357 research outputs found

    Control and grid integration of MW-range wind and solar energy conversion systems

    Get PDF
    Solar-based energy generation has increased by more than ten times over the same period. In total, worldwide electrical energy consumption increased by approximately 6340 TWh from 2003 to 2013. To meet the challenges created by intermittent energy generation sources, grid operators have increasingly demanded more stringent technical requirements for the connection and operation of grid-connected intermittent energy systems, for instance concerning fault ride through capability, voltage and frequency support, and inertia emulation. Ongoing developments include new or improved high-voltage converters, power converters with higher power density, control systems to provide ride-through capability, implementation of redundancy schemes to provide more reliable generation systems, and the use of high-voltage direct current (HVdc) links for the connection of large off-shore intermittent energy systems

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Novel Control of PV Solar Farms as STATCOM (PV-STATCOM) for Frequency Control and Power Oscillation Damping

    Get PDF
    Frequency stability and low-frequency power oscillations are two major concerns in modern power systems. PV-STATCOM is a patented concept which enables PV inverters to provide STATCOM functions, during day and night, as well as real power modulation during daytime. This thesis aims to utilize PV-STATCOM capability effectively for enhancing frequency stability and power oscillations damping. A novel, simultaneous real power-based Fast Frequency Response (FFR) and reactive power-based Power Oscillation Damping (POD) control is proposed for PV-STATCOMs. This control not only significantly reduces system under- and over-frequency deviations, but also uses the unutilized capacity of PV inverters to enhance damping of critical modes. A novel night and day Reactive power-based Frequency Control (RFC) is proposed for PV-STATCOMs, that deploys the unutilized reactive power capacity of PV-STATCOM for frequency stability improvement. RFC modulates the system voltage, via PV-STATCOM voltage control loop, to control the power of voltage-sensitive loads and reduce the generation-demand imbalance. Sensitivity studies show that the load type and its composition, and location of RFC-equipped PV-STATCOM play a significant role in the efficacy of proposed controls. RFC not only provides a 24/7 complementary frequency support service but potentially obviates the impact of system inertia loss due to replacement of conventional synchronous generators by inverter-based generators. A new combined RFC and POD controller is also proposed for PV-STATCOM utilizing unused reactive power capacity of PV inverters. The studies show that depending on PV-STATCOM location, the proposed combined RFC+POD controller can effectively enhance system frequency stability and power oscillations damping. This thesis also proposes a fast power-frequency droop for PV generators and an enhanced synthetic inertial response for wind generators. These two controls operate in a harmonized manner to provide improved frequency support while reducing the stresses on wind generators. The proposed PV-STATCOM grid support functionalities can potentially open up new revenue streams for solar farms. The mechanisms of such financial compensations are expected to develop in near future with the unprecedented growth of solar farms globally. MATLAB based simulation studies are performed on two-area-four-machine and 12-bus study systems using modified WECC generic dynamic models for PV plants, wind plants and loads

    DFIG Based Wind Turbine System For Clemson Micro-grid

    Get PDF
    As an important part of the smart grid, the micro-grid interfaces with distributed energy sources, loads and control devices. A doubly fed induction generator (DFIG) based wind turbine (WT) is the main power source of the presented project. The DFIG system is connected to the three phase AC grid via back-to-back power converter and an LCL filter. Decoupled q-d control strategies are investigated for the DFIG system. Matlab/Simulink results will show the performance of the proposed system. Hardware validation results are also presented and discussed. As a rapidly increasing research interest area the dc micro-grid has been extensively investigated. A topology is proposed to connect the DFIG based WT system to a dc link using a diode bridge and a three phase power converter. The rotor side of the DFIG is connected to the dc link through a converter while the stator is connecting to a three phase diode bridge with the dc side connected to a dc link. The control method is developed to regulate the stator frequency and the d-q axis voltage of the diode bridge to operate the DFIG at a desired stator frequency and generate the required power. Undesired harmonics in the three phase system will lead to excessive THD, a decrease the power quality and an increase the power loss of the system. An novel methods to compensate the current harmonics by controlling the power converter of the DFIG system is also proposed. With the DFIG connected to the three phase AC gird, the focus has been put into a scenario: a nonlinear load connected to the same node of the DFIG point of common coupling (PCC) to the gird, to draw the harmonics to the system. In the proposed dc link system, the diode bridge will introduce harmonics to the stator current of the DFIG. In both cases, the selected low-order harmonics are detected and calculated by a multiple reference frame estimator. The control methods of how to regulate the harmonics are developed for both the grid-side converter and the rotor-side converter based on multiple reference frame theory. A hybrid state observer for speed-sensorless motor drives of induction machines is also proposed. The hybrid observer comprises of a Luenberger observer and a sliding mode observer. For a conventional induction motor with shorted rotor, the stator currents and rotor flux linkages are estimating following a Luenberger observer. While, for a DFIG the similar approach will apply to the stator currents and rotor currents. The rotor speed is estimated using a sliding mode observer. The combination of two observers takes advantage of both approaches. The Luenberger observer is easy to realize and the computational burden is small. The sliding mode observer is known for its robustness with respect to model parameter errors and it will also provide a fast convergence rate. The chattering of the sliding mode observer is addressed by applying a boundary layer

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users
    • …
    corecore