149 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    C-Rex: A Comprehensive System for Recommending In-Text Citations with Explanations

    Get PDF
    Finding suitable citations for scientific publications can be challenging and time-consuming. To this end, context-aware citation recommendation approaches that recommend publications as candidates for in-text citations have been developed. In this paper, we present C-Rex, a web-based demonstration system available at http://c-rex.org for context-aware citation recommendation based on the Neural Citation Network [5] and millions of publications from the Microsoft Academic Graph. Our system is one of the first online context-aware citation recommendation systems and the first to incorporate not only a deep learning recommendation approach, but also explanation components to help users better understand why papers were recommended. In our offline evaluation, our model performs similarly to the one presented in the original paper and can serve as a basic framework for further implementations. In our online evaluation, we found that the explanations of recommendations increased users’ satisfaction

    Citation recommendation: approaches and datasets

    Get PDF
    Citation recommendation describes the task of recommending citations for a given text. Due to the overload of published scientific works in recent years on the one hand, and the need to cite the most appropriate publications when writing scientific texts on the other hand, citation recommendation has emerged as an important research topic. In recent years, several approaches and evaluation data sets have been presented. However, to the best of our knowledge, no literature survey has been conducted explicitly on citation recommendation. In this article, we give a thorough introduction to automatic citation recommendation research. We then present an overview of the approaches and data sets for citation recommendation and identify differences and commonalities using various dimensions. Last but not least, we shed light on the evaluation methods and outline general challenges in the evaluation and how to meet them. We restrict ourselves to citation recommendation for scientific publications, as this document type has been studied the most in this area. However, many of the observations and discussions included in this survey are also applicable to other types of text, such as news articles and encyclopedic articles

    Recommendations for item set completion: On the semantics of item co-occurrence with data sparsity, input size, and input modalities

    Get PDF
    We address the problem of recommending relevant items to a user in order to "complete" a partial set of items already known. We consider the two scenarios of citation and subject label recommendation, which resemble different semantics of item co-occurrence: relatedness for co-citations and diversity for subject labels. We assess the influence of the completeness of an already known partial item set on the recommender performance. We also investigate data sparsity through a pruning parameter and the influence of using additional metadata. As recommender models, we focus on different autoencoders, which are particularly suited for reconstructing missing items in a set. We extend autoencoders to exploit a multi-modal input of text and structured data. Our experiments on six real-world datasets show that supplying the partial item set as input is helpful when item co-occurrence resembles relatedness, while metadata are effective when co-occurrence implies diversity. This outcome means that the semantics of item co-occurrence is an important factor. The simple item co-occurrence model is a strong baseline for citation recommendation. However, autoencoders have the advantage to enable exploiting additional metadata besides the partial item set as input and achieve comparable performance. For the subject label recommendation task, the title is the most important attribute. Adding more input modalities sometimes even harms the result. In conclusion, it is crucial to consider the semantics of the item co-occurrence for the choice of an appropriate recommendation model and carefully decide which metadata to exploit

    Citation Recommendation on Scholarly Legal Articles

    Full text link
    Citation recommendation is the task of finding appropriate citations based on a given piece of text. The proposed datasets for this task consist mainly of several scientific fields, lacking some core ones, such as law. Furthermore, citation recommendation is used within the legal domain to identify supporting arguments, utilizing non-scholarly legal articles. In order to alleviate the limitations of existing studies, we gather the first scholarly legal dataset for the task of citation recommendation. Also, we conduct experiments with state-of-the-art models and compare their performance on this dataset. The study suggests that, while BM25 is a strong benchmark for the legal citation recommendation task, the most effective method involves implementing a two-step process that entails pre-fetching with BM25+, followed by re-ranking with SciNCL, which enhances the performance of the baseline from 0.26 to 0.30 MAP@10. Moreover, fine-tuning leads to considerable performance increases in pre-trained models, which shows the importance of including legal articles in the training data of these models.Comment: Seventeenth International Workshop on Juris-informatics (JURISIN 2023

    Sparsity-aware neural user behavior modeling in online interaction platforms

    Get PDF
    Modern online platforms offer users an opportunity to participate in a variety of content-creation, social networking, and shopping activities. With the rapid proliferation of such online services, learning data-driven user behavior models is indispensable to enable personalized user experiences. Recently, representation learning has emerged as an effective strategy for user modeling, powered by neural networks trained over large volumes of interaction data. Despite their enormous potential, we encounter the unique challenge of data sparsity for a vast majority of entities, e.g., sparsity in ground-truth labels for entities and in entity-level interactions (cold-start users, items in the long-tail, and ephemeral groups). In this dissertation, we develop generalizable neural representation learning frameworks for user behavior modeling designed to address different sparsity challenges across applications. Our problem settings span transductive and inductive learning scenarios, where transductive learning models entities seen during training and inductive learning targets entities that are only observed during inference. We leverage different facets of information reflecting user behavior (e.g., interconnectivity in social networks, temporal and attributed interaction information) to enable personalized inference at scale. Our proposed models are complementary to concurrent advances in neural architectural choices and are adaptive to the rapid addition of new applications in online platforms. First, we examine two transductive learning settings: inference and recommendation in graph-structured and bipartite user-item interactions. In chapter 3, we formulate user profiling in social platforms as semi-supervised learning over graphs given sparse ground-truth labels for node attributes. We present a graph neural network framework that exploits higher-order connectivity structures (network motifs) to learn attributed structural roles of nodes that identify structurally similar nodes with co-varying local attributes. In chapter 4, we design neural collaborative filtering models for few-shot recommendations over user-item interactions. To address item interaction sparsity due to heavy-tailed distributions, our proposed meta-learning framework learns-to-recommend few-shot items by knowledge transfer from arbitrary base recommenders. We show that our framework consistently outperforms state-of-art approaches on overall recommendation (by 5% Recall) while achieving significant gains (of 60-80% Recall) for tail items with fewer than 20 interactions. Next, we explored three inductive learning settings: modeling spread of user-generated content in social networks; item recommendations for ephemeral groups; and friend ranking in large-scale social platforms. In chapter 5, we focus on diffusion prediction in social networks where a vast population of users rarely post content. We introduce a deep generative modeling framework that models users as probability distributions in the latent space with variational priors parameterized by graph neural networks. Our approach enables massive performance gains (over 150% recall) for users with sparse activities while being faster than state-of-the-art neural models by an order of magnitude. In chapter 6, we examine item recommendations for ephemeral groups with limited or no historical interactions together. To overcome group interaction sparsity, we present self-supervised learning strategies that exploit the preference co-variance in observed group memberships for group recommender training. Our framework achieves significant performance gains (over 30% NDCG) over prior state-of-the-art group recommendation models. In chapter 7, we introduce multi-modal inference with graph neural networks that captures knowledge from multiple feature modalities and user interactions for multi-faceted friend ranking. Our approach achieves notable higher performance gains for critical populations of less-active and low degree users

    Predictive Accuracy of Recommender Algorithms

    Get PDF
    Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. The dissertation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems
    • …
    corecore