S2(σcrs, τs, (opk, bpk, ipk, cµ
∗, c∗)), cupk←$CGS.BlindUser(bpk, upkb)

b∗←$A(guess, st, cupk, c∗, cµ∗, cσ∗) return b∗

We define Game 5 to be identical to Game 4, except cupk is chosen randomly. Let P5 be

the event that the adversary A correctly guesses b after Game 5. Clearly the probability

that A correctly guesses b is 1/2, as all inputs are now independent of b. Therefore

Pr[P5] = 1/2.

178

5.5 Security of our CGS–cmNIZK construction

D2(D1, D2, D3, D4)

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ), g←$G1, ĝ ← D1, (σcrs, τs)←$S1(1τ)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

bsk1←$Z∗p, bpk1 ← gbsk1 , bpk2 ← D2, gpk ← (param, ipk, opk)

(st, (µ0, σ0,m0), (µ1, σ1,m1))←$A(choose, gpk, (bpk1, bpk2), isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 b∗ ← 0

if b∗ = b return 1 return 0

γ, β←$Z∗p, cµ∗ ← (µb,1ĝ
β , D3, µb,3D4opk

β), c∗1 ← gγ , c∗2 ← mbbpk
γ
1

cσ∗←$S2(σcrs, τs, (opk, bpk, ipk, cµ
∗, c∗))

b∗←$A(guess, st, c∗, cµ∗, cσ∗) if b∗ = b return 1 return 0

Figure 5.7: D2 that distinguishes between Game 2 and Game 3 in the CGS blindness proof

Game 5

b←$ {0, 1}, (p,G1,G2,GT , e, g1, g2)←$G(1τ), g←$G1, ĝ←$G2, (σcrs, τs)←$S1(1τ)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

(bpk, bsk)←$CGS.BKGen(param), gpk ← (param, ipk, opk)

(st, (upk0, µ0, σ0,m0), (upk1, µ1, σ1,m1))←$A(choose, gpk, bpk, isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 return 0

cµ∗←$G3
2, c
∗←$G2

1, cupk←$G2
2

cσ∗←$S2(σcrs, τs, (opk, bpk, ipk, cµ
∗, c∗))

b∗←$A(guess, st, cupk, c∗, cµ∗, cσ∗) return b∗

We show that Game 2 and Game 3 are indistinguishable assuming the DDH assumption

in G2. We provide a distinguishing algorithm D2 in Figure 5.7.

If D2 is input a DDH tuple, all inputs to A are distributed identically to Game 2. This is

because, letting α = logĝD3, then D4 = bpkα2 , and therefore cµ∗ is distributed identically

to Game 2.

If D2 is not input a DDH tuple, all inputs to A are distributed identically to Game 3.

This is because, β,D3, D4 are now chosen independently and randomly.

Therefore |Pr[P2] − Pr[P3] ≤ εDDH, where εDDH is the DDH advantage, and therefore

179

5.5 Security of our CGS–cmNIZK construction

D3(D1, D2, D3, D4)

(p,G1,G2,GT , e, g1, g2)←$G(1τ), g ← D1, ĝ←$G2, (σcrs, τs)←$S1(1τ)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param)

bsk2←$Z∗p, bpk2 ← ĝbsk2 , bpk1 ← D2, gpk ← (param, ipk, opk),

(st, (µ0, σ0,m0), (µ1, σ1,m1))←$A(choose, gpk, (bpk1, bpk2), isk, osk)

if ∃d ∈ {0, 1} s.t CGS.Verify(gpk, bpk,md, µd, σd) = 0 return 0

cµ∗←$G3
2, c
∗
1 ← D3, c

∗
2 ← mbD4

cσ∗←$S2(σcrs, τs, (opk, bpk, ipk, cµ
∗, c∗))

b∗←$A(guess, st, c∗cµ∗, cσ∗) if b∗ = b return 1 return 0

Figure 5.8: D3 that distinguishes between Game 3 and Game 4 in the CGS blindness proof

negligible.

We show that Game 3 and Game 4 are indistinguishable assuming the DDH assumption

in G1. We provide a distinguishing algorithm D3 in Figure 5.8.

If D3 is input a DDH tuple, all inputs to A are distributed identically to Game 3. This

is because, letting γ = loggD3, then D4 = bpkγ1 , and so c∗ is distributed identically to

Game 3.

If D3 is not input a DDH tuple, all inputs to A are distributed identically to Game 4.

This is because D3, D4 are now chosen independently and randomly.

Game 4 and Game 5 are indistinguishable assuming the DDH assumption in G2, by the

exact same argument as that Game 3 and Game 4 are indistinguishable, as cupk is an

ElGamal encryption of upkb and c∗ is an ElGamal encryption of mb.

Therefore |Pr[P3] − Pr[P4] ≤ εDDH, and |Pr[P4] − Pr[P5] ≤ εDDH. Therefore |Pr[P0] −

Pr[P5]| ≤ 3εDDH + εsdp, and so |Pr[P0] − 1/2| ≤ 3εDDH + εsdp. Therefore, assuming the

DDH assumption and the Strong Derivation Privacy of the cm-NIZK, the advantage of any

polynomial–time adversary in the blindness game with the CGS–cmNIZK construction is

negligible

180

5.5 Security of our CGS–cmNIZK construction

SNDU(uid,Min)

if uid ∈ CUL return ⊥
if uid /∈ HUL HUL← HUL ∪ {uid}, Q← Q+ 1, if Q = k uid∗ ← uid

gsk[uid]←⊥,Min ←⊥,decuid ← cont

if uid = uid∗ usk[uid]←⊥ upk[uid]← apk

else (usk[uid],upk[uid])←$CGS.UKGen(param)

return (upk[uid], cont)

else continue from line 7 except if uid = uid∗ simulate πjoin

SIGN(uid,m, bpk)

if uid = uid∗

if decuid 6= accept return ⊥
Generate µ, c as usual using upk[uid]

σ←$S2(σcrs, τs, (opk, bpk, ipk, µ, c)),SL← SL ∪ {(uid,m, bpk)}
return (σ, µ)

else identical to non–frameability experiment

A′SIGNauto((p,G1,G2,GT , e, g1, g2), paramauto, apk)

Q← 0, k←$ [q], paramauto1 ← paramauto, paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2)

g←$G1, ĝ←$G2, (σcrs, τs, τe)←$SE1(1τ),

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

(ipk, isk)←$CGS.IKGen(param), (opk, osk)←$CGS.OKGen(param), gpk ← (param, ipk, opk)

(uid, c∗, cµ∗, cσ∗, bpk∗, bsk∗)←$ASNDU,SIGN(gpk, isk, osk)

if (bpk∗, bsk∗) /∈ BK return 0

((·, upk, ·,Ω, ·, ·, ·,m), ·, ·)← E2(σcrs, τe, (opk, bpk
∗, ipk, cµ∗, c∗), cσ∗)

if upk = apk return (m,Ω) else return ⊥

Figure 5.9: A′ which breaks the EUF-cma security of the automorphic signatures used,
using A which breaks the non–frameability requirement of CGS–cmNIZK with probability
ε

5.5.6 Non–frameability

Lemma 5.3. The CGS–cmNIZK construction presented in Section 5.4 satisfies non–

frameability if the automorphic signature scheme is EUF-cma secure, the SPK is zero–

knowledge, and the cm-NIZK is zero–knowledge and cm-SSE.

Proof. First we show that if there exists an adversary A that makes q queries to the

SNDU oracle for distinct users, such that Pr[Expnon−frameA,CGS–cmNIZK(τ) = 1] = ε, where ε is non-

negligible, then we can can build an adversary A′ that breaks the EUF-cma security of the

automorphic signature scheme with non-negligible probability. We provide the detailed

description of A′ in Figure 5.9, and explain here how A′ works.

181

5.5 Security of our CGS–cmNIZK construction

First note that all inputs that A′ provides to A are distributed identically to the non–

frameability experiment. This is because SE1 outputs a σcrs that is identical to CRSSetup.

The automorphic signature parameters paramauto are distributed identically to the output

of ASetup.

Simulating the SNDU oracles. When uid 6= uid∗, the SNDU oracle is identical to

the non–frameability experiment. When uid = uid∗, upk[uid∗] is set to apk, which is

distributed identically to the output of CGS.UKGen. The values usk[uid], upk′ are set to

⊥, but these are only used in the protocol when generating πjoin. Instead, due to the

zero–knowledge property of the SPK, πjoin can be simulated using upk[uid].

Simulating the SIGN oracle. In the case of uid 6= uid∗, this is identical to the non–

frameability experiment. When uid = uid∗, we first test decuid 6= accept instead of

whether the secret key is defined, because in our simulation the secret key will not be

defined even for a completed join protocol. The µ, c are generated identically to CGS.Sign.

The proof σ can be simulated due to the zero–knowledge property of the cm-NIZK proofs.

Reduction to EUF-cma security of Automorphic Signatures. If A is successful,

then they output a valid blinded signature that opens to the upk of an honest user. We

assume, with probability 1/q, that A′ guesses correctly and uid = uid∗.

With 1 − negl probability, E2 will either extract a valid witness such that AVerify1(Ω,

upk[uid∗],m) = 1; or E2 will extract a statement x′ and transformation T such that

x = Tinst(x
′), where x is the statement output, T ∈ T and x′ ∈ Q.

In the first case A′ wins because upk[uid∗] = apk and A′ has never used their signing

oracle. Therefore Ω is a valid forgery in the EUF-cma game.

In the second case, a proof must have been simulated during signing for a statement

x′ = (opk, bpk∗, ipk, cµ′, c′) such that cµ∗ is a re-randomisation of cµ′ and c∗ is a re-

randomisation of c′. Therefore, cµ′ must be an encryption of upk[uid∗] and c′ must

be an encryption of m, and so (uid∗,m, bpk∗) was queried to the SIGN oracle. This

is a contradiction given that A is successful. Therefore A′ wins with the probability

182

5.5 Security of our CGS–cmNIZK construction

ADDU(uid)

Identical to the traceability experiment except cred←$SIGNauto(upk[uid])

SNDI(uid,Min)

Identical to the traceability experiment except cred←$SIGNauto(upk[uid])

SIGN(uid,m, bpk)

Identical to the traceability experiment

A′SIGNauto((p,G1,G2,GT , e, g1, g2), paramauto, apk)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2 ← paramauto

g←$G1, ĝ←$G2, (σcrs, τs, τe)←$SE1(1τ)

param← ((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs)

ipk ← apk, (opk, osk)←$CGS.OKGen(param), gpk ← (param, ipk, opk)

(c, cµ, cσ, bpk, bsk)←$AADDU,SNDI,SIGN(gpk, osk), if (bpk, bsk) /∈ BK return ⊥
((·, upk, cred, ·, ·, ·, ·, ·), ·, ·)← E2(σcrs, τe, (opk, bpk, ipk, cµ, c), cσ) return (upk, cred)

Figure 5.10: A′ which breaks the EUF-cma security of automorphic signatures, using A
which breaks the traceability of CGS–cmNIZK with probability ε

(1− negl)ε/q.

5.5.7 Traceability

Lemma 5.4. The CGS–cmNIZK construction presented in Section 5.4 satisfies traceabil-

ity if the automorphic signature scheme is EUF-cma secure, and the cm-NIZK is cm-SSE.

Proof. First, we show that if there exists an adversaryA such that Pr[ExptraceA,CGS–cmNIZK(τ) =

1] = ε, where ε is non-negligible, then we can can build an adversary A′ that breaks the

EUF-cma security of the automorphic signature scheme with non-negligible probability.

We provide the detailed description of A′ in Figure 5.10, and explain here how A′ works.

First note that all inputs that A′ provides to A are distributed identically to the trace-

ability experiment. This is because SE1 outputs a σcrs that is identical to CRSSetup. The

inputs apk and paramauto are the public key and public parameters of an automorphic

signature scheme and so ipk and paramauto2 are distributed correctly.

183

5.6 Concrete Instantiation and Efficiency

Simulating the oracles. The ADDU and SNDI oracles are only different to the trace-

ability experiment when cred is generated, because the issuing secret key is not available.

As the signing oracle in the EUF-cma experiment outputs a valid signature under isk on

the user public key, the resulting credential is distributed correctly. The SIGN oracle is

identical to the traceability experiment, as all user secret keys are known.

Reduction to EUF-cma security of Automorphic Signatures. If A is successful,

they output a valid blinded signature that does not open to the same upk as a corrupted

or honest user.

We have not used S1 to obtain simulations of the cm-NIZK proofs, therefore E2 will extract

a valid witness with 1−negl probability. This ensures that AVerify2(cred, ipk, upk) = 1. As

upk is not the public key of any corrupted or honest users, upk was not queried to SIGNauto

by ADDU or SNDI. Therefore, cred is a valid forgery under apk, and A′ is successful with

probability (1− negl)ε.

5.6 Concrete Instantiation and Efficiency

5.6.1 Signature Proofs of Knowledge

For transforming interactive into non-interactive zero-knowledge proofs we rely on the

Fiat-Shamir heuristic that ensures security in the random oracle model.

5.6.2 Automorphic Signatures

An instantiation of an automorphic signature scheme that is EUF-cma secure, based on

the Asymmetric Double Hidden SDH (ADHSDH) assumption, is given in [65]. It is easy

to see that this scheme also satisfies the additional structural assumptions needed for our

construction.

184

5.6 Concrete Instantiation and Efficiency

5.6.3 Controlled Malleable NIZKs

We now show that cm-NIZKs for the relation R, and set of allowable transformations T

used in our construction can be instantiated.

It is shown in Theorem 4.5 in [45] that cm-NIZKS for (R, T) can be instantiated if (R, T)

are CM-friendly which they define fully in Section C.1.

More formally we define the relation R such that ((opk, bpk1, bpk2, ipk, cµ, c),

(upk′, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,m) ∈ R if and only if:

e(g1, µ1) = e(gα1 , ĝ), e(g1, µ2) = e(gβ1 , ĝ), e(g1, µ3) = e(g1, upk)e(gα1 , opk)e(gβ1 , bpk2);

AVerify1(Ω, upk,m) = 1,AVerify2(cred, ipk, upk) = 1;

e(c1, g2) = e(g, gγ2), e(c2, g2) = e(m, g2)e(bpk1, g
γ
2);

e(upk′, g2) = e(g1, upk).

We define the allowable set of transformation T = {(renc1, renc2, renc3) : renc1, renc2, renc3 ∈

Z∗p}, such that for T = (renc1, renc2, renc3), the transformation is as follows:

Tinst(opk, bpk, ipk, µ, c) = (opk, bpk, ipk, (µ1ĝ
renc1 , µ2ĝ

renc2 , µ3opk
renc1bpkrenc22),

(c1g
renc3 , c2bpk

renc3
1)),

Twit(upk
′, upk, cred,Ω, gα1 , g

β
1 , g

γ
2 ,m) = (upk′, upk, cred,Ω, gα1 g

renc1
1 , gβ1 g

renc2
1 , gγ2g

renc3
2 ,m).

We now show that (R, T) is CM-Friendly which means six conditions are satisfied.

1. Representable statements: any instance and witness of R can be represented as a set

of group elements

Verification keys, messages and signatures of automorphic signatures are all group

elements and so ipk, upk, cred,Ω,m are all group elements. The value upk′ = gusk1

is also a group element.

The values opk, bpk1, bpk2, cµ = (cµ1, cµ2, cµ3), c = (c1, c2) can all clearly be rep-

185

5.6 Concrete Instantiation and Efficiency

resented by group elements due to the ElGamal encryption used. The encryption

randomness α, β, γ can be represented by (gα1 , g
β
1 , g

γ
2).

2. Representable transformations: any transformation in T can be represented as a set

of group elements

Represent randomness renc1, renc2, renc3 with (grenc11 , ĝrenc1 , opkrenc1 , grenc21 , ĝrenc2 ,

bpkrenc22 , grenc32 , grenc3 , bpkrenc31).

3. Provable statements: we can prove the statement (x,w) ∈ R (using the representa-

tion in condition 1 for x and w) using pairing product equations.

AVerify1(Ω, upk,m) = 1, and AVerify2(cred, ipk, upk) = 1 can be written as a con-

junction of pairing product equations over upk,m,Ω, cred, ipk due to the properties

of automorphic signatures.

All other equations are already in the form of pairing product equations.

4. Provable transformations: we can prove the statement Tinst(x) = x′ for T ∈ T

(using the representations for x and T in conditions 1 and 2) using a pairing product

equation.

Given x = (opk, bpk1, bpk2, ipk, (cµ1, cµ2, cµ3), (c1, c2)),

x′ = (opk′, bpk′1, bpk
′
2, ipk

′, (cµ′1, cµ
′
2, cµ

′
3), (c′1, c

′
2)),

T = (R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R3, R

′
3, R

′′
3), then Tinst(x) = x′ and T ∈ T iff:

e(g1, opk) = e(g1, opk
′),e(bpk1, g2) = e(bpk′1, g2), e(g1, bpk2) = e(g1, bpk

′
2), e(ipk, g2) =

e(ipk′, g2) and

e(c′2, g2) = e(bpk1, R3)e(c2, g2), e(c′1, g2) = e(g,R3)e(c1, g2), and

e(g1, cµ
′
3) = e(R1, opk)e(R2, bpk)e(g1, cµ3) ,

e(g1, cµ
′
1) = e(R1, ĝ)e(g1, cµ1) , e(g1, cµ

′
2) = e(R2, ĝ)e(g1, cµ2).

5. Transformable statements: for any T ∈ T , there is a valid transformation s(T) that

takes the statement (x,w) ∈ R (phrased using pairing products as in condition 3)

and produces the statement (Tinst(x), Twit(w)) ∈ R.

We transform the pairing product equations for an instance (opk, bpk1, bpk2,

ipk, (cµ1, cµ2, cµ3), (c1, c2)) into mauled equations for an instance

(opk, bpk1, bpk2, ipk, (cµ1ĝ
α′ , cµ2ĝ

β′ , cµ3opk
α′bpkβ

′

2), (c1g
γ′ , c2bpk

γ′

1)) as follows:

First of all we re-randomise cµ.

186

5.6 Concrete Instantiation and Efficiency

• Add(eq1 := e(g1, ĝ
α′)−1e(gα

′
1 , ĝ) = 1)

Add(eq2 := e(g1, ĝ
β′)−1e(gβ

′

1 , ĝ) = 1)

Add(eq3 : e(g1, opk
α′bpkβ

′

2)−1e(gα
′

1 , opk)e(gβ
′

1 , bpk2) = 1)

• MergeEq(eq1, e(g1, cµ1)−1e(gα1 , ĝ) = 1) to create equation eq4.

MergeEq(eq2, e(g1, cµ2)−1e(gβ1 , ĝ) = 1) to create equation eq5.

MergeEq(eq3, e(g1, cµ3)−1e(gα1 , opk)e(gβ1 , bpk2)e(g1, upk) = 1) to create equa-

tion eq6.

• MergeVar(cµ1, ĝ
α′ , ˆcµ1, {g1}), will create equation

e(g1, cµ1ĝ
α′)e(g1, ˆcµ1)−1 = 1.

MergeEq(e(g1, cµ1ĝ
α′)e(g1, ˆcµ1)−1 = 1,eq4) to create equation eq7.

MergeVar(cµ2, ĝ
β′ , ˆcµ2, {g1}), will create equation

e(g1, cµ2ĝ
β′ ,)e(g1, ˆcµ2)−1 = 1.

MergeEq(e(g1, cµ2ĝ
β′ ,)e(g1, ˆcµ2)−1 = 1,eq5) to create equation eq8.

MergeVar(cµ3, opk
α′bpkβ

′

2 , ˆcµ3, {g1}), will create equation

e(g1, cµ3opk
α′bpkβ

′

2)e(g1, ˆcµ3)−1 = 1.

MergeEq(e(g1, cµ3opk
α′bpkβ

′

2)e(g1, ˆcµ3)−1 = 1,eq6) to create equation eq9.

• MergeVar(gα
′

1 , g
α
1 , g

α̃
1 , {ĝ, opk}), will create equations e(gα

′
1 g

α
1 , ĝ)−1e(gα̃1 , ĝ) = 1

and e(gα
′

1 g
α
1 , opk)−1e(gα̃1 , opk) = 1.

MergeEq(e(gα
′

1 g
α
1 , ĝ)−1e(gα̃1 , ĝ) = 1,eq7).

MergeVar(gβ
′

1 , g
β
1 , g

β̃
1 , {ĝ, bpk2}), will create equations e(gβ

′

1 g
β
1 , ĝ)−1e(gβ̃1 , ĝ) = 1

and e(gβ
′

1 g
β
1 , bpk2)−1e(gβ̃1 , bpk2) = 1.

MergeEq(e(gβ
′

1 g
β
1 , ĝ)−1e(gβ̃1 , ĝ) = 1,eq8).

MergeEq(e(gα
′

1 g
α
1 , opk)−1e(gα̃1 , opk) = 1,e(gβ

′

1 g
β
1 , bpk2)−1e(gβ̃1 , bpk2) = 1) to cre-

ate equation eq10 .

MergeEq(eq9, eq10).

Remove obsolete equations and variables with RemoveEq and RemoveVar.

We now re-randomise c.

• Add(eq11 := e(gγ
′
, g2)−1e(g, gγ

′

2) = 1)

Add(eq12 := e(bpkγ
′

1 , g2)−1e(bpk1, g
γ′

2) = 1)

• MergeEq(eq11,e(c1, g2)−1e(g, gγ2) = 1) to create equation eq13.

MergeEq(eq12, e(c2, g2)−1e(bpk1, g
γ
2)e(m, g2) = 1) to create equation eq14.

187

5.6 Concrete Instantiation and Efficiency

• MergeVar(c1, g
γ′ , ĉ1, {g2}), will create equation e(c1g

γ′ , g2)e(ĉ1, g2)−1 = 1.

MergeEq(e(c1g
γ′ , g2)e(ĉ1, g2)−1 = 1, eq13) to create eq15.

MergeVar(c2, bpk
γ′

1 , ĉ2, {g2}), will create equation e(c2bpk
γ′

1 , g2)e(ĉ2, g2)−1 = 1.

MergeEq(e(c2bpk
γ′

1 , g2)e(ĉ2, g2)−1 = 1,eq14) to create eq16.

• MergeVar(gγ2 , g
γ′

2 , g
γ̃
2 , {bpk1, g}), will create equations e(g, gγ2g

γ′

2)−1e(g, gγ̃2) = 1

and e(bpk1, g
γ
2g

γ′

2)−1e(bpk1, g
γ̃
2) = 1.

MergeEq(e(g, gγ2g
γ′

2)−1e(g, gγ̃2) = 1, eq15).

MergeEq(e(bpk1, g
γ
2g

γ′

2)−1e(bpk1, g
γ̃
2) = 1,eq16).

Finally remove obsolete equations and variables with RemoveEq and RemoveVar.

(6) Transformable transformations: for any T, T ′ ∈ T there is a valid transformation

t(T) that takes the statement Tinst(x
′) = x for T ∈ T (phrased using pairing products

as in condition 4) and produces the statement T ′inst◦Tinst(x′) = T ′inst(x) for T ′◦T ∈ T

and that preserves the variables in x′ (does not perform RemoveVar on variables in

x′).

We transform the pairing product equations defined in (4) for proving knowledge

of a transformation from instance (opk, bpk, ipk, cµ′, c′) to (opk, bpk, ipk, cµ, c), into

mauled equations for proving knowledge of a transformation from instance

(opk, bpk, ipk, cµ′, c′) to (opk, bpk, ipk, (cµ1ĝ
α, cµ2ĝ

β, cµ3bpk
β
2 opk

α), (c1g
γ , c2bpk

γ
1)). We

can use the same strategy (and the same constant equations) as for transforming

statements.

• MergeVar(c1, g
γ , ĉ1, {g2}), will create equation e(c1g

γ , g2)e(ĉ1, g2)−1 = 1.

MergeEq(e(c1, g2)−1e(g,R3)e(c′1, g2) = 1, e(c1g
γ , g2)e(ĉ1, g2)−1 = 1).

MergeVar(R3, g
γ
2 , R̂3, {g, bpk1}), will create equations e(g,R3g

γ
2)−1e(g, R̂3)

= 1 and e(bpk1, R3g
γ
2)−1e(bpk1, R̂3) = 1.

MergeEq(e(ĉ1, g2)−1e(g,R3)e(g, gγ2)e(c′1, g2), e(g,R3g
γ
2)−1e(g, R̂3) = 1).

MergeVar(c2, bpk
γ
1 , ĉ2, {g2}), will create equation e(c2bpk

γ
1 , g2)e(ĉ2, g2)−1 = 1.

MergeEq(e(c2, g2)−1e(bpk1, R3)e(c′2, g2) = 1, e(c2bpk
γ
1 , g2)e(ĉ2, g2)−1 = 1).

MergeEq(e(ĉ2, g2)−1e(bpk1, R3g
γ
2)e(c′2, g2) = 1, e(bpk1, R3g

γ
2)−1e(bpk1, R̂3)

= 1).

• MergeVar(cµ1, ĝ
α, ˆcµ1, {g1}), will create equation

e(g1, cµ1ĝ
α)e(g1, ˆcµ1)−1 = 1.

MergeEq(e(g1, cµ1)−1e(R1, ĝ)e(g1, cµ
′
1) = 1, e(g1, cµ1ĝ

α) e(g1, ˆcµ1)−1 = 1).

188

5.6 Concrete Instantiation and Efficiency

MergeVar(R1, g
α
1 , R̂1, {ĝ, opk}), will create equations e(R1g

α
1 , ĝ)−1e(R̂1, ĝ) = 1

and e(R1g
α
1 , opk)−1e(R̂1, opk) = 1.

MergeEq(e(g1, ˆcµ1)−1e(R1, ĝ)e(gα1 , ĝ)e(g1, cµ
′
1) = 1, e(R1g

α
1 , ĝ)−1 e(R̂1, ĝ) = 1).

MergeVar(cµ2, ĝ
β, ˆcµ2, {g1}), will create equation e(g1, cµ2ĝ

β)e(g1, ˆcµ2)−1 = 1.

MergeEq(e(g1, cµ2)−1e(R2, ĝ)e(g1, cµ
′
2) = 1, e(g1, cµ2ĝ

β) e(g1, ˆcµ2)−1 = 1).

MergeVar(R2, g
β
1 , R̂2, {ĝ, bpk2}), will create equations e(R2g

β
1 , ĝ)−1e(R̂2, ĝ) = 1

and e(R2g
β
1 , bpk2)−1e(R̂2, bpk2) = 1.

MergeEq(e(g1, ˆcµ2)−1e(R2, ĝ)e(gβ1 , ĝ)e(g1, cµ
′
2) = 1, e(R2g

β
1 , ĝ)−1 e(R̂2, ĝ) = 1).

MergeVar(cµ3, opk
αbpkβ2 , ˆcµ3, {g1}), will create equation

e(g1, cµ3opk
αbpkβ2)e(g1, ˆcµ3)−1 = 1.

MergeEq(e(g1, cµ3)−1e(R1, opk)e(R2, bpk2)e(g1, cµ
′
3) = 1,

e(g1, cµ3opk
αbpkβ2)e(g1, ˆcµ3)−1 = 1).

MergeEq(e(g1, ˆcµ3)−1e(R1, opk)e(gα1 , opk)e(R2, bpk2)e(gβ1 , bpk2) e(g1, cµ
′
3) = 1,

e(R1g
α
1 , opk)−1e(R̂1, opk) = 1).

MergeEq(e(g1, ˆcµ3)−1e(R̂1, opk)e(R2, bpk2)e(gβ1 , bpk2)e(g1, cµ
′
3)

= 1, e(R2g
β
1 , bpk2)−1e(R̂2, bpk2) = 1).

Finally remove obsolete equations and variables with RemoveEq and RemoveVar,

(cµ′, c′) will be unaffected by RemoveVar.

The instantiation in [45] makes use of Groth Sahai proofs [77] to build malleable NI-

WIPOKs. The instantiation of Groth Sahai proofs based on the DLIN assumption and

structure preserving signatures based on the DLIN assumption were chosen for their in-

stantiation. However, for our instantiation as we are working in the type–3 pairing setting,

we make use of the instantiation of Groth Sahai proofs based on the SXDH assumption,

i.e. the DDH assumption holds in both groups G1 and G2. We make use of a more re-

cently introduced structure preserving signature scheme [6] with better efficiency also in

the type–3 setting and based on the SXDH assumption.

5.6.4 Efficiency

We now provide the sizes of signatures for the CGS–cmNIZK construction in terms of

the number of group elements. We denote the length required to represent k elements

in Gi such that i ∈ {1, 2} as kGi. A signature consists of a cm-NIZK which in turn

189

5.7 Summary

consists of a Groth Sahai NIWIPoK [77] instantiated under the SXDH assumption. The

cost of variables and equation for such proofs is given in Table 3 of [77]. The statement

proven by the NIWIPoK includes: the statement from our cm-NIZK, of size 10G1 + 9G2

as well as two automorphic signatures of total size 5G1 + 5G2 and parameters for this

scheme 3G1 + 3G2; the verification key of the SPS in the cm-NIZK instantiation of size

36G1 + 30G2; a signature of the SPS in the cm-NIZK instantiation of size 14G1 + 14G2;

another transformed statement also of size 18G1 + 17G2; and the transformation of size

4G1 + 5G2. In total this gives 90G1 + 83G2. Therefore the total cost of variables is

180G1 + 166G2. The total number of pairing equations in the NIWIPoK includes: 12

equations from our cm-NIZK, 16 equations to verify the SPS, and 9 equations to ensure

that the transformation is valid and transforms the two statements. In total this is 37

equations and the cost of these equations will be 148G1 + 148G2. Therefore the total size

of a signature is 328G1 + 314G2.

5.7 Summary

In this chapter we propose commuting group signatures, which allow group signatures to

be blinded whilst preserving the verifiability of signatures. We have formally defined the

security for such a primitive, and given a provably secure construction in this model. This

construction makes use of ElGamal encryption, automorphic signatures, and controlled

malleable proof protocols. We then provide a concrete instantiation for these building

blocks and analyse the efficiency of our construction.

190

Chapter 6

Convertible Group Signatures –

Stronger Security and Preserved

Verifiability

Contents

6.1 Introduction . 191

6.2 Definition and Security Model for CLS+ 193

6.3 Our CLS+ Construction . 208

6.4 Security of CLS–CGS . 213

6.5 Concrete Instantiation of CLS–CGS construction 234

6.6 Summary . 237

6.1 Introduction

In this chapter we strengthen the security of the CLS primitive introduced in Chapter

4, by removing the assumption that the entity that submits signatures to a converter is

honest–but–curious. We strengthen the existing security model to take this into account,

and provide a construction that provably satisfies this model using commuting group

signatures.

191

6.1 Introduction

6.1.1 Motivation and Background

In Chapter 4 a flexible variant of linkability was proposed for group signatures in the form

of convertible group signatures with selective linkability (CLS). While all group signatures

are fully unlinkable by default, certain subsets can be converted into a linked representa-

tion. The conversion is performed obliviously by a trusted converter that blindly trans-

forms a batch of pseudonyms, mapping different pseudonyms stemming from the same

user into the same one. To avoid the gradual reconstruction of all correlations, converted

pseudonyms obtained through different queries remain unlinkable, i.e., conversions are

strictly non-transitive.

However, this assumes that the party receiving fully unlinkable signatures (the data lake)

and the one obtaining the converted ones (the data processor) to be the same entity, or

at least belong to the same trust domain: the scheme only converts pseudonyms but not

the actual signatures, i.e., the authenticity of data gets lost in the conversion process.

Therefore a data processor must trust the data lake that converted data originates from

actual user data. It also assumes this combined entity to be honest, as the input to the

converter is considered to be well-formed, in the sense that the security guarantees only

hold when “valid” pseudonyms are converted for which correct group signatures exist. As

the converter receives blinded pseudonyms and no group signatures, this assumption is

impossible to enforce other than by considering honest requests only.

6.1.2 Our Contribution

In this chapter we strengthen the concept of convertibly linkable group signatures (CLS+)

to overcome these assumptions. We guarantee the desired security and privacy properties

even when conversion is triggered by malicious entities. Further, we leverage the trusted

converter to not only blindly transform the pseudonyms but also blindly re-authenticate

the associated messages, thus preserving the authenticity of the data during the conversion

process.

We start by extending the security and privacy definition given in Chapter 4 to this

stronger setting. Our security model takes inspiration from the RCCA security notion [43],

and grants the adversary the power to request conversions of arbitrary and blinded inputs,

192

6.2 Definition and Security Model for CLS+

while still preventing trivial replay attacks. We then propose a construction that provably

satisfies the desired properties. The core building block for our construction is the primitive

of commuting group signatures defined in Chapter 5.

Commuting group signatures naturally lend themselves to building convertible group sig-

natures. When requesting a conversion, group signatures first get blinded, yet still allow

verification by the converter. The converter then blindly opens the signatures and raises

the blinded user identity to the power of r, which is chosen fresh for every conversion query,

but used consistently within the query. The converter then blindly signs the converted

pseudonym and message to attest that they originate from a valid query that contained

blinded, yet verifiable, signatures. As we assume the converter is at most honest-but-

curious, the authentication of converted signatures is carried over from that of the blinded

signatures. During unblinding, the message and public key are unblinded, and the original

output of the converter is included in the signature, along with a proof that unblinding

has been performed correctly. We prove that our construction is secure, assuming the

security of the commuting group signatures, as well as the DDH assumption.

6.2 Definition and Security Model for CLS+

In this section we recall the functionality and security model for CLS signatures given in

Section 4.2 and extend them to our setting, which no longer assumes that conversion of

pseudonymous signatures is triggered by honest verifiers only — we refer to these extended

CLS signatures as CLS+. In fact, whereas CLS only converts pseudonyms but not the

actual group signatures, our CLS+ scheme transforms pseudonyms while preserving the

validity of the associated signatures. This requires several extensions to the algorithms

and changes to the security model.

As in CLS, our CLS+ scheme assumes the following entities: an issuer I, a set of users

U = {uidi}, and a converter C. In contrast to CLS, we split the verifier role into two

parts: a data lake1 L and data processor P. This reflects our setting which allows a

data processor to still verify the validity of the converted group signatures, whereas CLS

assumed that unlinkable and converted signatures are both used by the same entity (or at

1We sometimes make the role of the data lake explicit for illustrative purposes, but this entity does not
have any dedicated keys and any verifier can take this role.

193

6.2 Definition and Security Model for CLS+

least within the same trust domain).

The issuer I is the central entity that allows users to join the group. Once joined, a

user can then sign on behalf of the group in a pseudonymous way. The data lake (or any

verifier) can collect and verify these signatures with respect to the group’s public key, but

does not learn anything about the user that created the signature. While group signatures

are fully unlinkable by default, they can be linked in a controlled, yet blind, manner. Such

conversion can be requested by the data lake from the converter C that can blindly trans-

form pseudonym-message-signature tuples into a consistent authenticated representation.

The data lake blinds the signatures in the conversion request for a particular data proces-

sor P, who can finally unblind and verify the converted signatures. Once unblinded, again

any verifier can check the validity of the converted signature.

6.2.1 Syntax of CLS+

Our notation closely follows the definitional framework for CLS given in Section 4.2.1,

but extends the blinding, conversion and unblinding procedure to not only transform

pseudonyms and messages, but also signatures. Verification is extended to handle “stan-

dard” group signatures as well as converted signatures, allowing the data processor (or

any verifier) to verify the transformed and linkable signatures.

Definition 6.1 (CLS+). A convertibly linkable group signature scheme with preserved

verifiability CLS+ consists of the following algorithms:

Setup and Key Generation. We model key generation per party, each generating

their individual key pair. We refer to (param, ipk, cpk) as the group public key gpk and

write BK to denote the public/private key space induced by CLS+.BKGen.

CLS+.Setup(1τ)→ param: on input a security parameter 1τ , outputs param, the public

parameters for the scheme.

CLS+.IKGen(param)→ (ipk, isk): performed by the issuer I, outputs the issuer secret

key isk, and the issuing public key ipk.

CLS+.CKGen(param)→ (cpk, csk): performed by the converter C, outputs the converter

secret key csk, and the converter public key cpk.

194

6.2 Definition and Security Model for CLS+

CLS+.BKGen(param)→ (bpk, bsk): performed by the data processor P, outputs the

blinding public key bpk and blinding private key bsk.

Join, Sign and Verify. We have a dedicated join procedure that a user has to com-

plete with the issuer. All users that have successfully joined the group can then create

pseudonymous signatures on behalf of the group. For ease of expression, we treat the

pseudonym µ as a dedicated part of the signature.

Our construction requires that the user already specifies the data processor’s key bpk when

creating signatures, and thus we reflect this in the syntax. While this limits the flexibility

of the data lake — it has to adhere to the choice of the user — it gives the users strong

control over the usage of their data, as only they can choose who can unblind the converted

(= linkable) signatures.

To handle our setting where converted signatures can also be verified, CLS+.Verify takes

an extra input type = {tier-1, tier-2} that indicates the type of signature: We de-

note standard, fully unlinkable signatures produced by CLS+.Sign as tier-1 signatures,

whereas converted ones (generated via processing a tier-1 signature with CLS+.Blind −

CLS+.Convert− CLS+.Unblind) are referred to as tier-2 signatures.

〈CLS+.Join(gpk),CLS+.Issue(isk, gpk)〉: a user uid joins the group by engaging in an

interactive protocol with the Issuer I. The user uid and Issuer I perform algorithms

CLS+.Join and CLS+.Issue respectively. These are input a state and an incoming

message respectively, and output an updated state, an outgoing message, and a

decision, either cont, accept, or reject. The initial input to CLS+.Join is the group

public key, gpk, whereas the initial input to CLS+.Issue is the issuer secret key, isk,

and the group public key. If the user uid accepts, CLS+.Join has a private output of

gsk[uid].

CLS+.Sign(gpk, bpk,gsk[uid],m)→ (µ, σ): performed by the user uid with respect to a

particular data processor with key bpk. On input the group public key gpk, the

user’s secret key gsk[uid], and a message m, outputs a pseudonym µ and signature

σ.

CLS+.Verify(type, gpk, bpk,m, µ, σ)→ {0, 1}: performed by any verifier. Outputs 1 if σ

is a valid {tier-1, tier-2}-signature, on m for pseudonym µ under the group public

195

6.2 Definition and Security Model for CLS+

key gpk and data processor key bpk, and 0 otherwise.

Blind Conversion. Finally, we want our pseudonymous group signatures to be blindly

convertible. Thus, there is a dedicated CLS+.Blind and CLS+.Unblind procedure for the

data lake and data processor respectively, and a CLS+.Convert algorithm that requires

the converter’s secret key. The latter transforms the unlinkable pseudonyms in a consis-

tent manner; i.e., outputting converted pseudonyms and signatures that are consistent

whenever the input pseudonyms belong to the same user. As our scheme preserves the

validity of the signatures, all algorithms from Section 4.2.1 are extended to also handle

the signatures as in- and outputs.

CLS+.Blind(gpk, bpk, (µ, σ,m))→ (cµ, cσ, c): performed by the data lake with respect to

a particular data processor bpk (and the converter specified in gpk); on input a

pseudonym, signature and message, outputs a blinded pseudonym, signature and

message.

CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)→ {(cµi, cσi, ci)}k: performed by the con-

verter C; on input k blinded pseudonym-signature-message tuples (cµ1, cσ1, c1), · · · ,

(cµk, cσkck), outputs converted tuples (cµ1, cσ1, c1), · · · , (cµk, cσk, ck).

CLS+.Unblind(bsk, (cµ, cσ, c))→ (µ, σ,m): performed by the data processor; on input a

converted and blinded tuple, and the blinding secret key bsk, outputs an unblinded

converted tuple (µ, σ,m).

6.2.2 Security Properties of CLS+

We want CLS+ schemes to enjoy (roughly) the same security and privacy properties as CLS

schemes, without the assumption that conversion is triggered by honest parties only, and

with the additional feature that converted data is also verifiable. We stress that our CLS+

schemes still rely on the converter being at most honest-but-curious though. We believe

this to be an acceptable assumption in practice, as the converter is a central entity that

can undergo more scrutiny than the multitude of verifiers and data lakes. To allow for a

modular construction based on commuting group signatures, we no longer include the join

anonymity requirement from Chapter 4. This is because commuting group signatures, as

196

6.2 Definition and Security Model for CLS+

in standard group signatures, can be opened to reveal the signer’s identity and so do not

provide join anonymity. As the converter is corrupted, this requirement only offers weak

privacy guarantees anyway, and so we believe satisfying this requirement is less important

than the positives of a simple modular construction.

CLS+ schemes must satisfy the following properties, where anonymity, blindness and non–

transitivity capture the privacy-related properties and non–frameability and traceability

formalise the desired unforgeability guarantees.

Anonymity: Group signatures which have not been linked through a conversion request

should not leak any information about the signer’s identity.

Non–transitivity: While conversion guarantees linkability within a batch of converted

signatures, the data processor(s) should not be able to link the outputs of different

convert queries.

Conversion Blindness: The converter should not learn anything about the input it

receives nor the transformed outputs it computes.

Non–frameability: An adversary controlling the issuer and some corrupt users should

not be able to impersonate other honest users i.e., create pseudonymous signatures

that would be linked to a pseudonym of an honest user. Now we must also ensure

that the adversary cannot forge converted signatures that link to those of honest

users.

Traceability: An adversary controlling the issuer, converter and some users, should not

be able to create more pseudonymous signatures that remain unlinkable in an (hon-

est) conversion than they control corrupt users.

All notions require a number of changes to reflect the increased power of the data lake,

while ensuring achievability of the properties. We explain these notions in detail in the

following.

Oracles and State. The security notions we formalise in the following make use of a

number of oracles which keep joint state, for example by keeping track of queries and the

197

6.2 Definition and Security Model for CLS+

set of corrupted parties. We present the detailed description of all oracles in Figure 6.1

and now provide an overview of them.

ADDU (join of honest user and honest issuer) Creates a new honest user for uid

and internally runs a join protocol between the honest user and honest issuer. At

the end, the honest user’s secret key gsk[uid] is generated and from then on signing

queries for uid will be allowed. This is identical to the CLS model.

SNDU (join of honest user and corrupt issuer) Creates a new honest user for uid

and runs the join protocol on behalf of uid with the corrupt issuer. If the join session

completes, the oracle will store the user’s secret key gsk[uid]. This is identical to

the CLS model.

SNDI (join of corrupt user and honest issuer) Runs the join protocol on behalf of

the honest issuer with corrupt users. For joins of honest users, the ADDU oracle

must be used. This is identical to the CLS model.

SIGN This oracle returns signatures for honest users that have successfully joined (via

ADDU or SNDU, depending on the game). This is identical to the CLS model,

except the blinding public key is now input to CLS+.Sign, and so must be input to

the oracle. Also, the blinding public key is now stored in SL, and the pseudonym

and signatures no longer need to be stored as these could be re-randomised.

CONVERT Returns a set of converted signatures. The adversary must input the blinding

secret key into the oracle, which is necessary for our privacy-related security notion,

in anonymity to ensure that the adversary is not inputting a re-randomisation of the

challenge signature. In the CLS+ model this now takes blinded inputs. The oracle

detects whether the adversary has attempted to convert the challenge signature by

checking whether inputs identify to the challenged user and unblind to the challenged

message.

UNBLIND Blinds, converts and unblinds signatures, outputting the resulting tier-2 sig-

natures. This is new to the CLS+ model. The oracle is necessary for the blindness

requirement, because unblinding now outputs a tier-2 signature. This output could

potentially leak information that allows other signatures to be unblinded. We blind,

convert and unblind in this oracle because we are still targeting chosen plaintext

level security.

198

6.2 Definition and Security Model for CLS+

All oracles have access to the following records maintained as global state:

HUL List of uids of honest users, initially set to ∅. New honest users can be added by

queries to the ADDU oracle (when the issuer is honest) or SNDU oracle (when the

issuer is corrupt).

CUL List of corrupt users that have requested to join the group. Initially set to ∅, new

corrupt users can be added through the SNDI oracle if the issuer is honest. If the

issuer is corrupt, we do not keep track of corrupt users.

SL List of (uid,m, bpk) tuples requested from the SIGN oracle.

UBL List of (µ,m, c, cµ, cσ) tuples which are unblinded and converted pseudonyms/ mes-

sages along with the corresponding blinded signatures, stored by the CONVERT

oracle.

Helper Algorithms. We use an adaptation of the helper algorithms from CLS for

notational simplicity in our security games: Identify and UnLink. They now also take as

input signatures, because they make use of CLS+.Convert. Identify determines whether a

blinded signature belongs to a certain uid. We create a second signature for gsk[uid] and

use the converter’s secret key to test whether both signatures are linked. If so, Identify

returns 1. This algorithm uses our second helper algorithm UnLink internally, which takes

a list of (correctly formed) pseudonym-message-signatures pairs and returns 1 only if they

are all unlinkable.

Identify(gpk, bpk, csk, bsk, uid, c, cµ, cσ)

(µ′, σ′)←$CLS+.Sign(gpk, bpk,gsk[uid], 0), (cµ′, cσ′, c′)←$CLS+.Blind(gpk, bpk, (µ′, σ′, 0))

if UnLink(gpk, csk, bpk, bsk, ((cµ, cσ, c), (cµ′, cσ′, c′))) = 0 return 1 else return 0

UnLink(gpk, csk, bpk, bsk, ((cµ1, cσ1, c1), · · · , (cµk, cσk, ck)))

{(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

if {(cµi, cσi, ci)}k =⊥ return ⊥

∀i ∈ [1, k] (µi, σi,mi)←$CLS+.Unblind(bsk, (cµi, cσi, ci))

if ∃(i, j) with i 6= j s.t. µi = µj return 0 else return 1

199

6.2 Definition and Security Model for CLS+

ADDU(uid)

if uid ∈ HUL ∪ CUL return ⊥
HUL← HUL ∪ {uid},gsk[uid]←⊥
decuid ← cont, stuidJoin ← gpk

stuidIssue ← (isk, gpk)

(stuidJoin,MIssue,decuid)←$CLS+.Join(stuidJoin,⊥)

while decuid = cont

(stuidIssue,MJoin,decuid)←$CLS+.Issue(stuidIssue,MIssue)

(stuidJoin,MIssue,decuid)←$CLS+.Join(stuidJoin,MJoin)

if decuid = accept gsk[uid]← stuidJoin

return accept

SIGN(uid,m, bpk)

if uid /∈ HUL or gsk[uid] =⊥ return ⊥
(µ, σ)←$CLS+.Sign(gpk, bpk,gsk[uid],m)

SL← SL ∪ {(uid,m, bpk)}
return (σ, µ)

SNDI(uid,Min)

if uid ∈ HUL return ⊥
if uid /∈ CUL CUL← CUL ∪ {uid},decuid ← cont

if decuid 6= cont return ⊥
if undefined stuidIssue ← (isk, gpk)

(stuidIssue,Mout,decuid)←$CLS+.Issue(stuidIssue,Min)

return (Mout,decuid)

SNDU(uid,Min)

if uid ∈ CUL return ⊥
if uid /∈ HUL HUL← HUL ∪ {uid}

gsk[uid]←⊥,Min ←⊥,decuid ← cont

if decuid 6= cont return ⊥
if stuidJoin undefined stuidJoin ← gpk

(stuidJoin,Mout,decuid)←$CLS+.Join(stuidJoin,Min)

if decuid = accept gsk[uid]← stuidJoin

return (Mout,decuid)

CONVERT((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

if (bpk, bsk) /∈ BK return ⊥, compute {(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

Parse permutation shuffling signatures in this run of CLS+.Convert as Π

∀i ∈ [1, k] (µi, σi,mi)←$CLS+.Unblind(bsk, (cµΠ(i), cσΠ(i), cΠ(i))),UBL← UBL ∪ {(µi,mi, ci, cµi, cσi)}
if ∃i ∈ [k] s.t Identify(uid∗d, ci, cµi, cσi) = 1 for d ∈ {0, 1} and mi = m∗

if ∃j ∈ [k]\{i} s.t. Identify(uid∗d, cj , cµj , cσj) = 1 for d ∈ {0, 1} return ⊥
else return ({(cµi, cσi, ci)}k)

UNBLIND((µ1, σ1,m1), . . . , (µk, σk,mk))

if ∃i ∈ [k] s.t CLS+.Verify(tier-1, gpk, bpk,mi, µi, σi) = 0 return ⊥
∀i ∈ [k] (cµi, cσi, ci)←$CLS+.Blind(gpk, bpk, (µi, σi,mi); ri)

{(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k; r′)

∀i ∈ [1, k] (µi, σi,mi)←$CLS+.Unblind(bsk, (cµi, cσi, ci))

return ({(µi, σi,mi)}k, {(ri)}k, r′)

Figure 6.1: Oracles used in our CLS+ security model

For simplicity we often omit the keys for the algorithms (as they are clear from the context).

That is, we write Identify(uid, c, cµ, cσ), which indicates whether the pseudonym cµ belongs

to the user with identity uid or not. Likewise, we write UnLink((c1, cµ,cσ1), . . . , (ck, cµk, cσk))

to test whether all pseudonyms are uncorrelated or not.

Correctness. CLS+ signatures should be correct and consistent when being produced

by honest parties. We formulate correctness via three requirements, as in CLS:

• Correctness of sign guarantees that signatures formed using the CLS+.Sign algorithm

with a user secret key generated honestly will verify correctly.

200

6.2 Definition and Security Model for CLS+

• Correctness of conversion guarantees that after blinding, converting and then un-

blinding correctly, the output will be correctly linked valid messages/ pseudonyms/

signatures.

• Consistency is a stronger variant of conversion-correctness and requires that the

correlations of pseudonyms established through the conversion procedure must be

consistent across queries. More precisely, if a conversion query reveals that two

pseudonym µ1 and µ2 are linked, and another one that µ2 and µ3 are linked, then

it must also hold that a conversion query for µ1 and µ3 returns linked pseudonyms.

The detailed definitions for correctness are given in Figure 6.2.

Definition 6.2 (Correctness). A CLS+ scheme satisfies correctness if, for all adversaries

A, Pr[Expcorr−sigA,CLS+ (τ) = 1] = 0, Pr[Expcorr−convA,CLS+ (τ) = 1] ≤ negl(τ), and, Pr[ExpconsistA,CLS+(τ) =

1] = 0.

Again, for the correctness of conversion, the negligible chance that the adversary has of

winning corresponds to the negligible chance that multiple user identifiers have the same

secret key. The only aspect of correctness that has changed is that verify is now input

converted signatures in correctness of conversion, and we check that converted signatures

are valid.

Anonymity. This security requirement captures the desired anonymity properties when

both the issuer and data lake are corrupt (but the converter is honest). Just as in CLS, we

want signatures of honest users to be unlinkable and untraceable to a user’s join session

with the corrupt issuer. To model this property, we let the adversary output uids of two

honest users together with a message, and return a challenge (µ∗, σ∗) that is created either

by user uid0 or uid1. For anonymity, the adversary should not be able to determine the

user’s identity with a better chance than by guessing.

The CLS notion assumed the data lake to be honest, which was modelled via a conversion

oracle that took unblinded tuples as input, thus allowing the oracle to first check the

validity of the input before then internally blinding and converting them. Here we allow

the data lake to be malicious and therefore enable them to ask for the conversion of blinded

tuples. In order to prevent trivial wins, we must be able to detect whether the adversary

tries to convert the challenge signature. As signatures will be re-randomisable to allow

201

6.2 Definition and Security Model for CLS+

Experiment: Expcorr−sigA,CLS+ (τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

(bpk, bsk)←$CLS+.BKGen(param), gpk ← (param, ipk, cpk),HUL, CUL← ∅
(uid,m)←$AADDU(gpk), if gsk[uid] =⊥ return 0

(µ, σ)←$CLS+.Sign(gpk, bpk,gsk[uid],m)

if CLS+.Verify(tier-1, gpk, bpk,m, µ, σ) = 0 return 1 else return 0

Experiment: Expcorr−convA,CLS+ (τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param),

(bpk, bsk)←$CLS+.BKGen(param), gpk ← (param, ipk, cpk),HUL, CUL← ∅
((uid1,m0), ..., (uidk,mk))←$AADDU(gpk)

if ∃i ∈ [1, k] st gsk[uidi] =⊥ return 0

∀i ∈ [1, k] (µi, σi)←$CLS+.Sign(gpk, bpk,gsk[uidi],mi)

∀j ∈ [1, k] (cµj , cσj , cj)←$CLS+.Blind(gpk, bpk, (µj , σj ,mj))

{(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

∀j ∈ [1, k] (µj , σj ,mj)←$CLS+.Unblind((cµj , cσj , cj), bsk)

if ∃j ∈ [1, k] s.t CLS+.Verify(tier-2, gpk, bpk,mj , µj , σj) = 0 return 1

if ∃ permutation Π : [1, k]→ [1, k] s.t.

1.∀i ∈ [1, k] mΠ(i) = mi

2.∀(i, j) ∈ [1, k] with uidi = uidj µΠ(i) = µΠ(j)

3.∀(i, j) ∈ [1, k] with uidi 6= uidj µΠ(i) 6= µΠ(j)

return 0

else return 1

Experiment: ExpconsistA,CLS+(τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param),

(bpk, bsk)←$CLS+.BKGen(param), gpk ← (param, ipk, cpk)

((c0, cµ0, cσ0), (c1, cµ1, cσ1), (c2, cµ2, cσ2))←$A(gpk, isk, csk, bsk)

if UnLink((c0, cµ0, cσ0), (c1, cµ1, cσ1)) 6= 0 or

UnLink((c1, cµ1, cσ1), (c2, cµ2, cσ2)) 6= 0 return 0

if UnLink((c0, cµ0, cσ0), (c2, cµ2, cσ2)) = 1 return 1

else return 0

Figure 6.2: Security games for correctness of CLS+

202

6.2 Definition and Security Model for CLS+

for non–transitivity, we opt for an RCCA-style of definition and check whether any of the

blinded signature-tuples would identify to either of the challenge users and the challenge

message. To do so, we also require the adversary to input the blinding secret key into the

oracle. We stress that this key is merely used to check whether the internally unblinded

inputs can be traced to a challenge user, but there are no checks that enforce that the

inputs are actually well-formed.

Definition 6.3 (CLS+ Anonymity). A CLS+ scheme satisfies anonymity if for all polynomial–

time adversaries A the following advantage is negligible in τ :

∣∣∣Pr[Expanon−0
A,CLS+(τ) = 1]− Pr[Expanon−1

A,CLS+(τ) = 1]
∣∣∣ .

Experiment: Expanon−bA,CLS+(τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

gpk ← (param, ipk, cpk), (uid∗0, uid
∗
1,m

∗, bpk∗, st)←$ASNDU,SIGN,CONVERT(choose, gpk, isk)

if uid∗0 /∈ HUL or gsk[uid∗0] =⊥ or uid∗1 /∈ HUL or gsk[uid∗1] =⊥ return 0

(µ∗, σ∗)←$CLS+.Sign(gpk, bpk∗,gsk[uid∗b],m
∗)

b∗←$ASNDU,SIGN,CONVERT(guess, st, µ∗, σ∗) return b∗

Non–transitivity. The second privacy-related property of CLS is the strict non-transitivity

of conversions. This must now hold when not only the issuer, but also the data lake and

processor can be fully corrupt. Non-transitivity ensures that the outputs of separate con-

vert queries cannot be linked together across multiple queries. Otherwise, data processor(s)

could gradually re-recover the linkability among all signatures.

The definition uses a simulation-based approach, requiring the indistinguishability of an

ideal and a real world. In the real world, convert queries are handled normally through

the CONVERT oracle defined in Figure 6.1. Whereas in the ideal world, the converted

pseudonyms are produced by a simulator SIM through the CONVSIM oracle which we

define here. For honest users, the simulator will only learn which of the messages belong

together, but does not obtain any information about the underlying user identity. This

naturally enforces the desired non-transitivity.

In contrast to the original CLS model, we now allow the data lake to trigger conversions

on blinded inputs. Similarly to the anonymity game, the adversary must also input the

blinding (secret) key with each query. Here the key is used to internally unblind the inputs

203

6.2 Definition and Security Model for CLS+

and determine the correlation among the signatures. We stress that this is not an artefact

of our concrete instantiation, but rather a necessity to obtain a security definition that

is realizable, as the CONVSIM oracle is still expected to provide consistently transformed

outputs within a query. Further, the ideal CONVSIM oracle first internally runs the real

conversion algorithm and aborts if it fails. This is again necessary to avoid trivial wins

where the adversary might input malformed tuples which the simulator never gets and

thus cannot verify.

Definition 6.4 (CLS+ Non–transitivity). A CLS+ scheme satisfies non-transitivity if for

all polynomial–time adversaries A there exists an efficient simulator SIM such that the

following advantage is negligible in τ :

∣∣∣Pr[Expnontrans−0
A,CLS+ (τ) = 1]− Pr[Expnontrans−1

A,CLS+ (τ) = 1]
∣∣∣ .

Experiment: Expnontrans−bA,CLS+ (τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

gpk ← (param, ipk, cpk)

b∗←$ASNDU,SIGN,CONVX(guess, gpk, isk) return b∗

where the oracle CONVX works as follows:

if b = 0 (real world) then CONVX is the standard CONVERT oracle

if b = 1 (ideal world) then CONVX is the simulated CONVSIM oracle

CONVSIM((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

if (bpk, bsk) /∈ BK or CLS+.Convert(gpk, bpk, csk, (cµ1, cσ1, c1), . . . , (cµk, cσk, ck)) =⊥ return ⊥

CL← ∅,∀i ∈ [1, k]

if ∃uid ∈ HUL s.t Identify(bpk, bsk, uid, ci, cµi, cσi) = 1

if Luid does not exist, create Luid ← {ci} else set Luid ← Luid ∪ {ci}

else CL← CL ∪ {(ci, cσi, cµi)}

({(cµi, cσi, ci)}i=1,...k′)←$CLS+.Convert(gpk, bpk, csk,CL) for k′ ← |CL|

Let Luid1 , . . . Luidk′′ be the non-empty message clusters

{(cµi, cσi, ci)}i=k′+1,...k←$ SIM(gpk, bpk, csk, Luid1 , . . . Luidk′′)

Let {(cµ′i, cσ′i, c′i)}i=1,...k be a random permutation of {(cµi, cσi, ci)}i=1,...k

return ({(cµ′i, cσ′i, c′i)}i=1,...k)

204

6.2 Definition and Security Model for CLS+

Conversion Blindness (Corrupt Issuer and Converter). As in CLS, a crucial prop-

erty of our signatures is that they can be converted obliviously, i.e., the converter learns

nothing about what it converts. However now the converter receives and outputs signa-

tures, which must also be converted obliviously.

Conversion blindness should hold if both the issuer and converter are corrupt, but the

data lake is honest. We formalise this property in a classic indistinguishability style:

the adversary outputs two tuples of pseudonym-message-signature tuples and receives a

blinded version of either of them.

In the original Conversion Blindness requirement for CLS no oracles are required because

blinding is a public-key operation. However, in the CLS+ setting, CLS+.Unblind now

outputs a tier-2 signature. We therefore must ensure that this signature does not leak

anything that allows for the unblinding of other converted signatures. We therefore provide

the adversary with access to a CLS+.Unblind oracle that blinds, converts and unblinds

signatures. We stress that this requirement only provides chosen–plaintext level security

as in CLS, because CLS+.Unblind both blinds and unblinds signatures.

Definition 6.5 (CLS+ Conversion Blindness). A CLS+ scheme satisfies conversion blind-

ness if for all polynomial–time adversaries A the following advantage is negligible in τ :

∣∣∣Pr[Expblind−conv−0
A,CLS+ (τ) = 1]− Pr[Expblind−conv−1

A,CLS+ (τ) = 1]
∣∣∣ .

Experiment: Expblind−conv−bA,CLS+ (τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

(bpk, bsk)←$CLS+.BKGen(param), gpk ← (param, ipk, cpk)

(st, (µ0, σ0,m0), (µ1, σ1,m1))←$AUNBLIND(choose, gpk, bpk, isk, csk)

if ∃d ∈ {0, 1} s.t CLS+.Verify(tier-1, gpk, bpk,md, µd, σd) = 0 return 0

(cµ∗, cσ∗, c∗)←$CLS+.Blind(gpk, bpk, (µb, σb,mb))

b∗←$AUNBLIND(guess, st, cµ∗, cσ∗, c∗) return b∗

Traceability of tier-2 signatures. This security requirement formalises the unforge-

ability properties when the issuer is honest but the converter, data lake and some users

are corrupt. To lift the CLS traceability notion to the setting where conversion can be

205

6.2 Definition and Security Model for CLS+

triggered by malicious parties, we let the adversary output a list of blinded signatures. As

we still assume the converter to be corrupt in an honest-but-curious form, the signatures

are then honestly converted and unblinded by the challenger. The adversary wins if this

conversion leads to more unlinkable signatures than the number of users it has corrupted

plus the number of signatures obtained through signing queries for distinct users. Doing

the unblinding within the game is necessary to check whether the adversary has indeed

produced a valid forgery.

Note that this notion only captures traceability of tier-2 signatures, and CLS+ schemes

must additionally satisfy the traceability of tier-1 signatures as defined in Section 4.2.

Definition 6.6 (CLS+ Traceability). A CLS+ scheme satisfies tier-2 traceability if for

all polynomial–time adversaries A, the advantage Pr[ExptraceA,CLS+(τ) = 1] is negligible in τ .

Experiment: ExptraceA,CLS+(τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

gpk ← (param, ipk, cpk)

((c1, cµ1, cσ1), ..., (ck, cµk, cσk), bpk, bsk)←$AADDU,SNDI,SIGN(gpk, csk)

if (bpk, bsk) /∈ BK return 0

∀i ∈ [k] (µi, σi,mi)←$CLS+.Unblind(bsk,CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k))

L← 0,∀uid ∈ HUL if ∃i ∈ [k] s.t (uid,mi, bpk) ∈ SL L← L+ 1

return 1 if all of the following conditions are satisfied:

k > |CUL|+ L and UnLink((cµ1, cσ1, c1), ..., (cµk, cσk, ck)) = 1 and

∀i ∈ [k] CLS+.Verify(tier-2, gpk, bpk,mi, µi, σi) = 1

Traceability of tier-1 Signatures. For completeness we now present the original CLS

traceability requirement for tier-1 signatures in the context of our new setting.

Definition 6.7 (CLS+ tier-1 Traceability). A CLS+ scheme satisfies tier-1 traceabil-

ity if for all polynomial–time adversaries A, the advantage Pr[Exptrace−tier1A,CLS+ (τ) = 1] is

negligible in τ .

206

6.2 Definition and Security Model for CLS+

Experiment: Exptrace−tier1A,CLS+ (τ)

param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

gpk ← (param, ipk, cpk)

((m1, µ1, σ1), ..., (mk, µk, σk), bpk)←$AADDU,SNDI,SIGN(gpk, csk)

∀i ∈ [k] (cµi, cσi, ci)←$CLS+.Blind(gpk, bpk, (µi, σi,mi))

L← 0,∀uid ∈ HUL if ∃i ∈ [k] s.t (uid,mi, bpk) ∈ SL L← L+ 1

return 1 if all of the following conditions are satisfied:

k > |CUL|+ L and UnLink((cµ1, cσ1, c1), ..., (cµk, cσk, ck)) = 1 and

∀i ∈ [k] CLS+.Verify(tier-1, gpk, bpk,mi, µi, σi) = 1

Non–frameability. This notion captures the desired unforgeability properties when the

issuer is corrupt and requires that an adversary should not be able to impersonate an hon-

est user. Impersonation here means that the adversary outputs two converted signatures

that link to an honest user, but that user never signed one of the corresponding messages.

We use the Identify algorithm to check whether the signatures stem from an honest user

and then look up whether at least one of the messages is not contained in the list of signed

messages by that user.

As we defined Identify to work on blinded signatures, we first retrieve (µb,mb, cb, cµb, cσb)

from the list of queries of the convert oracle (for (µb,mb)). If such tuples cannot be found,

the adversary also wins.

In contrast to traceability, it suffices to define non-frameability for tier-2 signatures only:

tier-1 signatures are entirely unlinkable, and thus the notion of framing attacks only

matters for converted signatures. Also, unlike in traceability, the adversary does not get

the converter secret key here but instead outputs converted signatures directly (whereas

traceability gave the adversary the key, but converted the signatures honestly).

Definition 6.8 (CLS+ Non–frameability). A CLS+ scheme satisfies non–frameability if

for all polynomial–time adversaries A the advantage Pr[ExpnonframeA,CLS+ (τ) = 1] is negligible

in τ .

207

6.3 Our CLS+ Construction

Experiment: ExpnonframeA,CLS+ (τ)

param←$CLS+.Setup(1λ), (ipk, isk)←$CLS+.IKGen(param), (cpk, csk)←$CLS+.CKGen(param)

gpk ← (param, ipk, cpk)

((m0, µ0, σ0), (m1, µ1, σ1), bpk, bsk)←$ASNDU,SIGN,CONVERT(gpk, isk)

if (bpk, bsk) /∈ BK or ∃b ∈ {0, 1} s.t CLS+.Verify(tier-2, gpk, bpk,mb, µb, σb) = 0 return 0

∀b ∈ {0, 1} if (µb,mb, cb, cµb, cσb) /∈ UBL return 1

return 1 if all of the following conditions are satisfied:

µ0 = µ1 and ∃uid ∈ HUL s.t Identify(uid, c0, cµ0, cσ0) = 1 and

(uid,m0, bpk) /∈ SL, or (uid,m1, bpk) /∈ SL

6.3 Our CLS+ Construction

We finally present our construction of a convertible group signature scheme. It uses a

commuting group signature, as defined in Chapter 5, as a core building block provided

it satisfies some additional structural assumptions, and also leverages a standard digital

signature scheme SIG, and a signature proof of knowledge SPK.

High–level Idea. The issuer in our CLS+ scheme simply runs the same algorithms as

in the CGS scheme, whereas the converter takes over the role of the opener in CGS and also

creates a key pair for a standard signature scheme. When requesting blinded conversions,

the group signatures are blinded and re-randomised using the algorithms from the CGS

scheme. The converter blindly opens them and raises the blinded user keys to the power

of r, which is chosen afresh in every convert query, but used consistently within the

query. The converter then blindly signs the converted pseudonym and message. During

unblinding, the converted pseudonyms and messages are retrieved. The final converted

signature is the blindly signed tuple from the converter, along with a proof that unblinding

has been done correctly, which can both be publicly verified.

To ensure that the converter only blindly signs messages that were correctly authenticated

via a group signature, we use the property that blinded signatures from the CGS scheme

can also be verified. Given that the converter is assumed to be at most honest-but-

curious, this transmits the authentication guarantees from the original group signatures

to the converted ones.

208

6.3 Our CLS+ Construction

Additional Structural Assumptions of CGS. We need some additional assumptions

from the underlying CGS scheme. We will show in Section 6.5 that these assumptions

are satisfied by our concrete instantiation given in Chapter 5. Firstly, we require that

given a bilinear group, usk ∈ Z∗p, upk = gusk2 , and the output of CGS.OpenBlind consists

of elements in G2. We also require that:

e(g1,CGS.UnblindUser(bsk, cupk))r = CGS.UnblindUser(bsk, e(g1, cupk)r) and

CGS.BlindUser(bpk, upk))r = CGS.BlindUser(bpk, upkr).

This essentially means that unblinding of user public keys output by CGS.OpenBlind is

homomorphic. This allows the converter to ensure non-transitivity by re-randomising the

pseudonym output, whilst ensuring that pseudonyms are consistently linked per convert

query.

We also require the CGS scheme to satisfy an additional property we define as extractability.

Roughly, this allows upk′ to be extracted from standard and blinded group signatures

opening to upk, such that e(upk′, g2) = e(g1, upk), provided that the signature does not

open to a user public key input to a simulator that simulates signatures.

We now present the extractability requirement for commuting group signatures.

Firstly, there exists simulators S1, S2, S3 such that for all polynomial–time adversaries A

the advantage
∣∣∣Pr[Expsim−0

A,CGS(τ) = 1]− Pr[Expsim−1
A,CGS(τ) = 1]

∣∣∣ is negligible in τ .

Experiment: Expsim-b
A,CGS(τ)

(p,G1,G2,GT , e, g1, g2)←$G(1τ), if b = 0 param←$CGS.Setup(1τ)

if b = 1 (param, τs)←$S1(p,G1,G2,GT , e, g1, g2)

(isk, ipk)←$CGS.IKGen(param), (osk, opk)←$CGS.OKGen(param), gpk ← (param, ipk, opk)

b∗←$ASNDUX,SIGNX(gpk, isk, osk)

where the oracles SNDUX,SIGNX work as follows:

if b = 0 (real world) then SNDUX,SIGNX are the SNDU,SIGN oracles

if b = 1 (ideal world) then SNDUX,SIGNX are the simulated SNDUSIM,SIGNSIM oracles

return b∗

209

6.3 Our CLS+ Construction

SNDUSIM(uid,Min)

if uid ∈ CUL return ⊥

if uid /∈ HUL HUL← HUL ∪ {uid},Min ←⊥,decuid ← cont

upk[uid]←$G2

if decuid 6= cont return ⊥, if stuidJoin undefined stuidJoin ← (gpk,⊥,upk[uid])

(stuidJoin,MOut,decuid)←$S2(param, stuidJoin,Min, τs), return (MOut,decuid)

SIGNSIM(uid,m, bpk)

if uid /∈ HUL or decuid 6= accept return ⊥

(µ, σ)←$S3(param, gpk, bpk,upk[uid],m, τs) return (σ, µ)

Secondly, there exists SE1, E2, such that (param, τs, ·) output by SE1 is distributed iden-

tically to the output of S1, and for all polynomial–time adversaries A the advantage

Pr[ExpextA,CGS(τ) = 1] is negligible in τ .

Experiment: Expext
A,CGS(τ)

(p,G1,G2,GT , e, g1, g2)←$G(1τ)

(param, τs, τe)←$SE1(p,G1,G2,GT , e, g1, g2)

(isk, ipk)←$CGS.IKGen(param), (osk, opk)←$OKGen(param), gpk ← (param, ipk, opk)

(c, cµ, cσ, bpk, bsk)←$AS2(param,·,·,τs),S3(param,·,·,·,τS)(gpk, isk, osk)

if CGS.BlindVerify(gpk, bpk, c, cµ, cσ) = 0 or (bpk, bsk) /∈ BK return 0

upk ← CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, osk, c, cµ, cσ))

if upk queried to S3 for bpk, opk, ipk return 0

upk′ ← E2(gpk, bpk, isk, osk, bsk, c, cµ, cσ, τe)

if upk′ =⊥ or e(upk′, g2) 6= e(g1, upk) return 1 else return 0

6.3.1 Detailed Description of CLS–CGS

We now give a detailed description of the CLS–CGS construction. Only commuting group

signatures that satisfy the additional structural assumptions can be used to build this

construction.

210

6.3 Our CLS+ Construction

Setup and Key Generation. The CLS+.Setup , CLS+.IKGen, CLS+.CKGen and

CLS+.BKGen algorithms are identical to the CGS.Setup, CGS.IKGen, CGS.OKGen and

CGS.BKGen algorithms for CGS respectively, except that the converter’s key also includes

a signing and verification key of a digital signature scheme.

CLS+.Setup(1τ)

paramcgs←$CGS.Setup(1τ)

paramsig←$ SIG.Setup(1τ)

return (paramcgs, paramsig)

CLS+.IKGen(param)

return CGS.IKGen(paramcgs)

CLS+.BKGen(param)

return CGS.BKGen(paramcgs)

CLS+.CKGen(param)

(cpk1, csk1)←$CGS.OKGen(paramcgs), (cpk2, csk2)←$SIG.KeyGen(1τ)

return ((cpk1, cpk2), (csk1, csk2))

Join. The join protocol between a user and the issuer is identical to the join protocol of

our CGS scheme, except the (upk, usk) are generated in CLS+.Join. The detailed protocol

of 〈CLS+.Join(gpk),CLS+.Issue(isk, gpk)〉 is given in Figure 6.3.

U .CLS+.Join(gpk)
 I.CLS+.Issue(isk, gpk)

(upk, usk)←$CGS.UKGen(paramcgs)

-upk

〈CGS.Join(gpk, usk, upk),CGS.Issue(gpk, isk, upk)〉

Figure 6.3: Join protocol of our CLS–CGS construction

Sign and Verification of tier-1 signatures. Our signatures are identical to those

in the CGS scheme, and therefore signing and verification are the same. In more detail,

CLS+.Sign and CLS+.Verify are defined as follows:

CLS+.Sign(gpk, bpk,gsk[uid],m)

return CGS.Sign(gpk, bpk,gsk[uid],m)

CLS+.Verify(tier-1, gpk, bpk,m, µ, σ)

return CGS.Verify(gpk, bpk,m, µ, σ)

211

6.3 Our CLS+ Construction

Blind Conversions. The signatures can be blinded identically using the power of the

CGS scheme. In CLS+.Convert, blinded signatures are now input and verified, leveraging

the fact that even fully blinded inputs can be checked for their correctness. The signatures,

pseudonyms, and blinded messages are re-randomised with CGS.RRandBlind to ensure non-

transitivity. The pseudonyms are then blindly opened under the csk1 using CGS.OpenBlind,

and converted by raising them to the power of r and transforming them into the target

group to ensure non-transitivity. The converted signature is simply a digital signature on

the blinded converted pseudonym and message, with respect to the converter’s verification

key. In CLS+.Unblind the converted pseudonym and ciphertext are now unblinded with

CGS.UnblindUser and CGS.UnblindM. The converted pseudonym, message and signature

are included in the tier-2 signature, along with a proof that the unblinding has been done

correctly. During tier-2 verification, the converter’s signature on the blinded values and

the proof of unblinding are verified.

CLS+.Blind(gpk, bpk, (m,µ, σ))

return CGS.Blind(gpk, bpk, (m,µ, σ))

CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

r←$Z∗p, for i = 1, . . . k :

(c′i, cµ
′
i, cσ

′
i)←$CGS.RRandBlind(gpk, bpk, ci, cµi, cσi)

cµ′′i ← CGS.OpenBlind(gpk, bpk, csk1, c
′
i, cµ

′
i, cσ

′
i)

cµ′′′i ← e(g1, cµ
′′
i)r, σ′i←$SIG.Sign(csk2, (c

′
i, cµ

′′′
i , bpk))

choose random permutation Π, for i = 1, . . . , k : (cµi, ci, cσi)← (cµ′′′Π(i), c
′
Π(i), σ

′
Π(i))

return ((cµ1, c1, cσ1)), ..., (cµk, ck, cσk)))

CLS+.Unblind(bsk, (cµ, cσ, c))

µ← CGS.UnblindUser(bsk, cµ),m← CGS.UnblindM(bsk, c)

πub←$ SPK{bsk : µ = CGS.UnblindUser(bsk, cµ) ∧m = CGS.UnblindM(bsk, c) ∧ (bsk, bpk) ∈ BK}

σ ← (cµ, cσ, c, πub) return (µ,m, σ)

212

6.4 Security of CLS–CGS

CLS+.Verify(tier-2, gpk, bpk,m, µ, σ)

parse σ = (cµ, cσ, c, πub),Verify πub holds for cµ, µ, c,m, bpk

if SIG.Ver((cµ, c, bpk), cpk2, cσ) = 1 return 1 else return 0

6.4 Security of CLS–CGS

We now show that our CLS–CGS construction satisfies all security properties defined in

Section 6.2. More precisely, we show that the following theorem holds.

Theorem 6.1. The CLS–CGS construction presented in Section 6.3.1 is a secure CLS+ as

defined in Section 6.2 if

• the CGS scheme is secure as defined in 5.3.2, and also satisfies extractability and the

additional structural assumptions,

• the SIG is strongly EUF-cma secure,

• the SPK is zero–knowledge and sound,

• the DDH assumption holds in G2.

We now present proofs, showing that our CLS–CGS construction satisfies the correctness,

anonymity, non–transitivity, conversion blindness, non–frameability and traceability re-

quirements given in Section 6.2.

6.4.1 Correctness

Correctness of sign is clearly satisfied, due to the correctness of the commuting group

signatures building block.

For all i ∈ k, the blinded signatures cµi, cσi, ci are honestly generated and blinded com-

muting group signatures. In CLS+.Convert they are then re-randomised. Due to the

re-randomisation property, they are indistinguishable from freshly generated and blinded

213

6.4 Security of CLS–CGS

signatures. Let cupki be the output of CGS.OpenBlind under the re-randomised blinded sig-

natures, which will consist of elements in G2. The value e(g1, cupki)
r will be the pseudonym

output by CLS+.Convert, and CGS.UnblindUser(bsk, e(g1, cupki)
r) will be the pseudonym

output by CLS+.Unblind. The commuting group signature satisfies:

CGS.UnblindUser(bsk, e(g1, cupki)
r) = e(g1,CGS.UnblindUser(bsk, cupki))

r.

Therefore due to the correctness of the commuting group signature scheme, letting upki

be the user public key of the ith user, µi = e(g1, upki))
r. Again, due to the correctness

of the commuting group signatures, mi = mi. Due to the correctness of the SPK and the

digital signature used, the signature σ output will be valid. Therefore the construction

satisfies correctness of conversion.

Assume

UnLink(gpk, csk, ((µ0,m0, σ0), (µ1,m1, σ1))) = 0

and UnLink(gpk, csk, ((µ1,m1, σ1), (µ2,m2, σ2))) = 0.

This ensures they are all valid blinded commuting group signatures, as otherwise UnLink

would output ⊥. For i ∈ {0, 1, 2}, let

upki = CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk, ci, cµi, cσi)).

Due to the same argument as correctness of conversion and the re-randomisation property,

letting r1, r2 be the randomness chosen during Convert, e(g1, upk0)r1 = e(g1, upk1)r1 and

e(g1, upk1)r2 = e(g1, upk2)r2 . Therefore, e(g1, upk0) = e(g1, upk1) = e(g1, upk2). However,

if

UnLink(gpk, csk, ((cµ0, c0, cσ0), (cµ2, c2, cσ2))) = 1,

then e(g1, upk0)r3 6= e(g1, upk2)r3 , where r3 was chosen during Convert. This is a contra-

diction. Therefore the construction satisfies consistency.

6.4.2 Anonymity

Lemma 6.1. The CLS–CGS construction satisfies anonymity if the DDH assumption

holds in G2, and the CGS scheme satisfies anonymity, extractability, and the additional

214

6.4 Security of CLS–CGS

CONVERT((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

if (bpk, bsk) /∈ BK return ⊥
if ∃i∗ ∈ [k], d ∈ {0, 1} s.t Identify(uid∗d, ci∗ , cµi∗ , cσi∗) = 1

and CGS.UnblindM(bsk, ci∗) = m∗ and bpk = bpk∗

if ∃i ∈ [k]\{i∗} s.t. Identify(uid∗d, ci, cµi, cσi) = 1 for d ∈ {0, 1} return ⊥
({(cµi, cσi, ci)}k−1)←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci) : i ∈ [k]\{i∗}})
if ({(cµi, cσi, ci)}k−1) =⊥ return ⊥, ck←$CGS.RRandBlind(gpk, bpk, ci∗)

upk∗←$G2, cµk ← e(g1,CGS.BlindUser(bpk, upk
∗)), cσk←$SIG.Sign(csk2, (ck, cµk, bpk))

choose random permutation Π, for i = 1, . . . , k :

(cµi, ci, cσi)← (cµΠ(i), cΠ(i), cσΠ(i))

else compute {(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

return ({(cµi, cσi, ci)}k)

Figure 6.4: Convert oracle used during first j queries of Game (0, j) in the CLS+ anonymity
proof

structural assumptions.

Proof. We assume that an adversary A exists, that makes q queries to the SNDU oracle

for distinct user identifiers, and qconv queries to the CONVERT oracle, that wins in the

anonymity game with probability ε+ 1/2.

We define Game (0,0) to be the anonymity experiment, with b chosen randomly at the

beginning, using the CLS–CGS construction. Let P0,0 be the event that an adversary A

correctly guesses b after Game (0,0).

Game (0, j) is identical to Game (0,0) except during the first j queries to the CONVERT

oracle, when c, cµ, cσ is queried to the CONVERT oracle such that c unblinds to m, for

d ∈ {0, 1} Identify(uid∗d, c, cµ, cσ) = 1 and m = m∗. We provide the new convert oracle

used for such j queries in Game (0, j) in Figure 6.4. Let P0,j be the event that the

adversary A correctly guesses b after Game (0, j).

We show that Game (0,j) and Game (0, j+1) are indistinguishable assuming the DDH

assumption in G2. We provide a distinguishing algorithm Dj in Figures 6.5 and 6.6, and

then explain why Dj simulates inputs to A that are distributed identically to Game (0, j)

if a DDH tuple is input, and Dj simulates inputs to A that are distributed identically to

Game (0, j + 1) if a DDH tuple is not input.

215

6.4 Security of CLS–CGS

CONVERT((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

if (bpk, bsk) /∈ BK return ⊥
s← s+ 1 if s ≤ j perform CONVERT given in Figure 12

if s > j + 1 perform CONVERT given in anonymity experiment

If ∃i ∈ [k] s.t CGS.BlindVerify(gpk, bpk, ci, cµi, cσi) =⊥ return ⊥
if ∃i∗ ∈ [k], d ∈ {0, 1} s.t CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, ci∗ , cµi∗ , cσi∗))

= upk[uid∗d] and CGS.UnblindM(bsk, ci∗) = m∗ and bpk = bpk∗

if uid∗d 6= uid′ abort Dj
if ∃i ∈ [k]\{i∗}, d ∈ {0, 1} s.t. CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, ci, cµi, cσi))

= upk[uid∗d] return ⊥
for i = [k]\{i∗} :

if ∃uid ∈ HUL\{uid′} s.t Identify(uid, ci, cµi, cσi) = 1, upk′i ← g
usk[uid]
1

else upk′i ← E2(gpk, isk, osk, bsk, ci, cµi, cσi, τe), if upk
′
i =⊥ return ⊥

ci←$CGS.RRandBlind(gpk, bpk, ci), cµi ← e(upk′i,CGS.BlindUser(bpk,D3))

cσi←$SIG.Sign(csk2, (ci, cµi, bpk))

µi∗ ← D4, cµi∗ ← e(g1,CGS.BlindUser(bpk, µi∗))

ci∗ ←$CGS.RRandBlind(gpk, bpk, ci∗), cσi∗ ←$SIG.Sign(csk2, (ci∗ , cµi∗ , bpk))

choose random permutation Π, for i = 1, . . . , k :

(cµi, ci, cσi)← (cµΠ(i), cΠ(i), cσΠ(i))

else compute {(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

return ({(cµi, cσi, ci)}k)

Figure 6.5: Dj a distinguishing algorithm for the DDH problem in the CLS+ anonymity
proof

216

6.4 Security of CLS–CGS

SNDU(uid, n)

if uid ∈ CUL return ⊥
if uid /∈ HUL

HUL← HUL ∪ {uid}, l← l + 1,gsk[uid]←⊥,Min ←⊥,decuid ← cont

if l = k uid′ ← uid,upk[uid]← D2, st
uid
Join ← (gpk,⊥,upk[uid]) return (upk[uid],decuid)

if uid = uid′

if decuid 6= cont return ⊥
(stuidJoin,Mout,decuid)←$S2(paramCGS, st

uid
Join,Min, τs), return (Mout,decuid)

Continue from line 5 of oracle in anonymity experiment

SIGN(uid,m, bpk)

if uid 6= uid′ perform SIGN oracle from anonymity experiment

if uid = uid′

if decuid 6= accept return ⊥
(µ, σ)←$S3(paramCGS, gpk, bpk,upk[uid],m, τs),SL← SL ∪ {(uid,m, bpk)}
return (σ, µ)

Dj(D1, D2, D3, D4)

s, l← 0, k←$ [1, q], b←$ {0, 1}, g1←$G1, g2 ← D1

(paramCGS, τs, τe)←$SE1(p,G1,G2,GT , e, g1, g2), paramsig←$SIG.Setup(1τ)

param← (paramCGS, paramsig), (isk, ipk)←$CLS+.IKGen(param), (csk, cpk)←$CLS+.CKGen(param)

gpk ← (param, ipk, cpk)

(uid∗0, uid
∗
1,m

∗, bpk∗, st)←$ASNDU,SIGN,CONVERT(choose, gpk, isk)

if uid∗0 /∈ HUL or if decuid
∗
0 6= accept or uid∗1 /∈ HUL or if decuid

∗
1 6= accept if b = 0 return 1 else return 0

(µ∗, σ∗)←$ SIGN(uid′,m∗, bpk∗)

b∗←$ASNDU,SIGN,CONVERT(guess, st, µ∗, σ∗)

if b∗ = b return 1

Figure 6.6: Dj a distinguishing algorithm for the DDH problem in the CLS+ anonymity
proof

217

6.4 Security of CLS–CGS

The values gpk, csk, isk are distributed identically to the anonymity game, as everything

but g2, paramCGS are chosen in the same way. The simulator SE1 outputs a paramCGS that

is identically distributed to the output of CRSSetup.

Simulating the SNDU oracle. The SNDU oracle only differs from the oracle in the

anonymity experiment when uid′ is input. In this case, upk is distributed identically,

and S2 simulates the CGS.Join protocol. Therefore the outputs of SNDU are distributed

identically to the anonymity experiment, due to the extractability of the commuting group

signatures.

Simulating the SIGN oracle. The SIGN oracle is identical to the oracle in the anonymity

experiment when uid 6= uid′ is queried. When uid′ is queried, S3 can then be used to

simulate signatures that are identically distributed, due to the extractability of commut-

ing group signatures. Therefore the outputs of SIGN are distributed identically to the

anonymity experiment.

Simulating the CONVERT oracle. Other than the jth query, the CONVERT oracle

is identical to both Games (0, j) and (0, j + 1).

For the jth query, if the input to Dj is a DDH tuple, then outputs from the CONVERT

oracle are identically distributed to in the anonymity game. This is because if c, cµ, cσ is

not queried to the CONVERT oracle such that c unblinds to m, Identify(uid∗d, c, cµ, cσ) = 1

for d ∈ {0, 1} and m = m∗ and bpk = bpk∗, the oracle behaves identically to the anonymity

game. If an invalid blinded signature is input, the oracle will abort, as in the original

anonymity game.

If this is queried, we show the simulation is correctly distributed. Firstly ci and cσi are

generated identically to CLS+.Convert.

As we do not have access to gsk[uid′], we cannot perform Identify on input uid′, therefore

instead we perform CGS.OpenBlind and CGS.UnblindUser. Only one signature identifies to

uid∗d, otherwise the oracle will abort as in the anonymity game. We assume uid∗d = uid′,

which happens with probability 1/q, therefore extraction of the upk′i is always successful

218

6.4 Security of CLS–CGS

because the signatures do not open to the user public key of uid′.

Letting r′ = logD1
(D3) and upk′i = guski1 , upki = guski2 , hence

cµi = e(upk′i,CGS.BlindUser(bpk,D3)) = e(g1,CGS.BlindUser(bpk,D3)uski)

= e(g1,CGS.BlindUser(bpk, g
r′uski
2)) = e(g1,CGS.BlindUser(bpk, upki))

r′ ,

which is correctly distributed. Also, letting upk = upk[uid′],

cµi∗ = e(g1,CGS.BlindUser(bpk, µi∗)) = e(g1,CGS.BlindUser(bpk,D4))

= e(g1,CGS.BlindUser(bpk, upk
r′)) = e(g1,CGS.BlindUser(bpk, upk))r

′
.

As CGS.BlindUser on input upk is indistinguishable from the output of CGS.RRandBlind

followed by CGS.OpenBlind on a blinded signature that would open to upk after unblinding,

the converted pseudonyms are distributed correctly. The cµi are then shuffled with a

random permutation. Therefore, the outputs of the CONVERT oracle are distributed

identically to the CONVERT oracle in the anonymity game, and so identically to Game

(0, j).

Simulating (µ∗, σ∗). The signature (µ∗, σ∗) input to A in the guessing stage is dis-

tributed identically to the anonymity game, due to outputs of the SIGN oracle being

distributed identically to the anonymity game.

Reduction to the DDH problem. If the input to Dj is not a DDH tuple, then

the output of the CONVERT oracle is identically distributed to Figure 6.4. This is

because if c, cµ, cσ is not queried to the CONVERT oracle such that c unblinds to m,

Identify(uid∗d, c, cµ, cσ) = 1 and m = m∗ for d ∈ {0, 1} and bpk = bpk∗, then the oracle

behaves identically to both games. If this is the case, as D4 is now chosen randomly

and independently, c∗i , cµ
∗
i , cσ

∗
i are now chosen identically to Figure 6.4. Therefore, if the

input to Dj is not a DDH tuple, then the outputs to A are identically distributed to

Game (0, j + 1).

The distinguisher Dj only aborts early if c, cµ, cσ is queried to the CONVERT oracle,

219

6.4 Security of CLS–CGS

such that c unblinds to m, Identify(uid∗d, c, cµ, cσ) = 1 and m = m∗, for d ∈ {0, 1} and

uid′ 6= uid∗d. This occurs with probability at most q − 1/q. Therefore the probability

that Dj outputs 1 given a DDH tuple was input is Pr[P0,j]/q. The probability that Dj

outputs 1 given a DDH tuple was not input is Pr[P0,j+1]/q. The advantage of Dj is then

|Pr[P0,j]− Pr[P0,j+1]|/q, therefore |Pr[P0,j]− Pr[P0,j+1]| = qεDDH.

We define Game 1 to be Game (0, qconv), where qconv is the number of queries to the

CONVERT oracle. Let P1 be the event that an adversary A correctly guesses b after

Game 1. As |Pr[P0,j]− Pr[P0,j+1]| = qεDDH, then |Pr[P0,0]− Pr[P1]| ≤ qconvqεDDH.

Next, we show that |Pr[P1]−1/2| ≤ εCGSanon. We build an adversary A′ that successfully

guesses b in the anonymity game for commuting group signatures, given A that guesses

successfully in Game 1 with Pr[P1]. We provide A′ in Figure 6.7, and then explain why

the simulation input to A is identically distributed to Game 1, and that A′ successfully

breaks the anonymity of commuting group signatures.

The keys (gpk, isk) are computed identically to the anonymity game. As the SNDUCGS

oracle for the commuting group signatures join protocol is identical to the SNDU oracle

for the CLS+ join protocol, the SNDU oracle is distributed identically. As users’ secret

keys and signatures are distributed identically, the SIGN oracle is distributed correctly,

and input in the guessing phase is distributed correctly.

Simulating the CONVERT oracle. The CONVERT oracle can no longer use Identify

without the secret keys of the honest users. However, if there exists i∗ ∈ [k] such that

Identify(uid∗d, ci∗ , cµi∗ , cσi∗) = 1 for d ∈ {0, 1} and CGS.UnblindM(bsk, ci∗) = m∗ and bpk =

bsk∗, then BOPEN(ci∗ , cµi∗ , cσi∗ , bpk, bsk) would output ⊥ in the CGS anonymity game.

If there exists i ∈ [k] such that Identify(uid∗d, ci, cµi, cσi) = 1 for d ∈ {0, 1} , then BOPEN

would either open to the user public key of uid∗d or would output ⊥. Therefore these con-

ditions can be checked instead. Finally, the only difference to in Game 1 is that BOPEN is

used in CLS+.Convert instead of CGS.OpenBlind; as BOPEN will not output ⊥, this oracle

is distributed identically to Figure 6.4.

220

6.4 Security of CLS–CGS

SNDU(uid,Min)

return SNDUCGS(uid,Min)

SIGN(uid,m, bpk)

return SIGNCGS(uid,m, bpk)

CONVERT((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

if ∃i ∈ [1, k] s.t CGS.BlindVerify(gpk, bpk, ci, cµi, cσi) = 0 or (bpk, bsk) /∈ BK return ⊥
if ∃i∗ ∈ [k] s.t BOPEN(ci∗ , cµi∗ , cσi∗ , bpk, bsk) =⊥

if ∃i ∈ [k]\{i∗} s.t. BOPEN(ci, cµi, cσi, bpk, bsk) =⊥ or upk[uid∗d] for d ∈ {0, 1}
return ⊥

Using the BOPEN oracle instead of CGS.OpenBlind compute

({(cµi, cσi, ci)}k−1)←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci) : i ∈ [k]\{i∗}})
if ({(cµi, cσi, ci)}k−1) =⊥ return ⊥
ck←$CGS.RRandBlind(gpk, bpk, ci∗), upk

∗←$G2, cµk ← e(g1,CGS.BlindUser(bpk, upk
∗))

cσk←$ SIG.Sign(csk2, (ck, cµk, bpk))

choose random permutation Π, for i = 1, . . . , k :

(cµi, ci, cσi)← (cµΠ(i), cΠ(i), cσΠ(i))

else Using the BOPEN oracle instead of CGS.OpenBlind compute

{(cµi, cσi, ci)}k←$CLS+.Convert(gpk, bpk, csk, {(cµi, cσi, ci)}k)

return ({(cµi, cσi, ci)}k)

A′SNDUCGS,SIGNCGS,OPEN,BOPEN(choose, gpkCGS, iskCGS)

parse gpkCGS = (paramCGS, opkCGS, ipkCGS)

paramsig←$SIG.Setup(1τ), (cpk2, csk2)←$ SIG.KeyGen(1τ), param← (paramCGS, paramsig)

(ipk, isk)← (ipkCGS, iskCGS), cpk ← (opkCGS, cpk2), gpk ← (param, ipk, cpk)

(uid∗0, uid
∗
1,m

∗, bpk∗, st)←$ASNDU,SIGN,CONVERT(choose, gpk, isk)

if uid∗0 /∈ HUL or if decuid
∗
0 6= accept or uid∗1 /∈ HUL or if decuid

∗
1 6= accept return 0

return (uid∗0, uid
∗
1,m

∗, bpk∗, stCGS)

A′SNDU,SIGN,OPEN,BOPEN(guess, stCGS, µ
∗, σ∗)

b∗←$ASNDU,SIGN,CONVERT(guess, st, µ∗, σ∗)

return b∗

Figure 6.7: A′ which breaks the anonymity of commuting group signatures, given A which
breaks the anonymity of CLS–CGS

221

6.4 Security of CLS–CGS

Reduction to the Anonymity of Commuting Group Signatures. As the inputs to

A are distributed identically to Game 1, they will guess correctly with probability P1 and

so A′ will guess correctly in the CGS anonymity game with probability Pr[P1]. Therefore,

|Pr[P1] − 1/2| ≤ εCGSanon. Therefore, |Pr[P0,0 − 1/2| ≤ εCGSanon + qconvqεDDH. As this is

negligible, our construction satisfies anonymity.

6.4.3 Non–transitivity

Lemma 6.2. The CLS–CGS construction satisfies non-transitivity if the DDH assump-

tion holds in G2, and the CGS scheme satisfies extractability and the additional structural

assumptions.

Proof. For proving non-transitivity, we have to show that there exists an efficient simulator

SIM that makes the real and simulated game indistinguishable. We start by describing

the simulator and then explain why the real and simulated conversion oracles CONVERT

and CONVSIM are indistinguishable.

SIM(gpk, bpk, csk, Luid1 , . . . Luidk′)

l← 0,∀j ∈ [1, k′]

µ′←$G2;∀c ∈ Luidj

l← l + 1, cµl ← e(g1,CGS.BlindUser(bpk, µ
′)), cl←$CGS.RRandBlind(gpk, bpk, c)

cσl←$ SIG.Sign(csk2, (cµl, cl, bpk))

return ((cµ1, c1, cσ1), . . . (cµl, cl, cσl))

We assume that an adversary A exists that makes q queries to the SNDU oracle for distinct

user identifiers, and qconv queries to the CONVX oracle, that guesses b correctly in the non-

transitivity game with SIM as described and wins with probability ε+ 1/2.

We will stepwise make the real-world (b=0) and the simulated world (b=1) equivalent,

using a sequence of Games Hj for j = 0, . . . , q. The idea is that in Game Hj we will not

222

6.4 Security of CLS–CGS

use simulated conversions for all users uid1, . . . , uidj in order of when they were queried

to SNDU. More precisely, we define Game Hj to be as given in Figure 6.8 with all other

oracles identical to the non–transitivity experiment. Let Pj be the event that A guesses

b correctly in Game Hj , with the simulator as described. Game Hj keeps track of the

queries to SNDU, adding the first j queries of uid to a set UL. Then during queries to

CONVSIM, if a signature of a user in UL is queried, these are treated in the same way as

pseudonyms for corrupted users, i.e., they are normally converted using the CLS+.Convert

algorithm. If a signature of an honest user that is not in UL is queried, we add this user

to NUL. These conversions are simulated as usual.

Game H0 is identical to the non-transitivity game because UL is empty. Therefore,

Pr[P0] = ε+ 1/2. In Game Hq, UL contains all honest users, and so the CONVSIM oracle

is now identical to the CONVERT oracle, and inputs to the adversary are now independent

of b , therefore Pr[Pq] = 1/2.

We now show that if an adversary can distinguish Games Hj and Hj+1, we can turn

this into a distinguisher Dj that can break the DDH assumption in G2. We describe

the reduction and the additional simulation that is needed in Figures 6.9 and 6.10. The

CONVERT oracle remains unchanged. To avoid confusion, we write uid′ to refer to the

j + 1-th user that has joined the group (and for which Dj embedded the DDH challenge).

We now argue that when a DDH tuple (D′1, D
′
2, D

′
3, D

′
4) is input to Dj , the inputs to A

are distributed identically to Game Hj+1; when a DDH tuple is not input, the inputs to

A are distributed identically to Game Hj . That is for D′1 = h,D′2 = ha, D′3 = hb, D′4 = hc,

the oracles provided by Dj will be exactly as in Hj+1 when c = ab, and as in Hj otherwise.

We first note that due to the DDH random self-reduction given in [127], if a DDH tuple is

input to Dj , then for all i ∈ [qconv], D1, D2, D3,i, D4,i is a DDH tuple. If a DDH tuple is not

input to Dj , then D1, D2, D3,1, D4,1, · · · , D3,qconv , D4,qconv is randomly and independently

distributed.

The values gpk, csk, isk are distributed identically to the non-transitivity game, as every-

thing but g2, paramCGS are chosen in the same way. SE1 and Setup outputs identically

distributed paramCGS.

223

6.4 Security of CLS–CGS

Game Hj
t← 0, b←$ {0, 1}, param←$CLS+.Setup(1τ), (ipk, isk)←$CLS+.IKGen(param)

(cpk, csk)←$CLS+.CKGen(param), gpk ← (param, ipk, cpk)

return ASNDU,SIGN,CONVX(guess, gpk, isk)

SNDU(uid,Min)

if uid /∈ HUL, t← t+ 1, if t ≤ j UL← UL ∪ {uid}
Continue from line 2 of standard SNDU oracle

CONVSIM((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

if (bpk, bsk) /∈ BK return ⊥
if CLS+.Convert(gpk, bpk, csk, (cµ1, cσ1, c1), . . . , (cµk, cσk, ck)) =⊥ return ⊥
Set CL← ∅
∀i ∈ [1, k]

if ∃uid ∈ HUL s.t Identify(uid, ci, cµi, cσi) = 1

if Luid does not exist, create Luid ← {ci},CLuid ← {(ci, cσi, cµi)}
else set Luid ← Luid ∪ {ci},CLuid ← CLuid ∪ {(ci, cσi, cµi)}

else CL← CL ∪ {(ci, cσi, cµi)}
({(cµi, cσi, ci)}i=1,...k′)←$CLS+.Convert(gpk, bpk, csk,CL ∪

⋃
uid∈UL

CLuid))

for k′ ← |CL ∪
⋃

uid∈UL

CLuid|

Let Luid1 , . . . Luidk′′ be the non-empty message clusters

Let NUL← {uid1, . . . uidk′′}\UL
{(cµi, cσi, ci)}i=k′+1,...k←$SIM(gpk, bpk, csk,

⋃
uid∈NUL

Luid)

Let {(cµ′i, cσ′i, c′i)}i=1,...k be a random permutation of {(cµi, cσi, ci)}i=1,...k

return ({(cµ′i, cσ′i, c′i)}i=1,...k)

Figure 6.8: Description of Game Hj and the changes to the SNDU and CONVSIM oracles
in the CLS+ non–transitivity proof

224

6.4 Security of CLS–CGS

Dj(D′1, D′2, D′3, D′4)

Expand D′1, D
′
2, D

′
3, D

′
4 into D1, D2, {D3,i, D4,i : i ∈ [qconv]} using DDH random self-reduction [127]

s, t← 0, g1←$G1, g2 ← D1, (paramCGS, τs, τe)←$SE1(p,G1,G2,GT , e, g1, g2)

paramsig←$ SIG.Setup(1τ), param← (paramCGS, paramsig), (isk, ipk)←$CLS+.IKGen(param)

(csk, cpk)←$CLS+.CKGen(param), gpk ← (param, ipk, cpk)

b∗←$ASNDU,SIGN,CONVX(gpk, csk, isk)

if b∗ = b return 1 else return 0

SNDU(uid, n)

if uid ∈ CUL return ⊥
if uid /∈ HUL, t← t+ 1, if t ≤ j UL← UL ∪ {uid}

HUL← HUL ∪ {uid},gsk[uid]←⊥,Min ←⊥,decuid ← cont

if t = j + 1 uid′ ← uid,upk[uid]← D2, st
uid
Join ← (gpk,⊥,upk[uid]) return (D2,decuid)

if uid = uid′

if decuid 6= cont return ⊥
(stuidJoin,Mout,decuid)←$S2(paramCGS, st

uid
Join,Min, τs), return (Mout,decuid)

Continue from line 5 of standard SNDU oracle

SIGN(uid,m, bpk)

if uid 6= uid′ perform SIGN oracle from non–transitivity experiment

if uid = uid′

if decuid 6= accept return ⊥
(µ, σ)←$S3(paramCGS, gpk, bpk,upk[uid],m, τs),SL← SL ∪ {(uid,m, bpk)}
return (σ, µ)

Figure 6.9: Dj our distinguishing algorithm for the DDH problem in the CLS+ non–
transitivity proof

Simulating the SNDU oracle. The SNDU oracle only differs from the oracle in the

non–transitivity experiment during the (j + 1)-th query by embedding D2 of the DDH

challenger into the user’s public key upk. Clearly, upk is distributed correctly, and CGS.Join

can be simulated with S2 on input upk using τs. Note that usk, upk′ are not defined for

this user, but this is not output to A, or used in the next stage of the protocol.

Simulating the SIGN oracle. The SIGN oracle is identical to the oracle in the non–

transitivity experiment when uid 6= uid′ is queried. When uid′ is queried, we simply use

S3 on input upk[uid] to simulate signatures.

Simulating the CONVSIM oracle. What remains to be shown is that the CONVSIM

oracle either behaves identically to the CONVSIM oracle in Game Hj or as in Hj+1,

225

6.4 Security of CLS–CGS

CONVSIM((cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

s← s+ 1, if (bpk, bsk) /∈ BK return ⊥
if CLS+.Convert(gpk, bpk, csk, (cµ1, cσ1, c1), . . . , (cµk, cσk, ck)) =⊥ return ⊥
Set CL← ∅
∀i ∈ [1, k]

if ∃uid ∈ HUL s.t CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) = upk[uid]

if Luid does not exist Luid ← {ci},CLuid ← {(ci, gusk[uid]
1)}

else Luid ← Luid ∪ {ci},CLuid ← CLuid ∪ {(ci, gusk[uid]
1)}

else upk′i ← E2(gpk, bpk, isk, osk, bsk, ci, cµi, cσi, τe)

CL← CL ∪ {(ci, upk′i)}
n← 0; ∀(c, upk′) ∈ CL ∪

⋃
uid∈UL

CLuid

n← n+ 1, cµn ← e(upk′,CGS.BlindUser(bpk,D3,s)), cn←$CGS.RRandBlind(gpk, bpk, c)

cσn←$Sig(csk, (cµn, cn, bpk))

if Luid′ exists ∀c ∈ Luid′
n← n+ 1, cµn ← e(g1,CGS.BlindUser(bpk,D4,s)), cn←$CGS.RRandBlind(gpk, bpk, c)

cσn←$Sig(csk, (cµn, cn, bpk))

let Luid1 , . . . Luidk′′ be the non-empty message clusters

Let NUL← {uid1, . . . uidk′′}\UL
{(cµi, ci, cσi)}i=n+1,...k←$ SIM(gpk, bpk, csk

⋃
uid∈NUL,uid 6=uid′

Luid)

Let {(cµ′i, cσ′i, c′i)}i=1,...k be a random permutation of {(cµi, cσi, ci)}i=1,...k

return ({(cµ′i, cσ′i, c′i)}i=1,...k)

Figure 6.10: The CONVSIM oracle used by distinguisher Dj in the CLS+ non–transitivity
proof

depending on whether its input was a DDH tuple or not. The value upk′ is only extracted

if ci, cµi, cσi does not identify to any honest user, and therefore this will be successful as it

will not identify to upk[uid′]. In the case of uid′ usk[uid′] is not defined, however because

uid′ /∈ UL then CLuid′ will never be used. The values c, cσ are computed in the same way

as in CLS+.Convert. We know that D3,s = gr̃2 for some r̃ , and upk′ = gusk1 for some usk,

and thus it must hold that:

cµ = e(upk′,CGS.BlindUser(bpk,D3,s)) = e(g1,CGS.BlindUser(bpk, g
r̃
2))usk

= e(g1,CGS.BlindUser(bpk, upk))r̃.

As CGS.BlindUser on input upk is indistinguishable from the output of CGS.RRandBlind

followed by CGS.OpenBlind on a blinded signature that would open to upk after unblinding,

these pseudonyms are distributed identically to the non–transitivity experiment.

If (D′1, D
′
2, D

′
3, D

′
4) is a DDH tuple, then D4,s = Dr̃

2. Therefore as upkuid′ = D2, and

as CGS.BlindUser(bpk, upkr̃uid′) = CGS.BlindUser(bpk, upkuid′)
r̃, the inputs to A are also

distributed identically to Game Hj+1. Whereas if (D′1, D
′
2, D

′
3, D

′
4) is not a DDH tuple,

226

6.4 Security of CLS–CGS

then D4,s, is distributed identically to µ′, which was chosen randomly and independently.

Therefore the inputs to A are distributed identically to Game Hj .

Reduction to the DDH problem. Therefore the probability that Dj outputs 1 if it

was given a valid DDH tuple as input is Pr[Pj+1], and Pr[Pj] is the probability that Dj

outputs 1 when the input was not a DDH tuple. The advantage of Dj is then |Pr[Pj] −

Pr[Pj+1]|, therefore |Pr[Pj]− Pr[Pj+1]| = εDDH.

Overall, for our sequence of games H0 to Hq it holds that |Pr[P0]− Pr[Pq]| ≤ qεDDH and

thus ε ≤ qεDDH is negligible. This concludes our proof that the CLS–CGS construction

satisfies non–transitivity.

6.4.4 Conversion Blindness

Lemma 6.3. The CLS–CGS construction satisfies conversion blindness if the CGS

scheme satisfies the blindness requirement and the additional structural assumptions and

the SPK is zero–knowledge.

Proof. We build an adversary A′ that successfully guesses b in the blindness game for com-

muting group signatures, given A that successfully guesses b in the conversion blindness

game. We provide A′ in Figure 6.11, and then explain why the simulation input to A is

identically distributed to the conversion blindness experiment, and that A′ successfully

breaks the blindness of commuting group signatures.

The values (gpk, bpk, isk, csk) are computed identically to the conversion blindness game.

As signatures and the blinding algorithm are identical for both the CLS–CGS construction

and commuting group signatures, cµ∗, cσ∗, c∗ is identically distributed to the conversion

blindness game, with the same b chosen as that A′ must guess.

Simulating the UNBLIND oracle. Firstly µi = e(g1,CGS.Open(gpk, bpk, oskCGS,mi,

µi, σi))
r. This is distributed correctly because:

227

6.4 Security of CLS–CGS

UNBLIND(µ1, σ1,m1), . . . , (µk, σk,mk))

if ∃i ∈ [k] s.t CLS+.Verify(tier-1, gpk, bpk,mi, µi, σi) = 0 return ⊥
r←$Z∗p,∀i ∈ [1, k]

(cµi, cσi, ci)←$CGS.Blind(gpk, bpk,mi, µi, σi; r
′
i)

(ci, ·, ·)←$CGS.RRandBlind(gpk, bpk, ci, cµi, cσi; r
′′
i)

µi ← e(g1,CGS.Open(gpk, bpk, oskCGS,mi, µi, σi))
r

cµi ← e(g1,CGS.BlindUser(bpk,CGS.Open(gpk, bpk, oskCGS,mi, µi, σi); r
′
i + r′′i))r

cσ←$SIG.Sign(csk2, (ci, cµi, bpk))

Simulate πi with µi, cµi,mi, ci

σi ← (cµi, cσi, ci, πi)

choose random permutation Π, for i = 1, . . . , k : (µi, σi,mi)← (µΠ(i), σΠ(i),mΠ(i))

return ({(µi, σi,mi)}k, {r′i}k, {r′′i }k, r,Π)

A′(choose, gpkCGS, bpkCGS, iskCGS, oskCGS)

parse gpkCGS = (paramCGS, opkCGS, ipkCGS)

paramsig←$SIG.Setup(1τ), (cpk2, csk2)←$ SIG.KeyGen(1τ)

param← (paramCGS, paramsig), (ipk, isk)← (ipkCGS, iskCGS), bpk ← bpkCGS

(cpk, csk)← ((opkCGS, cpk2), (oskCGS, csk2)), gpk ← (param, ipk, cpk)

(st, (µ0, σ0,m0), (µ1, σ1,m1))←$AUNBLIND(choose, gpk, bpk, isk, csk)

return (stCGS, (µ0, σ0,m0), (µ1, σ1,m1))

A′(guess, stCGS, c∗, cµ∗, cσ∗)

b∗←$AUNBLIND(guess, st, cµ∗, cσ∗, c∗), return b∗

Figure 6.11: A′ which breaks the blindness of commuting group signatures using A which
breaks the conversion blindness of CLS–CGS

228

6.4 Security of CLS–CGS

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, oskCGS,CGS.Blind(gpk, bpk, ,mi, µi, σi))) =

CGS.Open(gpk, bpk, oskCGS,mi, µi, σi));

and because e(g1,CGS.UnblindUser(bsk, cupk))r = CGS.UnblindUser(bsk, e(g1, cupk)r).

The value ci is computed identically to the original oracle. cµi is distributed correctly be-

cause CGS.BlindUser(bpk, (CGS.Open(gpk, bpk, osk,m, µ, σ))) ≈ CGS.OpenBlind(gpk, bpk,

osk, c, cµ, cσ). The randomness input to CGS.BlindUser corresponds to the randomness

used to blind the pseudonym in Blind, and then to re-randomise the pseudonym in

CGS.RRandBlind. The signature cσ is computed identically to CLS+.Convert. Finally, πi

can be simulated due to the zero–knowledge property of the SPK. Therefore, all outputs

of UNBLIND are distributed identically to the experiment.

Reduction to the Blindness of Commuting Group Signature. If A correctly

guesses b then A′ correctly guesses b, and therefore blindness of commuting group signa-

tures implies conversion blindness.

6.4.5 Non–frameability

Lemma 6.4. The CLS–CGS construction satisfies non-frameability if the CGS scheme

satisfies the non–frameability requirement and the additional structural assumptions, SIG

is strongly EUF-cma secure and the SPK is sound.

Proof. We build an adversary A′ that successfully wins the non-frameability game for com-

muting group signatures, given A that wins the non–frameability game for the CLS–CGS

construction. We provide A′ in Figure 6.12 and then explain why the simulation input

to A given in Figure 6.12 is identically distributed to the non–frameability experiment

for the CLS–CGS construction, and that A′ successfully breaks the non–frameability of

commuting group signatures.

The values (gpk, isk) are computed identically to the non–frameability game. As the

SNDUCGS oracle for the commuting group signatures join protocol is identical to the SNDU

229

6.4 Security of CLS–CGS

SNDU(uid,Min)

return SNDUCGS(uid,Min)

SIGN(uid,m, bpk)

return SIGNCGS(uid,m, bpk)

CONVERT(cµ1, cσ1, c1), . . . , (cµk, cσk, ck), bpk, bsk)

Identical to non–frameability experiment

A′SNDUCGS,SIGNCGS(gpkCGS, iskCGS, oskCGS)

parse gpkCGS = (paramCGS, opkCGS, ipkCGS)

paramsig←$SIG.Setup(1τ), (cpk2, csk2)←$ SIG.KeyGen(1τ), param← (paramCGS, paramsig)

(ipk, isk)← (ipkCGS, iskCGS), (cpk, csk)← ((opkCGS, cpk2), (oskCGS, csk2)), gpk ← (param, ipk, cpk)

(m0, µ0, σ0,m1, µ1, σ1, bpk, bsk)←$ASNDU,SIGN,CONVERT(gpk, isk)

if (bpk, bsk) /∈ BK return 0

∀b ∈ {0, 1} if @(µb,mb, cb, cµb, cσb) ∈ UBL return ⊥
if @uid∗ ∈ HUL s.t CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, oskCGS, c0, cµ0, cσ0)) = upk[uid∗]

return ⊥
if ∃b ∈ {0, 1} s,t (uid∗,mb, bpk) /∈ SL return (uid∗, cb, cµb, cσb, bpk, bsk) else return ⊥

Figure 6.12: A′ which breaks the non–frameability of commuting group signatures using
A which breaks the non–frameability of CLS–CGS

oracle for the CLS+ construction join protocol, the SNDU oracle is distributed identically.

As users’ secret keys and signatures are distributed identically to commuting group sig-

natures, the SIGN oracle is distributed correctly. The CONVERT oracle is identical to the

non–frameability game.

Reduction to the Non–frameability of Commuting Group Signatures. We as-

sumeA is successful. Firstly, we consider the case thatA′ aborts due to (µb,mb, cb, cµb, cσb)

not being found in UBL. In this case, clearly A′ could break the strong EUF-cma secu-

rity of the digital signatures or the soundness of the SPK. Let σb = (cµb, cσb, cb, πub,b).

The values cµb, cσb, cb were output by a convert query under bpk otherwise A′ could

break the strong EUF-cma security of the digital signatures. Due to the soundness of

the SPK, CGS.UnblindUser(bsk, cµb) = µb and CGS.UnblindM(bsk, cb) = mb. Therefore,

(µb,mb, cb, cµb, cσb) is not stored in UBL with at most negligible probability.

A′ does not abort in the next step. This is because A is successful, and so ∃uid∗ ∈ HUL

such that Identify(bpk, bsk, uid∗, c0, cµ0, cσ0) = 1. Again as A is successful, A′ does not

abort in the final step.

230

6.4 Security of CLS–CGS

We now argue that A′ successfully breaks the non–frameability of commuting group signa-

tures. In order to do so, cb, cµb, cσb output must be valid, which is clearly true otherwise

the CONVERT oracle would have failed, and the signatures would not be stored in UBL.

For b ∈ {0, 1} such that (uid∗,mb, bpk) /∈ SL, due to the re-randomisation property

(uid∗,CGS.UnblindM(bsk, cb) = (uid∗,CGS.UnblindM(bsk, cb)),

thus (uid∗,CGS.UnblindM(bsk, cb), bpk) /∈ SL.

Finally we need to show that

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, cb, cµb, cσb)) = upk[uid∗].

We already have that:

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c0, cµ0, cσ0)) = upk[uid∗].

Also,

µ0 = CGS.UnblindUser(bsk, e(g1,CGS.OpenBlind(gpk, bpk, c0, cµ0, cσ0))r1),

µ1 = CGS.UnblindUser(bsk, e(g1,CGS.OpenBlind(gpk, bpk, osk, c1, cµ1, cσ1))r2),

where r1, r2 are the conversion randomness chosen in the CONVERT oracle. The probabil-

ity that two converted pseudonyms will be output that unblind to the same pseudonym in

different convert queries is negligible, as the adversary has no control over the conversion

randomness. Therefore,

CGS.UnblindUser(bsk, e(g1,CGS.OpenBlind(gpk, bpk, osk, c0, cµ0, cσ0))r1)

= CGS.UnblindUser(bsk, e(g1,CGS.OpenBlind(gpk, bpk, osk, c1, cµ1, cσ1))r1).

Therefore due to the requirements at the beginning of Section 6.3.1:

e(g1,CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c0, cµ0, cσ0))r1

= e(g1,CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c1, cµ1, cσ1))r1 .

231

6.4 Security of CLS–CGS

Therefore

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, osk, c1, cµ1, cσ1)) = upk[uid∗].

Therefore A′ successfully breaks the non–frameability of commuting group signatures with

probability (1 − negl)ε. Therefore, assuming the non–frameability of commuting group

signatures, the CLS–CGS construction satisfies non–frameability.

6.4.6 Traceability

Lemma 6.5. The CLS–CGS construction satisfies (tier-1 and tier-2) traceability if the

CGS scheme satisfies the non–frameability and traceability requirements and the additional

structural assumptions.

Proof. We build an adversary A′ that successfully wins the traceability game for commut-

ing group signatures, given A that wins the tier-2 traceability game for the CLS–CGS

construction. We provide A′ in Figure 6.13, and then explain why the simulation input to

A is identically distributed to the tier-2 traceability experiment for the CLS–CGS con-

struction, and that A′ successfully breaks the traceability of commuting group signatures.

The values (gpk, csk) are distributed identically to the tier-2 traceability game. The

SNDICGS oracle for the commuting group signatures join protocol is identical to the SNDI

oracle for the CLS+ join protocol, except that in the latter the user sends their user public

key as their first message, whereas in the former the user’s public key is part of the issuer’s

input. Therefore, the first message input to the SNDI oracle per user will be a user public

key. This can be input to SNDICGS with an empty message. Therefore, the SNDI oracle is

distributed correctly. As users’ secret keys and signatures are distributed identically, the

SIGN oracle is distributed correctly. The ADDUCGS and ADDU oracles are identical.

Reduction to the Traceability of Commuting Group Signatures. As A is suc-

cessful, all the blinded outputs are valid, therefore clearly provided A′ can find i ∈

232

6.4 Security of CLS–CGS

ADDU(uid)

return ADDUCGS(uid)

SIGN(uid,m, bpk)

SIGNCGS(uid,m, bpk)

SNDI(uid,Min)

Parse Min = upk

return SNDICGS(uid,⊥, upk)

A′ADDUCGS,SNDICGS,SIGNCGS(gpkCGS, oskCGS)

Parse gpkCGS = (paramCGS, opkCGS, ipkCGS), paramsig←$SIG.Setup(1τ)

(cpk2, csk2)←$SIG.KeyGen(1τ), param← (paramCGS, paramsig), ipk ← ipkCGS

(cpk, csk)← ((opkCGS, cpk2), (oskCGS, csk2)), gpk ← (param, ipk, cpk)

((c1, cµ1, cσ1), ..., (ck, cµk, cσk), bpk, bsk)←$AADDU,SNDI,SIGN(gpk, csk)

if (bpk, bsk) /∈ BK return ⊥
if ∃i ∈ [1, k] s.t ∀uid ∈ CUL ∪ HUL

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) 6= upk[uid]

return (ci, cµi, cσi, bpk, bsk)

else return ⊥

Figure 6.13: A′ which breaks the traceability of commuting group signatures using A
which breaks the tier-2 traceability of CLS–CGS

[1, k] such that ∀uid ∈ CUL ∪ HUL:

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) 6= upk[uid]

then they will break the traceability of commuting group signatures.

Let L′ = |{i ∈ [k] : CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) =

upk[uid] and uid ∈ HUL}|.

Let C ′ = |{i ∈ [k] : CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) =

upk[uid] and uid ∈ CUL}|.

If A′ aborts then k ≤ C ′ + L′. However if A is successful, then k > CUL + L, where

L = |{uid ∈ HUL : ∃i s.t (uid,CGS.UnblindM(bsk, ci), bpk) ∈ SL}|.

Therefore, either C ′ > CUL or L′ > L.

If C ′ > CUL, two signatures both open to the same corrupted user. Therefore for some

(i, j) ∈ [k]2 , CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) =

233

6.5 Concrete Instantiation of CLS–CGS construction

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, cj , cµj , cσj)). However as the two sig-

natures are unlinked we have:

CGS.UnblindUser(bsk, e(g1,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi))
r) 6=

CGS.UnblindUser(bsk, e(g1,CGS.OpenBlind(gpk, bpk, csk1, cj , cµj , cσj)
r),

which is a contradiction.

If L′ > L, let L′′ = |{uid ∈ HUL : ∃i ∈ [k] s.t CGS.UnblindUser(bsk,CGS.OpenBlind(gpk,

bpk, csk1, ci, cµi, cσi)) = upk[uid]}|, as no two signatures will open to the same honest user,

due to the same argument, L′ = L′′, and so L′′ > L. Therefore there exists an honest user

uid∗ and i ∈ [k] such that CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, bpk, csk1, ci, cµi, cσi)) =

upk[uid∗], but (uid∗,CGS.UnblindM(bsk, ci), bpk) /∈ SL. In this case, A could break the

non–frameability of commuting group signatures.

Therefore A′ aborts with negligible probability, and so assuming the traceability and non–

frameability of commuting group signatures, our CLS–CGS construction satisfies tier-2

traceability.

We now show that our CLS–CGS construction satisfies tier-1 traceability. Clearly if an

adversary could break tier-1 traceability they could also break tier-2 traceability by

simply blinding the group signatures. This is due to the fact that blinded and standard

signatures are commuting group signatures. Commuting group signatures satisfy the com-

mutative behaviour requirement. If a valid signature is blinded, this will result in a valid

blinded signature. As our construction satisfies tier-2 traceability, this is a contradiction,

and so our construction must also satisfy tier-1 traceability.

6.5 Concrete Instantiation of CLS–CGS construction

We now show that the building blocks of our CLS–CGS construction can be instantiated,

based on the Asymmetric Double Hidden SDH [65] and SXDH assumption. For this, we

need that the commuting group signatures construction given in Section 5.4 and instan-

234

6.5 Concrete Instantiation of CLS–CGS construction

tiated in Section 5.6, satisfies the additional structural assumptions and extractability in

Section 6.3, and that the proof of unblinding can also be instantiated.

Firstly, due to the automorphic signature scheme [65] used, usk ∈ Z∗p, and upk = gusk2 .

Outputs of CGS.OpenBlind are also elements of G2.

Our construction for commuting group signatures satisfies

e(g1,CGS.UnblindUser(bsk, cupk))r = CGS.UnblindUser(bsk, e(g1, cupk)r) because letting

cupk = (cupk1, cupk2):

e(g1,CGS.UnblindUser(bsk, cupk))r = e(g1, (cupk2cupk
−bsk
1))r =

e(g1, cupk
r
2)e(g1, cupk

r
1)−bsk = CGS.UnblindUser(bsk, e(g1, cupk)r).

Our construction satisfies CGS.BlindUser(bpk, upk))r = CGS.BlindUser(bpk, upkr) because:

CGS.BlindUser(bpk, upk; r′))r = (ĝrr
′
, upkrbpkrr

′
2) = CGS.BlindUser(bpk, upkr; rr′)),

and as r′ is chosen uniformly and independently, then rr′ is distributed identically.

6.5.1 Extractability

We now show that that our commuting group signature construction satisfies extractabil-

ity, assuming the cm-NIZK satisfies controlled malleable simulation soundness. We present

simulators S1, S2, S3:

S1(p,G1,G2,GT , e, g1, g2)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

g←$G1, ĝ←$G2, (σcrs, τs)←$S1,cm-NIZK(1τ)

return (((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs), τs)

S2(param, stuidJoin,Min, τs)

Identical to Join except πjoin is simulated

235

6.5 Concrete Instantiation of CLS–CGS construction

S3(param, gpk, bpk,upk[uid],m, τs)

α←$Z∗p, µ← (ĝα, 1,upk[uid]opkα), β ← 0, γ ← 0, c← (1,m)

σ←$S2,cm-NIZK(σcrs, τs, (opk, bpk, ipk, µ, c)) return (µ, σ)

Due to the zero–knowledge of the SPK and the cm-NIZK, the following advantage is neg-

ligible in τ : ∣∣∣Pr[Expsim−0
A,Π (τ) = 1]− Pr[Expsim−1

A,Π (τ) = 1]
∣∣∣ .

We now provide SE1, E2. As outputs of SE1,cm-NIZK are distributed identically to outputs

of S1,cm-NIZK, outputs of SE1 are identically distributed to outputs of S1.

SE1(p,G1,G2,GT , e, g1, g2)

paramauto1←$ASetup1(p,G1,G2,GT , e, g1, g2)), paramauto2←$ASetup2(p,G1,G2,GT , e, g1, g2))

g←$G1, ĝ←$G2, (σcrs, τs, τs)←$SE1,cm-NIZK(1τ)

return (((p,G1,G2,GT , e, g1, g2), paramauto1, paramauto2, g, ĝ, σcrs), τs, τe)

E2(gpk, bpk, isk, osk, bsk, c, cµ, cσ, τe)

(upk′, ·, ·, ·, ·....)← E2,cm-NIZK(σcrs, τe, (opk, bpk, ipk, cµ, c), cσ) return upk′

The extractor E2,cm-NIZK will either successfully extract upk′, or instead will extract a

transformation T and statement (opk, bpk, ipk, cµ′, c′) such that (opk, bpk, ipk, cµ, c) =

Tinst(opk, bpk, ipk, cµ
′, c′). If it outputs the latter, (cµ′, c′) was input to S2,cm-NIZK, and

(cµ′, c′) is a re-randomisation of (cµ, c), therefore uid∗ was input to S3, such that

CGS.UnblindUser(bsk,CGS.OpenBlind(gpk, osk, c, cµ, cσ)) = upk[uid∗]; in which case the

extractor will not need to extract upk′.

6.5.2 Instantiating the Proof of Unblinding

We show how to instantiate the proof of unblinding πub:

πub = SPK{bsk : µ = CGS.UnblindUser(bsk, cµ) ∧m = CGS.UnblindM(bsk, c)∧

(bsk, bpk) ∈ BPK}

236

6.6 Summary

= SPK{bsk1, bsk2 : µ = cµ2cµ
−bsk2
1 ∧m = c2c

−bsk1
1 ∧ bpk1 = gbsk1 ∧ bpk2 = ĝbsk2}

For transforming interactive into non-interactive zero-knowledge proofs, we rely on the

Fiat-Shamir heuristic that ensures security in the random oracle model.

6.5.3 Efficiency

We focus on the computational overhead, as this is the key barrier to overcome to allow

for the practical implementation of this work. The tier-1 and tier-2 signatures are the

size of standard and blinded commuting group signatures respectively. Therefore, both

have size 328G1 + 314G2. Our CLS+ construction is significantly less efficient than that

of our CLS construction in Chapter 4, but demonstrates that the stronger CLS+ security

model can be achieved and the assumption of trusted data lakes can be avoided.

6.6 Summary

In this chapter we propose convertibly linkable group signatures, an extension of group

signatures with selective linkability given in Chapter 4. We allow for authentication to be

preserved during convert queries, and remove the assumption that inputs to the converter

are well formed. We have extended the CLS model to provide a formal security model for

this primitive. We have given a provably secure construction in this model, making use of

commuting group signatures from Chapter 5, and a standard signature scheme. We then

show that our instantiation of commuting group signatures can be used to build a concrete

instantiation. We finally analyse the efficiency in comparison to our CLS instantiation.

237

Chapter 7

Concluding Remarks

In this thesis we have introduced several variants of group signatures that have applications

in both reputation systems and the collection and processing of data.

In Chapter 3 we introduced a new cryptographic model for reputation systems. Reputation

values are based on a user’s entire behaviour, whilst a user’s activities cannot be linked

together. We have shown how a construction satisfying this model can be built based

on direct anonymous attestation and a variant of a group signature scheme that allows

reputation to be bound to the signature. We prove that this construction is secure based

on the DDH, q-SDH and LRSW assumptions, as well as the security of the signature

proofs of knowledge used. We then show that the signature proofs of knowledge can be

instantiated in the random oracle model, and that this instantiation comes at a reasonable

additional efficiency cost in comparison to existing work.

In Chapter 4 we introduced group signatures with selective linkability, a new variant

of group signatures with applications in privacy–preserving technologies. Signatures can

be linked in a more flexible, controlled way than via an opener, as in standard group

signatures. Signatures are unlinkable by default but can be obliviously converted into

a linked representation by the converter. The linkage in non-transitive, i.e., only holds

within a particular convert query, which ensures that a list of linked signatures cannot

be built up over time. We formally define the security of this primitive, and provide a

construction that provably satisfies this model. This construction makes use of BBS+

signatures, ElGamal encryption and signature proofs of knowledge. We then provide

238

proofs of security for this construction given the DDH and q-SDH assumptions, as well as

the security of the signature proof of knowledge. We then show that the signature proofs

of knowledge can be instantiated in the random oracle model, and that this instantiation

is reasonably efficient.

In Chapter 5 we introduce commuting group signatures, a variant of group signatures

that are later used as a building block in Chapter 6. We extend the existing commuting

signatures primitive to group signatures, introducing group signatures that can be blinded,

whilst remaining publicly verifiable. They can also still be opened, outputting a blinded

user identity. We first provide a formal model, defining the syntax and security properties

required for this new primitive. We then provide a construction based on controlled

malleable proof protocols, automorphic signatures and signature proofs of knowledge.

Controlled malleable proofs allow the proof to be transformed when signatures are blinded,

whilst still ensuring unforgeability of the signatures because the malleability is controlled.

We then prove this construction secure, given the security of the building blocks and

the DDH assumption. We show that our building blocks can be instantiated given the

ADHSDH and SXDH assumptions in the random oracle model. We must particularly

ensure that the controlled malleable proof protocols can be instantiated for the relation

used in signing and the transformation used in blinding. We finally provide the sizes of

signatures in terms of group elements.

In Chapter 6 we extend and strengthen the primitive defined in Chapter 4. We consider a

setting where the data lake, who queries unlinkable user data to the converter, and data

processor, who receives linked data from the converter for processing, are separate entities.

Previously, we assumed that these were the same entity or trusted each other fully. We

no longer assume that the data lake provides the converter with well formed inputs. We

also must preserve the authentication of data throughout the conversion, so that the data

processor is assured that data originates from a valid group member. We first extend

the previous security model, to take into account this new setting. We then provide a

construction that makes use of commuting group signatures, defined in Chapter 5, as

a building block, and a standard digital signature scheme. We prove that our scheme

is secure given the DDH assumption, as well as the security of the building blocks. We

finally show that these building blocks can be instantiated, given the ADHSDH and SXDH

assumptions in the random oracle model, and provide efficiency figures. The efficiency is

significantly worse than in Chapter 4, however we show that our new strengthened security

239

model is achievable.

There are several potential directions for further work within this thesis. Firstly, in Chap-

ter 3 we provide a static model where users all join at the beginning of the scheme.

Extending this model to the dynamic setting, where users can join throughout, would be

an improvement. Both building blocks in our construction are in the dynamic model, and

so it should be possible to adapt the construction.

Furthermore, in Chapter 3, we provide a concrete construction using the two building

blocks, and prove this is secure. It would also be interesting to formally define the security

of the group signatures bound to reputation. A modular construction could then be built,

so that any secure DAA scheme and group signature scheme bound to reputation could

be used to build a secure reputation system.

In both Chapter 4 and Chapter 6, compared with the anonymity requirements of con-

ventional dynamic group signatures, our anonymity notions are somewhat weaker as we

do not allow the adversary to corrupt the two challenge users after it received the chal-

lenge signature. This means that our privacy related requirements do not yield forward

anonymity. Given the conversion functionality that is inherent in our setting, achieving

this stronger notion seems challenging. In fact, for the related problem of group signatures

with user-controlled linkability with signature-based revocation, forward anonymity has

not been achieved by any of the existing schemes. It would be interesting to determine

whether this stronger security is achievable in this setting. We could also consider ex-

tending both security models to allow for the revocation of users, as in the fully dynamic

model for group signatures.

The online extractable signature proofs of knowledge used in Chapter 4 are costly in terms

of efficiency. Therefore, if the construction could be built without such proofs, it would

allow the work to be more easily implemented. Signatures for the scheme in Chapter 6

are significantly larger than for the scheme in Chapter 4. If a more efficient construction

could be built, it would allow the strengthened primitive to be used in practise.

The security of all our constructions is based on hardness problems related to the discrete

logarithm problem. This means they are all vulnerable to attacks by an adversary with

quantum capabilities. A potential future direction could be to build these primitives from

240

post–quantum secure cryptography.

241

Bibliography

[1] Amazons third-party sellers ship record-breaking 2 billion items in 2014,

but merchant numbers stay flat. https://techcrunch.com/2015/01/05/

amazon-third-party-sellers-2014/. [Online; accessed 1st-April-2019].

[2] Eu general data protection regulation. https://gdpr-info.eu.

[3] Travis kalanick says uber has 40 million monthly ac-

tive riders. https://techcrunch.com/2016/10/19/

travis-kalanick-says-uber-has-40-million-monthly-active-riders/.

[Online; accessed 1st-April-2019].

[4] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to

signatures via the Fiat-Shamir transform: Minimizing assumptions for security and

forward-security. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of

LNCS, pages 418–433. Springer, Heidelberg, Apr. / May 2002.

[5] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-

preserving signatures and commitments to group elements. In T. Rabin, editor,

CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, Heidelberg, Aug.

2010.

[6] M. Abe, D. Hofheinz, R. Nishimaki, M. Ohkubo, and J. Pan. Compact structure-

preserving signatures with almost tight security. In J. Katz and H. Shacham, editors,

CRYPTO 2017, Part II, volume 10402 of LNCS, pages 548–580. Springer, Heidel-

berg, Aug. 2017.

[7] E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin. Reputation systems for

anonymous networks. In International Symposium on Privacy Enhancing Technolo-

gies, pages 202–218. Springer, 2008.

242

BIBLIOGRAPHY

[8] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group

signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,

2005. http://eprint.iacr.org/2005/385.

[9] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In R. D. Prisco

and M. Yung, editors, SCN 06, volume 4116 of LNCS, pages 111–125. Springer,

Heidelberg, Sept. 2006.

[10] L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant storage.

Technical report, John Hopkins University, Computer Science Department # TR-

SP-BGMM-050705. http://spar.isi.jhu.edu/˜mgreen/correlation.pdf, 2005.

[11] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of

security for public-key encryption schemes. In H. Krawczyk, editor, CRYPTO’98,

volume 1462 of LNCS, pages 26–45. Springer, Heidelberg, Aug. 1998.

[12] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:

Formal definitions, simplified requirements, and a construction based on general

assumptions. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,

pages 614–629. Springer, Heidelberg, May 2003.

[13] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and

V. Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

[14] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of

dynamic groups. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,

pages 136–153. Springer, Heidelberg, Feb. 2005.

[15] D. Bernhard, G. Fuchsbauer, E. Ghadafi, N. P. Smart, and B. Warinschi. Anonymous

attestation with user-controlled linkability. International Journal of Information

Security, 12(3):219–249, 2013.

[16] J. Bethencourt, E. Shi, and D. Song. Signatures of reputation. In R. Sion, editor,

FC 2010, volume 6052 of LNCS, pages 400–407. Springer, Heidelberg, Jan. 2010.

[17] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty via

group signatures without encryption. In J. A. Garay and R. D. Prisco, editors, SCN

10, volume 6280 of LNCS, pages 381–398. Springer, Heidelberg, Sept. 2010.

243

BIBLIOGRAPHY

[18] J. Blömer, J. Juhnke, and C. Kolb. Anonymous and publicly linkable reputation

systems. In R. Böhme and T. Okamoto, editors, FC 2015, volume 8975 of LNCS,

pages 478–488. Springer, Heidelberg, Jan. 2015.

[19] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin

and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73.

Springer, Heidelberg, May 2004.

[20] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH

assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, Apr. 2008.

[21] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,

editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,

Aug. 2004.

[22] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In E. Biham, editor, EUROCRYPT 2003, volume

2656 of LNCS, pages 416–432. Springer, Heidelberg, May 2003.

[23] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In

V. Atluri, B. Pfitzmann, and P. McDaniel, editors, ACM CCS 2004, pages 168–177.

ACM Press, Oct. 2004.

[24] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully

dynamic group signatures. In M. Manulis, A.-R. Sadeghi, and S. Schneider, editors,

ACNS 16, volume 9696 of LNCS, pages 117–136. Springer, Heidelberg, June 2016.

[25] X. Boyen and B. Waters. Compact group signatures without random oracles. In

S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 427–444.

Springer, Heidelberg, May / June 2006.

[26] E. Bresson and J. Stern. Efficient revocation in group signatures. In K. Kim, editor,

PKC 2001, volume 1992 of LNCS, pages 190–206. Springer, Heidelberg, Feb. 2001.

[27] E. Brickell. An efficient protocol for anonymously providing assurance of the con-

tainer of a private key. Submitted to the Trusted Computing Group, 2003.

[28] E. Brickell and J. Li. Enhanced privacy id: A direct anonymous attestation scheme

with enhanced revocation capabilities. In Proceedings of the 2007 ACM workshop

on Privacy in electronic society, pages 21–30, 2007.

244

BIBLIOGRAPHY

[29] E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In

V. Atluri, B. Pfitzmann, and P. McDaniel, editors, ACM CCS 2004, pages 132–

145. ACM Press, Oct. 2004.

[30] J. Camenisch, L. Chen, M. Drijvers, A. Lehmann, D. Novick, and R. Urian. One

TPM to bind them all: Fixing TPM 2.0 for provably secure anonymous attestation.

In 2017 IEEE Symposium on Security and Privacy, SP, pages 901–920. IEEE, 2017.

[31] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The won-

derful world of global random oracles. In J. B. Nielsen and V. Rijmen, editors,

EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer, Hei-

delberg, Apr. / May 2018.

[32] J. Camenisch, M. Drijvers, and A. Lehmann. Anonymous attestation using the

strong diffie hellman assumption revisited. In International Conference on Trust

and Trustworthy Computing, pages 1–20. Springer, 2016.

[33] J. Camenisch, M. Drijvers, and A. Lehmann. Universally composable direct anony-

mous attestation. In C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang,

editors, PKC 2016, Part II, volume 9615 of LNCS, pages 234–264. Springer, Heidel-

berg, Mar. 2016.

[34] J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical

aspects. In C. Blundo and S. Cimato, editors, SCN 04, volume 3352 of LNCS, pages

120–133. Springer, Heidelberg, Sept. 2005.

[35] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr

proofs. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 425–

442. Springer, Heidelberg, Apr. 2009.

[36] J. Camenisch and A. Lehmann. (Un)linkable pseudonyms for governmental

databases. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 1467–

1479. ACM Press, Oct. 2015.

[37] J. Camenisch and A. Lehmann. Privacy-preserving user-auditable pseudonym sys-

tems. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium on,

pages 269–284. IEEE, 2017.

245

BIBLIOGRAPHY

[38] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to ef-

ficient revocation of anonymous credentials. In M. Yung, editor, CRYPTO 2002,

volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, Aug. 2002.

[39] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials

from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,

pages 56–72. Springer, Heidelberg, Aug. 2004.

[40] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of dis-

crete logarithms. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages

126–144. Springer, Heidelberg, Aug. 2003.

[41] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups

(extended abstract). In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of

LNCS, pages 410–424. Springer, Heidelberg, Aug. 1997.

[42] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited

(preliminary version). In Proceedings of the Thirtieth Annual ACM Symposium on

Theory of Computing, STOC ’98, pages 209–218, New York, NY, USA, 1998. ACM.

[43] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In

D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer,

Heidelberg, Aug. 2003.

[44] M. Chase and M. Kohlweiss. A domain transformation for structure-preserving

signatures on group elements. Cryptology ePrint Archive, Report 2011/342, 2011.

http://eprint.iacr.org/2011/342.

[45] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof

systems and applications. In D. Pointcheval and T. Johansson, editors, EURO-

CRYPT 2012, volume 7237 of LNCS, pages 281–300. Springer, Heidelberg, Apr.

2012.

[46] M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor,

CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Heidelberg, Aug.

2006.

[47] S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric

pairings the role of psi revisited. Discrete Applied Mathematics, 159(13):1311–1322,

2011.

246

BIBLIOGRAPHY

[48] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest,

and A. T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York,

USA, 1982.

[49] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EURO-

CRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg, Apr. 1991.

[50] C.-K. Chu, J. K. Liu, X. Huang, and J. Zhou. Verifier-local revocation group sig-

natures with time-bound keys. In H. Y. Youm and Y. Won, editors, ASIACCS 12,

pages 26–27. ACM Press, May 2012.

[51] M. R. Clark, K. Stewart, and K. M. Hopkinson. Dynamic, privacy-preserving decen-

tralized reputation systems. IEEE Transactions on Mobile Computing, 16(9):2506–

2517, 2017.

[52] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust

non-interactive zero knowledge. In J. Kilian, editor, CRYPTO 2001, volume 2139

of LNCS, pages 566–598. Springer, Heidelberg, Aug. 2001.

[53] C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures.

In Progress in Cryptology-VIETCRYPT 2006, pages 193–210. Springer, 2006.

[54] C. Dellarocas. Immunizing online reputation reporting systems against unfair rat-

ings and discriminatory behavior. In Proceedings of the 2nd ACM conference on

Electronic commerce, pages 150–157. ACM, 2000.

[55] X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate revo-

cation. In 24th International Conference on Distributed Computing Systems, 2004.

Proceedings., pages 608–615. IEEE, 2004.

[56] X. Ding, G. Tsudik, and S. Xu. Leak-free mediated group signatures. Journal of

Computer Security, 17(4):489–514, 2009.

[57] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad

hoc groups. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume

3027 of LNCS, pages 609–626. Springer, Heidelberg, May 2004.

[58] A. El Kaafarani, S. Katsumata, and R. Solomon. Anonymous reputation systems

achieving full dynamicity from lattices. In Twenty-Second International Conference

on Financial Cryptography and Data Security, forthcoming.

247

BIBLIOGRAPHY

[59] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of

LNCS, pages 10–18. Springer, Heidelberg, Aug. 1984.

[60] T. ElGamal. On computing logarithms over finite fields. In H. C. Williams, editor,

CRYPTO’85, volume 218 of LNCS, pages 396–402. Springer, Heidelberg, Aug. 1986.

[61] K. Emura, T. Hayashi, and A. Ishida. Group signatures with time-bound keys

revisited: A new model and an efficient construction. In R. Karri, O. Sinanoglu,

A.-R. Sadeghi, and X. Yi, editors, ASIACCS 17, pages 777–788. ACM Press, Apr.

2017.

[62] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability

of the Fiat-Shamir transform. In S. D. Galbraith and M. Nandi, editors, IN-

DOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, Heidelberg, Dec.

2012.

[63] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of

LNCS, pages 186–194. Springer, Heidelberg, Aug. 1987.

[64] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online

extractors. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–

168. Springer, Heidelberg, Aug. 2005.

[65] G. Fuchsbauer. Automorphic signatures in bilinear groups and an application to

round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320, 2009.

http://eprint.iacr.org/2009/320.

[66] G. Fuchsbauer. Commuting signatures and verifiable encryption. In K. G. Pater-

son, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 224–245. Springer,

Heidelberg, May 2011.

[67] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.

Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[68] D. Galindo and E. R. Verheul. Microdata sharing via pseudonymization. Joint

UNECE/Eurostat work session on statistical data confidentiality, 2007.

248

BIBLIOGRAPHY

[69] L. Garms and A. Lehmann. Group signatures with selective linkability. In D. Lin

and K. Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 190–220.

Springer, Heidelberg, Apr. 2019.

[70] L. Garms, K. Martin, and S.-L. Ng. Reputation schemes for pervasive social networks

with anonymity. In Proceedings of the fifteenth International Conference on Privacy,

Security and Trust (PST 2017), IEEE, 2017.

[71] L. Garms and E. A. Quaglia. A new approach to modelling centralised reputation

systems. In J. Buchmann, A. Nitaj, and T. eddine Rachidi, editors, AFRICACRYPT

19, volume 11627 of LNCS, pages 429–447. Springer, Heidelberg, July 2019.

[72] E. Ghadafi. Efficient distributed tag-based encryption and its application to group

signatures with efficient distributed traceability. In D. F. Aranha and A. Menezes,

editors, LATINCRYPT 2014, volume 8895 of LNCS, pages 327–347. Springer, Hei-

delberg, Sept. 2015.

[73] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[74] S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from

lattice assumptions. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,

pages 395–412. Springer, Heidelberg, Dec. 2010.

[75] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size

group signatures. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284

of LNCS, pages 444–459. Springer, Heidelberg, Dec. 2006.

[76] J. Groth. Fully anonymous group signatures without random oracles. In K. Kuro-

sawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 164–180. Springer,

Heidelberg, Dec. 2007.

[77] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.

In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432.

Springer, Heidelberg, Apr. 2008.

[78] O. Hasan, L. Brunie, and E. Bertino. Preserving privacy of feedback providers in

decentralized reputation systems. Computers & Security, 31(7):816 – 826, 2012.

249

BIBLIOGRAPHY

[79] J. Y. Hwang, S. Lee, B.-H. Chung, H. S. Cho, and D. Nyang. Short group signatures

with controllable linkability. In Lightweight Security & Privacy: Devices, Protocols

and Applications (LightSec), 2011 Workshop on, pages 44–52. IEEE, 2011.

[80] J. Y. Hwang, S. Lee, B.-H. Chung, H. S. Cho, and D. Nyang. Group signatures with

controllable linkability for dynamic membership. Information Sciences, 222:761–778,

2013.

[81] A. Ishida, K. Emura, G. Hanaoka, Y. Sakai, and K. Tanaka. Group signature with

deniability: How to disavow a signature. In S. Foresti and G. Persiano, editors,

CANS 16, volume 10052 of LNCS, pages 228–244. Springer, Heidelberg, Nov. 2016.

[82] J. Katz and Y. Lindell. Introduction to modern cryptography. Chapman and

Hall/CRC, 2014.

[83] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and

J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 571–589.

Springer, Heidelberg, May 2004.

[84] M. Kohlweiss and I. Miers. Accountable metadata-hiding escrow: A group signature

case study. PoPETs, 2015(2):206–221, Apr. 2015.

[85] S. Krenn, K. Samelin, and C. Striecks. Practical group-signatures with privacy-

friendly openings. In Proceedings of the 14th International Conference on Availabil-

ity, Reliability and Security, ARES ’19, pages 10:1–10:10. ACM, 2019.

[86] V. Kumar, H. Li, J.-M. J. Park, K. Bian, and Y. Yang. Group signatures with

probabilistic revocation: A computationally-scalable approach for providing privacy-

preserving authentication. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015,

pages 1334–1345. ACM Press, Oct. 2015.

[87] F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-based group sig-

natures with logarithmic signature size. In K. Sako and P. Sarkar, editors, ASI-

ACRYPT 2013, Part II, volume 8270 of LNCS, pages 41–61. Springer, Heidelberg,

Dec. 2013.

[88] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes

with efficient protocols and dynamic group signatures from lattice assumptions. In

J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of

LNCS, pages 373–403. Springer, Heidelberg, Dec. 2016.

250

BIBLIOGRAPHY

[89] B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-

based accumulators: Logarithmic-size ring signatures and group signatures without

trapdoors. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II,

volume 9666 of LNCS, pages 1–31. Springer, Heidelberg, May 2016.

[90] B. Libert, T. Peters, and M. Yung. Group signatures with almost-for-free revocation.

In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,

pages 571–589. Springer, Heidelberg, Aug. 2012.

[91] B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation.

In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of

LNCS, pages 609–627. Springer, Heidelberg, Apr. 2012.

[92] S. Ling, K. Nguyen, and H. Wang. Group signatures from lattices: Simpler, tighter,

shorter, ring-based. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages

427–449. Springer, Heidelberg, Mar. / Apr. 2015.

[93] S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures: Achieving

full dynamicity with ease. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors, ACNS

17, volume 10355 of LNCS, pages 293–312. Springer, Heidelberg, July 2017.

[94] J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group

signature for ad hoc groups. In Australasian Conference on Information Security

and Privacy, pages 325–335. Springer, 2004.

[95] Z. Liu, S. S. Yau, D. Peng, and Y. Yin. A flexible trust model for distributed

service infrastructures. In 2008 11th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC), pages 108–115.

IEEE, 2008.

[96] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable solution

to electronic cash. In R. Hirschfeld, editor, FC’98, volume 1465 of LNCS, pages

184–197. Springer, Heidelberg, Feb. 1998.

[97] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M.

Heys and C. M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–199.

Springer, Heidelberg, Aug. 1999.

251

BIBLIOGRAPHY

[98] M. Manulis. Democratic group signatures: On an example of joint ventures (fast

abstract). In F.-C. Lin, D.-T. Lee, B.-S. Lin, S. Shieh, and S. Jajodia, editors,

ASIACCS 06, page 365. ACM Press, Mar. 2006.

[99] M. Manulis, N. Fleischhacker, F. Günther, F. Kiefer, and B. Poettrering. Group

signatures: Authentication with privacy. Bundesamt fur Sicherheit in der Informa-

tionstechnik, Bonn, Germany, Tech. Rep, 2012.

[100] M. Manulis, A.-R. Sadeghi, and J. Schwenk. Linkable democratic group signatures.

In International Conference on Information Security Practice and Experience, pages

187–201. Springer, 2006.

[101] F. G. Mármol and G. M. Pérez. Security threats scenarios in trust and reputation

models for distributed systems. Computers & Security, 28(7):545–556, 2009.

[102] S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p reputation

systems. Computer Networks, 50(4):472–484, 2006.

[103] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable group signature schemes

with constant costs for signing and verifying. In S. Jarecki and G. Tsudik, editors,

PKC 2009, volume 5443 of LNCS, pages 463–480. Springer, Heidelberg, Mar. 2009.

[104] T. Nakanishi, Y. Hira, and N. Funabiki. Forward-secure group signatures from

pairings. In H. Shacham and B. Waters, editors, PAIRING 2009, volume 5671 of

LNCS, pages 171–186. Springer, Heidelberg, Aug. 2009.

[105] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-

random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,

Oct. 1997.

[106] S.-L. Ng, K. Martin, L. Chen, and Q. Li. Private reputation retrieval in public -

a privacy-aware announcement scheme for vanets. IET Information Security, DOI:

10.1049/iet-ifs.2014.0316, 2016.

[107] L. Nguyen. Accumulators from bilinear pairings and applications. In A. Menezes,

editor, CT-RSA 2005, volume 3376 of LNCS, pages 275–292. Springer, Heidelberg,

Feb. 2005.

[108] T. Ono and K. Yoneyama. On randomness exposure resilience of group signatures.

IEICE TRANSACTIONS on Information and Systems, 100(10):2357–2367, 2017.

252

BIBLIOGRAPHY

[109] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.

Springer, Heidelberg, May 1999.

[110] R. Pass. On deniability in the common reference string and random oracle model. In

D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer,

Heidelberg, Aug. 2003.

[111] E. Pavlov, J. S. Rosenschein, and Z. Topol. Supporting privacy in decentralized

additive reputation systems. In International Conference on Trust Management,

pages 108–119. Springer, 2004.

[112] R. Petrlic, S. Lutters, and C. Sorge. Privacy-preserving reputation management. In

Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,

pages 1712–1718, New York, NY, USA, 2014. ACM.

[113] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. M. Maurer,

editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidel-

berg, May 1996.

[114] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind

signatures. Journal of Cryptology, 13(3):361–396, June 2000.

[115] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor,

ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg,

Dec. 2001.

[116] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-

ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,

Oct. 1999.

[117] Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. Group

signatures with message-dependent opening. In M. Abdalla and T. Lange, editors,

PAIRING 2012, volume 7708 of LNCS, pages 270–294. Springer, Heidelberg, May

2013.

[118] Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta. On the security of

dynamic group signatures: Preventing signature hijacking. In M. Fischlin, J. Buch-

mann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 715–732.

Springer, Heidelberg, May 2012.

253

BIBLIOGRAPHY

[119] M. Scott. Pairing implementation revisited. Cryptology ePrint Archive, Report

2019/077, 2019. https://eprint.iacr.org/2019/077.

[120] D. Slamanig, R. Spreitzer, and T. Unterluggauer. Adding controllable linkability to

pairing-based group signatures for free. In International Conference on Information

Security, pages 388–400. Springer, 2014.

[121] D. X. Song. Practical forward secure group signature schemes. In M. K. Reiter and

P. Samarati, editors, ACM CCS 2001, pages 225–234. ACM Press, Nov. 2001.

[122] M. Stadler. Publicly verifiable secret sharing. In U. M. Maurer, editor, EURO-

CRYPT’96, volume 1070 of LNCS, pages 190–199. Springer, Heidelberg, May 1996.

[123] G. Traverso, D. Butin, J. Buchmann, and A. Palesandro. Coalition-resistant peer

rating for long-term confidentiality. In 2018 16th Annual Conference on Privacy,

Security and Trust (PST), pages 1–10. IEEE, 2018.

[124] G. Tsudik and S. Xu. Accumulating composites and improved group signing. In C.-

S. Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 269–286. Springer,

Heidelberg, Nov. / Dec. 2003.

[125] Z. Yan and Y. Chen. Adcontrep: a privacy enhanced reputation system for manet

content services. In International Conference on Ubiquitous Intelligence and Com-

puting, pages 414–429. Springer, 2010.

[126] Z. Yan, Y. Chen, and Y. Shen. A practical reputation system for pervasive social

chatting. Journal of Computer and System Sciences, 79(5):556–572, 2013.

[127] A. L. Young and M. Yung. Semantically secure anonymity: Foundations of re-

encryption. In D. Catalano and R. De Prisco, editors, SCN 18, volume 11035 of

LNCS, pages 255–273. Springer, Heidelberg, Sept. 2018.

[128] E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford. Anonrep: to-

wards tracking-resistant anonymous reputation. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), pages 583–596. USENIX

Association, 2016.

254

Appendix A

Additional Security Proofs for our

RS-GS construction

A.1 Traceability

Assuming the random oracle model, the SPK is zero–knowledge and simulation sound

extractable, and the q-SDH assumption, our RS-GS construction satisfies traceability.

Proof. We show that if an adversary A′ exists, such that Pr[ExptraceA′,RS-GS(τ,R, r̂,U ,Aggr) =

1] = ε, for some τ,R, r̂, U ,Aggr with |R| polynomial in τ , n = |U| polynomial in τ , there

are l different values of (r, t) queried to the H oracle, or ALLREP oracle, and ε is non–

negligible in τ , then we can can build an adversary A, that solves the q-SDH problem,

where q = n, in polynomial–time. We describe A in Figures A.1 and A.2. We then

describe why the simulation given in Figures A.1 and A.2 and the traceability experiment

are indistinguishable to A, and how A′ works.

We first show that all inputs that A provides to A′ are distributed identically to the

traceability experiment.

Simulating (gpk, osk, ID). W = T γ2 = Gγ2 . G1 is chosen randomly due to µ being

chosen randomly and independently. As ν1 is chosen randomly and independently, H is

255

A.1 Traceability

USK(uid)

if b = 1 and uid = uid∗ A aborts else return usk[uid]

POST(I, uid, r, t, ω)

if b = 1 and uid = uid∗

if t̂(ω,WGxuid∗2) 6= t̂(H(r, t), G2) return ⊥
ρ1, ρ2←$Zp, T1 ← Kρ1 , T2 ← Zuid∗ωH

ρ1 , T3 ← Kρ2 , T4 ← Zuid∗ωG
ρ2

G̃1 ← H(r, t) ·G1, Simulate π with T1, T2, T3, T4, G̃1

return Ω← (T1, T2, T3, T4, π)

else return PostItem(gpk, I,usk[uid], r, t, ω)

SENDFB(uid, fb, (I, r, t,Ω))

Φ←$SendFB(gpk,usk[uid], (I, r, t,Ω), fb)

ALLREP(uid, t, r)

if (uid, t, r, out) ∈ AR, return (out, r, ID)

out′ ← H(r, t), let ((r, t), out′, χ) ∈ HL, out′′ ←
n−1∏
j=0

(T γ
j

1)χκuid,j

AR← AR ∪ (uid, t, r, out′′), ID ← ID ∪ (uid, r, t, Zuidout
′′), return (out′′, r, ID)

H(in)

if ∃(in, out) ∈ HL return out

else χ←$Z∗p, out←
n∏
j=0

(T γ
j

1)χλj , add (in, out, χ) to HL, return out

Figure A.1: Simulated answers to oracle queries for our traceability proof

256

A.1 Traceability

A(T1, T
γ
1 , T

γ2

1 , ..., T γ
q

1 , T2, T
γ
2)

Create Empty Lists HL,AR, b←$ {0, 1}, uid′←$U
if b = 0,V ← U , n′ ← n

if b = 1, uid∗←$U\{uid′},V ← U\{uid∗}, n′ ← n− 1, xuid∗ ←$Z∗p, Zuid∗ ←$G1

∀uid ∈ V\{uid′}, xuid, yuid←$Z∗p

µ←$Z∗p, let f(X) =
∏

uid∈V\{uid′}

(X + xuid) =
n′−1∑
i=1

ζiX
i;G1 ←

n′−1∏
i=0

(T γ
i

1)
µζi
,Γ←

n′−1∏
i=0

(T γ
(i+1)

1)
µζi

G2 ← T2,W ← T γ2 , x, ν1, ν2←$Z∗p, H ← ((ΓGx1)ν1G−1
1)1/ν2

ξ1←$Z∗p,K ← H1/ξ1 , ξ2←$Z∗p, G← Kξ2 , gpk1 ← (G1,K,H,G,G2,W)

∀uid ∈ V\{uid′} let fuid(X) =
∏

ûid∈V\{uid′,uid}

(X + xûid) =

n′−2∑
j=0

ηuid,jX
j ;Buid ←

n′−2∏
j=0

(T γ
j

1)
µηuid,j

Zuid ← Buid(B
((x−xuid)ν1−1)/ν2
uid G

ν1/ν2
1)yuid ,usk1[uid]← (Zuid, xuid, yuid)

yuid′ ← ν2, xuid′ ← x, Zuid′ ← Gν11 ,usk1[uid′]← (Zuid′ , xuid′ , yuid′)

Let g(X) =
∏
uid∈U

(X + xuid) =
n∑
j=0

λjX
j

∀uid ∈ U , set guid(X) = g(X)/(X + xuid) =

n−1∑
j=0

κuid,jX
j

Finish computing (usk2[uid], gpk2, ID) as in Setup

(I, r, t,Ω, fb,Φ, r,L,F)←$A′USK,POST,SENDFB,ALLREP,H
(gpk, osk, ID)

Let Ω = (T1, T2, T3, T4, π)

if @out such that ((r, t), out, χ) ∈ HL return ⊥
Extract x?, ρ?1, z

? from π, y? ← z? − x?ρ?1, Q? ← T2T
−ξ1
1

if x? = xuid with uid ∈ U ω←$ALLREP(uid, t, r), Q̃? ← Q?ω−1 = (G1, H
y?)

1/(x?+γ)

if uid /∈ C if x? 6= xuid∗return ⊥

return (Q̃?G
−ν1y?/ν2
1)

ν2
ν2−y?−ν1y?(x?−x) , x?)

if uid ∈ C if x? 6= xuid′return ⊥

return (Q̃?G
−ν1y?/ν2
1)

ν2
ν2−y?) , x?)

else return (Q?G
−ν1y?/ν2
1 G

−χ/µ
1)

ν2
ν2−y?−(ν1y

?+χν2/µ)(x
?−x) , x?)

Figure A.2: A which solves the q-SDH problem, using A′ which breaks traceability for the
RS-GS construction

257

A.1 Traceability

independent of G1. (ξ1, ξ2,K,G, ID) are chosen as in Setup. Therefore (gpk, osk, ID) are

distributed identically to the traceability experiment.

We will use the fact that Γ = Gγ1 and Buid = G
1/(γ+xuid)
1 later. This is because G1 =∏n′−1

i=0 (T γ
i

1)µζi = T
µf(γ)
1 , and so Γ =

∏n′−1
i=0 (T γ

(i+1)

1)
µζi

=
∏n′−1
i=0 T γ

i

1

µζiγ
= Gγ1 , and Buid =∏n′−2

j=0 (T γ
j

1)
µηuid,j

= T
µfuid(γ)
1 = G

1/(γ+xuid)
1 .

Simulating the USK oracle. The USK oracle is distributed identically to the trace-

ability experiment because, provided the oracle does not abort, if uid 6= uid′,

Zuid = Buid(B
((x−xuid)ν1−1)/ν2
uid G

ν1/ν2
1)yuid = Buid(B

((x−xuid)ν1−1)/ν2
uid B

ν1(γ+xuid)/ν2
uid)yuid

= BuidB
yuid(ν1(γ+x)−1)/ν2
uid = (G1G

yuid(ν1(γ+x)−1)/ν2
1)1/(γ+xuid) = (G1H

yuid)1/(γ+xuid),

and Zuid′ = Gν11 = (G1G
ν1(γ+x)−1
1)1/(γ+x) = (G1H

yuid′)1/(γ+xuid′).

Simulating the POST oracle. If b = 1, and uid = uid∗ is input to the POST oracle,

because Zuid∗ was chosen randomly and independently, it is distributed identically to

the traceability experiment. The SPK can then be simulated due to the zero–knowledge

property. The signature output is then distributed identically to in PostItem. If b = 0 or

uid 6= uid∗, our oracle works in exactly the same way as in the traceability experiment.

Simulating all other oracles. The SENDFB oracle is identical to the traceability

experiment. The ALLREP oracle is distributed identically to the traceability experiment,

because
∏n−1
j=0 (T γ

j

1)χκuid,j = T
χg(γ)/(γ+xuid)
1 = H(r, t)1/(γ+xuid). The hash oracle is dis-

tributed identically to the traceability experiment in the random oracle model, because χ

is chosen randomly and independently every hash query.

Reduction to q-SDH. If A′ is successful and outputs (I, r, t,Ω) then there exists out

such that ((r, t), out, χ) ∈ HL, and so A does not abort for this reason. This is because for

A′ to have output a valid signature on (r, t), they must have queried this to the hash oracle.

As Ω was not output by the POST oracle, we can extract (Q?, x?, y?) such that Q? =

(G1, H
y?out)

1/(x?+γ)
, because Ω is a valid signature.

258

A.1 Traceability

Assume A′ is successful. If x? = xuid for uid ∈ U\C, then we assume we chose b = 1 with

probability 1/2, and uid = uid∗ with probability 1/n. A will not have aborted during

USK, because uid∗ was not corrupted. If ν2 − y? − ν1y
?(x? − x) = 0, then ν1 = ν2−y?

y?(x?−x) .

If y? = 0 then ν2 = 0, which is not possible. Therefore the adversary can obtain ν1 and

so break the discrete logarithm problem, which is implied by the q-SDH problem.

Due to the fact that Q̃? = (G1H
y?)1/(x?+γ), then

(Q̃?G
−ν1y?/ν2
1)

ν2
ν2−y?−ν1y?(x?−x) = (G1H

y?)
ν2

(γ+x?)(ν2−y?−ν1y?(x?−x))G
−ν1y

?

ν2−y?−ν1y?(x?−x)
1

= (G1G
y?(ν1(γ+x)−1)/ν2
1)

ν2
(γ+x?)(ν2−y?−ν1y?(x?−x))G

−ν1y
?

ν2−y?−ν1y?(x?−x)
1

= G
y?ν1(γ+x)−y

?+ν2−y
?ν1(γ+x

?)
(γ+x?)(ν2−y?−ν1y?(x?−x))

1 = G
1/(γ+x?)
1 .

Given this, A can break the q-sdh assumption as shown in [20]. Therefore, in this case,

assuming A′ was successful, A succeeds with probability 1/2n.

If x? = xuid for some uid ∈ C, then as (G1H
yuidout)1/(xuid+γ) is saved in ID, y? 6= yuid.

Q̃? = (G1H
y?)1/(x?+γ). Assuming b = 0 was chosen with probability 1/2, the USK oracle

does not abort. Therefore, assuming x? = xuid′ with probability 1/n, then A will not

abort. As ν2 = yuid′ 6= y?, then ν2 − y? 6= 0.

Due to the fact that Q̃? = (G1H
y?)1/(x?+γ), then

(Q̃?G
−ν1y?/ν2
1)

ν2
ν2−y? = (G1H

y?)
ν2

(γ+x?)(ν2−y?)G
−ν1y

?

ν2−y?

1

= (G1G
y?(ν1(γ+x)−1)/ν2
1)

ν2
(γ+x?)(ν2−y?)G

−ν1y
?

ν2−y?

1 = G
y?ν1(γ+x)−y

?+ν2−y
?ν1(γ+x

?)
(γ+x?)(ν2−y?)

1 = G
1/(γ+x?)
1 .

Given this, A can break the q-sdh assumption as shown in [20] . Therefore, in this case,

assuming A′ was successful, A succeeds with probability 1/2n.

If x? 6= xuid with uid ∈ U , then we assume b = 0 was chosen with probability 1/2.

Therefore, the USK oracle does not abort, and so A will not abort.

If ν2 − y? − (ν1y
? + χν2/µ)(x? − x) = 0, then χ = µ(ν2−y?−ν1y?(x?−x))

ν2(x?−x) . Therefore the

259

A.2 Soundness of Reputation

adversary can obtain χ and so break the discrete logarithm problem, which is implied by

the q-SDH problem.

Due to the fact that,

out1/(γ+x?) = (
n∏
j=0

(T γ
j

1)χλj)1/(γ+x?) = T
χg(γ)/(γ+x?)
1 = G

χ(γ+x)
µ(γ+x?)

1

= Γχ/µ(γ+x?)G
χx/µ(γ+x?)
1 = (Γχ/µG

χx?/µ
1)1/(γ+x?)G

χ(x−x?)
µ(γ+x?)

1 = G
χ/µ
1 G

χ(x−x?)
µ(γ+x?)

1 ,

and Q? = (G1H
y?out)1/(γ+x?),

and

(G1H
y?)1/(γ+x?) = (G1G

y?(ν1(γ+x)−1)/ν2
1)1/(γ+x?)

= G
y?ν1x

?

ν2(γ+x
?)

1 G
y?ν1γ

ν2(γ+x
?)

1 (G1G
y?(ν1(x−x?)−1)/ν2
1)1/(γ+x?) = G

y?ν1/ν2
1 G

ν2+y
?(ν1(x−x

?)−1)
ν2(γ+x

?)

1 ,

we have that,

(Q?G
−ν1y?/ν2
1 G

−χ/µ
1)

ν2
ν2−y?−(ν1y

?+χν2/µ)(x
?−x)

= (G
y?ν1/ν2
1 G

ν2+y
?(ν1(x−x

?)−1)
ν2(γ+x

?)

1 G
−ν1y?/ν2
1 G

χ/µ
1 G

χ(x−x?)
µ(γ+x?)

1 G
−χ/µ
1)

ν2
ν2−y?−(ν1y

?+χν2/µ)(x
?−x)

= (G
ν2+y

?(ν1(x−x
?)−1)

ν2(γ+x
?)

1 G
χ(x−x?)
µ(γ+x?)

1)
ν2

ν2−y?−(ν1y
?+χν2/µ)(x

?−x) = G
1/(γ+x?)
1 .

Given this, A can break the q-sdh assumption as shown in [20] .

Therefore, in this case, assuming A′ was successful, A succeeds with probability 1/2.

Therefore A solves the q-SDH problem with probability at least ε
2n .

A.2 Soundness of Reputation

Assuming the CL signatures are existentially unforgeable under the chosen–message attack,

the SPK is zero–knowledge and simulation sound extractable, and the random oracle

model, our RS-GS construction satisfies soundness of reputation.

260

A.2 Soundness of Reputation

Proof. The CDL scheme makes use of Camenisch–Lysyanskaya (CL) signatures [39]. These

are existentially unforgeable under the chosen–message attack [73] assuming the LRSW

assumption [97], as detailed in Section 2.5.5.

We show that if an adversaryA′ exists, such that Pr[Expsound−repA′,RS-GS (τ,R, r̂,U Aggr) = 1] = ε,

for some τ,R, r̂, U ,Aggr with |R| polynomial in τ , n = |U| polynomial in τ , corrupting

l users with the USK oracle, and ε is non–negligible in τ , then we can can build an

adversary A that breaks existential unforgeability under the chosen–message attack for

CL signatures. We describe A in Figure A.3. We then describe why the simulation given

in Figure A.3 and the soundness of reputation experiment are indistinguishable to A′ and

how A works. The adversary A has input parameters (p,G1,G2,GT , e,G1, G2), the public

key (X = Gα2 , Y = Gβ2), and access to a CLSIGN oracle which takes input f and outputs

(a, aβ, aα+fαβ), for a←$G1.

We first show that all inputs that A provides to A′ are distributed identically to the

soundness of reputation experiment.

Simulating inputs to A′. (gpk, osk) are chosen in exactly the same way as in Setup.

The POST and ALLREP oracles are the same as in the soundness of reputation experiment.

Due to the distribution of outputs of the CLSIGN oracle, users’ secret keys are of the form

(f, (A,Aβ, Aα+fαβ , Afβ)) for randomly chosen A ∈ G1, therefore answers to USK queries

are distributed identically to the soundness of reputation experiment.

If b = 0 or uid 6= uid∗ then the SENDFB oracle is the same as in the soundness of reputation

experiment. We now show that outputs are correctly distributed if b = 1 and uid = uid∗.

Let A2 = Ad1, because A∗ = A1A2, then

B∗ = Aβ1A
β
2 = A∗β, C∗ = Aα1A

α
2A

αβf
1 Aαβadf1 = A∗α(A∗)αβ(f+daf)/(1+d),

D∗ = (Aβ1A
daβ
1)f = A∗β(f+daf)/(1+d) = B∗(f+daf)/(1+d).

Therefore ((f + daf)/(1 + d), (A∗, B∗, C∗, D∗)) is distributed identically to a user secret

key, because f, d were chosen randomly and independently. Therefore, (A′, B′, C ′, D′)

are distributed identically to the SendFB oracle. Also J = D∗d
′′

= B∗d
′′(f+daf)/(1+d) =

H(I, r, t,Ω)(f+daf)/(1+d), which is distributed as in SendFB. The proof π can be simulated

261

A.2 Soundness of Reputation

USK(uid):

if b = 1 and uid = uid∗ A aborts

else CU ← CU ∪ {uid}, return usk[uid]

POST(I, uid, r, t, ω):

return PostItem(gpk, I, (usk1[uid], ·), r, t, ω)

SENDFB(uid, fb, (I, r, t,Ω)):

if b = 1 and uid = uid∗, Z ← H(I, r, t,Ω), for ((I, r, t,Ω), Z, d′′) ∈ HL, J ← D∗d
′′

d′←$Z∗p, A′ ← A∗d
′
, B′ ← B∗d

′
, C ′ ← C∗d

′
, D′ ← D∗d

′

Simulate π with A′, B′, C ′, D′, J return (A′, B′, C ′, D′, J, π)

else return SendFB(gpk,usk[uid], (I, r, t,Ω), fb)

ALLREP(uid, t, r):

return AllocateReputation(gpk, (isk1, ·), uid, (usk1[uid], ·), t, r, ID)

H(in):

if ∃(in, out, ·) ∈ HL return out

else d′′←$Z∗p, HL← HL ∪ (in, B∗d
′′
, d′′) return B∗d

′′

ACLSIGN(X,Y)

Create empty lists HL,CU, b←$ {0, 1},V ← U
gpk2 ← (X,Y),finish computing gpk, osk, isk1,usk1, r, ID as in Setup

if b = 1, uid∗←$U ,V ← U\{uid∗}, f ←$Z∗p, a←$Z∗p with a 6= 1

(A1, B1, C1)←$CLSIGN(f), (A2, B2, C2)←$CLSIGN(af)

A∗ ← A1A2, B
∗ ← B1B2, C

∗ ← C1C2, D
∗ ← (B1B2

a)f

∀uid ∈ V
fuid←$Z∗p, (Auid, Buid, Cuid)←$CLSIGN(fuid), Duid ← Bfuiduid

usk[uid]← (usk1[uid], (fuid, (Auid, Buid, Cuid, Duid)))

((I, r, t,Ω), {fbj ,Φj}l+1
j=1)←$A′USK,POST,SENDFB,ALLREP,H

(gpk, osk)

j←$ [l + 1],Extract f ′j for (fbj ,Φj)

Let Φj = (A′, B′, C ′, D′, J, π)

return (f ′j , A
′, B′, C ′)

Figure A.3: A which breaks existential unforgeability under the chosen–message attack for
CL signatures, using A′ which breaks soundness of reputation for our RS-GS construction

262

A.2 Soundness of Reputation

due to the zero–knowledge property of the SPK used. The hash oracle is distributed

identically to the random oracle model, as d′′ is chosen randomly for each query.

Reduction to existential unforgeability of CL signatures. We now show that the

output of A is a valid forgery of a CL signature with non-negligible probability. For this

to be the case, (f ′j , A
′, B′, C ′) output by A should be a valid CL signature, and f ′j should

not have been queried to the CLSIGN oracle. For all potential strategies a successful A′

could take, we show that A is successful with non-negligible probability.

Assuming A′ is successful, there is some j∗ ∈ [l+1] such that f ′j∗ /∈ {fuid : uid ∈ C}, where

the f ′j∗ was extracted from (fbj∗ ,Φj∗). This is because all signatures output are valid and

unlinkable. We assume j∗ = j, which occurs with probability 1/(l + 1).

If A′ corrupts all users so that l = n, we assume A chose b = 0, which occurs with

probability 1/2, and so A does not abort. As f ′j∗ /∈ {fuid : uid ∈ C}, and b = 0, f ′j∗ was

not input to the CLSIGN oracle, and so A wins. Therefore A succeeds with probability

1/2(l + 1).

If A′ corrupts l < n users, we assume A chose b = 1 and uid∗ /∈ C, which occurs with

probability (n − l)/2n. As uid∗ is not queried to the USK oracle, A does not abort. For

A to win, fj∗ must not have been input to the CLSIGN oracle.

If f ′j∗ = fuid with uid ∈ U\C, then we assume uid = uid∗, which occurs with probability

1/(n − l). As a 6= 1, f ′j∗ = f(1+da)
1+d 6= f or af , therefore f ′j∗ was not input to CLSIGN.

Therefore, A succeeds with probability 1/2n(l + 1).

If f ′j∗ /∈ {fuid : uid ∈ U}, then the only case that f ′j∗ was input to CLSIGN is if f ′j∗ = f

or af . Let f∗ = f(1+da)
1+d . Fixing f, a, then g(θ) = f(1+θa)

1+θ is a bijective function, meaning

that f∗ = f(1+da)
1+d is uniform and random and therefore independent of f, a. All inputs to

A′ were distributed independently of f, a, therefore f ′j∗ = f or af with probability 1/p.

Therefore, A succeeds with probability (p−2)(n−l)
2pn(l+1) .

Therefore, A succeeds with non-negligible probability.

263

A.3 Anonymity of Feedback

A.3 Anonymity of Feedback

Assuming the DDH assumption in G1, the SPK is zero–knowledge and the random oracle

model, our RS-GS construction satisfies anonymity of feedback.

Proof. We show that if an adversary A′ exists, such that Pr[Expanon−fb−0
A′,RS-GS (τ,R, r̂,U ,Aggr)

= 1] −Pr[Expanon−fb−1
A′,RS-GS (τ,R, r̂,U ,Aggr) = 1] = ε, for some τ,R, r̂, U ,Aggr with |R| and

n = |U| polynomial in τ , q different items (I, r, t,Ω) are queried to the H and SENDFB

oracles in the choose stage, and ε is non–negligible in τ , then we can can build an adversary

A that breaks the DDH assumption. We describe A in Figure A.4. We then describe

why the simulation given in Figure A.4 and the anonymity of feedback experiment are

indistinguishable to A, when a DDH tuple is input, and then how A′ works.

Simulating the inputs to A′. Assuming A is input a DDH tuple, inputs to A′ are

distributed identically to the anonymity of feedback experiment. If A does not abort, the

USK, POST, and ALLREP oracles are exactly the same as in the anonymity of feedback

experiment.

The SENDFB oracle is also the same as in the experiment, provided uid∗ is not input.

If uid∗ is input, the output is distributed identically to the output of the oracle in the

anonymity of feedback experiment. This is because letting Q2 = Qf11 , as A′ = Q
d/β
1 ,

then B′ = Qd1 = A′β, C ′ = A′αQdα2 = A′αA′βαf1 , D′ = Qd2 = B′f1 .If A does not abort in

SENDFB, then j′ 6= q∗ or b′ = 1, and so H(I, r, t,Ω) = Qd
′

1 , and J = Qd
′

2 = H(I, r, t,Ω)f1 .

Due to the zero–knowledge property of the SPK used, π can be simulated. Therefore the

output of SENDFB is distributed identically to the anonymity of feedback experiment.

The hash oracle is distributed identically to the random oracle model, as d is chosen

randomly. The (gpk, isk, osk) input in the choosing phase are chosen exactly as in Setup.

The input in the guessing phase (A′, B′, C ′, D′, J, π) is distributed identically to outputs

of SendFB, because if Q4 = Qf23 and A′ = Q
d/β
3 , B′ = Qd3 = A′β, C ′ = A′αQdα4 =

A′αA′βαf2 , D′ = Qd4 = B′f2 . If A does not abort, H(I∗, r∗, t∗,Ω∗) = Qd
′

3 , and so J = Qd
′

4 =

H(I∗, r∗, t∗,Ω∗)f2 . Again, due to the zero–knowledge property of the SPK used, π can

be simulated. This signature is consistent with the SENDFB oracle, because A does not

abort, so uidb = uid∗, and (Q1, Q2, Q3, Q4) is a DDH tuple, therefore f1 = f2.

264

A.3 Anonymity of Feedback

USK(uid):

if uid = uid∗, if b = 0 A return 1 else A return 0

else return usk[uid]

POST(I, uid, r, t, ω):

return PostItem(gpk, I, (usk1[uid], ·), r, t, ω)

SENDFB(uid, fb, (I, r, t,Ω)):

if uid = uid∗ if (I, r, t,Ω) = (I∗, r∗, t∗,Ω∗) if b = 0 A return 1 else A return 0

d←$Z∗p, A′ ← Q
d/β
1 , B′ ← Qd1, C

′ ← A′αQdα2 , D′ ← Qd2, S ← H(I, r, t,Ω)

for ((I, r, t,Ω), S, d′, j′) ∈ HL if j′ = q∗ and b′ = 0, if b = 0 A return 1 else A return 0

else J ← Qd
′

2 ,Simulate π with A′, B′, C ′, D′, J

return (A′, B′, C ′, D′, J, π)

else return SendFB(gpk,usk[uid], (I, r, t,Ω), fb)

ALLREP(uid, t, r):

return AllocateReputation(gpk, isk, uid, (usk1[uid], ·), t, r, ID)

H(in):

if ∃(in, out, ·, ·) ∈ HL return out

j = j + 1, if j = q ∗ and b′ = 0, d←$Z∗p, HL← (in, Q3
d, d, j) ∪HL, return Q3

d

else d←$Z∗p, HL← (in, Q1
d, d, j) ∪HL return Q1

d

A(Q1, Q2, Q3, Q4)

1 : b, b′←$ {0, 1}, uid∗←$U , q∗←$ [q], j ← 0, create empty list HL

2 : Compute (gpk, isk, osk,usk) as in Setup, except usk2[uid∗]

3 : (st, uid0, uid1, fb, (I
∗, r∗, t∗,Ω∗))←$A′USK,POST,SENDFB,ALLREP,H

(choose, gpk, isk, osk)

4 : if uid∗ 6= uidb, return 0

5 : if b′ = 0, if ((I∗, r∗, t∗,Ω∗), ·, ·, q∗) /∈ HL return 0, else let ((I∗, r∗, t∗,Ω∗), S, d′, q∗) ∈ HL
6 : if b′ = 1, if ∃((I∗, r∗, t∗,Ω∗), ·, ·, ·) ∈ HL return 0

7 : d′←$Z∗p, S ← Qd
′

3 , j ← j + 1, q∗ ← j,HL← ((I∗, r∗, t∗,Ω∗), S, d′, q∗) ∪HL

8 : d←$Z∗p, A′ ← Q
d/β
3 , B′ ← Qd3, C

′ ← A′αQdα4 , D′ ← Qd4

9 : J ← Qd
′

4 ,Simulate π with A′, B′, C ′, D′, J

10 : b∗←$A′USK,POST,SENDFB,ALLREP,H
(guess, st, (A′, B′, C ′, D′, J, π))

11 : if uid0 or uid1 queried to the USK oracle b∗ ← 0

12 : if (uid0, ·, (I, r, t,Ω)) or (uid1, ·, (I, r, t,Ω)) queried to the SENDFB oracle b∗ ← 0

13 : if b∗ = b return 1, else return 0

Figure A.4: A which distinguishes between DDH tuples in G1, using A′ which breaks
anonymity of feedback for our RS-GS construction

265

A.3 Anonymity of Feedback

Reduction to the DDH problem. If A was input a DDH tuple (Q1, Q2, Q3, Q4),

then we assume uid∗ was chosen so that uid∗ = uidb, which occurs with probability 1/n,

therefore A does not abort during line 4.

If A′ outputs (I∗, r∗, t∗,Ω∗) in the choosing phase that they have queried to the hash

oracle or the SENDFB oracle, we assume b′ = 0 and that this was the q∗th such query,

which occurs with probability 1/2q. Then, provided A does not abort, all inputs to A′ are

distributed identically to the anonymity of feedback experiment.

The probability that A outputs 1 is then

1/2(Pr[Expanon−fb−0
A′,RS-GS (τ,R, r̂,U ,Aggr) = 0] + Pr[Expanon−fb−1

A′,RS-GS (τ,R, r̂,U ,Aggr) = 1])

= 1/2(1−Pr[Expanon−fb−0
A′,RS-GS (τ,R, r̂,U ,Aggr) = 1] + Pr[Expanon−fb−1

A′,RS-GS (τ,R, r̂,U ,Aggr) = 1])

= 1/2ε+ 1/2.

Therefore, A outputs 1 with probability (ε+ 1)/4qn.

If A′ outputs (I∗, r∗, t∗,Ω∗) in the choosing phase that they have not queried to H or

SENDFB, we assume b′ = 1 is chosen which occurs with probability 1/2, and so A never

outputs early outputting 0. Then, by the same argument, A outputs 1 with probability

(ε+ 1)/4n.

If (Q1, Q2, Q3, Q4) is not a DDH tuple, then A still aborts returning 0 in lines 4, 5, 6 with

the same probability. A′ is now given a signature in the guess stage that is independent

of both fuid0 and fuid1 , therefore the probability A′ guesses correctly is 1/2. If A′ queries

USK with uid0, uid1 or SENDFB with uid0, uid1 and (I∗, r∗, t∗,Ω∗), then A outputs 1

with probability 1/2. Therefore, if A′ outputs (I∗, r∗, t∗,Ω∗) in the choosing phase that

they have already queried to the hash oracle or the SENDFB oracle, then the probability A

outputs 1 is (1/2)(1/2qn) = 1/4qn. If A′ outputs (I∗, r∗, t∗,Ω∗) in the choosing phase that

they have not queried to H or SENDFB, then the probability A outputs 1 is (1/2)(1/2n) =

1/4n.

Therefore A has at least a ε/4qn advantage in distinguishing between DDH tuples.

266

A.4 Non–frameability

USK(uid):

if uid = uid∗ A aborts

else return usk[uid]

POST(I, uid, r, t, ω):

return PostItem(gpk, I, (usk1[uid], ·), r, t, ω)

SENDFB(uid, fb, (I, r, t,Ω)):

if uid = uid∗, d←$Z∗p, A′ ← Q
d/β
1 , B′ ← Qd1, C

′ ← A′αQdα2 , D′ ← Qd2

S ← H(I, r, t,Ω), ((I, r, t,Ω), S, d′) ∈ HL
J ← Qd

′

2 ,Simulate π with A′, B′, C ′, D′, J

return (A′, B′, C ′, D′, J, π)

else return SendFB(gpk,usk[uid], (I, r, t,Ω), fb)

ALLREP(uid, t, r):

return AllocateReputation(gpk, isk, uid, (usk1[uid], ·), t, r, ID)

H(in):

if ∃(in, out, ·) ∈ HL return out

else d′←$Z∗p, HL← HL ∪ (in, Qd
′

1 , d
′) return Qd

′

1

A(Q1, Q2)

Create empty list HL, uid∗←$U
Compute (gpk, isk, osk,usk) as in Setup, except usk2[uid∗]

((I, r, t,Ω), fb,Φ)←$A′USK,POST,SENDFB,ALLREP,H
(gpk, isk, osk)

Extract f∗ from Φ return f∗

Figure A.5: A which breaks the DL problem in G1, usingA′ which breaks non–frameability
for our RS-GS construction

A.4 Non–frameability

Assuming the DL assumption in G1, the SPK is zero–knowledge and simulation sound ex-

tractable and the random oracle model, our RS-GS construction satisfies non–frameability.

Proof. We show that if an adversary A′ exists, such that Pr[Expnon−frameA′,RS-GS (τ,R, r̂,U ,Aggr)

= 1] = ε, for some τ,R, r̂, U ,Aggr with |R| polynomial in τ , n = |U| polynomial in τ ,

and ε is non–negligible in τ , then we can can build an adversary A that breaks the DL

problem. We describe A in Figure A.5. We then describe why the simulation given in

Figure A.5 and the non–frameability experiment are indistinguishable to A, and how A′

works.

267

A.4 Non–frameability

We first show that all inputs A provides to A′ are distributed identically to the non–

frameability experiment.

Simulating inputs to A′. (gpk, isk, osk) are chosen in exactly the same way as in

Setup. Provided A does not abort, the USK, POST and ALLREP oracles are the same

as in the non–frameability experiment. If uid 6= uid∗ is input, the SENDFB oracle is

identical to the non–frameability experiment. If uid = uid∗ is input, letting Q2 = Qf1 , and

as A′ = Q
d/β
1 , then B′ = Qd1 = A′β, C ′ = A′αQdα2 = A′αA′βαf , D′ = Qd2 = B′f . Because

H(I, r, t,Ω) = Qd
′

1 , J = Qd
′

2 = H(I, r, t,Ω)f . π can be simulated due to the zero–knowledge

property of the SPK used. Therefore the output of SENDFB is distributed identically to

the anonymity of feedback experiment. The hash oracle is distributed identically to the

random oracle model, because d′ is chosen randomly.

Reduction to the DL problem. Assuming A′ is successful, there is some uid /∈ C such

that (I, r, t,Ω), fb′,Φ′) was output by the SENDFB oracle under input uid, ((I, r, t,Ω), fb,

Φ) was not output by SENDFB under input uid, and LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,

Φ′) = 1. The signature Φ output by A′ was not output by SENDFB with input user

uid′ 6= uid, because otherwise LinkFB(gpk, (I, r, t,Ω), fb,Φ, fb′,Φ′) 6= 1. Therefore, it

is possible to extract f∗. We assume uid = uid∗, which occurs with probability 1/n.

Then A will not abort. Again, let Q2 = Qf1 , and also let ((I, r, t,Ω), S, ·) ∈ HL, and

Φ = (A∗, B∗, C∗, D∗, J∗, π∗), Φ′ = (A′, B′, C ′, D′, J, π). As the signatures are linked,

J = Sf = Sf
∗

= J∗, therefore f = f∗ mod p. This means A successfully finds the

discrete logarithm with probability ε/n.

268

