
AN ABSTRACT OF THE THESIS OF

Shibashis Bhowmik for the degree of Doctor of Philosophy in Electrical and Computer

giieerine presented on August 26. 1 99j.

Title: Performance Optimization for Doubly-Fed Generation Systems

Abstract approved:
1 René Spec

A variable speed generation (VSG) system converts energy from a variable resource

such as wind or water flow into variable rotational mechanical energy of a turbine or a

sinii lair device that converts translational kinetic energy into rotational mechanical

eneri2v. The mechanical energy is then converted into electrical energy by an electrical

generator. Presently available and proposed generators include systems based mainly on

dc machines. synchronous and induction machine technology as well as reluctance

machines. While extracting more energy from the resource, most proposed VSG systems

suflr a cost disadvantage due to the required rating of the power electronic interface.

This cost penalty may eventually render the additional energy capture meaningless.

Thus. reducing the cost of the power electronic hardware is essential for VSG systems to

achieve viable and competitive S/kWh ratios when compared to fossil fuel-based

generating systems.

A variable speed constant frequency (VSCF) system and controller are proposed that

utilize a doubly-fed machine (DFN'l) as the energy conversion device. The system

includes a power converter that provides the current excitation for the control winding of

the DFM. Roth the magnitude and frequency of the excitation is determined by an

adaptive niodeLbased controller which maximizes the power flo\ from the mechanical

turbine to the electrical grid and zeduces the generator losses by maintaining the

maximum ci fieiency point throughout the mechanical input power range.

Redacted for Privacy

The proposed strategy has been experimentally verified in controlled laboratory

conditions lhr a prool-of-concept brushless doubly-fed machine (BDFM) system of 1500

Vatts power rating. Issues relating to power converter development and its incorporation

in the system have been investigated. The controller and circuit design of a four

quadrant, AC/AC power converter is presented and a novel sensorless current controller

for the active rectifier stage is presented in detail.

While presented for a wind turbine application, the philosophy of the control

algorithms are equally applicable for any variable speed application (motoring,

generating, with and without gearbox, etc.) Also, the control can be augmented to not

only maximize power and efficiency. but also provide for harmonic and reactive power

compensation via the energy conversion system.

Performance Optimization

for Doubly-Fed Generation Systems

by

Shibashis Bhowmik

A Thesis Submitted

to

Oregon State University

In Partial Fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 26, 1997
Commencement June 1998

Doctor of Philosophy thesis of Shibashis Bhowmik presented on August 26, 1997

Approved:

1"

Major professor representing Electrical and Computer Engineering

Chair of the Department df/Electrical and Computer Engineering

Dean of Graduate

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Shibashis ffowmik. A

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Acknowledgements

It has been quite a few years at Oregon State University since my initiation into the

M.S. program in the Department of Electrical and Computer Engineering in the fall of

1990. During this period, I was fortunate to have come across a spectrum of some of the

most highly accomplished individuals as my gurus and some eagerly ambitious

colleagues who, I am sure, would one day be well recognized in their vocation as well.

My special and sincere note of acknowledgement goes to Dr. René Spée, my mentor

for almost all these years at Oregon State University. He has been a constant source of

guidance, help and tutelage for me and has been, as in all other projects, a significant

contributor towards the completion of my dissertation. Kudos is also due to Profs. G.C.

Alexander and A.K. Wallace of the Energy Systems group. Despite their busy schedules,

they were always willing to help whenever I needed it. My, brief but rewarding,

association with Hian (Prof. H.K. Lauw), while working at Electronic Power

Conditioning Inc., Corvallis, OR, had been, mostly, a didactic experience. He had me

develop invaluable engineering skills and technical knowledge. I also thank Prof. W.

Kolodziej for serving on my doctoral conimittee and for those elucidating control courses

that he taught us.

Amongst my colleagues, the names that readily come to mind are those of Patrick

Rochelle, Ashok (Dr. Ramchandran), Viren Javadekar, D.K. Ravi, Dongsheng (Dr.

Zhou), Brian Wiley, Chris Brune, Bhanu (Dr. Gorti), Mike (Dr. Boger), Ernesto

Weidenbrüg, Trey Kemp, Manfred Dittrich, Annabelle van Zyl, Alex Faveluke, Brian

Koch and Bob Bellagh. I have benefited from each of them, at some time or the other,

during these years. I would especially cherish the most recent memories of working with

the last five, mentioned above, and the team spirit that prevailed all throughout the

duration of that project. Here, I would also like to thank my very special friend Rita

Wells who had been the Graduate Secretary throughout my stay at OSU. Rita has come

to my rescue innumerable number of times. She always saved the day for me with a

smile never letting me know that a favor was being done.

But I can never recount how much, my wife, Neeta helped me to see to the

completion of this ordeal. I am indebted to her patience, her faith in me and her

motivation allthroughtout. Likewise, a special note of thanks also go to my sister-in-law,

Cheenu, for all the cheering and encouragement that she had provided me. Still, this

work would never have been possible without the constant emotional support and

understanding of my parents. I admire and respect them for their guidance and advice all

throughout.

Acknowledgements

The work described in this thesis has been supported by a consortium consisting of

Electric Power Research Institute, Bonneville Power Administration and Puget Sound

Power and Light. The author is appreciative of the funding which made this work

possible.

Table of Contents

1. Introduction .1

1 .1. Basic wind turbine characteristics ..3

1 . 1 .1. Wind energy conversion .. 3

1.1.2. Fixed and variable speed generation ..5

1.1.3. Wind generation system design considerations 7

1.2. Conversion systems for wind power generation ... 9

1.2.1. Constant speed generators ..9

1 .2.2. Variable speed generators .. 11

1.2.3. Power converter considerations ... 15

1.2.4. Direct drive wind turbines ... 16

1.3. Wind turbine control systems ... 17

1.3.1. Fixed speed generator control .. 17

1.3.2. Variable speed generator control ... 20

1.3.2.1. Singly-fed generator control ... 21

1.3.2.2. Doubly-fed generator control ..23

1.3.3. Compensation of torque pulsations ..24

1.4. Wind turbine operation ...25

1.5. Thesis outline .. 28

2. System and Controller Design ... 30

2.1. Control of DFM wind generator ...31

2.2. Optimization control algorithm ...33

Table of Contents (Continued)

2.3. Flowchart implementation .. 35

2.3.1. Search-based controller .. 35

2.3.2. Wind speed estimation based controller .. 38

3. Converter Controller Design .. 45

3.1. Sensor-based rectifier controller ...46

3.1.1. Sensor-based rectifier control algorithm .. 47

3.1.1.1. Dc-bus voltage regulation ...48

3.1.1.2. Equivalent load conductance calculation 49

3.1.1.3. Hysteresis current controller ...50

3.1.1.4. Switching algorithm .. 51

3.1.2. Implementation of sensor-based controller53

3.1.3. Experimental evaluation .. 54

3.2. Sensorless rectifier controller ...58

3.2.1. Model-based predictive rectifier controller algorithm 59

3.2.1.1. Model development .. 60

3.2.1.2. Controlissues ..62

3.2.1.3. Algorithm flowchart .. 62

3.2.1.4. Simulation ...65

3.2.1.5. Implementation of sensorless controller66

3.2.1.6. Experimental evaluation ... 67

3.3. Remarks on the rectifier controllers .. 73

3.4. Inverter controller ...75

Table of Contents (Continued)

4. System Implementation .77

4.1. Wind turbine model development ...79

4.1.1. Wind turbine emulator ... 80

4.1.2. Speed controller ... 83

4.1.3. Torque controller ...83

4.2. BDFM generator ... 84

4.2.1. Features of a BDFM drive ... 84

4.2.2. Generator design .. 85

4.2.3. Characterization of the generator ...86

4.3. Power converter implementation .. 90

4.3.1. Converter components ... 90

4.3.2. Converter protection .. 92

4.3.2.1. Driver level protection ..92

4.3.2.2. Converter system level protection 92

4.3.2.3. Rectifier code-level protection .. 93

4.4. System controller implementation .. 94

4.5. Data acquisition .. 95

5. System Controller Evaluation .. 97

5.1. Output power maximization ...98

5.2. Efficiency maximization ...99

5.3. Power distribution ... 101

Table of Contents (Continued)

6. Conclusions and Recommendations .104

6.1. Salient features of thesis ... 104

6.2. Recommendations for future work ... 106

List of Figures

Figure

1.1 Power coefficient of a 100 kW wind turbine .. 5

1.2 Variable and fixed speed power and speed characteristics of a 100 kW turbine 7

1.3 Energy conversion systems for variable speed generation: (a) synchronous,

(b) wound rotor induction, (c) cage rotor induction and (d) brushless doubly-fed 12

1.4 Simplified wind turbine (a) mechanical model and (b) block diagram, typically

utilized for determination of mechanical system resonances and responses 18

1.5 Sample annual wind speed distribution, illustrating the Rayleigh distribution

ofwind speeds .. 26

1.6 Power extraction from wind using VSCF and CSCF systems 27

2.1 Conceptual representation of the VSG optimization controller as a three-

dimensionalproblem .. 32

2.2 Block diagram representation of the controller in a wind generation application 33

2.3 Generalized flowchart representation of the proposed optimization algorithm 34

2.4 Perturbation based search algorithm for maximum power point tracking 37

2.5 Optimal control winding current requirements to ensure maximum efficiency

fora75kWBDFM .. 38

List of Figures (Continued)

Figure

2.6 Maximum efficiency point characterization of a 230 V, 7.5 kW prototype

BDFM with input mechanical power as a parameter ... 39

2.7 Maximum power point tracking based on estimated wind speed 40

3.1 Block diagram representation of the sensor-based rectifier controller 48

3.2 Sensor-based controller representation ... 49

3.3 Possible current errors in each phase of the rectifier .. 52

3.4 Switching logic of the rectifier ... 53

3.5 Sensor-based rectifier controller implementation ... 54

3.6 Rectifier controller response to a 40% (280 V- 390V) step change in commanded

dc-bus voltage. DC-bus capacitance 2400 tF ...55

3.7 Unity power factor operation of the sensor-based rectifier controller.

Vd = 390 V, Vac = 230V, load = 10 kW ..56

3.8 Leading 0.85 p.f. operation. Vdc = 390 V, Vac = 230 V, load = 10 kW 57

3.9 Leading 0.85 p.f. operation. Vd 450 V, Vac = 230 V, load = 10 kW 57

3.10 Expanded view of the Fourier spectrum .. 58

List of Figures (Continued)

Figure

3.11 Sensorless version of the rectifier controller .. 59

3.12 Lumped circuit representation of a switching state of the rectifier 60

3.13 Simplified flowchart of the sensorless version of the rectifier controller 63

3.14 Time and frequency domain simulation result of rectifier input current with

the proposed model based current controller under unity p.f. condition 65

3.15 Experimental waveforms generated by the sensor-based controller.

Vac = 230 V. Vd = 390 V, ftch = 6.67 kHz, load 6.5 kW .. 67

3.16 Unity power factor operation of the sensorless controller.

Vac = 230 V, VdC = 390 V, f111 = 5 kHz, load 6 kW .. 68

3.17 Leading power factor operation of the sensorless controller.

Vac = 230 V. Vd0 = 390 V, f11 = 5 kHz, load 6 kW .. 69

3.18 Rectifier operation with an (-)20% grid voltage error.

Vac = 184 V, Vd = 390 V, = 5 kHz, load 6 kW .. 70

3.19 Rectifier operation with an imposed (+)17% grid voltage error.

Vac = 230 V. VdC = 390 V, = S kHz, load 5.5 kW ... 71

3.20 Rectifier operation with (-)21% line reactor inductance error.

Vac = 230 V. Vd = 390 V, = 5 kHz, load 6 kW .. 72

List of Figures (Continued)

Figure

3.21 Three phase current waveforms for 0.85 leading p.f. operations. Conditions

similarto that of Fig. 3.17 .. 72

4.1 Laboratory VSG wind power generation system implementation 78

4.2 DC machine based wind-turbine model controller ... 80

4.3 Desired mechanical power output of the laboratory wind turbine emulator 81

4.4 Power coefficient of the laboratory wind turbine emulator .. 81

4.5 Desired torque-speed characteristic of the wind turbine emulator 82

4.6 Measured turbine model torque. Closed-loop operation illustrates the effectiveness

of the optimization controller and turbine convergence at the set MPP 87

4.7 Variation of generated power with varying of control winding current for

different input mechanical power .. 88

4.8 Optimum control winding current requirements for maximum efficiency

operation of the prototype BDFM. The curve-fit polynomial, as shown, is the

MEPT controller realization .. 89

9 flmax IC profile of the prototype BDFM as implemented 89

4.10 Overall converter protection strategy .. 91

List of Figures (Continued)

Figure

4.11 Block diagram of the performance optimization system controller as

implemented in the laboratory VSG system .. 94

5.1 Closed ioop operation of the performance optimization controller 97

5.2 Maximum efficiency point tracking by the performance optimization controller 98

5.3 Turbine output power for open and closed loop operation 100

5.4 Comparison of the measured and estimated control winding current for

maintain optimum operation. The current has been estimated by substituting

the measured power into the polynomial of Fig. 4.8 ... 101

5.5 Power flow through the inverter as percentage of total apparent, real and

reactivepower .. 102

5.6 Representative current waveforms of the converter and the BDFM approximately

at the maximum power point. (P 1150 watts, shaft speed = 1525 r/min) 103

List of Tables

Table

3.1 Typical current error scenarios ... 52

3.2 Possible switching states ... 64

3.3 Comparison of spectral performance .. 73

4.1 BDFM generator design specifications [27] ... 85

4.2 Winding specifications [27] .. 86

List of Symbols

Eke Kinetic energy of moving air

m mass of air

v speed of moving air

tip speed of turbine blade

p air density

Pj, Power in moving wind

P1 mechanical power in the shaft of the wind turbine

C,, power coefficient of a wind turbine; ratio of P to P

T1 mechanical torque in the shaft of the wind turbine

tip-speed ratio; ratio of v, to v

f frequency of DFM power winding excitation

frequency of DFM control winding excitation

number of pole pairs of the DFM power winding

Pc number of pole pairs of the DFM control winding

PT total generated power

estimated maximum DFM efficiency

optimum DFM control winding rms current

Vdc instantaneous dc-bus voltage

VdCt dc-bus voltage reference

Vac, V rms grid voltage (line-to-line)

1a 1b i instantaneous phase currents

L input line inductance

C capacitance of the dc-bus

Vbn, v instantaneous input phase voltages

Performance Optimization for Doubly-Fed Generation Systems

1. Introduction [1]

Wind power is gradually gaining prominence as a suitable source of renewable

energy. Implementations range from the propeller-type, horizontal axis wind turbine

(HAWT) to vertical axis or VAWT systems. Power ratings vary from several kW for

remote area, off-grid applications to several MW for systems connected to the ac power

grid. As wind speeds, in practice, vary over a wide range, so does the amount of power

generated by the turbine. Hence, if wind turbines are only operated at a constant rotor

speed, they are not capable of optimizing power extraction over a wide range of wind

speeds. This can be improved, mechanically, by providing for adjustments in the pitch of

the turbine blades or by utilizing the electrical system for simple, step-wise speed control

employing pole-changing techniques. However, implementing mechanical controls

renders the system structure more complicated and less reliable. Also, due to the narrow

control bandwidth of the mechanical controls, improvement in energy capture is only

marginal. With the advent of modern power electronic converters, it is possible to refer

the entire control function to the electrical side and consequently improve energy capture

and system reliability substantially. Many modern, commercial wind turbines are of the

variable speed design, requiring a power electronic interface between the variable

frequency wind turbine and the fixed frequency electric utility grid.

Horizontal axis turbines can have blade spans of up to approximately 90 m, with the

majority of commercial systems being in the range of 15 45 m, with a power rating of

100 to 600 kW. Rotational speeds are in the range of 30 - 100 r/min, necessitating a

gearbox to increase the speed to a value suitable for low pole number electric machines,

typically around 1800 r/min. Fixed speed systems utilize either conventional

synchronous machines or squirrel cage induction machines. Converter-fed variable speed

systems can be based on conventional generators or can be implemented utilizing doubly-

2

fed machines to reduce rating and cost of the power electronic converter [1,2]. In HAWT

systems, the gearbox and the generator are housed in the nacelle at the top of the tower

structure, while in VAWT installations, all generating equipment can be positioned on the

ground at the base of the turbine. In order to increase efficiency and decrease complexity,

low speed generators can be utilized to eliminate the need for a step-up gearbox and

couple the electric generator to the turbine rotor in a direct-drive configuration.

Wind power is a renewable resource and freely available worldwide. However, site

preparation, system installation and provision for maintenance require significant

investment. Economic considerations require that the cost of wind energy has to be

competitive with conventional fossil resources in order to be a viable alternative. This

becomes important in variable speed systems, which, while extracting more energy from

the wind, suffer an initial cost disadvantage due to either the increased mechanical

complexity or the power electronic converter requirement [3]. This cost penalty may

eventually negate the gains associated with additional energy capture. Thus, reducing the

cost of the power generating hardware is essential for variable-speed generating systems

to achieve viable and competitive $IkWh ratios.

The power electronic utility interface necessary for converter based variable speed

systems provides many additional benefits beyond enhanced energy capture. While

acoustic noise produced during low power operation can be minimized, it is also possible

to improve the poor displacement power factor associated with induction generators. At

the same time, harmonics from other generators or non-linear loads can be compensated

using appropriate converter control algorithms and utilizing passive or active harmonic

filters.

While offering significant benefits in operational performance, variable-speed

generators have the drawbacks of higher initial cost as well as increased complexity and

potentially lower reliability. Hence, the need for a low-cost, robust variable speed

generation (VSG) system is essential for enhanced energy capture with a reduced capital

3

investment. The brushless doubly-fed machine retains the ruggedness of an induction

machine while allowing VSG operation at a significantly lower initial investment due to

the reduction in rating of its power electronic energy conversion interface.

1.1. Basic wind turbine characteristics

The conversion of wind energy into electricity on a large scale raises the problem of

energy storage. Work is in progress on a variety of energy storage systems, including

batteries, pumped storage, compressed air and flywheels. Still, the electrical supply grid

remains a convenient absorber of electrical energy provided the capacity of the wind

generation equipment is still small in relation to the total generating capacity coupled to

the supply grid. Thus, other than in relatively low power, remote area applications, most

wind turbines are coupled to the ac utility grid.

1.1.1. Wind energy conversion

The energy in the wind as a result of the kinetic energy of the moving air mass is

described by:

12
Eke = my

2 (1.1)
with: m - air mass;

v speed of moving

Air density is a function of altitude and temperature, given by:

p = 3443
T

with: p - air density; (1.2)

- atmospheric pressure;

T - absolute temperature.

4

The mass of air moving through a wind turbine of sweep area A per unit time is

m = pAy (1.3)

and the total available power from the air movement through area A is expressed as

Pw = --pAv3 (1.4)

Wind power is thus proportional to the cube of the wind speed, v, and the power extracted

by the wind turbine in mechanical form can be described as

P = C,, P (1.5)

with: C,, wind turbine power coefficient.

It is not possible to extract all energy from the moving air, since in this case the air

movement would seize and the air would pile up behind the turbine. It was shown by Betz

[4] that for maximum power extraction, the air velocity at the wind turbine is of the

upstream wind speed, further decreasing to well downstream of the turbine. Thus, the

theoretical maximum power coefficient is C,, = .- or 59.3%. Practical wind turbines do

not reach this Betz limit and the wind velocity at the turbine is somewhat greater than

v. The value of C, is a function of wind and rotational speeds as well as form and

pitch of the wind turbine and has a maximum at a fixed operating point, i.e. at a constant

ratio of rotor speed to wind speed. Thus, the power coefficient is normally expressed in

terms of the tip-speed-ratio), which is defined as:

with: v,, - tip speed of turbine blade;
(1.6)

R - turbine rotor radius;

- rotational turbine angular velocily;

v wind speed.

5

Figure 1.1 illustrates the variation of the power coefficient for a conceptual 100 kW

horizontal axis wind turbine [1,21.

100 kW TURBINE POWER COEFFICIENT

051 ___

o 0.4t
a,

0.3
00

0.2

0
2 4 6 8 10 12 14 16 18

Tip-Speed-Ratio

Figure 1.1 Power coefficient of a 100 kW wind turbine.

The torque coefficient, CT, of the wind turbine is related to C as

Torque 1
CT= =

pv2AR
jCp (1.7)

1.1.2. Fixed and variable speed generation

It is evident that for optimum energy extraction, the maximum power coefficient and

thus the optimum tip-speed-ratio should be maintained at all wind speeds. With a

constant speed constant frequency (CSCF) wind turbine system, it may be necessary to

6

use pitch control of the blades to limit power input to the system [5], thus introducing

additional mechanical control systems. Variable-speed generation can track the changes

in wind speed by adapting shaft speed and thus maintaining optimal energy generation.

In Fig. 1.2 the rotor power for the wind turbine characteristic of Fig. 1.1 is plotted

using variable speed generation (VSG) and fixed speed generation (FSG) strategies. The

fixed speed system is optimized at only a single speed, generally representing maximum

energy capture potential for a given site. Thus, power output at near cut-in and maximum

power are significantly lower than in the case of the variable speed system. The fixed

speed fixed pitch system is inherently power limited, as increasing wind speeds lower the

turbine power coefficient, a phenomenon referred to as stall regulation. On the other

hand, the variable speed system will attempt to track maximum power at any wind speed

within the design limitations of the system. Once rated generator power or maximum

rotational speed is reached, it becomes necessary to limit the turbine power by

abandoning the optimum tip-speed-ratio. During variable speed operation, wind and

rotor speeds are related linearly, whereas in the constant power regime, shaft speed drops

off sharply and is kept essentially constant thereafter. The speed range for VSG operation

is selected such that it only commences when the cut-in wind speed is reached and torque

is sufficient to operate. Due to the cubic power-speed relationship, the loss of energy is

minimal. The upper cut-out or furling speed is determined by the limits of the turbine

and its structural strength.

The improved energy capture for VSG systems is obtained at the expense of

additional system components, most often in the form of a power electronic converter.

The cost of this additional hardware needs to be low enough to achieve a reasonable rate

of amortization given the additional energy generated. In addition to maximizing energy

extraction from the wind, the generation system efficiency needs to be as high as

economically feasible in order to maximize the energy delivered from generator to the

electric power grid.

7

Figure 1.2 Variable and fixed speed power and speed characteristics of a 100 kW turbine.

1.1.3. Wind generation system design considerations

As illustrated in Fig. 1.2, wind turbines operate at a relatively low speed, in general

below 100 r/min. Utilizing off-the-shelf electrical machinery with four (1800 r/min) to

eight poles (900 r/min) requires a step-up gearbox with a gear ratio of at least 9 to 18, but

often higher. This sometimes requires a multi-stage gearbox, with the resultant

mechanical complexity and additional losses, which can be in the order of 4-8% of

mechanical turbine power [6]. Eliminating the gearbox leads to significant system

benefits, but requires generators of very high pole number, e.g. 160 for a turbine speed of

45 r/min. Given a minimum pole pitch, machine diameter for a high number of poles

becomes very large, sometimes unacceptably so, given manufacturability and cost

constraints and space restrictions in the nacelle at the top of the supporting tower in

8

HAWT systems. System design needs to optimize the trade-off between using an off-the-

shelf, relatively high speed generator in conjunction with a gearbox and utilizing a special

purpose, directly coupled generator.

HAWTs produce a non-constant torque due to tower shadow [7]. As each blade

passes the supporting tower, the output torque decreases. Thus, the torque produced by a

two-blade wind turbine contains a harmonic at twice the rotational speed, the so-called 2P

harmonic. Also contributing to torque pulsations is a wind shear effect due to the wind

speed gradient along the height of the area swept by the wind. Typically, a fixed-speed

system is unable to mitigate this effect in order to improve the quality of the output

power. In large turbines, the power pulsations passed to the network can become

unacceptable, especially when the penetration level is high. In VSG systems, though,

appropriate control of the power electronic converter can minimize torque ripple and thus

output power pulsations [8,9]. Here, the inertias of turbine and generator are used to store

energy and mitigate torque pulsations. This not only improves the utility interface

characteristics, but also damps mechanical stresses on the system, thus allowing for

relaxed safety factors, lighter construction and hence, higher reliability and longer useful

life.

Some large wind systems are not self-starting or self-stopping. Mechanical tower

resonances at low frequencies require that the wind turbine be motored up to operating

speed. Fixed-speed systems require the starting of a large induction machine with the

resulting expense of soft start mechanisms; stopping a fixed-speed system usually

requires a large mechanical braking system. A mechanical brake may also be required in

converter fed systems, since the stopping capability needs to be available even in the

absence of electrical excitation, such as during fault conditions.

While sharing many operational characteristics with HAWT systems, VAWTs in

general are not self starting and require the generator to run as a motor during start up.

Certain VAWT systems, such as those of the Darrieus type [8], are not susceptible to

9

tower shadow, but wind shear is still present and torque pulsations are produced by the

continuously changing angle of attack between wind and turbine blades.

Wind generation system design needs to account for the extreme environmental

conditions encountered. Depending on the site, temperatures between -30 'C to +45 'C as

well as internal condensation must be allowed for. Additionally, the differential

temperature of system parts will vary with time and load. The nacelle cover can only

provide for some protection against environmental effects, such as rain, snow, ice,

particulates and chemical pollution. Appropriate design of not only the mechanical

system, but especially the electronics for control and power processing is essential.

The design criteria for wind generation system design are summarized as follows:

Reliable and low maintenance design optimized for the environmental

constraints of a given site;

Minimum number of components and cost;

Maximum energy capture and efficiency;

Integration of mechanical and electrical systems (start-up, shut-down,

mechanical stresses);

Utility supply interaction and contamination.

1.2. Conversion systems for wind power generation

1.2.1. Constant speed generators

CSCF systems use a grid-connected synchronous or induction generator, so that

variations in wind speed have to be accommodated by pitch control of the wind turbine

itself to limit input power at or below rating. This refers the primary power flow control

function to the mechanical side of the system. Synchronous machines which can be

utilized include conventional, wound-field machines as well as synchronous reluctance

and permanent magnet machines. Conventional synchronous machines have the

advantage of providing for reactive power control as well as voltage regulation via the

IE

rotor field winding. Many different power ratings are available off-the-shelf from

established manufacturers and machine development costs are minimized.

Permanent magnet (pm) synchronous machines have the advantage of a higher

efficiency due to the absence of excitation losses. However, unlike in conventional

synchronous generators, output control via the excitation is lost. Consequently, magnet

flux and the number of stator turns have to be chosen such that satisfactoiy operation over

the entire load and voltage range is possible while minimizing transient currents during

synchronization. Many different permanent magnet designs are feasible [6], including

conventional radial field machines, axial flux machines, transverse flux geometries and

hybrid claw pole designs. Present day implementations are mainly based on the radial

flux concept, utilizing either a buried magnet structure or surface magnets. Interior pm

machines can be implemented using high energy, rare earth (SmCo or NeFeBo) magnets

or less expensive ferrites. Surface magnet machines in general require rare earth magnets

to achieve the desired airgap flux density.

Synchronous reluctance machines also do not provide for excitation control, but avoid

the use of magnets and the associated costs. However, rotor designs to achieve the

desired reluctance ratios are difficult to manufacture, which partially negates the cost

advantage. In the absence of rotor excitation, synchronous reluctance machines require

excitation from the connected power grid and have relatively poor displacement power

factors. Thus, power factor correction capacitors are often employed.

All synchronous machines provide for a stiff coupling between turbine and the grid.

Neither pitch nor stall control can respond fast enough to the torque fluctuations due to

tower shadow and wind gust effects. This transmits the torque pulsations directly to the

generator and requires an increased torque capability of approximately 50% above

nominal. This stiff coupling also subjects the mechanical system to considerable stresses.

Subsequently, increase in compliance and damping is required in the power train to

11

alleviate structural resonances. This discussion also applies to low-slip induction

generators.

Many wind turbines utilize low cost, mass produced cage rotor induction machines.

In the absence of rotor connections, these systems are also very robust. However, as with

synchronous reluctance machines, excitation is required via the stator, which leads to

poor power factors and requires power factor correction capacitors at the point of

common coupling to the grid. The slip characteristic of induction machines is beneficial

for wind turbine control, as it reduces stiffness and provides for additional compliance

and damping in the electrical system as compared to synchronous generators.

1.2.2. Variable speed generators

In variable speed constant frequency (VSCF) systems the wind turbine operates at

variable speed. If this speed range is made large enough, it is possible to operate a fixed

pitch wind turbine and refer the entire power control function to the electrical side.

Figure 1.3 reviews variable speed systems based on ac machines and voltage source

inverter technology [1]. These represent the desired implementation for medium power

(approximately 100 kW - 500 kW) wind systems; higher power turbines may still utilize

current-fed, supply commutated topologies. In most cases, a gearbox is used to interface

the low speed wind turbine with the high speed generator (not shown in Fig. 1.3).

The system shown in Fig. 1.3(a) can be implemented using conventional, wound-field

synchronous machines or the permanent magnet or synchronous reluctance options

discussed previously. The system shown in Fig. 1.3(c) utilizes conventional, off-the-

shelf, cage rotor induction machines. In both cases, all generated power is processed by a

power electronic converter. In the case of reluctance and induction machines, the

required reactive power is also provided by the converter, leading to large and expensive

converters, typically with a continuous rating in excess of 125% of machine rating. The

size of the converter also negatively influences the supply interaction, i.e. the harmonics

12

injected into the power grid due to converter switching. Despite these disadvantages,

many commercial variable speed systems still utilize the cage rotor induction machine

due to its simplicity, ruggedness and low cost.

:1

A

WT

WT

(a)

WT

WT

1 I

(c)

Figure 1.3 Energy conversion systems for variable speed generation: (a) synchronous,
(b) wound rotor induction, (c) cage rotor induction and (d) brushless doubly-fed.

13

Only limited variable speed operation is possible with a conventional induction

generator, since otherwise the efficiency becomes proportional to speed. This has led to

the investigation of oversynchronous operation of slip ring or doubly-fed induction

generators with rotor and stator power fed back to the supply [3,8]. In this case, variable

speed operation is possible while only controlling the electrical side. The system shown

in Fig. 1.3(b) utilizes a wound-rotor induction machine, the stator of which is directly

connected to the utility grid. Only slip power is processed by the rotor power electronic

converter, reducing its required rating, size and cost. If this so-called electronic Scherbius

system is rated such that maximum power operation corresponds to rated torque at twice

synchronous speed, the required rating of the power electronic converter is only 50% of

that necessary for the synchronous machine system [3]. This leads to an appreciable

saving in capital investment and also reduces the negative impact of converter harmonics

on the utility system. From a maintenance and reliability point of view, the use of slip

rings is a disadvantage, especially considering that the wind turbine should be capable of

working unattended, in adverse conditions, for extended periods.

Recently, doubly-fed machines without slip rings or brushes have been proposed as

viable variable speed generators for wind turbines [2,10]. Figure 1.3(d) shows the

Brushless Doubly-Fed Machine (BDFM) which is based on the induction principle and

combines the advantages of the cage rotor systems (low machine cost, robust brushless

machine construction) with the benefits of the electronic Scherbius configuration

(reduced power converter rating and cost). The BDFM has two stator windings of

different pole number to avoid direct transformer coupling [11]. The power and control

stator windings interact through the rotor, which has a specialized cage structure with a

number of identical sections corresponding to the sum of the pole pairs of the stator

windings. The machine exhibits synchronous behavior where stator frequencies and shaft

speed are related by [11]:

14

= fr(Pp+Pc)fp
with: f utility grid frequency (60 Hz);

(1.8)
fr shaft speed dictated by the variable-speed generation algorithm;

required converter output frequency;

pole pairs of grid connected winding; and

- pole pairs of converter controlled winding.

In this thesis, a VSG controller is proposed which exploits the double stator winding

feature to operate the machine in a maximum efficiency mode while tracking the input

maximum power. In other words, the excitation of the machine is distributed in its two

windings such that it operates "optimally" in this embodiment, the maximum

efficiency mode. The optimality condition could be determined based on suitable user

defined criteria such as maximum power factor mode at the grid, or a weighed product of

the efficiency and the power factor at the grid. The philosophy of the controller is also

applicable to any VSG or adjustable speed drive (ASD) system that utilizes a DFM as the

energy conversion device from mechanical to electrical and vice versa.

In a DFM, only a fraction of the generator power is processed electronically, resulting

in reduced size and cost as well as improved power quality. The die-castable rotor cage

ensures robust and inexpensive machine construction. An alternative design with very

similar characteristics is the doubly-fed reluctance machine [10], which uses an

equivalent stator configuration, but replaces the rotor with a reluctance geometry similar

to the one found in the synchronous reluctance machine. The dual power flow paths

found in doubly-fed machines enables efficiency-optimized controls not possible with

singly-fed machines.

The generator systems discussed so far are all based on three-phase technology with

distributed stator windings. Another system which has been suggested for wind power

applications is the variable reluctance machine, which differs considerably from the

synchronous reluctance generator discussed previously [12]. The variable reluctance

machine has a doubly salient structure, with distinct stator and rotor poles, much like a

15

stepper motor. Unlike in conventional ac machines, the stator windings are not

distributed, but rather are concentrated on the stator poles. Combined with the simple

rotor structure, this leads to ease of manufacturing and potential economic advantages.

The converter topology for variable reluctance machines differs significantly from its

counterpart for conventional machines. Development work is also under way to

introduce magnets into variable reluctance machines in an effort to enhance generator

performance [131.

Rather than follow the optimum VSG power curve (see Fig. 1.2) in a continuous

fashion using the VSG systems described above, often a two-speed system is

implemented to improve upon fixed speed generator performance. This can be realized

with pole changing induction machines and the resulting system avoids the use of a

power converter completely.

1.2.3. Power converter considerations

Technological advances in gate turn-off, high power semiconductor devices have

revolutionized the power electronics applications industry, especially in the medium

power range. Extremely fast turn-on and turn-off characteristics are obtained for

Insulated Gate Bipolar Transistor (IGBT) modules rated in excess of 2000 A. These

devices allow for high switching frequency and control bandwidth with relatively simple

drive requirements. Hence, for medium power (500 kW 1 MW) wind generation

applications, hard switched, pulse-width-modulation (PWM) based power interfaces are

typically employed. To ameliorate the performance of the switches by reducing the

switching stresses and losses and to reduce the unwanted and effects of hard

switching, topologies utilizing soft switching techniques can be incorporated in wind

generation systems [14].

For wind generation systems rated at above 500 kW 1 MW, present day technology

still favors Silicon Controlled Rectifiers (SCR) and Gate Turn-Off Thyristors (GTO),

16

which are available in ratings of over 4000 A. However, only slow switching

frequencies, typically less than 500 Hz, can be attained employing SCRs and GTOs at the

high power levels. Generally, SCR-based current link converters utilizing either load or

forced commutation are used for high power synchronous or induction generator based

systems. Cycloconverters provide the electronic grid interface for high power, direct

drive synchronous generators and limited speed range, high power doubly-fed induction

machines.

1.2.4. Direct drive wind turbines

The gearbox used to interface slow speed wind turbines with conventional, relatively

high speed electric machines is a source of additional cost and losses. Direct-drive wind

turbines require generators with very high pole numbers and, given a minimum pole pitch

requirement, this leads to very large generators, with approximately double the outer

diameter and weight of high speed machines. Low speed generator efficiency is also

lower by a few percentage points and machine cost is higher, due to both the increase in

size and the higher cost for these special purpose machines, which do not enjoy the

economies of scale of mass manufacturing. Nevertheless, it has been shown [5,14] that

the overall direct-drive system can have significant advantages in terms of initial cost,

efficiency, reliability and return on investment, when compared to the high speed, geared

generators.

Due to the benefits associated with direct drive systems, numerous development

programs are under way investigating suitable machine geometries. Proposed machine

geometries include variable-reluctance generators [11], surface-mount [14] and buried

magnet permanent magnet machines. It is expected that significant progress will be made

in this area over the coming decade and that market penetration of direct-drive wind

turbines will increase significantly.

17

1.3. Wind turbine control systems

1.3.1. Fixed speed generator control

The simplest wind-turbine configuration is without pitch control and a synchronous

link to the grid, where the turbine speed is constant due to the generator being directly

connected to the fixed-frequency grid. While it is possible to limit the power input by

stall regulation with this arrangement, it is not possible to control the amount of power

delivered by the turbine to the electrical generator within its operating range. It is solely

dependent on the wind variations. However, since the available aerodynamic power is a

function of both the wind speed, v, and the angular speed of the turbine, QT, the power

delivered by the turbine could possibly be only a fraction of the maximum available

power. As shown in Fig. 1.1, a fixed speed system is typically optimized at only a single

speed of operation. This inherently limits the deliverable power, as increasing wind

speeds lower the power coefficient. Although fixed speed wind turbine systems do not

employ sophisticated speed control systems, they may still need to be equipped with

electrical or mechanical control for power limiting, torque-ripple mitigation and

resonance avoidance.

The tower passing effect of the turbine blades causes dynamic speed variations even

for fixed speed generation systems, which could affect their performance. The use of tip

vanes for dynamic rotational speed control of HAWT has been reported [16]. The tip

vane is located at the tip of a turbine blade and functions as a device for power

augmentation by varying the power coefficient, C,,. It can also be operated as a rotor

speed braking device by varying the sweep angle between the vane orientation and the

axis of rotation of the turbine blades. At zero sweep angle, the turbine power coefficient,

C, is at its maximum. Any change in the sweep angle provides a means for turbine

deceleration or acceleration. The tip vane sweep angle controller utilizes turbine speed

error and its derivative to determine the absolute value of the sweep angle. In situations

18

where large wind fluctuations occur, tip vane control in conjunction with blade pitch

control can provide for effective fixed speed operation.

The wind turbine and the energy conversion system can be represented by a rigid rotor

of inertia JR with an applied aerodynamic torque of TA. This torque is transmitted as TL to

a shaft of rigidity KL and damping CL as shown in Fig. 1.4. Upon simple analysis, the

transfer function H(s) between the transmitted torque, TL and the aerodynamic torque, TA

can be formulated as

H(s) = .?i CL5+KL
(1.9)

TA JRS2+CLS+KL

TJ1±CL

I I

TL

(a)

1 K
JRS

) SL+CL
>1L_______H

(b)

Figure 1.4 Simplified wind turbine (a) mechanical model and (b) block diagram,
typically utilized for determination of mechanical system resonances and responses

19

The natural frequency, ON of the denominator of H(s) (i.e. the characteristic equation) can

be determined to be

O)N
= (1.10)

which corresponds to the first torsional mode or the system mode [7]. Developing a more

elaborate model of the wind turbine system by representing the wind turbine by two discs

of equal inertia, it is observed that there exists a second resonant peak of the transfer

function when plotted in the frequency domain [17]. Due to the existence of these two

resonant peaks in the transfer function of the wind turbine system, usually both the 2P

and the 4P (for a vertical axis turbine) harmonics are minimally attenuated, enabling them

to propagate through the drive train and appear as electrical torque ripple. The ripple, if

not compensated, affects the quality of electrical power generated and causes torsional

fatigue of the components of the drive train.

In an effort to increase the difference between the 2P harmonic of a turbine and the

natural frequency, aN, various mechanical methods have been devised to reduce the

rigidity of the low speed shaft. From eq. (1.10) above, it is readily seen that CON decreases

as KL, the rigidity of the low speed shaft, decreases. This has led to the use of a low

rigidity shaft, also known as the quill shaft, on the low speed, turbine side of the gear-

box. Further separation in the 2P harmonic and the natural frequency co is possible by

electrical means as discussed in section 1.2.2.

Torque pulsations and the associated power angle oscillations in slow speed direct

coupled generators (small pole pitch permanent magnet synchronous generators) cannot

be damped using damper windings on the rotor, as they would incur unacceptable losses

as well as increase the physical size of the generator. Once the torque oscillations are

passed on to the stator, they can be damped using a passive viscous damper, consisting of

a spring and a mechanical damper, which connects the stator of the generator to the wind

turbine housing. An adaptive mechanical damping method for wind turbine torque

20

stabilization [17] uses a bearing-mounted stator, which oscillates about the machine axis

against a torsional spring. By selecting an appropriate stiffness, K, and inertia, Js, of the

stator damper, the "blank" frequency,

fblank = 2,r
(1.11)

can be set equal to the 2P frequency. The blank frequency is the frequency at which

stator and rotor oscillate as a single mass, thus rendering the system non-responsive to

any input. Hence, when the blank frequency equals the 2P frequency, all torque

pulsations can be eliminated. However, this results in excessively large stator oscillations

and requires slight stator damping, thus sacrificing transient response to improved tower

passing response. An adaptive damping system can be based upon the fact that an

optimum system allows the stator to oscillate freely at the tower passing frequency, but

damps oscillations at any other frequency [17].

1.3.2. Variable speed generator control

In addition to dynamically maximizing the wind turbine efficiency, variable speed can

also serve to reduce system stresses such as torque pulsations. The following advantages

are beneficial with respect to system reliability and generated power quality:

Variable speed control can lead to a substantial reduction of the torque ripple in

the drive train and hence improved power quality. This is achieved by an increase

in compliance, whereby a variation in the aerodynamic power results in system

acceleration or deceleration rather than in output power fluctuations.

The attenuation of torsional mode resonances in variable speed operation allows

for a relaxation of design requirements.

Dynamic loads are reduced and safety margins can be relaxed.

21

Some electrical systems available for variable speed generation (VSG) operation are

shown in Fig. 1.3. As illustrated, both singly and doubly-fed electrical generators have

been employed in variable speed wind generation configurations [1].

1.3.2.1. Singly-fed generator control

Speed control of a wind turbine system can be accomplished by controlling either the

turbine blade angle (pitch control) or the electrical generator speed if an electronic power

converter is available. The compliance of the electrical coupling between the grid and the

generator varies based on the type of generator. Typically, the mechanical compliance in

the drive train is higher than the electrical compliance. This leads to a lightly damped,

low frequency torsional mode [18]. Speed control allows for efficient system operation

and also provides for an effective way of damping the low frequency torsional mode.

From Figs. 1.1 and 1.2 it is clear that in order to obtain maximum power from the

wind turbine, it is necessary to keep the tip speed ratio,), constant over a wide range of

wind speeds. This is achieved by a maximum power point tracking (MPPT) system, an

essential component of any VSG controller, which tracks the optimum tip speed ratio for

large variations of wind speeds. Here, it should be noted that the MPPT speed range

needs to avoid areas of mechanical resonance. Wind speed is a difficult quantity to

measure and should not be incorporated as a control input for MPPT design. A basic

search algorithm involves sweeping the generator speed command over a certain range

until a maximum output power is measured [19]. Other algorithms involve the

determination of the wind generator model [20,21], employ techniques of system

identification [1] or utilize a model independent control method [22].

Unlike in a dc machine, in a cage rotor induction machine the magnetic flux and the

electromechanical torque are coupled, i.e. the torque controller affects the flux and vice

versa when scalar control methods are employed. Field oriented or vector control of

induction machines utilizes real-time mathematical transformations to effectively

22

decouple the control of flux and torque production, thus duplicating the features

inherently available in a dc machine. The availability of sophisticated low-cost

microcontrollers and digital signal processors has led to wide spread implementation of

field oriented control techniques for variable speed induction generators. Employing field

oriented control techniques for effective torque control and fast speed response allows for

both maximum power point tracking (MPPT) and the compensation of torque pulsations

[9]. Reactive power control is also possible by appropriately controlling the power

electronic grid interface.

Traditionally, the MPPT controller is based upon a search algorithm [3, 19] where the

rotational speed of the electrical generator shaft is varied over a range determined by the

design of the installation site. While the strategy is extremely simple, it is slow in

responding to frequent changes in the wind speed. Hence, the VSG may not be capable

of operating at the MPP all throughout the possible wind speed variations. Hence, the

benefits of the VSG system may not be exploited to the maximum extent despite the

increased investment incurred due to the power converter.

In this thesis, an wind speed estimation based MPPT algorithm is proposed that

employs principles of the generator characterization. The optimum tip-speed ratio is

maintained by determining the wind speed iteratively from the total generated power and

the C, ?. profile of the turbine in use. The proposed MPPT algorithm, though more

complicated than the simple search based method, can still be implemented in a relatively

low-end floating-point microprocessor. The ease of implementation guarantees fast

control updates and ensures maximum power point operation for all wind speeds within

the design limitations. While the controller has been developed based on a BDFM, the

principles can be extended to other DFMs and singly-fed electrical machines.

23

1.3.2.2. Doubly-fed generator control

Utilizing a PWM converter for slip power recovery, a doubly-fed wound rotor

induction machine can be operated as a variable speed generator [21]. The power

converter rating and, hence, the initial cost is reduced as the converter handles only the

slip power. Control of torque and thus active power can be achieved by controlling the

rotor current component orthogonal to the stator flux; stator reactive power is controlled

by the in-phase rotor current. The decoupling of stator active and reactive power flows,

allows for an additional control function, which can be used to maintain optimal stator

flux and minimize copper losses [21].

The modeling of wind turbine systems is an extremely difficult task due to the

uncertainties in the modeling of the aerodynamics, such as the effects of tower shadow,

wind shear, blade surface smoothness, wind turbulence and others. This suggests the use

of approaches which do not rely on the physical model, as outlined in [1] for an efficiency

maximization algorithm for doubly-fed generators. The doubly-fed machine provides an

additional degree of control freedom, not present in singly-fed system, whereby stable

operation is possible for a variety of control winding current levels at a particular

operating speed [1,22]. The overall optimization problem for the mechanical (turbine) and

electrical (generator) systems involves finding the maximum of power output as a function

of both speed and control current, a three-dimensional optimization problem [1].

In order to keep the controller simple, mechanically robust and inexpensive, no

mechanical inputs such as shaft torque should be required for the control algorithm. In

addition to the power and efficiency maximizing function, the controller can also perform

reactive power as well as harmonic compensation. Based on output power measurement,

the controller sets converter frequency and current magnitude. Hence, no mechanical

feedback signals are required. However, the compensation of torque pulsations requires an

inner speed loop, which is based on field oriented control and requires rotor position

feedback [24].

24

The proposed system optimization controller utilizes the characterization of the DFM

in a certain "optimum" mode of operation, based on a user defined criterion of optimality.

To create a knowledge base for the system with respect to the "optimum" operation, a set

of open-loop experiments are conducted on the system to determine the output power

while maintaining that "optimum" condition, such as maximum efficiency or maximum

power factor operation at the grid. This information can also be constructed from initial

acceptance testing of the system which is typically conducted before actual system

installation. As determined in this embodiment, the control variable is the control

winding current of the BDFM. Applying duality principles of electrical networks, the

control winding voltage could also be employed as the control variable that ensures

"optimal" operation of the system.

The optimality characterization thus obtained is then utilized for the overall system

operation. If the system can be operated "optimally", the DFM characteristics obtained

are employed by the wind speed estimation based MPPT algorithm discussed in section

1.3.2.1.

1.3.3. Compensation of torque pulsations

Torque pulsations are a nuisance problem even in VSG systems. They corrupt power

quality as explained in the section on fixed speed generator control. The use of a power

converter in variable speed generation enhances the control options for mitigation of

torque oscillations. The increase in the available power due to a tower passing spike can

be stored either

in the inertia of the system by speeding up the generator utilizing field oriented

control (7) ; or

in the energy storage link, capacitors in voltage source inverters (VS I) or inductors

in current source inverters (CS!).

25

The second option is impractical due to the significant increase in the required

capacitance or inductance of the converter. Hence, the first option is the only practical

solution and is commonly implemented in wind generation systems. The torque pulsation

compensation is usually a fast inner control loop, with the MPPT algorithm implemented

in a much slower and overall system control loop.

An older electrical approach for torque pulsation mitigation is to reduce the stiffness

of the electric coupling with the help of a current source power electronic converter

between the synchronous generator and the grid [7]. Employing a proportional-integral

dc-link current regulator and operating the synchronous generator with constant air gap

flux yields the following relationship between electromagnetic torque and generator

speed:

ATE K + (1.12)
A(OE S

Equation (1.12) above corresponds to the model of an electric generator with

electrical stiffness, K1, and electric damping, K. Hence, the P1 dc-link current regulator

can be adjusted for the parameters of the electromagnetic coupling to the electric grid.

Also, the integral constant K1 can be tuned to fix the first torsional mode at any desired

low value of frequency.

1.4. Wind turbine operation

The amount of power generated by a wind turbine depends on the design

characteristics of turbine and generator as well as on the properties of the wind resource.

As an example, Fig. 1.5 shows the annual wind speed distribution for a wind site on the

Oregon coast [1]. This variation of wind speed, v, can be represented by a Weibull or

Rayleigh probability distribution [25]:

kv Vk
f(v) _(_)k_ exp [- (-)] (1.13)cc C

with: c scale factor;

k shape factor;

26

The turbine power output characteristic as shown in Fig. 1.2 can also be expressed as

a function of wind speed, v:

= Pg(v) (1.14)

where g(v) will be different for fixed and variable speed generators. The average power

output of the turbine can now be determined by

P,g = Pmaxjf(v)g(v)dv (1.15)

4.5

4

3.5

a)

0
2
LL

1.5

1

0.5

0

CAPE BLANCO (OR) WIND DATA

0 5 10 15 20 25 30 35 40 45 50

Wind Speed [m/hr]

Figure 1.5 Sample annual wind speed distribution, illustrating the Rayleigh distribution
of wind speeds.

The quantity inside the integral is defined as the wind turbine capacity factor and

represents the ratio of average to maximum turbine outputs. Typical values are

27

significantly below unity, in the range of 0.3 to 0.4, reflecting the variable nature of the

wind resource.

Figure 1.6 [2] shows the result of the integration in eq. (15) and illustrates the annual

wind power availability and power extraction possible with CSCF and VSCF systems.

The area shown in white represents the additional energy captured using VSCF

generation systems and has to be weighed against the added complexity and cost of

variable speed generators.

Wind power is a very competitive industry and plants are required to be competitive

with fossil resources and yield a satisfactory return on investment. Issues of initial cost,

generator sizing and efficiency as well as maintenance and reliability have to be carefully

weighed in order to achieve satisfactory $/kWh results from a wind power plant.

POWER
MAX FURLING AREA

POWER

MAXIMUM AVAILABLE POWER

VSCF SYSTEM LIMIT

CSCF SYSTEM LIMIT

CUT IN

8760 HOURS/YEA

Figure 1.6 Power extraction from wind using VSCF and CSCF systems

28

1.5. Thesis Outline

Given the advantages of variable speed wind generation as explained in section 1.2.2,

it could be made economically viable by reducing the rating of the power converter. The

BDFM combines the benefits of the ruggedness of a squirrel cage induction machine with

the reduced rating requirements of the power converter of a wound-rotor induction

machine [26]. Furthermore, the availability of the extra control variable (the control

winding current) can be utilized for additional performance enhancement of the

generation system.

As described in Chapter 2, an efficiency maximization controller was developed for a

BDFM based VSG application. This controller can be readily modified to accommodate

the optimization of a user defined performance criteria, e.g. power factor or a weighted

product of power factor and efficiency. The system controller, which includes the MPPT

control ioop, utilizes the efficiency maximization to track the optimum tip speed ratio

under varying wind speed conditions. Controller development and algorithm are

presented in Chapter 2, and implementation issues are detailed in Chapter 4.

The BDFM requires a four quadrant power converter for interfacing the control

winding to the electrical grid. The output stage of the power converter is required to

provide electrical excitation of a certain magnitude and frequency to the control winding

of the BDFM, as determined by the user in the open-loop mode or, in the case of the

closed loop implementation, the optimization controller. Hence, in the process of the

implementation of the system controller for proof-of-concept laboratory verification,

power converter control algorithms were developed. These include a simple current

controller for the inverter and two control algorithms, sensor-based and sensorless

versions, for the rectifier stage. The converter controller development and associated

issues are detailed in Chapter 3. There, the switching algorithms for the inverter and the

rectifier stages are discussed in detail. Theoretical issues of the sensorless controller

development based upon the sensor-based version are presented Implementational details

of the power converter utilized for the laboratory VSG system are presented in Chapter 4.

29

The different controllers were implemented employing Intel 80C 1 96KC microcontroller

based systems and detailed software code can be found in Appendix A. Representative

waveforms of the converter during experimental evaluation are presented.

A 115 V, 1.5 kW prototype BDFM was utilized for the development of the system

controller consisting of the MPPT and the efficiency maximization controller. The

details of the experimental BDFM and dc-machine based wind turbine emulator

development are presented in Chapter 4. The implementation of the system controller in

an Intel 80486 based computer supplemented by a TMS32OC3X DSP for power

measurement analysis is also detailed in Chapter 4. Further software details regarding the

controller and its development can be found in Appendix B. Software code utilized for

the emulator development is presented in Appendix C. The data acquisition software

developed for measurement and analysis of the different electrical quantities is listed in

Appendix D.

Steady state performance evaluation of the closed loop system is described in Chapter

5. Although only efficiency maximization has been evaluated, performance optimization

based on any other user defined criteria can be readily accommodated within the same

control philosophy. Chapter 6 refers to issues that need further attention in the future and

possible enhancement of the system controller presented in this thesis.

30

2. System and Controller Design

In the area of wind power generation and other power generation systems where the

input resource power varies considerably, the benefits of adjustable speed generation over

fixed speed systems have been known for some time [1-5,9]. In these systems, a

maximum power point tracker adaptively adjusts a system quantity (such as speed in the

case of wind turbines) to maximize turbine power output. Using singly fed systems, such

as induction, synchronous or reluctance drives, the maximum power point tracking sets

the operating point of the electrical machine and thus the losses of the electrical generator

associated with that operating point. As the power flow path is fixed (turbine to motor to

converter to grid) at a given speed and magnetic flux level of the generator, losses and

thus conversion efficiency are fixed. It should be noted here, that in some singly-fed

implementations efficiency of the system can be improved by adjusting the magnetizing

component of the machine. In doubly fed systems, however, at a fixed operating point

(power and speed), power flow can be regulated between both winding systems on the

machine. This feature can be utilized to essentially minimize losses associated with the

given operating point or achieve other desired performance enhancements. This

capability is directly related to the fact that a doubly fed system requires one degree of

freedom (frequency) to establish the maximum turbine power point, leaving one degree

of freedom (current magnitude) for other control laws, such as efficiency maximization.

The strategy is applicable to all doubly fed configurations, including conventional wound

rotor induction machines, Scherbius cascades, brushless doubly-fed machines, doubly-fed

reluctance machines.

The proposed strategy has been experimentally verified in controlled laboratory

conditions for a proof-of-concept brushless doubly-fed machine system of 1.5 kW power

rating. Verifying the controller concepts for other forms of doubly-fed machines is

relatively simple and involves, mainly, machine characterization and determination of

controller parameters. The controller described herein discusses the use of an adaptive

Maximum Power Point Tracking (MPPT) strategy to implement an efficiency

31

maximization loop in parallel with the regular maximum tip-speed-ratio tracker, without

the measurement of mechanical quantities. While the presented approach uses a simple

model-based approach, this should only be taken as one embodiment; i.e. other adaptive

control strategies are feasible as well. The system described here increases the overall

power output of the generation system with a minimal increase in controller size and cost.

2.1. Control of DFM wind generator

From Figs. 1.1 and 1.2 it is clear that in order to obtain maximum power from the

wind turbine it is necessary to keep the tip-speed-ratio, X, constant over a wide range of

wind speeds. This is achieved by a maximum power point tracking (MPPT) system

which tracks the optimum tip speed ratio for large variations of wind speeds [1,3,27]. As

wind speed varies, this involves appropriate control [19] of generator shaft speed to

ensure that the maximum turbine power is followed, as illustrated in Fig. 1.2.

In the doubly-fed machine, the mechanical MPPT as discussed above, varies the

converter output frequency and thus the rotational speed according to eq. (1.8). At the

established shaft speed, stable operation is possible for a variety of control winding

current levels, thus allowing for an additional degree of control freedom not present in

singly-fed systems. For a given mechanical input power, this can be used to regulate the

power flow in the stator windings and power converter and thus maximize efficiency and

output power. This has been verified experimentally in section 2.2.1.2 for a 7.5 kW

prototype BDFM and in Chapter 4 for the 1.5 kW BDFM utilized for the closed-loop

verification. Thus, the overall optimization problem for the mechanical (turbine) and

electrical (generator) systems involves finding the maximum of power output as a

function of both speed and control current, as illustrated conceptually in Fig. 2.1.

In order to keep the controller simple, mechanically robust and inexpensive, no

mechanical inputs such as shaft torque or speed should be required for the control

algorithm. This has lead to the development of a system controller as illustrated in Fig.

2.2 which relies only on electrical feedback parameters of real power (for MPPT). The

32

concept can be extended to include reactive power feedback for optional power factor

control. Chapter 6 describes the fundamentals of a reactive power controller based on the

optimization controller proposed in the thesis for future enhancements to the original

algorithm.

0
0
0.

0
w

Control Current
Control Frequency

Figure 2.1 Conceptual representation of the VSG
optimization controller as a three-dimensional problem.

In addition to the power and efficiency maximizing function, the controller can

potentially also perform reactive power as well as harmonic compensation. It is also not

necessary for the control to be implemented exclusively in a generation system (power

flow from left to right in Fig. 2.2), but it is equally applicable for motoring or drive

systems (power flow from right to left in Fig. 2.2).

Figure 2.2 illustrates the control algorithm in block diagram form. Based on output

power measurement, the controller sets converter frequency and current magnitude.

While currents for optimum efficiency and thus maximum output power could be

calculated based on machine parameters, this should be avoided due to the variations of

internal parameters such as rotor time constant. Since mechanical power is also not

available, an adaptive approach is proposed to aid in the determination of the maximum

power point as illustrated in Fig. 2.1. The adaptive controller discussed here is based on

a system model as described in section 2.2. This is, however, only one simple

implementational strategy. Other possible implementations could involve, any one or

33

combination of the following: 1) neural networks, 2) the use of other forms of adaptive

or intelligent control, 3) the use of mechanical feedbacks, or 4) the determination and use

of system parameters.

Pp

Converter IPu,T
I

BDFM
To

IC

wind

turbine 3-Dim
Adaptive

MPPT

Converter 2

f Update lb

I
I.

j1ransdur
Is Pi Power

p,l I I

Figure 2.2 Block diagram representation of the controller
in a wind generation application.

2.2. Optimization control algorithm

To
Power
Grid

Pi

Figure 2.3 shows a general representation of the output power maximization

algorithm for a doubly-fed variable speed wind generation system. It should be

emphasized that there could be a multitude of implementation methods for the individual

blocks of the flowchart in Fig. 2.3. While implementation could possibly vary

considerably, the basic optimization algorithm would remain the same.

The algorithm begins by initializing, in 60, the variables, P1. which represents the

total measured power of the generator system, and fr, the mechanical or the shaft speed of

the DFM-turbine system. Typically, upon system startup, these variables would be

initialized non-optimally, and solely based upon the wind speed and the generated power

thereof at the time of initialization. Measurement of the total output power PT is utilized

34

to determine the optimal control winding current setting, in 62.

Optimize
MPPT

rLIJI
L[te L "T profile

- Timed internxpt

Figure 2.3 Generalized flowchart representation of the
proposed optimization algorithm

The L-PT profile is a simple model representation of the DFM system with respect to

the performance optimization criteria chosen for the implementation. In this thesis, as

implemented in the laboratory verification of the system controller, generation of

maximum power at the output, i.e. at the grid, is the optimization criterion. Hence, to

satisfy the control requirements, besides tracking the maximum power point (MPP) of the

resource input, the BDFM generator was operated in the maximum efficiency mode.

Other possible criteria could be the maximization of the power factor at the point of

common coupling to the grid or a combinatorial performance index consisting of the the

BDFM efficiency and the system power factor.

Once the performance criterion is chosen for an implementation, characterization of

the DFM is done off-line or in the open-loop mode. The control variable, in the proposed

strategy the control winding current, L, is determined as a function of the feedback

quantity, which in this case is the measured generated power. The characterization

method is elaborated in Chapter 4.

35

To ensure operation at the maximum power point of the wind turbine, Fig. 1.1, the

mechanical speed, f1, is iteratively determined in 64 by the MPPT controller. While

attaining the maximum power point, the operation of the system is further optimized, by

adjusting the control winding current, I, by the Maximum Efficiency Point Tracker

(MEPT) controller in 66. The new optimized operation point, if different from the stored

information, as determined by I and PT, is used to update the ICPT profile in 68. The

algorithm repeats with a new measured output power PT after a fixed delay, in 70, timed

by an interrupt in the controller.

2.3. Flowchart implementation

As mentioned above, the individual control blocks of Fig. 2.3, namely MPPT and

MEPT could have various implementation and control methods. Two possible

implementations of the MPPT block are presented here in detail; one, Fig 2.4, utilizes a

simple but slow search-based algorithm while the other, Fig. 2.7, applies model-based

control techniques to estimate the wind speed. Knowledge of the wind speed helps in

determination of the desired rotational speed for the turbine in operation. While the

search-based algorithm is presented here merely as a reference, the wind speed estimated

approach will be referred to in detail in the following sections.

2.3.1. Search-based controller

Figure 2.4 details a simplified realization of the basic algorithm as shown in Fig. 2.3.

As mentioned before, the mechanical speed, fr, and the total output power PT are

initialized, in 101 and 102 respectively, dependent upon the startup conditions. Based

upon the measured output power, PT, the control winding of the doubly-fed machine

(DFM) is excited with a current magnitude as determined from the existing IC-PT profile

as shown in 103. As the DEM control winding excitation is varied, the output power PT

could possibly vary too. If the new measured value of output power PT(1) is greater than

that of the initial value, then PT(1) is retained as is shown in 104 and 105. Determination

of the initial optimum control winding current initiates the fr optimization algorithm

36

detailed in 106-1 13. In 106, the initialized mechanical speed, fr, is incremented by a

predetermined quantity, M1. This change in the mechanical speed possibly varies the

output power, P1, and thus the output power, PT(2), is measured in 107. The new output

power, if determined, in 109, to be greater than the previous PT, is saved, in 108, as the

latest operating point for maximum output power. The process of incrementing the

mechanical speed fr is repeated until the latest measured output power P-r(2) is determined

to be lower than that of the previous iteration. That leads to the part of the algorithm

where the mechanical speed is decremented by a predetermined quantity, M, as shown in

110-113. The basic operation of the algorithm in the speed decremental mode is similar

to that in the speed incremental mode as detailed above.

Once the maximum power point is established by varying the mechanical speed, the

system is further optimized by fine tuning the optimal control winding current setting, in

114-122. The process of varying the control winding current magnitude, I, is very

similar to that of fr as explained above. In 114-118, the control winding current is

incremented till the maximum power point is attained, while in 119-122 the current is

decremented to obtain the maximum power operating point. The new operating point, in

the I, PT domain, obtained as detailed above, is updated in the profile, in 123. The

update is required due to the continuously varying system parameters caused by changes

in temperature, humidity, magnetic properties of the material of the machine, wear and

tear, etc. As in Fig. 2.3, the algorithm repeats witha new measured output power PT after

a fixed delay, in 124, timed by an interrupt in the controller.

As discussed above, the maximum power and efficiency tracking algorithm presented

uses a perturbation algorithm, which incrementally changes excitation current frequency

and magnitude to obtain maximum overall output power (thus maximizing energy

extraction from the wind and minimizing electrical losses in the generator/converter

system). The following discusses an alternate method for the wind turbine maximum

power point tracking.

37

I SetP-=O
101

Set = r)1

4' 102

Measure total

]
tputpowerP)J)

4,
103

I Determine I"
[fromIP1 profile

Yes

II Set P1 = PT))) I

No

l05____I I I

II4,

Increase speed f,

{

Decrease speed

]
= t + M = f,

112

4,___ 107 I 4,

Set PT PT2
Measure total Measure totai1

Set P1 = T(3)output power PT)2) output power PT)3)__J

1091Ye? No Yesi
>Pi?

No
1l4

4,
113

Set I=
119

4,ll5
Increase I

L]

Decrease I
IC = 'C +

116

l20 = 121H___ 4,___ 4,

Set P = T(4)

Measure total

Litput
Measure total

[output j
Set PT =power T(4) power PT(S)

1Yes
118No5>PT?

_
Yes1_No

1

122
123

UpdateI T ProfileJ
[

4,
,,l24

Timed Interrupt 'V7

Figure 2.4 Perturbation based search algorithm for maximum power point tracking.

38

2.3.2. Wind speed estimation based controller

This section describes an alternative for the maximum power point tracking (MPPT)

algorithm. The algorithm discussed is a possible realization of block 64 in Fig. 2.3. In

Fig. 2.4, the algorithm would replace blocks 106-113. The new algorithm enables a

faster determination of the maximum power point (MPP) as compared to the search based

varying shaft speed approach outlined above in section 2.2.1.1.

The main control blocks of this novel algorithm are as shown in Fig. 2.2. The total

output power, P1, is the only sensed quantity (electrical or mechanical) for the MPPT

control ioop. A typical I vs PT profile for the block of Fig. 2.2 is illustrated in Fig. 2.5.

It should be noted here that Figs. 2.5 and 2.6 were obtained while characterizing a 230 V,

7.5 kW prototype BDFM. Similar characterizations, presented in Chapter 4, were

conducted on the 115 V, 1.5 kW BDFM utilized in the closed-loop VSG system

development.

U

C.)

C.)

10

9

3

2

BDFM MAXIMUM EFFICIENCY
(Adaptive Current Lookup Data)

0 1000 2000 3000 4000 5000 6000
EIecfrica Output Power [W]

Figure 2.5 Optimal control winding current requirements to ensure
maximum efficiency for a 7.5kW BDFM.

39

The optimum control winding current L with respect to the total output power P1 as

characterized in Fig. 2.5 is obtained from maximum efficiency measurements as shown in

Fig. 2.6. Thus, it is conceivable that information regarding the maximum efficiency of

the DFM with respect to the optimal control winding current, can also be determined

easily from Fig. 2.6. However, this stored information should be updated similar to that

of the I PT curve.

This algorithm is not entirely based on a perturbation (search) approach as the one

described in section 2.2.1.1. (blocks 106 to 113 in Fig. 2.4), but uses perturbation for fine

adjustments.

75

70

65
>'
0
C

60
0

'I-

w55

50

45

EFFICIENCY OF BDFM
Mechanical Innut Power as Parameter

-
-

-

.. #. .- - - -

Mech. Power
- 6.8kW; 1680r/m_

+ 6.2kW; 1650r/m

-
5.4kW; 1600r/m

'.... A 4.3kW; 1550r/m

_ * 3.7kW; 1500r/m
- ________ - 2.8kW; 1450r/m

2.3kW; 1400r/m

- ________ _________ ________ X 1.7kW; 1350r/m

2 3 4 5 6 7 8 9

Control Current (A)

Figure 2.6 Maximum efficiency point characterization of a 230 V, 7.5 kW
prototype BDFM with input mechanical power as a parameter.

The following describes the wind speed estimation based algorithm. The simplified

flowchart of this controller is illustrated in Fig. 2.7:

1. The total output power P1 of the wind turbine system is measured as indicated in Fig.

2.2.

II]

[StartMPPTJ

/Estimate optimum

Icand_maxM/

Calculate input

pwt DFM
1max

Determine A from P1 and
function approximated $ A)
using
P1= Y21tpR5CP(A)LT3/

TR
v=

Detennine C, A °'and QOII
p T)

from C - A characteristic .1
p

on VAOIx

= a,

pmax and pmax
WL T

max
= ½itp R5 C1T3/ (A

)max..flDFM pmax
max

Command the shaft speed t°

maxPerturb and meaanreMPW1

Update C - A characteristi

1
Effici ency

- Wait for timer interrupt

Figure 2.7 Maximum power point tracking based
on estimated wind speed.

41

2. Following the measured power, the optimum control winding current, is

commanded based upon information as stored in the I PT profile similar to as

depicted in Fig. 2.5.

3. The maximum DFM efficiency is estimated at a particular control current

optimized operating point utilizing a stored 1 -vs- L" characteristic of the generator.

4. DFM input power, P, is calculated from the estimated maximum efficiency imax and

measured output power PT as

p=PT
max

(2.1)

5. Based upon information of the shaft speed (from eq. (1.8)) and P (which is same as

power output of the turbine) the wind speed is estimated employing the following

procedure.

The characteristics of the power coefficient of a wind turbine are normally

expressed in terms of the tip-speed-ratio X, which is defined as:

with . v, tip speed of turbine blade, (2.2)
R - turbine rotor radius;

rotational angular velocity;

v wind speed.

In Fig. 1.1 the power coefficient C, is plotted as a function of the tip-speed-ratio,

?. C, depends on the particulars of blade design and can be represented as a

function in X, such as an nth order polynomial:

C,. (2) = C,,0 + + C2A + + C,,, A" (2.3)

42

Power output of the wind turbine is related to the cube of the upstream wind

velocity and can be expressed as

= p c(A.) R2 v3 (2.4)

where p is the specific mass of air; and C (A) is the coefficient of power and as

described by eq. (2.3)

Substituting for the wind speed, v, from eq.(2.2) in eq.(2.4), the power delivered

by the turbine can be expressed in terms of the angular velocity, and the tip-

speed ratio, A, as

1
= JrpC(.t)R5-- (2.5)

Utilizing an iterative method for determination of the roots of a polynomial, such

as Newton-Raphson or bisection method, the roots of the eq. (2.5), A, can be

determined.

Upon further expansion of eq (2.5),

F () = p P R5 + Cpi
-2

+ Cp2X + ... + Cp 0 (2.6)

and

- P R5 [-3C0 -2 C3 C2A2 + +(n-3)
4]

Cp,, J (2.7)2

An iterative method is then used such that

ri-I)
L

(i-1) (2.8)

where

43

IF" (A)l
= I I F° (.) (2.9)

L aA'
I

and the superscripts (i), (i-i) represents the 1h and (j_])th iterations.

Only the root that satisfies the range of ?. as defined by the Cp - curve (Fig. 1.1)

is valid and retained for wind speed estimation. Substituting for X in eq.(2.2), the

wind speed, v, is estimated. Again, utilizing eq.(2.2) with the estimated wind

speed, v, and the optimal tip-speed ratio, the desired angular velocity of the

turbine is determined as

v
c°Pf = (2.10)

R

6. Using eq.(2.5) and substituting Cm and X°' as determined in step 5, the optimal

turbine output power pmaX is estimated.

7. The estimated maximum output power of the electrical generator, PTm, is calculated

using the following equation:

max DFM max
PT maxPwi (2.11)

8. The system is commanded to the desired optimum shaft speed rPt determined from

step 5 above and the total output power PT is measured.

9. The new measured output power is compared to the estimated maximum, PTm, as

determined in step 7 to update or retain the C, - X curve, if required.

44

10. The shaft speed is perturbed within a small speed range and the total output power,

P1. is measured repeatedly to actually determine and confirm the maximum power

point,

11. The estimated p1m is compared to the measured pm
from step 7.A T.meas

12. If they do not compare within a predetermined limit or threshold the optimum power

coefficient, used in step 4, in the C,, curve, is updated. The power coefficient of

the turbine may have changed due to the change in parameters of the turbine over

time caused by e.g. wear and tear. The new optimum C,, can be determined by

employing P' (as determined from (2.11)) in eq.(2.4) and assuming the wind

speed to have remained constant and as determined in step 5. This (step 12) is only a

possible enhancement to the algorithm which has not been implemented in the
laboratory based development system.

13. Efficiency maximization algorithm enabled.

14. The MPPT algorithm is repeated (steps 1-12) upon waiting for a controller interrupt.

Although both the search based and the deterministic MPPT controllers have been

presented in this chapter, only the wind speed estimation based MPPT algorithm was

implemented in the laboratory VSG system. The faster determination of the MPP by the

deterministic method than that of the perturbation method was the contributing factor for

this decision. As seen in Fig. 2.7 and in the algorithm outline in this section, perturbation

of the rotational speed is only needed for fine tuning purposes to adjust for system

parameter changes over time. This is achieved by steps 10-12 above. It should be noted

here, that the MPPT controller as implemented in the laboratory VSG system and as

detailed in Chapter 4 does not provide for the on-line update of the system parameters, a

provision that has been left for future enhancement to the basic MPPT controller.

45

3. Converter Controller Design

The BDFM requires an ac/ac power conversion interface between the grid and its

control winding, which is typically of a reduced rating, but requires four quadrant

operational capability. The converter consists of two energy conversion stages with an

intermediate dc-energy storage. Due to the requirement of its bi-directional capability,

the ac/dc interface requires an active stage unlike in other ac/ac drives where a passive

stage with regenerative resistive braking is adequate.

In conventional electronic ac/ac conversion, electrical energy of a certain form is

stored in an intermediate dc or ac "link" which can be regarded as an energy reservoir,

before it is finally converted to its desired form. In the commonly available version of the

ac/ac converters, as in this development, this is usually a capacitor bank in a voltage

source converter or an inductor in a current source converter for topologies that use a dc-

link. In an ac link a combination of passive devices (capacitors and inductors) with or

without the use of active devices (discrete electronic components like thyristors, IGBTs,

MOSFETs etc.) is used [14]. It is also possible to convert energy from one form to

another form of ac, without the need for intermediate link energy storage. This is

typically done in a direct converter topology [14].

The active input stage of the converter is input current controlled. It is connected to

the electrical grid through a set of grid interface inductors. The magnitudes of the input

currents are determined dynamically by the internal controller from the input/output

power flow of the converter with information obtained from a link energy monitor. The

input currents are controlled to be sinusoidal with a fundamental frequency (information

provided by a phase locked loop) corresponding to that of the grid frequency and the

frequency of excitation of the DFM power winding. Since both the magnitude and the

phase of the input currents of the converter is actively controlled, it is possible to operate

the converter with leading and lagging power factors at the input. This extra demand in

46

the reactive power should be such that the kVA rating of the converter and the voltage

and current ratings of the semiconductor devices and the other components are not

exceeded and is controlled as to not interfere with the active power maximization

described in this thesis.

The output stage is similar to that of a current controlled conventional dc/ac inverter.

Thus, the inverter output currents, i.e. the excitation for the control winding of the

BDFM, can be controlled to be sinusoidal with a certain magnitude and fundamental

frequency as demanded by the system controller.

3.1. Sensor-based rectifier controller

Active front-end rectifiers with reduced input current harmonics and high input power

factor are gaining prominence for almost all utility interfaced applications due to an

increasing concern about power quality and harmonic standards such as IEEE 519 and IEC

555. These guidelines necessitate the use of bulky, expensive filters at the input of a

passive rectifier stage. These filters are optimized for a certain cut-off frequency and

operating or loading condition. This has a negative impact on system dynamic performance

and leads to a poor input power factor. Thus, more and more industrial applications, such

as variable speed generators and regenerative ac drives, now require ac/ac converters

capable of efficient bi-directional power transfer. This has led to the development of

various control strategies for high input power factor, sinusoidal input current rectifiers [28-

31]. Control techniques found in the literature can be classified as: (a) stationary frame, (b)

synchronous frame, (c) space vector control methods. While the stationary frame control

strategies, presented so far, are relatively simpler than their synchronous frame and space

vector counterparts, they have inherent drawbacks ranging from slow dynamic response to

restricted stability regions [28-3 1]. The methods developed in the rotating frame and the

space vector approach can provide for fast dynamic control and stability, but are quite

complicated to implement and require significant computational resources. Often their

47

implementation cannot be justified for industrial applications where such precise control is

not needed.

Thus, the development of a simple control algorithm for the active rectifier is

appropriate. The controller presented here is based on the stationary frame approach and

attempts to address the shortcomings of previous control strategies while retaining the

simplicity of the stationary frame [32]. This simple algorithm provides for controllable

input power factor and excellent spectral performance of the input line current. Moreover,

it has been implemented in a single low-cost fixed-point microprocessor (Intel 80C196KC)

which provides an a/d converter with multiplexed 8-channels.

In section 3.2, a model-based rectifier input current controller is presented which

proposes the elimination of the current sensors from the load conductance based rectifier

to further reduce the cost of the controller [33]. This further reduces the overall cost of the

rectifier without sacrificing the advantages of the original sensor-based version of the

controller. While the proposed controller is more complex than the sensor based version

[32], it can still be accommodated in the same, low-cost fixed-point microprocessor (Intel

80C 196KC).

3.1.1. Sensor-based rectifier control algorithm

The proposed system can be broadly classified into its constituent sub-system

controllers as shown in Fig. 3.1. The DC-bus regulator and the current controller blocks

as implemented are available in traditional stationary frame rectifier controllers,

augmented here by equivalent load conductance calculation [34,35]. The overall system

conceptualization and implementational details are provided in the following sub-
sections.

48

ter

Figure 3.1 Block diagram representation of the sensor-based rectifier controller.

3.1.1.1. DC-bus voltage regulation

For optimal operation and protection of the passive and active components of the

rectifier the energy stored in the link capacitor should be kept relatively constant. Also,

to avoid saturation of input current regulators and maintain sinusoidal input currents, the

dc-bus voltage Vdc, must be maintained such that [36]:

2VdC V (3.1)

where V is the rms line-to-line grid voltage. The dc-bus voltage reference VdC* is thus

set at a minimum, given by eq. (3.1). In practice, Vdc* is set such that:

2T
Vdc* = Vu + VL (3.2)

49

where VL is the voltage drop across an input line inductor under full-load condition. The

link capacitor voltage is measured and averaged over a fixed time window using a low-

pass filter with a gain as shown in Fig. 3.2. The output of this filter is proportional to the

equivalent rectifier conductance G [35] as explained in section 3.1.1.2. Since the

conductance G is proportional to the error of the dc-bus voltage, the rectifier input current

increases until the dc-bus voltage error decreases, which in turn reduces the input current.

Va(t)p IIL H H H 1+
To

Vb(t)_ JTh_____ side

- -
H H,

inveer

11111i
PWM

Variable
Power Factor

I
->

Algorithm

v(t)
1 +ts

VdCK le

Figure 3.2 Sensor-based controller representation.

3.1.1.2. Equivalent load conductance cakulation

The proposed controller is based on an equivalent rectifier conductance calculation

scheme [34,35]. By this method, a representation of the information of the real or active

power, defined as the average rate of energy transfer from source to load [35], is essential

to determine the required rectifier input current.

Under steady state loading conditions, averaging the dc-bus error, Ed(t), given by

Edc (t) = Vdc (t) (3.3)

50

over a time-window using a low-pass filter gives an estimate of the averaged load

conductance, G. The low-pass filter used for conductance calculation uses a gain K (set

to 1 for results obtained here) and a relatively long time or low-pass filter constant, 'r, as

shown in Fig. 3.2. It was observed that while the low-pass filter constant, t, was critical

in smoothing the dc-bus ripple, the filter gain, K, affected the dynamic response time of

the system. Once the load conductance is determined the reference current is generated

by the hysteresis current controller in conjunction with the variable power factor

controller as described in section 3.1.1.3 below.

3.1.1.3. Hysteresis current controller

The instantaneous representation of the active component of the rectifier input current

has the same waveform as the voltage and its amplitude depends on the equivalent

conductance G; thus a convenient way to determine the reference current is as follows:

rei(t) = GVrei(t) (3.4)

where v(t) is determined by the variable power factor controller which utilizes a user

input power factor command and the zero-crossing information of the grid voltages.

The phase current errors of only two phases are directly determined from their

corresponding references and measured current magnitudes. In the three-wire system

investigated, the current error of the third phase, can, of course, be determined from the

two measurements. Details of the switching algorithm are presented in section 3.1.1.4.

By maintaining a sufficiently small hysteresis band for the current comparison, and

ensuring turn-off of all devices that are on before the next comparison, a fixed switching

frequency can be attained. This is, however, only true for full load conditions when

current magnitudes are comparable to the designed quantities. For low current levels the

switching frequency could vary considerably depending upon the loading condition.

51

Adjustment of the finite on or off times of the switches based upon the input current

rms magnitude can provide substantially improved current waveform at low current

levels. Although the controller as implemented could provide for on-line adjustment of

the on-time of the switches the control loop required to update the on-time of the switches

has not been incorporated. This feature could possibly be exploited in future controller

development and enhancement.

3.1.1.4. Switching Algorithm

The switching strategy implemented in the current controller is purely based on the

error between the reference current and the measured current as shown in Fig. 3.3 and as

explained below. If we ensure balanced current reference generation, by ensuring that the

summation of the three phase current references adds up to zero, it can be shown that

where

Lia + Sib + Sic = 0 (3.4)

.ref . (3.5)
Elk = 1k ikm

i, is the measured phase current and k = a or b or c. From eq. (3.4) it is seen that all

three errors cannot have the same sign. Moreover, assuming that the current errors can

only be either finite positive or finite negative, i.e. neglecting zero errors, there are only

four possible error scenarios as depicted in Table 3.1. At any instant of time, only one of

these four error scenarios shown in Table I is prevalent in the rectifier circuit. For a zero

error condition, no switching happens and, hence, this can be neglected for the switching

algorithm development.

PEPR= (+) error, (+) reference
NEPR = (-) error, (+) reference
* = signifies measured current

= sign of error

NENR = (-) error, (-) reference
PENR = (+) error, (-) reference

Q= shows typical error sceneno

Figure 3.3 Possible current errors in each phase of the rectifier.

Table 3.1 Typical current error scenarios

Typical Scenarios Error Combination Mode of operation

Case I NEPR, PEPR, PENR Buck, Short, Short

Case II PEPR, NEPR, NENR Boost, Short, Short

Case III NENR, PEPR, PENR Buck, Short, Short

Case IV PENR, NIEPR, NENR Boost, Short, Short

Depending upon the error scenario, the mode of operation is determined. A phase is

defined to operate in a valid "boost" or "buck" mode if only one of the three lower or

upper devices is selected. By the definition and as shown in Table I, valid "boost" or

"buck" operations are mutually exclusive and only one phase participates in a valid

"boost" or "buck" mode of operation at a time. A "short" is defined to be the operating

53

condition on the phases which do not participate in a valid boost or buck. It is easily seen

that the phases which do not participate in a "buck" or a "boost" operation are shorted via

the line reactors, hence the name. The switching algorithm, shown in a flowchart in Fig.

3.4, effectively achieves the modes of operation as shown in Table I.

Determine

ret, jbrsi, ,et

Measure L 1b

Calculate

£' 5b and e

'<O?> < ret>oçI

Turn-on Turn-on
lower device upper device

Figure 3.4 Switching logic of the rectifier.

3.1.2. Implementation of sensor-based controller

The microprocessor implementation of the rectifier is illustrated in Fig. 3.5. The

sensor-based controller was implemented using an Intel 80C196KC 16-bit embedded

microprocessor, which provides an analog to digital converter with multiplexed 8-input

channels which is used for the various a/d operations required by the controller algorithm.

The high-speed output port, provided by the 80196, is used for interfacing the switching

signals to the IGBT drivers. The high-speed input port is used for phase voltage

measurement and an ordinary input port is used for detection of any fault signals

generated by the drivers, as shown in Fig. 3.5.

54

Figure 3.5 Sensor-based rectifier controller implementation

All of the constituent sub-systems, but for the low-pass filter, have been digitally

implemented in the microprocessor. Each switching iteration, including the dc-link

voltage regulation, presently needs 135 ps providing for a switching frequency of just

under 7 kHz. Further optimization of hardware and software will enable an increase in

the switching frequency.

3.1.3. Experimental evaluation

The proposed rectifier control system discussed above has been developed on an

active inputloutput IGBT converter. Although identical with respect to the rectifier and

inverter controllers this converter was rated at a substantially higher power (35 kVA) than

the one (5.5. kVA) that was utilized for the performance optimization system controller

evaluation as described in Chapters 4 and 5. Figure 3.6 shows the dynamic performance

of the proposed controller when the dc-bus voltage is step-changed from 280 V to 390 V.

55

Although this scenario is not very likely to occur during the normal operation of the

rectifier, it provides for a good opportunity to investigate the dynamic response of the

proposed controller. Both the voltage and the load are step-increased by 40 %. It is seen

that the rectifier attains steady state within 150 ms.

DC-BUS Vo'tage
50 V/div

Rectifier
Input Current

20 Ndiv

lOOms/div 50 ks/s

Figure 3.6 Rectifier controller response to a 40% (280 V- 390V) step
change in commanded dc-bus voltage. DC-bus capacitance = 2400 jiF

The step change in the dc-bus voltage reference results in a big increase in the dc-bus

error, d(t), which results in an increase in the demanded input current reference as seen

in Fig. 3.2. Hence, in Fig. 3.6, at the instant of the step change in the dc-bus voltage

reference, the input current encounters an overshoot. The resulting overshoot in the

current can be attenuated by an proper choice of the low-pass filter gain as explained

section 3.1.1.2. However, the attenuation of the overshoot must be traded-off against the

dynamic response of the rectifier system. The rectifier system used for controller

development employs power switches capable of handling the overshoot current shown in

Fig. 3.6. Thus, to obtain the best response of the rectifier system, the overshoot in the

input current was allowed.

56

Figure 3.7 depicts typical unity power factor operation of the rectifier system with a

load of 10 kW. Leading power factor operation with similar input/output conditions and

dc-bus voltage is shown in Fig. 3.8. Clearly, the rectifier input current waveform has

deteriorated in Fig. 3.8. The excess demand of reactive power (5.77 kVAR), with a dc-

bus voltage similar to that of the unity p.f. case, saturates the current regulator affecting

their capability of maintaining sinusoidal current waveforms.

Current Scale
20 A/div

Voltage Scale
50 V/div

?ctifier Input
ase Current

ectifier Input
ase Voltage

5 ms/div
1 Ms/s

Figure 3.7 Unity power factor operation of the sensor-based rectifier controller.
VdC = 390 V, Vac = 230V, load = 10 kW

Although it may not be a solution for most applications, the saturation problem of the

input current regulators is immediately remedied by increasing the dc-bus voltage as

shown in Fig. 3.9 for similar input/output conditions. For applications where the dc-bus

voltage can not be increased due to voltage stresses on the devices, the demanded reactive

power needs to be reduced if spectral performance is desired. The Fourier spectrum for

this current waveform shows energy density around 7.5 kHz, the switching frequency. It

can also be observed from the spectrum that all of the magnitudes of the major harmonic

components, the 3rd, 5th, 7th, 9th, etc. are all less than 0.5% of the fundamental as shown

in Fig. 3.10.

57

Current Scale
20 A/div

Voltage Scale
50 V/div

5 ms/div

Figure 3.8 Leading 0.85 p.f. operation. VdC = 390 V
Vac23OV,lOad 10kW

Input Phase
Current Waveform

Current Scale
40 A/dIv

Spectrum of
Current waveform

20 dB/div

Input
Phase
Voltage

input
Phase
Current

I Ms/s

Time scale = 5ms/dlv, Frequency scale = 2 kHz/dlv

Figure 3.9 Leading 0.85 p.f. operation. Vd= 450 V, Vac = 230 V, load = 10 kW.

58

Input Phase
Current Waveform

Current Scale
40 A/div

Spectrum of
Current Waveform

20 dB/div

Time scale = 5 ms/div, Frequency scale = 200 Hz

Figure 3.10 Expanded view of the Fourier spectrum
as shown in Fig. 3.9.

3.2. Sensorless rectifier controller

In section 3.1 an input current controller, based on load conductance calculation, was

presented for an active rectifier which uses current sensors for line current feedback. Due

to the availability of the information regarding grid voltages, dc-bus voltage and the

switching configuration of the rectifier circuit, a discrete switched rectifier model can be

constructed for control purposes. The model can then be used to estimate and predict the

input phase currents of the rectifier.

This section investigates the theoretical and practical aspects of the model-based

rectifier controller implementation and proposes the elimination of the current sensors

from the load conductance based rectifier. This further reduces the overall cost of the

rectifier without sacrificing the advantages of the original sensor-based version of the

controller. While the proposed controller is more complex than the sensor based version,

59

it can still be accommodated in the same, low-cost fixed-point microprocessor (Intel

80C 1 96KC).

While the controller has the obvious advantage of removing the current sensors, other

benefits include elimination of sensor offsets, resolution problems, non-simultaneous

sampling of the phase currents associated with single analog-to-digital (A/D) converter

and analog measurement noise problems.

3.2.1. Model-based predictive rectifier controller algorithm

A block diagram of the proposed system is shown in Fig. 3.11. The proposed

sensorless controller is built upon the load conductance based rectifier controller as

described in section 3.1 [32]. Thus, details regarding most of the constituent blocks of

the original sensor-based controller also apply, conceptually though not

implementationally, to this sensorless version of the controller. The rectifiermodel based

input current estimator and predictor will be presented in detail in this section.

Theoretical validation for the sensorless approach will be provided analytically. Finally,

the controller is verified using simulation and laboratory implementation.

Figure 3.11 Sensorless version of the rectifier controller.

3.2.1.1. Model development

Figure 3.12 depicts the lumped circuit representation of the various components of the

rectifier hardware for a particular switching state. For simplicity and ease of model

implementation, all stray effects have been neglected.

The three-phase input line reactors are assumed to be balanced. They are also

assumed to be linear owing to the presence of an air gap in the flux path. A current

regulated inverter stage (DC-AC conversion) which usually follows the link can be

represented by a constant current source during steady state operation. Thus, under

normal circumstances, the dc bus can be assumed to be loaded by a constant current

source.

1a 1

+

VaL

+

Van

Figure 3.12 Lumped circuit representation of a switching
state of the rectifier

The six IGBT-diode combination switches can be classified into the high-side and the

low-side switches, forming a conjugate pair per phase. The simultaneous operation of a

conjugate pair is disallowed to prevent shoot-through faults, leaving only eight

non-destructive switching states. In an effort to develop an observer based current

controller, only six valid switching states or scenarios are permitted by the algorithm.

61

At any instant of time only three of the six switches participate in current conduction.

Participation of all three switches of the same category in a switching state is considered

to be an illegal state for reasons provided in section 3.2.1.2. The two illegal states of the

proposed control algorithm are also known as the zero vector in space vector modulation

strategies [37]. A valid switching state consists of the participation of two switches of the

same category with the third participating switch from the other category. This switch

combination is based upon the possible current errors [5]. It should be noted here that the

current errors in the three phases add up to zero as shown in eq.(3.4).

Each switching state is associated with a complementary state. Two states are defined

to be a complement of each other if all the participating switches of one state are the

conjugate switches of the other state. The discrete pulse modulation (DPM) as

implemented in the current controller provides for a finite on-time and off-time of the

switches before the initiation of the next state by the current controller. At the end of a

valid switching state, during which IGBTs were conducting, its complementary state,

consisting of the diodes of the complementary switches, is active during the off-time of

the previously participating switches. Thus, a model can be developed which

accommodates both on-time and off-time circuit updates.

Assuming negligible conduction drops across the participating switches, the

non-reduced model equations are as shown in eqs.(3.6)-(3.9) for the switching state in

Fig. 3.12. Similarly, equations can be generated for the remaining valid switching states.

d 2 1

dt
Vdc + Van (3.6)

1 1

dt
Vfr + Vbn (37)

1 1

dt
ldc + Vcn

(3.8)

1. 1

dt
1a + IO

3.2.1.2. Control Issues

62

Based upon the following identities for a three phase, three-wire system,

La + lb + ic = 0 (3.10)

Van + Vbn + Vcn = 0 (3.11)

the four equations (3.6-3.9) reduce to two equations, i.e. (3.6) and (3.9) with states a and

Vdc. Knowledge of one of these states provides information about the other. As

implemented in the original sensor-based version, the measurement of the link voltage is

essential for the load conductance calculation. Thus, the current information, a, is

derived from the measurement of the dc- bus voltage, Vdc and eq. (3.6).

Assuming linear line inductors, it is seen that at any instant of time, with any switch

or diode combination allowed by the six valid switching states, the rectifier circuit is an

observable, linear, second order system. Once Vdc is measured, the remaining currents 1b

i are readily obtained using equations (3.7) and (3.10).

Thus, the current sensors can be eliminated while still maintaining active current

waveform shaping. It should be noted that all the conclusions above are only valid for the

six legal switching states. The two non-destructive, illegal switching states (zero states)

lead to the loss of the property of observability as the dc-bus voltage is no longer a part of

the circuit during those switching states.

3.2.1.3. Algorithm Flowchart

The input current estimator uses the grid voltages, dc-bus voltage, switching signals

and the magnetic characteristics of the line inductors to determine the current. The

switching strategy implemented in the current controller is based on the error between the

63

reference current and the estimated current and has been described in detail is section

3.1.1.4.

A simplified flowchart representing the current estimation and control is shown in

Fig. 3.13. Table 3.2 lists the different switching states and the difference equations as

implemented in the controller. The dc-bus voltage regulation and its associated control

loop are shown in Fig. 3.11. Both the dc-bus voltage regulation and input current control

loops have the same bandwidth and are updated every program execution cycle.

Initialize estimated phase current

Calculate input current magnitude

Check for grid voltage zero crossings

Calculate phase current reference

Determine current errors

Turn on low Turn on high
side device side device

Determine switching state

Solve differential equation for phase
currents during switch on-time

Solve differential equation for phase
currents during switch off-time

Estimate and predict phase currents

Wait for interrupt

Figure 3.13 Simplified flowchart of the sensorless
version of the rectifier controller

64

Table 3.2 Possible switching states

#1 #2 #3

I I cly. ,I i

'1i4fl +[1 fl

:f ::f ::f

:: ::

j (n + 1) =
j (n) + I v(n) + n)J i (n + 1) =

i (n) + I v('7) - Vdr(") / j, (n + 1) = i, In) + I v,,,(n) + -- v,j,("/1

itlb (n + I) j (n) + I vn(n) - n/I b (n + I) = lb In) + I Vbn(n) + -)1 - lb (n + I) = lb (n) + I yb,,1) + V(nIl -7
l In + I) = -

I i (n + I) + lb (+ 1)1 ly + ') = - I l (n + 1) + lb In + 1)! In + I) = -
/ I,, In + I) + lb (n + I) I

ct l+

c

i4i l7

lbfl

:4
t

I,, In + 1) = Ia 1" 1 + I van1") - "dr(n)J I,, (n + I) = l, (n) + / y,,,,(a) + L vdv()/ I,, (n + I) = In (n) + I van('7)
- vd,-(n) I7

j, (n + I) In) + I v,,(a) - L v,IrI n) I I (n + I) = lb (n) + I Vbn(fl) - vdv() I lb (fl + 1) lb (n) + I vbn(n) + vth-(n) /7
icIn+I)Iia(n+I) + ib(n+i)J i,(n+!)-/ia(n+J) + ib(n+J)I iv(n+I)=-jla(n+I) + ib(n+i)I

65

3.2.1.4. Simulation

The proposed current controller was simulated assuming a regulated constant dc-bus

voltage and a constant switching frequency. The loading conditions on the dc-bus were

simulated using a constant current source for reasons mentioned in section 3.2.1.1. The

following conditions were imposed on a C-language based computer generated active

rectifier model and controller simulator:

(i) grid voltage = 230 V,

(ii) dc-bus voltage = 380 V,

(iii) switching frequency = 5 kHz

(iv) duty of switches = 90%

(v) switching strategy = DPM

Simulation results are shown in Fig 3.14. As illustrated, the current waveform of Fig.

3.14. shows minimal distortion at the low frequencies compared to a diode-based rectifier

and substantial spectral density at higher frequencies. The spectral energy in the

submultiple hannonics of the switching frequency is due to the discrete pulse

modulation (DPM) strategy in the simulation. Thus, this controller promises to retain the

spectral performance of the original sensor based controller implementation.

60

20

20

-60

40
0.37 0.38 0.39 0.4

Tlm In s.cs.

Frequency Analysis
Rectffie IrpL$ cuirat

o 0.5 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
FrequerEyukHz

Figure 3.14 Time and frequency domain simulation result of rectifier input current
with the proposed model based current controller under unity p.f. condition.

= 5 kHz, V = 230 V and Vd = 380 V.

3.2.1.5. Implementation ofsensorless controller

The microprocessor implementation of the sensorless version of the rectifier

algorithm is similar to that as shown in Fig. 3.5 with no current measurement. The

original current sensor based controller was modified to bring in the current predictor and

estimator and was implemented using an Intel 80C 1 96KC 16-bit embedded

microprocessor.

In this version of the implemented controller, the only measured quantity is the dc-bus

voltage, Vdc. The implementation of the proposed controller assumes balanced three-

phase grid voltages. Thus, the information of the zero-crossings on only one of the phase

voltages is adequate to determine the three phase voltages required by the current

estimator. The zero-crossings of the "A" phase grid voltage are detected using a

zero-crossing detection circuit which incorporates a narrow band-pass filter. The phase

shift of the filter is compensated for in the variable power factor controller. The

zero-crossings enable the formation of a phase locked loop (PLL) for the current

controller, which thus tracks the grid frequency. They also help synthesize the grid phase

voltages needed by the estimator block as shown in Fig. 3.11.

All of the constituent sub-systems, but for the low-pass filter, and the zero-crossing

detection circuit have been digitally implemented in the microprocessor. Each switching

iteration, including the dc-link voltage regulation and input current estimation, presently

requires 200 p.s. yielding a switching frequency of 5 k}{z. Although minimal changes

were required in the hardware to accommodate the sensorless current control strategy,

there was a 25% reduction in the switching speed compared to that of the sensor-based

version due to the increased computational overheads. In the future, most of the expected

modifications associated with this controller implementation will be in the software code

for the microcontroller.

67

3.2.1.6. Experimental evaluation

To prove the efficacy of the model based current controller, the sensorless controller

is compared to the sensor-based version discussed in section 3.1. Quantitative and

comparative analysis are provided for various operational modes as detailed in Table 3.3.

While the implemented version of the algorithm will benefit from software code

optimization, it compares favorably with the sensor-based version in operational stability

and spectral performance. All the results presented here were obtained with the following

conditions:

(i) grid voltage = 230 V line-to-line

(ii) type of load = variable resistive load on the dc-bus in the link

(iii) switching strategy = DPM

(iv) duty ratio of switches = 90%

3.2.1.6.1. Sensor-Based Version

The sensor-based controller current waveform and its spectrum under unity power

tictor condition are shown in Fig. 3.15. The link voltage was maintained at a steady 380

V with I 7.4A load current. This constituted a real power consumption of around 6.5 kW.

ftc details of the spectrum are presented in Table 3.3.

I'\ d

(urcc to

2ttA. do

tttJB do

LIm

Figure 3.15 Experimental waveforms generated by the sensor-based controller.
= 230 V. Vd = 390 V. = 6.67 kHz, load 6.5 kW

68

3.2.1.6.2. Sensorless Version

Figure 3.16 shows unity power factor operation of the proposed model based

controller. The dc-bus was maintained at 380 V and the resistive load on the dc-bus was

equivalent to around 6 kW. The spectrum details are as shown in Table 3.3 and compare

favorably with those of Fig. 3.15, though the model-based controller was implemented

with a 25% slower switching speed than its original version.

C rrc

2)dB/ d

Figure 3.16 Unity power factor operation of the sensorless controller.
Vac = 230 V, Vd = 390 V. f1 = 5 kHz, load 6 kW

With similar loading conditions, Fig. 3.17 shows a 0.85 leading power factor

operation of the active rectifier. It should be noted that the input current magnitude

increases marginally to compensate for the increase in reactive power demanded by the

rectifier. The amount of reactive power that can be delivered by the rectifier is dependent

upon the dc-bus voltage, the voltage drop across the line reactors and the magnitude of

the input current.

\oItag

bOy d

CLI ri-en I

:0 dir

2OdbO din

I 25khz dir Oem dim

Figure 3.17 Leading power factor operation of the sensorless controller.
Vac = 230 V, Vd = 390 V, fstch = 5 kHz, load 6 kW

The robustness of the controller with respect to the measured grid voltages was also

investigated. As indicated in Fig 3.11. the grid voltage magnitudes used in the input

current estimator are constructed from the grid voltage zero-crossing detections in

combination with a nominal voltage magnitude. The controller was tested for error

conditions arising due to discrepancies in the actual and the set grid voltages. Two types

of error conditions, positive and negative errors, were imposed. The grid voltage error is

defined to be the algebraic difference of the actual rms grid voltage and the assumed rms

grid voltage set in the current observer.

Figure 3.18 shows the current waveform due to an imposed 20% negative voltage

error. The grid voltage in the current observer was set at a 230V line-to-line, whereas the

actual grid voltage was maintained at 1 84 V line-to-line. This reduction in the grid

voltage is detected by the dc-bus regulator, which demands more input current to

compensate for the required power flow into the link and the load. Thus, with loading

conditions similar to that of Fig. 3.16, the current magnitude increases as seen in Fig.

3.18. The rectifier can operate with low grid voltages till the current protection, set

according to the devices used in the hardware, gets activated.

70

\ oltane

I GUy 3 it

Curt en

UGh dit

20d 13 dr

I 25kHz! din Sets! div

Figure 3.18 Rectifier operation with an (-)20% grid voltage error.
= 1 84 V, V1 = 390 V, = 5 kHz, load 6 kW

The controller was also tested for the less likely error scenario, a positive grid voltage

error. To evaluate this condition the voltages in the current observer was set at a value

(190 V) lower than that of the actual grid voltage (230 V). This type of grid voltage error

condition provides for smaller ripple in the estimated current than that in the actual input

current, as determined from the equations in Table 3.2. Thus, the current errors are not

corrected for as often as required. Hence, it was noticed that upon further decrease in the

magnitude of the grid voltage used in the current observer, the number of erroneous

switching decisions is increased, finally rendering the controller incapable of active

current waveshaping. Figure 3.19 illustrates the deterioration of the input current with a

positive grid voltage error. It was experimentally observed that the controller tolerated

around 17% of positive voltage errors before becoming unstable.

71

\oI tag e

IOOV div

(u event

20A div

20dB div

2SkHzi div Sins! dv

Figure 3.19 Rectifier operation with an imposed (+)l7% grid voltage error.
V00 230 V, Vd0 = 390 V. tBh = S kHz, load 5.5 kW

The effect of a 21% decrease (under estimation) of the inductance value set in the

model (from 7 mH to 5.5 mH) on the rectifier input current waveform is shown in Fig.

3.20. Incorrect switching selections still occur under this condition. The ripple of the

estimated current is larger than that of the actual current waveform due to the smaller

inductance value chosen, as expected from the equations of Table 3.2. Thus, the current

controller switches more often than necessary to correct for the estimated errors which

makes the actual input current always smaller than the demanded input current

magnitude. The controller will survive a decrease in inductance till the input current limh

gets activated. For the opposite error condition, it was experimentally determined that the

controller can survive a maximum of 25% increase (over estimation) of the inductance of

the line reactors. The effect of any further increase in the inductance value leads to a

similar performance degradation as observed with a positive grid voltage error.

72

\oliaite

I ()O\ d i

(ii I CIII

2) \ di

0d13 dis

I 25kHz dis Siiss. dii

Figure 3.20 Rectifier operation with (-)2 1% line reactor inductance error.
Vac = 230 V, Vd = 390 V, = 5 kHz, load 6 kW

Fig. 3.21 depicts balanced three phase operation of the rectifier with a 0.85 leading power

factor operation and loading conditions similar to that of Fig. 3.17.

(title lit

0.\ dii

dfli.
'1

SI

jT.
i

I

3.. .

/

/ C

.
c/

.

\.

/1

/A1

5 ins. div

Figure 3.21 Three phase current waveforms for 0.85 leading p.f. operations.
Conditions similar to that of Fig. 3. 17.

73

Tahle 3.3 Ccmnariscrn cifcnectral nerfiiriminie

Diode-based Sensor-based Sensorless Sensorless Sensorless
Regular (-) 20% Voltage Error (-) 21% Inductance Error

Vd = 274Vdc VdC = 38OVdc Vd = 38OVdc Vdc = 39OVdc Vdc 38OVdc
Operational Vgrid = 230 Vac Vgrd = 230 Vac Vgrid = 23OVac Vgrid = I 84Vac Vgrd = 23OVac
Conditions load = 13.7 Adc load = 17.4 Adc load = 15.5 Adc load = 15.1 Adc load = 16.0 Adc

tstch = N/A ftch = 6.67kHz fsach = 5.0kHz fch = 5.0kHz = 5.0kHz
Ref. = N/A Ref = Fig. 7 Ref = Fig. 8 Ref. = Fig. 10 Ref. = Fig. 12

5 -18.0dB -36.4 dB -43.2 dB -38.4 dB -41,0dB

7 -23.2dB -44.8 dB -44.8dB -52.7 dB -39.1 dB

II -35.2 dB -41.2 dB -44.2dB -55.4 dB -42.3 dB

13 -35.2 dB -50.8 dB -49.2 dB -50.6 dB -42.5 dB

17 -46.4 dB -50.8 d13 -54.2 dB -46.3 dB -47.1 dB

19 -41.6 dB -49.6 dB -47.2dB -52.9 dB -44.3 dB

Table 3.3 shows a comparative listing of the low-order harmonics of the input current

waveform for the non-current regulated, the sensor based and the model-based current

regulated controllers under similar conditions. The error free model-based current

regulator compares favorably with the sensor-based version although the sensorless

version has a 25% slower switching frequency due to the increase in the computational

intensity of the switched rectifier model. Accuracy of switching decisions increases with

the increase in the input current magnitude due to an enhanced resolution of the current

errors. Thus it is observed in Table 3.3 that the increase in the input current magnitude

for the grid voltage error condition (see Fig. 3.18) results in excellent spectral

performance, compared to even the non-error scenarios.

3.3. Remarks on the rectifier controllers

The sensor-based controller presented here is remarkably simple compared to existing

control strategies for active rectifiers. It provides for a very low component count as most

of the algorithm can be implemented in a single low-cost microprocessor, thus increasing

74

reliability and robustness. The algorithm maintains constant switching frequency at full-

load conditions and provides good control of the spectral performance of the input current

waveforms. The low-pass filter used for the equivalent load conductance calculation

limits the dc-bus voltage dynamic response but helps in averaging the calculated

conductance over the selected time window. Thus the proposed algorithm may be a bit

slower than the more complex and expensive space vector or synchronous frame based

controller, but it is extremely simple and inexpensive to implement.

With no additional hardware, the original sensor based version of the controller was

modified to implemented the model-based or sensorless version of the rectifier controller

utilizing the same microcontroller. The sensor-based version was implemented with the

on-chip A/D which required multiplexing for multiple conversions. Thus simultaneous

sampling of the currents in different phases was rendered impossible with the single A/D.

For an improved sensor-based performance, off-chip multiple A/Ds or off-chip sample

and hold circuitry for all the channels is required. Thus, the model-based current control

scheme not only eliminates the need for current sensors, but also AID converters and the

circuits associated with them. While these are direct cost benefits due to the elimination

of the current sensors and A/D converters, they also reduce the cost of printed circuit

boards due to a significant reduction in size of the boards. Conservation in size reduces

cost in layout and fabrication.

Elimination of the current sensors eradicated the offset problems associated with

them. Noise problems associated with the analog measurements and A/D converters

become non-existent for the current measurements. Thus, it is expected that the

sensorless controller would perform better than the sensor-based controller implemented

with a single A/D while operating at similar switching frequencies.

Although the estimator requires the parameters of the input line reactors as an input,

robustness to parameter variation was demonstrated. Since the active rectifier circuit is a

closed loop system through the dc-bus voltage measurement, it can accommodate a

75

decrease in the inductance value till the controller reaches the maximum input current

limit. It was also shown that the controller can accommodate discrepancies between the

actual and measured grid voltage by monitoring the dc link voltage. The inaccurate

current errors, calculated from the erroneously estimated currents, are compensated

dynamically by the dc-bus voltage regulator. There is, however, an upper limit in the

magnitude of discrepancies that can be fully compensated for, as discussed in section

3.2.1.6.

In view of its simplicity and ease of implementation using a fixed-point

microprocessor the DPM-based switching algorithm was chosen for purposes of this

thesis. However, in a commercial implementation where harmonic distortion at high

power levels could be a serious concern some form of pulse width modulation (PWM) or

space vector modulation (SVM) would be a desirable enhancement to switching

controller [37]. While a PWM implementation would require additional analog circuitry

to determine the turn-off instants of the switches in conduction, the SVM method might

require a floating point microprocessor, for its implementation, capable of providing the

required control bandwidth despite the additional computational overheads.

3.4. Inverter Controller

Many efficient inverter control algorithms are available in the literature, most of them

variations of the fundamental sinusoidal PWTvI strategy. For purposes of simplicity of the

algorithm with respect to its use of computational resources, discrete pulse modulation

strategy as explained in section 3. LI .4 was chosen. The state machine of the controller

executes at a fixed switching frequency, although switching occurs only if the measured

current errors are outside a predetermined band. Typically, the error band is set at a value to

reflect and ignore the noise floor in the circuitry.

The controller of the output stage (inverter) of the ac/ac converter is a subset of the

rectifier controller with respect to its current waveform shaping. Hence, all the principles

7()

of the required switching decisions are similar to that of the rectifier switching algorithm

as described in section 3.1.1.4. It should be noted here, though, that the switching logic

is reverse of that of the rectifier. Thus, positive errors turn-on the upper device and

negative errors turn-on the lower device. A faster switching speed could be attained with

the inverter controller than its rectifier counterparts, since the computational overheads of

the inverter are significantly relaxed than those of either of the rectifier as described in

sections 3.1 and 3.2. Representative waveforms of the inverter are provided in Chapter 5

as part of the report for the overall system performance.

77

4. System Implementation

The model-based optimization controller, as described in Chapter 2, was developed

and implemented in a laboratoiy VSG wind generation model to verify its efficacy. The

laboratory model utilized of a motor-generator test rig consisting of a dc machine and a

BDFM mechanically coupled through a flexible coupling. Shaft speed and torque were

measured via a strain gauge transducer. The measurements were acquired analog through

a multichannel sample/hold circuit and stored digitally in a computer for data processing

through a multichannel A/D circuit. The dc machine was set up as a motor with a torque-

speed profile similar to that of a wind turbine driving the BDFM utilizing speed and

torque measurement signals for closed-loop control. Figure 4.1 illustrates a block

representation of the overall system implementation.

A 115 V, 1500 Watts (at 1800 r/min) BDFM was utilized for the experimental

evaluation of the performance optimization controller. In order to interface the control

winding of the BDFM, a four-quadrant ac/ac power converter was developed. The

sensor-based active rectifier controller, as described in Chapter 3 (section 3.2) was

utilized to control the rectifier stage (converter 2 in Fig. 4.1) of the converter. Over-

voltage and over-current protection for the converter was provided by an inexpensive

Atmel AT205 1 (Intel 8051 compatible) based protection logic. Other dynamic protection

requirements were implemented inside the rectifier controller logic for faster responses.

A Texas Instruments TMS32OC3X digital signal processor based A/D converter

circuit analyzed the total system power. This measured total power was the feedback

variable for closing the system control loop. As described in Chapter 2, maximization of

the total output power was the objective of the performance optimization controller.

T..

DC rn/c

OT%1t

pp

f
converter I

I '..'uuwuut 1 50196Bi-directional
.Wind Turbine

I sense Ibo
'1 microprocessor

acfdc
. Emulator I

- -

A k = a,b,c

T
'k 'k f VkCVk C pControl C

-1
80196

,Jiroprocessor

Power Grid

converter 2
f

iiVdo'

I.
Ii Jbtjct

I IVoltage
sense

80196

microprocessor

b

1i

Current

sensejV J

8051

9 ProtectIonctionShUtdOWfl geC
IC

L__________l zero-crossing

s/h and ND
ccnmunic1tion

ISA-bus

.4444 Icommunication

80486DX-2 I

80386 Performance Optimization I I

TMS32OC3X

1i DSP
Transducerdata acquisition Controller

I I power analyzer

Figure 4.1 Laboratory VSG wind power generation system implementation

Vab

VbC

a

PT

79

The optimization controller was implemented in a high-level computer language (C-

language) in a standard 80486-DX2 desktop computer. The availability of the basic

graphics libraries for developing the user interface for open-loop and closed-loop modes

of operation aided in the decision to utilize the desktop computer. While in the present

implementation the power measurement and the controller are located in separate

processors both can be adequately programmed utilizing the resources of only the digital

signal processor without any negative impact on the control bandwidth.

Proof of performance of the proposed system controller is significantly dependent on

the availability of valid experimental data for various system quantities such as currents,

voltages, power, shaft torque and speed. Hence, a 80386-desktop based data acquisition

system with a 16-channel sample and hold and a multiplexed A/D converter was

employed to gather real-time data both for system training and experimental validation.

Available rms current, voltage and instantaneous power transducers provided the inputs

to the data acquisition system.

4.1. Wind turbine model development

As illustrated in Fig. 4.1 a dc-machine torque controller was developed which could

be adapted to effectively model a wind turbine operating under varying wind speeds. The

wind turbine model controller utilized the torque and speed signals available from the

transducers on the test rig to enable closed loop operation for both torque and speed

control.

The dc machine drive employed for the purpose consists of a thyristorized bi-

directional ac/dc interface. By controlling the phase angle of the thyristor gating signals,

the armature voltage for the dc-machine can be controlled. The drive interface provided

an analog interface for commanding the armature voltage of the dc-machine. Hence, the

wind turbine model controller regularly updates the control variable, the desired analog

armature voltage command, as indicated in Fig. 4.2. While the control loop is updated

80

every 1.5 ms, the actual dynamics of the dc machine are finally dependent upon the time

constants of the inner phase angle controller and those of the machine. Appendix C lists

the software code utilized in the implementation of the torque and speed controllers for

the dc machine.

oniroi moae

Figure 4.2 DC machine based wind-turbine model controller.

4.1.1. Wind turbine emulator

The speed of the VSG system, fç, is set by the BDFM operating in the synchronous

mode. Hence, the mechanical torque input to the electrical generator is set by the wind

turbine which develops an aerodynamic torque by converting kinetic energy in the wind

to mechanical energy at the shaft. The mechanical power delivered to the shaft follows

the C, - X profile of the turbine as shown in Fig. 1.1. The torque-speed (T f1) curve

varies with the wind speed, v, as the net power delivered follows eq.(2.4).

For the system in the laboratory, the design of the BDFM and the mechanical

limitations of the coupling constrained the speed range of operation of the VSG system to

between 1200 to 1800 r/min with a maximum shaft torque of 70 lb-in. Based on these

restrictions and a wind speed of 10 mIs, the power - speed (P fr) curve developed for

the wind turbine is as shown in Fig. 4.3. This power curve was derived from the C

X profile shown in Fig. 4.4, which is similar in shape to that of Fig. 1.1.

z

81

Laboratory Wind Turbine Emulator
Power Speed Profile

1400

1200

800

[600

400

E' 200

0

1100 1200 1300 1400 1500 1600 1700 1800 1900

BDFM speed in r/min

Figure 4.3 Desired mechanical power output of the laboratory wind turbine emulator.

0.5

0.4

.S2 03
ci)
0
0
ci)

0

0

Laboratory Wind Turbine Emulator
Power coefficient

0 5 10 15 20

Tip-speed ratio, X

Figure 4.4 Power coefficient of the laboratory wind turbine emulator.

82

The torque profile for the wind turbine model was derived from the power-speed

curve in Fig. 4.3 utilizing

Pwt= (4.1)
2Jrf

The desired wind turbine torque is plotted in Fig. 4.5. Regression analysis of the torque

as a quadratic polynomial in shaft speed is employed to generate the coefficients for the

curve-fitting. This polynomial function of the shaft speed, as shown in Fig. 4.5, is

utilized as the torque profiler or the torque reference in the wind turbine model controller.

The mechanism is illustrated in Fig 4.2.

IsI

C
60

C

I
a)
C.)

C
a)

a)

20
0I

0 t-
1100

Laboratory Wind Turbine Emulator
Torque -vs- speed

= CTO+CTlfr+CT2f2

CTQ= -1.1543E+03

C,-1 = 1 .5934E+OO

C2 = -5.2035E-04

1300 1500

Shaft speed in r/min

1700 1900

Figure 4.5 Desired torque-speed characteristic of the wind turbine emulator.

Although during normal wind turbine operation the turbine emulator operates in the

torque mode, a speed mode for startup operations is also featured. The speed controller is

described in section 4.1.2. While performance of the system has been adequately

investigated for only one wind speed, the turbine model emulator can be readily adapted

for varying wind speed operation.

83

4.1.2. Speed controller

The turbine model controller is equipped with a speed control mode of operation for

system startup purposes as described in section (?). It has been implemented with a

proportional-integral control law. In the speed mode, the speed reference, fr*, is a user

input. The measured error in the dc-machine speed is utilized for generating an armature

voltage reference, vm, given by

v*0,,(t) = Ke1(t) + KifEir(t)dt (4.2)

implemented digitally as

Varm(fl) = Vann(fll) + KJEfr(fl) + Kp[Efr(n) _efr(n_1)] (4.3)

where K and K1 are the proportional and integral constants, respectively, and Ej, is the

error in the speed of the dc-machine.

4.1.3. Torque controller

This is the normal mode of operation of the turbine emulator. The BDFM sets the

speed of operation for the VSG system. Based upon the measured speed, a torque

reference, T*, is determined utilizing the profiler as depicted in Fig. 4.5. The error in

the dc-machine torque with respect to the commanded torque sets the required armature

voltage reference, V*a, for the dc machine interface. This is achieved by employing a

proportional-integral control law similar to that of the speed controller in Section 4.1.2.

The result of the performance of the torque controller is presented in Fig. 4.6.

84

4.2. BDFM Generator

While this thesis merely utilizes a BDFM as a doubly-fed generator to demonstrate as a

proof of concept the perfonnance optimization controller, it is relevant to discuss the

benefits of a BDFM based VSG system and adjustable speed drive (ASD) as compared to

standard induction machine (TM) drives. While the BDFM fundamentals have been

introduced in Chapter 1, this section will succinctly review the BDFM, its advantages over

other variable speed systems and details of the prototype employed in the experimental

evaluation of the system controller.

4.2.1. Features of a BDFM drive

The high cost of all singly-fed VSG systems and adjustable speed drives (ASDs),

compared to a direct line connected livI, is an impediment to greater market penetration. if

the cost of the power electronic converters needed in ASDs could be reduced substantially,

"payback" times would be reduced, enabling wider applications and increased overall

energy savings. One approach to lower the cost of inverters, by significantly reducing their

rating, is to employ the configuration called the brushless doubly-fed machine (BDFM).

The BDFM is a self-cascaded IM with both the control and power windings on the stator

and a modified cage rotor. When operated "synchronously" in the doubly-fed mode, the

BDFM requires only a fraction of the electrical power to be processed by the power

electronic converter. Thus, the overall cost of the system is brought down to a fraction of

the cost of that of an ordinary cage rotor TM ASD while providing a robust, adjustable speed

drive [26,38-40] with precise speed control.

A single-frame self-cascaded TM, which is capable of operating in both an induction and

synchronous mode, has been actively researched since the concept was first developed by

Hunt [41,42]. The advent of power electronic converters capable of adjustable frequency,

adjustable voltage and bi-directional power flow has made flexible operation of the self-

cascaded machine more feasible. This new VSG or ASD configuration is refened to as a

BDFM.

85

To avoid direct transformer coupling, it is essential that the two windings on the stator

have different pole numbers. Moreover, to avoid unbalanced magnetic pull, the pole

numbers must be separated by more than two. Hence, laboratory prototypes have, so far,

concentrated on the most simple configuration of 6-pole power and 2-pole control windings,

even though various other pole-number combinations are possible. The rotor has a

specialized cage structure with the number of identical sections, or nests, equal to the sum

of the pole pairs of the two stator windings. Due to problems of instability and excessive

losses arising from internal circulating currents, two isolated 3-phase stator windings are

preferred over a single stator winding connection that produces two magnetic fields of

different pole numbers.

4.2.2. Generator design

The 115 V BDFM utilized in the experimental evaluation of the system controller had

been designed for a proof-of concept VSG wind power application [27]. The 6-pole

power winding (Pp = 3) and the 2-pole (Pc = 1) control winding allow for a generator shaft

speed range of 1200 through 2000 r/min. With this configuration, the desired speed range

can be attained with an inverter capable of outputs between 20 Hz and 70 Hz. Also, for

the pole numbers and speed range of operation, the rating of the inverter can be expected

to be less than or equal to 25% [i.e. ,]. Details of the machine design can be found in

[27] but have been provided here in Tables 4.1 and 4.2 for easy reference.

Table 4.1 BDFM generator design specifications [27]

Frame size 182

Rated voltage 115 V

Rated speed 1800 r/min

Rated output power 1500 watts

Design efficiency 77 %

86

Table 4.2 Winding specifications [27]

Double layer

6-pole winding 15 turns/coil

#16AWG

Double layer

2-pole winding 10 turns/coil

#19AWG

Round copper bars
4-pole Rotor cage

#4 AWG

4.2.3. Characterization of the generator

The performance optimization controller, as discussed in Chapter 2, requires detailed

information about the BDFM generated power and its efficiency with respect to the the

varying control winding current. The information of the L P1 profile helps in the

determination of optimum control winding current settings for maximized efficiency of

the BDFM. Concurrently, the efficiency-vs- L characteristic of the BDFM is utilized in

the model-based MPPT algorithm presented in Chapter 2.

The dc-machine operating as a wind turbine model was utilized to characterize the

prototype BDFM. In order to verify the performance of the system controller under

conditions different from those during characterization, the programmed torque-speed

profile for the open-loop tests was different from that used for closed loop experimental

evaluation. Furthermore, the choice of different operating conditions for the open-loop

characterization and the closed-loop evaluation would simulate real-life conditions more

accurately. Also, the controller would then be evaluated for its adaptive capability for

changing operating conditions, namely the wind speed. Figure 4.6 illustrates the

difference in the open-loop characterization and closed loop evaluation turbine torque

(T) vs speed profiles.

87

70

60

.E 50

.E 40

i. 30
0

10

1100

Wind Turbine Torque
Mechanical Input for Open and Closed Loop

M PP

Closed-loop

Open-loop

V _______________

1200 1300 1400 1500 1600 1700 1800 1900

Shaft speed in r/min

Figure 4.6 Measured turbine model torque. Closed-loop operation illustrates the
effectiveness of the optimization controller and turbine convergence at the set MPP.

With the open-loop torque-speed profile in effect, the BDFM was characterized for

the its optimum control winding current for maintaining maximum efficiency operation

(I PT profile) at randomly selected operating points. Hence, with the BDFM

maintained at certain speed and torque conditions as per Fig. 4.6, the control winding

current was adjusted to empirically determine the maximum output power points for

different mechanical input power. The experimental characterization obtained for the

prototype BDFM is shown in Fig. 4.7.

Coincidentally, for most of the mechanical input power range the prototype 1.5 kW

BDFM exhibited maximum efficiency point operation at the lowest possible control

winding excitation. Lower current excitation on the control winding drove the BDFM out

of synchronism and, hence, could not be represented in the figure. This was, however,

not observed for a different 7.5 kW BDFM. Referring to Fig. 2.6, it is seen that the

maximum efficiency points are distinctly different from the lowest possible control

winding current excitation to maintain synchronism.

88

Figure 4.7 is utilized to generate the L PT profile required for the MEPT loop to

maintain maximum efficiency operation of the BDFM. This is done by noting the

optimum operating points in Fig. 4.7 for varying input mechanical power. The I PT

profile, thus obtained, for the prototype BDFM is depicted in Fig. 4.8. The figure also

illustrates the polynomial curve-fit and its coefficients as registered in the MEPT

controller for closed-loop operation.

Total Ueneratecl iower
Parameter - Mechanical Input Power

900

800

700

400

--Pwt=S40watts @ 1360r/min
300 ----Pwt=65owatts@1407r/min

*Pwt = 775 watts @ 1460 r/mn
-Pwt=865 watts @1505 r/min

200 -+--Pwt=975watts@1555r/min
Pwt = 1060 watts @ 1606 r/min

100 Pwt=tl45watts@1657r/min
Pwt = 1275 watts @ 1732 r/min

- Pwt=l365watts @1807 r/min
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

control winding current in Amperes

Figure 4.7 Variation of generated power with varying of control winding current for
different input mechanical power.

The measured maximum efficiency operating points are as shown in Fig. 4.9.

This information is necessary for the wind speed estimation based MPPT algorithm as

discussed in Chapter 2 and implemented in the system controller. Again, as in Fig. 4.8,

the information required to plot Fig. 4.9 was obtained from the test run that was used for

Fig. 4.7.

c,

0.)
I-
0)

< 3

2.5
0)

2

. 1.5

1

0.5
0
U fl

Optimum Control Winding Current Requirements
- P. profile for Maximum Efficiency

= C,o+C,IPT+C,2PT2+CIIPT3

C = -6.6855E-01

C,, = 1 .5596E-02

C,, = -2.5728E-05

C,, = 1 .5889E-08

0 100 200 300 400 500 600 700 800 900

Total power, Pr, in watts

Figure 4.8 Optimum control winding current requirements for maximum efficiency
operation of the prototype BDFM. The curve-fit polynomial,

as shown, is the MEPT controller realization.

60

50
U.

0

45

0
C
0
. 40
w

35

0

Measured BDFM Efficiency
For Optimum Control Winding Excitation

= Co+C,I0Pt+C1(I0Pt)2+C,(I0P)3
t C C C C C C

:::;:;;;;;;P.__e$:::

C,,= 1.4592E+O1

C, = 3.6420E+O1

C2 = -1 .0373E+O1

C, = 9.5382E-01

0.5 1 1.5 2 2.5 3 3.5

Optimum control winding current in Amps.

Figure 4.9 j,ort profile of the prototype BDFM as implemented
in the adaptive MPPT controller

89

90

While higher order polynomials would provide for a closer fit of the experimental

data in both Figs 4.8 and 4.9 the curve-fit polynomials were chosen to be only of the 3rd

order. This was done deliberately due to two real-life concerns. First, the fewer the

number of on-line computations, the faster the controller updates. This also leaves some

control bandwidth to bring in advanced control features such as updates on the

coefficients of the polynomials to reflect the changes in machine parameters over time.

Secondly, the adaptiveness and robustness of the model-based performance controller

could be demonstrated by deliberately utilizing crude model approximations. Here again,

'closer real-life scenarios can be enacted whereby the controller would be called upon to

perform adequately under operating conditions which could be significantly different

from those during model derivation. Notably, the operating conditions may vary due to

different wind speeds, changes in physical parameters of the generator, wear and tear and

different weather conditions.

43. Power converter implementation

The power converter design issues will be briefly described here. The algorithm and

some of the implementation details have already been provided in Chapter 3. The active

rectifier was implemented with the sensor-based version, mainly due to the fact that the

dynamic performance of the sensorless rectifier controller remains to be investigated.

Nonetheless, as mentioned in Chapter 3, there needs to be no hardware modification to

implement the sensorless version of the controller.

4.3.1. Converter components

The converter consists of two stages of conventional hard-switched three-phase

voltage source topology. Both stages were implemented using Insulated Gate Bipolar

Transistors (IGBTs) due to their superior conduction characteristics at high voltages and

switching frequencies as compared to power MOSFETs. In order to provide sufficient

over capacity in the prototype converter system, IXYS IXGH2ON6OU1 modules rated at

91

600 V, 20 A were utilized although this could, potentially, penalize the overall efficiency

of the generation system. However, the lower efficiencies measured still could be utilized

in verification of the proof-of-concept optimization controller.

While Chapter 3 discusses the general control algorithms and their development for

the rectifier and the inverter stages, most of the protection issues will be discussed here.

The schematic representation of the protection strategy in this implementation is

illustrated in Fig. 4.10. Please refer to Appendix A for the implemented software code.

Under-
count

Over-
count

To power winding

Protection UI Driver-level Protection

I 11111 II
j

I Differential mode
Intermediate isolation/ 1 I

I DC-bus voltagednver feedback protection logic
I measurement

Converter System-level Protection

Rectifier Inverter
controller controller

Under- Over-
Voltage Voltage

Figure 4.10 Overall converter protection strategy.

92

4.3.2. Converter protection

Due to the discreteness of the components in this implementation, various levels of

protection were necessary. The protection strategy can be broadly classified into the

following levels:

(1) Protection at the driver boards for short-circuit currents and control under-voltage;

(2) Protection at the converter system level for over-voltage and over-current; and

(3) Protection in the rectifier controller during every switching cycle.

4.3.2.1. Driver level protection

A desaturation protection circuit is implemented on the device driver modules. This

desaturation circuit is based on the principle that the conduction voltage drop or the

saturation voltage across the IGBT collector and emitter (VCE,sat) increases with increased

collector current. The circuit is designed to signal the IGBT driver (1R2 121 for the low-

side and 1R2125 for the high-side) that the threshold VCE,sat, has been hit. The drivers go

into protection mode by reducing the gate voltage drive and withdrawing the IGBTs from

hard saturation. They also provide a feedback signal that can be utilized in cycle-by-cycle

shutdown of the system. In the present implementation, the feedback signals of all the

drivers for each stage are "OR-ed" together, which shuts down that stage till the short-

circuit current is removed. During the time while the IGBTs go out of saturation due to

the short-circuit current protection, the freewheeling diodes are left active and current

waveshaping is sacrificed.

The drivers are themselves protected for a driver power supply failure. The IGBTs

are brought out of saturation by lowering the gate voltages if an error occurs in the driver

control power supply.

93

4.3.2.2. Converter system level protection

A dedicated circuit has been designed to provide over-voltage and over-current

protection. While the over-current protection allows the load to to be serviced and

normal operation to continue for some time, the over-voltage protection is more critical as

the devices are absolutely non-forgiving for over-voltage conditions. Both the error

conditions are serviced by an Atmel AT205 1 (compatible to Intel 8051, with half the

pinout count) microcontroller. The same microcontroller is utilized for turn-on, turn-off

of the system contactors and the in-rush protection resistors.

During conditions of sudden regeneration by the BDFM generator, the rectifier

controller may not respond to the fast changes in the regenerated power which may result

in an over-voltage condition on the dc-bus subjecting the electronic devices to severe

stresses. If the situation is not corrected fast enough, it could escalate beyond device

ratings and destroy the electronic switches. Designed with a hysterisis, the over-voltage

protection turns-ON and OFF a dump IGBT which discharges the dc-bus capacitor for a

predetermined period of time (200 jis) through a braking resistor. This typically reduces

the dc-bus voltage level sufficiently to restore normalcy and allow the rectifier controller

to increase the regenerated power. As a final protection, the protection signals the

rectifier and inverter controllers and opens the contactors if "dumping" ofenergy was not

sufficient to reduce the dc-bus voltage to safer levels.

The over-current is based on the dc current measured directly on the dc-bus. As

mentioned earlier, it allows normal operation to continue for half a minute before

signaling the individual rectifier and inverter controllers to proceed for shutdown.

4.3.2.3. Rectifier code-level protection

The rectifier protects itself from a lack of synchronization with the grid. If it detects

too many irregular grid zero-crossings, it shuts down the switching of the devices. This is

necessary to prevent disastrous oscillations on the dc-bus resulting in a loss of control.

94

The rectifier also provides for both dynamic and steady-state under-voltage on the dc-

bus. An under-voltage condition, when the controlled voltage is lower than that of the

diode-based rectifier, could potentially turn-ON devices when the complementary diodes

are conducting. This is a shoot-through condition, whereby the dc-bus is discharged

through a phase-arm, destroying the circuit. Although redundant, an over-voltage

protection also exists in the rectifier algorithm where it serves to protect the system, in the

unlikely event of the failure of the dump-circuit.

4.4. System controller implementation

Figure 4.11 illustrates the block diagram of the performance optimization controller.

Both the control loops the MPPT and the MEPT as shown in the Fig. 4.11 can be

individually controlled by the user interface. However, the operation of the MPPT loop,

as implemented with the wind speed estimation strategy, requires the operation of the

MEPT loop. Hence, the optimum control winding current, calculation is common to

both the loops.

PT MPPT

Figure 4.11 Block diagram of the performance optimization system controller as
implemented in the laboratory VSG system.

r

The control blocks of the performance optimization controller of Fig. 4.11 has been

implemented in an Intel 80486-DX2 microprocessor based desktop computer, as depicted

95

in Fig. 4.1. The power measurement and analysis was out-sourced to a Texas Instrument

evaluation module consisting of a TMS32OC3X DSP. Although all the developmental

software and the controller could have been designed based on the TMS, the available

graphics libraries for the Intel 80486-DX2 provided a faster developmental turnaround.

In a real-life implementation, where extra adaptation of the basic controller would be

necessary, a DSP (TMS32OC3X) based system would, perhaps, be recommended to

implement the total system controller due to the superior computational resources

available with it.

The controller was developed in ANSI C and compiled using Borland C++ for DOS.

The code development follows the algorithm described in section 2.2.1.2, i.e., the wind

speed estimation based power maximization strategy. The program listings are in
Appendix B.

4.5. Data acquisition

While the data acquisition for the experimentation of the system is not directly

involved with the optimization controller it is an integral part of the validation of the

theory. Hence, the software code developed for the multichannel data acquisition based

on an Omega A/D hardware system has been presented in Appendix D along with the

necessary hardware details.

The graphical user interface (GUI) is the supervisory shell which conducts all file

handling, data acquisition, data collection, data processing, data storage and data display.

Data is sampled on all 16 channels with a sample and hold circuitry and acquired through

a multiplexed A/D through an input port of an Intel 80386 based desktop. Depending on

the type of operation of the system, the number of data samples that need to be averaged

over a moving time-window can be varied. The data acquired for all experimental results

presented in this thesis averaged 2000 samples on each channel over a span of

approximately 2 secs. This was necessary to smooth out effects of small perturbations on

the current and voltage measurements always present in the system. The software code of

the data acquisition is presented in Appendix D.

97

5. System Controller Evaluation

With the laboratory based VSG system implemented as discussed in Chapter 4,

performance of the optimization controller was verified utilizing the wind turbine

emulator. Although performance was verified at a single wind speed, the system

controller responded favorably to conditions which were considerably different from

those used to characterize the generator model and controller parameters. It should also

be noted that the controller estimates the wind speed on-line following the algorithm

outlined in Chapter 2. During the experimental evaluation, the controller estimated the

wind speed to be around 10.8 rn/s. The wind turbine emulator was set to provide an

equivalent wind speed of 10 mIs. The difference in the estimated wind speed and the set

wind speed in the emulator can be attributed to the fact that, as shown in Fig. 5.1, the

wind turbine emulator is not able to closely follow the desired mechanical power input.

Hence, the controller is able to optimize the generated power even for varying wind

conditions.

1400

1200

1000

800

600

0
400

200

0

Performance Optimization
Maximum Power Tracking

I

Measured
I

mechanical power

/ / U:

Optimum

Starting point operating

It,,.
a tal

iP

Desired _______

mechanical power

Measu
generated power

1100 1200 1300 1400 1500 1600 1700 1800 1900

Shaft speed in r/min

Figure 5.1 Closed loop operation of the performance optimization controller.

98

5.1. Output power maximization

Figure 5.1 illustrates the operation of the performance optimization controller in the

power maximization mode of operation. Both the control loops, namely the MEPT and

MPPT loops, were closed at a shaft speed of approximately 1275 r/min. As shown in Fig.

5.1, the controller tracks the maximum power point successfully while maintaining

maximum BDFM efficiency.

Figure 5.2 depicts the efficiency trajectory of the BDFM during the maximum power

point tracking run of Fig. 5.1. It illustrates the validity of the imax 1N model of the

BDFM obtained during the characterization of the generator, as mentioned in Chapter 4.

The model is discussed in detail in section 4.2.3. The curve representing the estimated

BDFM efficiency, as plotted in Fig. 5.2, was calculated off-line by substituting for the

measured data points into the polynomial expression for imax shown in Fig. 4.9.

This, closely reflects the process of on-line estimation of the BDFM efficiency which is

required for the wind speed estimation based MPPT algorithm presented in Chapter 2.

Although only results of a single run are provided here, the controller was verified for

different initial conditions by closing the ioop at various other shaft speeds.

63

61

59

C

U 55
C
4)

o 53

51

49

47

45

1.5

BDFM Efficiency

Measured ..-_______

BDFM efficiency

f, .. ,
. __________

Optimum
@ 1550 c/mm

point -Estimated

BDFM efficiencyStarting)iflt

@ 1275 r/min

1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3

Control winding current in Amps.

Figure 5.2 Maximum efficiency point tracking by the
performance optimization controller.

99

5.2. Efficiency maximization

It is seen that the measured efficiency points follow the estimated efficiency relatively

closely, given the amount of variation in the power measurement at a given operating

point due to the noise pickup of the transducers and A/D resolution problems. The

estimated efficiency has been derived utilizing the polynomial expression in L°', as

shown in Fig. 4.9. The difference in the measured and the estimated efficiencies lies in

the use of power transducers of different resolutions, for the data acquisition system and

the control-loop feedback signal.

The power transducer employed for acquiring measurement data had a poorer

resolution (12 bits = 13.33 kW) than the one utilized for closing the system loop (14 bits

= 8 kW). Hence, the accuracy of the power measured, on-line, for the controller

operation is more accurate than that of the acquired data. Here, it should be noted that it

was the power transducer with the coarser resolution that was employed for conducting

the off-line characterization of the BDFM which may explain some of the deviations

observed. On-line, the power measurements for the control loop operation were more

accurate and hence determined the control winding currents, Fig. 4.8, with a higher

resolution. This allowed the implemented scheme to achieve somewhat different

efficiencies than expected. However, the closed ioop efficiencies were consistently

higher than those estimated at higher input mechanical power, as seen in Fig. 5.2.

The BDFM was characterized for a different mechanical power input profile than the

one utilized for the closed-loop operation. This is discussed in Chapter 4, section 4.2.3

and illustrated in Fig. 4.6. As seen in Fig. 5.3, the input mechanical power for the closed

loop operation is consistently higher, for the shaft speed range of 1300-1550 r/min, than

that for the open-loop characterization mode. Due to the low level of excitation

maintained on the control winding for both the closed-loop and open-loop operations (for

the same speed range), it can be assumed that the losses in the BDFM (core and copper)

are similar. Then a higher input power would result in an higher output power, whereby,

a higher efficiency could be recorded, as seen in Fig. 5.2.

The "optimum" control winding current, as measured during the closed-loop

operation was plotted with respect to the generated power. This is then compared to the

estimated control winding current required for maintaining optimized operation utilizing

the I, P1 profile, obtained during the prototype BDFM characterization, and shown in

Fig. 4.8. The estimation of the optimum J is done by substituting the measured total

power into the polynomial of Fig. 4.8. The comparison of the measured and estimated

control winding currents is illustrated in Fig. 5.4. The difference in the two currents is,

again, due to the use of power transducers of different resolutions, and hence, accuracy as

mentioned before. The estimated current is constructed based on the low-resolution

power transducer which is a part of the data acquisition system. On the other hand, the

control-loop feedback power, which helped determine the measured current, is of a higher

resolution transducer. Still, the two compare favorably as seen in Fig. 5.4.

1400

1200

1000
C

800

600

400

200

1100

Input Mechanical Power

C1osed-j

. Open-loop

1200 1300 1400 1500 1600 1700 1800 1900

Shaft speed in r/min

Figure 5.3 Turbine output power for open and closed loop operation.

3.5

o 3.a.
E

C

E 2.5

U
C)

2

C

1.5
C
0
C.)

101

Closed Loop MEPT Operation

1 I

Estimated

Closed-loop

.
/

/ Optimum point
* Measured @ 1550 r/min

I
I 1 Closed-loop

Starting point
@1275 r/min

I ______________
200 250 300 350 400 450 500 550 600 650 700 750

Total generated power in watts

Figure 5.4 Comparison of the measured and estimated control winding current for
maintain optimum operation. The current has been estimated by substituting

the measured power into the polynomial of Fig. 4.8.

5.3. Power distribution

Figure 5.5 illustrates the distribution of real and apparent power between the two

windings under closed-loop control. The voltage and current transducers were present at

the two stator terminals of the BDFM. While real power into and out of the two stator

windings was directly measured utilizing instantaneous power transducers the apparent

and reactive power were calculated from the available voltage, current and real power

measurements. The ratio of the control winding (apparent, real, reactive) power to the

summation of the control and power winding (apparent, real, reactive) power is then

plotted in Fig. 5.5.

It should be pointed out, that the data acquisition system available leads to some

inconsistencies in measuring the control winding voltages. The output of the inverter

102

stage, although current regulated, generates a pulsed voltage waveform whose density and

width determines the rms voltage quantity. The voltage transducers in the data

acquisition system consistently measured a higher rms voltage. Hence, the calculated

(from the three-phase current and voltage measurements) kVA of the converter and,

consequently, the kVAR is significantly higher than would normally be. However, the

calculated kVA can still be used to determine an upper limit of the converter kVA

requirements as a function of the overall system input power.

60

40

30

110

0

-10

-20

n-xuc1ux rivaux

qiin
@l5SOrJni

Stailing point

@ 1275 r/n

Ika1iad'

nt

ni

200 400 600 800 1000 1200 1400
Pbdic irçut pr n vtts

Figure 5.5 Power flow through the inverter as percentage of total apparent,
real and reactive power.

It is also observed in Fig. 5.5 that the "optimum" control winding excitation setting

provides for either real power flow into or out of the control winding, depending on the

mechanical input power. In the "motoring mode" of operation of the control winding,

real power flows from the grid to the BDFM through the ac/ac converter. At higher input

103

power levels, the control winding enters the regeneration mode of operation. Hence, the

reversal of sign, in Fig. 5.5, in the percentage of real power processed by the converter.

Figure 5.6 depicts the phase currents of the input and output stages of the converter

and the current through the power winding of the BDFM. The low regenerated real

power through the control winding mostly accounts for losses in the converter system,

resulting in very low current magnitudes at the output of the rectifier stage. At low input

current levels on the rectifier, the waveshaping suffers considerably due to the discrete

pulse modulation strategy, as implemented in the rectifier controller, with constant on-

time of the rectifier switches. This condition could be improved by implementing a

pulse-width-modulation based rectifier control strategy, which would most likely be the

case for a real-life implementation.

BDFM Control
winding current

10 A/div

Converter
input current

5 A/div

BDFM Power
winding current

10 A/div

20 ms/div

Figure 5.6 Representative current waveforms of the converter and the BDFM
approximately at the maximum power point
(P 1150 watts, shaft speed = 1525 r/min).

6. Conclusions and Recommendations

A DFM based VSG system controller is presented. The controller operation and its

efficacy was verified in a laboratory based model VSG system utilizing a BDFM for a

wind generation application. Although verified in a wind generation application, the

control philosophy is applicable for other generation strategies where the resource energy

varies significantly. Furthermore, the controller could also be implemented for

minimization of power input to a DFM based ASD system. It is also not just restricted to

maximization or minimization of power but could, possibly, include any other user

defined optimization criteria.

6.1. Salient features of thesis

Since in this implementation a synchronous machine, the BDFM, has been utilized as

the electrical generator, no speed sensors were required to achieve variable speed

operation. Furthermore, all derivations for the required current and frequency commands

of the BDFM are based upon the total output electrical power as the only feedback

quantity. Thus, no torque transducer is needed in the present version of the algorithm.

Elimination of the expensive mechanical speed and torque sensors, typically required for

similar VSG controls, is a beneficial aspect of the controller and has a positive cost

impact on real-life implementation. However, for incorporating dynamic inner loop

controllers, torque and position sensors may be required.

The wind speed estimation based MPPT, as described in Chapter 2, is faster than a

regular search based algorithm [3], with the optimum shaft speed being determined

within a few iterations of the MPPT algorithm. The controller developed was verified to

be robust to operating conditions substantially different from those during its

characterization, as mentioned in Chapter 4. It ensured the use of a power converter rated

at only a fraction of the total system rating throughout its operational range. This is

105

perhaps the single most important reason for the incorporation of a DFM instead of

conventional singly-fed VSG or ASD systems.

Besides the additional capital cost, VSG systems usually suffer from extra losses in

the power conversion process in the power electronic converter which decreases the net

energy capture. Doubly-fed systems, in general, can reduce the power handling

requirement of the converter and hence the losses associated with it. Due to maximizing

the generator efficiency, as implemented in this thesis, throughout all speed ranges, the

energy conversion process from mechanical to electrical is, also, enhanced. Thus, the

benefit of the reduction in the power converter size and, hence, its losses, due to the

incorporation of a doubly-fed machine as the generator, is not given up during the

conversion process in the electromechanical system.

A preliminary cost analysis, on a 100 kW scaled unit, of the BDFM based VSG

system was conducted and compared to a conventional induction machine based wind

generation system [2]. Utilizing an annual wind speed distribution for a tentative wind

power site on the Oregon coast, analysis show substantial increase in energy capture

which directly increases the possible annual revenue. While the laboratory system

proved the implementational feasibility of such a system, the enhanced energy, and

additional revenues thus collected, make this system commercially viable.

In the process of implementing the system controller new strategies for active rectifier

control were developed; one utilizing current sensors, the other eliminating those sensors.

The sensor-based active rectifier controller has been analyzed under steady state and

dynamic loading conditions. Steady state variable power factor operation has been

demonstrated as an extension of the algorithm. It is shown that the ease of
implementation and the simplicity of the controller are features, which outweigh its

relatively slower response to transients compared to the more sophisticated and resource

consuming space vector and rotating frame based controllers. However, in support of the

dynamic performance improvements for the proposed sensor-based rectifier controller, it

106

should be pointed out that further fine-tuning of the filter gain in conjunction with an

increase in the cutoff frequency of the low-pass filter should improve the dynamic

performance of the system. Optimization of the software code along with the hardware

implementation will also enable a further increase in the switching frequency and enhance

waveform shaping capability.

In an effort to further reduce the cost of implementation of the active rectifier

controller, it was realized that a sensorless current controller could be developed which

introduces considerable benefits over a controller with sensors. The most important being

the elimination of hardware current sensors and A/D converters - and the associated cost

reduction. Problems with offsets in sensors and A/Ds are eradicated and problems

introduced by the required multiplexing when using a single AID are eliminated.

6.2. Recommendations for future work

Although the steady state performance of the VSG controller was verified by

developing a laboratory wind turbine-VSG system, dynamic issues such as the tower

passing or tower shadow effects of the wind turbine have not been addressed in this

thesis. Torque pulsation compensation due to those effects of a wind turbine would have

to be accommodated in a faster inner dynamic control ioop. This control ioop would

typically consist of a field oriented control algorithm for the doubly-fed machine [43].

An optimization controller based upon minimization of a quadratic cost function may

also be investigated. The cost function could consist of criteria representing response

time of the system, penalty for exceeding the torque requirements in trying to achieve fast

response times, penalty for being far away from the maximum power point, etc. While

the proposed controller directly mimics the DFM from characterization and acceptance

testing data, the challenges for the cost function minimization approach would be in the

construction of a valid quadratic penalty function. Moreover, issues related to

107

convergence and uniqueness of the solution of the minimization problem for possible

operating conditions would have to be investigated.

A four quadrant ac/ac converter is typically fabricated using power stages with

identical power ratings. While the inverter stage needs to source the reactive power

requirements of an electric machine, the rectifier under unity power factor operates at

only a fraction of the total available kVA. The remaining kVA rating of the rectifier

could then be utilized for power factor correction or reactive power control, at the point

of common coupling to the grid, for the overall generating system. This controller would

probably need to be an outer ioop control providing power factor update for the rectifier.

It should be mentioned that the present rectifier controller is already equipped to accept

power factor update commands from a higher level controller. On similar grounds, the

extra kVA in the rectifier could also be utilized for active filtering operations. These

peripheral controls should be incorporated without sacrificing the requirements of the

performance optimization controller for the chosen optimization criterion.

In a real-life implementation, an outer adaptive control loop would be required to

update the parameters of the controller to reflect the changes in the physical parameters of

the system. While the rotor time constant changes with temperature, permanent

mechanical changes of the system may occur due to the wear and tear of the gears.

Finally, inclement climatic conditions such as ice, snow and dirt could also result in the

changes in the wind turbine performance. Thus, updating the model over time would,

ensure enhanced system performance by mimicking the physical system more closely and,

hence, accurately. Implementation of the adaptive parameter update ioop could comprise

of neural networks, fuzzy logic or recursive identification methods.

In summary, future work for the present controller should address the performance of

the controller under real-life dynamic conditions, i.e. torque pulsations due to the tower

shadow effect, protection, system starting and stopping issues, tolerance towards wind

108

gusts, etc. Finally, operation under grid unbalance and voltage variations, an unfortunate

possibility in remote wind power generation installations, should also be investigated.

109

Bibliography

1. R. Spée and S. Bhowmik, "Wind Turbines", Encyclopedia of Electrical Engineering,
John Wiley & Sons, 1997.

2. R. Spée, S. Bhowmik and J.H.R. Enslin, "Novel control strategies for variable-speed
doubly fed wind power generation systems", Renewable Energy, 6: 907-9 15, 1995.

J.H.R. Enslin and J.D. Van Wyk, "A study of a wind power converter with micro-
computer based maximal power control utilising an over-synchronous electronic
Scherbius cascade", Renewable Energy, 2: 55 1-562, 1992.

4. L.L. Freris, "Wind energy conversion systems", Prentice Hall International (UK)
Ltd., 1990.

5. V. Nelson, W. Pinkerton and R.N. Clark, "Power variation with pitch setting for a
horizontal axis wind turbine", Wind Engineering, 9: 88-94, 1985.

6. E. Spooner and A.C. Williamson, "Direct coupled, permanent magnet generators for
wind turbine applications" lEE Proceedings of Electrical Power Application, 143:1-
8, 1996.

7. L. Dessaint, H.L. Nakra and D. Mukhedkar, "Propagation and elimination of torque
ripple in a wind energy conversion system", IEEE Transactions on Energy
Conversion, 1:104-112, 1986.

8. H.L. Nakra and B. Dubé, "Power recovery induction generators for large vertical axis
wind turbines", IEEE Trans. Energy Conversion, 3: 733-737, 1988.

9. R.D. Richardson and W.L. Erdman, Variable speed wind turbine. U.S. Patent No.
5,083,039, 1992.

10. L. Xu and Y.Tang, "A novel wind-power generating system using field orientation
controlled doubly-excited brushless reluctance machine", Proceedings of IEEE
Industry Applications Society Annual Meeting, 408-413, 1992.

11. R. Li, R. Spée, A.K. Wallace and G.C. Alexander, "Synchronous drive performance
of brushless doubly-fed motors", IEEE Transactions on Industry Applications, 30:
963-970, 1992.

12. D.A. Torrey, "Variable-reluctance generators in wind-energy systems", Proceedings
of IEEE Power Electronics Specialist Conference, 56 1-567, 1993.

110

13. B. Sarlioglu, Y. Zhao and T.A. Lipo, "A novel doubly-salient single phase permanent
magnet generator", Proceedings of IEEE Industry Applications Society Annual
Meeting, 9-15, 1994.

14. S. Bhowmik and R. Spée, "A guide to the application-oriented selection of ac/ac
converter topologies", IEEE Transactions on Power Electronics, 8:156-163, 1993.

15. N. Bianchi and A Lorenzoni, "Permanent Magnet Generators for wind power
industry: an overall comparison with traditional generators", Proceedings of
International Conference on Opportunities and Advances in International Power
Generation, 49-54, 1996.

16. Y. Shimizu and S. Matsumara, "Rotation speed control of HAWT by tip vane", JSME
International Journal, Series B:Fluids and Thermal Engineering, 37: 363-368,
1994.

17. G. Catto and A.C. Williamson, "Direct coupled wind turbine stabilizing using
controlled stator oscillations", Proceedings of the 29th Universities Power
Engineering Conference 1: 282-285, 1994.

18. E.N Hinrichsen, "Control for variable pitch and turbine generators", IEEE
Transactions on Power Apparatus and Systems PAS-103: 886-892, 1984.

19. A.F. Boehringer, "Struktur und Regelung von Energieversorgungssystemen in
Satelliten", Etz Archiv, 92(2): 114-119, 1971.

20. P. Novak, T. Ekelund, I. Jovik and B. Schmidtbauer, "Modeling and control of
variable speed wind-turbine drive-system dynamics", IEEE Control Systems
Magazine, 15: 28-38 1995.

21. Y. Tang and L. Xu, "A flexible active and reactive power control strategy for a
variable speed constant frequency generating system", IEEE Transactions on Power
Electronics 10: 472-478, 1995.

22. H.K. Lauw, "Brushless Doubly-Fed Generator Control System," U.S. Patent No.
5,028,804, 1991.

23. M.T. Iqbal, A.H. Cooknick and L.L. Freris, "Dynamic control options for variable
speed wind turbines", Wind Engineering, 18: 1-11, 1994.

24. D. Zhou and R. Spée, Field oriented control development for brushless doubly-fed
machines, IEEE lAS Conference Records, 1: 304-310, 1996.

25. Cavallo, "High capacity factor wind turbine transmission systems", ASME SED Wind
Energy, 15:87-94, 1994.

111

26. S. Bhowmik, R. Spée, A.K. Wallace and C. Brune, "Comparison testing ofequivalent
induction motor and brushless doubly-fed motor adjustable speed drives"
International Conference on Electrical Machines, Paris 1994.

27. C. Brune, R. Speé and A.K. Wallace, "Experimental Evaluation of a Variable-Speed
Doubly-Fed Wind-Power Generation System," IEEE lAS Annual Meeting Conf, pp.
480-487, 1993.

28. A. Busse and J. Holtz, "Multiloop Control of A Unity Power Factor Fast Switching
AC to DC Converter", Conf Rec. IEEE PESC 1982, pp. 1 71-1 79.

29. J.W. Dixon and B.T. Ooi, "Indirect Control of a Unity-Power Factor Sinusoidal
Current Boost Type Three-Phase Rectifier", IEEE Trans. on md. Elec., Vol. 35, No.
4, pp. 508-5 15, Nov. 1988.

30. Rusong Wu, S.B. Dewan and G.R. Slemon, "A PWM AC to DC Converter with
Fixed Switching Frequency", IEEE Power Electronics Specialist Conference, pp.
706-711, 1989.

31. N.R. Zargari and G. Joos, "Performance Investigation of a Current-Controlled
Voltage-Regulated PWM Rectifier in Rotating and Stationary Frames", IEEE Annual
Conf of the Industrial Electronics Society 1993, pp. 1193-1197.

32. S. Bhowmik, R. Spée, G.C. Alexander and J.H.R. Enslin, "New simplified control
algorithm for synchronous rectifiers", IEEE JECON 1995, pp. 494-499.

33. S. Bhowmik, A. van Zyl, R. Spée and J.H.R. Enslin, "Sensorless Current Control for
Active Rectifiers", IEEE Trans. on lAS, May/June. 1997.

34. 5. Fryze, "Wirk-, Blind-, und Scheinleistung in Elektrischen Stromkreisen mit
nichtsinusoidalformigen Varlauf von Strom und Spannung", ETZ Vol. 53, No. 25,
1932, pp. 596-699, 625-627, 700-702.

35. J.H.R. Enslin and J.D. Van Wyk, "A New Control Philosophy for Power Electronic
Converters as Fictitious Power Compensators", IEEE Trans on PE, Vol. 5, No. 1, pp.
88-97, Jan. 1990.

36. N. Mohan, T.M. Undeland and W.P. Robbins, Power Electronics: Converters,
Applications and Design, John Wiley & Sons, 1989, pp. 425-426.

37. H.V.d.Broeck, H. Skundelny and G.V.Stanke, "Analysis and Realization of a
Pulsewidth Modulator Based on Voltage Space Vectors", IEEE Trans. lAS, vol. IA-
24, No.1, 1988.

38. A.K. Wallace, R. Spée and H.K. Lauw, "The Potential of Brushless Doubly-Fed
Machines for Adjustable Speed Drives", Proceedings IEEE lAS Pulp & Paper
Industry Conference, Seattle, June 1990, pp. 45-50.

112

39. A.K. Wallace, R. Spëe and G.C. Alexander, "The Brushless Doubly-Fed Motor as a
Limited-Speed-Range Pump Drive", Proceedings IEEE ISlE, Budapest, June 1993, pp.
33-37.

40. A.K. Wallace, R. Spée and G.C. Alexander, "Adjustable Speed Drive and Variable
Speed Generation Systems with Reduced Power Converter Requirements", ibid., pp.
503-508.

41. L.J. Hunt, "A New Type of Induction Motor", Journal lEE (London), Vol. 39, pp. 648-
667, 1907.

42. F. Creedy, "Some Developments in Multispeed Cascade Induction Motors", Journal
lEE (London), Vol. 59, 1921, pp.511-532.

43. D. Thou, "Dynamic Control for Brushless Doubly-Fed Machine", Ph.D. dissertation,
Oregon State University 1996.

113

Appendices

114

Appendix A. Converter Controller Source Code

The control algorithms for the inverter and the rectifier have been discussed in detail

in Chapter 3. As mentioned in Chapter 4 both the inverter and the rectifier stages are

controlled by individual Intel 80C196KC microcontrollers. This appendix lists the

software code for the rectifier programs. As mentioned in Chapter 3, the inverter code is

only a subset of the rectifier code and can be easily contrived from the rectifier code

listings presented here. Moreover, this saves space and reduces redundancy.

Additionally, the assembly listings of the converter protection logic (utilizing an Atmel

2051) is also provided here.

A. 1 Rectifier code

Startup assembly code:

*1

Active rectifier controller
Copyright 1997 Oregon State University, Corvallis OR

*1

Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

*1

1.19.96
communication thru serial port
by Shiba Bhowmik

4.20.95
total modification made to assembly switching module
by Shiba Bhowmik

9.03.94
major modifications made to existing code

by Shibashis Bhowmik
11.15.93
adapted to ASM-96 by Shibashis Bhowmik

from Brian Wiley's module

startup MODULE main

sp equ 18h:word

This REG segment is needed so that code does not conflict
with evaluation board RISM

115

Startup assembly code (continued):

RSEG at 30h
DSB 9

PORTS 3 & 4

DSEGat1FFEh
DSW 1

CSEG at 2000h
hard coded interrupts

DCW OFHFh ;interrupt 0
DCW 01-1-FFh ;interrupt 1, AID conversion complete
DCW 0H+1-h ;interrupt 2
DCW OFFFFh ;interrupt 3
DCW 0l-PPFh ;interrupt 4
DCW 07000h ;interrupt 5, HSO software timer
DCW OFFFFP ;interrupt 6
DCW 01-FF1-h ;interrupt 7

Comment out the following segment when using the RISM-based eva! board
But needed for the user programed EPROMs

CSEG at 2018h
DCB 1100111 lB ;configuration byte

CSEG at 2080h

EXTRN main

LD sp,#lOOh

change "_memoryRemap' to "_main" in the following command line
when using the RISM-based eval board

BR _memoryRemap

Only when using user programed EPROMs
Just do something @ lDOOh - 1DFFh to remap memory on the eva! boards

CSEG at. lDOOh

EXTRN _main

_memoryRemap:

NOP
BR _main

END

116

C-language source code:

main.c

/**/

1* *1

Active rectifier controller *1

1* Copyright 1997 Oregon State University, Corvallis OR *1

1* *1
/* Controller developed by Shibashis Bhowmik *1
/* Software coded by Shibashis Bhowmik *1

1* *1
I**/

#include "proto.h"

void _main()

extern register unsigned char commandChar;

AtoD_initO;
serial_initO;
initCurrentO;

/* take care that this routine never
returns to startup.c

*1

while(l)
commandChar = getCharO;

if ((commandChar == 'E') II (commandChar =
putChar(1O); putChar(13);

beginO;

begin.c

117

/**/

1* *1

/* Active rectifier controller *1
/* Copyright 1997 Oregon State University, Corvallis OR
1* *1

1* Controller developed by Shibashis Bhowmik *1
1* Software coded by Shibashis Bhowmik *1
1* *1

I**I

#include "proto.h"
#include "80196.h"
#include "globaih"

/* added on Jan 25, 1995 */
extern register signed mt saveRemA, oldlndx, oldVdcError, vdcError;
/*************************/

/* added on Feb 17, 1995 about hvRefConst *1
extern register signed mt hvRef, saveRemlmag;
/***************,*********/

extern register unsigned mt incOflndx, currentLag, cycleFreq, halfCycleFreq;
extern register unsigned mt oldHsiTime, newHsiTime, rernA;
extern register unsigned mt countForAPeriod, halfCountForAPeriod;
extern register unsigned mt cycleTime, waitForNext, onTime;
extern register signed mt Imag, oldlmag, maxlmag, Jam, Ibm, 1cm, Ia, Tb, Ic;
extem register unsigned mt Ki, Kp, vdcConst, vdc, vdcDiode, errorBand;
extern register unsigned char commandChar;
extern register unsigned char i, stop, cycleCount;
extern register unsigned char vChar[3];

1* extern void changeCurrent(void);
*1

void begin(void)

mt sTempVar;
unsigned mt uTempVar;

hso_initO;
hsilnit()

IOPORT1 =0;
IOPORT2 &= Ox3F; /*turns on HSO buffer, 244 */
Tam = Ibm = 1cm = 0;
Ia = lb = Ic = 0;
stop = 0;

118

begin.c (continued)

/**
The code realting to the variable "programCount" added on Jan 31, 1995
This is believed to help me see what happens after each program loop
execution. Could possibly give me a better feel for the voltage regu-
lator, currents and actual voltages.

countForAPeriod = 16667;
halfCountForAPeriod = countForAPeriod/2;

oldHsiTime = 0; /* -16667 */
newHsilime =0;
oldlndx = 0;
incOflndx = 0;
saveRemA = 0;
remA = 0;
saveRemlmag = 0;

/* added on Jan 25, 1995 */
oldVdcError = 0;

1* vdcError = 0;
*1
/*************************/

Imag = 0; /* corresponds to 2 A */

1* Fastest cycleTime = 141 us, ie. waitForNext = 47
*1

cycleTime = 150; /* remember 110 us for just doing calculations */
cycleFreq = 6667;
halfCycleFreq = cycleFreq/2;
waitForNext = 50;
onTime = 80;
currentLag = (10 * 25)13; /* 10 degrees of lag was 200 Brian 7/3/97 */

/* initialize variables for dc bus voltage regulator loop
*1

1* * * * ** * * * * * * * * * * ** * * * * * * * * ** ** * * * * ** * * * * * * * * * * *1

Ki=0
Kp =0;
cycleCount = 0; /* variable added on 2/05/97 for soft start *1

119

begin.c (continued)

/**
Protection from steady bucking
2/03/97

1* Measure the diode rectifier dc-bus voltage */
AtoD_start(HV_MONITOR);
vdcDiode = AtoD_read() - 6; /* to account for inaccuracies in measurements *1

WSR= 15;
TIMER_i =0;
WSR=0;

/* Do not let the dc-bus reference to be lower than that of the
diode-based rectifier voltage */

IOPORT1 = 0;
hvRef= (386) * 2;
while (hvRef < vdcDiode)

if (IOPORT1 == OxOO)
IOPORTI = OxOl;

else
IOPORT1 <<= 1;

while(TIMER_1)

I**/

vdcConst = 60;
errorBand = 0;
oldlmag = 0;
maximag = 50 ; 1* - 10 A */

initCurrent()
*1

/**/

WSR =15;
TIMER_i = 0;
WSR =0;

timer2lnitO
setUpSwftlnitO;
setUpEmgncDownO;

WSR =15;
HSI_TIME = 0;
WSR =0;

pps]

begin.c (continued)

hsi000;

while (!HSI_TIME)

1* reset timerl which will be used as the HSI clock source *1

WSR =15;
TIMER_i =0;
HSI_TIME =0;
WSR =0;
TIMER_2 = OxFFFD;

I**

second variale intialization incorporated from by A. van Zyl
necessitated due to noise problems as observed on SPOT

** * ** * * * * * * * * * * ** * * * * * * * * * * *** ** * * * * * * * ** * * * * * * * * * * * * * * ** * * * * * * * * * * *1

while(!stop)
commandChar = getCharO;

if ((commandChar == n) II (commandChar == 'N'))
putChar(10); putChar(13);

stop= 1;

stop = 0;

asm el;

while(!stop)

/***
For soft start purposes 2/05/97

* * * * * * ** * * * * ** * * * * * * * * * * * * * ** * * * * ** * * * * * * * * * * ** * * * * * * * * ** * ** * * * * * * * *1

if (cycleCount < STEPCYCLE)
++cycleCount;

else
cycleCount = 0;

if(Ki < KiMAX)
Ki += 2;

if (Kp < KpMAX)
Kp += 100;

begin.c (continued)

121

/**/

if (spchkO)
commandChar = getBufO;

switch(commandChar)

case 'A': case 'a':
putChar(I 0);putChar(13); putChar('A');
slempVar = Imag;

if(sTempVar <0)
sTemp Var = -sTempVar;

putChar('-');

else
putChar('+');

vChar[0] = ((sTempVar * 30/19) / 100) + '0;
putChar(vChar[0]);
vChar[l] = (((sTempVar * 30/19) % 100)/10) + '0';
putChar(vChar[1]); putChar('.');
vChar[2] = (((sTempVar * 30/ 19) % 100) % 10) + 0';
putChar(vChar[21);putChar(1 O);putChar(13);
break;

case 'D': case'd'
asm di;
hsoAlICIearO;
IOPORT1 = 0x80;
stop= 1;
putChar(l0);putChar(13);
break;

case 'I': case i
for (i=0; i<3; i+)

vChar[i] = getChar() - 0';
Ki = (vChar[0]*l00 + vChar[lJ*l0 + vChar[2]);
putChar(1 0);putChar(13);
break;

case 'L': case '1
for (i=0; i<3; i++)

vChar[i] = getChar() '0';
currentLag = (vChar[0J*100 + vChar[l}*l0 +

vChar[2])*25 / 3;
putChar(l0);putChar(13);
break;

begin.c (continued)

122

/ can specify a maximum of 40 Amps
to remain within the overflow limitations */

case 'M': case 'm'
for (i=0; i<3; i++)

vChar[i] = getChar() - '0';
uTempVar = (vChar[0J*100 + vChar[1]*10 + vChar[2]) * 19 / 30;
putChar(1 0);putChar(13);
if (ulempVar < PEAK_CURR)
maxlmag = (uTempVar*19)/30;
break;

case '0': case '0':

for (i=0; k3; i++)
vChar[i] = getChar() - '0';

uTempVar = (vChar[0]* 100 + vChar[1]*10 + vChar[2});
putChar(1 0);putChar(13);
if (uTempVar < (cycleTime - MIN_OFFTIME))
onTime = uTempVar;
break;

case 'F: case p':
for (i=0; i<3; i++)

vChar[i} = getChar() '0';
Kp = (vChar[0]*100 + vChar[1]*10 + vChar[2]);
putChar(1 0);putChar(13);
break;

case 'V': case 'v':
for (i=0; i<3; i++)

vChar[i] = getChar() '0';
uTempVar = (vChar[0J*100 + vChar[1]*10 + vChar[2])* 2;
putChar(10);putChar(13);
if (uTemp Var < vdcDiode)

putChar('B');putChar(u);putChar('s');putChar(' ');
putChar('r');putChar('e');putChar('f);
putChar(');putChar('t');putChar('o');
putChar('o');putChar(');putChar('l');
putChar('o');putChar('w');putChar('!);
putChar(1 0);putChar(13);

else
hvRef = uTempVar;

break;

123

begin.c (continued)

case 'F': case
putChar(1O);putChar(I 3);putChar('F');
sTemp Var = vdcError/2;
if(sTemp Var < 0)

sTempVar = -sTempVar;
putChar('-');

else
putChar('+');

vChar[0J = (sTempVar/100)+'O';
putChar(vChar[0]);
vChar[l] = ((slempVar%100)/l0)+'O';
putChar(vChar[1]);
vChar[2] = ((sTempVar%100)%10)+'O';
putChar(vChar[2]);putChar(I O);putChar(13);
break;

hsiStopo;

vdc_iref.c:

I**/
1* *1
/* Active rectifier controller *1
/* Copyright 1997 Oregon State University, Corvallis OR
1* *1
/* Controller developed by Shibashis Bhowmik *1
/* Software coded by Shibashis Bhowmik *1
1* *1
I**/

#include "proto.h"
#include "global.h"
#include "80196.h"

#define AVERAGE 128
#define TIME_OUT 10

extern register signed mt TaO, IbO, vdcO;
extern register unsigned mt cycleTime, waitForNext;

vdc_iref.c (continued):

void initCurrent (void)

inti;

TaO = 0;

IbO=0;
vdcO=O;

for (i=0; i<AVERAGE; ++i)

AtoD_start(I_MONITOR_A);
laO += AtoD_readO-5 12;
AtoD_start(I_MONITOR_B);
IbO += AtoD_readO-5 12;
AtoD_start(HV_MONITOR);
vdc0 += AtoD_readO;

laO = TaO/AVERAGE;
IbO = IbO/AVERAGE;
vdcO = vdcO/AVERAGE;

vdcO=O;

void timer2lnit (void)

unsigned char ioc;

WSR = 1;
10C3 = T2_INTERNAL;

WSR= 15;
bc = I0C2;
ioc &= T2_FAST_ENABLE;
ioc &= T2_DOWN_ENABLE;
WSR=O;
10C2 = ioc;

void setUpEmgncDown (void)

1*

*1

INT_MASK1 1= EXTINTI_MASK;

asmdi;

124

125

vdc_iref.c (continued):

void setUpSwftlnit(void)

unsigned mt hsoTime;
WSR=O;
INT_MASK 1= SWT_MASK;
asm di;
HSO_COMMAND = HSO_TIMER_RESET I HSO_TIMER HSO_CAM_LOCK;
HSO_TIME = cycleTime;
HSO_COMMAND = HSO_TIMER_O I HSO_INTERRUPT I HSO_TIMER \

HSO_CAM_LOCK;
hsoTime = 0;
HSO_TIME = hsoTime;

hso.c:

/**I
1* *1
/ Active rectifier controller *1
/* Copyright 1997 Oregon State University, Corvallis OR *1
1* *1
1* Controller developed by Shibashis Bhowmik *1

1* Software coded by Shibashis Bhowmik *1
/ HSO.0 module adapted from Brian Wiley's code *1
1* *1
/**/

#include "proto.h"
#include "80196.h'

void hso_init()

char ioc;
mt I;

/* enable all high speed outputs
*1

WSR= 15;
ioc = IOC1;
WSR=0;
bc 1= (HSO_4_ENABLE HSO_5_ENABLE);
IOC1 = ioc;

1* enable cam locks and clear
*1

WSR= 15;
ioc = 10C2;
WSR=0;
ioc 1= HSO_CAM_CLEAR;

126

hso.c (continued):

ioc 1= HSO_LOCK_ENABLE;
10C2 = ioc;

1* hso set Turn on.
*1

void hso_set(channel)
mt channel;

WSR =0;
while(JOSO & HSO_HOLDING_FULL);
HSO_COMMAND = channel I HSO_SET;
HSO_TIME = TIMER_i +5;

void hso_clear(channel)
mt channel;

WSR =0;
while(IOSO & HSO_HOLDING_FIJLL)

HSO_COMMAND = channel;
HSO_TIME = TIMER_I +5;

void hsoAllClear()

WSR =0;
while(IOSO & HSQHOLDING_FULL)

HSO_COMMAND = HSOALL;
HSO_TIME = TIMER_i +5;

void hsoCamClear()

char ioc;

WSR= 15;

ioc = 10C2;
WSR=0;
ioc 1= HSO_CAM_CLEAR;
ioc 1= HSO_LOCK_ENABLE;
10C2 = ioc;

127

hso.c (continued):

void hsowill_set(channel, t)
mt channel;
unsigned mt t;

WSR =0;
HSO_COMMAND = channel I HSO SET;
HSO_TIME =

void hsowill_clear(channel, t)
mt channel;
unsigned mt t;

WSR =0;
HSO_COMMAND = channel;
HSO_TIME = t;

void hso_wait(pin)
mt pin;

unsigned mt bit;

bit= 1 <<pin;

while (!(IOSO & bit))

void hso_will_AD(channel, t)
unsigned mt channel;
unsigned mt t;

WSR =0;
AD_COMMAND = channel;
HSO_COMMAND = HSO_AD;
I-ISO_TIME =

128

hsi.c:

/**/

1* *1

Active rectifier controller *1
/* Copyright 1997 Oregon State University, Corvallis OR *1

1* *1

1* Controller developed by Shibashis Bhowmik *1

1* Software coded by Shibashis Bhowmik *1

1* *1
1* * * * * * * * * * * * * * * * ** * * * * * * * ** * * * * ** * * * * * * * ** * * * * ** * * * * ** ** * * * * * * * * * * * * * * * *1

#include "proto.h'
#include "80196.h"

1* hsi initialization
Configure special function registers for high speed inputs

*1

void hsilnit(void)

WSR =0;
HSI_MODE = HSIO_STATUS;

void hsiGo(void)

WSR =0;
IOCO 1= HSIO_ENABLE; 1* I HSII_ENABLE; *1

void hsiStop(void)

WSR =0;
IOCO &= -HSIO ENABLE;

129

serial.c:

/**/

1* *1

/* Active rectifier controller *1
/* Copyright 1997 Oregon State University, Corvallis OR *1
1* *1
1* Controller developed by Shibashis Bhowmik *1
1* Software coded by Shibashis Bhowmik *1
1* SERIAL.0 module originally developed by Brian Wiley */
1* *1

/**/
#include "proto.h"
#include '801 96.h"
#include "global.h"

/* serial mit
initialization

*1

void senal_init()

char iocl;

WSR=0;

/* baud rate = (crystal frequency/(64*(B+1))
load rate sequentially, low byte first
most significant bit determines source

*1

BAUD_RATE = BAUD_LOW;
BAUD RATE = BAUD_HIGH I BAUD_XTAL1;

/ clear 9th data bit
enable the receiver
disable parity
set mode 1 (standard asynchronous)

*1

SP_CON = SP_REN + SP_MODE_1;

/* enable the TXD pin
*1

WSR= 15;
iocl =IOC1;
WSR=0;
IOC1 = iocl I TXD_ENABLE;

130

serial.c (continued):

1* spchk Check serial port for received character.
*1

char spchk()

WSR=0;
return(SP_STAT & SP_RI);

1* getBuf get serial port contents after checking for received char
*1

unsigned char getBuf()

WSR = 0;
return(SBtJF);

1* getchar Get a character from the serial port.
Polled operation to start with.

*1

unsigned char getChar()

/ wait until character received
*1

WSR=0;
while(!(SP_STAT & SP_RI));
return(SBIJF);

1* putchar Put a character to the serial port.

*1

void putChar(c)
unsigned char c;

1* mt x;
*1
/ wait until buffer emtpy
*1

while(!(SP_STAT & SP_TXE))

SBUF=c;
1*

for (x=0; x<200; ++x)

return(c);
*1

131

support.c:

/**/

1*

1* Active rectifier controller *1
/* Copyright 1997 Oregon State University, Corvallis OR
1* *1
/* Controller developed by Shibashis Bhowmik *1

1* Software coded by Shibashis Bhowmik *1
1* SUPPORT.0 module originally developed by Brian Wiley
1* *1
1* * * * * * * ** * * * * * * * ** * * * * * * * * * * ** ** * * *1

#include "proto.h"
#include "801 96.h"
#include "ctype.h"

1* delays
delay by number of timer I clocks (us)

*1

void delays(n)
unsigned mt n;

unsigned mt now;
unsigned mt end;

now = TIMER_i;
end = now+n;

if (end<now)
/ wait for rollover first *1
while(TIMER_l > end)

while(TIMER_l <end)

1* delayl
delay by number of 1000 * timer 1 clocks (ms)

*1

void delayl(n)
unsigned mt n;

while (n--)
delays(1000);

132

atod.c:

/**/
1* *1

1* Active rectifier controller *1

1* Copyright 1997 Oregon State University, Corvallis OR *1

1* *1

1* Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

1* ATOD.0 module originally developed by Brian Wiley *1

1* *1
/**I
#include "proto.h'
#include "80196.h"
#include "global.h"

#define AVERAGE 100

void AtoD_init()

char ioc;
mt i;

/* read options *1
WSR= 15;
ioc = IOC2;
WSR=0;

/* clear bits */
ioc &= -AD_TIME_ENABLE;
ioc 1= AD_NOT_PRESCALE;
IOC2 = ioc;

1* A to D start initiate conversion
*1

void AtoD_start (channel)
mt channel;

WSR = 0
AD_C0AND = channel AD_GO;

atod.c:

133

/* A to D read Wait for conversion to finish before reading.
*1

unsigned mt AtoD_read()

unsigned mt result;

WSR=O;
while(AD_LOW & AD_BUSY)

result = AD_LOW;
result += AD_HIGH*256;
result >>= 6;

return(result);

134

global.c:

1* *1

1* Active rectifier controller
1* Copyright 1997 Oregon State University, Corvallis OR *1

1* *1

1* Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

1* *1
/** * * * * * * * * * * * * * * ** * * * * * ** * * *** *** * * * *** *** * * *1

#include "ctype.h"

const signed mt sin [J =

2605, -26769,
0, 2673, . -26809,
68, 2741, . . -26848,
137, 2810, - . -26887,
205, 2878, -26926,
274, 2946, . -26965,
343, 3015, . . -27004,
411, 3083, - -27043,
480, 3151, -27082,
548, 3220, - -27120,
617, 3288, 3000 - -27159,
686, 3356, entries -27197,
754, 3425, (depending -27235,
823, 3493, onlengthof 27274,
892, 3561, . sinetable) -27312,
960, 3629, - -27349,
1029, 3697, . . -27387,
1097, 3766, -27425,
1166, 3834, . - - -27462,
1234, 3902, - -27500,
1303, 3970, - . -27537,
1372, 4038, -27574,
1440, 4106, . -27611,
1509, 4174, -27648,
1577, 4242, - -27685,
1646, 4310, -26204, -27721,
1714, 4378, -26245, -27758,
1783, 4446, . -26286, -27794,
1851, 4514, - -26327, -27831,
1920, 4582, -26367, -27867,
1988, 4650, . -26408, -27903,
2057, 4718, -26449, -27939,
2125, 4786, . -26489, -27974,
2194, 4854, . -26530, -28010,
2262, 4922, -26570, -28046,
2331, 4990, . -26610, -28081,
2399, 5058, . - -26650, -28116
2468, 5125, -26690, }

2536, 5193, . -26729,

135

80196 assembly code listings:

hystbipl.a96:

* ** *1

*1

Active rectifier controller *1

Copyright 1997 Oregon State University, Corvallis OR *1

*1

Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

*1

hysti MODULE STACKSIZE(8)

$ INCLUDE (80196 INC)
$ INCLUDE (MEMORY.INC)
$ INCLUDE (DEFINE.INC)
$ INCLUDE (SYSTEM.INC)

this module is the HSO software timer interrupt service routine

PUBLIC changeCurrent

CSEG at 7000h

changeCurrent:
PUS HF

go to horizontal window 0 (default window)
LDB WSR, 0

determine which HSO software timer caused the interrupt
SIB IOSI, templOS 1

jump to code for software timer 0
JBS tempIOSl, SWTFO_BIT, swftO

POPF
RET

swft0:

start a/d conversion for dc bus voltage
LDB AD_COMMAND, #HV_MONITOR

XORB IOPORI!, #0000000lb

measrGridFreq:

measure grid frequency

r.i

hystbipl.a96 (continued):

for testing purposes comment these lines,
but, absolutely essential for actual code implementation

ST HSI_TIME, newlisiTime

CMP newHsiTime, oldHsiTime
JNE mayBe

LiMP getVdcAd

mayBe:

SUB temp, newHsiTime, oldHsiTime

just to check the voltage regulator

LDtemp,#16667

CMP temp. #lowCount
JC checkHighBound
LDB IOPORT1,#0000iiOOb
LJMP getVdcAd

LDB HSO_COMMAND, #HSOALL CLEAR
ADI) HSO_TIME, TIMER_i, #Await
LDB stop, #1
POPF
DI
RET

checkHighBound:
CMP temp, #highCount
JNC newTimePeriod

LIMP getVdcAd

LDB IOPORT1,#iOil0000b
LDB HSO_COMMAND, #HSOALL_CLEAR
ADD HSO_TIME, TIMER_i, #Await
LDB stop, #1
POPF
DI

137

hystbipl.a96 (continued):

newTimePenod:

RET

XORB IOPORT1, #000l0000b

ST temp, countForAPeriod
ST newHsiTime, oldHsilime
ST countForAPeriod, halfCountForAPeriod
SHR halfCountForAPeriod, #1
CLR saveRemA

calculate for phase A
multiply time for an iteration by the length of the sine table

LD switchTime+2, 0;
LD switchTime, #lenOfSinTabl
MULU switchTime, cycleTime

divide the product by the time period of the sine waveform to be generated
DIVU switchTime, countForAPeriod;

store the quotient of the division for future use
ST switchTime, incOflndx

store the remainder of the integer division for future use
ST switchTime+2, remA

SUB oldlndx, currentLag, incOflndx

prepare to obtain A/D results

getVdcAd:
JBS AD_LOW, AD_STATUS_BIT, getVdcAd

adVdcdone:
ST AD_LOW, temp
SHR temp, #6
SUB vdc, temp, vdc0

to test dc-bus regulator

ST vdcConst, vdc

,,,,,,,,,,,,,,,,,,,, , , ,,,,,,, , , ,,, , ,, ,,,,, , ,, , ,, ,,,,,,,,, ,,,, ,,,,, , ,, ,,

Overvoltage and undervoltage protection 2/10/97

hystbipLa96 (continued):

Sets PORT1.7-4 high for overvoltage faults
Sets PORT! .3-0 high for undervoltage faults

Direct over-voltage protection 2/09/97

CMP vdc, #MAXHV
JNC chkVdcDiode
LDB IOPORTI,#llll0000b
LDB HSO_COMMAND, #HSOALL_CLEAR
ADD HSO_TIME, TIMER_i, #Await
LDB stop, #1
POPF
DI
RET

Direct under-voltage protection (2/09/97) to prevent bucking
below the doide rectifer dc-bus voltage

chkVdcDiode:
CMP vdc, vdcDiode
JC startADforA
LDB IOPORT1,#l000illOb
LDB HSO_COMMAND, #HSOALL_CLEAR
ADD HSO_TIME, TIMER_i, #Await
LDB stop, #1
POPF
DI
RET

start aid conversion for Phase A
startADforA:

LDB AD_COMMAND, #I_MONITOR...A

XORB IOPORT1, #000000lOb

SUB vdcError, hvRef, vdc
ST vdcError, temp

JBC temp.15, pstvHvErr
NEG temp

pstvHvErr:

138

139

hystbipl.a96 (continued):

CMP temp, errorBand
JC outOfBounds
ST 0, vdcError
SJMP smaller

Code implemented on Mar 29, 1995.
Equation:

Imag(n+1) = Imag(n) + (Ki116) * deltaT * vdcError(n+1)

+ (Kp/1024) * [vdcError(n+l) - vdcError(n)]

deltaT = llcycleFreq ; if updated every program execution loop, implemented

code modified on 2/13/97 to limit products of multiplications

outOfBounds:

SUB temp. vdcError, oldVdcError
MUL switchTime, temp, Kp

put limit on the product, modified 2/13/97
ST switchTime+2, temp
JBS temp.15, negVar
CMP temp. 0
JH limitPosProduct
CMP switchTime, #7ffth
JNC productOk
LD switchTime, #7ffth
SJMP productOk

IimitPosProduct:
LD switchTime, #7fffh
SJMP productOk

neg Var:

CMP temp, #Offfth
JLT limitNegProduct
CMP switchTime, #8001h
JC productOk
LD switchlime, #8001h
SJMP productOk

IimitNegProduct:
LD switchTime, #8001h

productOk:

hystbipl.a96 (continued):

negRemimag:

remlmagOk:

MUL switchTime, cycleFreq

MUL las, oldlmag, cycleFreq
SHLL las, #10

MUL Ibs, Ki, vdcError
SHLL Ibs, #6

CLRC
ADD switchTime, las
ADDC switchTime+2, Ias+2
CLRC
ADD switchTime, lbs
ADDC switchTime-i-2, Ibs+2
SHRAL switchTime, #10
DIV switchTime, cycleFreq
ST switchTime, Imag

ADD saveRemlmag, switchTime+2
ST saveRemlmag, temp
JBS temp.15, negRemlmag
CMP temp. halfCycleFreq
JNH remimagOk
INC Imag
SUB saveRemlmag, cycleFreq
SJMP remlmagOk

NEG temp
CMP temp, halfCycleFreq
JNH remimagOk
DEC Imag
ADD saveRemlmag, cycleFreq

put a safety current limiter
NEG maxlmag
CMP Imag, maxlmag
JGE bigger

bigger:

ST maxlmag, Imag
NEG maximag
LiMP smaller

NEG maxlmag
CMP Imag, maxlmag
JLE smaller
ST maxlmag, Imag

140

141

hystbipl.a96 (continued):

smaller:
ST Imag, oldlmag
ST vdcError, old VdcError

AID for A phase must have been done by now,
so prepare to obtain A/D results

getAad:
JBS AD_LOW, AD_STATUS_BIT, getAad

adAdone:
ST AD_LOW, lam

do not waste time, start B-phase conversion immediately
start a/d conversion for Phase B

LDB AD_COMMAND, #1_MONITOR_B

XORB IOPORTI,#00000lOOb

calculate commanded current value for next phase
currentCommandA:

set Phase A sine table index
ADD newlndx, oldlndx, incOflndx

wrap around index values if more than maximum index of sine table
ADD saveRemA, remA
CMP saveRemA, halfCountForAPeriod
JLT remAok
INC newlndx
SUB saveRemA, countForAPeriod

remAok:
ST newlndx, index

CMP index, #maxlndxForSinTabl
JNH indexAOK

;calculate (index modulo #lenOfSinTabl)
CLR switchTime+2
LD switchTime, index
DIVU switchTime, #lenOfSinTabl
LD index, switchTime+2

indexAOK:
ST index, oldlndx

multiply index by 2 to account for word storage in table
SHL index, #1

142

hystbipl.a96 (continued):

multiply magnitude of sine wave reference by appropriate sine table entry
MUL las, Imag, sin[index]

multiply magnitude of sine wave reference by appropriate sine table entry
MUL Ibs, Imag, sin 120[index]

multiply by 2 to compensate for signed multiply (A-phase)
by another 2 for 2 turns thru' current transducers

SHLL las, #NUM_TURNS

round off
JC phaseANegative

only necessary for positive numbers
CLRC
ADD las, #8000h
ADDC Ias+2, 0

phaseANegative:
LD Ia, Ias2

multiply by 2 to compensate for signed multiply (B-phase)
by another 2 for 2 turns thru' current transducers

SHLL Ibs, #NIJM_TTJRNS

round off
JC phaseBNegative

only necessary for positive numbers
CLRC
ADD Ibs, #8000h
ADDC Ibs+2, 0

phaseBNegative:
LD Ib, lbs+2

now that all references have been calculated,
work on A-phase current error

SHR lam, #6
SUB lam, #512
SUB lam, laO

let's assign new meanings to the variable Ia
Ia (word) will contain the magnitude of the error of the A phase current

143

hystbipl.a96 (continued):

switch A-leg accordingly
compareA:

SUB errA, Ia, lam
ST errA, Ia
JBC Ia.15, getBad

error is negative, so generate the absolute value
NEG Ia

prepare to obtain A/D results for B phase
getBad:

JBS AD_LOW, AD_STATUS_BIT, getBad

adBdone:
ST AD_LOW, Ibm
SHR Ibm, #6
SUB Ibm, #512
SUB Ibm, IbO

lets assign new meanings to the variables Ibs, lb and Ibm
lbs (word) will contain the error of the B phase current
lb (word) will contain the magnitude of the error of the B phase current

switch B-leg accordingly
compareB:

SUB errB, Ib, Ibm
ST errB, lb
JBC Ib.15, switchC

error is negative, so generate the absolute value
NEG lb

A and B phases have been switched
so now switch phase C
IrefC = -(IrefA +IrefB)
errC will contain the error in the current waveform for Phase C
errC = -(errA + errB)

switchC:

ADD Ics+2, Ias+2, Ibs+2
SUB Ics+2, 0, Ics+2
ADD errC, errA, errB
SUB errC, 0, errC

144

hystbipLa96 (continued):

switch C-leg accordingly
compareC:

ST errC, Ic
JBC Ic.15, normalA

error is negative, so generate the absolute value
NEG Ic

normalA:
XORBIOPORTI,#0000l000b

CMP Ia, #1_HYSTERESIS
JNH normalB

JBS errA.15, checkForNegRefA

positive error, current A too low

checkForPosRefA:
JBS Ias.31, normaiB

overA:
JBS IOSO, HSO_HOLDTNG_BIT, overA

LDB HSO_COMMAND, #A_LOW_SET
ADD temp, TIMER_i, #Await
ST temp, HSO_TTME

SJMP normaiB

negative error, current A too high

checkForNegRefA:
JBC Ias.31, normalB

underA:
JBS IOSO, HSO_HOLDTNG_BIT, underA

LDB HSO_COMMAND, #A_HIGH_SET
ADD temp. TIMER_i, #Await
ST temp, HSO_TIME

normalB:
CMP Tb, #1_HYSTERESIS
JNH normalC

JBS errB.15, checkForNegRefB

145

hystbipl.a96 (continued):

positive error, current B too low

checkForPosRefB:
JBS Ibs.31, normaiC

overB:
JBS IOSO, HSO_HOLDING_BIT, overB

LDB HSO_COMMAND, #B_LOW_SET
ADD temp, TIMER_i, #Bwait
ST temp, HSQTIME

SJMP normaiC

negative error, current B too high

checkForNegRefB:
JBC Ibs.31, normaiC

underB:
JBS IOSO, HSQHOLDING_BIT, underB

LDB HSO_COMMAND, #B_HIGH_SET
ADD temp, TIMER_i, #Bwait
ST temp, HSO_TIME

normaiC:
CMP Ic, #1_HYSTERESIS
JNH shutOffAll

JBS errC.i5, checkRefForNegC

positive error, current C too low

checkRefForPosC:
JBS Ics.31, shutOffAll

overC:
JBS IOSO, HSO_HOLDING_BIT, overC

LDB HSO_COMMAND, #C_LOW_SET
ADD HSO_TIME, TIMER_i, #sync

SJMP shutOffAll

negative error, current C too high

checkRefForNegC:
JBC Ics.3i, shutOffAll

underC:
JBS IOSO, HSO_HOLDING_BIT, underC

146

hystbipl.a96 (continued):

LDB HSO_COMMAND, #C_HIGH_SET
ADD HSO_TIME, TIMER_i, #sync

Turn-off all devices done simultaneously. Modified 3/02/97 SB

shutOffAil:
JBS IOSO, HSO_HOLDING_BIT, shutOffAll

LDB HSO_COMMAND, #HSOALL_CLEAR
ADD HSO_TIME, TIMER_i, onTime

goBack:
POPF
RET

END

reset.a96:

* * * * * * * ** ** ** * * * * ** * *

Active rectifier controller *1

Copyright 1997 Oregon State University, Corvallis OR
*1

Controller developed by Shibashis Bhowmik */

Software coded by Shibashis Bhowmik *1

*1

reSet MODULE STACKSIZE(0)
this module is for emergency shutdown
$INCLUDE (80i96.INC)
$INCLUDE (DEFINE.INC)

;EXTRN lenOfSinTabl: NULL
;EXTRN phaseShift: NULL
PUBLIC rest
;RSEG
CSEG at 6800h

rest:
RST

RET

END

147

Header files for C-programs:

80196.h:

I**I
1*

1* Active rectifier controller
/* Copyright 1997 Oregon State University, Corvallis OR *1

1*

1* Controller developed by Shibashis Bhowmik *1

1* Software coded by Shibashis Bhowmik *1
1* 80196.H header originally developed by Brian Wiley
/* *1
/**/
1* 80196.h

special function registers of the 80196
*1

#ifndef _80 196
#define _80 196

/* Window Select Register
*1

#define WSR (* (unsigned char *)(Ox 14))

/* Software and Hardware protection
*1

#define WATCHDOG (*(unsigned char *)(OxOA))

1* 110 Status Registers
*1

#define IOSO (* (unsigned char *)(Ox 15))
#define HSO_O_STATE OxOl
#define HSO_1_STATE 0x02
#define HSO_2_STATE 0x04
#define HSO_3_STATE OxO8
#define HSO_4_STATE OxlO
#define HSO_5_STATE 0x20
#define HSO_CAM_FULL Ox40
#define HSO_HOLDING_FLJLL Ox80
1*

#define HSO_O_OFF Ox3E
#define HSO_1_OFF Ox3D
#define HSO_2_OFF Ox3B
#define HSO_3OFF 0x37
#define HSO_4OFF Ox2F
#define HSO_5_OFF OxIF
*1

#define IOSI (* (unsigned char *)(0x16))
#define HSI_FIFO_FULL 0x40

148

80196.h (continued):

#define HSI_READY

#define 10S2
#define HSO_O_EVENT
#define HSO_ 1_EVENT
#define HSO_2_E VENT
#define HSO_3_EVENT
#define HSO_4_EVENT
#define HSO_5_EVENT
#define HSO_T2_EVENT
#define HSO_AD_EVENT

1* 110 Control Registers
*1

#define IOCO
1* note: bit 1 always I on reads
*1

#define HSI ENABLE
#define SOFT_T2_RESET
#define HSI 1_ENABLE
#define EXT_T2_RESET
#define HSI2_ENABLE
#define HSIO_RESET_SRC
#define HSI3_ENABLE
#define HSI1_CLK_SRC
/**/

#define IOC1
#define PWMO_ENABLE
#define T2_OVFL_INT
#define HSO_4_ENABLE
#define TXD_ENABLE
#define HSO_5_ENABLE
/**/

#define 10C2
/ note: bit 7 always 1 on reads

0x80

(* (unsigned char *)(0x17))
OxO 1

0x02
0x04
0x08
Ox 10

Ox2O

0x40
0x80

(* (unsigned char *)(0x15))

OxO 1

OxO2
0x04

0x08
Ox 10

0x20
0x40

0x80

(* (unsigned char *)(Ox 16))
OxO 1

0x08
Ox 10

Ox20
Ox4O

(* (unsigned char *)(OxOB))

*1

#define T2_FAST_ENABLE OxOl
#define T2_DOWN_ENABLE 0x02
#define SLOW_PWM 0x04
#define AD_TIME_ENABLE 0x08
#define ADNOT_PRESCALE OxlO
#define T2_MIDCNT_INT 0x20
#define HSO_LOCK_ENABLE Ox40
#define HSO_CAMCLEAR Ox8O
#define HSOALL OxOC
/**/

#define BAUD_RATE (* (unsigned char *)(OxOE))
#define BAUD_XTAL1 Ox80

80196.h (continued):

#define 10C3 (* (unsigned char *)(OxOC))
/ note: bits 4-7 reserved, always write as ones
*1

#define T2_INTERNAL
#define T2_CLOCK_DISABLE
#define PWM 1_SELECT
#define PWM2_SELECT
#define 10C3_RESERVED

#define BAUD_RATE
#define BAUD_XTAL1

/* Serial Port Registers
*1

/ status
*1

#define SP_STAT
#define SP_TXE
#define SP_TI
#define SP_RI
1* control
*1

#define SP_CON
#define SP_MODE_O
#define SP_MODE_1
#define SP_MODE_2
#define SP_MODE_3
#define SP_PEN
#define SP_REN
#define SP_TB8
/* buffers

OxO 1

0x02
0x04
0x08

OxFO

(* (unsigned char *)(OxOE))
0x80

(* (unsigned char *)(Oxi 1))
0x08

0x20
0x40

(* (unsigned char *)(Oxi 1))
OxOO

OxOl
0x02
0x03

0x04
0x08
Ox 10

same address for reads and writes
*1

#define SBUF (* (unsigned char *)(0x07))

/* Timer 1 Register
note: must be written in window 15

*1

#define TIMER_i

/* Timer 2 Register
*1

#define TIIMER_2

/* High Speed Output Registers
*1

#define HSO_TIME
#define I-ISO_COMMAND
#define HSO_TIMER_O
#define HSO_TIMER_1

(* (unsigned mt *)(OxOA))

(* (unsigned mt *)(OxOC))

(* (unsigned mt *) (0x04))
(* (unsigned char *)(0x06))

0x08
0x09

149

80196.h (continued):

#define HSO_TIMER_2 OxOA
#define HSO_TIMER_3 OxOB

#define HSO_TIMER_RESET OxOE
#define HSO_AD OxOF
#define HSO_INTERRUPT OxlO
#define HSO_SET 0x20
#define HSO_CLEAR OxOO

#define HSO_TIMER 0x40 / 1=timer 2, 0=timer 1 *1
#define HSO_CAM_LOCK 0x80

1* High Speed Input Registers
*1

#define HSI_MODE (* (unsigned char *)(0x03))
#define HSI_POSITIVE OxOl
#define HSI_NEGATIVE 0x02
#define HSI_TIME (* (unsigned mt *)(0x04))
#define HSI_STATUS (* (unsigned char *)(0x06))

1* positive transitions *1

#define HSIO_STATUS OxO 1

1* negative transitions /

1* #define HSIO_STATUS 0x02 *1

/* A to D converter
*1

#define AD_COMMAND (* (unsigned char *)(0x02))
#define AD_GO 0x08
#define AD_S_BITS OxlO
1* */

#define AD_LOW (* (unsigned char *)(0x02))
#define AD_BUSY 0x08
#define AD_HIGH (* (unsigned char *)(0x03))
#define AD_BITS OxFFCO
#define AD_SEL 0x02

/* Peripheral Transaction Server
*1

#define PTSSEL

1* 110 port 1
quasi-bidirectional

*1

#define IOPORT1

(* (unsigned mt *)(0x04))

(* (unsigned char *)(OxOF))

150

80196.h (continued):

1* 110 port 2
shared with special functions

*1

#define IOPORT2
#define HV_ENABLE

1* interrupt control
*1

#define INT_MASK
#define INT_PEND
#define AD_PEND

#define TIMER MASK
#define AD_MASK
#define HSIDAT_MASK
#define HSO_MASK
#define HSIO_MASK
#define SWT_MASK
#define SER_MASK
#define EXTINT_MASK

#define INT_MASK1
#define INT_PEND 1
#define TI_MASK
#define RI_MASK
#define HSI4_MASK
#define T2CAP_MASK
#define T2OVF_MASK
#define EXTINT 1_MASK
#define FIFO_MASK
#define NMI_MASK

#endif

(* (unsigned char *)(Ox 10))
0x020

(* (unsigned char *)(0x08))
(* (unsigned char *)(0x09))
0x02

OxO 1

0x02
0x04

0x08
Ox 10

0x20
0x40

0x80

(* (unsigned char *)(Ox 13))
(* (unsigned char *)(Ox 12))

OxO I

0x02
0x04

0x08
Ox 10

0x20
0x40
Ox80

151

152

global.h:

I**/
1* *1

1* Active rectifier controller *1

1* Copyright 1997 Oregon State University, Corvallis OR
1* *1

Controller developed by Shibashis Bhowmik *1

1* Software coded by Shibashis Bhowmik *1

1* 80196.H header originally developed by Brian Wiley *1

1* *1
/**/
#ifndef _global
#define _global
#define SYSTEM_CLOCK 16.0e6
#define STATE_TIME (2.0/SYSTEM_CLOCK)
#define TIMER1_PERIOD (8.O*STATE_TIME)
#defineP 10

#define MAXCOUNT_16 OxFFFF

#define BAUD_OUT
1* note: divide by 16 for
#define BAUD_WORD
#define BAUD_LOW
#define BAUD_HIGH
*1

#define BAUD_LOW
#define BAUD_HIGH

9600
80c196kc, not 64

(unsigned int)(SYSTEM_CLOCK/(I 6"BAUD_OUT
BAUD_WORD%256
BAUD_WORD/256

1* soft start for rectifier */
#define KiMAX 8
#define KpMAX 200
#define STEPCYCLE

/* limiters 2/27/97

103
0

1* for a divisor of 16, 500 for a divisor of 1024 */

5 /* equivalent to 1/40 of a 60 Hz cycle */

#define PEAK_CURR 150 /* corresponds to 15 Arms on SPHINX */
#define MIN_OFF_TIME 15 /* provides for max. 0.9 duty *1
#define MAX_FREQ 900 /* 90.0 Hz */

/* lines per revolution
*1

#define ENCODER_RESOLUTION 4000

1* bits for 5V analog input (full scale)
*1

#define A_D_RESOLUTION 1024

153

global.h (continued):

1* A to D channels
*1

#define BRAKE_COMMAND 0
#define I_MONITOR_A 1

#define I_MONITOR_B 2
#define TORQUE_COMMAND 5
#define DRIVE_MONITOR 4
#define HV_MONITOR 3

1* HV_MONITOR and TORQUE_COMMAND switched for Sybill.
*1

#define I_MONITOR_C 6
#define BATtERY_MONITOR 7

/* high speed output channels
*1

#define A_LOW 0
#define A_HIGH I

#define B_LOW 2
#define B_HIGH 3

#define C_LOW 4
#define C_HIGH 5

/* self test parameters
*1

#define I_NOISE 5
#define I_LOW_FAULT 15
#define LOW_TIMEOUT 4000
#define 1_PULSE_MIN 25
#define I_PULSE_MAX 50

/* fault indicators
*1

#define A_HIGH_FAULT 0x02
#define A_LOW_FAULT OxOl
#define B_HIGH_FAULT 0x04
#define B_LOW_FAULT 0x20
#define C_HIGH_FAULT 0x40
#define C_LOW_FAULT 0x80
#define FAULT_MASK OxE7

1* voltage levels (bits)
*1

#define LV_MIN 532 1* 14.8 Volts */
#define LV_MAX 546 /* 15.2 Volts *1
#define HV_MIN 350 /* 105.6 Volts */
#define HV_MAX 539 1* 150 Volts */

154

globaLh (continued):

1* motor types
*1

#define MODIFIED
#define REWOUND 2
#define MOTOR MODIFIED

#endif

proto.h (continued):

1* #define DOWNLOAD 1 */

#ifndef _proto
#define _proto

void begin(void);

1* vdc_iref *1

void initCurrent(void)
void timer2lnit(void);
void setUpEmgncDown(void);
void setUpSwftlnit(void)

/ A to D
*1

void AtoD_init(void);
void AtoD_start(int);
unsigned mt AtoD_read(void);

1* HSO
*1

void hso_init(void);
void hso set(int);
void hso_clear(int);
void hsoAllClear(void);
void hsoCamClear(void);
void hso_wiIl_set(int, unsigned int)
void hso_wiIl_clear(int, unsigned int);
void hso_will_AD (unsigned int, unsigned int);

155

proto.h (continued):

1* HSI
*1

void hsilnit(void)
void hsiGo(void);
void hsiStop(void);

/* SERIAL
*1

void serial init(void);
char spchk(void);
unsigned char getBuf(void);
unsigned char getChar(void);
void putChar(unsigned char);

#endif

Assembly code include files:

80196.inc:

** * * * * * ** * * * * * * * * * * ** *** * * * * * * *** * * * * * * * * * * ** * ** * * * * * * * * * *** * * * * * * * * *1

*1

Active rectifier controller */

Copyright 1997 Oregon State University, Corvallis OR */
*1

Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

*1

-80196.INC-

Special Function Registers

SP equ 18h
WSR equ 14h

IOSO equ 15h
HSOO_STATE equ Olh
HSO1_STATE equ 02h
HSO2_STATE equ 04h
HSO3.STATh equ 08h
HSO4_STATE equ lOh
HSO5_STATE equ 20h
HSO_CAM...FULL equ 40h

156

80196.inc (continued):

HSO_HOLDING_FULL equ
HSOO_STAT_BIT equ
HSO 1_STAT_BIT equ
HSO2_STAT_BIT equ
HSO3_STAT_BIT equ
HSO4_STAT_B1T equ
HSO5_STAT_BIT equ
HSO_HOLDING_BIT equ

IOS1 equ
HSI_FIFO_FULL equ
HSLREADY equ
SWTFO_B1T equ
SWTF1_BIT equ 1

SWTF2_BIT equ 2
SWTF3_B1T equ 3

80h
n

2
3
4
5

7

16H
40H

80H
0

10S2 equ 17h
HSO_0_EVENT equ Olh
HSO_ 1_EVENT equ 02h
HSO_2_EVENT equ 04h
HSO_3_E VENT equ 08h
HSO_4_EVENT equ lOh
HSO_5_EVENT equ 20h
HSO_T2_EVENT equ 40h
HSO_AD_EVENT equ 80h

IOCO equ 15h
note: bit I always 1 on reads

HSIO_ENABLE equ Olh
SOFT_T2_RESET equ 02h
HSI1_ENABLE equ 04h
EXT_T2_RESET equ 08h
HSI2_ENABLE equ lOh
HSIO_RESET_SRC equ 20h
HSI3_ENABLE equ 40h
HSII_CLK_SRC equ 80h

iOCI equ 16h
PWMO_ENABLE equ Olh
T2_OVFL_INT equ 08h
HSO_4_ENABLE equ lOh
TXD_ENABLE equ 20h
HSO_5_ENABLE equ 40h

157

80196.inc (continued):

10C2 equ OBh
note: bit 7 always i on reads

T2_FAST_ENABLE equ Olh
T2_DOWN_ENABLE equ 02h
SLOW_PWM equ 04h
AD_TIME_ENABLE equ 08h
AD_NOT_PRESCALE equ lOh
T2_MIDCNT_INT equ 20h
I-ISO_LOCK_ENABLE equ 40h
HSO_CAM_CLEAR equ 80h

BAUD_RATE equ OEh
BAUD_XTALI equ 80h

1OC3 equ OCh
note: bits 4-7 reserved, always write as ones

T2_INTERNAL equ 01 h
T2_CLOCK_DISABLE equ 02h
PWM 1_SELECT equ 04h
PWM2_SELECT equ 08h
10C3_RESERVED equ OFOh

SP_STAT equ 1 lh
SP_TXE equ 08h
SP_TI equ 20h
SP_RI equ 40h

control

SP_CON equ llh
SP_MODE_0 equ OOh

SP_MODE_1 equ Olh
SP_MODE_2 equ 02h
SP_MODE_3 equ 03h
SP_PEN equ 04h
SP_REN equ 08h
SP_TB8 equ lOh

buffers
same address for reads and writes

SBUF equ 07h

Timer 1 Register
note: must be written in window 15

TIMER I eau OAh

80196.inc (continued):

Timer 2 Register

TIMER_2 equ

High Speed Output Registers

HSO_TIME equ
HSO_COMMAND equ
HSO_AD equ
HSO_INTERRUPT equ
HSO_SET equ
HSO_CLEAR equ
HSO_TIMER equ
HSO_TIMER_RESET equ
HSO_CAM_LOCK equ
HSO_SWTFO equ
HSO_SWTF 1 equ
HSO_SWTF2 equ
HSO_SWTF3 equ

High Speed Input Registers

HSI_MODE equ
HSI_POSITIVE equ
HSI_NEGATIVE equ
HSI_TIME equ
HSI_STATUS equ
HSIO_STATUS equ

AD_COMMAND equ
AD_GO equ
AD_8_B ITS equ
AD_LOW equ
AD_BUSY equ
AD_HIGH equ
AD_BITS equ
AD_SEL equ
AD_STATUS_BIT equ

Peripheral Transaction Server

PTSSEL equ

110 port 1
quasi-bidirectional

IOPORT1 equ

OCh

O4h
06h

OFh
1 Oh

20h
OOh

4Oh ;
/ 1=timer 2, O=timer 1 */

(OEh OR HSO_TIMER)
8Oh

(08h OR HSO_INTERRUPT)
(09h OR HSO_INTERRUPT)
(OAh OR HSO_INTERRUPT)
(OBh OR HSO_INTERRUPT)

03h
Olh

02h
04h

06h
02h

02h
08h

1 Oh

02h
O8h
03H

OFFCOh
02h
3

OFh

158

159

80196.inc (continued):

110 port 2
shared with special functions

IOPORT2 equ 1 Oh

HV_ENABLE equ 20h

interrupt control

INT_MASK equ 08h
INT_PEND equ 09h
AD_PEND equ 02h

TIMER_MASK equ Olh
AD_MASK equ 02h
HSIDAT_MASK equ 04h
HSO_MASK equ 08
HSIO_MASK equ lOh
SWT_MASK equ 20h
SER_MASK equ 4Oh
EXTINT_MASK equ 80h
INT_MASK1 equ llh
INT_PEND 1 equ 1 2h

TI_MASK equ Olh
RI_MASK equ 02h
HSI4_MASK equ 04h
T2CAP_MASK equ 08h
T2OVF_MASK equ lOh
EXTINT1_MASK equ 20h
FIFO_MASK equ 40h
NMI_MASK equ 80h

WATCHDOG equ OAh

define.inc:

*1

Active rectifier controller *1

Copyright 1997 Oregon State University, Corvallis OR
*1

Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

*1
* ** * * * * * * * * * * * * * * * * ** * * * * * * * * * * ** * ** * * * * * *1

define.inc
assembly language definitions

sine table

IenOfSinlabl equ 3000
maxlndxForSinTabl equ lenOfSinTabl -

phaseShift equ 1000
lowCount equ 15900 ; 63 Hz
highCount equ 17500 ; 57 Hz

lowCount equ 16393 ; 61 Hz
highCount equ 16949 ; 59 Hz

width of hysteresis band

A to D channels

I_MONITOR_A equ (1 OR AD_GO)
I_MONITOR_B equ (2 OR AD_GO)
HV_MONITOR equ (3 OR AD_GO)
;HV_MONITOR is 5 in Shiba's and SPOT's. Only 3 for Sybill.
I_MONITOR_C equ (6 OR AD_GO)

high speed output channels

A_HIGH equ 0
A_LOW equ 1

B_HIGH equ 2
B_LOW equ 3
C_HIGH equ 4
C_LOW equ 5

HSO reference TIMER_i
positive logic

A_LOW_CLEAR EQU 01
B_LOW_CLEAR EQU 03

161

define.inc (continued):

A_HIGH_CLEAR EQU
B_HIGH_CLEAR EQU
C_HIGH_CLEAR EQU
HSOALL_CLEAR EQU
A_LOW_SET EQU
B_LOW_SET EQU
C_LOW_SET EQU
A_HIGH_SET EQU
B_HIGH_SET EQU
C_HIGH_SET EQU

sync equ 2
DEAD_TIME equ
I_HYSTERESIS equ 2
Await equ 19
Bwait equ 11

NUM_TURNS equ

voltage levels (bits)

LV_MIN equ
LV_MAX equ
HV_MIN equ
HV_MAX equ

protection code (2/06/97)

MAXHV equ

system.inc:

4

2

532
546

350
539

00
02
04
OCh

(01 OR HSO_SET)
(03 OR HSO_SET)
(05 OR HSO_SET)
(00 OR HSO_SET)
(02 OR HSO_SET)
(04 OR HSO_SET)

;two turns thru' current transducers

14.8 Volts
15.2 Volts

105.6 Volts
150 Volts

890 ; corresponds to 420V

* * * * * * * ** ** * * * * * * * * * * * * * * * * * ** *1

*/

Active rectifier controller
Copyright 1997 Oregon State University, Corvallis OR */

*/

Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

*/

system data

sin equ 2088h
sin 120 equ 37F8h

162

memory.inc:

*1

Active rectifier controller *1

Copyright 1997 Oregon State University, Corvallis OR
*1

Controller developed by Shibashis Bhowmik *1

Software coded by Shibashis Bhowmik *1

*1
* ** * * * ** * * * * * * * * * * * * * * * * * ** * * * *** * * * * * * * * * ** * * *1

memory.inc
allocation of on-chip registers

RSEG AT 3Ch

LONG
double word (long int) aligned

Commanded value of A phase current. A long for calculation from Im and sin.
las: DSL 1

Commanded value of B phase current.
Ibs: DSL 1

Commanded value of B phase current.
Ics: DSL 1

Variable for frequency adjustment calculations
switchTime: DSL

;INT
word (int) aligned

Commanded phase currents.
Ia: DSW I
Ib: DSW 1

Ic: DSW 1

Current sensor reading at zero current.
laO: DSW I

IbO: DSW 1

vdcO: DSW

Measured deviation of currents from that commanded.
lam: DSW I
Ibm: DSW 1

1cm: DSW

163

memory.inc (continued):

Variables needed to keep track of real time.
cycleTime: DSW 1

waitForNext: DSW 1

onlime: DSW
oldlndx: DSW 1

newlndx: DSW 1

incOflndx: DSW 1

currentLag: DSW 1

Variable for frequency adjustment calculations
countForAPeriod: DSW
halfCountForAPeriod: DSW
saveRemA: DSW
remA: DSW
oldHsiTime: DSW
newHsiTime: DSW

Magnitude of sinusoidal current
Imag: DSW 1

Temporary storage of index for sine table
index: DSW 1

Temporary variable for calculations
temp: DSW 1

Registers for dc bus regulator
vdc: DSW 1

vdcError: DSW 1

vdcDiode: DSW I

hvRef: DSW 1

Ki: DSW 1

Kp: DSW
oldlmag: DSW 1

maxlmag: DSW 1

old VdcError: DSW

error storage
en-A: DSW 1

en-B: DSW 1

en-C: DSW 1

Word storage for counting number of program loops
vdcConst: DSW 1

errorBand: DSW 1

saveRemlmag: DSW 1

cycleFreq: DSW 1

164

memory.inc (continued):

halfCycleFreq: DSW

BYTE
byte (char) aligned

Temporary storage for los 1 register

tempIOSl: DSB
commandChar: DSB

DSB
stop: DSB
cycleCount: DSB

DSEG
vChar equ $:NULL

dsb 3

EXTERN

PUBLIC Ia
PUBLIC lb
PUBLIC Ic
PUBLIC las
PUBLIC lbs
PUBLIC Ics
PUBLIC lam
PUBLIC Ibm
PUBLIC 1cm
PUBLIC laO
PUBLIC IbO
PUBLIC vdcO
PUBLIC oldlndx
PUBLIC newlndx
PUBLIC incOflndx
PUBLIC cycleTime
PUBLIC waitForNext
PUBLIC onTime
PUBLIC switchTime
PUBLIC countForAPeriod
PUBLIC halfCountForAPeriod
PUBLIC saveRemA
PUBLIC remA
PUBLIC oldHsiTime
PUBLIC newHsiTime

165

memory.inc (continued):

PUBLIC index
PUBLIC templOS 1
PUBLIC temp
PUBLIC vdc
PUBLIC vdcError
PUBLIC vdcDiode
PUBLIC errorBand
PUBLIC o!dVdcError
PUBLIC hvRef
PUBLIC Ki
PUBLIC Kp
PUBLIC oldlmag
PUBLIC maxlmag
PUBLIC currentLag
PUBLIC vdcConst
PUBLIC saveRemlmag
PUBLIC halfCycleFreq
PUBLIC cycleFreq
PUBLIC commandChar
PUBLIC vChar
PUBLIC i
PUBLIC stop
PUBLIC cycleCount

Files for compiling

Iink96.bat:

\shiba\asm96\ri96 & < start.ink

start.Ink:

main.obj, begin.obj, vdc_iref.obj, giobai.obj, hso.obj, hsi.obj, &
atod.obj, serial.obj, startup.obj, hystbipl.obj, &
reset.obj, c:\shiba\ic96\lib\c96.iib to rec.out &

I registers(iAH OFFH) iist(pi, sb, in, Sm) print windowsize(0)

166

makefile:

#
start.out: main.obj

begin.obj
vdc_iref.obj \
global.obj
hso.obj
hsi.obj
atod.obj
serial.obj
startup.obj
hystbipl.obj \
reset.obj

link96.bat

main.obj: main.c proto.h
\shiba\ic96\bin\ic96 main.c md(kc) co Ii nore sb xr ot(3)

begin.obj: begin.c proto.h 80196.h global.h
\shiba\ic96binic96 begin.c md(kc) co Ii nore sb xr ot(3)

vdc_iref.obj: vdc_iref.c proto.h 80196.h global.h
\shiba\ic96\bin\ic96 vdc_iref.c md(kc) co ii nore sb xr ot(3)

global.obj: global.c ctype.h
\shiba\1c96\bin\ic96 global.c md(kc) CO ii nore sb xi ot(3)

hso.obj: hso.c proto.h 80196.h global.h
shibaic96\bin\ic96 hso.c md(kc) co ii nore sb xi ot(3)

hsi.obj: hsi.c proto.h 80196.h global.h
\shiba\ic96\bin\ic96 hsi.c md(kC) CO Ii nore sb xi ot(3)

atod.obj: atod.c proto.h 80196.h global.h
\shiba\ic96\bin\ic96 atod.c md(kc) Co ii nore sb xi ot(3)

serial.obj: serial.c proto.h 80196.h global.h
\shiba\ic96\bin\ic96 serial.c md(kc) CO ii nore sb xr ot(3)

startup.obj: startup.a96
\shiba\asm96\asm96 startup.a96

hystbipl.obj: hystbipl.a96 80 196.inc memory.inc define.inc system.inc
\shiba\asm96\asm96 hystbipLa96

reset.obj: reset.a96 80196.inc define.inc
\shiba\asm96\asm96 reset.a96

167

A.2 Protection logic

over.asm:

;overvoltage and overcurrent protection
;algorithm developed by Shibashis Bhowmik
;code developed by Shibashis Bhowmik
;Nov 27, 1996

name OVER

STACK segment DATA
;VARIABLES segment DATA
FLAGS segment BIT

bseg
VDCLL bit P3.0
VDCGH bit P3.1
USER_ON bit P3.2
ILKOVRLD bit P3.3
OVERVM bit P3.4
EXTERNALI bit P3.5
SHUTDOWN bit P1.2
DON bit P1.3
GRELAY bit P1.4
RRELAY bit P1.5
OVERVOLT bit P1.6
OVERCURR bit P1.7

public VDCLL,VDCGH,U5ER_ON,ILKOVRLD,OVERVM,EXTERNAL 1
public SHUTDOWN,DON,GRELAY,RRELAY,OVERVOLT,OVERCURR

reserve space for stack

rseg STACK
ds 20h ;reserve 32 bytes for stack

dseg at 0050h
COUNTER: ds 1

public COUNTER

rseg FLAGS

168

over.asm (continued):

VDC_CHRGD: dbit 1

cseg at 0000h

ljmp _main

cseg atOlOOh

DC_BUS_CHRG_CNT equ 6
TJMER_BIT16 equ 0000000lb

public TIMER_B1T16
extrn NUMBER(initBegin,overvBegin)

main:
SP, #STACK-1

setb DON
dr GRELAY
dr RRELAY
dr SHUTDOWN
dr OVERVM
dr IE1 ;remove previous instances of INTl
dr EXTERNAL 1
dr OVER VOLT
dr OVERCURR

GRELAY = !SHUTDOWN
turn on the grid relay

wait for user to indicate turn-on

waitForUserOn:
cIrEA
dr RRELAY
dr GRELAY

initialize timerO as a 16-bit timer

mov TMOD, #TIMER_BITI6
dr A
mov TLO, A
mov THO, A

allow 400 ms for the contactors to open

169

over.asm (continued):

mov COUNTER, #DC_BUS_CHRG_CNT

openContactor:
setb TRO

jnbTFO,$
dr TRO ;stop counter
dr TFO ;reset overflow flag
djnz COUNTER, openContactor

discharge the dc-bus upon exiting due to a normal shutdown
keep the dump IGBT on for 400 ms.

mov COUNTER, #DC_BUS_CHRG_CNT

set dump ON

dr DON

start (run) timer 0

discharge:
setb TRO

jnbTFO,$
dr TRO ;stop counter
dr TFO ;reset overflow flag
djnz COUNTER, discharge

setb DON

jnb USER_ON, $
setb GRELAY

wait for dc bus to charge up using current limiting resistors
provide for about 200 ms for the resistors to be in circuit
the RC time constant (R=20, C=2.lm) = 40m

mov COUNTER, #DC_BUS_CHRG_CNT

initialize timerO as a 16-bit timer

mov TMOD, #TIMER_BJT16
cirA
movTLO,A
mov THO, A

start (run) timer 0

over.asm (continued):

run_tiO:

wait_ti0:

setb TRO

jnb TFO, wait_tiO
dr TRO ;stop counter
dr TFO ;reset overflow flag
djnz COUNTER, run_tiO

set flag to indicate dc-bus is charged

setb VDC_CHRGD

short out the resistances
RRELAY = GRELAY & VDC_CHRGD

setb RRELAY

setup the interrupts

icall initBegin

wait for overvoltage or overcurrent
polling for overvoltage and make sure
(idea of detecting VDCGH implemented from Alex's program for SPOT)

waitForOverVolt:
jnb USER_ON, waitForUserOn
jb SHUTDOWN, hangmere
jnb VDCGH, waitForOverVolt
jnb VDCGH, waitForOverVolt
Icall overvBegin
sjmp waitForOverVolt

hangThere:
dr EA
sjmp$

END

;no more interrupts
;remain here, shutdown

170

overv.asm:

name OVERV

extrn BIT(DON,VDCLL,VDCGH,GRELAY,RRELAY,SHUTDOwN,OVERVOLJ,OVERVM)
extrn DATA(COUNTER), CODE(TIMER_BIT16)

OVERV_CODE segment CODE

rseg OVER V_CODE

bUMP_ON_CNT equ
time
public overvBegin

overvBegin:

preserve old uC settings

push PSW

dr EA
dr EX1
dr DON

171

1 ;to provide for a maximum of 67 ms of dump at a

;disable all interrupts
;disable external interrupt 1
;turn dump ON

mov COUNTER, #DUMP_ON_CNT

initialize timerO as a 16-bit timer

mov TMOD, #TIMER_BITI6
dr A
mov TLO, A
mov THO, A

flop

nop
flop

nop
flop

nop
nop

start (run) timer 0
run_ti0:

setb TRO

lowVolt:

;to allow for transients due to dump switch die down

jb VDCLL, dumpSuccess ;if vdc is low, dump worked

overv.asm (continued):

jb VDCGH, gridOff
jnb TFO, lowVolt
dr TRO
dr TFO
djnz COUNTER, run_tiO

gridOff:
dr GRELAY
dr RRELAY
dr DON
setb SHUTDOWN
setb OVER VOLT
dr OVERVM
popPSW
sjmp$

dumpSuccess:
setb DON
clrTRO
dr OVERVM

pop PSW

ret
END

init.asm:

name IN1T

INET_CODE segment CODE

rseg INIT_CODE

public initBegin

initBegin:

END

;if dc-bus continues to rise, shutdown

;open grid contactor
;bring in resistors

;use dump to dissipate energy in link

;never return to main code, remain here

;turn-off dump IGBT
;stop timer 0

setb EA ;enable all interrupts, individual activation needed
setb IT1 ;falling edge interrupt
setb EX1 ;enable external 1 interrupt
dr EXO ;disable external 0 interrupt
dr ETO ;disable timer 0 interrupt

ret

172

173

extl.asm:

name EXT1

cseg at 0013H

ljmp extlBegin

EXT1_CODE segment CODE

rseg EXT1_CODE

extrn DATA(COUNTER)
extrn
BIT(DON,GRELAY,RRELAY,EXTERNAL 1 ,SHUTDOWN,VDCGH,ILKOVRLD,OVERCURR)
extrn CODE(TIMER_B1T16)

OVRLD_CNT equ 150

extlBegin:
push PSW
dr EA ;disable all interrupts
dr EX1 ;disable external interrupt I
setb EXTERNAL 1

mov COUNTER, #OVRLD_CNT ;allow 10 secs.

initialize timerO as a 16-bit timer

mov TMOD, #TIMER_B1T16
dr A
mov TLO, A
mov THO, A

start (run) timer 0

run_tiO:
setb TRO

goAround:
jb VDCGH, notOvrLd ;possible overvoltage error, more critical
jb ILKOVRLD, notOvrLd ;overload ceased

jnb TFO, goAround
cIrTRO
clrTFO
djnz COUNTER, runjiO

174

extl.asm (continued):

ovrLd:

notOvrLd:

END

tintO.asm:

dr GRELAY ;open grid contactor
dr RRELAY ;bring in resistors
dr DON ;use dump to dissipate energy in link
setb SHUTDOWN
setb OVERCURR
dr EXTERNAL 1
pop PSW ;disable all interrupts and exit
reti

dr TRO ;stop timer 0
setb EX1
setb EA
dr EXTERNAL 1

pop PSW

ret!

name TINTO

cseg at 000Bh

ljmp tlntOBegin

TINTO_CODE segment CODE

rseg TINTO_CODE

extrn DATA(COUNTER), BIT(SHUTDOWN,GRELAY,RRELAY,TIMO)

tlntOBegin:
push PSW
dr EA
setb TIMO
dinz COUNTER. allowAction

175

tintO.asm (continued):

overvoltage or overcurrent for too long, problems !!!

setb SHUTDOWN
dr GRELAY
dr RRELAY

allowAction:
setb EA
dr TIMO
pop PSW
reti

END

makefile:

#

#
#

start.out: over.obj
init.obj
overv.obj
extl.obj \

linkS 1 .bat

over.obj: over.asm
\shiba\asm5l\asm5l over.asm Ii mr oj pr sb xr

init.obj: init.asm
\shiba\asm5l\asm5l init.asm ii mr oj pr sb xr

overv.obj: overv.asm
\shiba\asm5 I \asm5 1 overv.asm ii mr oj pr sb xr

extl.obj: extl.asm
\shiba\asm5l\asm5l extl.asm Ii mr oj pr sb xr

176

Appendix B. Performance Optimization Controller Source Code

The software code for the performance optimization controller was developed in
Borland C (compatible to ANSI C) utilizing the Borland C++ compiler and linker. It was
compiled for an Intel 80486-DX2 microprocessor. As mentioned in Chapter 4, the
availability of the graphics libraries for the Intel processor helped in the decision of
utilizing the 486 as the primary computational resource. All the modules required for the
optimization controller (i.e. initialization, communication between feedback and control
variable updates, MPPT and MEPT ioops, etc.) were processed by the Intel 80486.

Power feedback measurement was provided by a TMS32OC3X based evaluation
module residing on the ISA-bus of the 80486-desktop computer. The evaluation module
is manufactured by Texas Instruments and consists of a single channel (±1 .5V input) A/D
interface. Communication between the desktop and the internal eval module utilized a
common register addressable by both the microprocessor. The hardware details can be
found in the Texas Instrument publication named "TMS32OC3X evaluation module
technical reference".

B. 1 Optimization controller software

perf_opt.c

/**/
1* *1
/* Performance Optimization Controller *1

1* Program developed by Shibashis Bhowmik *1
/* (C) 1997 OREGON STATE UNIVERSITY
1* *1

/***/
/***/
1*

1* *1
1* Programming ideas borrowed from the following reference:

Digital Signal Processing Applications with the
1* TMS32OC3O Evaluation Module
1* *1
1* OSC_PC.0 *1
1*

/*S32O(3O EVALUATION MODULE DATA ACQUISITION (OSCILLOSCOPE) DEMO */
1* :PC PROGRAMS
1* *1

1* *1

/***I
#include <stdio.h> 1* INCLUDE NECESSARY STANDARD HEADER FILES
#include <stdlib.h>
#include <string.h>
#include <math.h>

177

#include <ctype.h>
#include <time.h>
#include <graphics.h> 1* INCLUDE TURBO C SPECIFIC HEADER FILES
#include <conio.h>
#include <bios.h>
#include "consti 15.h"
#include "ser_com.h"
#include "pc_i .h" /* GENERIC EVM SUPPORT MACROS, STRUCTURES, PROTOTYPES*/
#include "perf_pc.h" 1* MACROS, PROTOTYPES, STRUCTURES, GLOBAL VARIABLES */
#include perf_cmd.h" 1* SHARED HOST & TMS32OC3O COMMAND PASSING MACROS */
/ *====____=========__============_____==================================
*1

/ MAIN() MAIN PROGRAM LOOP *1
/*===__________-_______====______===========_============_____--===__
*1

void main(void)

init_evmO; /* INITIALIZE EVALUATION MODULE *1

/* SETUP SERIAL PORT FOR COMM. WITH
INVERTER *1

_bios_serialcom(_COM_INIT, comPort, SETTINGS);
buffer = BLOCK_SIZE;/* SET BLOCK SIZE FOR DATA TRANSFER TOIFROM PC */

init_graphicso; /* INITIALIZE GRAPHICS & DRAW PERMANANT PARTS OF DISP*/
statusO; /* DRAW STATUS WINDOW *1

scaleO; 1* UPDATE SCALE *1

iniBiosTime = biostime(O, OL); /* RESET TIMER *1

for(;;)

if (kbhit())
if (IoopFlag) mainMenuCommandProcessO; /* MAIN MENU COMMANDS */
else invMenuCommandProcess(0); 1* INVERTER MENU COMMANDS*/

processBiosTime;
1* --- *1
/* SET OSCILLOSCOPE DISPLAY INDEX TO LAST BUFFER PLAYED OR

RECORDED */
1* _________________________________

graph_index = index;
recording(RECORDING);

EVM *1

if(index == MAX_FILE)
index = 0;

if(!meptFlag && !mpptFlag)
averagePowerO;

graphO;

*1

/* GET FRESH DATA FROM

/ *==============================_=====__=============:::=====================
*1

1* INIT_GRAPHICS() *1

/* INITIALIZE GRAPHICS AND DRAW PERMANANT PARTS OF THE DISPLAY
/ *======__=__========___=__==___________====__==================_____============
*1

void init_graphics(void)

178

char ch;

GraphDriver = DETECT;
detectgraph(&GraphDriver, &GraphMode); /* what graphics driver present? */
if ((GraphDriver = EGA) II (GraphDriver == VGA))

GraphMode = EGAHI;
registerbgidriver(EGAVGA_driver);

else if (GraphDriver == CGA)

printf("Is this a Compaq wiPlasma Display? (Y or N):");
ch = getcheo;
if ((ch = 'y') II (ch = 'Y'))

GraphDriver = ATF400; GraphMode = ATT400HI;
registerbgidriver(ATT_driver);

else

else

displayCheckO;

displayCheck;

if(displayCheck() = grOk)
initgraph(&GraphDriver, &GraphMode, ");
displayCheckO;

/* MAKE SURE DISPLAY HAS ADEQUATE RESOLUTION
1* --- *1
if (getmaxx() < 639 II getmaxy() < 349) displayCheckO;

1* --- *1
/* DRAW ALL PERMANANT / NON-CHANGING WINDOWS
1* --- *1

setcolor(WHITE); /* SET TEXT AND BORDER COLOR TO WHITE */

/* Gerry Shoults modified 9/21/90
/* If running on Plasma 2-color display, the fill color must be BLACK */

/* otherwise BLUE is O.K. *1

if (GraphDriver = ATT400)
setfihlstyle(SOLID_FILL,BLACK); /* SET WINDOW FILL COLOR TO BLACK *1

else
setfillstyle(SOLID_FILL,BLUE); /* SET WINDOW FILL COLOR TO BLUE */
1* --- *1
1* OSCILLOSCOPE DISPLAY WINDOW
1* --- *1
setviewport(321,12,639,158,ON); /* SET WINDOW DIMENSIONS */
bar(0,0,3 18,146); /* FILL BLUE *1

rectangle(0,0,3 18,146); /* DRAW BORDER

179

moveto(2,2); /* HOME CURSOR */

gputs(" Instantaneous Real Power'); /* DRAW TITLE
setcolor(WHITE);
1* --- *1
1* SIGNAL WINDOW INSIDE OSCILLOSCOPE DISPLAY */
1* --- *1
setviewport(323, 27, 598, 156, ON); /* SET WINDOW DIMENSIONS *f
clearviewporto; /* FILL BLUE *1

rectangle(O,O,274,129); /* DRAW BORDER */

1* --- *1
/* TITLE WINDOW
1* --- *1
setviewport(O,O,639,1 1,ON); /* SET WINDOW DIMENSIONS
bar(O,O,639,1 1); /* FILL BLUE
rectangle(O,O,639,I 1); /* DRAW BORDER
moveto(2,2); /* MOVE CURSOR TO BEGINNING OF LINE */
gputs(" BDFM OPTIMIZATION CONTROLLER");
1* --- *1
/* MENU WINDOW
1* --- *1
menuWindow(main_menu);

I*======================_________===__===__===============_____________===_._
*1

1* DISPLAYCHECKO: ENSURES FOR PROPER GRAPHICS OPERATION
/ *===========================__===========================__=========__======
*1

mt displayCheck(void)

mt GraphError;
1* report any registration errors *1
if ((GraphError = graphresultO) != grOk)

*1

printf("Graphics error: %s\n", grapherrormsg(GraphError));
printf("Press any key to halt:");
getch;
exit(1); / terminate with an error code

1* otherwise just return /
return(GraphError);

I*===_____==__=__==___ -- ______________.-=========--------==========- _ -
*1

1* GPUTSO: GRAPHICS EQUIVALENT OF PUTS() *1

/ *=======
*1

void gputs(char *s)

outtext((char far *) s); 1* PRINT TEXT */

moveto(2, gety() + 8); /* PERFORM LINE FEED */

180

/ *===============================_==================__====================
*1

1* STATUSO: UPDATE AND DISPLAY AIC STATUS
/*========== --------
*1

void status(void)

1*

if ((loopFlag && !meptFlag && !mpptFlag) II !loopFlag II
(loopFlag && mpptFlag && (maxmPwrLoopCount = LOOP_COUNT)) II
(loopFlag && !mpptFlag && meptFlag && (maxmEffiLoopCount == LOOP_COUNT)))

*1

1* __________________________

/* STATUS WINDOW

setviewport(0, 160, 210, 349,ON);
bar(0,0,2 10,189);
rectangle(0,0,2 10,189);
moveto(2,2);
gputs(" Status");
moveto(2, gety() + 10);
gputs("BDFM");
if(syncFlag)

gputs(" Synchronized");
else

---------------------------- *1
*1

*1

1* DEFINE WINDOW */

/* CLEAR WINDOW */

1* DRAW BORDER */

/* HOME CURSOR */

gputs(" Not Synchronized");
moveto(2, gety() + 10);
gputs("CONVERTER");
if(invFlag)

gputs(" In Operation");
else

gputs(" Not in Operation");
moveto(2, gety() + 10);
gputs("OPTIMIZATION CONTROLLER");
nioveto(2, gety() + 5);
if(IoopFlag)

gputs(" Closed Loop Mode");
else

gputs(" Open Loop Mode');
moveto(2, gety() + 5);
if(mpptFlag)

gputs(" MPPT ON");
else

gputs(" MPPT OFF");
moveto(2, gety() + 5);
if(meptFlag)

gputs(" MEPT ON");
else

gputs(" MEPT OFF');
1* ___________________________

/* DISPLAY WINDOW
1* ---------------------------

setviewport(212, 160, 639, 349, ON);
clearviewportO;
rectangle(0,0,427, 189);

---------------- *1
*1

*1

/ DEFINE WINDOW

/* DRAW BORDER *1

*1

FEll

moveto(2,4);
gputs(" DISPLAY");
1* --- *1
/* DATA WINDOW INSIDE DISPLAY SCREEN *1

1* --- *1
setviewport(222, 180, 629, 339, ON); /* SET WINDOW DIMENSIONS*/
bar(0,0,407,159); /* CLEAR WINDOW */
rectangle(0,0,407,159); /* DRAW BORDER
1* --- *1

1* PRINT OUTPUT POWER

moveto(40,getyO+20);
sprintf(string, "Output Power = %6.lIf watts", power);
gputs(string);
1* --- *1
1* PRINT INVERTER CURRENT MAGNITUDE
1* --- *1
if(invFlag)

moveto(40,getyo+1 0);
sprintf(string,"Inverter current = %6.11f A", invCurr);
gputs(string);
moveto(40,getyO+5);
if(seqFlag)

sprintf(string,"Inverter frequency = %5.11f Hz", invFreq);
else

sprintf(string,"Inverter frequency = -%5.1 If Hz", invFreq);
gputs(string);
moveto(40,getyO+5);
sprintf(string,"Switch on-time = %7ld us", invOnTime);
gputs(string);

if (syncFlag)

moveto(40,getyO+ 10);
sprintf(string,"BDFM speed = %7.OIfr/min", speed);
gputs(string);

if (mpptFlag)

moveto(40,getyO+5);
sprintf(string,"Optimal Ic = %6.11f A", invCurrOpt/10);
gputs(string);
moveto(40,getyO+5);
sprintf(string,"Tip-speed ratio = %4.31f", lambda);
gputs(string);
moveto(40,getyO+5);
sprintf(string,"Estimated wind speed = %4.3If m/sec", nu);
gputs(string);
moveto(40,getyO+5);
sprintf(string,"Optimal BDFM speed = %7.OIfr/min", fROpt*60);
gputs(string);

*1

*1

182

/ *==_=================
*1

1* SCALEO: PRINT OSCILLOSCOPE SCALE/ *_-___________________
*1

void scale(void)

setviewport(598,27,638,156,ON); /* SET WINDOW
bar(O,O,42,129); 1* BLUE FILL WINDOW */

moveto(1,1); /* HOME CURSOR
sprintf(string,"%d ", (64 << magnify) - 1); /* PRINT UPPER SCALE LIMIT */
outtext(string);
moveto(1,60); /* PRINT ZERO CROSSING */

outtext("O");
moveto(1,120); 1* PRINT LOWER SCALE LIMIT *1
sprintf(string,"%d ", - 64 << magnify);
outtext(string);

/*=====____.___===========_
*1

1* GRAPHO: DRAW MOST RECENTLY CAPTURED DATA
1*

*1

void graph(void)

mt i,j; 1* TEMPORARY VARIABLES */

static float old_s_rate; /* PREVIOUS SAMPLING RATE *1
setviewport(325, 28, 596, 155, ON); /* SET WINDOW
1* --- *1
1* IF SAMPLING RATE HAS CHANGED CLEAR WINDOW *1

1* --- *1
if (old_s_rate != sample_rate)

clearviewportO;
old_s_rate = sample_rate;

/* ADJUST PLOTTING INTERVAL TO COMPENSATE FOR SAMPLING RATE
1* --- *1
j = (sample_rate 5)12;
if(,j < 1)j = 1;
for(i = 0; i <OSC; i +=j) /* DRAW DATA

putpixel(i,y[i],BLACK); /* ERASE OLD POINT */

1* -- *1
1* CALCULATE NEW POINT TO PLOT
1* -- *1
y[i] = 63 - (disk[graph_index + i] >> magnify);
putpixel(i,y[i],WHITE); /* PLOT NEW POINT */

183

I *=======__===========____========__=================__====_=========
*1

/* MAIN_MENU_COMMAND_PROCESS *1

I *============_===__===______======================================
*1

void mainMenuCommandProcess(vojd)

char command; 1* COMMAND VALUE
command = getExtendedCommand; /* GET COMMAND WORD FROM KEYBOARD

ENTRY */
fflush(stdin); /* CLEAR ANY EXTRANEOUS CHARACTERS */

switch(command) /* PARSE COMMAND

1* --- *1
/* INITIALIZE EVM FOR CLOSED LOOP OPERATION *1

1* --- *1
case START:

if (invFlag)
syncFlag = ON;

break;
1* --- *1
/* TOGGLE CLOSED/OPEN LOOP OPERATION *1

1* ---
case LOOP:

IoopFlag A TOGGLE;
meptFlag = OFF;
mpptFlag = OFF;
menuWindow(invConimandMenu);
break;

1* ---
/* TOGGLE MPPT LOOP OPERATION *1

-----------------------*1
case MPPT:

if (syncFlag && invFlag && meptFlag)
mpptFlag A TOGGLE;

break;
1* ---
/* TOGGLE MEPT LOOP OPERATION

case MEPT:

if (syncFlag && invFlag)
meptFlag A= TOGGLE;

if (meptFlag == OFF)
mpptFlag = OFF;

break;
I,,' ---*1

/* STOP INVERTER AND LOOP OPERATION
1* ---

case STOP:
invMenuCommandProcess('d');

1* sendCommandTolnv((char *)("d")); *1

syncFlag= OFF;
invFlag = OFF;
invCurr = 0.0;
invFreq = 0.0;

invOnTime = 0;
mpptFlag= OFF;
meptFlag= OFF;
index =0; 1* RESET DISK STORAGE BUFFER INDEX *1

break;
1* --- *1
/* TOGGLE MAGNIFICATION OF INPUT SIGNAL ON OSCILLOSCOPE
1* --- *1
case MAGNIFY:

if (++magnify == 8) magnify = O;/* TOGGLE MAGNIFICATION
scaleO; 1* DRAW SCALE */

break;
1* --- *1
1* QUIT PROGRAM
1* --- *1
case QUIT:

textmode(LASTMODE);
clrscrO;
exit(EXIT_SUCCESS);
break;

1* --- *1
/* IF OTHER COMMAND ABORT COMMAND TRANSMISSION
1* --- *1
default:

command = NONE;
break;

statusO; /* UPDATE STATUS */

/ *====__======__=============__ --
*1

1* INVERTER MENU COMMAND PROCESS
/*=
*1

void invMenuCommandProcess(char passCommand)

*1

*1

184

*1

mti;

char invMenuCommand; /* COMMAND VALUE
char *invCommand = NULL; /* INVERTER COMMAND ARRAY

*1

const char *pjistrjng = NULL; /* STRING FOR STORING COMMAND PARAMETER */
mt dec, sign;
if (passCommand)

invMenuCommand = passCommand;
else

invMenuCommand = getCommando; /* GET COMMAND WORD FROM
KEYBOARD ENTRY */

fflush(stdin); /* CLEAR ANY EXTRANEOUS CHARACTERS */

switch(invMenuCommand) /* PARSE COMMAND

1* --- *1
1* INITIALIZE INVERTER FOR OPEN LOOP OPERATION *1

1* --- *1
case E: case 'e':

185

invCommand = (char *)("en").,/* ENABLE INVERTER
*1

invFlag = ON; /* SHOW INVERTER 'ON' STATUS
*1

break;
1* --- *1

/* STOP INVERTER OPERATION FOR OPEN LOOP OPERATION
1* --- *1
case 'D': case 'd:

invCommand = (char *)("d"); /* DISABLE INVERTER
*1

invFlag = OFF; /* SHOW INVERTER 'OFF' STATUS
*1

invCurr = 0.0;
invFreq = 0.0;
invOnTime = 0;
break;

1* --- *1
1* SET POSITIVE PHASE SEQUENCE
1* --- *1
case '+':

invCommand = (char *)("+"); /* DISABLE INVERTER
*1

seqFlag = ON; /* SHOW INVERTER 'OFF' STATUS
*1

break;
1* --- *1
/* SET NEGATIVE PHASE SEQUENCE
1* --- *1
case '-':

invCommand = (char *)('); /* DISABLE INVERTER
*1

seqFlag = OFF; /* SHOW INVERTER 'OFF' STATUS
*1

break;
1* --- *1
1* INCREASE CURRENT REFERENCE BY 0.1A *1
1* --- *1
case 'W': case 'w':

invCommand = (char *)("W"); 1* INCREASE CURRENT REF.
*1

invCurr +=0.1;
break;

1* --- *1
/* DECREASE CURRENT REFERENCE BY 0.IA *1

1* --- *1
case 'X': case 'x':

invCommand = (char *)("X"); /* DECREASE CURRENT REF.
*1

invCurr -= 0.1;
break;

1* --- *1
/* INCREASE FREQUENCY REFERENCE BY 0.1Hz
1* --- *1
case 'Y: case 'y':

186

invCommand = (char *)("yU); 1* INCREASE FREQUENCY REF.
*1

invFreq +=0.1;
speed = (60 * (PWR_FREQ + invFreq)) / (PWRPOLE + CNTRLPOLE);
break;

1* --- *1
1* DECREASE FREQUENCY REFERENCE BY 0.1Hz
1* --- *1
case 'Z: case z':

invCommand = (char *)("Z"); /* DECREASE FREQUENCY REF.
*1

invFreq -= 0.1;
speed = (60 * (PWR_FREQ + invFreq)) / (PWR.YOLE + CNTRL_POLE);
break;

1* --- *1
/* SET REFERENCE CURRENT FOR OPEN LOOP OPERATION
1* --- *1
case 'I': case i:

invCommand = curr; /* SET CURRENT
COMMAND

paramString = (const char *)(commandparajpjnput('I' PARAM));
strcat(invCommand, paramString);
invCurr = strtod(++invCommand, '\O') / 10;
--invCommand;
break;

1* --- *1
/* SET REFERENCE FREQUENCY FOR OPEN LOOP OPERATION
1* --- *1
case 'F: case T:

invCommand = freq; /* SET FREQUENCY
COMMAND

*1

paramString = (const char *)(coj andParamlnput('F PARAM));
strcat(invCommand, paramString);
invFreq = strtod(-H-invCommand, '\O') / 10;
speed = (60 * (PWR_FREQ + invFreq)) / (PWR_POLE + CNTRL_POLE);
fR = speed/60;
--invConmrnnd;
break;

1* --- *1
/* SET SWITCH ON-TIME FOR OPEN LOOP OPERATION
1* --- *1
case '0': case '0':

invCommand = onTime; /* SET ONTIME COMMAND

paramString = (const char *)(commandparamJnput(O', PARAM));
strcat(invCommand, paramString);
invOnTime = strtoul(++invCommand, '\O', 10);
--invCommand;
break;

*1
/* SET BDFM SPEED IN THE OPEN LOOP MODE *1

It *1
case 'S': case s':

invCommand = bdfmSpd; /* SET BDFM SPEED IN OPEN LOOP
OPERATIONt!

paramString = (const char t)(commandParamlnput(S', PARAM));

speed = strtod(paramString, '\O');
fl = speedl6O;
invFreq = (speed * (PWR_POLE + CNTRL_POLE) / 60) - PWR_FREQ;
invCommand = freq; /* SET FREQUENCY

COMMAND *1

paramString = (const char *)(fcvt(invFreq*lo,o,&dec,&sign));
strcat(invCommand, paramString);
break;

1* --- *1
/* TOGGLE CLOSED/OPEN LOOP OPERATION *1

1* --- *1
case Q: case q:

invMenuCommand = NONE;
loopFlag '= TOGGLE;
menuWindow(main_menu);
break;

1* --- *1
/* IF OTHER COMMAND ABORT COMMAND TRANSMISSION *1

1* --- *1
default:

invMenuCommand = NONE;
break;

if (invMenuConunand) sendCommandTolnv(invCommand); /* SEND COMMAND */
jf(*++jnvCommand = n')

*++jnvComIand =
else if((*invCommand == i')I(*invCommand == 'f)l(*invCommand == 'o))

for(i=0; 1<4; ++i)
=

else *++invCommand =
statusO; 1* UPDATE STATUS */

/ *===================- -----
*1

/* MENU WINDOW *1

187

/*===================___ -===
*1

void menuWindow(char **entjy)

setviewport(0,12,320,158,ON); /* SET WINDOW DIMENSIONS
bar(0,0,320,146); 1* FILL BLUE *1

rectangle(0,0,320,146); /* DRAW BORDER */

moveto(2,2); /* MOVE CURSOR TO BEGINNING OF LINE */
if(entry == main_menu)

gputs(" Main Menu");I* PRINT DISPLAY TITLE
else

gputs(" Inverter Command Menu")/* PRINT DISPLAY TITLE */

setcolor(WH1TE); /* DRAW MENU IN WHITE
while(*entry) gputs(*entry+i); /* DRAW ALL MENU ENTRIES */

188

/ *============________===__=======================================_====__====
*1

1* COMMANDPARAM_INPUTO:CURRENT,FREQIJENCY,ON-TIME *1

/ *====================================-====__==========================
*1

char *commandparpJnput(char commandLetter, mt paramLength)

clock_ti; /* CLOCK COUNTER
char c = NULL; /* TEMPORARY CHARACTER
mt j =0; /* POINTER TO STRING
stringForParam[0] = NULL;
setviewport(360,159,639,179,ON); /* SET WINDOW FOR INPUT
rectangle(0,0,279,19); /* DRAW BORDER
do

bar(1,1,278, 18); /* BLUE FILL WINDOW
moveto(2,2); /* HOME CURSOR
switch(commandLetter)

*1

*1

do

CHARACTER

STRING */

case 'I:
outtext('Enter current: "); 1* PROMPT FOR CURRENT INPUT *1

break;
case 'F:

outtext("Enter frequency: "); /" PROMPT FOR FREQUENCY INPUT

break;
case '0':

outtext("Enter on-time: "); /* PROMPT FOR ON-TIME INPUT *1

break;
case 'S':

outtext("Enter BDFM-speed: "); /* PROMPT FOR ON-TIME INPUT

break;
default:

break;

if (kbhitO) /* WAIT FOR KEYBOARD ENTRY

c = bioskey(0); /* GET KEYBOARD INPUT
if(c)

1* --- *1
/* IF INPUT IS BACK SPACE DELETE ONE

1* --- *1
if (c == \b' && j) stringForParam[--j] = NULL;
1* --- *1
/* ELSE IF INPUT IS PRINTABLE APPEND INPUT TO

else if (isprint(c))
*1

189

stringForParam[j] = C; /* ADD NEW
CHARACTER TO STRING */

stringForParam[+-i-j] = NULL; /* ADD NEW
NULL TERMINATION *1

bar(128,2,224,9); /* ERASE OLD OUTPUT *1

moveto(140,2); 1* REPRINT UPDATED FILENAME
*1

outtext(stringForParam);

1* --- *1
/* CONTINUE UNTIL CARRIAGE RETURN IS RECEIVED OR STRING LENGTH

*1

/* EXCEEDS TWELVE *1

1* --- * /
while(c != '\r'&&j <paramLength);

while(stringForParam[OJ == NULL); 1* RETRY UNTIL A VALID FILENAME IS GIVEN */
clearviewportO; /* REMOVE PROMPT WINDOW
statusO; 1* UPDATE STATUS
return(&stringForParam[O});

/ *==
*1

1* AVERAGE_POWERO:MOVING-WINDOW AVERAGING
/ *==========================__===
*1

1*

void averagePower(void)

mt tag, start, end;
power = 0;
tag = graph_index;
if((start = tag - buffer/2) < 0)

start += MAX_FILE;
end = start + buffer;
for(tag=start; tag<end; tag++)

power += disk[tag % MAX_FILEI;
power 1= (buffer * PWR_SCALER);

*1

void averagePower(void)

mt tag, start, end, tempBuf;
power = 0;
end = graph_index;
tempBuf = 12*buffer;
if((start = end - tempBuf) <0)

start += MAX_FILE;
end += MAX_FILE;

190

for(tag=start; tag<end; tag++)
power += disk[tag % MAX_FILEI;

power 1= (tempBuf * PWR_SCALER);

/*====__==========__==
*1

1* PROCESS_BIOS_TIMEO: DETERMINE WHEN TO UPDATE FREQUENCY AND CURRENT *1

I *==========:=============__===
*1

void processBiosTime(void)

unsigned long diffBiosTime;
if(meptFlag II mpptFlag)

newBiosTime = timerDisplayo;
else

newBioslime = oldBiosTime = timerDisplayO;
diffBiosTime = newBiosTime - oldBiosTime;

if(meptRag && (diffBiosTime >= MEPT_MIN))
maxmEffiLoopO;
++maxmEffiLoopCount;
if(!mpptFlag && (maxmEffiLoopCount == LOOP_COUNT))

maxmEffiLoopCount = 0;

if(mpptFlag && meptFlag && (maxmEffiLoopCount == LOOP_COUNT))
maxmPwrLoopO;
maxmEffiLoopCount = 0;
+maxmPwrLoopCount;
if(maxmPwrLoopCount == LOOP_COUNT)

maxmPwrLoopCount = 0;

I *=__===__===================__===
*1

1* TIMER_DISPLAYQ:DISPLAY TIMER VALUE */
I*================================
*1

unsigned long timerDisplay(void)

unsigned long biosTime;
setviewport(360,329,639,349,ON); /* SET WINDOW FOR INPUT *1

rectangle(0,0,278,18); 1* DRAW BORDER *1

bar(1,1,279, 17); /* BLUE FILL WINDOW *1

moveto(2,2);
biosTime = biostime(0, OL); 1* READ TIMER
*1

sprintf(string," Time Elasped : %.2f secs.", (biosTime-iniBiosTime)/CLK_TCK);
outtext(string);
return(biosTime);

191

/ *==============__=====____==============_================__====__===========
*1

1* MAXM_EFFI_LOOPQ: MAXIMUM EFFICIENCY TRACKING
/ *==_____======__:==__==
*1

void maxmEffiLoop(void)

double invCurrSave;
mt stringLen = 0;
char *tempCoir;
mt invCurrint;
if ((tempCom2 = (char *) malloc(16)) = NULL)

printf('Not enough memory to allocate buffer\n");
exit(1);

1*

invCurr *= 10;
invCurrSave = (int)(invCurr);

timerDisplayO;
graph_index = index;
recording(RECORDING);
if(index = MAX_FILE)

index = 0;
averagePowerO;
graph;

*1

averagePowerO;
1* *1

1* MAXIMUM DFM EFFICIENCY UPDATE LOOP
*1

1* -- *
sqrVar = power * power;
cubeVar = sqrVar * power;
invCurrOpt = ((CiO + Cil*power + Ci2*sqrVar + Ci3*cubeVar) * 10) + 5;
if(invCurrOpt> MAX_INV_CURR)

invCurrOpt = MAX_INV_CURR;
else if(invCurrOpt < MIN_INV_CURR)

invCurrOpt = MIN_INV_CURR;

invCurrint = (int)(invCurrOpt);

if(invCurrint> invCurrSave) invCurr += I;
else invCurr -= 1;

sprintf(tempCom2,"i%3.Olf', invCurr);
while (*tempCom2++)

if (*tempCom2 =='')
*tempCo = 0';

stringLen+-i-;

while (stringLen)
tempCom2--;
stringLen--;

tempCom2--;
sendCommandTolnv(tempCom2);
free(tempCom2);
oldBiosTime = newBiosTime;
invCurr 1= 10;

I *==========-_==-=_================__ --
*1

1* MAXM.....PWR_LOOPO: MAXIMUM POWER POINT TRAKING *1
/*=====__--=
*1

void maxmPwrLoop(void)

1*

*1

double lambdaOld = lambda;
mt hang;
double effi_DFM_MAXM;
1* -- *1

DETERMINE MAXIMUM DFM EFFICIENCY FROM EFFI-Pt PROFILE
*1

1* -- *1
sqrVar = invCurr * invCurr;
cubeVar = sqrVar * invCurr;
effi_DFM_MAXM = (CeO + Cel*invCurr + Ce2*sqrVar + Ce3*cubeVar);
1* -- *1
/* POWER DELIVERED BY WIND TURBINE

*1

1* -- *1
power_wt = (power/effi_DFM..MAXM)* 100;
1* -- *1
/* TURBINE SPEED DERIVED FROM DFM SPEED

*1

1* -- *1
fT = Cifi + Cfl *speed + Cf2*pow(speed,2) + Cf3*pow(speed,3) \

+ Cf4*pow(speed,4) + Cf5*pow(speed,5);
1* -- *1

CALCULATE TIP-SPEED RATIO, LAMBDA, ITERATIVELY
*1

1* -- *1

*reambda 1;

while ((*retLambda> 0.0001) && iterCount--)

retLambda = newtonRaphson(lambda);
lambda = *++reamfrJa;
--retLambda;

lambda = solveO; / + LAMBDA_0; *1
if((lambda < LAMBDA 0)11 (lambda > LAMBDA_MAX))

lambda = lambdaOld;
1* -- *1
/* ESTIMATE WIND SPEED

*1

192

1* *1
1* flu = (2*pi*R) * (fR - F_R0) * (LAMBDA_RANGE / (lambda - LAMBDA_0)); *1

flu = 2*pi*R*fTllambda;
1* -- *1

DETERMINE OPTIMUM BDFM SPEED
*1

1* -- *1
fROpt = F_R0 + ((LAMBDA_OPT - LAMBDA_0)ILAMBDA_RANGE)*(nu / (2*pi*R));
if(fROpt> MAX_FR_OPT)

fROpt = MAX_FR_OPT;
else if(fROpt < MIN_FR_OPT)

fROpt = MIN_FR_OPT;
1* -- *1
1* COMMAND THE REQUIRED FREQUENCY FOR THE INVERTER

*1

1* -- *1
invFreqOpt = (fROpt * (PWR_POLE + CNTRL_POLE)) - PWR_FREQ;
if(invFreqOpt> MAX_INV_FREQ)

invFreqOpt = MAX_INV_FREQ;
else if(invFreqOpt < MIN_INV_FREQ)

invFreqOpt = MIN_INV_FREQ;
difflnvFreq = (int)((invFreqOpt - invFreq) * 10);
if(difflnvFreq <0) directionFlag = OFF;
else directionFlag = ON;
difflnvFreq = abs(difflnvFreq);
1* -- *1
/* COMMAND FREQUENCY UPDATE 0.1Hz AT A TIME
*1

1* -- *1
/* while (difflnvFreq-- && !kbhitO)

*1

1*

*1

1*

if (directionFlag) invMenuCommandProcess('y');
else invMenuCommandProcess(z');

for (hang = 0; hang<10; hang++)
delay(300);
maxmEffiLoopO;

sprintf(tempCom,"f%3.Olf', invFreq);
while (*tempCom++)

jf (*tempCom =='')
*tempCom = '0';

stringLen++;

while (stnngLen)
tempCom--
stringLen--

tempCom--;
sendCommandTolnv(tempCom);

193

*1

oldBiosTime = newBiosTime;
invFreq 1= 10;

statusQ;

194

/*=============== _==*

/

1* NEWTON_RAPHSONO: ITERATIVE SOLUTION OF NON-LINEAR TIP-SPEED RATIO */
/*=========-=========--==*

double *newtonRaphson(double var)

double F;
double jacob;
double deltaVar;
double invVar;
double *newtRap;
invVar = 1/var;
sqrVar = invVar/var;
cubeVar = sqrVar/var;
quadVar = cubeVar/var;
F = power_wt - K1*(CpO*cubeVar + Cpl*sqrVar + Cp2*invVar + Cp3)*pow(fR,3);
jacob = Ki *(3*cpo*quadvar + 2*Cpl *cube Var + Cp2*sqrVar)*pow(fR,3);
deltaVar = F/jacob;
var -= deltaVar;
*newtRap++ = F;
*newtRap = var;
return(--newtRap);

/*===-=================--====*

1* SOLVEO: A COMBINATION OF NEWTON-RAPHSON AND BISECTION METHOD
/ * - =========================__==_ -----
I
double solve(void)

1*

double funcDL, funcDH, *funcRtsafe;
double rtSafe;
double temp;
double dx, dxOld;
double dF, F;
double xL, xH;
double xl = X1_GUESS;
double x2 = X2_GUESS;
mt iterCount = MAX_ITER;

if ((funcDL = (double *) malloc(32)) == NULL)

printf("Not enough memory to allocate buffer\n);
exit(1);

if ((funcDH = (double *) malloc(32)) == NULL)

*1

1*

*1

1*

*1

printf('Not enough memory to allocate buffer\n');
exit(1);

if ((funcRtSafe = (double *) malloc(32)) == NULL)

printf("Not enough memory to allocate buffer\n");
exit(1);

funcDL = *functjonDefine(xl);
funcDH = *functjonDefine(x2);
if((funcDL)*(funcDH) >= 0) exit(1);
if(funcDL < 0)

xL = xl;
xH = x2;

else

xH = xl;
xL = x2;

rtSafe = 05*(x1 + x2);
dxOld = fabs(x2 - xl);
dx = dxOld;
funcRtSafe = functionDefine(rtSafe);
F = *(funcRtSafe++);
dF = *funcRtSafe;
--funcRtSafe;
do

if((((((rtSafexH)*dF)F)*(((rtSafexL)*dF)F)) >= 0)11
(fabs(2*F) > fabs(dxOld*dF)))

dxOld = dx;
dx = 0.5*(xHxL);
rtSafe = xL + dx;
if (fabs(xL-rtSafe) < le-05)

else

free(funcRtSafe);
retum(rtSafe);

dxOld = dx;
dx = F/dF;
temp = rtSafe;
rtSafe -= dx;
if (fabs(temp-rtSafe) < le-05)

195

1*

*1

free(funcRtSafe);
return(rtSafe);

if(fabs(dx) < le-05)

free(funcRtSafe);
return(rtSafe);

funcRtSafe = functionDefine(rtSafe);
F = *(funcRtSafe++);
dF *funcRtSafe;
--funcRtSafe;

if(F < 0) xL = rtSafe;
else xH = rtSafe;

while (iterCount--);
return(0);

196

/ *_________*
/

1* FUNCTION_DEFINEO: RETURNS THE VALUE OF THE FUNCTION AND ITS DERIVATWE *1
/*==*
/

double *functionDefine(double var

double func;
double jacob;
double invVar;
double *funcD;
invVar = 1/var;
sqrVar = invVar/var;
cube Var = sqrVar/var;
quadVar = cubeVar/var;
func = power_wt - Ki *(CpO*cubeVar + Cpl *sqrVar + Cp2*invVar \

+ Cp3 + Cp4*var + Cp5*var*var)*pow(fT,3);
jacob = KI *(3*CpO*quadvar + 2*Cp *cubeVar + Cp2*sqrVar \

- Cp4 - 2*Cp5*var)*pow(fT,3);
*funcD++ = func;
*funcD = jacob;
return(--funcD);

Header files for perf_opt.c:

consti 15.h

/***/
1*

*1

1* Performance Optimization Controller
1*

*1

197

1* Program developed by Shibashis Bhowmik *1

1* *1

/* (C) 1997 OREGON STATE UNWERSITY *1

1*

/***/
/ *======================_____===============================__==============
*1

/* MACROS
/ *======
*1

#define BUFF_NUM
#define MAX_FILE
#define LINE_V
#define THREE_V
#define OSC 272
#define PARAM

16
buffer * BUFF_NTJM

1.5 /* AIC VOLTAGE VALUES
3

*1

#define PWR_SCALER
#define MAX_INV_CURR

*1

#define MIN_INV_CURR 22
*1

#define MAX_INV_FREQ
*1

#define MIN_INV_FREQ 25
*1

#define MAX_SPEED
#define MIN_SPEED
#define LOOP_COUNT
#define MEPT_MIN
#define MEPT_MAX
#define MPPT_MIN
#define MPPT_MAX
#define MAX_ITER 50
#define PWR_FREQ
#define PWR_POLE
#define CNTRL_POLE
#define F_R0
#define LAMB DA_0
#define LAMBDA_MAX
#define LAMBDA_RANGE
#define MAX_FR_OPT
#define MIN_FR_OPT
#define pi
#define R

/* MAX NUMBER OF SAMPLES *1
*1

/* WIDTH OF OSCILLOSCOPE DISPLAY */

12 /* LENGTH OF INPUT PARAMETERS

1.024
70 /* SET FOR A MAXIMUM OF 5.0 Arms

/* SET FOR A MINIMUM OF 2.2 Arms

53 /* SET FOR A MAXIMUM OF 60 Hz

/* SET FOR A MINIMUM OF 25 Hz

1800
1250
10
7 /* 400 ms for each update */
15
LOOP_COUNT * MEP1IMIN
LOOP_COUNT * MEPT_MAX

60
3

20
3

9
6
33.333
20.833

3. 141592654e+00
3.1 8309886e-01

198

#define HALF_PI_ROW 2.643080059e+O1 /* PRODUCT OF AIR-DENSITY, P1 AND
A HALF */
#defineKl 21.424
#define LAMBDA_OPT 9
#define X1_GUESS 1

#define X2_GUESS 17
/ *================================__ ---
*1

1* CONSTANTS FOR Ic-Pt PROFILE APPROXIMATION
*1

/ *====__=__==============_______========================_____=================
*1

#define CiO -6.685590975953640e-01
#define Cii 1.559679433221850e-02
#define Ci2 -2.572805445582490e-05
#define Ci3 1.588912375270070e-08
/ *=====__===================__========_=====================================
*1

/* CONSTANTS FOR Effi.-Ic PROFILE APPROXIMATION
*1

/*=============================__:===========________========================
*1

#define CeO 1.459222939136030e+O1
#define Cel 3.642025997231750e+O1
#define Ce2 -1.037325774635940e+O1
#define Ce3 9.538226457187550e-01
/*==
*1

/* CONSTANTS FOR ft-fR (r/min) PROFILE APPROXIMATION
*1

/
*==

*1

#define Cifi -1.050042869603410e+02
#define Cfl 1.000024213155460e-01
#define Cf2 3.122683836642910e-09
#define Cf3 -2.101814170260100e-12
#define Cf4 7.039221644805220e-16
#define Cf5 -9.385103650988710e-20
/*====__========================__==_____========:==============================
*1

/* CONSTANTS FOR Cp-LAMBDA PROFILE APPROXIMATION
*1

/
*===========____=_===========___==_===_====================================

*1

#define CpO -2.548513356485820e-01
#define Cpl i.039879368168420e-01
#define Cp2 -5.048169520213590e-04
#define Cp3 -2.873579826562060e-04
#define Cp4 -3.072367130361660e-14
#define Cp5 6.694466999822750e-16

ser_com.h

I***I

1*

*1

1* Performance Optimization Controller
1*
/* Program developed by Shibashis Bhowmik *1

1* *1
/* (C) 1997 OREGON STATE UNIVERSITY
1* *1

/** * * * * * * * * ** * * * * * * * * * * * * * * ** * * * * ** ** * * * * * * * ** * * * * * * * ** * ** * * * * * * * * * * ** * * * ** * * *1

I***/

1*

*1

PC - INVERTER CONTROLLER COMMUNICATION SUPPORT
*1

/** * * * * * * * * ** * ** * * * * * * * ** * * * * ** * * ** ** * ** ** * * * * * * * ** * ** * * * * *1

#ifndef _ser_com
#define _ser_com

#define COM1 0
#define COM2 1

#define DATA_READY Ox 100
*1

#define TRANSMIT_READY
*1

#define FRAMING_ERROR
ERRORS
#define PARITY_ERROR
#define OVERRUN_ERROR
#define SETTINGS

#endif

(0x4000 I 0x2000)

0x800

/* DATA READY

/* HOLDING AND SHIFT EMPTY

1* DEFINE SERIAL PORT

199

0x400
0x200
(_COM_9600 I _COM_CHR8 I _COM_STOP1 I _COM_NOPARITY)

pc_1.h

/***/
1*

*1

1* Performance Optimization Controller
/* *1

1* Program developed by Shibashis Bhowmik *1

1*

1* (C) 1997 OREGON STATE UNIVERSITY *1

1* *1

I***/
I***I
1*

*1

1* *1

1* Programming ideas borrowed from the following reference:
1*

1* Digital Signal Processing Applications with the
*1

1* TMS32OC3O Evaluation Module
1*

*1

*1

II

1* PC_1.H *1
/* *1

1* TMS32OC3O EVALUATION MODULE DATA ACQUISITION (OSCILLOSCOPE) DEMO *1
1* :PC PROGRAMS
1* *1

*1
1* ** * * * * * * * * * * * * * * * * ** * *** * * * * * * * * * ** *1

#define OFF OxOO

#define ON OxOl
#define TOGGLE OxOl 1* XOR BITFIELD TO TOGGLE ON <-> OFF */
#define NONE OxOO /* WORD REPRESENTING ABSENCE OF COMMAND */
1* ** ** * * * *** * * * * * * * * * * * * * ** ** * * * * *** * * * * ** * ** * ** *1

/* FUNCTION PROTOTYPES
/**/
void initevm(void);
void get_iobase(void);
mt getExtendedCommand(void);
char getCommand(void);
void send_command(int i);
void sendCommandTolnv(char *commandparam);
void recording(int record_cmd);
/**/
1* COMMUNICATIONS MACROS
/**/
1* -- *1
/* PC I/O SPACE BASE ADDRESS FOR EVM CONTROL REGISTERS
1* -- *1
#define IOBASE_DEFAULT 0x0240

#detine CONTROL5 iobase + Ox000A 1* CONTROL REGISTER */

#define STATUSO iobase + 0x0400 1* STATUSO REGISTER */

201

#define COM_CMD iobase + 0x0800 /* COMMAND REGISTER */

#define COM_DATA iobase + 0x0808 /* DATA REGISTER */

#define SOFT_RESET iobase + 0x0818 1* SOFT RESET LOCATION */

#define MINOR_CMD iobase + 0x0014 /* MINOR COMMAND REGISTER */

1* -- *1
/* BIT MASKS FOR READ AND WRITE ACKNOWLEDGE BITS IN STATUS REGISTER */
1* -- *1
#define MREAD_ACK 0x0002
#define MWRITE_ACK 0x0004
#define UPDATE_REQ 0x6044

#define WRITE_CMD(x) outp (COM_CMD,x) /* WRITE 8 BIT COMMAND */
#define READ_CMD inp (COM_CMD) 1* READ 8 BIT COMMAND */
#define WRITE_DATA(x) outport(COM_DATA, x) /* WRITE 16 BiT DATA */

#define READ_DATA inport (COM_DATA) /* READ 16 BIT DATA */

#define RESET_EVM outport(SOFT_RESET, 0)/* RESET EVM *1

#define RESET_C30 outport(CONTROL5,0x808)/* PLACE 'C30 IN RESET */
#define RUN_C30 outport(CONTROL5,0x800)/* PULL C30 OUT OF RESET*/
#define READ_STATUSO inport (STATUSO) /* READ STATUS WORD */

#define WRJTE_MINOR_CMD(x) outport(MINOR_CMD,x) 1* WRITE STATUS WORD */

1* -- *1
1* CHECKS FOR READ OR WRITE ACKNOWLEDGMENT *1

*1

#define IS_READ_ACK (READ_STATUSO & MREAD_ACK)
#define IS_WRITE_ACK (READ_STATUSO & MWRITE_ACK)
1* -- *1
/* CLEAR STATUSO BITS
1* -- */

#define CLR_READ_ACK WRITEMINOR_CMD(MREAD_ACK)
#define CLR_WRITE_ACK WRITE_MINOR_CMD(MWRITE_ACK)
#define UPDATE_STATUSO WRITE_MINOR_CMD(UPDATE_REQ)

202

perf_pc.h

/***/

/* Performance Optimization Controller *1

1* *1

1* Program developed by Shibashis Bhowmik *1

1* *1

1* (C) 1997 OREGON STATE UNIVERSITY
1* *1
/** * * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * ** * * * * * * * * * * *** * * * ** * * ** * * * * * * * * * ** * * * * * * * *1

/***I

1* *1

/* Programming ideas borrowed from the following reference: *1

1* *1
/* Digital Signal Processing Applications with the *1

1* TMS32OC3O Evaluation Module *1

1* *1

1* OSC PC.H *1

1* *1

1* TMS32OC3O EVALUATION MODULE DATA ACQUISITION (OSCILLOSCOPE) DEMO */

/ :PC PROGRAMS *1

1* *1

1* *1
/***/
/* FUNCTION PROTOTYPES *1

/ *=======================================__==========
*1

void main(void);
void init_graphics(void);
void status(void);
void graph(void);
void scale(void);
void gputs(char *s);
void mainMenuCommandProcess(void);
void invMenuCommandProcess(char passCommand);
mt displayCheck(void);
void menuWindow(char **entry);
char *conandp&awJnput(char commandLetter, mt paramLength);
void averagePower(void);
void processBiosTime(void);
unsigned long timerDisplay(void);
void maxmEffiLoop(void);
void maxmPwrLoop(void);
double *newtonRaphson(double var);
double solve(void);
double *functionDefine(double var);
/ *====================__======__==
*1

1* EXTERNALLY DEFINED GLOBAL VARIABLES (FROM GENERIC EVM SUPPORT PROGRAM)
*1

/ *============================__===__=========___=========_==_=================
*1

extern mt disk[]; /* DISK STORAGE ARRAY *1

extern mt buffer; 1* TRANSFER SIZE VARIABLE *1

203

extern mt index; /* INDEX INTO DISK STORAGE ARRAY
extern double power;
extern mt iobase; 1*1/0 BASE ADDRESS FOR EVMFBC REGISTERS
extern mt comPort; 1* COMMUNICATION PORT FOR INVERTER ACCESS

*1

extern delay(unsigned);
/ *=============__:

*1

/* GLOBAL VARIABLES *1

/ *======__========_____===__=========_=_====================================
*1

char string[80]; /* STORAGE ARRAY FOR TEMPORARY CHARACTER STRINGS */

mt y[OSC]; /* STORES PREVIOUS VALUES OF OSCILLOSCOPE PLOTS */

/* FOR EASY ERASE */

mt graph_index =0; /* INDEX INTO THE DISK STORAGE ARRAY FOR DATA PLOTS */
mt syncFlag = OFF; /* INDICATE BDFM SYNCHRONIZATION

*1

mt loopFlag = ON; /* CLOSED/OPEN LOOP OPERATION STATUS INDICATOR */

mt mpptFlag = OFF; 1* MPPT LOOP INDICATOR
mt meptFlag = OFF; 1* MPPT LOOP INDICATOR
mt invFlag = OFF; /* INVERTER STATUS INDICATOR

mt seqFlag = ON; /* POSITIVE PHASE SEQUENCE ACTIVE
*/

mt directionFlag = ON;
mt magnify =0; /* SCREEN MAGNIFICATION FOR OSCILLOSCOPE DISPLAY */

mt GraphDriver = EGA; 1* EGA DISPLAY DRIVER *1

mt GraphMode = EGAHLJ* DRIVER IN HIGH RESOLUTION EGA MODE */

float gain = THREE_V; 1* AIC FULL RANGE INPUT SET FOR LINE-LEVEL
float sample_rate = 8.0 128; /* AIC SAMPLING RATE VARIABLE */

double invCurr = 0;
double invCurrOpt;
double invFreq = 0;
double invFreqOpt = 0;
mt difflnvFreq = 0;
double speed = 0;
double fR = 0;
double fT = 0;
unsigned long invOnTime = 0;
unsigned long iniBiosTime, newBiosTime, oldBiosTime = 0;
unsigned mt maxmEffiLoopCount = 0;
unsigned mt maxmPwrLoopCount = 0;
double power_wt;
double sqrVar;
double cubeVar;
double quadVar;
double fROpt;
double lambda = 4.5; /*LAMBDAO;*/
double flu;

/* MAIN MENU FOR DISPLAY
1* --- *1

char *mamn menu[J =

204

"Fl START",
"F2 Toggle CLOSED/OPEN control",
"F3 Enable/disable MPPT",
"F4 Enable/disable MEPT",
"F5 STOP ALL",

"HOME Toggle Magnification",

"END Quit",
NULL

*1

/* OPEN LOOP INVERTER COMMAND MENU FOR DISPLAY
1* --- *1
char *jnvConJandMenu[} =

"E/e Enable ",
"D/d Disable",
"+ Set pos. seq.",
"- Set neg. seq.",
"W/w (Iref+0.1) A",
"X/x (Iref-0.1) A",
"Y/y (freq+0.1) A",
"Z/z (freq-0.1) A",

"I/i[J[][] Set ref. cun.",
"F/flj[][] Set ref. freq.",
"O/o[][][J Set on-time",
"S/s[][][][]Set BDFM speed",

"Q/q Quit Inverter Menu",
NULL

/* OPEN LOOP INVERTER COMMAND ARRAY INITIALIZATION *1
1* ---*1

char enable[] = { "EN" };
char disable[] = { "D" };
char pos[] = { "+" };
char neg[] =
char incCur[] =
char decCur[I =
char incfreq[J = { "y" };
char decfreq[j =
char curr[5J =
char freq[5] =
char onTime[5J = { "o" };
char bdfmSpd[5];
char stringForParam[6]; 1* INITIALIZE STRING

205

perf_cmd.h

#define DEL 83
#define HOME 71
#define END 79
#defineFl 59
#defineF2 60
#defineF3 61
#define F4 62
#defineF5 63
#define F6 64
#defineF7 65
#defineF8 66
#define F9 67
#defineFl0 68

*1
/* COMMANDS FROM THE PC TO THE EVM *1

1* -- *1
#define START Fl /* GET THE EVM READY FOR LOOP OP. */

#define LOOP F2 /* TOGGLE CLOSED/OPEN LOOP OPERATION */
#define MPPT F3 /* ENABLE/DISABLE MPPT
#define MEPT F4 /* ENABLE/DISABLE MEPT
#define STOP F5 /* STOP INVERTER AND CONTROL */

#define MAGNIFY HOME /* TOGGLE MAGNIFICATION ON SCOPE DISPLAY */
#define QUIT END /* EXIT FROM PC CONTROL PROGRAM
#define RECORDING 128 /* DMA IN READY CONDITION FOR RECORD */

#define PLAYING 129 /* DMA IN READY CONDITION FOR PLAYBACK */

#define BLOCK_SIZE 512 /* BLOCK SIZE FOR TRANSFER TO HOST */

/* THIS VALUE IS STORED
IN buffer */

B.2 TMS32OC3X power measurement

The Texas Instruments evaluation module provided an analog interface that was

utilized for power measurement feedback as required by the optimization controller. The

software code utilized for the purpose can be readily found in a Texas Instrument

publication named "Digital signal processing application with the TMS32OC3X

evaluation module".

206

Appendix C. Wind Turbine Emulator Source Code

The wind turbine emulator though not a part of the optimization controller helped in

the evaluation of the controller simulating wind turbine characteristics. The control of

the dc machine to represent a wind turbine or to follow any desired torque-speed profile

requires a microcontroller to generate the required armature voltage signal. The

80196KC was utilized to generate a pulse-width-modulated signal at one its high-speed

output pins. The output was then filtered by a lowpass filter and fed to the dc machine

local controller.

Only the 80196 assembly code for the speed and torque control is presented in this

Appendix. The 80196 initialization code was similar to that of the rectifier code and has

been presented in Appendix A. Its listing would, hence, be avoided here to reduce

redundancy. While the user interface protocol was identical to that of the rectifier and the

inverter, the program listing is presented here as the commands for the interface are

different.

User-interface and program variable initialization:

begin.c

#include proto.h"

#include "80196.h'

#include "global.h"

#include <fpal96.h>

#include <math.h>

extern register unsigned mt cyclelime, cycleFreq, halfCycleFreq;

extern register unsigned mt onTime, saveRemOnTime;
extern register unsigned mt maxVarm, halfMaxVarm;
extern register unsigned mt Kis, Kps, Kit, Kpt;
extem register unsigned char commandChar;
extern register unsigned char stop, cycleCount;
extern register unsigned char vChar[3];
extern register unsigned mt sync;
extern register signed mt speed, speedRef, torqueRef;
extem register signed mt trqConst;
extern register unsigned mt spdConst;
extern register float CO, Cl, C2, C3, C4, C5, Ct, Cs;
extern register signed mt spdError, oldSpdError, trqError, oldTrqError;
extern register signed mt spdError, oldSpdError, trqError, oldTrqError;
extern register signed mt oldSpdCntrlVar, oldlrqCntrlVar;
extem register signed mt saveRemSpdCntrlVar, saveRemTrqCntrlVar;
extern register signed mt sTempVar;
extern register unsigned mt uTempVar;
extern register unsigned char i, tempSP_AND, tempSBUF;

1 extern void changeCurrent(void);
*1

void begin(void)

fpinitO; /* initialize FPAL96 *1

hso_initO;

/* initialize constants /

CO = CO_VAL;
Cl =C1_VAL;
C2 = C2_VAL;
C3 = C3_VAL;
C4 = C4_VAL;
C5 = C5_VAL;
Ct = CLVAL;

stop = 0;
sync = 0;
tempSP_AND =0;

cycleTime = 1200;
cyc!eFreq = 833
maxVarm = 960;
halfCycleFreq = cycleFreq/2;
halfMaxVarm = maxVarm/2;
saveRemOnTime = 0;

1*

*1

spdConst = 725;
speedRef= 0;
spdError = 0;
oldSpdError = 0;
oldSpdCntrl Var =0;
saveRemSpdCntrl Var =0;

1*

*1

trqConst = 0;
torqueRef = 0;
trqError =0;
oldTrqError = 0;
oldTrqCntrlVar = 0;
saveRemlrqCntrl Var =0;

1*

*1

Kis = KIS_VAL;
Kps = KPS_VAL;
Kit=KIT_VAL;
Kpt = KPT_VAL;

1*

*1

WSR =15;
TIMER_i =0;
WSR =0;

timer2lnit()
setUpSwftlnit()

WSR =15;
HSI_TIME =0;
WSR =0;

/ reset timerl which will be used as the HSI clock source *1

WSR =15;
TIMER_i = 0;
HSI_TIME =0;
WSR =0;
TIMER_2 = OxFFFD;

/**

second variale intialization incorporated from by A. van Zyl
necessitated due to noise problems as observed on SPOT

* * * ** * ** * * * * ** * * * * * * * * * * * * * * * * ** * ** * * * * * * * ** * ** * * * * * * * * ** * * * * ** * * * * *1

while(!stop)
getChar;
commandChar = tempSBUF;
if ((commandChar == n) II (commandChar ==
{ putChar(10); putChar(i3);

stop = 1;

stop = 0;

asm ei;

while(!stop)

spchkQ;
if (tempSP_AND) 1* tempSP_AND = spchk() *1

getBufO;
commandChar = tempSBUF;
switch(commandChar)

case T: case

/* for Ct = 1.7066667, factor here is 35 / 6 */

putChar(1 0);putChar(13); putChar(T);
sTempVar = torqueRef;

if(sTemp Var < 0)
sTempVar = -sTempVar;
putChar('-');

else
putChar('+');

vChar[0] = ((sTempVar * 9)/1000) + '0';
putChar(vChar[0J);
vChar[1] = (((sTempVar * 9) % 1000)/100) + '0';
putChar(vChar[1]);
vChar[2] = (((sTempVar * 9) % 1000) % 100)/10 + '0';
putChar(vChar[2]);
putChar('.');
vChar[3] = (((sTempVar * 9) % 1000) % 100) % 10 + '0;
putChar(vChar[3]);putChar(1 0);putChar(13);

break;

case 'D': case'd':
asmdi;
hsoAllClearO;
IOPORT1 = 0x80;
stop = 1;
putChar(1 0);putChar(13);
break;

case 'S': case
for (i=0; i<4; i++)

getCharO;
vChar[i] = tempSBlJF - 'if;

uTempVar = (vChar[0]*1000 + vChar[1]*100 + vChar[2]*10
+ vChar[3]) / SPD_FAC;

putChar(10);putChar(13);
if (uTempVar < PEAK_SPEED)

speedRef = uTempVar;

210

break;

case 'I': case i:
for (i=0; i<3; i+)
{ getCharo;

vChar[i] = tempSBUF - '0';

uTempVar = (vChar[0}*100 + vChar[1}*10 + vChar[2]);
if (!sync)

Kis = uTempVar;
else

Kit = uTempVar;
putChar(1 0);putChar(13);
break;

case 'F': case
for (i=0; i<3; i++)

getCharO;
vChar[i} = tempSBUF - '0';

uTempVar = (vChar[0]*100 + vChar[1]*10 + vChar[2]);
if (!sync)

Kps = uTempVar;
else

Kpt = uTempVar;
putChar(I 0);putChar(13);
break;

case 'Z': case
putChar(I 0);putChar(13);
if ((sync = 0) & (speed> 625))

sync = 1;

putChar(T);putChar('-');putChar('m');
putChar('o');putChar('d');putChar('e');

else if ((sync = 0) & (speed <= 625))
putChar('S');putChar('-');putChar('m');
putChar('o');putChar('d');putChar('e');

else if (sync = 1)

sync = 0;
putChar('S');putChar('-');putChar('m');
putChar('o');putChar('d');putChar('e');

putChar(10);putChar(13);
break;

80196 assembly listing:

spd_tor.a96:

sptq MODULE STACKSIZE(32)

RSEG

EXTRN PLMReg: LONG

$ INCLUDE (MEMORY.INC)

this module is the HSO software timer interrupt service routine

it controls the dc-machine either in the speed control mode or
in the torque control mode

CSEG at 7000h

$ INCLUDE (80196.INC)
$ INCLUDE (DEFINE.INC)

PUBLIC changeArmVolt

EXTRN
EXTRN

define the FPAL

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

Plregulator: ENTRY
analogOut: ENTRY

96 procedures that are being used

FpLdlnt
FpSt
FpMul
FpAdd
FpLd
FpDiv
FpStlnt

211

212

changeArmVolt:
PUSHF
ST SP, saveSP

go to horizontal window 0 (default window)
LDB WSR, 0

determine which HSO software timer caused the interrupt
SIB IOS1, tempIOSi

jump to code for software timer 0
JBS tempIOSi, SWTFO_BIT, swftO

POPF
RET

swftO:

start a/d conversion for dc bus voltage
LDB AD_COMMAND, #SPEED_MONITOR

XORB IOPORTI,#0000000lb

getSpdAd:

adSpddone:

JBS AD_LOW, AD_STATUS_BIT, getSpdAd

SI AD_LOW, speed

SHR speed, #6
SUB speed, speedO

to test speed control regulator

SI spdConst, speed

verify if synchronization is done?
if (sync == done), then (torque control), else (speed control)

CMP speed, #625
JC tCntrlRange
ST 0, sync

tCntrlRange:
CMP sync, 0
JNE genTrqRef

SUB spdError, speedRef, speed

213

reduce steady state error of the speed regulator

ST spdError, temp
JBC temp.15, posSpdErr
NEG temp

posSpdErr:
CMP temp. #RECON_SPD_STEP
JC okKi
MUL longTemp, Kis, #10
ST longTemp, KisMod
SJMP callSpdReg

okKi:
LD KisMod, Kis

callSpdReg:
PUSH spdError
PUSH oldSpdError
PUSH saveRemSpdCntrl Var
PUSH spdCntrl Var
PUSH oldSpdCntrl Var
PUSH KisMod
PUSH Kps

LCALL Plregulator

POP saveRemSpdCntrl Var

LCALL VarmLimit

POP spdCntrl Var

ST spdError, oldSpdError
ST spdCntrlVar, oldSpdCntrlVar

ST spdCntrlVar, oldTrqCntrl Var

PUSH spdCntrl Var
LCALL analogOut
SJMP goBack

genTrqRef:
LDB AD_COMMAND, #TORQUE_MONITOR

LD torqueRef, #170

ST speed, longTemp
ST 0, longTemp+2
SHLL longTemp, #1 ; scale to actual value
PUSH longTemp+2 ; convert integer speed variable

214

PUSH longTemp ; to real
LCALL FpLdlnt ; Fp$Acc = spd

LCALL FpSt
ST PLMREG+2, speedlnReal+2
ST PLMREG, speedlnReal ; speedlnReal = (real) speed

PUSH C1+2
PUSH Cl
LCALL FpMul ; Fp$Acc = Cl * spd

PUSH CO2
PUSH CO
LCALL FpAdd ; Fp$Acc = CO+C 1 *spd

LCALL FpSt
ST PLMREG+2, realTemp+2
ST PLMREG, realTemp ; reallemp = CO+C 1 *spd

CO + C1*speed + C2*speed2

PUSH speedlnReal+2
PUSH speedlnReal
LCALL FpLd ; Fp$Acc = spd

PUSH speedlnReal+2
PUSH speedlnReal
LCALL FpMul ; Fp$Acc = spd'2

PUSH C2+2
PUSH C2
LCALL FpMul ; Fp$Acc = C2*spdA2

PUSH realTemp+2
PUSH realTemp
LCALL FpAdd ; Fp$Acc = CO+C 1 *spd+C2*spdA2

LCALL FpSt
ST PLMREG+2, realTemp+2
ST PLMREG, realTemp ; realTemp = CO+C1 *spd+C2*spdA2

convert torque to measured scale

PUSH Ct+2
PUSHCt
LCALL FpMul ; Fp$Acc = scaled Torque reference

LCALL FpStlnt
ST PLMREG+2, longTemp+2
ST PLMREG, longTemp ; scaled torque to integer
ST PLMREG, torqueRef

ST torqueRef, temp
JBC temp.15, getTrqAd
ST 0, torqueRef

getTrqAd:
JBS AD_LOW, AD_STATUS_BIT, getTrqAd

adTrqDone:
ST AD_LOW, torque

SHR torque, #6
SUB torque, #512
SUB torque, torqueO
NEG torque

to test torque control regulator

ST trqConst, torque

SUB trqError, torqueRef, torque

reduce steady state error of the torque regulator

ST trqError, temp
JBC temp. 15, posTrqErr
NEG temp

posTrqErr:

okKit:

callTrqReg:

CMP temp, #RECON_TRQ_STEP
JC okKit
MUL longTemp, Kit, #2
ST longTemp, KitMod
SJMP callTrqReg

LD KitMod, Kit

PUSH trqError
PUSH oldTrqError
PUSH saveRemTrqCntrl Var
PUSH trqCntrl Var
PUSH oldTrqCntrlVar

215

216

PUSH KitMod
PUSH Kpt

LCALL Plregulator

POP saveRemTrqCntrl Var

LCALL VarmLimit

POP trqCntrlVar

ST trqError, oldTrqError
ST trqCntrlVar, oldTrqCntrlVar

ST trqCntrlVar, oldSpdCntrl Var
ST speed, speedRef

PUSH trqCntrl Var
LCALL analogOut

goBack:
ST saveSP, SP
POPF
RET

SUBROUTINE TO LIMIT DC-rn/c ARMATURE VOLTAGE

VarmLimit:
POP savePC
POP cntrl Var

put a safety voltage limiter

CMP cntrl Var, 0
JGE bigger

ST 0, cntrlVar
LIMP smaller

bigger:
CMP cntrlVar, maxVarm
JLE smaller
ST maxVarm, cntrlVar

smaller:
PUSH cntrl Var
PUSH savePC
RET

217

218

pireg.a96

pireg MODULE STACKSIZE(20)

this module is the P1-regulator code

RSEG

EXTRN longTemp: LONG
EXTRN IongTempTwo: LONG
EXTRN IongTempThree: LONG
EXTRN Ki: WORD
EXTRN Kp: WORD
EXTRN oldCntrlVar: WORD
EXTRN cntrl Var: WORD
EXTRN saveRemCntrl Var: WORD
EXTRN oldlnpError: WORD
EXTRN inpError: WORD
EXTRN temp: WORD
EXTRN cycleFreq: WORD
EXTRN halfCycleFreq: WORD
EXTRN savePC: WORD

CSEG at 6000h

PUBLIC Plregulator

Plregulator:

Code implemented on Mar 29, 1995.
Equation:

cntrlVar(n+1) = cntrlVar(n) + (Ki/256) * deltal * inpError(n+1)

+ (Kp/256) * [inpError(n+1) - inpError(n)]

deltaT = 1/cycleFreq ; if updated every program execution ioop,
implemented code modified on 2/13/97 to limit products of multiplications
adapted from dc-bus regulator of the active rectifier controller

POP savePC
POP Kp
POP Ki
POP oldCntrl Var
POP cntrl Var

219

POP saveRemCntrl Var
POP oldlnpError
POP inpError

SUB temp, inpError, oldlnpError
MUL longTemp, temp, Kp

put limit on the product, modified 2/13/97
ST longTemp+2, temp
JBS temp.15, negVar
CMP temp, 0
JH limitPosProduct
CMP longlemp, #7ffth
JNC productOk
LD longTemp, #7fffh
SJMP productOk

IiinitPosProduct:
LD longTemp, #7ffth
SJMP productOk

negVar:

limitNegProduct:

CMP temp, #Offfth
JLT limitNegProduct
CMP IongTemp, #8001h
JC productOk
LD IongTemp, #8001h
SJMP productOk

LD IongTemp, #8001h

productOk:
MUL longTemp, cycleFreq
SHLL longTemp, #3

MUL longTempTwo, oldCntrlVar, cycleFreq
SHLL longTempTwo, #8

MUL IongTemplhree, Ki, inpError
SHLL longTempThree, #10

CLRC
ADD longTemp, longTempTwo
ADDC longTemp+2, longTempTwo+2
CLRC
ADD longTemp, longTempThree
ADDC longTemp+2, longTempThree+2
SHRAL longTemp, #8
DIV longTemp, cycleFreq
ST longTemp, cntrl Var

interger arithmetic suck! 7/5/95

ADD saveRemCntrlVar, longTemp+2
ST saveRemCntrl Var, temp
JBS temp.15, negRemCntrlVar
CMP temp, halfCycleFreq
JNH remCntrlVarOk
INC cntrl Var

220

negRemCntrl Var:

remCntrlVarOk:

SUB saveRemCntrlVar, cycleFreq
SJMP remCntrlVarOk

NEG temp
CMP temp, halfCycleFreq
JNH remCntrlVarOk
DEC cntrl Var
ADD saveRemCntrlVar, cycleFreq

PUSH 0
PUSH 0
PUSH 0
PUSH 0
PUSH 0
PUSH cntrl Var
PUSH saveRemCntrl Var
PUSH savePC

RET

END

anagout.a96

analog MODULE STACKSIZE(8)

this module is generates the HSO pulses required for
a desired analog output

RSEG

EXTRN longTemp: LONG
EXTRN cntrl Var: WORD
EXTRN cycleTime: WORD
EXTRN maxVarm: WORD
EXTRN halfMaxVarm: WORD
EXTRN onTime: WORD
EXTRN saveRemOnTime: WORD
EXTRN temp: WORD
EXTRN saveTurnOnTime: WORD
EXTRN savePC: WORD

221

CSEG at 6800h

$ INCLUDE (80196.INC)
$ INCLUDE (DEFINE.INC)

PUBLIC analogOut

analogOut:

POP savePC
POP cntrl Var

determine duty

MUL IongTemp, cntrlVar, cycleTime
DIV longTemp, maxVarm
ST IongTemp, onTime

ST cntrl Var, onTime

;; interger arithmetic suck! 7/5/95

ADD saveRemOnTime, IongTemp+2
ST saveRemOnTime, temp
JBS temp.15, negRemOnTime
CMP temp. halfMaxVarm
JNH remOnTimeOk
INC onTime
SUB saveRemOnTime, maxVarm
SJMP remOnTimeOk

;negRemOnTime:
NEG temp
CMP temp, halfMaxVarm
JNTI remOnTimeOk
DEC OnTime
ADD saveRemOnTime, maxVarm

Limit on On_Time

remOnTimeOk:
CMP onTime, #MIN_ON_TIME
JC checkHigh
LD onTime, #MIN_ON_TIME
SJMP armVolt

checkHigh:
CMP onTime, #MAX_ON_TIME
JNC armVolt
LD onTime, #MAX_ON_TIME

armVolt:

222

XORB IOPORT1, #000000 lOb
JBS IOSO, HSO_HOLDING_BIT, armVolt

LDB HSO_COMMAND, #ARM_VOLT_SET
ADD HSO_TIME, TIMER_i, #HSO_SYNC

lowLimitOk:
JBS IOSO, HSO_HOLDING_BIT, lowLimitOk

LDB HSO_COMMAND, #ARM_VOLT_CLEAR
ADD HSO_TIME, TIMER_i, onTime

PUSH 0
PUSH savePC
RET

END

223

Appendix D. Data Acquisition System Source Code

This appendix lists the source code of the data acquisition system along with its

graphical interface. The real-time data acquisition is done by an assembly generated

source code (datacq.asm) while all peripheral activities is conducted in C-language. The

hardware details of the data acquisition system can be found in the following

publications:

1) WB-820 Modular Analog and Digital 110 Board, Omega Systems Inc. 1988.

2) OMX-STB-HL High-Level Voltage Panel, Omega Systems Inc. 1988.

3) Phase 3 of a Brushless Dorbly-Fed Machine System Development Program, Final

Technical Report for period Jan 1, 1992 June 30, 1993, Oregon State University.

C-language modules:

omg_gph.c:

#include <graphics.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <bios.h>
#include <time.h>
#include <alloc.h>
#include <conio.h>
#include <string.h>
#define MAX_CH 16
#define CLIP_ON 1 / activates clipping in viewport *1
1*

#define MAX_SAM 10000
*1

/**
declare global variables

mt dim_r, dim_c
char filename2[20J;
char yes!
float fac_cur, fac_volt, fac_pwr_6, fac_pwr_2, fac_tor, fac_spd
FILE *fp2;
float tdiff;
mt maxx, maxy, midy, midx, thirdx;
float pmech, effic;
char bufr2[300], storque[lO};

224

float avafMAX_CH]

void chart()

char sspd[10}
char savaO[5], saval[5], sava2[5], sava3[5}, sava4[5], sava5[5]
char spmech[6], seffic[51
char sava8[5], sava9[5], savalO[51, savall[5], saval2[5], saval3[5], saval4[10], saval5[10]
mt h2ia, h2ib, h2ic, h6ia, h6ib, h6ic;
mt h2va, h2vb, h2vc, h6va, h6vb, h6vc;
mt ang..2, ang_6, div_ang;
mt i;
mt int_tor

for (i=0; i<14; ++i)
if (i != 6)

if (ava[i] <= 0.2)
ava[i] = 0.0;

/* for (i=0; i<10; ++i)
sspd[i] =

int_tor = (int) ava[6]
*1

if (effic <0.05)
effic = 0.0;

else if (effic> 100)
effic = 100;

if (abs(pmech) < 0.2)
pmech = 0.0;

/********* Clean-up previous diagram
setcolor(59);
setfihlstyle(SOLID_FILL, 59);
bar(41, midy-20-1 15, 180, midy-20);

1* bar3d(81, midy-20-100, 120, midy-20, 10, 1);
bar3d(121, midy-20-100, 160, midy-20, 10, 1);

*1

bar(461, midy-20-1 15, 600, midy-20);
1*

bar3d(501, midy-20-100, 540, midy-20, 10, 1);
bar3d(541, midy-20-100, 580, midy-20, 10, 1);

*1

bar(41, maxy-40-1 15, 180, maxy-40);
1*

bar3d(81, maxy-40-100, 120, maxy-40, 10, 1);
bar3d(121, maxy-40-100, 160, maxy-40, 10, 1);

*1

bar(46 1, maxy-40- 115, 600, maxy-40);

setcolor(1)
setfihlstyle(SOLID_FTLL, 1);
bar(309, 230, 365, 270);
bar(301, 25, 365, 33);
bar(301, 160, 365, 168);
bar(255, 35, 375, 157);

/********* Drawing two-pole currents

h2ia = (ava[0]/30)* 100;
setcolor(8)
setfihlstyle(SOLID_FILL, 1);
bar3d(41, midy-20-h2ia, 80, midy-20, 10, 1);
setcolor(1)
settextstyle(DEFAULT_FONT, HORIZ_DIR, 1);
settextjustify(0,2);
outtextxy(57, midy-17, "I');
outtextxy(62, midy-15, "a");
gcvt(ava[0], 3, savao);
setcolor(56);
settextjustify(1,2);
outtextxy(65, midy-37-h2ia, savaO);

h2ib = (ava[1]/30)* 100;
setcolor(8)
setfillstyle(SOLID_FILL, 60);
bar3d(81, midy-20-h2ib, 120, midy-20, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(97, midy-17, "I");
outtextxy(102, midy-15, 'b);
gcvt(ava[1], 3, saval);
setcolor(56);
settextjustify(1,2);
outtextxy(103, midy-37-h2ib, saval);

h2ic = (ava[2]130)* 100;
setcolor(8)
setfillstyle(SOLID_FILL, 58);
bar3d(121, midy-20-h2ic, 160, midy-20, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(137, midy-17, "I")
outtextxy(142, midy-15, "c');
gcvt(ava[2], 3, sava2);
setcolor(56);
settextjustify(1,2);
outtextxy(150, midy-37-h2ic, sava2);

/********* Drawing six-pole currents

h6ia = (ava[3}/30)* 100;

226

setcolor(8)
setfihlstyle(SOLID_FILL, 2);
bar3d(461, midy-20-h6ia, 500, midy-20, 10, 1);
setcolor(1)
settextstyle(DEFAULT_FONT, HORIZ_DIR, 1);
settextjustify(0,2);
outtextxy(477, midy-17, "I");
outtextxy(482, midy-15, "a');
gcvt(ava[3], 3, sava3);
setcolor(56);
settextjustify(1,2);
outtextxy(485, midy-37-h6ia, sava3);

h6ib = (ava[4]/30)* 100;
setcolor(8)
setfihlstyle(SOLID_FILL, 4);
bar3d(501, midy-20-h6ib, 540, midy-20, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(517, midy-17, "I");
outtextxy(522, midy-15, "b');
gcvt(ava[4], 3, sava4);
setcolor(56)
settextjustify(1,2);
outtextxy(523, midy-37-h6ib, sava4);

h6ic = (ava[5]/30)* 100;
setcolor(8)
setfihlstyle(SOLID_FILL, 57);
bar3d(541, midy-20-h6ic, 580, midy-20, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(557, midy-17, "I");
outtextxy(562, midy-15, 'c");
gcvt(ava[5], 3, sava5);
setcolor(56);
settextjustify(1,2);
outtextxy(570, midy-37-h6ic, sava5);

/********* Drawing two-pole voltages *************/

h2va = (ava[8]/270)* 100;
setcolor(8)
setfihlstyle(SOLID_FILL, 57);
bar3d(4 1, maxy-40-h2va, 80, maxy-40, 10, 1);
setcolor(1)
settextstyle(DEFAULT_FONT, HORIZ_DIR, 1);
settextjustify(0,2);
outtextxy(57, maxy-37, "V");
outtextxy(64, maxy-35, "a");
gcvt(ava[8], 3, sava8);
setcolor(56)
settextjustify(1,2);
outtextxy(65, maxy-55-h2va, sava8);

h2vb = (ava[9]1270)* 100;

227

setcolor(8)
setfihlstyle(SOLID_FILL, 62);
bar3d(81, maxy-40-h2vb, 120, maxy-40, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(97, maxy-37, "V');
outtextxy(104, maxy-35, b");
gcvt(ava[9], 3, sava9);
setcolor(56)
settextjustify(1,2);
outtextxy(103, maxy-55-h2vb, sava9);

h2vc = (ava[10]1270)* 100;
setcolor(8)
setfihlstyle(SOLID_FILL, 2);
bar3d(121, maxy-40-h2vc, 160, maxy-40, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(137, maxy-37, "V");
outtextxy(144, maxy-35, "c);
gcvt(ava[10}, 3, savalO);
setcolor(56)
settextjustify(1,2);
outtextxy(150, maxy-55-h2vc, saval 0);

/********* Drawing six-pole voltages *************/

h6va = (ava[1 l]/270)*100;
setcolor(8)
setfillstyle(SOLIDHLL, 5);
bar3d(461, maxy-40-h6va, 500, maxy-40, 10, 1);
setcolor(1)
settextstyle(DEFAULT_FONT, HORIZ_DIR, 1);
settextjustify(0,2);
outtextxy(477, maxy-37, "V");
outtextxy(484, maxy-35, "a");
gcvt(ava[1 1], 3, saval 1);
setcolor(56);
settextjustify(1,2);
outtextxy(485, maxy-55-h6va, saval 1);

h6vb = (ava[12]/270)* 100;
setcolor(8)
setfihlstyle(SOLID_FILL, 62);
bar3d(501, maxy-40-h6vb, 540, maxy-40, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(517, maxy-37, "V");
outtextxy(524, maxy-35, "b");
gcvt(ava[12], 3, saval2);
setcolor(56)
settextjustify(1,2);
outtextxy(523, maxy-55-h6vb, saval2);

h6vc = (ava[13}/270)* 100;

228

setcolor(8)
setfihlstyle(SOLID_FILL, 2);
bar3d(541, maxy-40-h6vc, 580, maxy-40, 10, 1);
setcolor(1)
settextjustify(0,2);
outtextxy(557, maxy-37, "V");
outtextxy(564, maxy-35, "c);
gcvt(ava[13], 3, saval3);
setcolor(56)
settextjustify(1,2);
outtextxy(570, maxy-55-h6vc, saval3);

ang.2 = (int)((fabs(ava[14])/(fabs(ava[1 4])+fabs(ava[1 5])))*360);
ang6 = (int)((fabs(ava[1 5J)/(fabs(ava[14])+fabs(ava[1 5])))*360);

if(ang.2 < ang6)
div_ang = ang_2/2;
setcolor(58);
pieslice(315, 85, 90-div_ang, 90+div_ang, 60);

setcolor(5)
setfihlstyle(SOLID_FILL, 5);
pieslice(315, 105, 90+div_ang, 270, 60);
pieslice(315, 105, 270, 360, 60);
pieslice(315, 105, 0, 90-div_ang, 60);

else
div_ang = ang_6/2;
setcolor(58)
pieslice(315, 105, 270-div_ang, 270+div_ang, 60);

setcolor(S)
setfihlstyle(SOLID_FILL, 5);
pieslice(315, 85, 270+div_ang, 360, 60);
pieslice(315, 85, 0, 90, 60);
pieslice(315, 85, 90, 270-div_ang, 60);

gcvt(ava[14], 4, saval4);
gcvt(ava[15], 4, saval5);

1* printf("\nava[6} = %f', ava[6]);

itoa(int_tor, stor, 10)
*1

gcvt(pmech, 4, spmech);
gcvt(effic, 4, seffic)

setcolor(58);

229

settextjustify(2,2);
outtextxy(365, 230, storque);
outtextxy(365, 250, spmech);
outtextxy(365, 260, seffic);

outtextxy(365, 25, saval4);
outtextxy(365, 160, saval5);

gcvt(ava[7], 4, sspd);
outtextxy(365, 240, sspd);

1*

getchO;
closegraphO;
exit(1);

*1

void data_convert(int adc[][MAX_CH], mt chann[])

mt i, j, torque_index, speed_index, p2_index, p6_index;
mt key, prex, dim_re;

FILE *fsamp;
char filename3[20];

float fac_adc, pelec
float cmp;
char chl[2}, ch2, sdim_rc[10], yes2[2], *ext =

/* char bufr3[300] ; *1

fac_adc = 4.8828125e-03

for (j=0; j<dim_c; ++j)
ava[j] = 0.0;
for (i=0; i<dim_r; ++i)

ava[j} += adc[i][j];
ava[j] 1= dim_r;
if (chann[j] <= 5)

ava[j] = ava[j]*fac_adc*fac_cur;

else if (chann[j] == 6)

ava[jJ = ava[j}*fac_adc*fac_tor;
torque_index = j

else if (chann[j} = 7)

ava[j} = ava[j]*fac_adc*fac_spd;

speed_index = j

else if((chann[j] >= 8) && (chann[j} <= 13))

230

ava[j] = ava[j]*fac_adc*fac_volt;

else if(chann[j] == 14)

ava[j] = ava[j]*fac_adc*fac_pwr_6;
p6_index=j;

else

ava[j] = ava[j I
*fac adc *fac_p_2;

p2_index=j;

if (j = (dim_c-i))

1* Calculate efficiency
if torque is greater than zero then pmechlpelec
if torque is less then zero then pelec/pmech
added by chris brune 5-30-93

*1

pmech = 0.0 11832 * ava[torque_index]*ava[speed_indexl;
pelec = ava[p2_indexl + ava[p6_index]
effic =0;
gcvt(ava[6], 4, storque);

if (pmech < 0)
{ effic = (pelec I pmech)* 100

else
effic = (pmech / pelec)* 100

1* printf('\t\tpmech\t=\t%8.4f\n' ,pmech);
printf('\t\teffic\t=\t%8.4f\n" ,effic);

printf("\n\n\n')
*1

1* printf('p_2 = %f", ava[14]) ; *1

/ test data */
1*

ava[0] = 30.25;
ava[i] = 10.38;
ava[2J = 20.56;
ava[3] = 20;
ava[4J = 25;
ava[5J = 15
ava[6] = 100;
ava[7] = 1150;
ava[8] = 270.50;
ava[9] = 100;
ava[10] = 120;
ava[11]= 225;

231

ava[12] = 220;
ava[13] = 230;
ava[14] = 1000;
ava[15] = 3000;

*1

for (i=0; i<15000; +i)
key = kbhitQ;

if (key =0)
yesl = getchO;

/* if (kbhitO)*/

if (yes 1 == s')

for (j=0; j<dim_c; ++j)

{ if (chann[j] 5)
fprintf(fp2,%6.4f ",ava[j])

else if (channfj] = 6)
{ fprintf(fp2,"%7.4f ",ava[j])

torque_index = j

else if (chann[j] == 7)
{ fprintf(fp2,'%8.4f ",ava[j])

speed_index = j

else if((channfj] >= 8) && (chann[,j] <= 10))

{ fprintf(fp2,"%7.4f ",ava[j])

else if((chann[j] >= 11) && (chann[j] <= 13))
fprintf(fp2,%7.4f ",ava[j]);

else if (chann[j] == 14)

{ fprintf(fp2,"%8.4f ",ava[j]) ;

p6_index=j;

else

{ fprintf(fp2,%8.4f ",ava[j]);

p2_index=j;

if (j = (dim_c-i))

/* Calculate efficiency

232

*1

fflush(fp2);

if torque is greater than zero then pmech/pelec
if torque is less then zero then pelec/pmech
added by chris brune 5-30-93

pmech = 0.011832 * ava[torque_indexj*ava[speed_index];
pelec = ava[p2_index] + ava[p6_index];
effic = 0;

if (pmech <0)
effic = (pelec / pmech)* 100;

else
effic = (pmech / pelec)* 100;

fprintf(fp2," %8.4f' ,pmech);
fprintf(fp2," %8.4f' ,effic);

fprintf(fp2, "\n")

setfillstyle(SOLID_FILL, 10);
bar(0, maxy-17, maxx-thirdx, maxy);
setcolor(0)
outtextxy(10, maxy-lO, "Want to store raw data? (YIN)");

moveto(290, maxy-lO);

yes2[1]='\O'; 1* end of array *1

setcolor(4)
while ((ch2 = getchO) != 13)

if(ch2 == 8)
prex = getxO;
bar(prex-8, maxy-lO, prex, maxy-2);
nioveto(prex-8, maxy-lO);

else
yes2[0] = ch2;
outtext(yes2);

if((yes2[0] == 'Y')II(yes2[0] ==
bar(0, maxy-17, maxx-thirdx, maxy);

setcolor(0)
outtextxy(10, maxy-lO, "Enter file name (.PRN will be appended)::");

dim_rc = dim_r*dim_c;
itoa(dim_rc, sdim_rc, 10)

moveto(354, maxy-lO);

233

for (i=0; i<20; ++i)
filename3[i] =

II
chl[lj='\O'; 1* end ofarray *1

setcolor(4)
while ((chl[0]=getchQ) != 13)

if(chl[0] == 8)
{ prex = getx()

bar(prex-8, maxy- 10, prex, maxy-2);
moveto(prex-8, maxy-lO);
i=i-1;

else
filename3[i] = chl[0]
++i;
outtext(ch 1)

strcat(filename3, ext);

1* printf("%s", filename3) ; *1

if((fsamp = fopen(filename3, "w+t")) = NULL)
setfihlstyle(SOLID_FILL, 10);
bar(0, maxy-17, maxx-thirdx, maxy);
outtextxy(10, maxy-lO, "Problem in opening file pointer.");
getch()
exit(1)

if ((setvbuf(fsamp, bufr2, _IOLBF, 300)) != 0)

setfihlstyle(SOLID_FILL, 10);
bar(0, maxy-17, maxx-thirdx, maxy);
outtextxy(10, maxy-lO, "Not enough memory to allocate buffer space");
getch()
exit(1);

bar(0, maxy- 17, maxx-thirdx, maxy);
setcolor(0)
outtextxy(10, maxy-lO, "Please wait, writing samples....");
setcolor(4)
settextjustify(2,2);
outtextxy(218, maxy-lO, sdim_rc);

1* settextjustify(0,2); *1

for (i=0; i<dim_r; ++i)
fprintf(fsamp,"%f ", (tdiff/dim_r)*i)

for (j=0; j<dim_c; ++j)
{ if (chann[j] <= 5)

fprintf(fsamp,"%6.4f ",adc[i][j]*fac_adc*fac_cur)

234

1*

*1

else if (chann[jJ == 6)
fprintf(fsamp,"%7.4f ",adc[i] [ii *fac adc*factor)

else if (chann[j] = 7)
fprintf(fsamp," %8.4f ",adc[i] U] *facadc*facspd)

else if((chann[j] >= 8) && (chann[j] <= 13))
fprintf(fsamp," %7.4f ",adc[i] [j] *fac_adc*facvolt)

else if(chann[j] = 14)
fprintf(fsamp,'%8.4f ",adc[i}[j] *facadc*facp6)

else
fprintf(fsamp,"%8.4f ",adc[i] [jJ *fac_adc*fac_pwr_2)

fprintf(fsamp, "\n")

fflush(fsamp);
fclose(fsamp)

printf("\n\tWriting averaged data\n');
printf('dim_r = %d", dim_r)
fp5 = fopen(adc2.prn", 'w+t");
for (i=O; i<dim_r; ++i)
{ for (j=O;j<dim_c; ++j)

fprintf(fp5,"%d\t',adc[i][j]);
fprintf(fp5,"\n")

fclose(fp5)

yesl =

free (adc);
chartO;

void enter (mt chann_num[])

1*

mt data[MAX_SAM][MAX_CH];
*1

mt (*data)[MAX_CH]
1* mt data[100][MAX_CH] ; *1

mt i,j

char *stdiff;

1*

*1

235

clock_t time, time_d[MAX_SAM];
long time, time_d[MAX_SAM]

clock_t start, end;

settextjustify(0,2)

if ((data = farcalloc(2*dim_r,dim_c)) == NULL)

setfihlstyle(SOLID_FILL, 10);
bar(0, maxy-17, maxx-thirdx, maxy);
outtextxy(10, maxy-lO, "Not enough memory to allocate data storage space");
getch;
exit(1)

start = clock()
for (i=0; kdim_r; ++i)

for (j=0; j<dim_c; ++j)
data[i][jJ = dat_acq(chann_num[j]);

end = clockO

tdiff = (end-start)/CLK_TCK;
1* tdiff = 8.079654 ; *1

gcvt(tdiff, 4, stdiff)

setfillstyle(SOLID_FILL, 10);
bar(0, maxy- 17, maxx-thirdx, maxy);
setcolor(0);
outtextxy(I0, maxy-lO, "Duration of data acquisition = secs.');
setcolor(4)
outtextxy(260, maxy-lO, stdiff);
data_convert(data, chann_num);

void display()

mt windowl[8], window2[8], window3[8];
mt recl[8], rec2[8], rec3[8], rec4[8]
mt clearanceX, clearanceY;
mt i;

1* set for EGA mode */
mt gdriver = EGA, gmode = EGAHI, errorcode;

/* initialize graphics and local variables */
initgraph(&gdriver, &gmode, "c:\shiba);

/* read result of initialization */
errorcode = graphresultO;
if (errorcode != grOk) 1* an error occurred */

236

printf('Graphics error: %s\n", grapherrormsg(errorcode));
printf(Press any key to halt:);
getchO;
exit(1); 1* terminate with an error code */

maxx = getmaxxO;
maxy = getmaxyO;
midy = maxy/2;
midx = maxx/2;
thirdx = (maxx-6)/3;

windowl[0] = 0;
windowl[1] = 10;
windowl[2] = maxx;
windowl[3] = 10;
windowl[4] = maxx;
window 1 [5] = maxy-20;
windowl[6] = 0;
windowl[7] = maxy-20;

clearanceX = 15;
clearanceY = 20;

rec 1 [0] = clearanceX;
recl[1]= clearanceY;
recl[2] = thirdx-5;
recl[3] = clearanceY;
recl[4] = thirdx-5;
recl[5] = midy-5;
recl[6] = clearanceX;
recl[7] = midy-5;

1* rec2[0] = thirdx+10;
rec2[1] = clearanceY;
rec2[2] = 2*thirdx5;
rec2[3] = clearanceY;
rec2[4] = 2*thirdx5;
rec2[5] = midy-5;
rec2[6] = thirdx+10;
rec2[7] = midy-5;

*1

rec2[0] = maxx-clearanceX;
rec2[1] = clearanceY;
rec2[2] = maxx-thirdx;
rec2[3] = clearanceY;
rec2[4] = maxx-thirdx;
rec2[5] = midy-5;
rec2[6] = maxx-clearanceX;
rec2[7] = midy-5;

rec3[0] = clearanceX;
rec3[1] = midy-i-5
rec3[2] = thirdx-5;

237

rec3[3] = midy+5
rec3[4] = thirdx-5;
rec3[5] = maxy-27;
rec3[6] = clearanceX;
rec3[7] = maxy-27;

rec4[0] = maxx-clearanceX;
rec4[1] = midy+5;
rec4[2] = maxx-thirdx;
rec4[3] = midy+5;
rec4[4] = maxx-thirdx;
rec4[5] = maxy-27;
rec4E6] = maxx-clearanceX;
rec4[7] = maxy-27;

window2[0] = 0;
window2[1] = maxy-17;
window2[2] = maxx-thirdx;
window2[3] = maxy-17;
window2[4] = maxx-thirdx;
window2[5] = maxy;
window2[6] = 0;
window2[7] = maxy;

window3[0] = maxx-thirdx-5;
window3[1] = maxy-17;
window3[2] = maxx;
window3[3] = maxy-17;
window3[4] = maxx;
window3[5] = maxy;
window3 [6] = maxx-thirdx-5;
window3[7] = maxy;

setfillstyle(SOLID_FJLL, 1);
setlinestyle(0, OxFFFF, 2);

/* draw a rectangle */
fihlpoly(4, window!);
rectangle(3, 1 3,maxx-3,maxy-23);

setfihlstyle(SOLID_FJLL, 5);
bar(thirdx/2,O,maxx-(thirdx/2),9);

setcolor(0);
setfihlstyle(SOLID_FILL, 59);
fihlpoly(4, red);
fillpoly(4, rec2);
fillpoly(4, rec3);
fihlpoly(4, rec4);

setfillstyle(SOLID_FILL, 10);
fillpoly(4, window2);

238

setfihlstyle(SOLID_FTLL, 12);
fihlpoly(4, window3);

settextjustify(1,1);
setcolor(0);
outtextxy(midx+1, 6, "Steady State BDFM Data Aquisition System');
setcolor(10);
outtextxy(midx, 5, "Steady State BDFM Data Aquisition System");

setcolor(0);
settextjustify(0,2);
settextstyle(DEFAULT..FONT, HORIZ_DIR, 1.5);
outtextxy(50, 25, "2-Pole Current");
line(50, 34, 161, 34);

outtextxy(475, 25, "6-Pole Current");
line(475, 34, 586, 34);

outtextxy(50, 183, "2-Pole Voltage");
line(50, 191, 161, 191)

outtextxy(475, 183, "6-Pole Voltage");
line(475, 191, 586, 191);

setcolor(63);
outtextxy(229, 25, "Power_2 = watts");
outtextxy(229, 160, "Power_6 = watts");

outtextxy(245, 230, "Torque = lb-in");
outtextxy(245, 240, "Speed = rpm");
outtextxy(245, 250, "Pmech = watts");
outtextxy(245, 260, "Effi. = %");
outtextxy(maxx-thirdx+ 10, maxy- 10, "S Q");
setcolor(1);
outtextxy(maxx-thirdx+25, maxy- 10, "save quit");

1* clean up /
1* getchO;
*1

mt main()

FILE *fpl
mt i;
mt chann[20};
float fac[6};
char ch[2];
mt prex

displayO;

setcolor(0);
settextstyle(DEFAULT_FONT, HORIZ_DIR, 1);

if((fpl = fopen("acqset.up", 'r+t"))==NULL)

outtextxy(l0, maxy-lO, "Error: file acqset.up could not be opened);
getcho;
exit(1);

else

setfillstyle(SOLID_FILL, 10);
bar(0, maxy- 17, maxx-thirdx, maxy);
outtextxy(10, maxy-lO, "Opened file acqset.up");

fscanf(fpl,"%d', &dim_c)
fscanf(fpl ,"%*[Aj]");

1*

printf('%d\n",dim_c)
*1

for (i=0; i<dim_c; ++i)
fscanf(fp 1," %d', &chann[i])

1*

printf('%d\n',chann[i])
*1

1*

*1

1*

fscanf(fp1,'%*[\\.n]");
fscanf(fpl,'%d", &dim_r);
fscanf(fpl ,%*[A\,])

printf("%f\n' ,t_dur)

for (i=0; i<6; ++i)
fscanf(fpl,"%f', &fac[i])
fscanf(fpl,"%*[A\n]")

fac_cur = fac[01
fac_volt = fac[1]
fac_pwr_6 = fac[2]
fac_pwr_2 = fac[3]
fac_tor = fac[41

fac_spd = fac[5]
fclose(fpl)

dim_r = (int)(t_dur* I 9000/dim_c)

l_t_dur= t_dur*CLK_TCK;

239

240

*1
printf(" l_t_dur = %fn",l_t_dur);

setfihlstyle(SOLID_FILL, 10);
bar(0, maxy-17, maxx-thirdx, maxy);
outtextxy(l0, maxy-lO, "Averaged data file name::");

moveto(maxx-thirdx-202, maxy- 10);

for (i=0; i<20; ++i)
filename2[i] =

II
ch[l]='\O'; 1* end of array *1

setfihlstyle(SOLID_FILL, 10);
setcolor(4)
while ((ch[0]=getcho) != 13)

if(ch[0] == 8)
{ prex = getxO;

bar(prex-8, maxy-lO, prex, maxy-2);
moveto(prex-8, maxy-lO);
i=i-1;

else
filename2[i] = ch[0]
++i;
outtext(ch);

1* scanf("%ls", filename2) ; *1

fp2 = fopen(filename2, "w+t");
setvbuf(fp2, bufr2, _IOFBF, 300);

yesi = 'C';
1*

if((yesl = 'Q')II(yesl =
fclose(fp2);

else
enter(chann);

while (!kbhitO)
enter(chann);

if ((yes 1 = getcho) == 'q')
fclose(fp2)

*1

while ((yesi = 'C')II(yesl = c))

enter(chann);

241

fclose(fp2)
closegraphO;
system("cls");
exit(l);

return (0)

Assembly listing:

datacq.asm

.MODEL large

.STACK 50h

.DATA

.CODE

PUBLIC _datacq
_daLacq PROC FAR

push bp
mov bp,sp
mov dx,3eOh

loop1:
in al,dx
and al,Oe3h
jnz loop1
mov cI,[bp+6]

;setting up the required channel for data acqusition
mov dx,3elh
mov al,cl
out dx,al
inc dx
out dx,al
mov dx,3eOh

loop2:
in al,dx
test aI,40h
jz loop2
mov dx,3e3h
in ax,dx
pop bp
ret

_dat_acq ENDP
END

242

Sample input parameters:

acqset.up:

16 1* # of channels to be sampled */
0 1 2345 67 89 10 1112 13 14 151* the channel numbers that needs to be sampled *1
1000 /* # of samples */
10 /* multiplying factor for current transducer *1
30 /* multiplying factor for voltage transducer *1
2014.6 /* multiplying factor for 6-pole power transducer */
2014.6 /* multiplying factor for 2-pole power transducer */
59.13036 /* multiplying factor for torque transducer *1
4Ø45/* multiplying factor for speed transducer */

